
1

DSYN: A Module Generator for High Speed
CMOS Current Output Digital/Analog

Converters

Robert R. Neff, Paul R. Gray, and Alberto Sangiovanni-Vincentelli
Electrical Engineering and Computer Sciences

University of California, Berkeley

Abstract

DSYN generates optimized Digital/Analog Converter (DAC) layouts given a set of specifications

including performance constraints, a description of the implementation technology, and a set of design

parameters. The generation process consists of a synthesis step followed by a layout step. During synthesis a

new constrained optimization method is coupled with combination of circuit simulation and DAC design

equations. The layout step uses stretching and tiling operations on a set of primitive cells. Prototypes have

been demonstrated for an 8-bit, 100-MS/s specification, driving a 37.5-ohm video load, and a static 10-bit

specification, driving a 4mA full-scale output current. Both designs use a 5-V supply in a 1.2µm CMOS

process.1

Biographies

Robert R. Neff (member) was with the University of California, Berkeley, CA. He is now with Hewlett
Packard Company, Palo Alto, CA 94304.

Paul R. Gray (fellow) and Alberto Sangiovanni-Vincentelli (fellow) are with the Department of Electrical
Engineering and Computer Sciences, University of California, Berkeley, CA 94720 .

Coorespondence should be directed to:

Dr. Robert Neff
Hewlett Packard Company
3500 Deer Creek Road, MS 26U-4
Palo Alto, CA 94304-0867

Phone: (415)857-6220
Fax: (415)857-3637
E-mail: neff@hpl.hp.com

1. This research was supported by the Semiconductor Research Corporation under grant 94-DC-324.

2

I. Introduction

In mixed-signal integrated circuits, the analog part of the design often occupies a small portion of the

physical die area but requires a disproportionately large amount of the design effort and time. Following a

digital domain paradigm, analog circuit synthesis has been proposed to substantially reduce design time

[1][2][3][4]. This approach is intended for a wide class of commonly used analog circuits, but as such does

not incorporate specific knowledge of the particular device being designed. These methods have proven use-

ful for application to the most common building blocks, such as amplifiers and comparators, which tend to

have a relatively small number of large devices, and matching constraints between pairs, but not across large

numbers of elements. For other, more complex blocks, the general synthesis approach is a poor match to the

problem. A second approach consists of developing several synthesis tools, each optimized for a particular

class of circuits, such as switched capacitor filters, opamps, or ADCs [5][6][7][8]. In either case, the goal is

to generate blocks that are competitive with manual design in performance and die area. The best test of

these analog circuit synthesis methodologies is to follow designs through the complete cycle, including

design specific inputs and results from fabricated devices.

Generation of mixed-signal analog blocks can be approached in several ways. In the top-down, hierar-

chical approach, proposed in [9], constraint values are passed down through layers of the design, with the

bottom layer corresponding to the transistors. This approach was initially applied to a current-switched DAC

example, and has also been used to build an oversampled ADC [10]. The main goal of the hierarchical

approach is to obtain reliably and quickly a design that satisfies all constraints. When in addition to satisfy-

ing constraints, a highly optimized circuit with respect to area and speed is required, then a “flat” methodol-

ogy may prove more effective. In a flat approach many design variables are optimized at once against the

complete design specification. When a complex circuit behavior is difficult to separate and evaluate hierar-

chically, a flat approach is the only option. Of course there are limits to our design optimization capabilities

-- as the number of design variables increases, a flat method becomes more difficult.

In this paper a non-hierarchical approach is applied to the current-switched DAC function, allowing

simultaneous optimization of architecture and device level design variables, and easy incorporation of all

aspects of performance, including layout related parasitics when predicting static and dynamic performance.

3

II. Module Generation Methodology.

Fig. 1 illustrates the module generation methodology. Input data is separated into information classes,

which are used during the optimization step to find the best set of design variables. The design variables are

then passed to the layout program, creating the DAC module. Design optimization can be further decom-

posed into two parts, the optimization algorithm and the design estimation process.

