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Abstract

A fundamental task in data analysis is understanding the di�erences between several con-

trasting groups. These groups can represent di�erent classes of objects, such as male or female

students, or the same group over time, e.g. freshman students in 1993 through 1998. We

present the problem of mining contrast sets: conjunctions of attributes and values that di�er

meaningfully in their distribution across groups. We provide a search algorithm for mining

contrast sets with pruning rules that drastically reduce the computational complexity. Once

the contrast sets are found, we post-process the results to present a subset that are surprising

to the user given what we have already shown. We explicitly control the probability of Type

I error (false positives) and guarantee a maximum error rate for the entire analysis by using

Bonferroni corrections.
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1 Introduction

A common question in exploratory research is: \How do several contrasting groups di�er?" Learning

about group di�erences is a central problem in many domains. For example, the US Census Bureau

prepares many statistical briefs that compare groups such as the publication, \The Earnings Ladder:

Who's at the Bottom? Who's at the Top?" which contrasts high and low income earners over the

years 1979 to 1992. They report such facts as: \About 4 in 10 year-round, full-time workers aged

18 to 24 had low earnings in 1992, up 19 percentage points since 1979."

Contrasting speci�c groups of interest is especially important in social science research. For

example, the Integrated Public Use Microdata Series (IPUMS) project (Ruggles & Sobek, 1997)

has expended great e�ort standardizing federal census data to allow researchers to compare demo-

graphic groups over di�erent time periods. Some of the research conducted with this data involves

comparing di�erent racial groups (Darity, 1998) or examining trends in divorce rates (Ruggles,

1997). As another example, the Department of Urban and Regional Planning at UCI conducts an

annual survey of people in Orange County. Their goals are to compare \the quality of life and

local government ratings in Orange County with Los Angeles County" and to \analyze the impact

of changing demographics by contrasting survey responses of Latinos, Asians, and non-Hispanic

whites."

Our goal is to automatically detect all di�erences between contrasting groups from observational

multivariate data. We seek conjunctions of attributes and values, called contrast sets, that have

di�erent levels of support in di�erent groups. For example, if we are comparing education groups,

we might �nd that P(occupation = sales j PhD) = 2.7%, while P(occupation = sales j Bachelor)

= 15.8%. Alternatively, groups could be based on time with groups falling into di�erent years as

shown in Figure 1.

Our emphasis in this paper will be on discovery of contrast sets. Our goal is to develop an

exploratory analysis tool so that users can gain insight into the di�erences between groups.

Our problem di�ers from those addressed by time series research or traditional statistical meth-

ods such as cohort or cross-sectional analyses (Glenn, 1977; Menard, 1991). In time series work, we

typically have observations spaced through time with one observation per time point. In contrast, we

have multiple observations at a few discrete points in time. For example, we could have thousands

of observations for each of the 1970, 1980, and 1990 federal censuses. Cohort and cross-sectional

analyses are typically guided by well de�ned prior hypotheses determined by domain knowledge. For

example, a research question might be \How does aging a�ect political party a�liation?" In con-
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Figure 1: Comparing UCI Applicants over 1993-1998
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Home Location = Los Angeles County ^
School Type = Public

trast, our work would take descriptions of young and old people and return all di�erences between

them, one of which could be a di�erence in political a�liation.

Another approach to distinguishing two or more groups from each other is to use a rule learner

or decision tree to learn a classi�cation strategy. This has the advantage of being fast. However

there are four major disadvantages: (1) Rule learners and decision trees are not complete. They

achieve speed by using heuristics to prune large portions of the search space and thus they may

miss alternative ways of distinguishing one group from another. (2) Rule learners and decision trees

focus on discrimination ability and will miss group di�erences that are not good discriminators but

are still important. For example, knowledge of Figure 1b will not give good classi�cation accuracy

in terms of placing students in their year of application.1 Nevertheless the di�erences could be

vitally important especially to a high school liaison o�cer at UCI. (3) Rules are usually interpreted

in a �xed order where a rule is only applicable if all previous rules were not satis�ed. This makes

the interpretation of individual rules di�cult since they are meant to be interpreted in context.

Finally, (4) it is di�cult to specify useful criteria such as minimum support or an acceptable false

positive rate in the classi�cation framework.

1The optimal classi�cation strategy knowing only the information in the Figure 1b will yield an accuracy of 17.7%
while random guessing gives 16.67% (assuming equal class priors).
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1.1 Relation to Association Rule Mining

A closely related area to our work on contrast sets is association rule mining (Agrawal et al., 1993).

Association rules are relations between variables of the form X ! Y . In market basket data X or

Y would be items such as bread or milk. In categorical data X and Y are attribute-value pairs such

as occupation = engineer or income � �50K.

Finding association rules and mining contrast sets both require search through a space of con-

junctions of items or attribute-value pairs. In association rule mining, we look for sets that have

support greater than a certain cuto� (these sets are then used to form the rules) and for con-

trast sets we seek those sets which represent substantial di�erences in the underlying probability

distributions.

Because both techniques have a search element there are many commonalities. In fact we build on

some of the search work developed for association rule mining to enhance our contrast set algorithms.

However, our work on contrast sets di�ers substantially from association rule techniques because we

are concerned with multiple groups and we have di�erent search criteria. Trying to directly apply

association rule mining algorithms to �nd contrast sets is a poor idea. For example, one approach

would be to mine the large itemsets for each group separately and then compare them. However,

mining the groups separately causes us to lose pruning opportunities and we show in Section 5.1

that these pruning opportunities can greatly improve e�ciency.

Alternatively, since association rules �nd relations between variables, we could encode the group

explicitly as a variable and let an association rule learner run on this representation. This will not,

however, return group di�erences, and the results will be di�cult to interpret. For example, we ran

an association rule program on census data and obtained the results in Figure 2 (1% min-support,

80% con�dence).

Examining these rules, it is extremely di�cult to tell what is di�erent between the two groups.

First, there are too many rules to compare. Second, the results are di�cult to interpret because

the rule learner does not enforce consistent contrast (Davies & Billman, 1996) (i.e., using the same

attributes to separate the groups). Clearly there are at least 26796 � 1674 = 25122 rules that have

no match. Finally, even with matched rules, we still need a proper statistical comparison to see if

di�erences in support and con�dence are signi�cant.
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Figure 2: Association rules for Bachelor and Ph.D. degree holders. Rules are in the form X ! Y
(support,con�dence).

! Bachelors (93.1, 93.1)
Bachelors ! CapitalLoss=0 (86.9, 93.4)
CapitalLoss=0 ! Bachelors (86.9, 93.4)
Bachelors ! United-States (83.4, 89.5)
United-States ! Bachelors (83.4, 93.8)
Bachelors ! CapitalGain=0 (82.3, 88.4)
CapitalGain=0! Bachelors (82.3, 93.7)
Bachelors ! race=White (81.6, 87.7)
race=White ! Bachelors (81.6, 93.0)
Male ! Bachelors (64.4, 92.0)

(a) First 10 of 26796 Association Rules for
Bachelor holders

PhD ! CapitalLoss=0 (6.1, 88.6)
PhD ! United-States (5.5, 80.5)
PhD ! CapitalGain=0 (5.5, 80.3)
PhD ! race=White (6.1, 88.6)
PhD ! Male (5.6, 81.0)
United-States ^ PhD ! CapitalLoss=0 (4.9, 87.7)
CapitalGain=0 ^ PhD ! CapitalLoss=0 (4.7, 85.7)
CapitalLoss=0 ^ PhD ! race=White (5.4, 88.2)
race=White ^ PhD ! CapitalLoss=0 (5.4, 88.2)
CapitalLoss=0 ^ PhD ! Male (5.0, 81.7)

(b) First 10 of 1674 Association Rules for Ph.D. hold-
ers

1.2 Overview

In Section 2, we present a formal de�nition of the mining problem. Section 3 discusses our search

algorithm for �nding contrast sets and Section 4 discusses how we can �lter the mined results

to present a concise summary of the di�erences between groups. We evaluate our algorithms in

Section 5 which analyzes objective measures of performance and in Section 6 which is a case study

on UCI enrollment and measures empirically how useful the discovered knowledge is to an end user.

We discuss related work in Section 7 and �nally, we conclude in Section 8.

2 Problem De�nition

Association rules typically deal with market basket data where the database D is a set of transactions

with each transaction T � I = fi1; i2; : : : ; img. Each member of I is a literal called an item, and

any set of these literals is called an itemset. An important step for most mining algorithms is to �nd

all itemsets whose support, the percentage of transactions in which the itemset occurs, is greater

than a threshold min-support.

In this paper we generalize the data model to grouped categorical data. The data is a set of

k-dimensional vectors where each component can take on a �nite number of discrete values. The

vectors are organized into n mutually exclusive groups G1; G2; : : : ; Gn, with Gi \ Gj = ; 8i 6= j.

