
Equilogial SpaesAndrej Bauer, 1 Lars Birkedal, 2 Dana S. Sott 3Shool of Computer Siene, Carnegie Mellon UniversityAbstratIt is well known that one an build models of full higher-order dependent type theory(also alled the alulus of onstrutions) using partial equivalene relations (PERs)and assemblies over a partial ombinatory algebra (PCA). But the idea of ategoriesof PERs and ERs (total equivalene relations) an be applied to other struturesas well. In partiular, we an easily de�ne the ategory of ERs and equivalene-preserving ontinuous mappings over the standard ategory Top0 of topologialT0-spaes; we all these spaes (a topologial spae together with an ER) equilogialspaes and the resulting ategory Equ. We show that this ategory|in ontradis-tintion to Top0|is a artesian losed ategory. The diret proof outlined here usesthe equivalene of the ategory Equ to the ategory PEqu of PERs over algebrailatties (a full subategory of Top0 that is well known to be artesian losed fromdomain theory). In another paper with Carboni and Rosolini (ited herein) a moreabstrat ategorial generalization shows why many suh ategories are artesianlosed. The ategory Equ obviously ontains Top0 as a full subategory, and it nat-urally ontains many other well known subategories. In partiular, we show why, asa onsequene of work of Ershov, Berger, and others, the Kleene-Kreisel hierarhyof ountable funtionals of �nite types an be naturally onstruted in Equ fromthe natural numbers objet N by repeated use in Equ of exponentiation and binaryproduts. We also develop for Equ notions of modest sets (a ategory equivalent toEqu) and assemblies to explain why a model of dependent type theory is obtained.We make some omparisons of this model to other, known models.
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graduate ourse on Domain Theory he had realized that by using some basiand well-known properties of domains (spei�ally, algebrai latties) the at-egory of equivalene relations on T0-spaes not only was an extension of thetopologial ategory but was artesian losed.The present paper inorporates original motivation, de�nitions, and proofs ofthe earlier manusript, and we then give an equivalent de�nition suggestingrelationships to the extensive work on partial equivalene relations over par-tial ombinatory algebras (hereafter, PCAs). In our onferene paper [9℄, thereader will �nd an abstrat framework due to Carboni and Rosolini in whihthe ategories of equilogial spaes and partial equivalene relations over PCAs�t. Indeed, it is shown that there is a larger ategory than that of equilogi-al spaes that is artesian losed. However, we shall not disuss the abstratategorial framework here (namely, that of exat ompletions of ategories).As in the earlier manusript, our desire here is to give a fairly onrete desrip-tion of the strutures involved and the onstrutions from them. By extendingthe �rst treatment, we use an alternate equivalent de�nition of the ategoryof equilogial spaes to give a de�nition of a model of dependent type theoryand logi, analogous to the work over PCAs. We also disuss how far thatanalogy extends.The �nal setion of the paper shows how the work of Y. Ershov and E. Bergeronerning the Kleene-Kreisel hierarhy of ountable funtionals and exten-sions an be inorporated into the ategory of equilogial spaes. In terms ofthe type theory, it turns out that the higher types over the integers N ! N ,(N ! N ) ! N , ((N ! N ) ! N ) ! N , et., are indeed the ountablefuntionals, as expeted. In order to see this, we have to add appropriateategorial de�nitions to Berger's work.Note added in February, 2001. Sine the writing of this paper in 1998,muh progress has been made in understanding equilogial spaes and theirrelationship to other ategories. The relationship to tripos theory hinted at inthe disussion in Setion 4 has been worked out [7,8℄; in partiular, the openproblem mentioned at the end of the disussion in Setion 4 has been solved,see [7,8℄. Also, the relation between equilogial spaes and domains with to-tality desribed in Setion 5 has been extended to hierarhies of dependenttypes [4,3℄, and a relation to type-two e�etivity has been disovered [3℄. Alsoother researhers have ontributed greatly to the study of equilogial spaes;see the papers ited here for referenes and disussions of their related work.2 MotivationThe familiar ategories Set andTop, onsisting of sets and arbitrary mappingsand of topologial spaes and ontinuous mappings, have many well known lo-2



sure properties. For example, they are both omplete and oomplete, meaningthat they have all (small) limits and olimits. They are well-powered and o-well-powered, meaning that olletions of subobjets and quotients of objetsan be represented by sets. They are also niely related, sine Set an beregarded as a full subategory of Top, and the forgetful funtor that takesa topologial spae to its underlying set preserves limits and olimits (butreets neither).The ategory Set is also a artesian losed ategory, meaning that the funtion-spae onstrut or the internal hom-funtor is very well behaved, in the sensethat the funtor � � B is adjoint to B ! � for all objets B. However, it hasbeen known for a long time that in Top no suh assertion is available, beausein general it is not possible to assign a topology to the set of ontinuous fun-tions making this adjointness valid|exept under some speial onditions onthe spae B. Many remedies have been proposed, notably, (a) utting downto ompatly generated spaes, or (b) expanding the ategory to the ategoryof �lter spaes (or a related kind of limit spae). These are interesting sugges-tions, but both have some drawbaks. Suggestion (a) applies only to Hausdor�spaes, and suggestion (2)|whih the authors onsider the more interestingfrom a logial point of view|introdues very unfamiliar spaes at the highertypes (i.e., after iterating the funtion-spae onstrut several times). It re-mains to be seen whether the suggestion of this paper an be regarded as moreonrete or more helpful than either (a) or (b).Our solution to the problem of artesian losedness is motivated by domaintheory. The new ategory is formed from the ategory Top0 of topologialT0-spaes by using spaes together with arbitrary equivalene relations, toform the ategory, to be alled alled Equ, where the mappings are (suitableequivalene lasses of) ontinuous mappings whih preserve the equivalenerelations. (A more preise de�nition will be given below.) Let us all thesespaes equilogial spaes and the mappings equivariant. It seems surprisingthat this ategory has not been notied before|if in fat it has not. It is easyto see that Equ is omplete and oomplete and that it embeds Top0 as a fulland faithful subategory (by taking the equivalene relation to be the identityrelation).What is perhaps not so obvious is that Equ is indeed artesian losed. Theproof of artesian losedness outlined here uses old theorems in domain theoryoriginally disovered by Sott: in partiular, an injetive property of algebrailatties treated as topologial spaes and the fat that they form a artesianlosed ategory (along with ontinuous funtions). A more abstrat, ategori-al proof an be found in [9℄ or in [37℄. Also, in Setion 4 we give an alternativeonrete proof. Of ourse, algebrai latties are just one of many artesianlosed ategories proposed for domain theory|and not the most popular one.They allow, however, for some helpful embeddings of T0-spaes.For a long time Sott has been distressed that there are too many proposed3



