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esAndrej Bauer, 1 Lars Birkedal, 2 Dana S. S
ott 3S
hool of Computer S
ien
e, Carnegie Mellon UniversityAbstra
tIt is well known that one 
an build models of full higher-order dependent type theory(also 
alled the 
al
ulus of 
onstru
tions) using partial equivalen
e relations (PERs)and assemblies over a partial 
ombinatory algebra (PCA). But the idea of 
ategoriesof PERs and ERs (total equivalen
e relations) 
an be applied to other stru
turesas well. In parti
ular, we 
an easily de�ne the 
ategory of ERs and equivalen
e-preserving 
ontinuous mappings over the standard 
ategory Top0 of topologi
alT0-spa
es; we 
all these spa
es (a topologi
al spa
e together with an ER) equilogi
alspa
es and the resulting 
ategory Equ. We show that this 
ategory|in 
ontradis-tin
tion to Top0|is a 
artesian 
losed 
ategory. The dire
t proof outlined here usesthe equivalen
e of the 
ategory Equ to the 
ategory PEqu of PERs over algebrai
latti
es (a full sub
ategory of Top0 that is well known to be 
artesian 
losed fromdomain theory). In another paper with Carboni and Rosolini (
ited herein) a moreabstra
t 
ategori
al generalization shows why many su
h 
ategories are 
artesian
losed. The 
ategory Equ obviously 
ontains Top0 as a full sub
ategory, and it nat-urally 
ontains many other well known sub
ategories. In parti
ular, we show why, asa 
onsequen
e of work of Ershov, Berger, and others, the Kleene-Kreisel hierar
hyof 
ountable fun
tionals of �nite types 
an be naturally 
onstru
ted in Equ fromthe natural numbers obje
t N by repeated use in Equ of exponentiation and binaryprodu
ts. We also develop for Equ notions of modest sets (a 
ategory equivalent toEqu) and assemblies to explain why a model of dependent type theory is obtained.We make some 
omparisons of this model to other, known models.
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graduate 
ourse on Domain Theory he had realized that by using some basi
and well-known properties of domains (spe
i�
ally, algebrai
 latti
es) the 
at-egory of equivalen
e relations on T0-spa
es not only was an extension of thetopologi
al 
ategory but was 
artesian 
losed.The present paper in
orporates original motivation, de�nitions, and proofs ofthe earlier manus
ript, and we then give an equivalent de�nition suggestingrelationships to the extensive work on partial equivalen
e relations over par-tial 
ombinatory algebras (hereafter, PCAs). In our 
onferen
e paper [9℄, thereader will �nd an abstra
t framework due to Carboni and Rosolini in whi
hthe 
ategories of equilogi
al spa
es and partial equivalen
e relations over PCAs�t. Indeed, it is shown that there is a larger 
ategory than that of equilogi-
al spa
es that is 
artesian 
losed. However, we shall not dis
uss the abstra
t
ategori
al framework here (namely, that of exa
t 
ompletions of 
ategories).As in the earlier manus
ript, our desire here is to give a fairly 
on
rete des
rip-tion of the stru
tures involved and the 
onstru
tions from them. By extendingthe �rst treatment, we use an alternate equivalent de�nition of the 
ategoryof equilogi
al spa
es to give a de�nition of a model of dependent type theoryand logi
, analogous to the work over PCAs. We also dis
uss how far thatanalogy extends.The �nal se
tion of the paper shows how the work of Y. Ershov and E. Berger
on
erning the Kleene-Kreisel hierar
hy of 
ountable fun
tionals and exten-sions 
an be in
orporated into the 
ategory of equilogi
al spa
es. In terms ofthe type theory, it turns out that the higher types over the integers N ! N ,(N ! N ) ! N , ((N ! N ) ! N ) ! N , et
., are indeed the 
ountablefun
tionals, as expe
ted. In order to see this, we have to add appropriate
ategori
al de�nitions to Berger's work.Note added in February, 2001. Sin
e the writing of this paper in 1998,mu
h progress has been made in understanding equilogi
al spa
es and theirrelationship to other 
ategories. The relationship to tripos theory hinted at inthe dis
ussion in Se
tion 4 has been worked out [7,8℄; in parti
ular, the openproblem mentioned at the end of the dis
ussion in Se
tion 4 has been solved,see [7,8℄. Also, the relation between equilogi
al spa
es and domains with to-tality des
ribed in Se
tion 5 has been extended to hierar
hies of dependenttypes [4,3℄, and a relation to type-two e�e
tivity has been dis
overed [3℄. Alsoother resear
hers have 
ontributed greatly to the study of equilogi
al spa
es;see the papers 
ited here for referen
es and dis
ussions of their related work.2 MotivationThe familiar 
ategories Set andTop, 
onsisting of sets and arbitrary mappingsand of topologi
al spa
es and 
ontinuous mappings, have many well known 
lo-2



sure properties. For example, they are both 
omplete and 
o
omplete, meaningthat they have all (small) limits and 
olimits. They are well-powered and 
o-well-powered, meaning that 
olle
tions of subobje
ts and quotients of obje
ts
an be represented by sets. They are also ni
ely related, sin
e Set 
an beregarded as a full sub
ategory of Top, and the forgetful fun
tor that takesa topologi
al spa
e to its underlying set preserves limits and 
olimits (butre
e
ts neither).The 
ategory Set is also a 
artesian 
losed 
ategory, meaning that the fun
tion-spa
e 
onstru
t or the internal hom-fun
tor is very well behaved, in the sensethat the fun
tor � � B is adjoint to B ! � for all obje
ts B. However, it hasbeen known for a long time that in Top no su
h assertion is available, be
ausein general it is not possible to assign a topology to the set of 
ontinuous fun
-tions making this adjointness valid|ex
ept under some spe
ial 
onditions onthe spa
e B. Many remedies have been proposed, notably, (a) 
utting downto 
ompa
tly generated spa
es, or (b) expanding the 
ategory to the 
ategoryof �lter spa
es (or a related kind of limit spa
e). These are interesting sugges-tions, but both have some drawba
ks. Suggestion (a) applies only to Hausdor�spa
es, and suggestion (2)|whi
h the authors 
onsider the more interestingfrom a logi
al point of view|introdu
es very unfamiliar spa
es at the highertypes (i.e., after iterating the fun
tion-spa
e 
onstru
t several times). It re-mains to be seen whether the suggestion of this paper 
an be regarded as more
on
rete or more helpful than either (a) or (b).Our solution to the problem of 
artesian 
losedness is motivated by domaintheory. The new 
ategory is formed from the 
ategory Top0 of topologi
alT0-spa
es by using spa
es together with arbitrary equivalen
e relations, toform the 
ategory, to be 
alled 
alled Equ, where the mappings are (suitableequivalen
e 
lasses of) 
ontinuous mappings whi
h preserve the equivalen
erelations. (A more pre
ise de�nition will be given below.) Let us 
all thesespa
es equilogi
al spa
es and the mappings equivariant. It seems surprisingthat this 
ategory has not been noti
ed before|if in fa
t it has not. It is easyto see that Equ is 
omplete and 
o
omplete and that it embeds Top0 as a fulland faithful sub
ategory (by taking the equivalen
e relation to be the identityrelation).What is perhaps not so obvious is that Equ is indeed 
artesian 
losed. Theproof of 
artesian 
losedness outlined here uses old theorems in domain theoryoriginally dis
overed by S
ott: in parti
ular, an inje
tive property of algebrai
latti
es treated as topologi
al spa
es and the fa
t that they form a 
artesian
losed 
ategory (along with 
ontinuous fun
tions). A more abstra
t, 
ategori-
al proof 
an be found in [9℄ or in [37℄. Also, in Se
tion 4 we give an alternative
on
rete proof. Of 
ourse, algebrai
 latti
es are just one of many 
artesian
losed 
ategories proposed for domain theory|and not the most popular one.They allow, however, for some helpful embeddings of T0-spa
es.For a long time S
ott has been distressed that there are too many proposed3




ategories of domains and that their study has be
ome too ar
ane. It washoped that the idea of syntheti
 domain theory would be the natural solution|but that theory has been slowed by many te
hni
al problems. The related ideaof axiomati
 domain theory is likewise hampered by the need to over
omete
hni
al diÆ
ulties. Despite very good work in both these dire
tions, he doesnot feel that a �nal theory has emerged. Perhaps some of the ideas that havebeen used in these other approa
hes 
an be transplanted to the study of Equ,whi
h seems to be a ri
h and fairly natural 
ategory with many sub
ategories.The basi
 idea of the syntheti
 approa
h is to establish a typed �-
al
uluson
e and for all, and then to single out useful types (or domains) by means ofspe
ial properties|just as is done in several other bran
hes of mathemati
s.As far as Equ is 
on
erned, the possibilities seem good, but this is still workin progress. We are en
ouraged, however, by the results so far obtained, someof whi
h are presented here.3 Equilogi
al Spa
esWe begin by de�ning some notation and 
alling to mind some basi
 de�nitionsand theorems 
on
erning T0-spa
es and algebrai
 latti
es. We then turn to thede�nition of equilogi
al spa
es.T0-Spa
es and Algebrai
 Latti
es. Topologi
al spa
es will be 
onsideredas stru
tures T = hT;
T i, where T is the set of points of the spa
e, and where
T is the set of open sets of T . We shall often write jT j = T , so as not tohave to use a spe
ial letter for the points of a spa
e. Complete latti
es (and,more generally, posets) will be 
onsidered as stru
tures L = hjLj;�Li, where�L is the partial ordering of the set jLj. Completeness of 
ourse demands thatevery subset S � jLj has a least upper bound WS 2 jLj.De�nition 3.1 The neighborhood �lter of a point x 2 jT j of a topologi
alspa
e T is de�ned by the equation:T (x) = fU 2 
T j x 2 U g:The spa
es we shall be 
on
erned with are the T0-spa
es, where the topologydistinguishes the points.De�nition 3.2 A topologi
al spa
e is a T0-spa
e provided that for everypair of distin
t points there is an open set that 
ontains one but not theother. Another way to say this 
ondition is to say that for all x; y 2 jT j, ifT (x) = T (y), then x = y. The 
ategory of all su
h spa
es and 
ontinuousmappings between them is denoted by Top0.4



