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Abstract. Given a complete and cocomplete symmetric monoidal closed
category V and a symmetric monoidal V -category C with cotensors and
a strong V -monad T on C, we investigate axioms under which an ObC-
indexed family of operations of the form αx : (Tx)v

−→ (Tx)w provides
semantics for algebraic operations, which may be used to extend the
usual monadic semantics of the computational λ-calculus uniformly. We
recall a definition for which we have elsewhere given adequacy results,
and we show that an enrichment of it is equivalent to a range of other
possible natural definitions of algebraic operation. We outline examples
and non-examples and we show that our definition also enriches one for
call-by-name languages with effects.

1 Introduction

Eugenio Moggi, in [8, 10], introduced the idea of giving a unified category theo-
retic semantics for computational effects such as nondeterminism, probabilistic
nondeterminism, side-effects, input/output, and exceptions, by modelling each
of them uniformly in the Kleisli category of an appropriate strong monad T

on a base category C with finite products. He supported that construction by
developing the computational λ-calculus or λc-calculus, for which it provides a
sound and complete class of models. The computational λ-calculus is essentially
the same as the simply typed λ-calculus except for making a careful systematic
distinction between computations and values. However, it does not contain op-
erations, and operations are essential to any programming language. So here,
in beginning to address that issue, we provide a unified semantics for algebraic
operations, supported by equivalence theorems to indicate definitiveness of the
axioms.

We distinguish between algebraic operations and arbitrary operations. The
former are, in a sense we shall make precise, a natural generalisation, from Set

to an arbitrary symmetric monoidal V -category C with cotensors, of the usual
operations of universal algebra, now taking T to be a strong V -monad on C.
The key point is that the operations

αx : (Tx)v −→ (Tx)w

(where (−)v denotes cotensor with an object v of V ) are parametrically natural
in the Kleisli V -category CT . We could equally formulate this in terms of an
⋆ This work has been done with the support of EPSRC grant GR/M56333.



enriched version of closed Freyd-categories in the spirit of [1]. A preliminary
version appears as [15]. The leading class of examples has T being generated
by the operations subject to accompanying equations. Examples of such op-
erations are nondeterministic choice operations, probabilistic nondeterministic
choice operations, lookup and update operations for side-effects, read and write
operations for interactive input/output, and operations for raising exceptions. A
non-example is given by an operation for handling exceptions.

In a companion paper [14], we gave an unenriched version of the above def-
inition together with a syntactic counterpart in terms of the computational λ-
calculus, and proved adequacy results. But such results leave some scope for a
precise choice of appropriate semantic axioms. Enrichment allows us to capture
examples such as local state [11], where V is the category ω − Cpo of ω-cpo’s,
i.e, the category of posets with sups of ω-chains, and C is the ω −Cpo-category
[W, ω − Cpo], where W is a category of worlds. So, in an enriched setting, we
prove a range of equivalence results, which we believe provide strong evidence for
the above choice of axioms. Our most interesting result is essentially about the
relationship between V -monads and Lawvere V -theories for suitable V [16]: the
result, in a more general setting than usual, characterises algebraic operations
as generic effects.

Moggi previously gave a semantic formulation of a notion of operation in [9],
with an analysis based on his computational metalanguage, but he only required
naturality of the operations in C, and we know of no way to provide operational
semantics in such generality. Our various characterisation results do not seem
to extend to such generality either. He, together with Benton and Hughes [2],
also remarked on the construction that, to a generic effect, yields an operation.
Evident further work is to consider how other operations such as those for han-
dling exceptions should be modelled. That might involve going beyond monads,
as Moggi has suggested to us: one possibility involves the use of distributive laws
along the lines of [18]; another involves dyads [17]; possibly, some combination
may be appropriate.