ategories of domains and that their study has beome too arane. It washoped that the idea of syntheti domain theory would be the natural solution|but that theory has been slowed by many tehnial problems. The related ideaof axiomati domain theory is likewise hampered by the need to overometehnial diÆulties. Despite very good work in both these diretions, he doesnot feel that a �nal theory has emerged. Perhaps some of the ideas that havebeen used in these other approahes an be transplanted to the study of Equ,whih seems to be a rih and fairly natural ategory with many subategories.The basi idea of the syntheti approah is to establish a typed �-alulusone and for all, and then to single out useful types (or domains) by means ofspeial properties|just as is done in several other branhes of mathematis.As far as Equ is onerned, the possibilities seem good, but this is still workin progress. We are enouraged, however, by the results so far obtained, someof whih are presented here.3 Equilogial SpaesWe begin by de�ning some notation and alling to mind some basi de�nitionsand theorems onerning T0-spaes and algebrai latties. We then turn to thede�nition of equilogial spaes.T0-Spaes and Algebrai Latties. Topologial spaes will be onsideredas strutures T = hT;
T i, where T is the set of points of the spae, and where
T is the set of open sets of T . We shall often write jT j = T , so as not tohave to use a speial letter for the points of a spae. Complete latties (and,more generally, posets) will be onsidered as strutures L = hjLj;�Li, where�L is the partial ordering of the set jLj. Completeness of ourse demands thatevery subset S � jLj has a least upper bound WS 2 jLj.De�nition 3.1 The neighborhood �lter of a point x 2 jT j of a topologialspae T is de�ned by the equation:T (x) = fU 2 
T j x 2 U g:The spaes we shall be onerned with are the T0-spaes, where the topologydistinguishes the points.De�nition 3.2 A topologial spae is a T0-spae provided that for everypair of distint points there is an open set that ontains one but not theother. Another way to say this ondition is to say that for all x; y 2 jT j, ifT (x) = T (y), then x = y. The ategory of all suh spaes and ontinuousmappings between them is denoted by Top0.4



De�nition 3.3 The speialization ordering of a topologial spae T isde�ned by: x �T y () T (x) � T (y);for all x; y 2 jT j.De�nition 3.4 Let L be a omplete lattie. The �-topology on the lattieis de�ned as the olletion of all upward losed subsets U � jLj suh thatwhenever S � jLj and WS 2 U , then WS0 2 U for some �nite subset S0 � S.The olletion of all suh subsets is denoted by �L.The following theorems are now well-known. Proofs an, e.g., be found in [16℄.Theorem 3.5 Given a omplete lattie L, the struture hjLj;�Li is a T0-spaewhose speialization ordering is exatly �L.For the powerset spaes PA the �-topology is very easy to desribe: the opensets U � PA are the families of \�nite harater"; that is, a subset X � Abelongs to U if, and only if, some �nite subset of X belongs to U . This is thesame as giving PA the topology that orresponds to the produt topologyon 2A where the two-element set has the topology with one open point andone losed point. The powerset spaes have an important role as being able toembed every T0-spae. The following elementary result is key to the subsequentdevelopment.Theorem 3.6 (The Embedding Theorem) Given a T0-spae T , the map-ping x 7! T (x) is a topologial embedding of T into P 
T onsidered as a spaewith the �-topology.Powerset spaes also have another important property onerning ontinuousfuntions whih allows for the transfer of funtions over to the powerset spae.Theorem 3.7 (The Extension Theorem) If Y is a subspae of a topolog-ial spae X , and if f : jYj ! PA is ontinuous, then the funtion f has aontinuous extension to all the points of X .Sott notied the above theorems in 1970/71 and also pointed out that it infat holds for all ontinuous retrats of the powerset spaes|these are theontinuous latties|but for our purposes here, the above suÆes.Powerset latties an be generalized to algebrai latties, namely those om-plete latties that an be represented isomorphially as omplete sublattiesof a powerset losed under arbitrary intersetions and direted unions. (Theselatties an be haraterized in other ways as well; see, e.g., [13,16℄.) The �-topology on an algebrai lattie is just the restrition of the topology of thepowerset spae. An algebrai lattie is a ontinuous retrat of the powersetontaining it, but not all suh retrats are algebrai.The reason for onsidering algebrai latties is that the lattie of ontinuousfuntions between powerset spaes is not usually a powerset spae, but it is5



an algebrai lattie. And this extends to all algebrai latties. Hene, we havethe well known theorem (see [13,16℄):Theorem 3.8 The ategory ALat is artesian losed.The Category of Equilogial Spaes. We have now reviewed suÆientmaterial to be able to give two de�nitions of the ategory of equilogial spaesand to show that the two de�nitions are equivalent. We will then prove thatthe ategory is artesian losed.De�nition 3.9 The ategory Equ of equilogial spaes is de�ned as fol-lows.(1) Objets are strutures E = hjEj;
E ;�Ei, where hjEj;
Ei is a T0-spaeand �E is an (arbitrary) equivalene relation on the set jEj.(2) The mappings between equilogial spaes are the equivalene lasses ofontinuous mappings between the topologial spaes that preserve theequivalene relation (equivariant mappings), where the equivalene re-lation on mappings is de�ned byf �E!F g () 8x; y 2 jEj:�x �E y =) f(x) �F g(y)�:We remark that it has to be proved that �E!F atually is an equivalenerelation, but this is an elementary exerise. It also has to be proved that theequilogial spaes and equivariant maps form a ategory, but this an also besafely left to the reader.One odd feature of this de�nition is that the equivalene relation of an equi-logial spae may have very little to do with the topology. This means thatin some ases the only equivariant mappings between two spaes might bethe onstant maps, or the only automorphisms of a given spae might be theidentity|despite a rih underlying topology. Thus, future investigations maysuggest limiting the equivalene relations. But, for now, the general propertiesof the ategory seem to work out well for arbitrary equivalene relations, sowe have not been motivated to make any further restritions in this paper.Reall that a ategory is omplete if it has all (small) produts and equalizersof all pairs of parallel arrows. Similarly, a ategory is oomplete if it hasall (small) oproduts and oequalizers of all pairs of parallel arrows. Alsoreall that a regular subobjet is a subobjet whih arises as the equalizer ofa pair of parallel arrows and that a ategory is regular well-powered if theregular subobjets of every objet onstitute a set. Dually, a regular quotientis a quotient whih arises as the oequalizer of a pair of parallel arrows anda ategory is regular o-well-powered if no objet has a proper lass of non-isomorphi regular quotients. 6



Theorem 3.10 The ategory Equ is omplete, oomplete, and it is regularwell-powered, and regular o-well-powered. 4Proof. The proof proeeds along standard lines making use of the orre-sponding properties of topologial spaes.Take produts �rst. The produt (of any number) of topologial spaes is aspae with a produt topology. The produt of equivalene relations is anequivalene relation. The projetion mappings are learly equivariant. And,if we have a family of (equivalene lasses of) equivariant mappings into thevarious fator spaes, then (after applying the Axiom of Choie to pik repre-sentatives) we an obtain in the usual way one equivariant mapping into theprodut that ombines all the separate mappings.Next, take equalizers. Suppose f; g : jEj ! jFj are two (representatives of)equivariant mappings. Form the set f x 2 jEj j f(x) �F g(x) g. Endow this setwith the subspae topology and with the restrition of the equivalene relation�E . This struture, along with the obvious inlusion mapping into E , is thedesired equalizer. Thus, Equ is a omplete ategory.On to oproduts. The oprodut of topologial spaes is just a disjoint unionof the underlying sets with the topology on the union generated by the unionof all the topologies. For equivalene relations, we have only to note that theunion of equivalene relations on disjoint sets is indeed an equivalene relation.The injetion mappings from the separate spaes into the union are obvious,as well as is the lifting property of a family of mappings from the separatespaes into a given target spae.Next, we disuss oequalizers. Suppose f; g : E ! F are two (representativesof) equivariant mappings. On jFj we form the least equivalene relation on-taining both �F and the set of pairs f (f(x); g(x)) j x 2 jEj g. Using thisequivalene relation on jFj, we form the equilogial spae G. There is an ob-vious equivariant mapping  : F ! G represented by the identity. This is thedesired oequalizer. Thus, Equ is a oomplete ategory.Finally, we turn to well-poweredness. The properties of being regular well-powered and regular o-well-powered follow from the orresponding propertiesof Top0 and the ategory of equivalene relations; one just has to be areful tohek that the regular subobjets are obtained by seleting some equivalenelasses and taking the union of them to form a subspae; likewise, forminga regular quotient is just making the equivalene relation oarser (puttingequivalene lasses together). And, be warned that there are subobjets andquotients whih are not formed in this simple way.4 The authors are indebted to Peter Johnstone for pointing out that, ontrary tothe assertion made in Sott's original unpublished manusript, Equ is not wellpowered, for there are fairly simple examples of objets in the ategory with anunbounded number of non-isomorphi subobjets.7