De�nition 3.3 The spe
ialization ordering of a topologi
al spa
e T isde�ned by: x �T y () T (x) � T (y);for all x; y 2 jT j.De�nition 3.4 Let L be a 
omplete latti
e. The �-topology on the latti
eis de�ned as the 
olle
tion of all upward 
losed subsets U � jLj su
h thatwhenever S � jLj and WS 2 U , then WS0 2 U for some �nite subset S0 � S.The 
olle
tion of all su
h subsets is denoted by �L.The following theorems are now well-known. Proofs 
an, e.g., be found in [16℄.Theorem 3.5 Given a 
omplete latti
e L, the stru
ture hjLj;�Li is a T0-spa
ewhose spe
ialization ordering is exa
tly �L.For the powerset spa
es PA the �-topology is very easy to des
ribe: the opensets U � PA are the families of \�nite 
hara
ter"; that is, a subset X � Abelongs to U if, and only if, some �nite subset of X belongs to U . This is thesame as giving PA the topology that 
orresponds to the produ
t topologyon 2A where the two-element set has the topology with one open point andone 
losed point. The powerset spa
es have an important role as being able toembed every T0-spa
e. The following elementary result is key to the subsequentdevelopment.Theorem 3.6 (The Embedding Theorem) Given a T0-spa
e T , the map-ping x 7! T (x) is a topologi
al embedding of T into P 
T 
onsidered as a spa
ewith the �-topology.Powerset spa
es also have another important property 
on
erning 
ontinuousfun
tions whi
h allows for the transfer of fun
tions over to the powerset spa
e.Theorem 3.7 (The Extension Theorem) If Y is a subspa
e of a topolog-i
al spa
e X , and if f : jYj ! PA is 
ontinuous, then the fun
tion f has a
ontinuous extension to all the points of X .S
ott noti
ed the above theorems in 1970/71 and also pointed out that it infa
t holds for all 
ontinuous retra
ts of the powerset spa
es|these are the
ontinuous latti
es|but for our purposes here, the above suÆ
es.Powerset latti
es 
an be generalized to algebrai
 latti
es, namely those 
om-plete latti
es that 
an be represented isomorphi
ally as 
omplete sublatti
esof a powerset 
losed under arbitrary interse
tions and dire
ted unions. (Theselatti
es 
an be 
hara
terized in other ways as well; see, e.g., [13,16℄.) The �-topology on an algebrai
 latti
e is just the restri
tion of the topology of thepowerset spa
e. An algebrai
 latti
e is a 
ontinuous retra
t of the powerset
ontaining it, but not all su
h retra
ts are algebrai
.The reason for 
onsidering algebrai
 latti
es is that the latti
e of 
ontinuousfun
tions between powerset spa
es is not usually a powerset spa
e, but it is5



an algebrai
 latti
e. And this extends to all algebrai
 latti
es. Hen
e, we havethe well known theorem (see [13,16℄):Theorem 3.8 The 
ategory ALat is 
artesian 
losed.The Category of Equilogi
al Spa
es. We have now reviewed suÆ
ientmaterial to be able to give two de�nitions of the 
ategory of equilogi
al spa
esand to show that the two de�nitions are equivalent. We will then prove thatthe 
ategory is 
artesian 
losed.De�nition 3.9 The 
ategory Equ of equilogi
al spa
es is de�ned as fol-lows.(1) Obje
ts are stru
tures E = hjEj;
E ;�Ei, where hjEj;
Ei is a T0-spa
eand �E is an (arbitrary) equivalen
e relation on the set jEj.(2) The mappings between equilogi
al spa
es are the equivalen
e 
lasses of
ontinuous mappings between the topologi
al spa
es that preserve theequivalen
e relation (equivariant mappings), where the equivalen
e re-lation on mappings is de�ned byf �E!F g () 8x; y 2 jEj:�x �E y =) f(x) �F g(y)�:We remark that it has to be proved that �E!F a
tually is an equivalen
erelation, but this is an elementary exer
ise. It also has to be proved that theequilogi
al spa
es and equivariant maps form a 
ategory, but this 
an also besafely left to the reader.One odd feature of this de�nition is that the equivalen
e relation of an equi-logi
al spa
e may have very little to do with the topology. This means thatin some 
ases the only equivariant mappings between two spa
es might bethe 
onstant maps, or the only automorphisms of a given spa
e might be theidentity|despite a ri
h underlying topology. Thus, future investigations maysuggest limiting the equivalen
e relations. But, for now, the general propertiesof the 
ategory seem to work out well for arbitrary equivalen
e relations, sowe have not been motivated to make any further restri
tions in this paper.Re
all that a 
ategory is 
omplete if it has all (small) produ
ts and equalizersof all pairs of parallel arrows. Similarly, a 
ategory is 
o
omplete if it hasall (small) 
oprodu
ts and 
oequalizers of all pairs of parallel arrows. Alsore
all that a regular subobje
t is a subobje
t whi
h arises as the equalizer ofa pair of parallel arrows and that a 
ategory is regular well-powered if theregular subobje
ts of every obje
t 
onstitute a set. Dually, a regular quotientis a quotient whi
h arises as the 
oequalizer of a pair of parallel arrows anda 
ategory is regular 
o-well-powered if no obje
t has a proper 
lass of non-isomorphi
 regular quotients. 6



Theorem 3.10 The 
ategory Equ is 
omplete, 
o
omplete, and it is regularwell-powered, and regular 
o-well-powered. 4Proof. The proof pro
eeds along standard lines making use of the 
orre-sponding properties of topologi
al spa
es.Take produ
ts �rst. The produ
t (of any number) of topologi
al spa
es is aspa
e with a produ
t topology. The produ
t of equivalen
e relations is anequivalen
e relation. The proje
tion mappings are 
learly equivariant. And,if we have a family of (equivalen
e 
lasses of) equivariant mappings into thevarious fa
tor spa
es, then (after applying the Axiom of Choi
e to pi
k repre-sentatives) we 
an obtain in the usual way one equivariant mapping into theprodu
t that 
ombines all the separate mappings.Next, take equalizers. Suppose f; g : jEj ! jFj are two (representatives of)equivariant mappings. Form the set f x 2 jEj j f(x) �F g(x) g. Endow this setwith the subspa
e topology and with the restri
tion of the equivalen
e relation�E . This stru
ture, along with the obvious in
lusion mapping into E , is thedesired equalizer. Thus, Equ is a 
omplete 
ategory.On to 
oprodu
ts. The 
oprodu
t of topologi
al spa
es is just a disjoint unionof the underlying sets with the topology on the union generated by the unionof all the topologies. For equivalen
e relations, we have only to note that theunion of equivalen
e relations on disjoint sets is indeed an equivalen
e relation.The inje
tion mappings from the separate spa
es into the union are obvious,as well as is the lifting property of a family of mappings from the separatespa
es into a given target spa
e.Next, we dis
uss 
oequalizers. Suppose f; g : E ! F are two (representativesof) equivariant mappings. On jFj we form the least equivalen
e relation 
on-taining both �F and the set of pairs f (f(x); g(x)) j x 2 jEj g. Using thisequivalen
e relation on jFj, we form the equilogi
al spa
e G. There is an ob-vious equivariant mapping 
 : F ! G represented by the identity. This is thedesired 
oequalizer. Thus, Equ is a 
o
omplete 
ategory.Finally, we turn to well-poweredness. The properties of being regular well-powered and regular 
o-well-powered follow from the 
orresponding propertiesof Top0 and the 
ategory of equivalen
e relations; one just has to be 
areful to
he
k that the regular subobje
ts are obtained by sele
ting some equivalen
e
lasses and taking the union of them to form a subspa
e; likewise, forminga regular quotient is just making the equivalen
e relation 
oarser (puttingequivalen
e 
lasses together). And, be warned that there are subobje
ts andquotients whi
h are not formed in this simple way.4 The authors are indebted to Peter Johnstone for pointing out that, 
ontrary tothe assertion made in S
ott's original unpublished manus
ript, Equ is not wellpowered, for there are fairly simple examples of obje
ts in the 
ategory with anunbounded number of non-isomorphi
 subobje
ts.7



