RICE UNIVERSITY

Optimizing Fortran90D /HPF for
Distributed-Memory Computers

by
Gerald H. Roth

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Ken Kennedy, Noah Harding Professor
Computer Science

John Mellor-Crummey, Faculty Fellow
Computer Science

William W. Symes, Professor
Computational and Applied Mathematics

R. Gregg Brickner, Technical Staff Member
Los Alamos National Laboratory

Houston, Texas

April, 1997



Optimizing Fortran90D /HPF for
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Gerald H. Roth

Abstract

High Performance Fortran (HPF), as well as its predecessor FortranD, has attracted
considerable attention as a promising language for writing portable parallel programs
for a wide variety of distributed-memory architectures. Programmers express data
parallelism using Fortran90 array operations and use data layout directives to direct
the partitioning of the data and computation among the processors of a parallel
machine.

For HPF to gain acceptance as a vehicle for parallel scientific programming, it
must achieve high performance on problems for which it is well suited. To achieve
high performance with an HPF program on a distributed-memory parallel machine,
an HPF compiler must do a superb job of translating Fortran90 data-parallel ar-
ray constructs into an efficient sequence of operations that minimize the overhead
associated with data movement and also maximize data locality.

This dissertation presents and analyzes a set of advanced optimizations designed
to improve the execution performance of HPF programs on distributed-memory ar-
chitectures. Presented is a methodology for performing deep analysis of Fortran90
programs, eliminating the reliance upon pattern matching to drive the optimizations
as is done in many Fortran90 compilers. The optimizations address the overhead of
data movement, both interprocessor and intraprocessor movement, that results from
the translation of Fortran90 array constructs. Additional optimizations address the
issues of scalarizing array assignment statements, loop fusion, and data locality. The
combination of these optimizations results in a compiler that is capable of optimizing
dense matrix stencil computations more completely than all previous efforts in this
area. This work is distinguished by advanced compile-time analysis and optimizations
performed at the whole-array level as opposed to analysis and optimization performed

at the loop or array-element levels.
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Chapter 1

Introduction

1.1 Background

Since the dawn of computing there has been a need for high performance computers
to solve computationally-intensive problems in a reasonable amount of time. Many
different architectures have been used over the years to create such computers. As of
today, distributed-memory parallel machines offer the greatest computing power and
scalability for the lowest price/performance ratio and are thus the choice for solving
today’s most computationally-intensive and memory-intensive problems. However,
programming such computers is still the principal obstacle to their general acceptance.

Fortran90 is currently the best numerically-oriented programming language for
expressing data parallelism. Fortran90’s array syntax and rich set of array intrinsic
functions has raised the level of abstraction available to Fortran programmers, thus
making it the programming language of choice in science and engineering.

High Performance Fortran (HPF), an outgrowth of Fortran D, has attracted con-
siderable attention as a promising language for writing portable parallel programs for
a wide variety of distributed-memory architectures. HPF offers a simple programming
model that shields programmers from the intricacies of concurrent programming and
managing distributed data. Programmers express data parallelism using Fortran90
array operations and use data layout directives to direct the partitioning of the data
and computation among the processors of a parallel machine. It is then the respon-
sibility of the compiler to generate efficient code for manipulating the distributed
data. Thus HPF seems to be the best candidate for programmers to use in creat-
ing machine-independent data-parallel programs for execution on distributed-memory

machines.



1.2 Thesis Statement

For Fortran90D/HPF to gain acceptance as vehicles for parallel scientific program-
ming, they must achieve high performance on problems for which they are well suited.
To achieve high performance on a distributed-memory parallel machine, a compiler
for Fortran90D or HPF must do a superb job of translating Fortran90 data-parallel
array constructs into an efficient sequence of operations that minimize the overhead
associated with data movement and also maximize data locality. Unfortunately, cur-
rent Fortran90D/HPF compilers fail to exploit the heightened level of abstraction
present in Fortran90 array constructs and thus fail to optimize Fortran90 programs

as fully as possible.

Thesis: A Fortran90D/HPF compiler for distributed-memory parallel
machines can produce more efficient code if it includes advanced analysis
and optimization of the program at the whole-array level.

Fortran90/HPF has raised the level of abstraction of Fortran programs. We need a
similar rise in the level of analysis and transformation if we expect to do the best
job possible in optimizing it. Our work is distinguished by advanced compile-time
analysis and optimizations performed at the whole-array level as opposed to analysis

and optimization performed at the loop or array-element levels.

1.3 Contributions

The main goal of this work is not the design of an HPF compiler for distributed-
memory machines. That effort has been addressed by others, including Compass,
Thinking Machines Corp., MasPar, IBM, Digital Equipment Corp., the Portland
Group, and Applied Parallel Research. But while there exist several HPF compil-
ers, few are able to optimize programs as fully as would be expected. The goal of
this work is to address the deficiencies of the current class of HPF compilers. We
have accomplished that by developing a set of array-level optimizations that can be
incorporated into other compilers to produce better code.

Here we present a summary of the contributions this dissertation makes in the area
of compiling HPF for distributed-memory machines. It is also worthwhile to note
that most of the optimizations presented are equally applicable to shared-memory

and scalar machines.