The proof just given is skethy in the handling of equivalene lasses of maps,and, in the onstrution of the equalizer and oequalizer, it has to be hekedthat the strutures suggested have the required universal properties. But, thisargument|modulo equivalene lasses|is exatly similar to what is done forthe ategory Top0. We remark that the ategory of equivalene relations onsets is inluded here: a set is just a disrete topologial spae (and these forma full subategory of Top0). Of ourse, with the aid of the Axiom of Choie, itis quikly shown that the ategory of equivalene relations is equivalent to theategory of sets (via the obvious use of quotient sets). However, the ategoryEqu introdued here is not equivalent to the ategory Top0. For one thing,no topology is being put on the quotient spae jEj=�E . And this ategory hasa property|artesian losure|that Top0 does not share.To investigate Equ further, we introdue a losely onneted ategory.De�nition 3.11 The ategory PEqu of partial equilogial spaes is de-�ned as follows.(1) Objets are strutures A = hjAj;
A;�Ai, where hjAj;
Ai is the �-topology of an algebrai lattie, and where �A is a partial equivalenerelation, i.e., reexive only on a subset of jAj.(2) The mappings between partial equilogial spaes are the equivalenelasses of ontinuous mappings between the algebrai latties that pre-serve the partial equivalene relation, where the equivalene relation onmappings is de�ned as before byf �A!B g () 8x; y 2 jAj:�x �A y =) f(x) �B g(y)�:These mappings will also be alled equivariant.If we onsider the relation f �A!B g as being de�ned between arbitraryontinuous funtions, then equivariant maps for the ategory PEqu are the(equivalene lasses of) the funtions f satisfying f �A!B f , sine that meansthat the funtion preserves the underlying equivalene relation. This remarkgives a hint as to how we will de�ne funtion spaes, but �rst we want to hekthe equivalene of ategories.Theorem 3.12 The ategories Equ and PEqu are equivalent.Proof. The naturally suggested funtor from PEqu to Equ is the one thattakes hjAj;
A;�Ai and restrits the topology to the subspae on the subsetf x 2 jAj j x �A x g. On this subset the equivalene relation is \total". Themappings are likewise restrited. Call the funtor R (for \restrition"). Now,if f : A ! B is a map of PEqu, then R(f) = f � jR(A)j : R(A) ! R(B) isvalid as a map of Equ, and identities and ompositions are preserved.We note �rst that the funtor R is faithful by de�nition. Then, the funtor R isfull in view of The Extension Theorem (beause ontinuous funtions betweenT0-spaes an be extended to any algebrai latties embedding them). Finally,8



the funtor R is essentially surjetive on objets by virtue of The EmbeddingTheorem (and note that the equivalene relation on the T0-spae does nothave to be extended but remains partial). This is enough to show that theategories are equivalent.The idea of partial equivalene relations has been very widely employed. Sottbelieves he �rst alled general attention to it in the late '60s after extratingit from the studies by G. Kreisel and A. Troelstra on extensional theoriesof higher-type funtionals in reursion theory. However, it has been mostlyused reently in the ontext of giving types to (quotients of) subsets of auniversal model of some sort. We think allowing partial equivalene relationsover a large ategory (suh as algebrai latties) is possibly a new idea; but,ertainly, many familiar proofs get reused in the new ontext. The followingtheorem is an example of this reuse.Theorem 3.13 The ategory Equ is artesian losed.Proof. In view of the previous theorem, we will show that PEqu is artesianlosed. Given strutures A and B in PEqu we de�ne the struture A! B sothat(i) jA ! Bj is the set of ontinuous funtions between the latties jAj andjBj;(ii) 
A!B is the �-topology on this algebrai lattie;(iii) �A!B is the partial equivalene de�ned previously.We have to show, that for any three strutures in PEqu, say, A, B, and C,there is a one-one orrespondene between funtions in the two spaes:(A� B ! C) and (A! (B ! C)):As we know, there is a partiular one-one orrespondene that is an isomor-phism of the underlying algebrai latties (and a homeomorphism of topo-logial spaes). It only remains to show that the isomorphism preserves thepartial equivalene relation on the ompound spae. This is a \self-proving"theorem, in the sense that one the question is stated it is just a matter ofunpaking the de�nitions to �nish it o�.4 Equilogial Spaes, Type Theory and LogiWe have now already seen that the ategory of equilogial spaes provides amodel of the simply-typed �-alulus, inasmuh as Equ is artesian losed. Inthis setion we show that Equ in fat supports a muh more expressive typetheory and logi, whih an be introdued by using the method of assemblies.Here, as elsewhere in the paper, we have favored a onrete exposition over amore abstrat and eonomial presentation.9



For simpliity, we sometimes write an objet A = hjAj;
A;�Ai of PEqu as(A;�A) with A the algebrai lattie hjAj;
Ai and �A the partial equivalenerelation �A. We then write jAj for the underlying set of the algebrai lattieA.Modest Sets and Assemblies. We �rst introdue yet another equivalentde�nition of the ategory Equ, whih will allow us to proeed by analogy tothe ategory of partial equivalene relations over a PCA (see, e.g., [11℄).De�nition 4.1 The ategory Assm(ALat) of assemblies over the ate-gory of algebrai latties is de�ned as follows.(1) Objets are triples (X;A;E) with X 2 Set, A 2 ALat, and the mappingE : X ! P jAj in Set is suh that E(x) is non-empty for all x 2 X. Weall the elements in E(x) realizers for x.(2) The morphisms from an objet (X;A;E) to an objet (X 0; A0; E 0) arefuntions f : X ! X 0 in Set for whih there exists a ontinuous funtiong : A! A0 in ALat suh that8x 2 X:8a 2 E(x):g(a) 2 E 0(f(x)):We all suh a funtion g a realizer for f , and say that g traks f .De�nition 4.2 An objet (X;A;E) of Assm(ALat) is alled modest if, andonly if, 8x; x0 2 X:�x 6= x0 =) E(x) \ E(x0) = ;�:The full subategory of Assm(ALat) formed by the modest objets is re-ferred to as the ategory of modest sets over algebrai latties is denotedMod(ALat).Roughly speaking a modest set is an assembly where a realizer a 2 E(x) arriesenough information to determine the element x 2 X uniquely. An example ofan assembly whih is not isomorphi to any modest set is (f0; 1g;P f0g; E),where E(0) = E(1) = P f0g. Here, the realizers tell us nothing at all aboutthe di�erenes between 0 and 1. (A term suh as \separated" might havebeen more desriptive than \modest" | but see the further omments onterminology below.)Readers familiar with ategories of realizability models based on PCAs willimmediately note the similarity of the above de�nitions to the well-knownde�nitions of the ategories of modest sets and assemblies over a PCA (see,e.g., [19,11,28,26℄). Those ategories both embed into the so-alled realizabilitytopos over the PCA [19℄. We do not get a orresponding embedding into atopos, however; we shall disuss why below.One useful intuition is to think of the ategory of algebrai latties as providinga typed universe of realizers (f. the untyped universe of realizers provided by10