The concept of an itemset can be extended to a contrast set for this model as follows:

De�nition 1. Let A1; A2; : : : ; Ak be a set of k variables called attributes. Each Ai can
take on values from the set fVi1; Vi2; : : : ; Vimg. Then a contrast set is a conjunction of
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attribute-value pairs de�ned on groups G1; G2; : : : ; Gn with no Ai occurring more than
once.

Example 1. sex = female ^ occupation = manager.

Similar to the de�nition of support for an itemset, we de�ne the support of a contrast set with

respect to a group G as follows:

De�nition 2. The support of a contrast set with respect to a group G is the percentage
of examples in G where the contrast set is true.

Our goal is to �nd all contrast sets whose support di�ers meaningfully across groups. Formally, we

want to �nd those contrast sets (cset) where:

9ij P (cset = True j Gi) 6= P (cset = True j Gj) (1)

max
ij
jsupport(cset; Gi)� support(cset; Gj)j � � (2)

and � is a user de�ned threshold called the minimum support di�erence. We call contrast sets where

Equation 1 is statistically valid signi�cant, and contrast sets where Equation 2 is met large. If both

requirements are met, then we call it a deviation.

The statistical signi�cance criterion ensures that the contrast set represents a true di�erence

between the groups. The second criterion measures the e�ect size and ensures that everything we

report to the user is a big enough e�ect to be important.

One question that arises is why do we use a statistical test when the null hypothesis, that

contrast sets have exactly equal probabilities across groups, is always false in the real world and

thus a large enough sample will lead to its rejection (Cohen, 1990). We use the signi�cance test

in addition to the e�ect size test for two reasons. First, we may have limited data. Clearly with

millions of data points, many statistically signi�cant �ndings will be too small to be practically

signi�cant, but what if we have only 10000 or perhaps as little as 1000 data points? Even when

data is abundant, we might have a rare group with very few observations. We need techniques that

scale across a spectrum of data set sizes. Second, the number of hypotheses can grow exponentially

with the number of variables and with multiple hypotheses we need stricter cuto�s to control the

false positive error rate. However, it is not clear at what point e�ect size will be su�cient to

eliminate statistically insigni�cant �ndings with multiple tests, thus we explicitly control for both

factors.

Once we have found all signi�cant and large contrast sets, we would like to present a subset

which are \interesting" to the user. Deciding what is interesting is an open problem in data mining.
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Clearly, any complete solution would consider the prior knowledge and the subjective viewpoint of

the user (Silberschatz & Tuzhilin, 1996). However, this is beyond the scope of our paper; thus, we

limit our system to reporting results that are surprising (in a statistical sense) given what we have

already shown the user.

3 Search for Contrast Sets

We can �nd contrast sets that meet our criteria through search. We explore the space of all possible

contrast sets and return only those sets that meet our criteria. Clearly this search space is huge

(exponential in the number of attribute-value pairs) and cannot easily be explored.

Although we cannot change the fundamental complexity of the problem, we use admissible

pruning rules in conjunction with heuristics to limit the complexity. We present STUCCO (Search

and Testing for Understandable Consistent Contrasts), and in practice it runs e�ciently and can

mine at low support di�erences without being overwhelmedwith the number of potential candidates

(Section 5). STUCCO uses a breadth-�rst search framework which incorporates several techniques

from work on e�ciently mining large itemsets. To this search framework, our contributions are:

1. joint statistical signi�cance and e�ect size testing to identify valid contrast sets

2. explicit control over search error to limit false discoveries

3. contrast set pruning rules for e�cient mining

After presenting these contributions, we discuss how our work relates to algorithms that �nd

large itemsets such as Apriori and its variants.

3.1 Framework

We organize the search for contrast sets using set-enumeration trees (Rymon, 1992; Bayardo, 1998)

to ensure that we visit every node only once or not at all if nodes can be pruned. Figure 3 shows

an example set-enumeration tree for four items (each item is an attribute-value pair). Note that

set-enumeration trees are equivalent to canonical orderings (Riddle et al., 1994). A simple rule for

creating the tree is to generate the children of a node by appending only those terms that follow

all existing terms in a given ordering.

We can search the tree in Figure 3 in any manner we desire, using for example breadth �rst,

depth �rst, or any other complete search algorithm. We use breadth-�rst search because it proceeds
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Figure 3: Example search tree for four attribute-values pairs with ordering f1,2,3,4g
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in a levelwise manner. We start searching the space of contrast sets with the most general terms

�rst, i.e. those contrast sets with a single attribute-value pair such as gender = male or major =

Arts. These sets are the easiest to understand and will have the largest support. We then progress

to more complicated sets that involve conjunctions of terms, for example, gender = male ^ major =

Arts. The levelwise nature allows us to present results in an anytime fashion.

At each level of the search, we scan the database and count the support of all nodes for each

group. We examine the counts to determine which nodes meet our criteria and which nodes should

be pruned. We then move to the next level.

During the counting phase we organize nodes into candidate groups (Bayardo, 1998; Srikant &

Agrawal, 1996). We place nodes with the same parent (i.e. all nodes with a common pre�x) in

one group. Within the group we maintain two lists of items: the head, h(g), which is the common

pre�x of all sets in the group, and the tail, t(g), which is the set of all one item extensions to the

pre�x.

Candidate groups improve the search speed for two reasons. First, the common pre�x allows

us to quickly check if an observation matches an entire set of candidates (i.e. if the pre�x doesn't

match then we do not need to check the individual sets). Second, the head and tail organization

allows us to specify all of the sets that may occur in that branch of the search tree. Every set is a

superset of h(g) and a subset of h(g)[ t(g). This allows us to bound the support for all sets in that
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section of the tree and this is essential for pruning.

We count the support of h(g)[ i;8i; i 2 t(g) and h(g)[ t(g). The �rst condition means that we

count the support of all sets within the candidate group. It also provides an upper bound on the

support in any children of a node since frequency counts can only decrease as we add additional

terms. The second condition provides a lower bound because for any sets A, B, and C with

A � B � C then the support(A) � support(B) � support(C). We use knowledge of these upper

and lower bounds for our pruning methods described in Section 3.4. Example 2 highlights the use

of candidate groups.

Example 2. Consider the sets f1,2g, f1,3g, and f1,4g in Figure 3. We can represent
these three sets with a candidate group that has as its head f1g (the common pre�x) and
as its tail f2,3,4g. During the counting phase we calculate the supports of all the three
original sets h(t) [ i = f1,2g, f1,3g, f1,4g and the support of h(g) [ t(g) = f1,2,3,4g.

Finally the pruning techniques in Section 3.4 work best when the upper and lower bounds are close

together. Thus we dynamically sort the items in the tail so that items that occur frequently are at

the end (Brin et al., 1997; Bayardo, 1998). This ensures that the lower bound of support, h(g)[t(g),

is as large as possible.

3.2 Finding Signi�cant Contrast Sets

We can check if a contrast set is signi�cant by testing the null hypothesis that contrast set support

is equal across all groups or, equivalently, contrast set support is independent of group membership.

The support counts from each group is a form of frequency data which can be analyzed in

contingency tables. We form a 2�G contingency table where the row variable represents the truth

of the contrast set, and the column variable indicates the group membership.

For example, consider the top admitted students at UCI as measured by SAT Verbal scores

(SATV > 700) and their school of admission. Table 1 shows the contingency table and the counts

from our data. If SATV and UCI School are independent variables, then we would expect the

proportion of students with high SATV scores to be roughly equal across all groups. Clearly,

the proportions are not equal and vary from a high of 12.0% for ICS to a low of 2.7% for Social

Ecology. We need to determine if the di�erences in proportions represent a true relation between

the variables, or if it can be attributed to random causes.

The standard test for independence of variables in contingency tables is the chi-square test. It
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Table 1: 2 � 8 Contingency table enumerating high SAT Verbal scores and school: Arts, Biol-
ogy, Engineering, Humanities, Information and Computer Science (ICS), Physical Science, Social
Ecology, and Social Science.

Arts Bio Eng. Human ICS PhysSci SocEc SocSci
SATV > 700 45 142 85 70 60 34 11 102
:(SATV > 700) 583 2465 1523 733 502 738 414 1703

works by computing the statistic �2:

�2 =
rX

i=1

cX
j=1

(Oij � Eij)2

Eij

(3)

where Oij is the observed frequency count for the cell in row i and column j. Eij is the expected

frequency count in cell ij given independence of the row and column variables and is calculated as

follows: Eij =
P

j Oij

P
iOij=N with N being the total number of observations. We then compare

the result to the distribution of �2 when the null hypothesis is true. If the observed frequencies

follow a multinomial distribution and the expected values are not too small, then the �2 statistic

has an approximately chi-square distribution.

To determine if the di�erences in proportions are signi�cant, we �rst pick a test � level. The

choice of � sets the maximum probability of rejecting the null hypothesis when it is true. For a

single test, � is commonly set to 0.05. We then calculate that �2 = 49:6 with 7 degrees of freedom

and has a p-value of 1.7e-8. Since the p-value is less than the 0.05 cuto�, we can infer that the null

hypothesis is likely false and that contrast set support and group membership are not independent.