The paper is organised as follows. In Section 2, we recall and enrich the def-
inition of algebraic operation given in [14] and we exhibit some simple reformu-
lations of it. In Section 3, we give direct equivalent versions of these statements
under the assumption that C is V -closed. In Section 4, we give a more substan-
tial reformulation of the notion in terms of operations on homs, both when C

is closed and more generally when C is not closed. In Section 5, we characterise
algebraic operations as generic effects. Finally, in Section 6, we characterise al-
gebraic operations in terms of operations on the V -category T -Alg, as this gives
an indication of how to incorporate call-by-name languages with computational
effects into the picture. And we give conclusions and an outline of possible future
directions in Section 7.



2 Algebraic operations and simple equivalents

In this section, we give an enriched version of the definition of algebraic operation
as we made it in [14]. In that paper, we gave the definition and a syntactic
counterpart in terms of the computational λ-calculus, and we proved adequacy
results for the latter in terms of the former. Those results did not isolate definitive
axioms for the notion of algebraic operation. So in this section, we start with a
few straightforward equivalence results on which we shall build later.

We assume that V is a complete and cocomplete symmetric monoidal closed
category: those are the conditions on V required for the preponderance of results
of Kelly’s definitive book [6] on enriched category theory. Implicitly using a larger
universe, the category V -CAT of locally small V -categories has a symmetric
monoidal structure, with A

⊗
B having object set ObA × ObB, with

(A
⊗

B)((a, b), (a′, b′)) = A(a, a′) ◦ B(b, b′)

where ◦ is the monoidal structure of V , with the evident composition. Using this
tensor product on V -CAT , one can routinely define the notion of a symmetric

monoidal V -category: it consists of a V -category C together with a V -functor

⊗ : C
⊗

C −→ C

etcetera.
A monoidal V -category C is closed if for every object x of C, the V -functor

− ⊗ x : C −→ C has a right V -adjoint. Note that if C is a monoidal V -
category, then the underlying ordinary category C0 of C is a monoidal category,
similarly for symmetry and closedness. This is ultimately because the functor
(−)o : V -CAT −→ CAT is monoidal. The notion of strong monad generalises
readily from ordinary categories to monoidal V -categories: one asks for the
strength to be V -natural. The notion of Kleisli exponential extends routinely
too.

We henceforth assume C is a symmetric monoidal V -category with cotensors,
and < T, η, µ, st > is a strong V -monad on C with Kleisli V -exponentials. It
is only for simplicity of exposition that we assume that C has all cotensors:
typically, we only need finite cotensors, but occasionally, for instance in modelling
state, we need more (see Section 5). To make such a size condition precise requires
a corresponding size condition on V , the simplest being that V be locally finitely
presentable: we do not want to clutter the paper with details, which may be
found, for example, in [16]. We do not take C to be V -closed in general: we shall
need to assume it for some later results, but not in general.

Given V and C as we have assumed them, we define parametrised lifting
(−)† by

C(y ⊗ x, T z)
T- C(T (y ⊗ x), T 2z)

C(st, µz)- C(y ⊗ Tx, T z)

This operation can be further extended by parametrisation in V . There is no
danger of confusion, so we use the same notation (−)† for the composite, for any



v in V ,

C(y ⊗ x, T z)
(−)†- C(y ⊗ Tx, T z)

(−)v

- C((y ⊗ Tx)v, (Tz)v) - C(y ⊗ (Tx)v, (Tz)v)

where the unlabelled map is given by composition with the comparison map
determined by the universal property of cotensors.

Definition 1. An algebraic operation is an ObC-indexed family of maps

αx : (Tx)v −→ (Tx)w

such that the diagram

C(y ⊗ x, T z)
(−)† - C(y ⊗ (Tx)v, (Tz)v)

C(y ⊗ (Tx)w, (Tz)w)

(−)†

?

C(y ⊗ αx, (Tz)w)
- C(y ⊗ (Tx)v, (Tz)w)

C(y ⊗ (Tx)v, αz)

?

commutes.