The proof just given is sket
hy in the handling of equivalen
e 
lasses of maps,and, in the 
onstru
tion of the equalizer and 
oequalizer, it has to be 
he
kedthat the stru
tures suggested have the required universal properties. But, thisargument|modulo equivalen
e 
lasses|is exa
tly similar to what is done forthe 
ategory Top0. We remark that the 
ategory of equivalen
e relations onsets is in
luded here: a set is just a dis
rete topologi
al spa
e (and these forma full sub
ategory of Top0). Of 
ourse, with the aid of the Axiom of Choi
e, itis qui
kly shown that the 
ategory of equivalen
e relations is equivalent to the
ategory of sets (via the obvious use of quotient sets). However, the 
ategoryEqu introdu
ed here is not equivalent to the 
ategory Top0. For one thing,no topology is being put on the quotient spa
e jEj=�E . And this 
ategory hasa property|
artesian 
losure|that Top0 does not share.To investigate Equ further, we introdu
e a 
losely 
onne
ted 
ategory.De�nition 3.11 The 
ategory PEqu of partial equilogi
al spa
es is de-�ned as follows.(1) Obje
ts are stru
tures A = hjAj;
A;�Ai, where hjAj;
Ai is the �-topology of an algebrai
 latti
e, and where �A is a partial equivalen
erelation, i.e., re
exive only on a subset of jAj.(2) The mappings between partial equilogi
al spa
es are the equivalen
e
lasses of 
ontinuous mappings between the algebrai
 latti
es that pre-serve the partial equivalen
e relation, where the equivalen
e relation onmappings is de�ned as before byf �A!B g () 8x; y 2 jAj:�x �A y =) f(x) �B g(y)�:These mappings will also be 
alled equivariant.If we 
onsider the relation f �A!B g as being de�ned between arbitrary
ontinuous fun
tions, then equivariant maps for the 
ategory PEqu are the(equivalen
e 
lasses of) the fun
tions f satisfying f �A!B f , sin
e that meansthat the fun
tion preserves the underlying equivalen
e relation. This remarkgives a hint as to how we will de�ne fun
tion spa
es, but �rst we want to 
he
kthe equivalen
e of 
ategories.Theorem 3.12 The 
ategories Equ and PEqu are equivalent.Proof. The naturally suggested fun
tor from PEqu to Equ is the one thattakes hjAj;
A;�Ai and restri
ts the topology to the subspa
e on the subsetf x 2 jAj j x �A x g. On this subset the equivalen
e relation is \total". Themappings are likewise restri
ted. Call the fun
tor R (for \restri
tion"). Now,if f : A ! B is a map of PEqu, then R(f) = f � jR(A)j : R(A) ! R(B) isvalid as a map of Equ, and identities and 
ompositions are preserved.We note �rst that the fun
tor R is faithful by de�nition. Then, the fun
tor R isfull in view of The Extension Theorem (be
ause 
ontinuous fun
tions betweenT0-spa
es 
an be extended to any algebrai
 latti
es embedding them). Finally,8



the fun
tor R is essentially surje
tive on obje
ts by virtue of The EmbeddingTheorem (and note that the equivalen
e relation on the T0-spa
e does nothave to be extended but remains partial). This is enough to show that the
ategories are equivalent.The idea of partial equivalen
e relations has been very widely employed. S
ottbelieves he �rst 
alled general attention to it in the late '60s after extra
tingit from the studies by G. Kreisel and A. Troelstra on extensional theoriesof higher-type fun
tionals in re
ursion theory. However, it has been mostlyused re
ently in the 
ontext of giving types to (quotients of) subsets of auniversal model of some sort. We think allowing partial equivalen
e relationsover a large 
ategory (su
h as algebrai
 latti
es) is possibly a new idea; but,
ertainly, many familiar proofs get reused in the new 
ontext. The followingtheorem is an example of this reuse.Theorem 3.13 The 
ategory Equ is 
artesian 
losed.Proof. In view of the previous theorem, we will show that PEqu is 
artesian
losed. Given stru
tures A and B in PEqu we de�ne the stru
ture A! B sothat(i) jA ! Bj is the set of 
ontinuous fun
tions between the latti
es jAj andjBj;(ii) 
A!B is the �-topology on this algebrai
 latti
e;(iii) �A!B is the partial equivalen
e de�ned previously.We have to show, that for any three stru
tures in PEqu, say, A, B, and C,there is a one-one 
orresponden
e between fun
tions in the two spa
es:(A� B ! C) and (A! (B ! C)):As we know, there is a parti
ular one-one 
orresponden
e that is an isomor-phism of the underlying algebrai
 latti
es (and a homeomorphism of topo-logi
al spa
es). It only remains to show that the isomorphism preserves thepartial equivalen
e relation on the 
ompound spa
e. This is a \self-proving"theorem, in the sense that on
e the question is stated it is just a matter ofunpa
king the de�nitions to �nish it o�.4 Equilogi
al Spa
es, Type Theory and Logi
We have now already seen that the 
ategory of equilogi
al spa
es provides amodel of the simply-typed �-
al
ulus, inasmu
h as Equ is 
artesian 
losed. Inthis se
tion we show that Equ in fa
t supports a mu
h more expressive typetheory and logi
, whi
h 
an be introdu
ed by using the method of assemblies.Here, as elsewhere in the paper, we have favored a 
on
rete exposition over amore abstra
t and e
onomi
al presentation.9



For simpli
ity, we sometimes write an obje
t A = hjAj;
A;�Ai of PEqu as(A;�A) with A the algebrai
 latti
e hjAj;
Ai and �A the partial equivalen
erelation �A. We then write jAj for the underlying set of the algebrai
 latti
eA.Modest Sets and Assemblies. We �rst introdu
e yet another equivalentde�nition of the 
ategory Equ, whi
h will allow us to pro
eed by analogy tothe 
ategory of partial equivalen
e relations over a PCA (see, e.g., [11℄).De�nition 4.1 The 
ategory Assm(ALat) of assemblies over the 
ate-gory of algebrai
 latti
es is de�ned as follows.(1) Obje
ts are triples (X;A;E) with X 2 Set, A 2 ALat, and the mappingE : X ! P jAj in Set is su
h that E(x) is non-empty for all x 2 X. We
all the elements in E(x) realizers for x.(2) The morphisms from an obje
t (X;A;E) to an obje
t (X 0; A0; E 0) arefun
tions f : X ! X 0 in Set for whi
h there exists a 
ontinuous fun
tiong : A! A0 in ALat su
h that8x 2 X:8a 2 E(x):g(a) 2 E 0(f(x)):We 
all su
h a fun
tion g a realizer for f , and say that g tra
ks f .De�nition 4.2 An obje
t (X;A;E) of Assm(ALat) is 
alled modest if, andonly if, 8x; x0 2 X:�x 6= x0 =) E(x) \ E(x0) = ;�:The full sub
ategory of Assm(ALat) formed by the modest obje
ts is re-ferred to as the 
ategory of modest sets over algebrai
 latti
es is denotedMod(ALat).Roughly speaking a modest set is an assembly where a realizer a 2 E(x) 
arriesenough information to determine the element x 2 X uniquely. An example ofan assembly whi
h is not isomorphi
 to any modest set is (f0; 1g;P f0g; E),where E(0) = E(1) = P f0g. Here, the realizers tell us nothing at all aboutthe di�eren
es between 0 and 1. (A term su
h as \separated" might havebeen more des
riptive than \modest" | but see the further 
omments onterminology below.)Readers familiar with 
ategories of realizability models based on PCAs willimmediately note the similarity of the above de�nitions to the well-knownde�nitions of the 
ategories of modest sets and assemblies over a PCA (see,e.g., [19,11,28,26℄). Those 
ategories both embed into the so-
alled realizabilitytopos over the PCA [19℄. We do not get a 
orresponding embedding into atopos, however; we shall dis
uss why below.One useful intuition is to think of the 
ategory of algebrai
 latti
es as providinga typed universe of realizers (
f. the untyped universe of realizers provided by10