Analysis of Fortran90 Array Constructs

Before we can optimize Fortran90 array constructs we must be able to analyze them
to determine certain facts, and we must be able to represent those facts so they are ac-
cessible to the compiler. The analysis methods that are exploited by many advanced
compilers include data flow analysis and dependence analysis. Methods used to rep-
resent derived information include control flow graphs, static single assignment, and
dependence direction vectors. This dissertation shows how to extend these methods
and representations to support the direct analysis of operations on array sections. In
particular we classify a new genre of data dependences and present transformations
that utilize them.

Offset Array Optimization

Interprocessor data movement on a distributed-memory parallel machine is typically
far more costly than movement within the memory of a single processor. For this
reason, much of the prior research on minimizing data movement has focused on the
interprocessor case. However, although interprocessor data movement is more costly
per element, the number of elements moved within the memory of a single processor
may be much larger, causing the cost of local data movement to be dominant.

Our offset array optimization focuses on the problem of minimizing the amount of
intraprocessor data movement when performing Fortran90 array operations. We have
developed a set of necessary and sufficient criteria for when this local data movement
can be avoided, and we have designed an algorithm that is capable of verifying the
criteria over entire procedures. This algorithm is able to avoid such data movement

in many more cases than the current class of HPF compilers.

Context Optimization

With distributed-memory SIMD machines there is a need to explicitly turn processors
on and off. This is due to the fact that there is only a single instruction stream and
not all processors are to execute each instruction. Only processors containing data
related to the current instruction should execute it. If a processor is not to execute
a set of instructions, it must be explicitly “masked out”. However, changing the
processor mask, or contezt, is an expensive operation. Setting the machine context is

an overhead that one must pay to execute on a SIMD architecture.



We have developed two separate optimizations that address this overhead by re-
ducing the number of times that the machine context must be set. First, we rearrange
the program statements so that during code generation as many statements as pos-
sible that execute under the same context are placed within the same loop nest.
We call this optimization context partitioning. Second, we alter the order in which
array elements are processed by performing loop transformations on the generated
loop nests. These transformations allow us to hoist the context setting code out of
the loops and thus reduce the number of context changes. We call this optimization
context splitting.

Even though the context partitioning optimization was originally designed to opti-
mize code for SIMD machines, it is also beneficial for MIMD machines. First, it gener-
ates loop nests for array statements that do not require conditionals when executed on
distributed-memory machines. Second, the loop nests contain more statements and
thus increase the opportunities for data re-use. Third, context partitioning groups
together as many communication operations as possible which facilitates analysis and

thus enables a reduction in the amount of interprocessor data movement.

Advanced Scalarization

Before an array statement of a data-parallel language can be executed on the target
architecture, a compiler must rewrite it such that individual array elements are ac-
cessed one at a time. This is accomplished by replacing the array statement with a
loop nest that contains a subscripted reference to the array. This translation is known
as scalarization. We have developed a new algorithm to perform scalarization in a
single pass over the code, as opposed to the standard two-pass algorithm. The new
algorithm has the same ability as the two-pass algorithm for avoiding the generation

of array temporaries or minimizing their size when temporaries are required.

Stencil Compilation

For many HPF programs performing dense matrix computations, the main computa-
tional portion of the program belongs to a class of kernels known as stencils. We have
developed a strategy for optimizing such stencil computations, no matter how they
are instantiated by the programmer. The strategy combines our offset array optimiza-
tion, context partitioning optimization, and advanced scalarization algorithm with a

new optimization, communication unioning, that minimizes interprocessor communi-



cation for such computations. The result is a compilation scheme that is more robust

than all previous work in this area.

1.4 Overview

In the next chapter, we present the necessary background material to understand the
issues being addressed in this dissertation. This includes an overview of the target
architectures and programming languages. In Chapter 3 we discuss related efforts and
their relevance to this work. Chapter 4 presents the compilation model on which the
rest of the dissertation is built. It introduces many of the issues involved in compiling a
data-parallel programming language for execution on a distributed-memory machine.

In Chapter 5 we begin the main contributions of this dissertation by describing
extensions to common compiler analysis techniques and representations to support
the array section operations found in Fortran90. In particular, we address data-flow
analysis, dependence analysis, and static single assignment. The results of these
analyses are used in the subsequent optimization phases of our compiler.

Chapter 6 describes the offset array optimization which reduces the cost of intra-
processor data movement that is associated with Fortran90 shift intrinsics. Chapter 7
discusses two context optimizations for SIMD architectures. We also discuss the re-
lationship of these context optimizations to MIMD machines. Chapter 8 presents
an algorithm that is able to perform scalarization more efficiently than the standard
algorithm that is commonly used.

Chapter 9 introduces a new strategy for compiling dense matrix stencil compu-
tations for distributed-memory machines. This strategy exploits several of the op-
timizations presented earlier in the dissertation and introduces a new optimization,
communication unioning, that reduces the cost of interprocessor data movement. This
chapter also includes an extended example that demonstrates the power of this com-
pilation strategy. We conclude in Chapter 10 with a summary of our contributions

and a look forward to future work.