If V = Set, the definition of algebraic operation requires v and w to be sets,
typically finite ones n and m. To give the data for an algebraic operation is
equivalent to giving m ObC-indexed families of maps

αx : (Tx)n −→ Tx

and the condition is the assertion that for each of these ObC-indexed families,
for every map f : y ⊗ x −→ Tz in C, the diagram

y ⊗ (Tx)n 〈f † · (y ⊗ πi)〉
n
i=1- (Tz)n

y ⊗ Tx

y ⊗ αx

?

f †
- Tz

αz

?

commutes.
For some examples of algebraic operations where C = V = Set, let T be

the nonempty finite power-set monad with the binary choice operation [12, 1];
alternatively, let T be the monad for probabilistic nondeterminism with a prob-
abilistic choice operation [4, 5]; or take T to be the monad for printing with
printing operations [13]. Observe the non-commutativity in the latter example.
One can, of course, generalise from Set to categories such as that of ω − Cpo,
for instance considering the various power-domains together with binary choice



operators. One can also consider combinations of these, for instance to model
internal and external choice operations. Several of these examples are treated in
detail in [14].

To model local state, let V = ω − Cpo, with C an ω − Cpo-category of the
form [W, ω − Cpo], where W is a category of worlds. We study the examples of
state and local state in more detail in Section 5.

There are several equivalent formulations of the coherence condition of the
definition of algebraic operation. Decomposing it in a maximal way, we have

Proposition 1. An ObC-indexed family of maps

αx : (Tx)v −→ (Tx)w

is an algebraic operation if and only if

1. α is natural in C

2. α respects st in the sense that

y ⊗ (Tx)v - (y ⊗ Tx)v stv- (T (y ⊗ x))v

y ⊗ (Tx)w

y ⊗ αx

?
- (y ⊗ Tx)w

stw
- (T (y ⊗ x))w

αy⊗x

?

commutes, where the unlabelled maps are comparison maps determined by

the universal property of cotensors

3. α respects µ in the sense that

(T 2x)v µv
x- (Tx)v

(T 2x)w

αTx

?

µw
x

- (Tx)w

αx

?

commutes.

Proof. It is immediately clear from our formulation of the definition and the
proposition that the conditions of the proposition imply the coherence require-
ment of the definition. For the converse, to prove V -naturality in C, put y = I,
the unit of the monoidal structure of C, use composition with ηz applied to
C(x, z), and apply the coherence condition of the definition. For coherence with
respect to st, take f : y ⊗ x −→ Tz to be ηy⊗x. And for coherence with respect
to µ, put y = I and take f to be idTx.



There are other interesting decompositions of the coherence condition of the
definition too. In the above, we have taken T to be an endo-V -functor on C.
But one often also writes T for the right V -adjoint to the canonical V -functor
J : C −→ CT as the behaviour of the right adjoint on objects is given precisely
by the behaviour of T on objects. So with this overloading of notation, we have
V -functors (T−)v : CT −→ C and (T−)w : CT −→ C, we can speak of V -natural
transformations between them, and we have the following proposition.

Proposition 2. An ObC-indexed family of maps

αx : (Tx)v −→ (Tx)w

is an algebraic operation if and only if α is V -natural in CT and α respects st.

In another direction, as we shall investigate further below, it is sometimes
convenient to separate the µ part of the coherence condition from the rest of it.
We can do that with the following somewhat technical result.

Proposition 3. An ObC-indexed family

αx : (Tx)v −→ (Tx)w

forms an algebraic operation if and only if α respects µ and

C(y ⊗ x, z)
(−)∗ - C(y ⊗ (Tx)v, (Tz)v)

C(y ⊗ (Tx)w, (Tz)w)

(−)∗

?