The input data is partitioned into design constants, performance specifications, and design variables.

Typically design variables are continuous variables, but in the case of DAC module generation there are sev-

eral variables which must havediscrete values. Two examples of this are the number of LSBs per DAC seg-

ment, which must be a power of 2, and the number of bias cells, which must be an integer. In addition to

these “intrinsic” integer variables, we force device dimensions to fall on the Lmin/2 grid required by our lay-

out tools, so that all design variables are constrained to be integers.

The design estimation step predicts the performance of the circuit, including process variation, device

mismatch, and accurate device modeling. In DSYN, the HSPICE circuit simulator performs equation evalu-

ation as well as circuit simulation, where all performance estimates are computed in one multiple-simulation

run. Three DC simulations were run to cover worst case bias margins and INL conditions, and two transient

simulations were used for settling and glitch energy.

Design optimization for analog circuits is not a new topic [4][7][11], but DSYN’s requirements

present some unique problems. The optimization process must work well with the circuit estimation method,

in which function evaluations are time consuming and function evaluations in the infeasible region may not

produce reliable gradients. The mixed integer formulation creates additional difficulties.

Direct approaches to this Mixed-Integer Non-Linear Programming (MINLP) problem using branch

and bound algorithms [4] do not complete in a reasonable time when used with circuit simulation. The

branch and bound algorithm formulates a Non-Linear Programming (NLP) problem as a sub-problem, and

solves many of these sub-problems in the course of solving the MINLP problem. Using circuit simulation,

the NLP sub-problem may take several hours to complete, and the branch-and-bound is exponential in the

4

number of design variables, resulting in an optimization time in the weeks range for the complete MINLP

problem.

A faster algorithm was required. A promising technique separates the problem into a Mixed-Integer

Linear Programming (MILP) sub-problem, and a separate non-linear programming (NLP) problem. The

NLP solution creates linear constraints to form a linear outer approximation to the feasible region [12], and

this outer approximation is used by the MILP sub-problem. MILP solutions are tested for feasibility, where

infeasible solutions spawn NLP sub-problems to improve the outer approximation. When the MILP solution

is found to be feasible the problem is solved. For this work a simpler means of creating the outer approxima-

tion was found, using a supporting hyperplane algorithm [13][14]. The key feature of this algorithm is that

the search for the mixed integer solution is separated from the explicit use of circuit simulation/analysis. The

time required for the MILP problem is short relative to the time spent finding and computing additional lin-

ear constraints. In this algorithm the mixed integer design space actually speeds convergence, by limiting the

choices of possible solutions at the end of the optimization, and the solution time rivals the time for the

equivalent NLP problem. Also, it only requires accurate constraint computation in the region where the con-

straints are feasible, relaxing requirements on the circuit estimation function. Disadvantages of this algo-

rithm are that it requires an initial feasible point and a convex feasible region. In practice, the initial feasible

point was found quickly through either a simple optimization or user guesses. Repeatability tests were made

to verify that the convexity assumption was not limiting the optimality of the solutions for DSYN designs.

Because of the regular, cellular nature of current-switched DACs, consisting of many similar seg-

ments, most manual DAC layouts are implemented with tightly packed abutting cells so as to minimize the

interconnection area. DSYN uses stretching of library cells for customization to design specifications, and

tiling of the created cells to generate the DAC module, resulting in similar compact layouts. Note that this

layout method is procedural, so accurate parasitic estimation may be done without module instantiation.