Chapter 2

Background

In this chapter we give a brief overview of distributed-memory multiprocessor ar-
chitectures, the Fortran90 language, and the data distribution/alignment directives
of Fortran D and High Performance Fortran. In addition we present an overview
of two differing compilation models that Fortran90D/HPF compilers use to generate
code for execution on distributed-memory machines. These descriptions introduce
the concepts necessary to understand how the machines work, why the compilers
must generate certain code sequences, and why the optimizations described in later

chapters are beneficial.

2.1 Distributed-Memory Multiprocessor Architectures

This section introduces two classes of distributed-memory multiprocessor architec-
tures. These classes comprise two of the four classes proposed in Flynn’s taxonomy
of computer architectures [70]. The first is Multiple Instruction streams, Multiple Data
streams, or MIMD architectures. The second is Single Instruction stream, Multiple
Data streams, or SIMD architectures. We give a brief overview of these two architec-
tures in the following subsections. For a more complete discussion of general MIMD

and SIMD architectures see an appropriate computer architecture book [88, 96].

2.1.1 Distributed-Memory MIMD Architectures

A MIMD computer contains many independent central processing units (CPUs) op-
erating asynchronously, each executing its own instruction stream. The MIMD archi-
tectures in which we are interested associate some local memory with each CPU, from
which the CPU fetches instructions and reads/writes data. The CPU along with its
associated memory is referred to as a processing element (PE) or a processing node.
The collection of all PEs is called the PE array. The PE array may be treated
as a linear array or as an array of higher dimensions; e.g., a 16 PE array could be

treated as a 16 x 1 grid, or an 8 x 2 grid, or a 4 x 4 grid, or even a 2 x 2 x 2 X 2 grid



(equivalent to a 4-d hypercube). For simplicity, we limit our discussions to treating
the PE array as a linear array or a two dimensional square grid.

The PEs are connected by an interprocessor communication network. This net-
work allows messages to be sent from one PE to another. These messages can be
used to allow PEs to share data with one another. The details of such a network are
not important to this dissertation.

Examples of MIMD machines include the SP2 from IBM [4], and the Paragon

from Intel [97, 67]. See Figure 2.1 for a simple schematic of such a machine.

2.1.2 Distributed-Memory SIMD Architectures

Distributed-memory SIMD machines are quite similar to MIMD machines in that they
consist of an array of PEs connected by a communication network. However, unlike
MIMD machines, the PEs of a SIMD machine operate synchronously, each executing
the same instruction. In a SIMD machine each PE contains an Arithmetic Logical
Unit (ALU) rather than a fully functional CPU. The instructions to be executed
by the ALUs are received from a serial front end processor or control unit. The

front end processor has three responsibilities. The first is to drive the PE array by
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Figure 2.1 A distributed-memory MIMD architecture.




broadcasting instructions and related data to all PEs. The second is to perform all
scalar computations and control flow operations. Third, the front end is the system
interface to the external world.

The single instruction stream of a SIMD computer necessitates that each PE
have an execution flag. This execution flag can be set on or off to indicate whether
the PE should execute the current instruction. There are several reasons why a PE
may be turned off during a computation. The two main reasons are that the current
operation is being performed under a user specified mask (such as a Fortran90 WHERE
statement), or that the PE does not have any local data on which to operate. When
taken as a whole, the execution flags of all the PEs are said to determine the context
of the PE array. Some instructions are executed regardless of the execution mask,
for example instructions that reset the execution flag. It is the responsibility of the
compiler to generate the code to set the correct PE context for all computations
executed on the PE array.

Examples of SIMD machines include the CM-2/CM-200 from Thinking Machines
Corporation [90, 148, 150], and the MP-1/MP-2 from MasPar [26, 130, 124]. A simple

diagram of a SIMD machine can be seen in Figure 2.2.
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Figure 2.2 A distributed-memory SIMD architecture.




2.2 Fortran90

Fortran90 [18] adds a number of interesting and useful features to the Fortran lan-
guage, the most popular being the array features. With Fortran90, entire arrays can
be referenced by simply referring to the array name — no subscripts are necessary.
Arrays or subsections of arrays can be specified by using triplet subscripts. A triplet

specifies a range in the following form.

[lower bound]: [upper bound] [:stride]

If the lower or upper bounds are not specified, the declared bounds of the array are
assumed. The stride is 1 if not given. A null triplet is one in which only a single
colon appears and thus refers to all the elements in the corresponding dimension of
the array.

The use of arrays or array subsections in expressions and assignment statements
greatly reduces the need for tedious and error-prone DO-loops. In Fortran90, arrays
or array subsections are treated as unitary objects when referenced. Thus for an array
assignment statement the semantics specify that all right-hand side array elements
are read before any left-hand side array elements are stored.

Besides adding array references, Fortran90 added a large set of intrinsic functions
that operate on or manipulate arrays. These intrinsic functions roughly fall into the

following categories:

e Reduction operations: MAXVAL, MINVAL, SUM, COUNT, ALL, ANY, and PROD-
UCT.

e Inquiry functions: SIZE, SHAPE, LBOUND, and UBOUND.
e Array construction functions: SPREAD, MERGE, RESHAPE, PACK, and UNPACK.
e Array manipulation functions: CSHIFT, EOSHIFT, and TRANSPOSE.

e Location functions: MAXLOC and MINLOC.