C(y ⊗ αx, (Tz)w)
- C(y ⊗ (Tx)v, (Tz)w)

C(y ⊗ (Tx)v, αz)

?

commutes, where (−)∗ is defined, parametrically in V , by the composition of

T : C(y ⊗ x, z) −→ C(T (y ⊗ x), T z) with the composite

C(T (y ⊗ x), T z)
C(st, T z)- C(y ⊗ Tx, T z)

(−)v

- C((y ⊗ Tx)v, (Tz)v) - C(y ⊗ (Tx)v, (Tz)v)

3 Equivalent formulations if C is V -closed

For our more interesting results, we first assume C is V -closed, explain the
results in those terms, and later drop the closedness condition and explain how
to reformulate the results without essential change. So for the results in this
section, we shall assume C is V -closed.

Let the V -closed structure of C be denoted by [−,−]. Given a V -functor
H : C −→ C, an enrichment of H is a C-functor K : C −→ C such that
H is the underlying V -functor of K, i.e., H and K agree on objects and the
monoidal V -functor C(I,−) : C −→ V sends [Kx, Ky] to C(Hx, Hy), respecting



composition. Enrichment of a V -natural transformation does not alter the data
but requires the stronger property of a commutativity in C rather than one in
V . With these definitions, one can speak of the enrichment of a V -monad T to
a C-monad.

Given a V -monad < T, η, µ > on C, to give a V -strength for T is equivalent
to giving an enrichment of T in C: given a strength, one has an enrichment

Tx,y : [x, y] −→ [Tx, T y]

given by the transpose of

[x, y] ⊗ Tx
st- T ([x, y] ⊗ x)

Tev- Ty

and given an enrichment of T , one has a V -strength given by the transpose of

x - [y, x ⊗ y]
Ty,x⊗y- [Ty, T (x⊗ y)]

It is routine to verify that the axioms for a V -strength are equivalent to the
axioms for an enrichment. So, given a V -strong V -monad < T, η, µ, st > on C,
the monad T is enriched in C, and so is the V -functor (−)v : C −→ C.

The V -category CT also canonically acquires an enrichment in C, i.e, the
homobject CT (x, y) of CT in V lifts to a homobject in C: the object [x, T y] of
C acts as a homobject, applying the V -functor C(I,−) : C −→ V to it giving
the V -homobject CT (x, y); composition

CT (y, z) ◦ CT (x, y) −→ CT (x, z)

in V lifts to a map in C

[y, T z]⊗ [x, T y] −→ [x, T z]

determined by taking a transpose and applying evaluation maps twice and each
of the V -strength and the multiplication once; and identities and the axioms for
a V -category lift too.

The canonical V -functor J : C −→ CT becomes a C-enriched functor with a
C-enriched right adjoint. The main advantage of the closedness condition for us
is that it allows us to dispense with the parametrisation of the V -naturality, or
equivalently with the coherence with respect to the V -strength, as follows.

Proposition 4. If C is V -closed, an ObC-indexed family

αx : (Tx)v −→ (Tx)w

forms an algebraic operation if and only if

[x, T z]
(−)v · [Tx, µz] · Tx,Tz- [(Tx)v, (Tz)v]

[(Tx)w, (Tz)w]

(−)w · [Tx, µz] · Tx,Tz

?

[αx, (Tz)w]
- [(Tx)v, (Tz)w]

[(Tx)v, αz]

?



commutes.

The left-hand vertical map in the diagram here is exactly the behaviour of
the C-enriched functor (T−)w : CT −→ C on homs, and, correspondingly, the
top horizontal map is exactly the behaviour of the C-enriched functor (T−)v :
CT −→ C on homs. So the coherence condition in the proposition is precisely the
statement that α forms a C-enriched natural transformation from the C-enriched
functor (T−)v : CT −→ C to the C-enriched functor (T−)w : CT −→ C.

Proof. Given an object y of C, applying the V -functor C(y,−) : C −→ V to the
coherence condition here yields the coherence condition of the definition. The
converse holds by the (ordinary) Yoneda lemma.