a PCA). Indeed for many 
on
lusions we do not use any properties of algebrai
latti
es beyond the fa
t that it is a 
artesian 
losed 
ategory. For example, wemight use the 
artesian 
losed 
ategory �0ALat of 
ountably based algebrai
latti
es, equivalent to the 
ategory of algebrai
 sublatti
es of P N . In this 
ase,modest sets are really modest in the sense of having their 
ardinality boundedby 2�0 . It turns out also that one 
an obtain more general results based ononly a weakly 
artesian 
losed 
ategory of realizers [9℄; we shall not go intothat here, preferring for 
on
reteness to stay with the example of all algebrai
latti
es.Theorem 4.3 The 
ategories Equ, PEqu, and Mod(ALat) are all equiva-lent.Proof. De�ne a fun
tor F : Mod(ALat)! PEqu by F (X;A;E) = (A;�A),where a �A a0 () 9x 2 X:a; a0 2 E(x). When applied to a morphismf : (X;A;E) ! (X 0; A0; E 0) in Mod(ALat), the fun
tor F gives the equiva-len
e 
lass of a realizer g : A ! A0 (g in ALat) for f whi
h exists by virtueof f being a morphism in Mod(ALat). The de�nition of F is 
learly inde-pendent of the 
hoi
e of g. It is straightforward to verify that the fun
tor F isfull and faithful and essentially surje
tive on obje
ts. For the latter, given anobje
t (A;�A) 2 PEqu, 
onsider the obje
t (f a 2 jAj j a �A a g=�A; A; E) 2Mod(ALat) with E the identity fun
tion on equivalen
e 
lasses.We now use the alternative des
ription of Equ provided by the above theoremto present some of its 
ategori
al properties in a di�erent way. Some of theproperties we have already seen, but the alternative des
riptions below areuseful. Along the way, we 
onsider Assm(ALat), sin
e the 
onstru
tions arebasi
ally the same and we shall make use of Assm(ALat) below.First, let us denote that in
lusion fun
tor fromMod(ALat) to Assm(ALat)by I. We now 
he
k some 
ategori
al properties dire
tly.Theorem 4.4 Both Assm(ALat) and Mod(ALat) are 
artesian 
losed andthe in
lusion preserves the 
artesian 
losed stru
ture:Proof. The terminal obje
t of Assm(ALat) is (1Set; 1ALat; E1) with 1Set =f�g, 1ALat = f�0g, and E1(�) = f�0g. Clearly it is modest and terminal inMod(ALat).The binary produ
t of (X;A;EX) and (Y;B;EY ) is (X � Y;A � B;E) withE(x; y) = EX(x) � EY (y). Here we make use of the binary produ
ts in the
ategory of algebrai
 latti
es, in analogy with the way in whi
h the produ
toperation of a PCA is used to prove that the 
ategory of assemblies andmodest sets over su
h has binary produ
ts. If (X;A;EX) and (Y;B;EY ) areboth modest, then also their produ
t so de�ned is modest.The exponential of (X;A;EX) and (Y;B;EY ) is (Z;BA; E) with Z = f f 2Y X j 9g : A! B:g tra
ks f g; E(f) the set of elements of BA whi
h tra
k f ,i.e., E(f) = f g 2 BA j 8x 2 X:8a 2 EX(x):g(a) 2 EY (f(x)) g. If (X;A;EX)and (Y;B;EY ) are both modest, then also (Z;BA; E) is modest.11



Theorem 4.5 Both Assm(ALat) and Mod(ALat) have �nite limits andthe in
lusion preserves the �nite limits.Proof. By the previous theorem it suÆ
es to 
onsider equalizers. The equal-izer of f; g : (X;A;EX) ! (Y;B;EY ) is (f x 2 X j f(x) = g(x0) g; A; E 0X),where E 0X is EX restri
ted to the subset, together with the obvious in
lusionmap. Let us also write out the pullba
k of f and g inP //

��

_
� (Y;B;EY )g

��(X;A;EX) f // (Z;C;EZ)The obje
t P is (f (x; y) 2 X � Y j f(x) = g(y) g; A� B;E) with E(x; y) =EX(x)� EY (y).A morphism f : (X;A;EX)! (Y;B;EY ) is a monomorphism inAssm(ALat)(or in Mod(ALat)) exa
tly if f is an inje
tive fun
tion of sets; it is an epi-morphism exa
tly if f is a surje
tive fun
tion. Let us now 
onsider regularsubobje
ts.Re
all that a regular 
ategory is a 
ategory with �nite limits and (stable underpullba
k) image fa
torizations (see, e.g., [10℄).Theorem 4.6 Both Assm(ALat) and Mod(ALat) are regular 
ategories.Proof. By the previous theorems, it suÆ
es to show that we have stableimage fa
torizations. The image fa
torization of f : (X;A;EX) ! (Y;B;EY )is (X;A;EX) f
//e

(( ((QQQQQQQQQQQQ
(Y;B;EY )(X=�; A; E 0X)66

m 66mmmmmmmmmmmwhere8x; x0 2 X: �x � x0 () f(x) = f(x0)� and E 0X([x℄) = [x02[x℄EX(x0):For the mappings, we set e(x) = [x℄ (whi
h is tra
ked by the identity), andm([x℄) = f(x) (whi
h is tra
ked by a realizer for f).Theorem 4.7 The regular subobje
ts of an obje
t (X;A;EX), both in the 
at-egory Assm(ALat) and in Mod(ALat) are in bije
tive 
orresponden
e withthe powerset of X.Proof. This follows easily from the des
ription of equalizers.In terms of PEqu, a regular subobje
t of an obje
t (A;�A) 
onsists of thealgebrai
 latti
e A together with a partial equivalen
e relation 
orrespondingto a 
olle
tion of the equivalen
e 
lasses of �A.12



The well-known relationship between the 
ategory of assemblies over a PCAand the 
ategory of sets (see, e.g., [20,19℄) 
an easily be generalized to our situ-ation as well: The 
ategory Set of sets embeds into the 
ategory of assembliesby the fun
tor r : Set ! Assm(ALat) where r(X) = (X; 1ALat; E) withE(x) = �, for all x 2 X, and r(f : X ! Y ) = f , trivially realized. Then one
an show that r is full and faithful, preserves �nite limits, and 
oequalizers ofkernel pairs (hen
e is exa
t in the sense of Barr [2℄) and exponentials. De�nethe \global se
tions" fun
tor �: Assm(ALat)! Set by �(X;A;E) = X and�(f) = f . Then � is faithful and exa
t. Moreover, one 
an easily prove thefollowing theorem.Theorem 4.8 The fun
tor � is left adjoint to r with �r = id.The 
ategori
al relationship between modest sets and assemblies is given bythis theorem:Theorem 4.9 The 
ategory Mod(ALat) is a re
e
tive sub
ategory of the
ategory Assm(ALat).Proof. The re
e
tion fun
tor R : Assm(ALat) ! Mod(ALat) is de�nedas follows. On obje
ts (X;A;E), let R(X;A;E) = (X=�; A; E 0) where x � x0if, and only if, E(x) \E(x0) 6= ; and E 0([x℄) = Sx2[x℄E(x0). On morphisms f ,let R(f) be the mapping [x℄ 7! [f(x)℄.Modeling Dependent Type Theory. In this subse
tion we show that the
ategoryMod(ALat), and thus PEqu, models dependent type theory. Typesare indexed obje
ts ofMod(ALat); the indexing is by obje
ts ofMod(ALat).The regular subobje
ts 
an be used to give us logi
 to reason about the typesand with respe
t to whi
h we have full subset types and full quotient types.See [18,24,26℄ for more on subset types and quotient types. The same holds forAssm(ALat), but here, in addition, the logi
 is higher order | in short, thepoint is that the regular subobje
t 
lassi�er is not an obje
t of Mod(ALat)but it is an obje
t of Assm(ALat); we explain this in more detail below.All this works by analogy to the situation for modest sets and assemblies overa PCA. But the analogy seems to stop here; for example, the modest sets overa PCA form essentially an internal 
ategory in the 
orresponding 
ategory ofassemblies and 
an be used to give a model of the 
al
ulus of 
onstru
tionswith an impredi
ative universe of types. We do not have a 
orresponding resultwith modest sets and assemblies over the 
ategory of algebrai
 latti
es as wewill explain.Before embarking on the te
hni
al development, let us 
onsider an example.Let Y be a 
losed type (an obje
t of Mod(ALat)) and let N denote thetype of natural numbers. Further assume u : Y ! N in Mod(ALat). In thedependent type theory we 
an then form the typeQ y : Y: fn 2 N j n � u(y) g13




onsisting of all fun
tions, whi
h, given a y produ
es an n greater or equal tou(y). Here fn 2 N j n � u(y) g is a well-formed (subset) type in the 
ontexty : Y .For the te
hni
al development, we make use of B. Ja
obs' �brational de-s
ription of models of dependent type theory [23,25,26℄, whi
h is related tothe D-
ategories [14℄, 
ategories with attributes [12,30℄, display-map 
ate-gories [40,21℄, and 
omprehensive �brations [32℄. See [23℄ for a 
omprehen-sive introdu
tion. We make a point of des
ribing the models in a so-
alled\split" way, so as to avoid problems with interpreting dependent type theory.See, for example, [29,34,31,35,17℄ for a dis
ussion of this issue. As this se
-tion progresses, we assume more and more familiarity with the 
ategories ofmodest sets, assemblies and realizability toposes over PCAs. See, for example,[19,22,33℄ for ba
kground on these 
ategories.We �rst de�ne a 
ategory of uniform families of obje
ts of the 
ategoryMod(ALat). Uniformity refers to the fa
t that ea
h obje
t of the family willhave the same underlying algebrai
 latti
e. The idea is that a dependent type,in a 
ontext interpreted as the obje
t I, will be a family of obje
ts indexed bythe obje
t I in Mod(ALat).De�nition 4.10 The 
ategory UFam(Mod(ALat)) is de�ned as follows.(1) Obje
ts are triples of the form (I; A; (Xi; Ei)i2XI ), whereI = (XI ; AI; EI) 2Mod(ALat) and(Xi; A; Ei) 2Mod(ALat), for all i 2 XI :(2) Morphisms from (I; A; (Xi; Ei)i2XI ) to (J;B; (Yj; E 0j)j2XJ ), withI = (XI; AI ; EI) and J = (XJ ; AJ ; EJ);are pairs of the form (f; (fi)i2XI ), withf : I ! J in Mod(ALat) and fi : Xi ! Yf(i) in Set;for whi
h there exists a g : AI ! A ! B in ALat su
h that g tra
ks funiformly, that is,8i 2 XI :8ai 2 EI(i):8x 2 Xi:8a 2 Ei(x):g(ai)(a) 2 E 0f(i)(fi(x));(3) The identity morphism on an obje
t I = (XI ; AI ; EI) is (id ; (id)i2XI ).(4) The 
omposition of (f; (fi)i2XI ) and (g; (gj)j2XJ ) is (gÆf; (gf(i) Æ fi)i2XI ).We think of a family (I; A; (Xi; Ei)i2XI ) as a type in 
ontext I, whose �berat i in XI is (Xi; A; Ei)i2XI . There is an obvious forgetful fun
torU : UFam(Mod(ALat))!Mod(ALat)given by (I; A; (Xi; Ei)i2XI ) 7! I and (f; (fi)i2XI ) 7! f .14