III. DAC Module Optimizations and Experimental Results

A current output DAC architecture, suitable for medium resolution video and instrumentation applica-

tions was chosen for DSYN. PMOS current sources are used for compatibility with video DAC application

5

requirements. The architecture uses a two dimensional array of segment current sources, with a local row /

column digital decode, which allows individual selection of each cell [15]. The cell schematic is shown in

Fig. 2, and further details may be found in [14]. The DAC optimization problem, including constraints to

ensure both analog circuit performance, and digital signal integrity, comprises 19 design variables and 44

constraints. This is too large an optimization to complete in one step, so the optimization problem is solved

with two optimizations run in sequence -- an ‘analog’ optimization with 13 variables run first, setting vari-

ables which affect analog circuit performance. This is followed by a ‘digital’ optimization with 6 variables,

which sizes circuits in the DAC digital signal path. Table 1 lists the independent design variables, specifies

the optimization each is used in, and their optimized values for the two test designs discussed later.

All first and second order static and transient effects were included in these module optimizations. A

1.2µm digital CMOS process was modeled, and the discrepancies between fitted BSIM 2 models and mea-

sured devices, most significantly a factor of 2 error in output conductance, were compensated for in circuit

estimation. A Vds margin constraint was included in optimizations to insure operation far enough into satu-

ration that this would bound modelling errors. Worst case design was used to bracket performance predic-

tions. Statistical device mismatch due to random and gradient effects used the model in [16], and mismatch

parameters were extrapolated from that source. Static linearity was predicted for 3-σ yield. INL due to I-R

drops in supplies was modeled. Lead inductance effects on the output signal were included, but chip level

a. Dimensions in microns, on a 0.6 micron pitch.

b. Minimum size used. Not optimized in this low speed design.

TABLE 1. DSYN Independent Design Variables.

Variable Description Optim. 8-bit 10-bit

M Segment Size, in LSB Analog 4 16
Rows Number of Module Rows Analog 4 4
Bias Number of bias elements Analog 1 1

WB1, WB2a Widths for Bias FETs Analog 7.2, 6.6 1.2, 2.4
W1, L1 Size of M1 (Isrc FET) Analog 15.6, 3.6 4.2, 4.2
W2, L2 Size of M2 (Cascode FET) Analog 15.6, 1.2 4.2, 1.2
WS1 Width of MOS Switch in Segment Analog 14.4 2.4

WBUS Width of Power Bus Analog 36 19.2
WPINV, WNLAT Width sets Switch Drivers Analog 4.8, 3.0 NAb

WNLAT2 Cell Latch device Digital 4.2 NA
WPDEC, WNDEC Cell Decode Digital 6.0, 2.4 NA
WC1, WC2, WR Row and Col Buffers Digital 9.6, 20.4, 14.4 NA

6

issues such as substrate noise coupling and supply lead inductance were considered beyond the scope of the

module optimization. Initial DAC modules were created to an 8-bit, 100 MS/s video specification1 and a

static 10-bit spec. Optimizations required 6 hours compute time for the 8-bit design, and 1 hour compute

time for the 10-bit design on a DEC Alpha 3000/300. Circuit areas were 0.71 and 0.38 mm2. Fig. 3 is the test

chip photograph.

Design development and optimization time was 3 months for the initial 8-bit design -- comparable to

custom design. Of this, the first half was spent doing the initial design analysis and layout for the cell library,

and the second half running optimizations, performing full circuit parasitic extraction and simulation, and

then looking for errors in the estimated results. Errors in the cell library were debugged, and assumptions

made in analysis were corrected. Multiple optimizations were required on each iteration to determine the

optimum power of 2 for segment size. A total of about 20 optimizations were run before tape out.

For the 8-bit DAC, table 2 shows the performance specification, estimated 3-σ worst case perfor-

mance from optimization, and measured performance. All 12 parts fabricated were functional, and met static

specifications. INL and DNL are worst measured for these 12 parts. Linearity and transients are illustrated in

[17]. The 10 bit prototypes were all functional, but none met DNL specs. Worst case results are summarized

in table 3.

1. This was a typical video DAC specification, so it included transient settling and glitch energy, but not SFDR.

a. Settling to within 2% of final value.

b. NM -- Not Measurable.

c. A separate constraint is used for each device operating in saturation.