Other array-related features of Fortran90 include allocatable arrays, pointers, and
the WHERE statement. For more information on these or any of the above mentioned

constructs, the reader is referred to an appropriate text [2, 127].



10

2.3 Fortran D and High Performance Fortran

Fortran D and High Performance Fortran (HPF) are versions of Fortran that have
been designed to assist both the programmer and compiler in producing efficient data-
parallel programs for distributed-memory machines. The main extensions found in
these languages are directives for specifying how data arrays are to be distributed
over the PE array.

Addressing the data distribution problem can be handled best by considering the
two levels of parallelism in data-parallel applications. First, there is the question of
how arrays should be aligned with respect to one another, both within and across
array dimensions. We call this the problem mapping induced by the structure of the
underlying computation. It represents the minimal requirements for reducing data
movement for the program, and is largely independent of any machine considerations.
The alignment of arrays in the program depends on the natural fine-grain parallelism
defined by individual members of data arrays.

Second, there is the question of how arrays should be distributed onto the ac-
tual parallel machine. We call this the machine mapping caused by translating the
problem onto the finite resources of the machine. It is dependent on the topology,
communication mechanisms, size of local memory, and number of processors in the
underlying machine. Data distribution provides opportunities to reduce data move-
ment, but must also maintain load balance. The distribution of arrays in the program
depends on the coarse-grain parallelism defined by the physical parallel machine.

Fortran D’s DECOMPOSITION statement or HPF’s equivalent TEMPLATE state-
ment specify an abstract problem or index domain; they do not require any storage.
Each element of a decomposition represents a unit of computation. These statements
declare the name, dimensionality, and size of a decomposition for later use.

The ALIGN statement is used to map arrays with respect to a decomposition.
Arrays mapped to the same decomposition are automatically aligned with each other.
Alignment can take place either within or across dimensions. The alignment of arrays
to decompositions is specified by placeholders in the subscript expressions of both the
array and decomposition.

After arrays have been aligned with a decomposition, the DISTRIBUTE statement
maps the decomposition to the finite resources of the physical machine. Distributions
are specified by assigning an independent attribute to each dimension of a decompo-

sition. Predefined attributes for Fortran D are BLOCK, CYCLIC, and BLOCK_CYCLIC,
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whereas HPF has BLOCK and c¢ycLic(i). The symbol “*” marks dimensions that
are not distributed. Choosing the distribution for a decomposition maps all arrays
aligned with the decomposition to the machine.

Entire descriptions complete with detailed examples for both Fortran D and HPF
can be found elsewhere [71, 89, 112]. We use Fortran D directives in the examples
throughout this dissertation with the knowledge that it is usually a trivial task to
map them to the corresponding HPF directives.

2.4 Fortran90D/HPF Compilation Models

In compiling Fortran90D /HPF for execution on distributed-memory parallel archi-
tectures, most compilers use one of two compilation models. These two models use
very different strategies for translating the user’s program for execution on the par-
allel hardware. Each model has its advantages and its disadvantages. In each case
we will assume that the generated code is in the form of an Fortran77 node program
containing calls to a message-passing library which is then passed to the hardware
vendor’s compiler. We introduce these two models here, and then we use them to

categorize the related projects that are discussed in Chapter 3.

2.4.1 Scalarizing Compilers

It is often the case that the quickest and easiest path to a completed software project
is to leverage off of the use of existing software components. Compilers are no differ-
ent. For this reason many Fortran90 compilers, and now Fortran90D /HPF compilers,
are centered around pre-existing Fortran77 compilers. Such compilers consist of a
Fortran90D /HPF front end that performs parsing and semantic analysis, followed
by a scalarizer which translates the parallel Fortran90D/HPF code into equivalent
sequential Fortran77D/HPF code, and then a Fortran77D compiler which performs
program analysis, optimization, and code generation. See Figure 2.3 for an outline
of a compiler which utilizes this model. This strategy is used by many of the HPF
compilers for MIMD architectures [81, 85, 19], and it is not limited to compilers for
distributed-memory machines [20].

The advantages of this model are fairly clear. By exploiting an existing Fortran77D
compiler, a Fortran90D compiler can be created in a much shorter time span. In ad-
dition, the Fortran90D compiler gains from the years of effort that went into creating

and optimizing the Fortran77/Fortran77D compiler. The scalarizer of the Fortran90D
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Figure 2.3 Components of a scalarizing Fortran90D/HPF compiler.

compiler does not need to be concerned with the alignment or distribution of arrays,
or with the generation of communication to insure data is correctly passed between
PEs — all of that is handled by the Fortran77D/HPF compiler.

And a final key advantage is that the Fortran77D compiler handles all of the
incoming code uniformly, whether the code was originally written in a scalar style
by the programmer or was translated into scalar code by the scalarizer. This allows
for the parallelization and distribution of computation not only for code written with
parallel constructs but also for parallelizable code that is not expressible using array
syntax or FORALL; e.g., pipelined computations [93, 152, 58].