3.3 Controlling Search Error

Most data mining algorithms that use a statistical criterion to accept or reject candidates do not

consider how search a�ects the overall error rate. One exception is the work by Megiddo and

Srikant (Megiddo & Srikant, 1998) where they found that in association rule mining traditional

support-con�dence �ltering did a good job of eliminating statistically insigni�cant rules. However

their study was done in the context of market basket data, not in terms of dense multivariate data

that we analyze. Other work (Silverstein et al., 1998; Liu et al., 1999a) suggests that in dense data

there may be many false discoveries.

With a single test, � sets the maximum probability of falsely rejecting the null hypothesis.

However, with multiple tests, the probability of false rejection can be highly in
ated. This is
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especially true in data mining, where often thousands, or millions, of hypotheses are tested. For

example, if the null hypothesis is always true (i.e., contrast set probability is independent of group

membership) and we made 1000 tests each at � = 0:05, we would obtain on average 50 \signi�cant"

di�erences. Falsely rejecting the null hypothesis, i.e., concluding that there is a di�erence when

none exists, is known as a Type I error or false positive.

Type I error can be controlled for a family of tests by using a more stringent � cuto� for the

individual tests. We can relate the �i levels used for each individual test to a global � (the expected

error rate) by using the Bonferroni inequality: given any set of events e1; e2; : : : ; en, the probability

of their union (e1 _ e2 _ : : : _ en) is less than or equal to the sum of the individual probabilities.

Applied to hypothesis testing, we let ei be the rejection of the ith hypothesis hi. Then, in the simple

Bonferroni method, we reject hi if pi � �i where
P

i �i � �. Usually �i = �=n, where n is the total

number of tests.

This method controls the error rate per family (PFE), which is the expected number of false

rejections (PFE � �) for any combination of true or false hypotheses and holds even if the tests

are dependent (Hochberg & Tamhane, 1987; Sha�er, 1995). Note that the familywise error rate

(FWE), the probability of making at least one error, is always less than or equal to PFE (FWE �

PFE). If all the null hypotheses are true then PFE = �.

There are two problems with applying this. First, if we are reporting results incrementally after

we mine each level, we do not know how many tests we will make in total. Thus, n is unknown.

Second, we use the same cuto� for testing a conjunction of size 1 as size 10. This is undesirable

because as �i gets smaller, we lose power and are less able to detect a di�erence if it exists. This is

an unavoidable tradeo�, as power is related to Type I error. Since lower order conjuncts are more

general, we would like more power on those tests.

The Bonferroni inequality holds as long as
P

i �i � �, so we can use di�erent �i for tests at

di�erent levels of the search tree as follows:

�l = min(
�

2l
=jClj; �l�1) (4)

where �l is the cuto� for all tests at level l, and jClj is the number of candidates at level l. This

apportions 1/2 of the total � risk to tests at level 1, 1/4 to tests at level 2, and so on. The minimum

requirement ensures that the test � levels always become more stringent and this is necessary for

�2 based pruning (next section). We use this approach of partitioning risk whenever we make a

series of tests.
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3.4 Pruning

We can prune portions of the search space when we determine that the search will only lead to

contrast sets that fail to meet our e�ect size or statistical signi�cance criteria. We also prune when

we determine that the search will lead only to uninteresting contrast sets.

3.4.1 E�ect Size Pruning

We prune nodes based on e�ect size when we can bound the maximum support di�erence between

the groups below �.

Theorem 1. Let U [i] be an upper bound and let L[j] be the lower bound of support for groups i

and j. Then the following is an upper bound on the support di�erence between any two groups.

�max = max
ij;i 6=j

U [i]� L[j] (5)

Proof. Consider groups i and j. The maximum support di�erence will occur when either the

support of i is greater than j or vice versa. Clearly if the support of i is greater than j, then

U [i]� L[j] is an upper bound on the support di�erence between the two groups (U [j]� L[i] if the

support of i is less than j). The above equation considers all possible pairs of groups and takes the

maximum, thus it is an upper bound. 2

Apriori pruning is a special case where we have only a single group and the lower bound is zero.

Thus we prune if the upper bound is below �.

3.4.2 Statistical Signi�cance Pruning

Nodes are pruned when either there are too few data points to have a valid chi-square test or the

maximum value the �2 statistic can take is too small to be signi�cant.

Validity of the chi-square test: The expected cell frequencies in the top row of the contingency

table can only decrease as we specialize the contrast set. This is important because the validity of

the chi-square test depends on approximating the distribution of the �2 statistic with the chi-square

distribution. When the test is invalid, we prune the node because we cannot make valid inferences.

The approximation is made under the assumption that the expected cell frequencies in the

contingency table are not \too small." Typically, expected values of 5 or more are considered

satisfactory (Everitt, 1992). However, a number of researchers have pointed out that this may be

overly conservative and that smaller expectations are su�cient. Lewontin and Felsenstein (Lewontin
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& Felsenstein, 1965) suggest that for 2� c tables we can use the chi-square criterion even when the

expected values are as low as 1. To be somewhat conservative, we set the limit at 3.

�2 Maximum: The �2 statistic is non-monotonic and thus cannot be used in any pruning method.

However, since the actual cell counts in the top row of the contingency table must decrease as

we specialize (the bottom row must increase), the maximum possible value of the �2 statistic in

any child can be found. We can use this to prune candidates when it is no longer possible for

specializations to meet the �2 cuto� implied by the test �l value.

Theorem 2. Let U = fu1; u2; : : : ; uGg be the upper bound on the counts in row 1 and let

L = fl1; l2; : : : ; lGg be the lower bound. Note that the counts in row 2 are automatically determined

once row 1 is speci�ed since the columns must sum to the group totals. Then the following is the

maximum value of the �2 statistic possible in any specialization.

�2
max = max

oi2fui;lig
�2(o1; o2; : : : ; oG) (6)

where �2(o1; o2; : : : ; oG) is the value of the �2 statistic for a contingency table with observations

o1; o2; : : : ; oG in row 1 (i.e. oi = O1i).

Proof. �2 is a convex function (Appendix A), therefore the maximum value must occur at an

extreme point (Bazaraa & Shetty, 1979) which is a corner of the feasible region. The above equation

takes the maximum over all 2G extreme points and thus is a maximum of the feasible region.2

We expect to compare only a small number of groups, say G < 10, so that the exponential

number of extreme points we must evaluate is small. If G is large we can use �2 bounds (Bay &

Pazzani, 1999) that can be found in linear time.

3.4.3 Interest Based Pruning

The previous pruning methods only eliminated deviations that could not meet the e�ect size or

statistical signi�cance criteria. In this section, we present pruning methods that may eliminate

contrast sets that are deviations but are clearly not interesting. Contrast sets are not interesting

when they represent no new information and this may occur when specializations of the contrast

set have identical support or when the relation between groups is �xed.

Specializations with Identical Support: We believe that specializations with the same support

as the parent are not interesting for two reasons. First, since both sets will cover the same instances

in the database, targeting the parent with an action will be the same as targeting the child. Second,

specializations with the same support often represent �ndings that are common knowledge. Consider
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the following two examples.

Example 3. Consider the contrast sets race = Latino ^ Income > �50K and race =
Latino ^ Income > �50K ^ WorkedLastYear = Yes. Because of the high prevalence of
WorkedLastYear = Yes, the support of both contrast sets will be nearly identical but
given that we know the �rst contrast set adding the additional term is not interesting.

Example 4. Consider the contrast set marital-status = husband. This contrast set will
have exactly the same support as marital-status = husband ^ sex = male barring data
errors. The addition of the sex = male term adds no information as by de�nition all
husbands are male.

We require that specializations of a contrast set be di�erent both statistically and in terms of an

e�ect size measurement. Formally, let cset' be a specialization of the contrast set. Then if either of

the following two conditions is not true, we prune the node.

9i P (cset = True j Gi) 6= P (cset' = True j Gi) (7)

max
i
jsupport(cset; Gi)� support(cset'; Gi)j � �s (8)

We test these criteria in a similar fashion as Equations 1 and 2. We use the contrast set that

represents L the lower bound in place of cset' as it is the maximally di�erent descendent. Typically,

we set �s to a very small number such as the minimum of 1% or �=2.