a PCA). Indeed for many onlusions we do not use any properties of algebrailatties beyond the fat that it is a artesian losed ategory. For example, wemight use the artesian losed ategory �0ALat of ountably based algebrailatties, equivalent to the ategory of algebrai sublatties of P N . In this ase,modest sets are really modest in the sense of having their ardinality boundedby 2�0 . It turns out also that one an obtain more general results based ononly a weakly artesian losed ategory of realizers [9℄; we shall not go intothat here, preferring for onreteness to stay with the example of all algebrailatties.Theorem 4.3 The ategories Equ, PEqu, and Mod(ALat) are all equiva-lent.Proof. De�ne a funtor F : Mod(ALat)! PEqu by F (X;A;E) = (A;�A),where a �A a0 () 9x 2 X:a; a0 2 E(x). When applied to a morphismf : (X;A;E) ! (X 0; A0; E 0) in Mod(ALat), the funtor F gives the equiva-lene lass of a realizer g : A ! A0 (g in ALat) for f whih exists by virtueof f being a morphism in Mod(ALat). The de�nition of F is learly inde-pendent of the hoie of g. It is straightforward to verify that the funtor F isfull and faithful and essentially surjetive on objets. For the latter, given anobjet (A;�A) 2 PEqu, onsider the objet (f a 2 jAj j a �A a g=�A; A; E) 2Mod(ALat) with E the identity funtion on equivalene lasses.We now use the alternative desription of Equ provided by the above theoremto present some of its ategorial properties in a di�erent way. Some of theproperties we have already seen, but the alternative desriptions below areuseful. Along the way, we onsider Assm(ALat), sine the onstrutions arebasially the same and we shall make use of Assm(ALat) below.First, let us denote that inlusion funtor fromMod(ALat) to Assm(ALat)by I. We now hek some ategorial properties diretly.Theorem 4.4 Both Assm(ALat) and Mod(ALat) are artesian losed andthe inlusion preserves the artesian losed struture:Proof. The terminal objet of Assm(ALat) is (1Set; 1ALat; E1) with 1Set =f�g, 1ALat = f�0g, and E1(�) = f�0g. Clearly it is modest and terminal inMod(ALat).The binary produt of (X;A;EX) and (Y;B;EY ) is (X � Y;A � B;E) withE(x; y) = EX(x) � EY (y). Here we make use of the binary produts in theategory of algebrai latties, in analogy with the way in whih the produtoperation of a PCA is used to prove that the ategory of assemblies andmodest sets over suh has binary produts. If (X;A;EX) and (Y;B;EY ) areboth modest, then also their produt so de�ned is modest.The exponential of (X;A;EX) and (Y;B;EY ) is (Z;BA; E) with Z = f f 2Y X j 9g : A! B:g traks f g; E(f) the set of elements of BA whih trak f ,i.e., E(f) = f g 2 BA j 8x 2 X:8a 2 EX(x):g(a) 2 EY (f(x)) g. If (X;A;EX)and (Y;B;EY ) are both modest, then also (Z;BA; E) is modest.11



Theorem 4.5 Both Assm(ALat) and Mod(ALat) have �nite limits andthe inlusion preserves the �nite limits.Proof. By the previous theorem it suÆes to onsider equalizers. The equal-izer of f; g : (X;A;EX) ! (Y;B;EY ) is (f x 2 X j f(x) = g(x0) g; A; E 0X),where E 0X is EX restrited to the subset, together with the obvious inlusionmap. Let us also write out the pullbak of f and g inP //

��

_
� (Y;B;EY )g

��(X;A;EX) f // (Z;C;EZ)The objet P is (f (x; y) 2 X � Y j f(x) = g(y) g; A� B;E) with E(x; y) =EX(x)� EY (y).A morphism f : (X;A;EX)! (Y;B;EY ) is a monomorphism inAssm(ALat)(or in Mod(ALat)) exatly if f is an injetive funtion of sets; it is an epi-morphism exatly if f is a surjetive funtion. Let us now onsider regularsubobjets.Reall that a regular ategory is a ategory with �nite limits and (stable underpullbak) image fatorizations (see, e.g., [10℄).Theorem 4.6 Both Assm(ALat) and Mod(ALat) are regular ategories.Proof. By the previous theorems, it suÆes to show that we have stableimage fatorizations. The image fatorization of f : (X;A;EX) ! (Y;B;EY )is (X;A;EX) f
//e

(( ((QQQQQQQQQQQQ
(Y;B;EY )(X=�; A; E 0X)66

m 66mmmmmmmmmmmwhere8x; x0 2 X: �x � x0 () f(x) = f(x0)� and E 0X([x℄) = [x02[x℄EX(x0):For the mappings, we set e(x) = [x℄ (whih is traked by the identity), andm([x℄) = f(x) (whih is traked by a realizer for f).Theorem 4.7 The regular subobjets of an objet (X;A;EX), both in the at-egory Assm(ALat) and in Mod(ALat) are in bijetive orrespondene withthe powerset of X.Proof. This follows easily from the desription of equalizers.In terms of PEqu, a regular subobjet of an objet (A;�A) onsists of thealgebrai lattie A together with a partial equivalene relation orrespondingto a olletion of the equivalene lasses of �A.12



The well-known relationship between the ategory of assemblies over a PCAand the ategory of sets (see, e.g., [20,19℄) an easily be generalized to our situ-ation as well: The ategory Set of sets embeds into the ategory of assembliesby the funtor r : Set ! Assm(ALat) where r(X) = (X; 1ALat; E) withE(x) = �, for all x 2 X, and r(f : X ! Y ) = f , trivially realized. Then onean show that r is full and faithful, preserves �nite limits, and oequalizers ofkernel pairs (hene is exat in the sense of Barr [2℄) and exponentials. De�nethe \global setions" funtor �: Assm(ALat)! Set by �(X;A;E) = X and�(f) = f . Then � is faithful and exat. Moreover, one an easily prove thefollowing theorem.Theorem 4.8 The funtor � is left adjoint to r with �r = id.The ategorial relationship between modest sets and assemblies is given bythis theorem:Theorem 4.9 The ategory Mod(ALat) is a reetive subategory of theategory Assm(ALat).Proof. The reetion funtor R : Assm(ALat) ! Mod(ALat) is de�nedas follows. On objets (X;A;E), let R(X;A;E) = (X=�; A; E 0) where x � x0if, and only if, E(x) \E(x0) 6= ; and E 0([x℄) = Sx2[x℄E(x0). On morphisms f ,let R(f) be the mapping [x℄ 7! [f(x)℄.Modeling Dependent Type Theory. In this subsetion we show that theategoryMod(ALat), and thus PEqu, models dependent type theory. Typesare indexed objets ofMod(ALat); the indexing is by objets ofMod(ALat).The regular subobjets an be used to give us logi to reason about the typesand with respet to whih we have full subset types and full quotient types.See [18,24,26℄ for more on subset types and quotient types. The same holds forAssm(ALat), but here, in addition, the logi is higher order | in short, thepoint is that the regular subobjet lassi�er is not an objet of Mod(ALat)but it is an objet of Assm(ALat); we explain this in more detail below.All this works by analogy to the situation for modest sets and assemblies overa PCA. But the analogy seems to stop here; for example, the modest sets overa PCA form essentially an internal ategory in the orresponding ategory ofassemblies and an be used to give a model of the alulus of onstrutionswith an imprediative universe of types. We do not have a orresponding resultwith modest sets and assemblies over the ategory of algebrai latties as wewill explain.Before embarking on the tehnial development, let us onsider an example.Let Y be a losed type (an objet of Mod(ALat)) and let N denote thetype of natural numbers. Further assume u : Y ! N in Mod(ALat). In thedependent type theory we an then form the typeQ y : Y: fn 2 N j n � u(y) g13