Theorem 4.11 The fun
tor U : UFam(Mod(ALat)) ! Mod(ALat) is asplit �bration whi
h is equivalent, as a �bration, to the 
odomain �bration overMod(ALat).Proof. First de�ne split 
artesian liftings: Suppose u : I ! J inMod(ALat)and let (J;B; (Yj; E 0j)j2XJ ) be an obje
t over J . Then(u; (id)i2XI ) : (I; B; (Yu(i); E 0u(i))i2XI )! (J;B; (Yj; E 0j)j2XJ )is the 
artesian lifting over u.Now 
onsider the standard 
odomain �bration
od: Mod(ALat)! �!Mod(ALat)where, as usual, Mod(ALat)! is the 
ategory of 
ommutative squares, withobje
ts morphisms ' : X ! I of Mod(ALat) and with morphisms from' : X ! I to  : Y ! J pairs (u; f) of morphisms in Mod(ALat) su
hthat X f
//'

��

Y 
��I u // J
ommutes.De�ne the fun
tor P as inUFam(Mod(ALat)) P //

**TTTTTTTTTTTTTTT
Mod(ALat)!
od

uulllllllllllllMod(ALat)by mapping an obje
t (I; A; (Xi; Ei)i2XI ), with I = (XI ; AI ; EI), to(`i2XI Xi; AI � A;E) �! I;with E(i; x) = EI(i)� Ei(x). The fun
tor P maps a morphism(u; (fi)i2XI ) : (I; A; (Xi; Ei)i2XI )! (J;B; (Yj; E 0j)j2XJ );with I = (XI ; AI ; EI) and J = (XJ ; AJ ; EJ), to the square(`i2XI Xi; AI � A;E) fu;fg
//�

��

(`j2XI Yj; AJ �B;E 0)�
��I u // J15



where fu; fg is the fun
tion (i; x) 7! (u(i); fi(x)) tra
ked by�(ai; a): (ru(ai); g(ai)(a)) : AI � A! AJ �B;with ru : AI ! AJ a realizer for u : I ! J and g a realizer for the family(fi)i2XI . This is, of 
ourse, a morphism in ALat sin
e it is de�ned in theinternal typed lambda 
al
ulus language of ALat.One 
an now verify that P is a full and faithful �bered fun
tor. Moreoverwe 
an de�ne a �bered fun
tor Q : Mod(ALat)! ! UFam(Mod(ALat))mapping ' : X ! I, with I = (XI ; AI; EI) and X = (XX ; AX ; EX) to thefamily (I; AX ; (Xi; Ei)i2XI ) with Xi = '�1(i) and Ei(x) = EX(x); a morphism(u; f) as in X f
//'

��

Y 
��I u // Jis mapped by Q to (u; (f)i2XI). It 
an then be veri�ed that Q is also a �beredfun
tor and that PQ �= id verti
ally and that QP �= id verti
ally.Consider a type-in-
ontext (I; A; (Xi; Ei)i2XI ). The fun
tor P , from the proofabove, applied to this type-in-
ontext yields the proje
tion(`i2XI Xi; AI � A;E) �! Imorphism inMod(ALat). This proje
tion morphism gives rise to a substitu-tion fun
tor�� : UFam(Mod(ALat))I ! UFam(Mod(ALat))(`i2XI Xi;AI�A;E):We think of this fun
tor as follows. It takes a type in 
ontext I and views itas a type in the extended 
ontext (`i2XI Xi; AI �A;E), 
orresponding to theweakening rule I ` X : Type I ` Y : TypeI; x : X ` Y : TypeThe interpretation of I; x : X ` Y : Type is the fun
tor �� applied to the inter-pretation of I ` Y : Type. To model dependent sums and dependent produ
ts,we need to have left adjoints ` and right adjoints Q to the fun
tor ��.It is easy to see that (ISet; 1ALat; (1Set; E1)i2XI ) is a terminal obje
t in the�ber over I = (XI ; AI ; EI), where E1(�) = f�g. The terminal obje
t fun
tor1 : Mod(ALat) ! UFam(Mod(ALat)) maps an obje
t I = (XI ; AI ; EI)to the terminal obje
t over I and a morphism u : I ! J to the morphism(u; (�x: �)i2XI ). This terminal obje
t fun
tor has a right adjointfg : UFam(Mod(ALat))!Mod(ALat)16



de�ned by, for I = (XI; AI ; EI), f(I; A; (Xi; Ei)i2XI )g = (`i2XI Xi; AI�A;E)with E(i; x) = EI(i) � Ei(x). That is, fg = domÆP where P was de�nedin the proof of the previous theorem. Brie
y, if (u; (fi)i2XI ) is a morphismfrom 1(I) to (J;B; (Yj; Ej)j2XJ ), with I = (XI ; AI ; EI) and J = (XJ ; AJ ; EJ)then its adjoint transpose from I to f(J;B; (Yj; Ej)j2XJ )g is �i: (u(i); fi(�)),realized by �ai: �a: (ru(a); rf(ai)(�0)) : AI ! A! B;where ru is a realizer for r and rf is a realizer for the family (fi)i2XI . Thusthe 
onstru
tions are exa
tly analogous to the 
ase for modest sets over aPCA. In summa, sin
e the terminal obje
t fun
tor has a right adjoint and theproje
tion fun
tor P is full we have a split full 
omprehension 
ategory withunit.Next, we argue that the 
ompression 
ategory has split produ
ts. What thismeans is that, for any family X = (I; A; (Xi; Ei)i2XI ) over I = (XI ; AI ; EI)with proje
tion �X : fXg = (`i2XI Xi; AI�A;E)! I, the reindexing fun
tor��X has a right adjoint QX , whi
h satis�es a Be
k-Chevalley 
ondition. De�neQX �(`i2XI Xi; AI � A;E); C; (Zk; Ek)k2`i2XI Xi�to be�I; A! C; (f f : Xi ! [x2Xi Z(i;x) j 8x 2 Xi:f(x) 2 Z(i;x) g; E 0i)i2XI�;where E 0i(f) = f g : A! C j \g tra
ks f" g= f g : A! C j 8x 2 Xi:8a 2 Ei(x):g(a) 2 E(i;x)(f(x)) g:It is easy to verify that E 0i is modest. The adjoint transposes are de�nedessentially as for the 
ase of the family of sets �bration; one just has to verifythat one has the required realizers, but that is simple using the internal typedlambda 
al
ulus of ALat. Now for the Be
k-Chevalley 
ondition, we are toshow that for a pullba
k(`i2XI Xu(i); AI �B;E)fu;idg //�X
��

(`j2XJ Xj; AJ � B;E 0)�Y
��I u //Jin Mod(ALat), we have that the 
anoni
al natural transformationu�QY ! QXfu; idg�17



is an identity (not only iso, be
ause we 
laim to have split produ
ts). This isstraightforward to verify.For the 
omprehension 
ategory to have strong split 
oprodu
ts (modelingdependent sums) we need, with notation as in the previous paragraph, �rst tohave left adjoints `X to ��X , for proje
tions �X , satisfying a Be
k-Chevalley
ondition. De�ne`X �(`i2XI Xi; AI � A;E); C; (Zk; Ek)k2`i2XI Xi�to be �I; A� C; (f (x; z) j x 2 Xi; z 2 Z(i;x) gi; E 0i)i2XI�;with E 0i(x; z) = Ei(x) � E(i;x)(z), easily seen to be modest. On a morphism(id ; (f(i;x))(i;x)2`i2XI Xi) we de�ne `X to give (id ; ((x; z) 7! (x; f(i;x)(z)))i2XI ),whi
h is 
learly realizable. Again it is straightforward to verify that the Be
k-Chevalley 
ondition holds, i.e., referring to the pullba
k in the previous para-graph, that `Xfu; idg� ! u�`Y is an identity. This shows then that we havesplit 
oprodu
ts. To have strong split 
oprodu
ts, we have to show that the
anoni
al map � in the following diagram is an iso:P � //�
��

Q�
��R �X // Iwhere P = �a(i;x)2`i2XI Xi Xi; (AI � A)� C;E� ;Q = � ai2XIf (x; z) j x 2 Xi; z 2 Z(i;x) g; AI � (A� C); E 0� ;R = (ai2XI Xi; AI � A;E 00) :But � is just the map ((i; x); z) 7! (i; (x; z)), whi
h is 
learly realizable by the
orresponding map on algebrai
 latti
es, and obviously has an inverse. Hen
ewe have strong 
oprodu
ts.We have thus shown the following theorem, with notation as in Theorem 4.11and its proof.Theorem 4.12 P : UFam(Mod(ALat)) ! Mod(ALat)! is a split 
losed
omprehension 
ategory. Hen
e, we have a model of dependent type theory.We 
an use the regular subobje
ts to provide a logi
 with whi
h one 
an reasonabout the types of the type theory. By Theorem 4.7, the regular subobje
ts ofan obje
t I = (XI ; AI ; EI) is isomorphi
 to PXI . Hen
e the 
ategory of regular18



subobje
ts ofMod(ALat), denotedRegSub(Mod(ALat)), 
an be identi�edwith the 
ategory with obje
ts (I;K), where I = (XI ; AI ; EI) 2Mod(ALat)and K � XI and with morphisms from (I;K) to (J; L) maps u : I ! J inMod(ALat) satisfying that u(K) � L. In the regular subobje
t �brationRegSub(Mod(ALat))
��Mod(ALat)reindexing of (J; L) along a map u : I ! J , i.e., u�(J; L) is given by takingthe inverse image of L along u.One 
an use this regular subobje
t �bration to get a (
lassi
al) logi
, essen-tially as for sets and for regular subobje
ts of the modest sets over a PCA.Moreover, with regard to this logi
, the 
omprehension 
ategory P admits full(dependent) subset types and full (dependent) quotient types. However, forreasons of spa
e, we do not spell that out here. Instead, let us mention thatthe above models of type theory 
an be also be de�ned, in the exa
t same way,for the 
ategory Assm(ALat) of assemblies over algebrai
 latti
es. For this
ase, the logi
 of regular subobje
ts will be higher-order: the regular subobje
t�bration has a generi
 obje
t, a regular subobje
t 
lassi�er, namely the obje
tr2 2 Assm(ALat). Note that this is an obje
t in Assm(ALat) whi
h is notinMod(ALat) sin
e it is not modest. Again, this is analogous to the situationof modest sets and assemblies over a partial 
ombinatory algebra [19,33,26℄.Dis
ussion. We should mention that the analogy with 
ategories de�nedover a PCA 
an be made mathemati
ally pre
ise in the sense that there isa notion of a \weak tripos" | a tripos as in [20℄ ex
ept for the requirementof a generi
 obje
t. For su
h a �bered preorder, one 
an de�ne a 
ategory ofassemblies and modest sets and show that they model dependent type theory.The tripos for a PCA will then provide an example, as will the weak tripos
onstru
ted over the 
ategory of algebrai
 latti
es. The details will appearelsewhere.We 
an also dis
uss just how far one 
an 
onsider the analogy with 
ategoriesde�ned over a PCA in an informal way and aimed at the reader already familiarwith the situation for the 
ategories de�ned over a PCA. We mainly highlighta 
ouple of interesting questions.One of the ni
e features of the modest sets and assemblies over a PCA isthat they 
an be used to give a model of the 
al
ulus 
onstru
tion (see, e.g.,[22,29,35℄). In fa
t, instead of the 
ategory of modest sets one uses the equiv-alent 
ategory of partial equivalen
e relations to get a small 
ategory. The
ru
ial point is that this small 
ategory 
an be seen as an internal 
ategory inthe 
ategory of assemblies and that the externalization of this internal 
ate-gory is a �bration equivalent to the �bration of uniform modest sets over the19



assemblies, whi
h thus has a generi
 obje
t allowing us to get an impredi
ativesmall universe of types as in the 
al
ulus of 
onstru
tions.An obvious next question is whether we 
an get something similar in our 
asewith modest sets and assemblies over algebrai
 latti
es. It turns out that,in our 
ase working over algebrai
 latti
es (or indeed any 
artesian 
losed
ategory), the �bration of uniform modest sets over assemblies is 
omplete,but we 
annot show that it is essentially small. This is not surprising sin
e the
ategory of algebrai
 latti
es is not small. However, even if we only 
onsider asmall 
artesian 
losed 
ategory as our 
ategory of realizers, the 
orresponding�bration is not small (is not equivalent to the externalization of an internal
ategory).The obvious solution to try, by analogy with the situation over a PCA, isto 
onsider the small 
ategory of partial equivalen
e relations as an internal
ategory in the 
ategory of assemblies (simply by embedding it via r as isdone for the 
ase of PCAs), but then the externalization does not 
onsistof uniform families: ea
h set in the family will have a di�erent underlyingobje
t of realizers. In fa
t, we have not been able to show that the �brationof partial equivalen
e relations is small and, indeed, we believe that it is not,unless further assumptions are made about the underlying 
ategory of realizers(besides it being a small 
artesian 
losed 
ategory).Another obvious question to ask, following the analogy with 
ategories over aPCA, is whether PER(ALat) 'Mod(ALat) and Assm(ALat) embed fullyand faithfully into a big \realizability topos over algebrai
 latti
es" (su
h asthe exa
t 
ompletion of the regular 
ategory Assm(ALat)). The answer isno be
ause PER(ALat) is not well-powered. For note that it embeds fully,faithfully by a �nite limit preserving fun
tor into the exa
t 
ompletion ofAssm(ALat), and so the latter is also non-well-powered and, hen
e, not atopos. Again, even if we take a small 
artesian 
losed 
ategory as the universeof realizers, it does not appear to be enough. To over
ome this problem wetried to mimi
 the proof of Robinson and Rosolini [36℄, but it 
annot beeasily generalized. In other words, it appears that something more needs tobe assumed about the universe of realizers, and we have to leave that as anopen question.5 Equilogi
al Spa
es and Domains with TotalityKleene-Kreisel 
ountable fun
tionals of �nite type [27℄ o

ur in various modelsof 
omputation. Ershov [15℄ pla
ed them in a domain-theoreti
 setting, andBerger [5℄ worked out a general notion of totality for domain theory whi
hsubsumes Ershov's hierar
hy of �nite types. He also extended this approa
h todependent types in his Habilitationss
hrift [6℄. We show that Berger's 
odenseand dense obje
ts in domain theory embed fully and faithfully in PEqu,20



from whi
h it follows dire
tly by the previous work of Ershov and Bergerthat the Kleene-Kreisel fun
tionals are 
onstru
ted in PEqu by repeated useof exponentiation starting from the natural numbers obje
t. We begin thisse
tion with a qui
k overview of totality as de�ned by Berger [5℄. Please referto the original paper for details.Domains with Totality. For our purposes, a domain D = hjDj;�Di is analgebrai
 
onsistently-
omplete dire
ted-
omplete partially ordered set witha least element. We may view domains as topologi
al spa
es with their �-topologies, just as we did with 
omplete latti
es. Let Dom be the 
ategory ofdomains and 
ontinuous fun
tions. Domains 
an also be 
onsidered as topo-logi
ally 
losed non-empty subsets of algebrai
 latti
es. Thus ALat is a fullsub
ategory of Dom. Additionally Dom is a 
artesian 
losed 
ategory (see,e.g., [39℄ or [1℄), and ALat is a full 
artesian 
losed sub
ategory of Dom. Adomain be
omes an algebrai
 latti
e if a \top" element is added to the poset.This 
onstru
tion produ
es a fun
tor whi
h, however, is not a re
e
tion andit does not preserve the 