Fixed Relations: Often one group will have a much higher support level for a given contrast set

than all other groups and this will be true no matter what additional terms we add. In this case

we prune the node as the contrast set specializations do not add new information. For example, in

Figure 4, the support for 1998 is much higher than the other years. This higher support continues

no matter what terms we append. Formally, if m is the group with the highest support then we

prune the node under following condition:

min
i;i6=m

jL[m]� U [i]j � �f (9)

3.5 Relation to Itemset Mining

Our problem is related to �nding all large itemsets because the minimumsupport di�erence criterion

(Equation 2) implies constraints on the support levels in individual groups. For example, mining

contrast sets at a support di�erence of 10% implies that the support in at least one group must be

greater then or equal to this value.
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Figure 4: Comparing admitted UCI students over 1993-1998
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(b) Ethnicity = Decline to State ^ Admit-
Code = Freshman ^ BornInUS = Y ^ High-
SchoolType = public

Finding the large itemsets is a common step in association rule mining and most algorithms

eliminate large portions of the search space based on the following properties:

If A and B are itemsets where A � B, then

1. If A is infrequent then B must be infrequent.

2. If B is frequent then A must be frequent.

These two properties allow e�cient search for large itemsets. Property 1 is used by bottom up

algorithms (Agrawal & Srikant, 1994; Mannila & Toivonen, 1997) (Apriori and its variants) and

allows subset infrequency pruning where a candidate is eliminated if any of its subsets are eliminated.

Property 2 is used by top down algorithms (Zaki et al., 1997) and allows superset frequency pruning

where a candidate is eliminated if any superset is frequent. Algorithms such as Max-Miner (Bayardo,

1998) and Pincer-Search (Lin & Kedem, 1998) use both properties for e�cient search.

Finding group di�erences is a more di�cult task because these properties do not apply to

contrasts sets: A can be a deviation while B is not and vice versa. However, we are still able to use

A and B's support in our pruning methods as upper and lower bounds.

We also need to consider multiple groups. Although this may seem like an inherent disadvan-

tage that would make search more di�cult, it actually allows additional pruning opportunities not

possible if we were to mine the groups separately and then combine the results in a post analysis.

For example, both our statistical signi�cance and interest based pruning require knowledge of all
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group's supports to work. Without these methods, we would not be able to mine e�ciently at low

supports (Section 5.2).

E�ect size pruning can be seen as a generalization of subset infrequency pruning extended

to handle group di�erences and lower bounds. Our interest based pruning is similar to superset

frequency pruning: we look ahead in the search (to �nd a lower support bound) and we use that

knowledge to eliminatemany sets. The di�erence is that we concentrate on eliminating uninteresting

subspaces whereas superset frequency pruning eliminates non maximal sets that are large (the

pruned sets are guaranteed to be large so they do not need to be explicitly tested).

Our statistical signi�cance pruning does not have an analog in itemsetmining because association

rule programs have not incorporated statistical testing. Our pruning also di�ers from that used

in correlation rules (Silverstein et al., 1998) because of our problem formulation. Our contingency

tables are 2�G and the �2 statistic is non-monotonic whereas in correlation rules the contingency

table is n-dimensional with 2n cells where n is the number of items, and the �2 statistic is upward

closed (i.e. if a set of items has a �2 value of S, then any superset will also have a �2 value of at

least S).

4 Filtering for Summarizing Contrast Sets

Dealing with the large volume of data produced by data mining is a di�cult problem. For example,

association rule mining programs can produce thousands of results (Liu et al., 1999a) which are far

too many for a user to view. We typically discover several thousand contrast sets, thus we need to

summarize or reduce our results to present a small interesting subset.

Deciding what we should show to a user is a di�cult task because of its subjective nature.

Some past approaches have used constraints on the variables or items which appear to limit the

rules shown (Klemettinen et al., 1994; Srikant et al., 1997; Ng et al., 1998; Bayardo et al., 1999).

Another technique is to compare the discovered rules to an explicit list of rules or beliefs that the

user already knows (Liu & Hsu, 1996; Liu et al., 1997; Padmanabhan & Tuzhilin, 1998; Silberschatz

& Tuzhilin, 1996; Liu et al., 1999b) and then to show only those results that are unexpected. For

temporal groups, time series shape matching could also be used (Agrawal et al., 1995; Keogh &

Pazzani, 1998).

All of these methods could be used to �lter the discovered contrast sets. Here we present two

new methods that we have found useful. The �rst is an expectation based statistical approach

which keeps track of what has been shown to the user and only presents results that are surprising
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given the current context of results. It does not require the user to input information unlike several

of the above approaches. The second allows us to identify and select contrast sets that are linear

trends.

4.1 Statistical Surprise

We show the user the most general contrast sets �rst, those involving a single term, and then only

show more complicated conjunctions if they are surprising based on the previously shown sets. For

example, we might start by showing the contrast sets Gender = female, School = ICS, and GPA >

4. We would then move on to showing more complicated sets such as Gender = female ^ School

= ICS or School = ICS ^ GPA > 4, and �nally Gender = female ^ School = ICS ^ GPA > 4. This

bottom up approach is similar to forward selection approaches (Agresti, 1990) and to Liu, Hsu, and

Ma (1999a).

Figure 4.1 shows our algorithm for �ltering contrast sets. The function model returns the

expected value based on a log-linear model which we will describe next. The function isSurprising

returns true if the expected counts are di�erent (as in Equations 1 & 2) from the observed counts.

Figure 5: Filtering Algorithm for Finding Surprising Contrast Sets

Algorithm Filter

Input: D a queue of deviations sorted by size (smallest �rst)
Output: Ds a list of surprising deviations
Let pop(X) remove and return the head of queue X
Let model(X,Y ) return the expected value for Y given knowledge of X
Let isSurprising(X,Y ) return true if X is substantially di�erent from Y
Begin

1. Ds  fg // initialize Ds to the empty set
2. while D is not empty
3. C  pop(D) // C is our current contrast set
4. E  model(Ds,C) // E holds the expected observations for each group
5. if isSurprising(C,E)
6. Ds  Ds [ C
7. return Ds

End

Our model estimates the probability of a conjunction based on its subsets and from this we obtain

our expected frequency counts. This is a well studied problem and there are many algorithms, such

as Iterative Proportional Fitting (IPF), (Bishop et al., 1975; Everitt, 1992) which can �nd the

maximum likelihood estimates. These algorithms are equivalent to assuming a log-linear model of

16



the data (Agresti, 1990; Bishop et al., 1975; Everitt, 1992; Knoke & Burke, 1980) where \the log of

the expected frequency is an additive function of a constant plus terms for each variable and their

interactions" (Knoke & Burke, 1980). We believe that this model is accurate at identifying contrast

sets that are not interesting because they can be explained by lower order interactions.

Our frequency expectations obtained under the log-linear model is the maximum likelihood

estimate given the marginals seen. This assumes that the interaction term involving all variables is

zero although this will not be true in general. For example, in calculating the expectation of Gender

= female ^ School = ICS we ignore the interaction between gender and school and only look at the

individual subsets even though these two are not independent. We deal with this by scaling the

expected frequencies with a factor derived from all groups (Appendix B).

For computation speed, our model uses direct estimates (i.e. equations) when they exist, other-

wise we use IPF.

4.2 Detecting Linear Trends

If our group variable is ordinal as in federal census data, our task of mining contrast sets is identical

to �nding changes over time. With temporal data, linear trend detection is important because they

often represent simple relations between the variables which are easy to understand and may have

good predictive power.

In Section 3.2 we showed that we could detect signi�cant contrast sets by using the chi-square

test to check for independence of contrast set support and group membership. However this test

checks for all deviations from independence and does not measure a speci�c type of departure such

as a linear trend. Since our contingency table is 2 � G we can use regression techniques (Everitt,

1992) to �nd the portion of the �2 statistic that arises from a linear trend if the group variable is

ordinal (such as data from consecutive years).

We �t a regression equation to the categorical data by encoding the group (column) as the

independent variable (x) and the contrast set truth (row variable) as the dependent or target

variable (y). The portion of the the �2 statistic that comes from linear trend is then b2yx=V (byx)

where byx is the linear regression coe�cient of y on x, and V (byx) is its variance. The portion of �2

explained by linear regression has 1 degree of freedom.

Figure 6 shows two di�erent signi�cant deviations found from 1998 UCI admissions data.2 In

part (a) we see that a linear trend is responsible for most of the total �2 value and that we have

2The reported p values are not adjusted for multiple tests.
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an extremely low p value. The departure from regression is not signi�cant. In part (b) we see that

although the deviation is signi�cant, a linear trend is not responsible.

Figure 6: Deviations from independence and linear trends: (a) signi�cant linear trend in the per-
centage of admitted ICS students whose �rst language is not English; (b) no signi�cant linear trend
for intent to enroll of admitted Social Ecology students.
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Source of Variation d.f. �2 p
linear regression 1 54.12 1.9e-13
departure 4 2.36 0.67
total 5 56.48 6.5e-11

Source of Variation d.f. �2 p
linear regression 1 2.64 0.10
departure 4 34.98 4.69e-07
total 5 37.62 4.51e-07

(a) (b)

5 Evaluation

In this section, we evaluate STUCCO on objective measures of performance. We ask three research

questions. (1) Can we e�ciently mine contrast sets at low support di�erences (small �)? (2) Which

pruning rules are responsible for the speedups? (3) How e�ective are the �ltering rules for reducing

the number of items that need to be shown to the end user?