The major drawback of this scheme is that the scalarization process can obfuscate

the code, making it much more difficult to analyze and optimize than the original
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Fortran90D code. Facts that were clear at the Fortran90 array level become obscured
by strange loop bounds and subscript expressions. In many cases, whole-array op-
timizations that could have been performed on the Fortran90D program cannot be
detected in the equivalent Fortran77D program. Missing the opportunity for such
whole-array optimizations can lead to significant increases in both execution time
and memory requirements due to compiler generated temporary arrays that could
have otherwise been eliminated.

Another drawback is the increase in compile time. Since the Fortran77D/HPF
compiler components only expect sequential programs as input, there are usually
few methods for the scalarizer to transmit important information to it. Such lost
information would include which constructs were originally written in parallel form.
The Fortran77D compiler must then perform analysis to rediscover these facts so that

it can produce efficient code for the parallel machine.

2.4.2 Array Operation Compilers

In contrast to the compilers that use the compilation model described in the pre-
ceding subsection, there are compilers created expressly for mapping the explicit
parallelism of Fortran90 constructs to the parallel hardware. Such compilers are
characterized by their ability to directly translate the data parallelism found in array
expressions or FORALL statements for execution on the distributed-memory machine.
This strategy is used in the majority of Fortran90D/HPFE compilers for SIMD ar-
chitectures [123, 140, 149], many of which are descendents of compiler technology
developed by Compass [7, 9, 108, 109, 110], and is also employed by some MIMD
compilers [28, 32]. We refer to such compilers as array operation compilers or native
Fortran90 compilers.

The main phases of a compiler exploiting this model are depicted in Figure 2.4.
After the input is parsed, the distributions and alignments of arrays are analyzed.
This is used to generate required communication and to partition the computa-
tion among the PEs. And as communication operations are so expensive, an at-
tempt is usually made to optimize them using methods such as message vectoriza-
tion [21, 73, 91], message aggregation [120, 131, 152], and the exploitation of collective
communication operations [120].

The major advantage of this model is its simplicity. The compiler takes the

parallelism that is explicitly stated by the programmer and maps it to the parallel
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hardware. This typically only requires analysis of the distribution and alignment of
arrays to determine that data which must be communicated prior to local computa-
tion. Often pattern matching is used to recognize and optimize the communication.
However there is no need to perform in-depth analysis, such as dependence analysis,
to discover parallelism.

This simplicity has its cost though, and is the major disadvantage of this compi-
lation model. Without the information supplied by detailed analysis the compiler is
unable to perform many advanced transformations or optimizations. And since the
compiler only generates parallel code for parallel constructs, any code written in se-

quential mode is executed serially or duplicated on all processors. Thus the program
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must be written using array syntax, array intrinsics, or FORALL constructs wherever
possible. This requires the programmer to translate all sequential code to parallel
code, either by hand or using an automated tool [116, 13]. But some code sequences
containing parallelism are not expressible with these constructs; e.g., pipelined com-
putations. In such cases a compiler must have dependence information to detect
the available parallelism and to perform the necessary loop tiling transformations to
effectively exploit it [93, 152].

2.5 Summary

In this chapter of background information we have introduced the Fortran90D and
HPF languages, and have given an overview of the target distributed-memory ar-
chitectures. We have also outlined two possible models that a compiler for these
languages might utilize. This information provides the concepts necessary to under-
stand the material presented in the rest of this dissertation.

Throughout the remainder of this dissertation any references to Fortran90D are
meant to include HPF with data-parallel constructs, and any references to Fortran77D
are meant to include HPF with only sequential constructs. As mentioned previously,

all examples in this dissertation will use Fortran D syntax rather than HPF syntax.
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Chapter 3

Related Work

The topic of compiling single address-space programs for execution on distributed-
memory architectures has received an immense amount of attention over the past
several years; both in the academic world and in industry. Initial efforts concen-
trated on the challenge of generating correct code. Later research tackled the task of
generating efficient code.

Since this dissertation discusses the optimization of Fortran90 array constructs
for execution on distributed-memory machines, we review in this chapter only those
projects that also deal with the compilation & optimization of Fortran90 array fea-
tures. However, it is important for the reader to remember that many of the issues
involved in compiling Fortran90 for distributed-memory machines are the same for
compiling Fortran77 for distributed-memory machines. In fact, most of these com-
mon issues were solved first by research projects concentrating on the compilation of
Fortran77.

The interested reader is referred to any of the following projects which address the
basics of distributed-memory compilers: the Fortran D compilation system at Rice
University [83, 91, 92, 93, 94, 115, 152], the Parafrase-2 and Paradigm compilers at
University of Illinois at Urbana-Champaign [78, 79, 80, 147, 22, 133], Vienna Fortran
and the SUPERB-2 system at the University of Vienna [52, 50, 51, 68], and the
SUIF project at Stanford University [16, 145, 157]. For the rest of this chapter we
concentrate solely on projects whose main purpose is the compilation of Fortran90

constructs.

Compass Compilers

Compass (1961-1991) was an independent software house which was involved in the
design and implementation of several SIMD compilers. The front end and the global
optimizer from the original versions of both the CM Fortran and MasPar Fortran

compilers were written by Compass; in fact, Compass wrote the entire Paris version
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of the CM Fortran compiler. The CM Fortran compiler is described in more detail
below. The compilers they produced would be classified as array operation compilers
as described in the preceding chapter.