-stru
ture.The following de�nitions are taken from Berger [5℄. We follow the terminologyof Berger [6℄ in whi
h the term total has been repla
ed by the term 
odense.A subset M � jDj of a domain D is dense if it is dense in the topologi
alsense, i.e., the 
losure of M is jDj. We write x " y when elements x; y 2 jDjare bounded, and x 6" y when they are unbounded.A �nite subset fx0; : : : ; xkg � jDj is separable if there exist open subsetsU0; : : : ; Uk � jDj su
h that x0 2 U0; : : : ; xk 2 Uk and U0 \ � � � \ Uk = ;.We say that U0; : : : ; Uk separate x0; : : : ; xk. It is easily seen that a �niteset is separable if, and only if, it is unbounded. A family of open sets U isseparating if it separates every separable �nite set, i.e., for every separablefx0; : : : ; xkg � jDj there exist members of U that separate it.The boolean domain B? is the 
at domain for the boolean values tt and � .A partial 
ontinuous predi
ate (p
p) on a domain D is a 
ontinuous fun
tionp : jDj ! B? . The fun
tion-spa
e domain [D ! B? ℄ is denoted by p
p(D).With ea
h p
p p we asso
iate two disjoint open sets by inverse images:p+ = p�1(fttg) and p� = p�1(f� g):A subset P � jp
p(D)j is separating if the 
orresponding family np+ ��� p 2 Pois separating.Given a set M � jDj letE(M) = np 2 jp
p(D)j ��� 8x 2M: p(x) 6= ?o :A set M is 
odense in D if the family E(M) is separating. An element x 2 jDjis 
odense if the singleton fxg is 
odense in D. Every element of a 
odense set21



is 
odense, but not every set of 
odense elements is 
odense. If M � jDj is a
odense set then the 
onsisten
y relation " is an equivalen
e relation on M .Thus, a 
odense set M � jDj 
an be viewed as a domain D together with apartial equivalen
e relation �M , whi
h is just the relation " restri
ted to M .A totality on a domain, in the sense of Berger [5℄, is a dense and 
odensesubset of a domain. Note that in the original paper by Berger [5℄ 
odense setsare 
alled total. Here we are using the newer terminology of Berger [6℄.Given domains with totality M � jDj and N � jEj, it is easily seen that theset M �N � jDj � jEj is again a totality on the domain D � E . Similarly, bythe Density Theorem in Berger [5℄ the sethM;Ni = nf 2 [D ! E ℄ ��� f(M) � Nois a totality on the fun
tion-spa
e domain [D ! E ℄. This idea of totalitygeneralizes the simple-minded 
onne
tion between total and partial fun
tionsusing 
at domains. If A is any set, let A? be the 
at domain obtained byadding a bottom element. Then A itself is a totality on A?, and the totalfun
tions of A! B in Set 
orrespond to (equivalen
e 
lasses) of fun
tions inhA;Bi 
onsidered as elements of [A? ! B?℄.Partial Equivalen
e Relations. Let PER(Dom) be the 
ategory formedjust like PEqu ex
ept that domains are used instead of algebrai
 latti
es, i.e.,an obje
t ofPER(Dom) is a stru
ture D = hjDj;�D;�Di where hjDj;�Di is adomain and �D is a partial equivalen
e relation on jDj. Category PER(Dom)is 
artesian 
losed, and for D; E 2 PER(Dom) we 
hoose the 
anoni
al prod-u
t and exponential D � E and D ! E whose underlying domains are thestandard produ
t and exponential in Dom, and the partial equivalen
e rela-tions are de�ned by(x1; y1) �D�E (x2; y2) () x1 �D x2 ^ y1 �E y2f �D!E g () 8x; y 2 jDj:�x �D y =) f(x) �E g(y)�:We say that a partial equivalen
e relation �D on a domain D is dense whenits domain dom(�D) = nx 2 jDj ��� x �D xois a dense subset of D.Be
ause every algebrai
 latti
e is a domain, PEqu is a full sub
ategory ofPER(Dom). The top-adding fun
tor T : PER(Dom) ! PEqu maps anobje
t D 2 PER(Dom) to the obje
tT (D) = hjDj [ f>g ;
T (D);�Di22



where hjDj [ f>g ;
T (D)i is the algebrai
 latti
e obtained from the underlyingdomain ofD by atta
hing a 
ompa
t top element. Fun
tor T maps a morphism[f ℄ : D ! E to the morphism T ([f ℄) represented by the mapT (f)(x) = 8<:f(x) x 6= >> x = >:The top-adding fun
tor is a produ
t-preserving re
e
tion, hen
e PEqu is anexponential ideal and a sub-


 of PER(Dom).In 
ategory Dom it is not the 
ase that every 
ontinuous map f : D0 ! jEjde�ned on an arbitrary non-empty subset D0 � jDj has a 
ontinuous exten-sion to the whole domain jDj. Be
ause of this fa
t the 
ategory PER(Dom)has 
ertain undesirable properties. However, it is true that every 
ontinuousmap de�ned on a dense subset has a 
ontinuous extension; this is an easy
onsequen
e of the Extension Theorem and the fa
t that a domain be
omesan algebrai
 latti
e when a top element is added to it. These observationssuggest that we should 
onsider only the dense partial equivalen
e relationson domains.Let DPER(Dom) be the full sub
ategory of PER(Dom) whose partialequivalen
e relations are either dense or empty. We are in
luding the emptyequivalen
e relation here be
ause the only map from an empty subset alwayshas a 
ontinuous extension. The obje
ts whose partial equivalen
e relations areempty are exa
tly the initial obje
ts of DPER(Dom). We have the followingtheorem.Theorem 5.1 DPER(Dom) and PEqu are equivalent.Proof. In one dire
tion, the equivalen
e is established by the top-adding fun
-tor T : DPER(Dom)! PEqu. In the other dire
tion, the equivalen
e fun
-tor K : PEqu! DPER(Dom) is de�ned as follows. When A = (jAj;
A; ;)is an initial obje
t, de�ne K(A) = A. Otherwise K maps an obje
t A 2 PEquto an obje
t K(A) whose underlying domain is the set jK(A)j = dom(�A),whi
h is the topologi
al 
losure of dom(�A) in jAj, equipped with the sub-spa
e topology. The partial equivalen
e relation for K(A) is just �A restri
tedto jK(A)j. The fun
tor K maps a morphism [f ℄ : A! B to the morphism rep-resented by the restri
tion f �jK(A)j. Here we assume that the morphism froman initial obje
t A = (jAj; ;) is represented by the 
onstant map f : x 7! ?.If A is initial, K([f ℄) is obviously well de�ned. When A is not initial, K([f ℄)is well de�ned be
ause 
ontinuity of f implies thatf(jK(A)j) = f(dom(�A)) � f(dom(�A)) � dom(�B) = jK(B)j:It is easily 
he
ked that K and T establish an equivalen
e between PEqu andDPER(Dom).We would like to represent domains with totality as equilogi
al spa
es. IfM � jDj is 
odense and dense in D, let hD;�Mi be the obje
t of PER(Dom)23



whose underlying domain is D and the partial equivalen
e relation �M isthe relation " on M . This identi�es domains with totality as obje
ts of the
ategory DPER(Dom). The following result shows that the morphisms ofDPER(Dom) are the right ones, be
ause the 


 stru
ture of DPER(Dom)agrees with the formation of produ
ts and fun
tion-spa
e obje
ts with totality.Theorem 5.2 Let M � jDj, N � jEj be 
odense and dense subsets in do-mains D and E, respe
tively. Then in DPER(Dom)hD;�Mi � hE ;�Ni = hD � E ;�M�Ni; andhD;�Mi ! hE ;�Ni = h[D ! E ℄;�hM;Nii:Proof. Here it is understood that the produ
t hD;�Mi � hE ;�Ni and theexponential hD;�Mi ! hE ;�Ni are the 
anoni
al ones for PER(Dom). Theyare obje
ts in DPER(Dom) by the Density Theorem in Berger [5℄. The �rstequality follows from the observation that (x1; y1) " (x2; y2) if, and only if,x1 " x2 and y1 " y2. Let X = hD;�Mi ! hE ;�Ni and Y = h[D ! E ℄;�hM;Nii.Obje
ts X and Y have the same underlying domains, so we only have to showthat the two partial equivalen
e relations 
oin
ide. The partial equivalen
erelation on X isf �X g () f; g 2 hM;Ni and 8x; y 2M:�x " y =) f(x) " g(y)�:Suppose f �X g. Then f; g 2 hM;Ni and it remains to be shown that f " g.For every x 2 M , sin
e x " x and f �X g, f(x) " g(x), thus by Lemma 7 inBerger [5℄ f and g are inseparable, whi
h is equivalent to them being bounded.Conversely, suppose f; g 2 hM;Ni and f " g. For every x; y 2 M su
h thatx " y, it follows that f(x) " g(y) be
ause f(x) � (f _ g)(x _ y) and g(y) �(f _ g)(x _ y). This means that f �X g.Higher Types. The 
ategory PEqu is a full sub-


 of PER(Dom).Sin
e DPER(Dom) is a full sub
ategory of PER(Dom) and is equivalentto PEqu, it is a full sub-


 of PER(Dom) as well. Theorem 5.2 statesthat for 
odense and dense subsets M � jDj and N � jEj, the exponentialhD;�Mi ! hE ;�Ni 
oin
ides with the obje
t h[D ! E ℄;�hM;Nii. We may usethis to show that in PEqu the 
ountable fun
tionals of �nite types arise asiterated fun
tion spa
es of the natural numbers obje
t. For simpli
ity we only
on
entrate on pure �nite types �, �! �, (�! �)! �, : : : and skip the detailsof how to extend this to the full hierar
hy of �nite types generated by �, o, �,and !.The natural numbers obje
t in DPER(Dom) is the obje
tDN 0 = hN? ;�N? ; �DN 0iwhose underlying domain is the 
at domain of natural numbers N? = N [ f?gand the partial equivalen
e relation �DN 0 is the restri
tion of identity to N .24