The same argument can be used to give a further characterisation of the
notion of algebraic operation if C is V -closed by modifying Proposition 3. This
yields

Proposition 5. If C is V -closed, an ObC-indexed family

αx : (Tx)v −→ (Tx)w

forms an algebraic operation if and only if α respects µ and

[x, z]
(−)v · Tx,z- [(Tx)v, (Tz)v]

[(Tx)w, (Tz)w]

(−)w · Tx,z

?

[αx, (Tz)w]
- [(Tx)v, (Tz)w]

[(Tx)v, αz ]

?

commutes.

This proposition says that if C is V -closed, an algebraic operation is exactly a
C-enriched natural transformation from the C-enriched functor (T−)v : C −→ C

to the C-enriched functor (T−)w : C −→ C that is coherent with respect to µ.

4 Algebraic operations as operations on homs

In our various formulations of the notion of algebraic operation so far, we have
always had an ObC-indexed family

αx : (Tx)v −→ (Tx)w

and considered equivalent conditions on it under which it might be called an
algebraic operation. In computing, this amounts to considering an operator on
expressions. But there is another approach in which homs of the V -category
CT may be seen as primitive, regarding them as sets or ω-cpo’s or the like of



programs. This was the underlying idea of the reformulation [1] of the semantics
for finite nondeterminism of [12]. So we should like to reformulate the notion of
algebraic operation in these terms. Proposition 4 allows us to do that. In order to
explain the reason for the coherence conditions, we shall start by expressing the
result assuming C is V -closed; after which we shall drop the closedness assump-
tion and see how the result can be re-expressed using parametrised naturality.

We first need to explain an enriched version of the Yoneda lemma as in [6].
If D is a small C-enriched category, then Dop may also be seen as a C-enriched
category. We will not assume C is complete. However, assuming for the moment
that it was, we would have a C-enriched functor category [Dop, C] and a C-
enriched Yoneda embedding

YD : D −→ [Dop, C]

The C-enriched Yoneda embedding YD would be a C-enriched functor and it
would be fully faithful in the strong sense that the map

D(x, y) −→ [Dop, C](D(−, x), D(−, y))

would be an isomorphism in the category C: see [6] for all the details. It fol-
lows by applying the V -functor C(I,−) : C −→ V that this would induce an
isomorphism from the homobject of V underlying D(x, y) to the object of V

underlying the homobject from the C-enriched functor D(−, x) : Dop −→ C

to the C-enriched functor D(−, y) : Dop −→ C: if V = Set, the former object
is the set of maps from x to y, and the latter is the set of C-enriched natural
transformations from D(−, x) to D(−, y).

This is the result we need, except that, as we wrote, we do not want to assume
that C is complete, and the C-enriched categories of interest to us are of the form
CT , so in general are not small. These are not major problems although they
go a little beyond the scope of the standard formulation of enriched category
theory in [6]: one can embed C into a larger universe C′ just as one can embed
Set into a larger universe Set′ when necessary, and the required mathematics
for the enriched analysis appears in [6]. We still have what can reasonably be
called a Yoneda embedding of D into [Dop, C], with both categories regarded as
C′-enriched rather than C-enriched, and it is still fully faithful as a C′-enriched
functor. However, we can formulate our result even without reference to C′ by
stating a restricted form of the enriched Yoneda lemma: letting FunC(Dop, C)
denote the V ′-category (for a suitable extension V ′ of V ) of C-enriched functors
from Dop to C, the underlying V -functor

D −→ FunC(Dop, C)

of the Yoneda embedding is fully faithful.
We use this latter statement both here and in the following section. Now for

our main result of this section under the assumption that C is V -closed.