The group at Compass, along with their associates at Thinking Machines Corp.,
were the first to investigate the challenges of compiling Fortran90-style data-parallel
constructs for execution on distributed-memory machines [7, 8,9, 110]. Together they
created what many would consider to be the first, commercially viable, distributed-
memory compiler.

In addition to the general SIMD compiler development effort, Compass did much
of the ground-breaking research in the area of data optimization [108, 109, 107, 111,
122]. The purpose of data optimization is to automatically align data to improve
locality and thus minimize interprocessor communication. Their method assumes
an unlimited number of wvirtual processors. Then based on usage patterns, it maps
arrays to the virtual processors, striving to align them so that communication costs
are minimized. A later stage of the compiler then uses strip mining to map the
virtual processors to the physical processors [156], also known as array distribution.
This two stage approach makes each stage conceptually clean, but prevents them

from interacting.

CM Fortran

Thinking Machines Corporation developed three generations of distributed-memory
architectures, the first two being SIMD machines (the CM-1 and CM-2) [148] and
the third being a MIMD machine (the CM-5) [132, 151]. CM Fortran, their Fortran
derivative, was an implementation of Fortran77 augmented with array constructs
from Fortran90. Their compiler for CM Fortran was also developed through three
generations. The first generation was the Paris, or fieldwise, compiler which uses
the bit-serial processors on the CM-1 and CM-2. The second generation CM Fortran
compiler was the slicewise compiler [140]. The slicewise compiler ignored the bit-
serial processors and used only the floating-point accelerator chips of the CM-2. The
CM Fortran compiler can take advantage of the slicewise model of the machine in
different ways to improve program performance for many engineering and scientific
applications. The third generation compiler targeted the CM-5, and was basically an
updated version of the slicewise compiler [139, 141]. As such, it treated the CM-5 as



18

a SIMD machine and was thus not able to produce code that took full advantage of
the architecture.

Even though the slicewise compiler gave improved performance, it also had sev-
eral weaknesses. The compiler’s shortcomings included the lack of transformations
to increase the size of elemental code blocks, inefficient use of memory for compiler
temporary arrays, and generation of poor code for communication along serial di-
mensions. Thinking Machines documented many of the shortcomings, and suggested
methods that programmers may use to work around them [142].

Thinking Machines had also done some extensive work on compiling stencils [39].
A stencil is a computational pattern that calculates a new value for a matrix ele-
ment by combining elements from neighboring matrix locations. The proper han-
dling of stencils is very important for distributed-memory compilers, and can result
in substantial performance gains. The performance gains produced by the CM-2
stencil compiler were obtained by using multiwire NEWS communication, eliminat-
ing memory-to-memory copying of data, and full exploitation of the floating-point
registers. However, it was the responsibility of the programmer to identify a sten-
cil computation, isolate it into a separate subroutine, and compile it with a special

compiler.

NPAC’s Fortran90D

The Fortran90D compiler developed by the Northeast Parallel Architectures Center
(NPAC) at Syracuse University, like the CM Fortran compiler, is classified as an
array operation compiler [28, 29, 30, 61]. The compiler only exploits the parallelism
expressed in the data parallel constructs. It does not attempt to parallelize scalar
constructs as would a Fortran77D compiler.

The basic structure of this compiler is composed of four major modules — parsing,
partitioning, communication generation, and code generation. The parsing module
translates all parallel constructs, such as array assignments and WHERE statements,
into equivalent FORALL constructs [27]. In this way all subsequent modules need
only deal with FORALL statements. The final result is a loosely synchronous single-
program multiple-data (SPMD) program, structured as alternating phases of local

computation and global communication.
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Unlike most optimizing compilers, which rely upon program analysis to drive their
transformations and optimizations, NPAC’s Fortran90D compiler relies upon pattern
matching:

“The foundation of our design lies in recognizing commonly occurring
computation and communication patterns. These patterns are then re-
placed by calls to the optimized run-time support system routines. The
runtime support system includes parallel intrinsic functions, data distribu-

tion functions, communication primitives, and several other miscellaneous
routines.” [30]

This compiler’s reliance on run-time support is evident in the fact that its run-
time library contains over 500 routines. This shifting of responsibility from compile-
time to run-time has its advantages and its disadvantages. The major advantage
is that it simplifies the design and development of the compiler. Unfortunately it
typically cannot generate as efficient code since it is difficult to perform optimizing
transformations across the numerous call sites. The same can be said about relying
upon pattern matching to drive transformations and optimizations. It simplifies the
compiler, and when it works it works surprisingly well. But when it cannot match a
pattern, the code produced is mediocre at best. An example of the vast differences

in code quality produced by such compilers is presented later in this dissertation.

xlhpf

IBM’s xlhpf compiler [81] is naturally classified as a scalarizing compiler as defined in
Section 2.4.1. This is due to the fact that the first action taken after the intermedi-
ate representation is created is the scalarization of the array language into Fortran77
scalar form. Data dependence analysis is then performed to detect and exploit par-
allelism across all the code, whether it was originally written with Fortran90 parallel
constructs or Fortran77 scalar constructs.