TABLE 2. Performance of 8 bit video DAC (Ifs = 17.6 mA)

Name Specified Estimated Measured Units

INL < 1.0 0.53 0.64 lsb
DNL < 0.5 0.16 0.18 lsb

Total Error < 4 3.6 3 lsb
Tsettle (rise / fall) < 13.0 7.4 / 4.43 5.5 / 5.25a ns
Tswit (rise / fall) < 5.0 1.6 / 1.0 1.8 / 1.1 ns

Tdelay < 5.0 4.75 NMb ns
Glitch < 1.0 0.77 / 0.62 0.74 / 0.46 lsb*Ts
Rout > 10 10.5 12.5 kΩ

Clock Rate > 100 101 225 MS/s
Vds in Satn.c > 0.2 0.2 NM V

7

The zero DNL yield on the 10-bit part, and the higher than expected non-linearity results on the 8-bit

part are a cause for concern. When the data was further analyzed, two underestimated effects were seen.

First, the process gradients were twice the magnitude predicted by extrapolation from [16], and second, edge

effects on the array were significant, causing mismatch between edge columns and the center, and between

LSB currents and segment currents. Based on these results the parameter for process gradients has been

increased, and a separate mismatch source due to these edge effects has been added to the non-linearity

model in the module generator.

The reason for implementing a design as part of a module generator methodology is that it allows

reuse of elements of elements of the design, when either specifications or technology change. Table 4 sum-

marizes the reuse of elements of the initial 8-bit, 1.2µm video DAC to both new specifications and new

technologies. For the 10-bit design, the layout cell library required modification, but other elements were

reused. In the 0.8µm design the cell library was scaled automatically, and only a new technology file was

needed. Preliminary testing of this design indicates linearity within spec. In the last case a new design spec-

ification was applied to the existing module generator libraries, resulting in an implementation time of 1 day.

IV. Conclusions

This work has demonstrated module generation for high speed current switched Digital/Analog Con-

verters, from design input through synthesis, fabrication, and testing. Tight coupling of layout and synthesis

resulted in compact layouts with accurate performance prediction. A new MINLP optimization algorithm

was developed for design optimizations. Application of the module generator across specifications and dif-

TABLE 3. Performance of static 10-bit DAC (Ifs = 4 mA)

Name Specified Estimated Measured Units

INL 2.0 1.87 2.1 lsb
DNL 0.5 0.16 1.6 lsb

TABLE 4. Development requirements for successive designs. The first three designs include time for
exhaustive verification.

Design Analysis
Technology

File
Cell

Library
Implementation

Time

8-bit, Video, 1.2µm New New New 3 months
10-bit, 1.2µm Modified 2 weeks

8-bit, Video, 0.8µm New 1 week
8-bit, 1.2µm 1 day

8

ferent technologies has demonstrated the portability of the design analysis and libraries. Further information

on this research may be found on the WWW at http://kabuki.eecs.berkeley.edu/~neff.

9

References

1. G.G.E. Gielen, H.C.C. Walscharts, and W.M.C. Sansen, “Analog Circuit Design Optimization Based on
Symbolic Simulation and Simulated Annealing,”IEEE J. Solid-State Circuits, 25(3), pp. 707-713, June,
1990.

2. J.M. Cohn, D.J. Garrod, R.A. Rutenbar, and L.R. Carley, “Techniques for simultaneous placement and
routing of custom analog cells in KOAN/ANAGRAM II,”Proc. International Conference on Computer-
Aided Design, pp. 394-397, Nov. 1991.

3. E. Charbon, E. Malavasi, and A. Sangiovanni-Vincentelli, “A Constraint Driven Placement Methodol-
ogy for Analog Integrated Circuits,”Proc. IEEE Custom Integrated Circuits Conference, pp. 1711-1714,
May 1992.

4. P.C. Maulik, L. R. Carly, and R. A. Rutenbar, “A MINLP Approach to Analog Circuit Synthesis.”Proc.
Design Automation Conference, pp. 698-703, June, 1992.