Theorem 1. If C is V -closed, to give an algebraic operation is equivalent to

giving an ObCop × ObC family of maps

ay,x : [y, Tx]v −→ [y, Tx]w



that is C-natural in y as an object of Cop and C-natural in x as an object of

CT , i.e., such that

[y, Tx]v ⊗ [y′, y]
∼=- [y, (Tx)v] ⊗ [y′, y]

comp- [y′, Tx]v

[y, Tx]w ⊗ [y′, y]

ay,x ⊗ [y′, y]

?

∼=
- [y, (Tx)w] ⊗ [y′, y]

comp
- [y′, Tx]w

ay′,x

?

and

[x, T z]⊗ [y, Tx]v - ([x, T z]⊗ [y, Tx])v
compv

K- [y, T z]v

[x, T z]⊗ [y, Tx]w

[x, T z]⊗ ay,x

?
- ([x, T z]⊗ [y, Tx])w

compw
K

- [y, T z]w

ay,z

?

commute, where comp is the C-enriched composition of C, the unlabelled isomor-

phisms of the first diagram are determined by the fact that [y,−] : C −→ C is a

right adjoint, so preserves cotensors, compK is C-enriched Kleisli composition,

and the unlabelled maps of the second diagram are determined by the universal

property of cotensors.

Proof. It follows from our C-enriched version of the Yoneda lemma that to give
the data together with the first axiom of the theorem is equivalent to giving an
ObC-indexed family

α : (Tx)v −→ (Tx)w

By a further application of our C-enriched version of the Yoneda lemma, it
follows that the second condition of the theorem is equivalent to the coherence
condition of Proposition 4.

As mentioned earlier, we can still state essentially this result even without
the condition that C be closed. There are two reasons for this. First, for the
paper, we have assumed the existence of Kleisli exponentials, as are essential in
order to model λ-terms. But most of the examples of the closed structure of C

we have used above are of the form [y, Tx], which can equally be expressed as
the Kleisli exponential y ⇒ x. The Kleisli exponential routinely extends to a
V -functor

− ⇒ − : C
op
T × CT −→ C

Second, in the above, we made one use of a construct of the form [y′, y] with
no T protecting the second object. But we can replace that by using the V ′-
enriched Yoneda lemma to express the first condition of the theorem in terms of
homobjects of V of the form C(w ⊗ y′, y).

Summarising, we have



Corollary 1. To give an algebraic operation is equivalent to giving an ObCop ×
ObC family of maps

ay,x : (y ⇒ x)v −→ (y ⇒ x)w

in C, such that for all objects z′ and y′ of C, the diagram

C(z′ ⊗ y′, y)
(− ⇒ x)v

- C((y ⇒ x)v, ((z′ ⊗ y′) ⇒ x)v)

C((y ⇒ x)w, ((z′ ⊗ y′) ⇒ x)w)

(− ⇒ x)w

?

C(ay,x, ((z′ ⊗ y′) ⇒ x)w)
- C((y ⇒ x)v, ((z′ ⊗ y′) ⇒ x)w)

C((y ⇒ x)v, az′⊗y′,x)

?

commutes, and for every object z of C, the diagram

(x ⇒ z) ⊗ (y ⇒ x)v - ((x ⇒ z) ⊗ (y ⇒ x))v
compv

K- (y ⇒ z)v

(x ⇒ z) × (y ⇒ x)w

(x ⇒ z) ⊗ ay,x

?
- ((x ⇒ z) ⊗ (y ⇒ x))w

compw
K

- (y ⇒ z)w

ay,z

?

commutes, where compK is the canonical internalisation of Kleisli composition.