The xlhpf compiler’s strengths come from its ability to perform deep program
analysis. As previously mentioned the compiler uses dependence analysis to detect
and exploit parallelism even in scalar code. Dependence information is also used for
communication placement optimizations and selective loop distribution. The com-
piler uses symbolic analysis to generate efficient code even when the size of arrays or
the number of processors is not known at compile-time. The analysis of data avail-
ability enables the elimination of redundant communication [82]. And static single

assignment (SSA) form is exploited to produce an efficient mapping of scalar variables.
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Taking just the opposite tack as the NPAC Fortran90D compiler, xlhpf actually
in-lines library routines such as Fortran90 intrinsic functions. This enhances the
opportunities for analysis and makes it possible to eliminate extra array temporaries
and copying — an important consideration for any Fortran90 compiler which desires

to achieve performance comparable to Fortran77 programs.

pghpf

The pghpf compiler, from The Portland Group Inc., is very similar in design to
NPAC’s Fortran90D compiler [32, 31, 126]. This is no surprise given the close asso-
ciation the two groups have had during recent years. The compiler still relies heavily
on run-time routines, which enables it to target both shared-memory and distributed-
memory machines. However the compiler does have additional analysis capabilities
which enable it to perform optimizations not possible in NPAC’s Fortran90D com-
piler.

The additional analysis performed by the compiler allows it to include optimiza-
tions such as heuristic-based data optimization, communication parallelization for
replicated arrays, and communication unioning. Interprocedural analysis is performed
which enables the global sharing of run-time data structures. By reusing run-time
data structures used for communication scheduling the cost of creating and destroying
such structures can be eliminated in many cases.

The compiler is also capable of recognizing and optimizing single-statement stencil
computations. And finally, the compiler performs enhanced analysis and optimization

of the resulting node program, including vectorizing loops for certain architectures.

xHPF

Applied Parallel Research Inc.’s xHPF translator is the most recent addition to the
FORGE90 parallel programming environment [19, 146, 75]. The system is identical
to the company’s xHPF77 system, with the addition of a preprocessor that converts
Fortran90 syntax into Fortran77. This structure classifies the compiler as a scalarizing
HPF compiler, similar to IBM’s xlhpf. Consistent with the design of other scalarizing
HPF compilers, xHPF has the ability to produce parallel code for both Fortran90
and Fortran77 constructs.

The FORGE90 environment is an integrated system built around a set of data-

bases. The databases hold the results of symbolic analysis, control flow analysis, and
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data flow analysis, as well as information regarding user-supplied directives. These
databases contain information about all the procedures associated with an applica-
tion. This allows the system to perform deep interprocedural analysis, thus enabling
the parallelization of loops containing subroutine calls. The main limitation of the
system is that the base distributed memory parallelization tool (DMP) does not at-
tempt code restructuring transformations to enhance the detection or generation of

parallel code.

Adaptor

Adaptor is an HPF-like compilation system that is structured very much like the
CM Fortran compiler [33, 34, 35]. It only takes advantage of parallelism present in the
explicitly parallel HPF constructs. It has no feature for automatic parallelization. In
addition to batch compilation support, Adaptor also has a graphical user environment
which allows the user to assist in directing the translation process.

Adaptor’s compilation strategy can be split into three main phases. After the
abstract syntax tree is generated and normalized, the compiler splits program state-
ments in local and non-local operations. This step creates temporary variables and
arrays as necessary. In the next phase, all parallel array operations are translated
into an internal FORALL format and these resulting loops are analyzed. In the final
phase, parallel loops are adjusted so that they only work on local data, communica-
tion statements are generated, and the final node program is produced. The system

concentrates on producing correct code. It does not contain an optimization phase.

Fortran90-Y

The Fortran-90-Y compiler, developed at Yale University, is designed to support rapid
prototyping of compilation and optimization techniques [57, 59, 58]. The compiler
uses an abstract semantic algebra, Yale Intermediate Representation (YR), as its in-
termediate language. YR defines a series of semantic domains and sets of operators
within each domain, and combines them with shapes that represent iteration spaces.
The compiler optimizes a program by performing a sequence of source-to-source trans-
formations over the YR code. It produces code for the CM-2 and the CM-5 that is
comparable to that of the CM Fortran compiler.
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Chapter 4

Compilation Model

In this chapter we describe in detail our overall compilation model for Fortran90D.
This model is a hybrid of the two models presented in Chapter 2. As such we believe
that it exploits the advantages of each model while minimizing their weaknesses.
It accomplishes that by interleaving Fortran90 compilation issues with Fortran77
compilation issues.

This model, however, is not a central contribution of this dissertation. Instead,
it gives us a framework on which we can apply and explain our optimizations. The
optimizations themselves are not tied strictly to this model — they will work with

either of the models presented in Chapter 2 or any hybrid of them.

4.1 Introduction

Figure 4.1 contains an outline of our compilation model for Fortran90D. The outline
shows how some aspects of the scalarizing compiler have been combined with those
of the array operation compiler to produce a unified compilation system.