onsisting of all funtions, whih, given a y produes an n greater or equal tou(y). Here fn 2 N j n � u(y) g is a well-formed (subset) type in the ontexty : Y .For the tehnial development, we make use of B. Jaobs' �brational de-sription of models of dependent type theory [23,25,26℄, whih is related tothe D-ategories [14℄, ategories with attributes [12,30℄, display-map ate-gories [40,21℄, and omprehensive �brations [32℄. See [23℄ for a omprehen-sive introdution. We make a point of desribing the models in a so-alled\split" way, so as to avoid problems with interpreting dependent type theory.See, for example, [29,34,31,35,17℄ for a disussion of this issue. As this se-tion progresses, we assume more and more familiarity with the ategories ofmodest sets, assemblies and realizability toposes over PCAs. See, for example,[19,22,33℄ for bakground on these ategories.We �rst de�ne a ategory of uniform families of objets of the ategoryMod(ALat). Uniformity refers to the fat that eah objet of the family willhave the same underlying algebrai lattie. The idea is that a dependent type,in a ontext interpreted as the objet I, will be a family of objets indexed bythe objet I in Mod(ALat).De�nition 4.10 The ategory UFam(Mod(ALat)) is de�ned as follows.(1) Objets are triples of the form (I; A; (Xi; Ei)i2XI ), whereI = (XI ; AI; EI) 2Mod(ALat) and(Xi; A; Ei) 2Mod(ALat), for all i 2 XI :(2) Morphisms from (I; A; (Xi; Ei)i2XI ) to (J;B; (Yj; E 0j)j2XJ ), withI = (XI; AI ; EI) and J = (XJ ; AJ ; EJ);are pairs of the form (f; (fi)i2XI ), withf : I ! J in Mod(ALat) and fi : Xi ! Yf(i) in Set;for whih there exists a g : AI ! A ! B in ALat suh that g traks funiformly, that is,8i 2 XI :8ai 2 EI(i):8x 2 Xi:8a 2 Ei(x):g(ai)(a) 2 E 0f(i)(fi(x));(3) The identity morphism on an objet I = (XI ; AI ; EI) is (id ; (id)i2XI ).(4) The omposition of (f; (fi)i2XI ) and (g; (gj)j2XJ ) is (gÆf; (gf(i) Æ fi)i2XI ).We think of a family (I; A; (Xi; Ei)i2XI ) as a type in ontext I, whose �berat i in XI is (Xi; A; Ei)i2XI . There is an obvious forgetful funtorU : UFam(Mod(ALat))!Mod(ALat)given by (I; A; (Xi; Ei)i2XI ) 7! I and (f; (fi)i2XI ) 7! f .14



Theorem 4.11 The funtor U : UFam(Mod(ALat)) ! Mod(ALat) is asplit �bration whih is equivalent, as a �bration, to the odomain �bration overMod(ALat).Proof. First de�ne split artesian liftings: Suppose u : I ! J inMod(ALat)and let (J;B; (Yj; E 0j)j2XJ ) be an objet over J . Then(u; (id)i2XI ) : (I; B; (Yu(i); E 0u(i))i2XI )! (J;B; (Yj; E 0j)j2XJ )is the artesian lifting over u.Now onsider the standard odomain �brationod: Mod(ALat)! �!Mod(ALat)where, as usual, Mod(ALat)! is the ategory of ommutative squares, withobjets morphisms ' : X ! I of Mod(ALat) and with morphisms from' : X ! I to  : Y ! J pairs (u; f) of morphisms in Mod(ALat) suhthat X f
//'

��

Y 
��I u // Jommutes.De�ne the funtor P as inUFam(Mod(ALat)) P //

**TTTTTTTTTTTTTTT
Mod(ALat)!od

uulllllllllllllMod(ALat)by mapping an objet (I; A; (Xi; Ei)i2XI ), with I = (XI ; AI ; EI), to(`i2XI Xi; AI � A;E) �! I;with E(i; x) = EI(i)� Ei(x). The funtor P maps a morphism(u; (fi)i2XI ) : (I; A; (Xi; Ei)i2XI )! (J;B; (Yj; E 0j)j2XJ );with I = (XI ; AI ; EI) and J = (XJ ; AJ ; EJ), to the square(`i2XI Xi; AI � A;E) fu;fg
//�

��

(`j2XI Yj; AJ �B;E 0)�
��I u // J15



where fu; fg is the funtion (i; x) 7! (u(i); fi(x)) traked by�(ai; a): (ru(ai); g(ai)(a)) : AI � A! AJ �B;with ru : AI ! AJ a realizer for u : I ! J and g a realizer for the family(fi)i2XI . This is, of ourse, a morphism in ALat sine it is de�ned in theinternal typed lambda alulus language of ALat.One an now verify that P is a full and faithful �bered funtor. Moreoverwe an de�ne a �bered funtor Q : Mod(ALat)! ! UFam(Mod(ALat))mapping ' : X ! I, with I = (XI ; AI; EI) and X = (XX ; AX ; EX) to thefamily (I; AX ; (Xi; Ei)i2XI ) with Xi = '�1(i) and Ei(x) = EX(x); a morphism(u; f) as in X f
//'