5 Algebraic operations as generic effects

In this section, we apply our formulation of the C-enriched Yoneda lemma to
characterise algebraic operations in entirely different terms again as maps in CT ,
i.e., in terms of generic effects. Observe that if C has a tensor v of v with I, the
V -functor (T−)v : CT −→ C is isomorphic to the V -functor v ⇒ − : CT −→ C.
If C is V -closed, the V -functor v ⇒ − enriches canonically to a C-enriched
functor, namely the representable C-functor CT (v,−) : CT −→ C, where CT

is regarded as a C-enriched category. So by Proposition 4 together with our
C-enriched version of the Yoneda lemma, we immediately have

Theorem 2. If C is V -closed, the C-enriched Yoneda embedding induces a bi-

jection between maps w −→ v in CT and algebraic operations

αx : (Tx)v −→ (Tx)w

This result is essentially an enriched version of the identification of maps in a
Lawvere theory with operations of the Lawvere theory [16]. If C is locally finitely
presentable as a closed category, one can define a notion of Lawvere C-theory,
and prove it is equivalent to the notion of finitary C-monad on C, generalising
the usual equivalence in the case that C = Set. Given a finitary C-monad T ,



the corresponding Lawvere C-theory is given by the full sub-C-category of CT

determined by the finitely presentable objects. So the above result generalises the
relationship between maps in the Lawvere C-theory with algebraic operations
in two ways: the above result does not use finitariness and it allows V and C to
differ.

In studying Lawvere theories, where V = Set, one typically restricts to nat-
ural numbers, but there are occasions when we want to drop the finitariness.
For instance, this allows us to include an account of infinitary operations as one
might use to model state as detailed below. For specific choices of C such as
ω−Cpo, one can also consider more exotic arities such as that given by Sierpin-
ski space. For an enriched version of Lawvere’s idea without the finitariness but
with the restriction to C = V , see [3].

Once again, by use of parametrisation, we can avoid the closedness assump-
tion on C here, yielding the stronger statement

Theorem 3. Functoriality of − ⇒ − : C
op
T × CT −→ C in its first variable

induces a bijection from the set of maps w −→ v in CT to the set of algebraic

operations

αx : (Tx)v −→ (Tx)w

We could of course extend this to an isomorphism between the homobject
CT (w,v) and an object of appropriate algebraic operations of corresponding
arity. We regard the theorem as the most interesting result of the paper. This
result shows that to give an algebraic operation is equivalent to giving a generic
effect, i.e., a constant of type the arity of the operation. Moreover, it follows from
inspection of the category theoretic formulation of the notion of equation that
equations to accompany the operator correspond to equations to be satisfied by
the constant.

For example, to give a binary nondeterministic operator for a strong monad
T is equivalent to giving a constant of type 2. For instance, let T be the non-
empty finite powerset monad. Given a nondeterministic operator ∨, the constant
is given by true∨false, and given a constant c, the operator is given by M∨N =
if c then M else N .

For another example, let L be a set of locations and let V be a set of values.
We denote the exponential [L, V ] by S, representing a set of states. (We ignore
partiality here for simplicity of exposition.) Let C be the category ω − Cpo

of ω-cpo’s, and let T be the monad (S × −)S . Then, one naturally considers
operations

lookup : (TX)V −→ (TX)L

and

update : TX −→ (TX)L×V

It is easiest to understand these operations in terms of the corresponding generic
elements, which are of the form

lookupg : L −→ TV



and
updateg : L × V −→ T 1

respectively. These are defined, using Currying freely, by

lookupg(l, s) = (s, s(l))

and
updateg(l, v, s) = s(l 7→ v)

respectively, which is exactly how lookup and update are supposed to behave.
One can readily extend this analysis to operations on an ω − Cpo-monad

for local state on the ω − Cpo-enriched category [N, ω − Cpo] to model lookup,
update, and block.

For a further example, one can consider a monad for interactive input and
output and give generic operations read : 1 −→ TI and write : O −→ T 1,
behaving as expected: see [9] for details.

6 Algebraic operations and the category of algebras

Finally, in this section, we characterise the notion of algebraic operation in terms
of the V -category of algebras T -Alg. The co-Kleisli category of the comonad on
T -Alg induced by the monad T is used to model call-by-name languages with
effects, so this formulation gives us an indication of how to generalise our analysis
to call-by-name computation or perhaps to some combination of call-by-value
and call-by-name, cf [7].