All experiments were performed on a Sun Ultra 5 computer with 128MB of memory. STUCCO

was implemented in C++ and compiled with gcc version 2.7.2.1. To provide a comparison, we used

C. Borgelt's implementation of Apriori, version 2.1, which was implemented in C.3 This version

of Apriori is highly optimized and uses pre�x trees which implement set-enumeration search and

can quickly count candidates in a similar manner to candidate groups. Note that Apriori does not

perform the same task as STUCCO and it serves only as a foil to help understand performance

3This program is available from http://fuzzy.cs.Uni-Magdeburg.de/�borgelt/. Version 1.8 of his program is incor-
porated in the data mining tool Clementine.
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issues. We used the following datasets which are summarized in Table 2.

� Adult. The Adult Census data contains information extracted from the 1994 Current Popu-

lation Survey. There are variables such as age, working class, education, sex, hours worked,

salary, etc.

� Mushroom. This data set describes mushrooms and their physical properties such as shape,

odor, habitat, etc. Mushroom is not a true observational data set as the examples are not

drawn from individual instances but rather are compiled from a �eld guide (Linco�, 1981). It

is a di�cult data set for most mining algorithms because there are many frequent and long

itemsets.

� UCI Admissions Data. See Section 6.

� Integrated Public Use Microdata Series (IPUMS). The IPUMS project (Ruggles & Sobek,

1997) is a large collection of federal census data which has standardized coding schemes to

make comparisons across time easy. We obtained an unweighted 1 in 100 sample of responses

from the Los Angeles { Long Beach area for the years 1970, 1980, and 1990. The household

and individual records were 
attened into a single table and we used all variables that were

available for all three years.4 When there was more than one version of a variable, we used

the most general. For occupation and industry we used the 1950 basis. Continuous variables

were discretized into roughly 5 to 10 equal sized divisions by frequency (e.g. income) or

interval width (e.g. age). Finally, we further randomly sampled the data to obtain a 1 in

1000 sample. Federal Census data is one of the most di�cult data sets to mine because of

the long average record width coupled with the high number of popular attribute-value pairs

which occur frequently in many records. These two factors combine to result in many long

and frequent itemsets.

The Adult and Mushroom datasets are available from the UCI Repository of Machine Learning

Databases (Blake & Merz, 1998). The IPUMS data is available from the UCI KDD Archive (Bay,

1999).4Note that PUMS data is based on cluster samples, i.e. samples are made of households or dwellings from which
there may be multiple individuals. Individuals from the same household are no longer independent and thus we
violate the independence assumption. We ignore this as we are using the data only as a computational test (this
violation is also ignored in (Silverstein et al., 1998; Dong & Li, 1999; Brin et al., 1997) etc.). Ruggles (Ruggles,
1995) suggests that even if the independence assumption is violated, because of strati�cation the standard errors on
PUMS data may be similar to what we would expect of a true random sample.
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Table 2: Description of Data Sets

Data Set # Features # Examples Groups

Adult 13 8619 Doctorates, Bachelors
Mushroom 22 8124 Edible, Poisonous
UCI Admissions 19 100876 Applicants 1993{1998 (6 cohorts)
IPUMS Census 60 23348 1970, 1980, 1990

5.1 Mining E�ciency

Evaluating the e�ciency of mining algorithms analytically is di�cult without imposing strong

distributional assumptions that make the analysis of limited worth. Thus we resort to experimental

studies.

We ran both STUCCO and Apriori on the evaluation data sets and Figure 7 shows the results

comparing CPU time to the minimum support di�erence. For Apriori we reported the sum of

times to mine at the given support level for each group. Note that if we were to use Apriori to

mine contrast sets this would grossly underestimate the computational e�ort because with multiple

groups we need support counts for itemsets below the support di�erence threshold. For example,

if we are mining at a support di�erence of 10% and group A has a support of 11% we still need to

mine group B as long as its support is non-zero.

STUCCO was very fast and did well on all data sets, even on Mushroom and IPUMS which are

among the most di�cult data sets for mining algorithms. STUCCO was slower than Apriori on

UCI Admissions by a factor of approximately three. This is probably because UCI Admissions has

few high support attribute-value pairs thus STUCCO could not take advantage of lower bounds:

Pruning is most e�ective when the lower and upper bounds are close. The number of candidates

examined by STUCCO on UCI Admissions was similar to Apriori, but STUCCO does more work

per candidate as it performs additional testing beyond simple size comparisons.

5.2 Pruning Strategies

In this section, we examine the e�ectiveness of the three pruning strategies on STUCCO's complex-

ity. We use a lesion study approach where we remove a single strategy and evaluate the algorithm's

performance. This gives a good measure of the relative importance of the various parts and allows

us to see the unique contribution of each pruning strategy.

We compared three methods by removing all pruning based on: (1) e�ect size, (2) statistical
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Figure 7: CPU Time versus Support Di�erence
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signi�cance, and (3) interest. We used the Adult and Mushroom data sets because we could mine

these with the entire range of support di�erences (i.e. we could mine with � = 0). Figure 8 shows

the ratio of candidates counted at di�erent support levels with respect to the number of candidates

counted using all of the pruning strategies. On the Mushroom data set it was impossible to mine

without interest based pruning with � � 20%.

The results indicate that e�ect size and statistical signi�cance pruning are complimentary. As

� ! 0%, statistical signi�cance pruning is more important. Conversely as � ! 100% e�ect size

pruning is more important. Interest based pruning is essential for di�cult data sets.

Figure 8: Lesion Studies of Pruning E�ectiveness
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5.3 Filtering Evaluation

In this section, we evaluate the �ltering algorithm in terms of the number of contrast sets shown to

the user. We realize that �ltering techniques must also be measured in terms of the quality of the

results and we address this in the next section.

Table 3 shows the number of deviations and surprising sets found by STUCCO for the four data

sets. Most deviations were not surprising and thus we were able to drastically reduce the number

of contrast sets by more than an order of magnitude.

It is not hard to see why �ltering does a good job at removing unnecessary contrast sets. Consider

a simple case with n variables all independent of each other but with di�erent support levels for each

group. All 2n combinations of the variables should be deviations (assuming that when multiplied

together the probabilities aren't exactly equal) but all combinations are uninteresting because there
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are no higher order e�ects.

Table 3: Filtering E�ectiveness

Adult UCI Admissions Mushroom IPUMS
Level Dev. Surp. Dev. Surp. Dev. Surp. Dev. Surp.

1 34 34 32 32 69 69 16 16
2 234 7 295 61 627 354 179 35
3 699 4 1111 34 1769 382 695 27
4 1031 0 2008 11 2443 133 1610 86
5 1014 1 1606 1 1003 39 1411 11
6 610 0 459 0 196 0 503 6
7 87 0 29 0 6 0 64 0
8 4 0 0 0

total 3713 46 5540 139 6113 982 4478 181

time 93.4s 29.8m 336.7s 279.1s

The performance of STUCCO is reasonable. The largest data set, UCI Admissions, took about

30 minutes and the other data sets took at most a few minutes. In the worst case, however the

running time could be very bad as during iterative estimation with IPF we potentially need to sum

over a contingency table of size 2n where n is the number of variables.

6 Case Study: UCI Admissions Data

This section presents a case study that demonstrates how STUCCO is used in practice and provides

empirical evidence that contrast sets are more useful for understanding group di�erences than other

alternatives such as classi�cation rules from C5.

At UCI, the admissions o�ce collects data on all undergraduate applicants to UCI. The second

author serves on a campuswide committee whose goal is to analyze this data to identify changes

that could be made to admissions policies that would improve the quality, quantity, and diversity

of students that enroll at UCI. Currently the admissions o�cers typically analyze the data by

manipulating spreadsheets and thus they can only form simple summaries and do not perform

detailed multivariate analyses.

We have access to 6 years of data from 1993{98 with about 17000 applicants for each year. The

data contains information on variables such as ethnicity, UCI School (e.g. Arts, Engineering, etc.),

if an o�er of admission was made, gender, home location, �rst language, GPA, SAT scores, Selection

Index Number (SIN) which is a composite score formed from GPA and SAT scores, statement of
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intent to enroll, etc. We joined the data with a zipcode database and added �elds for the distance

to UCI and to other UC schools. From this data we selected the relevant tuples that corresponded

to our groups. Numeric variables, such as SAT scores and distances were manually converted into

nominal variables at thresholds that are meaningful for the admissions o�ce.

Here, we report on an analysis of the 1997-98 enrollment data to identify di�erences between

students who chose to enroll and those who did not for, Biology, ICS, undeclared students and all

UCI students as a whole. We ran STUCCO and C5.0 Rules on the data to obtain contrast sets.

For STUCCO we used the following parameter settings: � = 1% and � = 1. For C5.0 Rules we

used the default parameter settings except we set the misclassi�cation costs to balance the di�erent

group sizes (typically only 30% of admitted students will enroll). This was necessary as without

cost balancing C5 would sometimes fail to �nd any rules.