��

Y 
��I u // Jis mapped by Q to (u; (f)i2XI). It an then be veri�ed that Q is also a �beredfuntor and that PQ �= id vertially and that QP �= id vertially.Consider a type-in-ontext (I; A; (Xi; Ei)i2XI ). The funtor P , from the proofabove, applied to this type-in-ontext yields the projetion(`i2XI Xi; AI � A;E) �! Imorphism inMod(ALat). This projetion morphism gives rise to a substitu-tion funtor�� : UFam(Mod(ALat))I ! UFam(Mod(ALat))(`i2XI Xi;AI�A;E):We think of this funtor as follows. It takes a type in ontext I and views itas a type in the extended ontext (`i2XI Xi; AI �A;E), orresponding to theweakening rule I ` X : Type I ` Y : TypeI; x : X ` Y : TypeThe interpretation of I; x : X ` Y : Type is the funtor �� applied to the inter-pretation of I ` Y : Type. To model dependent sums and dependent produts,we need to have left adjoints ` and right adjoints Q to the funtor ��.It is easy to see that (ISet; 1ALat; (1Set; E1)i2XI ) is a terminal objet in the�ber over I = (XI ; AI ; EI), where E1(�) = f�g. The terminal objet funtor1 : Mod(ALat) ! UFam(Mod(ALat)) maps an objet I = (XI ; AI ; EI)to the terminal objet over I and a morphism u : I ! J to the morphism(u; (�x: �)i2XI ). This terminal objet funtor has a right adjointfg : UFam(Mod(ALat))!Mod(ALat)16



de�ned by, for I = (XI; AI ; EI), f(I; A; (Xi; Ei)i2XI )g = (`i2XI Xi; AI�A;E)with E(i; x) = EI(i) � Ei(x). That is, fg = domÆP where P was de�nedin the proof of the previous theorem. Briey, if (u; (fi)i2XI ) is a morphismfrom 1(I) to (J;B; (Yj; Ej)j2XJ ), with I = (XI ; AI ; EI) and J = (XJ ; AJ ; EJ)then its adjoint transpose from I to f(J;B; (Yj; Ej)j2XJ )g is �i: (u(i); fi(�)),realized by �ai: �a: (ru(a); rf(ai)(�0)) : AI ! A! B;where ru is a realizer for r and rf is a realizer for the family (fi)i2XI . Thusthe onstrutions are exatly analogous to the ase for modest sets over aPCA. In summa, sine the terminal objet funtor has a right adjoint and theprojetion funtor P is full we have a split full omprehension ategory withunit.Next, we argue that the ompression ategory has split produts. What thismeans is that, for any family X = (I; A; (Xi; Ei)i2XI ) over I = (XI ; AI ; EI)with projetion �X : fXg = (`i2XI Xi; AI�A;E)! I, the reindexing funtor��X has a right adjoint QX , whih satis�es a Bek-Chevalley ondition. De�neQX �(`i2XI Xi; AI � A;E); C; (Zk; Ek)k2`i2XI Xi�to be�I; A! C; (f f : Xi ! [x2Xi Z(i;x) j 8x 2 Xi:f(x) 2 Z(i;x) g; E 0i)i2XI�;where E 0i(f) = f g : A! C j \g traks f" g= f g : A! C j 8x 2 Xi:8a 2 Ei(x):g(a) 2 E(i;x)(f(x)) g:It is easy to verify that E 0i is modest. The adjoint transposes are de�nedessentially as for the ase of the family of sets �bration; one just has to verifythat one has the required realizers, but that is simple using the internal typedlambda alulus of ALat. Now for the Bek-Chevalley ondition, we are toshow that for a pullbak(`i2XI Xu(i); AI �B;E)fu;idg //�X
��

(`j2XJ Xj; AJ � B;E 0)�Y
��I u //Jin Mod(ALat), we have that the anonial natural transformationu�QY ! QXfu; idg�17



is an identity (not only iso, beause we laim to have split produts). This isstraightforward to verify.For the omprehension ategory to have strong split oproduts (modelingdependent sums) we need, with notation as in the previous paragraph, �rst tohave left adjoints `X to ��X , for projetions �X , satisfying a Bek-Chevalleyondition. De�ne`X �(`i2XI Xi; AI � A;E); C; (Zk; Ek)k2`i2XI Xi�to be �I; A� C; (f (x; z) j x 2 Xi; z 2 Z(i;x) gi; E 0i)i2XI�;with E 0i(x; z) = Ei(x) � E(i;x)(z), easily seen to be modest. On a morphism(id ; (f(i;x))(i;x)2`i2XI Xi) we de�ne `X to give (id ; ((x; z) 7! (x; f(i;x)(z)))i2XI ),whih is learly realizable. Again it is straightforward to verify that the Bek-Chevalley ondition holds, i.e., referring to the pullbak in the previous para-graph, that `Xfu; idg� ! u�`Y is an identity. This shows then that we havesplit oproduts. To have strong split oproduts, we have to show that theanonial map � in the following diagram is an iso:P � //�
��

Q�
��R �X // Iwhere P = �a(i;x)2`i2XI Xi Xi; (AI � A)� C;E� ;Q = � ai2XIf (x; z) j x 2 Xi; z 2 Z(i;x) g; AI � (A� C); E 0� ;R = (ai2XI Xi; AI � A;E 00) :But � is just the map ((i; x); z) 7! (i; (x; z)), whih is learly realizable by theorresponding map on algebrai latties, and obviously has an inverse. Henewe have strong oproduts.We have thus shown the following theorem, with notation as in Theorem 4.11and its proof.Theorem 4.12 P : UFam(Mod(ALat)) ! Mod(ALat)! is a split losedomprehension ategory. Hene, we have a model of dependent type theory.We an use the regular subobjets to provide a logi with whih one an reasonabout the types of the type theory. By Theorem 4.7, the regular subobjets ofan objet I = (XI ; AI ; EI) is isomorphi to PXI . Hene the ategory of regular18



subobjets ofMod(ALat), denotedRegSub(Mod(ALat)), an be identi�edwith the ategory with objets (I;K), where I = (XI ; AI ; EI) 2Mod(ALat)and K � XI and with morphisms from (I;K) to (J; L) maps u : I ! J inMod(ALat) satisfying that u(K) � L. In the regular subobjet �brationRegSub(Mod(ALat))
��Mod(ALat)reindexing of (J; L) along a map u : I ! J , i.e., u�(J; L) is given by takingthe inverse image of L along u.One an use this regular subobjet �bration to get a (lassial) logi, essen-tially as for sets and for regular subobjets of the modest sets over a PCA.Moreover, with regard to this logi, the omprehension ategory P admits full(dependent) subset types and full (dependent) quotient types. However, forreasons of spae, we do not spell that out here. Instead, let us mention thatthe above models of type theory an be also be de�ned, in the exat same way,for the ategory Assm(ALat) of assemblies over algebrai latties. For thisase, the logi of regular subobjets will be higher-order: the regular subobjet�bration has a generi objet, a regular subobjet lassi�er, namely the objetr2 2 Assm(ALat). Note that this is an objet in Assm(ALat) whih is notinMod(ALat) sine it is not modest. Again, this is analogous to the situationof modest sets and assemblies over a partial ombinatory algebra [19,33,26℄.Disussion. We should mention that the analogy with ategories de�nedover a PCA an be made mathematially preise in the sense that there isa notion of a \weak tripos" | a tripos as in [20℄ exept for the requirementof a generi objet. For suh a �bered preorder, one an de�ne a ategory ofassemblies and modest sets and show that they model dependent type theory.The tripos for a PCA will then provide an example, as will the weak triposonstruted over the ategory of algebrai latties. The details will appearelsewhere.We an also disuss just how far one an onsider the analogy with ategoriesde�ned over a PCA in an informal way and aimed at the reader already familiarwith the situation for the ategories de�ned over a PCA. We mainly highlighta ouple of interesting questions.One of the nie features of the modest sets and assemblies over a PCA isthat they an be used to give a model of the alulus onstrution (see, e.g.,[22,29,35℄). In fat, instead of the ategory of modest sets one uses the equiv-alent ategory of partial equivalene relations to get a small ategory. Theruial point is that this small ategory an be seen as an internal ategory inthe ategory of assemblies and that the externalization of this internal ate-gory is a �bration equivalent to the �bration of uniform modest sets over the19