If C is V -closed and has equalisers, generalising Lawvere, the results of the
previous section can equally be formulated as equivalences between algebraic
operations and operations

α(A,a) : U(A, a)v −→ U(A, a)w

natural in (A, a), where U : T -Alg −→ C is the C-enriched forgetful functor:
equalisers are needed in C in order to give an enrichment of T -Alg in C. We prove
the result by use of our C-enriched version of the Yoneda lemma again, together
with the observation that the canonical C-enriched functor I : CT −→ T -Alg is
fully faithful. Formally, the result is

Theorem 4. If C is V -closed and has equalisers, the C-enriched Yoneda em-

bedding induces a bijection between maps w −→ v in CT and C-enriched natural

transformations

α : (U−)v −→ (U−)w.

Combining this with Theorem 2, we have

Corollary 2. If C is closed and has equalisers, to give an algebraic operation

αx : (Tx)v −→ (Tx)w

is equivalent to giving a C-enriched natural transformation

α : (U−)v −→ (U−)w.



One can also give a parametrised version of this result if C is neither closed
nor complete along the lines for CT as in the previous section. It yields

Theorem 5. To give an algebraic operation

αx : (Tx)v −→ (Tx)w

is equivalent to giving an Ob(T -Alg)-indexed family of maps

α(A,a) : U(A, a)v −→ U(A, a)w

such that commutativity of

C(x ⊗ A, B)
C(x ⊗ a, B)- C(x ⊗ TA, B)

C(T (x ⊗ A), TB)

T

?

C(st, B)
- C(x ⊗ TA, TB)

C(x ⊗ TA, b)

6

implies commutativity of

C(x ⊗ A, B)
(−)w

- C((x ⊗ A)w , Bw) - C(x ⊗ Aw, Bw)

C((x ⊗ A)v, Bv)

(−)v

?
- C(x ⊗ Av, Bv)

C(x ⊗ Av, α(B,b))
- C(x ⊗ Av, Bw)

C(x ⊗ α(A,a), B
w)

?

7 Conclusions and Further Work

For some final comments, we note that little attention has been paid in the
literature to the parametrised naturality condition on the notion of algebraic
operation that we have used heavily here. And none of the main results of [14]
used it, although they did require naturality in CT . So it is natural to ask why
that is the case.

For the latter point, in [14], we addressed ourselves almost exclusively to
closed terms, and that meant that parametrised naturality of algebraic opera-
tions was not emphasised as we did not need a parameter for our main results.
Had we given an equational theory in that paper, parametrised naturality would
have been essential.

Regarding why parametrised naturality does not seem to have been addressed
much in the past, observe that for C = Set, every monad has a unique strength,
so parametrised naturality of α is equivalent to ordinary naturality of α. More
generally, if the functor C(1,−) : C −→ Set is faithful, i.e., if 1 is a generator in



C, then parametrised naturality is again equivalent to ordinary naturality of α.
That is true for categories such as Poset and that of ω-cpo’s, which have been
the leading examples of categories studied in this regard. The reason we have a
distinction is because we have not assumed that 1 is a generator, allowing us to
include examples such as toposes or Cat.

In future, we hope to address other operations that are not algebraic, such
as one for handling exceptions. It seems unlikely that the approach of this paper
extends directly. Eugenio Moggi has recommended we look beyond monads. In
a sense suggested by Andrzej Filinski, operations such as those for handling
exceptions seem to be destructors, whereas those we have considered here are
constructors; and it seems that additional data and axioms are required to model
the former, possibly along the lines of a distributive law as in [18]. We should
also like to extend and integrate this work with work addressing other aspects of
giving a unified account of computational effects. We note here especially Paul
Levy’s work [7] which can be used to give accounts of both call-by-value and
call-by-name in the same setting, and work on modularity [17], which might also
help with other computational effects.
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