5. M.C. Degrauwe, et al. “Towards an Analog System Design Environment,”IEEE J. Solid-State Circuits,
24(3), pp. 659-671, June 1989.

6. H. Yaghutiel, “Automatic Synthesis and Layout of Switched-Capacitor Filters.” University of California
at Berkeley, UCB/ERL M88/56, August 1988, Ph. D. Thesis.

7. H.Y. Koh, C.H. Sequin, and P.R. Gray, “OPASYN: A Compiler for CMOS Operational Amplifiers,”
IEEE Trans. on Computer-Aided Design, 9(2): 113-125, Feb. 1990.

8. G. Jusuf, P.R. Gray, and A.Sangiovanni-Vincentelli, “CADICS - Cyclic Analog-to-Digital Converter
Synthesis.”Proc. International Conference on Computer-Aided Design, pp. 286-289, Nov. 1990.

9. H.C. Chang, E. Liu, R. Neff, et al, “Top-Down, Constraint-Driven design methodology based Generation
of Interpolative Current Source D/A Converters,”Proc. IEEE Custom Integrated Circuits Conference,
pp. 15.5.1-4, May, 1994.

10. H.C. Chang, E. Felt, and A. Sangiovanni-Vincentelli, “Top-down, Constraint-Driven Design Methodol-
ogy Based Generation of a Second OrderΣ∆-A/D Converter,”Proc. IEEE Custom Integrated Circuits
Conference, pp. 25.5.1-4, May, 1995.

11.W. Nye et al, “DELIGHT.SPICE: An Optimization-Based System for the Design of Integrated Circuits,”
IEEE Trans. on Computer-Aided Design, 7(4), pp. 501-19, April 1988.

12.M.A. Duran and I.E. Grossmann, “An Outer-Approx. Algorithm for a Class of MINLPs,”Mathematical
Programming, 36, pp. 307-339, 1986.

13. D.G. Luenberger,Linear and Nonlinear Programming, Addison-Wesley Publishing Co., 2nd Ed., 1984.

14.R. R. Neff, “Automatic Synthesis of CMOS Digital/Analog Converters,” University of California at Ber-
keley, UCB/ERL M95/28, April 1995, Ph. D. Thesis.

15.L. Letham, B.K. Ahuja, et al., “A High-Performance CMOS 70-MHz Palette/DAC,”IEEE J. Solid-State
Circuits, SC-22(6), pp. 1041-47, December 1987.

16. M.J.M. Pelgrom, A. Duinmaijer, and A. Welbers, “Matching Properties of MOS Transistors,”IEEE J.
Solid-State Circuits, SC-24(5), pp. 1433-40, Oct. 1989.

17.R. R. Neff, P. R. Gray, and A. Sangiovanni-Vincentelli, “A Module Generator for high-speed CMOS cur-
rent-output D/A Converters,”Proc. IEEE Custom Integrated Circuits Conference, pp. 23.7.1-4, May,
1994.

10

Figure 1. Module Generation Methodology.

“DSYN...,” Neff et al.

MOSFET model
Matching = f(w,l)

Topology

Circuit Synthesis:

DAC Layout

DAC Specs

Layout Templates

Optimized Design

DAC Module

Stretch and Tile

Layout Database

Description

Circuit Verification:
Extract and Simulate

Design Verification:
Fabrication and Test

Design Files for

Layout

Information

Optimization &
Estimation

Technology Info

Estimation

11

Figure 2. Switched Current Source DAC segment cell schematic.

“DSYN...,” Neff et al.

avdd

selbar selMS2

Cell Select

Col Sel

Row-1 Sel

Row Sel

Decode
TSPC

clk

Latch

outdump

avdd

avss

MS1

M1

M2

Bias

Cbias

12

Figure 3. Die photo with 8-bit part in lower left, 10-bit part in lower right

“DSYN...,” Neff et al.