De�ne the hierar
hy DN 1;DN 2; : : : indu
tively byDN j+1 = DN j ! DN 0where the arrow is formed inDPER(Dom). By Theorem 5.2, this hierar
hy is
ontained in DPER(Dom) and 
orresponds exa
tly to Ershov's and Berger's
onstru
tion of 
ountable fun
tionals of pure �nite types. It is well known thatthe equivalen
e 
lasses of DN j 
orrespond naturally to the original Kleene-Kreisel 
ountable fun
tionals of pure type j, see Berger [5℄ or Ershov [15℄.In PEqu the natural numbers obje
t isN0 = hN?;>;�N?;> ;�N0i;where N?;> = N [ f?;>g is the algebrai
 latti
e of 
at natural numberswith bottom and top, and �N0 is the restri
tion of identity to N . The iteratedfun
tion spa
es N1;N2; : : : are de�ned indu
tively byNj = Nj�1 !N0:The hierar
hies DN 0;DN 1; : : : and N0;N1; : : : 
orrespond to ea
h other inview of the equivalen
e between DPER(Dom) and PEqu, be
ause they areboth built from the natural numbers obje
t by iterated use of exponentiation,hen
e the equivalen
e 
lasses of Nj 
orrespond naturally to the Kleene-Kreisel
ountable fun
tionals of pure type j.Referen
es[1℄ R.M. Amadio and P.-L. Curien. Domains and Lambda-Cal
uli, volume 46of Cambridge Tra
ts in Theoreti
al Computer S
ien
e. Cambridge UniversityPress, 1998.[2℄ M. Barr. Exa
t 
ategories. In Exa
t Categories and Categories of Sheaves,volume 236 of Le
ture Notes in Mathemati
s, pages 1{120. Spinger-Verlag, 1971.[3℄ A. Bauer. The Realizability Approa
h to Computable Analysis and Topology.PhD thesis, Carnegie Mellon University, 2000. Available as CMU te
hni
alreport CMU-CS-00-164 and at http://andrej.
om/thesis.[4℄ A. Bauer and L. Birkedal. Continuous fun
tionals of dependent types andequilogi
al spa
es. In P. Clote and H. S
hwi
htenberg, editors, ComputerS
ien
e Logi
, 14th Annual Conferen
e of the EACSL, Fis
hba
hau, Germany,August 21-26, 2000, volume 1862 of Le
ture Notes in Computer S
ien
e.Springer, August 2000.[5℄ U. Berger. Total sets and obje
ts in domain theory. Annals of Pure and AppliedLogi
, 60:91{117, 1993. 25



[6℄ U. Berger. Continuous Fun
tionals of Dependent and Transitive Types.Habilitationss
hrift, Ludwig-Maximilians-Universit�at M�un
hen, 1997.[7℄ L. Birkedal. Developing theories of types and 
omputability via realizability.Ele
troni
 Notes in Theoreti
al Computer S
ien
e, 34:viii+282, 2000. Bookversion of PhD-thesis.[8℄ L. Birkedal. A general notion of realizability. In Pro
eedings of the 15th AnnualIEEE Symposium on Logi
 in Computer S
ien
e, pages 7{17, Santa Barbara,California, June 2000. IEEE Computer So
iety.[9℄ L. Birkedal, A. Carboni, G. Rosolini, and D.S. S
ott. Type theory via exa
t
ategories. In Pro
eedings of the 13th Annual IEEE Symposium on Logi
in Computer S
ien
e, pages 188{198. IEEE Computer So
iety, Indianapolis,Indiana, June 1998.[10℄ F. Bor
eux. Handbook of Categori
al Algebra I. Basi
 Category Theory,volume 51 of En
y
lopedia of Mathemati
s and Its Appli
ations. CambridgeUniversity Press, 1994.[11℄ A. Carboni, P.J. Freyd, and A. S
edrov. A 
ategori
al approa
h to realizabilityand polymorphi
 types. In Mathemati
al Foundations of ProgrammingSemanti
s, Pro
eedings, New Orleans, Louisiana, volume 298 of Le
ture Notesin Compute S
ien
e, pages 23{42. Springer-Verlag, Berlin, 1988.[12℄ J. Cartmell. Generalized algebrai
 theories and 
ontextual 
ategories. PhDthesis, University of Oxford, 1978.[13℄ B.A. Davey and H.A. Priestley. Introdu
tion to Latti
es and Order. CambridgeUniversity Press, 1990.[14℄ Th. Ehrhard. A 
ategori
al semanti
s of 
onstru
tions. In Logi
 in ComputerS
ien
e, pages 264{273. Computer So
iety Press, Washington, 1988, 1988.[15℄ Y.L. Ershov. Model C for partial 
ontinuous fun
tionals. In Logi
 Colloquium1976, pages 455{467. North-Holland, 1977.[16℄ G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. S
ott.A Compendium of Continuous Latti
es. Springer-Verlag, 1980.[17℄ M. Hofmann. On the interpretation of type theory in lo
ally 
artesian 
losed
ategories. In J. Tiuryn and L. Pa
holski, editors, Pro
eedings of ComputerS
ien
e Logi
, Le
ture Notes in Computer S
ien
e. Springer, 1994.[18℄ M. Hofmann. A simple model for quotient types. In Pro
eedings of Typed LamdaCal
ulus and Appli
ations, volume 902 of Le
ture Notes in Computer S
ien
e,pages 216{234. Springer, 1995.[19℄ J.M.E. Hyland. The e�e
tive topos. In A.S. Troelstra and D. van Dalen,editors, The L.E.J. Brouwer Centenary Symposium, volume 110 of Studies inLogi
 and The Foundations of Mathemati
s, pages 165{216, Amsterdam, 1982.North-Holland. 26



[20℄ J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts. Tripos theory. Mathemati
alPro
eedings of the Cambridge Philosophi
al So
iety 88, 1980.[21℄ J.M.E. Hyland and A.M. Pitts. The theory of 
onstru
tions: 
ategori
alsemanti
s and topos theoreti
al models. In J.W. Gray and A. S
edrov,editors, Categories in Computer S
ien
e and Logi
, volume 92 of ContemporaryMathemati
s, pages 137{199. AMS, Providen
e, RI, 1989, 1989.[22℄ J.M.E. Hyland, E.P. Robinson, and G. Rosolini. The dis
rete obje
ts in thee�e
tive topos. Pro
. London Math. So
., 3(60):1{36, 1990.[23℄ B. Ja
obs. Categori
al Type Theory. PhD thesis, University of Nijmegen, 1991.[24℄ B. Ja
obs. Quotients in simple type theory. Unpublished Manus
ript. Availableat http://www.
wi.nl/~bja
obs/drafts.html, June 1991.[25℄ B. Ja
obs. Comprehension 
ategories and the semanti
s of type dependen
y.Theoreti
al Computer S
ien
e, 107:169{207, 1993.[26℄ B. Ja
obs. Categori
al Logi
 and Type Theory. Elsevier S
ien
e, 1999.[27℄ S.C. Kleene. Countable fun
tionals. In Constru
tivity in Mathemati
s, pages81{100, 1959.[28℄ J.R. Longley. Realizability Toposes and Language Semanti
s. PhD thesis,University of Edinburgh, 1994.[29℄ Z. Luo. Computation and Reasoning. A Type Theory for Computer S
ien
e.Number 11 in International Series of Monographs on Computer S
ien
e. OxfordUniversity Press, 1994.[30℄ E. Moggi. A 
ategory theoreti
 a

ount of program modules. Mathemati
alStru
tures in Computer S
ien
e, 1:103{139, 1991.[31℄ E. Moggi. Metalanguages and appli
ations. Notes for Summer S
hool onSemanti
s and Logi
s of Computation, Universtiy of Cambridge, Isaa
 NewtonInstitute for Mathemati
al S
ien
es, September 1995.[32℄ D. Pavlovi�
. Predi
ates and Fibrations. PhD thesis, University of Utre
t, 1990.[33℄ W. Phoa. An introdu
tion to �brations, topos theory, the e�e
tive topos andmodest sets. Te
hni
al report, University of Edinburgh, 1993.[34℄ A.M. Pitts. Categori
al logi
. Unpublished Manus
ript. Available athttp://hypatia.d
s.qmw.a
.uk/authors/P/PittsAM/, May 1995.[35℄ B. Reus. Program Veri�
ation in Syntheti
 Domain Theory. PhD thesis,Ludwig-Maximilians-Universit�at M�un
hen, November 1995.[36℄ E.P. Robinson and G. Rosolini. Colimit 
ompletions and the e�e
tive topos.Journ. Symb. Logi
, 55:678{699, 1990.[37℄ J. Rosi
k�y. Cartesian 
losed exa
t 
ompletions. Available from the HypatiaEle
troni
 Library: http://hypatia.d
s.qmw.a
.uk, 1997.27



[38℄ D.S. S
ott. A new 
ategory? Unpublished Manus
ript. Available athttp://www.
s.
mu.edu/Groups/LTC/.[39℄ V. Stoltenberg-Hansen, I. Lindstr�om, and E.R. Gri�or. Mathemati
al Theoryof Domains. Number 22 in Cambridge Tra
ts in Computer S
ien
e. CambridgeUniversity Press, 1994.[40℄ P. Taylor. Re
ursive Domains, Indexed Categories and Polymorphism. PhDthesis, University of Cambridge, 1986.

28