The contrast sets can easily be converted to English paragraphs describing the di�erences in

a rule like format. With contrast sets we normally report the support for each group. However,

admissions o�cers �nd this format di�cult to understand and thus we translated the results into

yield and gain. Yield is the percentage of students that enroll; gain is the di�erence in the number

of students that would enroll if the yield was identical to the average yield. The contrast sets can be

ordered by gain to see what changes might have the largest e�ect. Rule 1 shows a sample contrast

set converted automatically to English text. Appendices C & D contain all results for STUCCO

and C5 on Biology.

Rule 1. Students who are Korean and have a SIN between 6000 and 6500 are more likely
to enroll with a 30% higher yield than average. This represents a gain of 66 students.

Table 4 shows the size and number of sets mined by C5 and STUCCO. Examining the table we see

that C5 returned far more results than STUCCO and that the individual sets tended to be larger

and more complicated. While more complex results are undesirable, by itself, it is not an indication

that one method is better than another. However when we examine individual sets, we found that

C5 su�ered from two problems that make it unsuitable for �nding group di�erences.

The �rst problem is that C5 tended to �nd many rules with a gain or loss of very few students

such as in Rule 2. For UCI, the median number of students a�ected by C5 contrast sets was only

3 whereas for STUCCO the median was 103. Of the 235 sets found by C5 for UCI, 189 a�ected

less than 10 students. The minimum number of students a�ected by a STUCCO rule was 22. Of

course, this occurs because C5.0 Rules tries to �nd one way to distinguish with high accuracy those

students that will enroll in UCI and divides the data into very small sets with high concentrations

of students that do or do not enroll.
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Table 4: Summary of Results for C5 and Stucco

UCI Biology ICS Una�liated
Size C5 Stucco C5 Stucco C5 Stucco C5 Stucco

1 29 42 13 26 22 6 19 32
2 54 34 20 12 14 0 50 15
3 58 16 17 7 3 1 32 10
4 48 9 15 1 20 1
5 33 1 3 9
6 10 1
7 2
8 1

total 235 102 69 45 39 8 130 58

Rule 2. Students who declined to state their ethnicity, are from Los Angeles County,
have a SIN between 6500 and 7000, have a parental income greater than �80000, and
live between 30 and 100 miles away from UCI are more likely to enroll with a 34% higher
yield than average. This represents a gain of 2 students.

The second problem of C5 is that it missed several important rules, even when the rules were simple

and obvious. Rule 3, the most important factor found by STUCCO, did not show up as a factor

for C5.

Rule 3. Students who live within 30 miles of UCI are more likely to enroll with a 11%
higher yield than average. This represents a gain of 432 students.

We now present an actionable rule which identi�es students that could be directly targeted. Rule

4 was found by STUCCO and suggests that UCI does an extremely poor job of recruiting bright

students who have not yet declared a major. This is probably because recruiters treated non-

declared majors as confused students who needed help rather than as students who wanted to

explore their options. Rule 4 passes the �ltering mechanism because its yield is much greater than

one might expect given the subsets (Rules 5 and 6).

Rule 4. Students who have a GPA greater than 4, and are undeclared majors are less
likely to enroll with a 15% lower yield than average. This represents a loss of 123
students.

Rule 5. Students who have a GPA greater than 4 are less likely to enroll with a 9%
lower yield than average. This represents a loss of 76 students.

Rule 6. Students who are undeclared majors are less likely to enroll with a 2% lower
yield than average. This represents a loss of 57 students.
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C5 did not �nd the contrast set in Rule 4. Due to this discovery, UCI is changing the way it

approaches recruiting undeclared students, particularly those with high GPAs.

UCI has been uncertain of the e�ect that the proximity to UCI and other UC campuses plays

in student's college choice. Students who live at home with their parents substantially reduce the

cost of higher education. It was well known that students who live close to UCI are more likely to

accept o�ers, but little was understood about how this interacts with other variables. The following

STUCCO rules provide insight into this. Rule 7 suggests that UCI competes fairly well for students

with UCLA, UCSD and UC Riverside. Rule 8 suggests that UCI does a poor job of recruiting

highly quali�ed �rst generation students who live near other UC campuses.

Rule 7. Students who live within 30 miles of UCI and live within 30 miles of another UC
school are more likely to enroll with a 10% higher yield than average. This represents a
gain of 329 students.

Rule 8. Students who have a Selection Index Number greater than 7000, are not born
in the US, live within 30 miles of another UC school are less likely to enroll with a 18%
lower yield than average. This represents a loss of 139 students.

Our results here have shown that there are problems with using C5 to perform the descriptive task

of mining interesting contrast sets and that these problems do not occur with STUCCO. This is

not surprising as C5 was primarily intended to be a classi�cation tool (and it does this job well).

7 Related Work

We restrict our discussion of related work to general change detection algorithms and to �ltering

algorithms for reducing and summarizing mining results.

7.1 Change Detection Algorithms

Concurrent with our work, Dong and Li (1999) worked on the problem of discovering emergent

patterns (EP). An EP is de�ned as an itemset X where

growthrate(X) =
supportD2

(X)

supportD1
(X)

> g (10)

and D1, D2 are two di�erent data sets and g is growth limit such as 2. Their algorithm represents

the EPs by using borders. For example, an EP could be < f1; 2; 3g; f1; 2; 3; 6; 9; 10g >. This means
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that all sets that are contained in the border (superset of f1; 2; 3g and subset of f1,2,3,6,9,10g)

would have a growth rate of at least g between the two data sets.

To calculate the EPs they �rst �nd the border of large itemsets using Max-Miner for each of the

two data sets. For example, if comparing Texas and Michigan at g > 1:2 they might enumerate all

itemsets with support greater than 25% in Texas and 30% in Michigan. They then use an operation

called border-di� to compare these sets and �nd the EPs as above.

This is an interesting and very promising approach in that it attempts to calculate all possible

EPs after �nding the large borders with Max-Miner. It is reminiscent of the highly in
uential

version space algorithm(Michell, 1977). However, for the problems we are addressing, there would

be several drawbacks with this. First, their algorithmmust mine the data multiple times for di�erent

base supports. For example, if they were trying to �nd all EPs in census data between Texas and

Michigan with g > 1:2 they would have to enumerate with Max-Miner all itemsets with support

greater 25% in Texas and 30% in Michigan, 40% Texas and 50% Michigan, etc. Second, it is not

clear if the method can be extended to handle more than two groups. Third, so far there is no

method of verifying the statistical signi�cance of discovered EPs. Consider that if an itemset occurs

once in D2 and never occurs in D1, its growth rate is considered1. Their algorithm would �nd and

report this. Finally, there is the problem of displaying the large volume of results. For example,

on the Mushroom data set they found 299811 borders, each representing about 218 sets. This is far

too many results to show to an end user.

Explora (Hoschka & Kl�osgen, 1991; Kl�osgen, 1996) searches for subgroups of cases with unusual

distributions of a target variable with respect to a parent population. For example, the target

variable could be the mean salary which is larger for the subgroups gender = male, education > 15

years, and race = white (Kl�osgen, 1993). In contrast, given high and low income groups, our goal

would be to �nd the di�erences between them which could be in gender, race, or education. Explora

controls the search complexity by using redundancy �lters to prune the search space. For example,

a redundancy rule used is if a node is true than its successor is false. In the given example, this

would manifest itself as not searching for any subgroups involving conjunctions with the term male;

i.e. the successors are sets such as gender = male ^ education > 15 years.

Chakrabarti, Sarawagi, and Dom (1998) tackle the problem of �nding surprising temporal pat-

terns in boolean market basket data: i.e. �nding itemsets whose support varies over time and cannot

be explained by changes in the support of the itemset's component subsets. They use a Minimum

Description Length approach where surprising patterns are those with long encoding costs. The

data is segmented into distinct time periods and then a model is �t to each period so that encoding
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costs can be calculated. Our work has similar goals to theirs, to �nd changes in data, but is funda-

mentally di�erent: We �nd di�erences between two or more probability distributions, whereas they

�nd changes in a single distribution as it varies through time. Thus a query such as \How does

group A di�er from B" has no meaning in their data model as di�erent groups (distributions) do

not exist. Conversely, in our model, asking for what has changed without reference to a group is

nonsensical.

Ganti, Gehrke, Ramakrishnan, and Loh (1999) work on detecting the di�erences between

datasets by examining di�erences between models induced on the data. They represent each model

with a structure component which identi�es regions in the feature space and a measure component

which summarizes the data mapped to the region (e.g. fraction of examples). They aggregate and

compare the measure components over the regions and at the end of the analysis they have a single

number which quanti�es the dissimilarity of the data sets.

7.2 Filtering Algorithms

Chakrabarti, Sarawagi, and Dom (1998) also calculate the expectation of an itemset based on all

proper marginals. Our work di�ers in how we use these expectations. Once they have the expected

supports, they use this to encode di�erences in an MDL framework. We use the expected values to

directly compare di�erences in the observed probabilities to measure the size of the e�ect and in

statistical tests to see if the expected probabilities could possibly generate the observed values.