assemblies, whih thus has a generi objet allowing us to get an imprediativesmall universe of types as in the alulus of onstrutions.An obvious next question is whether we an get something similar in our asewith modest sets and assemblies over algebrai latties. It turns out that,in our ase working over algebrai latties (or indeed any artesian losedategory), the �bration of uniform modest sets over assemblies is omplete,but we annot show that it is essentially small. This is not surprising sine theategory of algebrai latties is not small. However, even if we only onsider asmall artesian losed ategory as our ategory of realizers, the orresponding�bration is not small (is not equivalent to the externalization of an internalategory).The obvious solution to try, by analogy with the situation over a PCA, isto onsider the small ategory of partial equivalene relations as an internalategory in the ategory of assemblies (simply by embedding it via r as isdone for the ase of PCAs), but then the externalization does not onsistof uniform families: eah set in the family will have a di�erent underlyingobjet of realizers. In fat, we have not been able to show that the �brationof partial equivalene relations is small and, indeed, we believe that it is not,unless further assumptions are made about the underlying ategory of realizers(besides it being a small artesian losed ategory).Another obvious question to ask, following the analogy with ategories over aPCA, is whether PER(ALat) 'Mod(ALat) and Assm(ALat) embed fullyand faithfully into a big \realizability topos over algebrai latties" (suh asthe exat ompletion of the regular ategory Assm(ALat)). The answer isno beause PER(ALat) is not well-powered. For note that it embeds fully,faithfully by a �nite limit preserving funtor into the exat ompletion ofAssm(ALat), and so the latter is also non-well-powered and, hene, not atopos. Again, even if we take a small artesian losed ategory as the universeof realizers, it does not appear to be enough. To overome this problem wetried to mimi the proof of Robinson and Rosolini [36℄, but it annot beeasily generalized. In other words, it appears that something more needs tobe assumed about the universe of realizers, and we have to leave that as anopen question.5 Equilogial Spaes and Domains with TotalityKleene-Kreisel ountable funtionals of �nite type [27℄ our in various modelsof omputation. Ershov [15℄ plaed them in a domain-theoreti setting, andBerger [5℄ worked out a general notion of totality for domain theory whihsubsumes Ershov's hierarhy of �nite types. He also extended this approah todependent types in his Habilitationsshrift [6℄. We show that Berger's odenseand dense objets in domain theory embed fully and faithfully in PEqu,20



from whih it follows diretly by the previous work of Ershov and Bergerthat the Kleene-Kreisel funtionals are onstruted in PEqu by repeated useof exponentiation starting from the natural numbers objet. We begin thissetion with a quik overview of totality as de�ned by Berger [5℄. Please referto the original paper for details.Domains with Totality. For our purposes, a domain D = hjDj;�Di is analgebrai onsistently-omplete direted-omplete partially ordered set witha least element. We may view domains as topologial spaes with their �-topologies, just as we did with omplete latties. Let Dom be the ategory ofdomains and ontinuous funtions. Domains an also be onsidered as topo-logially losed non-empty subsets of algebrai latties. Thus ALat is a fullsubategory of Dom. Additionally Dom is a artesian losed ategory (see,e.g., [39℄ or [1℄), and ALat is a full artesian losed subategory of Dom. Adomain beomes an algebrai lattie if a \top" element is added to the poset.This onstrution produes a funtor whih, however, is not a reetion andit does not preserve the -struture.The following de�nitions are taken from Berger [5℄. We follow the terminologyof Berger [6℄ in whih the term total has been replaed by the term odense.A subset M � jDj of a domain D is dense if it is dense in the topologialsense, i.e., the losure of M is jDj. We write x " y when elements x; y 2 jDjare bounded, and x 6" y when they are unbounded.A �nite subset fx0; : : : ; xkg � jDj is separable if there exist open subsetsU0; : : : ; Uk � jDj suh that x0 2 U0; : : : ; xk 2 Uk and U0 \ � � � \ Uk = ;.We say that U0; : : : ; Uk separate x0; : : : ; xk. It is easily seen that a �niteset is separable if, and only if, it is unbounded. A family of open sets U isseparating if it separates every separable �nite set, i.e., for every separablefx0; : : : ; xkg � jDj there exist members of U that separate it.The boolean domain B? is the at domain for the boolean values tt and � .A partial ontinuous prediate (pp) on a domain D is a ontinuous funtionp : jDj ! B? . The funtion-spae domain [D ! B? ℄ is denoted by pp(D).With eah pp p we assoiate two disjoint open sets by inverse images:p+ = p�1(fttg) and p� = p�1(f� g):A subset P � jpp(D)j is separating if the orresponding family np+ ��� p 2 Pois separating.Given a set M � jDj letE(M) = np 2 jpp(D)j ��� 8x 2M: p(x) 6= ?o :A set M is odense in D if the family E(M) is separating. An element x 2 jDjis odense if the singleton fxg is odense in D. Every element of a odense set21



is odense, but not every set of odense elements is odense. If M � jDj is aodense set then the onsisteny relation " is an equivalene relation on M .Thus, a odense set M � jDj an be viewed as a domain D together with apartial equivalene relation �M , whih is just the relation " restrited to M .A totality on a domain, in the sense of Berger [5℄, is a dense and odensesubset of a domain. Note that in the original paper by Berger [5℄ odense setsare alled total. Here we are using the newer terminology of Berger [6℄.Given domains with totality M � jDj and N � jEj, it is easily seen that theset M �N � jDj � jEj is again a totality on the domain D � E . Similarly, bythe Density Theorem in Berger [5℄ the sethM;Ni = nf 2 [D ! E ℄ ��� f(M) � Nois a totality on the funtion-spae domain [D ! E ℄. This idea of totalitygeneralizes the simple-minded onnetion between total and partial funtionsusing at domains. If A is any set, let A? be the at domain obtained byadding a bottom element. Then A itself is a totality on A?, and the totalfuntions of A! B in Set orrespond to (equivalene lasses) of funtions inhA;Bi onsidered as elements of [A? ! B?℄.Partial Equivalene Relations. Let PER(Dom) be the ategory formedjust like PEqu exept that domains are used instead of algebrai latties, i.e.,an objet ofPER(Dom) is a struture D = hjDj;�D;�Di where hjDj;�Di is adomain and �D is a partial equivalene relation on jDj. Category PER(Dom)is artesian losed, and for D; E 2 PER(Dom) we hoose the anonial prod-ut and exponential D � E and D ! E whose underlying domains are thestandard produt and exponential in Dom, and the partial equivalene rela-tions are de�ned by(x1; y1) �D�E (x2; y2) () x1 �D x2 ^ y1 �E y2f �D!E g () 8x; y 2 jDj:�x �D y =) f(x) �E g(y)�:We say that a partial equivalene relation �D on a domain D is dense whenits domain dom(�D) = nx 2 jDj ��� x �D xois a dense subset of D.Beause every algebrai lattie is a domain, PEqu is a full subategory ofPER(Dom). The top-adding funtor T : PER(Dom) ! PEqu maps anobjet D 2 PER(Dom) to the objetT (D) = hjDj [ f>g ;
T (D);�Di22