Liu, Hsu, and Ma (1999a) summarize a rule set by only showing direction setting (DS) rules.

The direction of a rule X ! y is the sign of the correlation between X and y (the sign is 0 if

the X and y are independent). A DS rule then is a rule whose direction cannot be explained

by its subsets. For example, if we have the rules X ! y (sign -1) and Z ! y (sign -1) then if

X ^ Z ! y has a sign of 1 it is surprising. This method is very fast at pruning rules, however it

has a number of limitations. First, the combination rules are ad hoc and there is no method of

handling situations like �nding the expected sign for positive and negative combinations. Second,

the method is limited to determining expected directions but not expected counts. Thus it will

not be able to �nd combinations that have correlations that are much bigger than the individual

components if the signs are the same.

Srikant and Agrawal (1996) �lter quantitative association rules unless the con�dence and/or

support are greater than expected. For example, they would �lter the rule age(25::30)! married

unless it was signi�cantly di�erent from age(20::30) ! married. Their work applies to numerical
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ranges which are subsets of each other.

8 Conclusion

We introduced the problem of detecting di�erences across several contrasting groups as that of

�nding all contrast sets, conjunctions of attributes and values, that have meaningfully di�erent

support levels. This allows us to answer queries of the form, \How are History and Computer

Science students di�erent?" or \What has changed from 1993 through 1998?"

We combined statistical hypothesis testing with search to develop the STUCCO algorithm for

mining contrast sets. It has (1) pruning rules which allow e�cient mining at low support dif-

ferences, (2) guaranteed control over false positives, (3) linear trend detection, and (4) compact

summarization of results.
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Appendix A: �2 is convex

Theorem 3. The �2 statistic is a convex function of the observed values.

Proof: We prove that �2 is convex for 2� 2 contingency tables (the proof, although cumbersome,

generalizes easily to 2� c tables). Expanding the summations in Equation 3 we know that for 2� 2

tables

�2 =
(O11 � E11)2

E11
+
(O21 � E21)2

E21
+
(O12 �E12)2

E12
+
(O22 � E22)2

E22
(11)

Let C1 =
Pr

i=1Oi1 and C2 =
Pr

i=1Oi2 be the column sums in our contingency tables. These values

are �xed as the column sum is constant. Then because of constraints we know that

O21 = C1 �O11 (12)

O22 = C2 �O12 (13)

E21 = C1 � E11 (14)

E22 = C2 � E12 (15)

Thus leaving us with

�2 =
(O11 � E11)2

E11
+
(�O11 + E11)2

C1 � E11
+
(O12 �E12)2

E12
+
(�O12 + E12)2

C2 � E12
(16)

substituting

E11 =
C1(O11 +O12)

N
(17)

E12 =
C2(O11 +O12)

N
(18)

where N = C1 + C2, and simplifying our notation to let o1 = O11 and o2 = O12 leaves

�2 =
(o1 � (o1 + o2)C1=N)2N)

(o1 + o2)C1
+
(�o1 + (o1 + o2)C1=N))2

C1 � (o1 + o2)C1=N
+
(o2 � (o1 + o2)C2=N)2N

(o1 + o2)C2
+

(�o2 + (o1 + o2)C2=N)2

C2 � (o1 + o2)C2=N
(19)

To show that �2 is convex we must show that the Hessian (the matrix of second order partial
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derivatives) H = r2�2 is positive semi-de�nite (Bazaraa & Shetty, 1979). Thus,

H = r2�2 =

0
B@

@2�2

@o1
2

@2�2

@o1@o2

@2�2

@o2@o1

@2�2

@o2
2

1
CA (20)

where,

@2�2

@o1
2 = 2

No22
C1(o1 + o2)3

� 2
N(o2 � C2)2

C1(�N + o1 + o2)3
+ 2

No22
C2(o1 + o2)3

� 2
N(o2 � C2)2

C2(�N + o1 + o2)3
(21)

@2�2

@o1@o2
=

@2�2

@o2@o1
= �2

No1o2
C1(o1 + o2)3

+ 2
N(o2 � C2)(�C1 + o1)

C1(�N + o1 + o2)3
� 2

No1o2
C2(o1 + o2)3

+

2
N(o2 �C2)(�C1 + o1)

C2(�N + o1 + o2)3
(22)

@2�2

@o2
2 = 2

No21
C1(o1 + o2)3

� 2
(�C1 + o1)

2N

C1(�N + o1 + o2)3
+ 2

No21
C2(o1 + o2)3

� 2
(�C1 + o1)

2N

C2(�N + o1 + o2)3
(23)

Recall that H is positive semi-de�nite if xTHx � 0 for all x. Expanding and factoring xTHx gives

xTHx = 2
N(x1o2 � x2o1)2

C1(o1 + o2)3
+ 2

N(x1(o2 �C2)� x2(o1 � C1))2

C1(N � o1 � o2)3
+ 2

N(x1o2 � x2o1)2

C2(o1 + o2)3
+

2
N(x1(o2 � C2)� x2(o1 � C1))2

C2(N � o1 � o2)3
(24)

Terms 1 and 3 are always positive. Terms 2 and 4 are also always positive as N� o1� o2 � 0 (recall

that N = C1 + C2 and that C1 � o1 and C2 � o2). Thus H is positive semi-de�nite and therefore

�2 is convex.2

Appendix B: Estimating the Scale Factor

We estimate the scale factor (�) used in Section 4.1 with maximum likelihood under a binomial

model.

Let ni be the total number of observations from group i and let oi be the number of observations

meeting the contrast set criteria from group i. Let �i be the expected probability for group i from

our initial log-linear model (for convenience we treat this as a �xed value). Then the probability of
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obtaining the observed counts as a function of � is:

P (�) =
GY
i=1

0
B@

ni

oi

1
CA (��i)oi(1 � ��i)

ni�oi (25)

Taking logarithms to get the log-likelihood:

l(�) = log P (�) =
GX
i=1

log

0
B@

ni

oi

1
CA + oi log(��i) + (ni � oi) log(1� ��i) (26)

Taking partial derivatives with respect to �

@l(�)

@�
=

GX
i=1

oi
�
�
�i(ni � oi)

1 � ��i
(27)

For two groups, we solve for the maximum (@l(�)
@�

= 0) exactly by using the quadratic formula. For

more than two groups, exact solution becomes cumbersome and thus we use an iterative solver.

Appendix C: STUCCO Results for Biology 1997-98

This appendix contains the rules found by STUCCO which di�erentiate the 1997-98 Biology stu-
dents who chose to, or not to enroll at UCI. There were 700 students who enrolled and 1954 who
did not resulting in an average yield of 26.4%.

Positive Yield Rules

1. Students who live within 30 miles of UCI are more likely to enroll with a 13% higher yield than average. This
represents a gain of 125 students.

2. Students who scored less than 500 on their SAT Verbal are more likely to enroll with a 18% higher yield than
average. This represents a gain of 104 students.

3. Students who have a SIN between 6000 and 6500 are more likely to enroll with a 16% higher yield than average.
This represents a gain of 99 students.

4. Students who scored between 500 and 600 on their SAT Math are more likely to enroll with a 11% higher yield
than average. This represents a gain of 86 students.

5. Students who are from Orange County are more likely to enroll with a 17% higher yield than average. This
represents a gain of 85 students.

6. Students who are from Orange County and live within 30 miles of UCI are more likely to enroll with a 17%
higher yield than average. This represents a gain of 82 students.

7. Students who have a GPA between 3.5 and 4 are more likely to enroll with a 5% higher yield than average. This
represents a gain of 62 students.

8. Students who have a GPA between 2.75 and 3.5 are more likely to enroll with a 23% higher yield than average.
This represents a gain of 62 students.
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9. Students who have a SIN between 6000 and 6500 and scored between 500 and 600 on their SAT Math are more
likely to enroll with a 19% higher yield than average. This represents a gain of 61 students.

10. Students who left the ethnicity blank are more likely to enroll with a 18% higher yield than average. This
represents a gain of 54 students.

11. Students who scored less than 500 on their SAT Verbal and have a SIN between 6000 and 6500 are more likely
to enroll with a 20% higher yield than average. This represents a gain of 53 students.

12. Students who have a SIN between 5000 and 6000 are more likely to enroll with a 23% higher yield than average.
This represents a gain of 52 students.

13. Students who are not born in the US are more likely to enroll with a 5% higher yield than average. This
represents a gain of 47 students.

14. Students who scored less than 500 on their SAT Math are more likely to enroll with a 17% higher yield than
average. This represents a gain of 42 students.

15. Students who scored less than 500 on their SAT Verbal, are not native English speakers, and are not born in
the US are more likely to enroll with a 15% higher yield than average. This represents a gain of 34 students.

16. Students who scored less than 500 on their SAT Math and scored less than 500 on their SAT Verbal are more
likely to enroll with a 20% higher yield than average. This represents a gain of 31 students.

17. Students who live between 30 and 100 miles away from another UC school and live within 30 miles of UCI are
more likely to enroll with a 26% higher yield than average. This represents a gain of 31 students.

18. Students who have a SIN between 5000 and 6000, scored less than 500 on their SAT Verbal, and live within 30
miles of another UC school are more likely to enroll with a 28% higher yield than average. This represents a
gain of 30 students.

19. Students who have a SIN between 5000 and 6000 and have a GPA between 2.75 and 3.5 are more likely to enroll
with a 27% higher yield than average. This represents a gain of 30 students.

20. Students who have a SIN between 5000 and 6000 and scored less than 500 on their SAT Math are more likely
to enroll with a 26% higher yield than average. This represents a gain of 26 students.

21. Students who have a GPA between 2.75 and 3.5 and have a SIN between 6000 and 6500 are more likely to enroll
with a 22% higher yield than average. This represents a gain of 26 students.

22. Students who are Filipino are more likely to enroll with a 8% higher yield than average. This represents a gain
of 22 students.

23. Students who scored less than 500 on their SAT Verbal, scored between 500 and 600 on their SAT Math, and
have a parental income of less than �35000 are more likely to enroll with a 17% higher yield than average. This
represents a gain of 22 students.

24. Students who scored between 650 and 700 on their SAT Math, have a SIN between 6500 and 7000, and live
within 30 miles of UCI are more likely to enroll with a 26% higher yield than average. This represents a gain
of 18 students.

25. Students who have a SIN between 5000 and 6000, have a GPA between 2.75 and 3.5, and scored less than 500
on their SAT Verbal are more likely to enroll with a 26% higher yield than average. This represents a gain of
17 students.

26. Students who scored between 650 and 700 on their SAT Math, are from Orange County, and have a SIN between
6500 and 7000 are more likely to enroll with a 38% higher yield than average. This represents a gain of 16
students.

Negative Yield Rules

1. Students who have a SIN greater than 7000 are less likely to enroll with a 16% lower yield than average. This
represents a loss of 142 students.

2. Students who have a GPA greater than 4 are less likely to enroll with a 11% lower yield than average. This
represents a loss of 124 students.

3. Students who have a SIN greater than 7000 and have a GPA greater than 4 are less likely to enroll with a 15%
lower yield than average. This represents a loss of 103 students.

4. Students who live more than 100 miles from UCI are less likely to enroll with a 12% lower yield than average.
This represents a loss of 80 students.
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5. Students who scored greater than 700 on their SAT Math and have a SIN greater than 7000 are less likely to
enroll with a 15% lower yield than average. This represents a loss of 55 students.

6. Students who scored between 600 and 650 on their SAT Verbal are less likely to enroll with a 11% lower yield
than average. This represents a loss of 55 students.

7. Students who scored greater than 700 on their SAT Math are less likely to enroll with a 12% lower yield than
average. This represents a loss of 53 students.

8. Students who scored between 650 and 700 on their SAT Math are less likely to enroll with a 8% lower yield
than average. This represents a loss of 49 students.

9. Students who are born in the US are less likely to enroll with a 3% lower yield than average. This represents a
loss of 48 students.

10. Students who scored between 650 and 700 on their SAT Verbal are less likely to enroll with a 14% lower yield
than average. This represents a loss of 46 students.

11. Students who live between 30 and 100 miles away from UCI are less likely to enroll with a 5% lower yield than
average. This represents a loss of 44 students.

12. Students who scored between 650 and 700 on their SAT Verbal and have a SIN greater than 7000 are less likely
to enroll with a 16% lower yield than average. This represents a loss of 40 students.

13. Students who have a parental income greater than �80000 are less likely to enroll with a 6% lower yield than
average. This represents a loss of 36 students.

14. Students who have a SIN greater than 7000, are not born in the US, and are from Los Angeles County are less
likely to enroll with a 24% lower yield than average. This represents a loss of 32 students.

15. Students who are Chinese are less likely to enroll with a 7% lower yield than average. This represents a loss of
30 students.

16. Students who are from Santa Clara County are less likely to enroll with a 19% lower yield than average. This
represents a loss of 22 students.

17. Students who scored greater than 700 on their SAT Verbal are less likely to enroll with a 12% lower yield than
average. This represents a loss of 21 students.

18. Students who scored greater than 700 on their SAT Verbal and have a SIN greater than 7000 are less likely to
enroll with a 13% lower yield than average. This represents a loss of 21 students.

19. Students who are from San Diego County are less likely to enroll with a 11% lower yield than average. This
represents a loss of 20 students.

Appendix D: C5 Results for Biology 1997-98

This appendix contains the rules found by C5 which di�erentiate the 1997-98 Biology students who
chose to, or not to enroll at UCI. Rules which a�ected 5 or fewer students are not shown for space
reasons.

Positive Yield Rules

1. Students who attended a public high school and have a SIN between 6000 and 6500 are more likely to enroll
with a 19% higher yield than average. This represents a gain of 94 students.

2. Students who have a SIN between 6500 and 7000 and live within 30 miles of UCI are more likely to enroll with
a 19% higher yield than average. This represents a gain of 59 students.

3. Students who have a SIN between 5000 and 6000 are more likely to enroll with a 23% higher yield than average.
This represents a gain of 52 students.

4. Students who are from Los Angeles County and have a SIN between 6000 and 6500 are more likely to enroll
with a 18% higher yield than average. This represents a gain of 46 students.

5. Students who are not born in the US, have a SIN between 6500 and 7000, and live within 30 miles of UCI are
more likely to enroll with a 28% higher yield than average. This represents a gain of 42 students.
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6. Students who are from Orange County, and have a SIN between 6000 and 6500 are more likely to enroll with a
43% higher yield than average. This represents a gain of 42 students.

7. Students who are male, are Filipino, and have a SIN between 6000 and 6500 are more likely to enroll with a
40% higher yield than average. This represents a gain of 11 students.

8. Students who are from Los Angeles County, have a SIN between 6500 and 7000, and have a parental income
between �35000 and �55000 are more likely to enroll with a 8% higher yield than average. This represents a
gain of 8 students.

9. Students who left the ethnicity blank, are born in the US, have a SIN between 6500 and 7000, and live within
30 miles of UCI are more likely to enroll with a 49% higher yield than average. This represents a gain of 8
students.

10. Students who are Chicano, are from Los Angeles County, are born in the US, and live within 30 miles of UCI
are more likely to enroll with a 14% higher yield than average. This represents a gain of 7 students.

11. Students who stated their ethnicity as \other", have a SIN between 6500 and 7000, and live within 30 miles of
UCI are more likely to enroll with a 55% higher yield than average. This represents a gain of 6 students.

An additional 16 rules a�ect 5 or fewer students.

Negative Yield Rules

1. Students who have a SIN greater than 7000 are less likely to enroll with a 16% lower yield than average. This
represents a loss of 142 students.

2. Students who have a GPA greater than 4 are less likely to enroll with a 11% lower yield than average. This
represents a loss of 124 students.

3. Students who have a SIN between 6500 and 7000 and live more than 100 miles from UCI are less likely to enroll
with a 18% lower yield than average. This represents a loss of 47 students.

4. Students who have a GPA between 3.5 and 4 and scored between 650 and 700 on their SAT Verbal are less
likely to enroll with a 15% lower yield than average. This represents a loss of 17 students.

5. Students who have a SIN between 6500 and 7000, have a parental income of less than �35000, and live between
30 and 100 miles away from UCI are less likely to enroll with a 16% lower yield than average. This represents
a loss of 16 students.

6. Students who are from San Diego County and have a SIN between 6500 and 7000 are less likely to enroll with
a 20% lower yield than average. This represents a loss of 13 students.

7. Students who are from Santa Clara County, and scored between 650 and 700 on their SAT Math are less likely
to enroll with a 26% lower yield than average. This represents a loss of 10 students.

8. Students who are from Alameda County, and have a GPA between 3.5 and 4 are less likely to enroll with a 24%
lower yield than average. This represents a loss of 9 students.

9. Students who are from Sacramento County are less likely to enroll with a 20% lower yield than average. This
represents a loss of 7 students.

10. Students who are East Indian or Pakistani, and are from Los Angeles County are less likely to enroll with a
11% lower yield than average. This represents a loss of 6 students.

11. Students who are from San Francisco County are less likely to enroll with a 26% lower yield than average. This
represents a loss of 6 students.

12. Students who are Caucasian, are from San Diego County, and attended a public high school are less likely to
enroll with a 18% lower yield than average. This represents a loss of 6 students.

13. Students who are from San Mateo County are less likely to enroll with a 12% lower yield than average. This
represents a loss of 6 students.

14. Students who are African American, are from Los Angeles County, and have a SIN between 6000 and 6500 are
less likely to enroll with a 26% lower yield than average. This represents a loss of 6 students.

An additional 24 rules a�ect 5 or fewer students.
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