where hjDj [ f>g ;
T (D)i is the algebrai lattie obtained from the underlyingdomain ofD by attahing a ompat top element. Funtor T maps a morphism[f ℄ : D ! E to the morphism T ([f ℄) represented by the mapT (f)(x) = 8<:f(x) x 6= >> x = >:The top-adding funtor is a produt-preserving reetion, hene PEqu is anexponential ideal and a sub- of PER(Dom).In ategory Dom it is not the ase that every ontinuous map f : D0 ! jEjde�ned on an arbitrary non-empty subset D0 � jDj has a ontinuous exten-sion to the whole domain jDj. Beause of this fat the ategory PER(Dom)has ertain undesirable properties. However, it is true that every ontinuousmap de�ned on a dense subset has a ontinuous extension; this is an easyonsequene of the Extension Theorem and the fat that a domain beomesan algebrai lattie when a top element is added to it. These observationssuggest that we should onsider only the dense partial equivalene relationson domains.Let DPER(Dom) be the full subategory of PER(Dom) whose partialequivalene relations are either dense or empty. We are inluding the emptyequivalene relation here beause the only map from an empty subset alwayshas a ontinuous extension. The objets whose partial equivalene relations areempty are exatly the initial objets of DPER(Dom). We have the followingtheorem.Theorem 5.1 DPER(Dom) and PEqu are equivalent.Proof. In one diretion, the equivalene is established by the top-adding fun-tor T : DPER(Dom)! PEqu. In the other diretion, the equivalene fun-tor K : PEqu! DPER(Dom) is de�ned as follows. When A = (jAj;
A; ;)is an initial objet, de�ne K(A) = A. Otherwise K maps an objet A 2 PEquto an objet K(A) whose underlying domain is the set jK(A)j = dom(�A),whih is the topologial losure of dom(�A) in jAj, equipped with the sub-spae topology. The partial equivalene relation for K(A) is just �A restritedto jK(A)j. The funtor K maps a morphism [f ℄ : A! B to the morphism rep-resented by the restrition f �jK(A)j. Here we assume that the morphism froman initial objet A = (jAj; ;) is represented by the onstant map f : x 7! ?.If A is initial, K([f ℄) is obviously well de�ned. When A is not initial, K([f ℄)is well de�ned beause ontinuity of f implies thatf(jK(A)j) = f(dom(�A)) � f(dom(�A)) � dom(�B) = jK(B)j:It is easily heked that K and T establish an equivalene between PEqu andDPER(Dom).We would like to represent domains with totality as equilogial spaes. IfM � jDj is odense and dense in D, let hD;�Mi be the objet of PER(Dom)23



whose underlying domain is D and the partial equivalene relation �M isthe relation " on M . This identi�es domains with totality as objets of theategory DPER(Dom). The following result shows that the morphisms ofDPER(Dom) are the right ones, beause the  struture of DPER(Dom)agrees with the formation of produts and funtion-spae objets with totality.Theorem 5.2 Let M � jDj, N � jEj be odense and dense subsets in do-mains D and E, respetively. Then in DPER(Dom)hD;�Mi � hE ;�Ni = hD � E ;�M�Ni; andhD;�Mi ! hE ;�Ni = h[D ! E ℄;�hM;Nii:Proof. Here it is understood that the produt hD;�Mi � hE ;�Ni and theexponential hD;�Mi ! hE ;�Ni are the anonial ones for PER(Dom). Theyare objets in DPER(Dom) by the Density Theorem in Berger [5℄. The �rstequality follows from the observation that (x1; y1) " (x2; y2) if, and only if,x1 " x2 and y1 " y2. Let X = hD;�Mi ! hE ;�Ni and Y = h[D ! E ℄;�hM;Nii.Objets X and Y have the same underlying domains, so we only have to showthat the two partial equivalene relations oinide. The partial equivalenerelation on X isf �X g () f; g 2 hM;Ni and 8x; y 2M:�x " y =) f(x) " g(y)�:Suppose f �X g. Then f; g 2 hM;Ni and it remains to be shown that f " g.For every x 2 M , sine x " x and f �X g, f(x) " g(x), thus by Lemma 7 inBerger [5℄ f and g are inseparable, whih is equivalent to them being bounded.Conversely, suppose f; g 2 hM;Ni and f " g. For every x; y 2 M suh thatx " y, it follows that f(x) " g(y) beause f(x) � (f _ g)(x _ y) and g(y) �(f _ g)(x _ y). This means that f �X g.Higher Types. The ategory PEqu is a full sub- of PER(Dom).Sine DPER(Dom) is a full subategory of PER(Dom) and is equivalentto PEqu, it is a full sub- of PER(Dom) as well. Theorem 5.2 statesthat for odense and dense subsets M � jDj and N � jEj, the exponentialhD;�Mi ! hE ;�Ni oinides with the objet h[D ! E ℄;�hM;Nii. We may usethis to show that in PEqu the ountable funtionals of �nite types arise asiterated funtion spaes of the natural numbers objet. For simpliity we onlyonentrate on pure �nite types �, �! �, (�! �)! �, : : : and skip the detailsof how to extend this to the full hierarhy of �nite types generated by �, o, �,and !.The natural numbers objet in DPER(Dom) is the objetDN 0 = hN? ;�N? ; �DN 0iwhose underlying domain is the at domain of natural numbers N? = N [ f?gand the partial equivalene relation �DN 0 is the restrition of identity to N .24



De�ne the hierarhy DN 1;DN 2; : : : indutively byDN j+1 = DN j ! DN 0where the arrow is formed inDPER(Dom). By Theorem 5.2, this hierarhy isontained in DPER(Dom) and orresponds exatly to Ershov's and Berger'sonstrution of ountable funtionals of pure �nite types. It is well known thatthe equivalene lasses of DN j orrespond naturally to the original Kleene-Kreisel ountable funtionals of pure type j, see Berger [5℄ or Ershov [15℄.In PEqu the natural numbers objet isN0 = hN?;>;�N?;> ;�N0i;where N?;> = N [ f?;>g is the algebrai lattie of at natural numberswith bottom and top, and �N0 is the restrition of identity to N . The iteratedfuntion spaes N1;N2; : : : are de�ned indutively byNj = Nj�1 !N0:The hierarhies DN 0;DN 1; : : : and N0;N1; : : : orrespond to eah other inview of the equivalene between DPER(Dom) and PEqu, beause they areboth built from the natural numbers objet by iterated use of exponentiation,hene the equivalene lasses of Nj orrespond naturally to the Kleene-Kreiselountable funtionals of pure type j.Referenes[1℄ R.M. Amadio and P.-L. Curien. Domains and Lambda-Caluli, volume 46of Cambridge Trats in Theoretial Computer Siene. Cambridge UniversityPress, 1998.[2℄ M. Barr. Exat ategories. In Exat Categories and Categories of Sheaves,volume 236 of Leture Notes in Mathematis, pages 1{120. Spinger-Verlag, 1971.[3℄ A. Bauer. The Realizability Approah to Computable Analysis and Topology.PhD thesis, Carnegie Mellon University, 2000. Available as CMU tehnialreport CMU-CS-00-164 and at http://andrej.om/thesis.[4℄ A. Bauer and L. Birkedal. Continuous funtionals of dependent types andequilogial spaes. In P. Clote and H. Shwihtenberg, editors, ComputerSiene Logi, 14th Annual Conferene of the EACSL, Fishbahau, Germany,August 21-26, 2000, volume 1862 of Leture Notes in Computer Siene.Springer, August 2000.[5℄ U. Berger. Total sets and objets in domain theory. Annals of Pure and AppliedLogi, 60:91{117, 1993. 25
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