Once the Fortran90D input program has been parsed, we use the Fortran D direc-
tives to determine how the data arrays are to be distributed across the PEs. After the
distribution of the arrays, we look at the sequential code that exists in the program
to determine which portions of it can be parallelized. Computation partitioning and
communication generation come next. We then perform our high-level analysis and
optimizations, which are followed by lower-level optimizations. Finally subgrid loops
are generated as the last step before code generation. Each of these steps, with the
exception of parsing, is explained in the remainder of this chapter.

Readers familiar with the SIMD compiler technology developed at Compass Inc.
will notice that our model is an extended version of their Fortran90 compilation
scheme. They were the first to use the array operation compilation model presented
in Section 2.4.2 to create a compiler for distributed-memory machines. Their work

greatly influenced subsequent research projects and commercial products (e.g., the
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Figure 4.1 Our Fortran90D compilation model.

CM Fortran and MasPar Fortran compilers). Many of our optimizations were origi-

nally developed to address weaknesses found in these compilers.

4.2 Array Distribution

To exploit parallelism, the Fortran90D compiler distributes the data arrays across
the PE array, giving each PE a chunk of the data to process. The manner in which
arrays are distributed is very important for maximizing parallelism while minimiz-
ing expensive communication operations. As introduced earlier, Fortran D supplies
three statements for specifying a data distribution: DECOMPOSITION, ALIGN, and
DISTRIBUTE. When arrays are distributed across the PE array, each PE will locally
allocate an equal-sized subgrid to hold its portion of the distributed array. The rank of
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the subgrid matches the rank of the distributed array. The extent of the i-th subgrid
dimension is Extent; = [N;/P;|, where N; and P; are the extents of the distributed
array dimension and the PE array dimension, respectively. P, = 1 for dimensions
which are not distributed. The PE array itself is considered to have a rank equal
to the number of distributed dimensions of the distributed array. To simplify our
discussion, we limit the number of distributed dimensions to two.

The compiler uses a distribution function [92] to calculate the mapping of an array
element to a subgrid location within a PE. Given an array A, the distribution function
(4 (7) maps an array index ?into a pair consisting of a PE index pZd and a subgrid index
7. Inverse distribution functions, /,Lzll(pl_')d,j_)), give the reverse mapping. Table 4.1
shows examples of distribution functions and their inverses for one-dimensional arrays
with either BLOCK or CYCLIC distributions. In this dissertation all arrays, whether
user arrays or the PE array, use one-based indexing.

The Fortran D code in Figure 4.2 illustrates the concepts of data distribution.
Given a distributed-memory machine with P = 16 PEs, the compiler would distribute
array X as shown in Figure 4.3. Each PE would allocate a local subgrid X’(16). The

distribution function for X is:
px(i) = ((1—1) mod 16 + 1,[i/16]).

On the same machine, array Y would be distributed by the compiler as shown in
Figure 4.4. Notice how the PE array is now treated as a 4 x 4 matrix of PEs; i.e.,
Py = P, = 4. Thus Extent; = Fatenty = 5 and each PE would allocate Y'(5,5) as

the local subgrid. In this case the distribution function for Y is:

uy(i,3) = (/51 13/51). (( = 1) mod 5+ 1,(j — 1) mod 5 + 1)),

REAL X(256), Y(20,20)
DECOMPOSITION A(256), B(20,20)
ALIGN X(I) WITH A(I)

ALIGN Y(I,J) WITH B(I,J)
DISTRIBUTE A(CYCLIC)
DISTRIBUTE B(BLOCK,BLOCK)

Figure 4.2 Fortran D code declaring two distributed arrays.
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p(i) p (pid, j)
BLOCK | ([¢/Extent ], (i — 1) mod Fatent; + 1) | (pid — 1) % Extent; + j
CYCLIC (G~ 1) mod P, + L, [i/P1]) G—1)* P+ pid

Table 4.1 Distribution functions and their inverses.

4.3 Parallelism Detection

One of the biggest drawbacks of the array operation compilation model presented in
Section 2.4.2 was its inability to exploit the parallelism that is present in sequential
code. To rectify this shortcoming, our compilation model includes a phase that iden-
tifies any serial operations on distributed arrays that are safe to execute in parallel.
The search for parallelism is simplified by considering only those loop nests which
iterate over the distributed dimensions of the arrays.

The methods used to detect and exploit data parallelism in sequential code have
been well documented [12, 13, 25, 153, 161, 163] and will not be discussed any further

here.

4.4 Computation Partitioning

The next step is to map the parallel operations to the processors. The Fortran D com-
piler uses the “owner computes” rule, where every processor only performs computa-
tions that update data it owns [45, 165]. In essence, the data distribution specified by
the programmer is also a specification for distributing the computation. The compiler
uses the distribution functions discussed in Section 4.2 to determine ownership.

The owner computes rule could be replaced by a data optimization phase, which
may determine an alternate distribution for the computation and associated interme-

diate results, in an attempt to reduce the amount of communication [7, 56, 109, 119].

4.5 Communication Generation

Once data and computation distributions are finalized, the compiler must insert any
necessary communication operations. These are required to move data so that all
operands of an expression reside on the PE which performs the computation. A

Fortran77D compiler [152] generates individual SEND and RECEIVE pairs for non-



26

X X X
1 2 16
17 18 R
33 34 48
241 E 242 E 256 E
PE 1 PE 2 PE 16

Figure 4.3 A one-dimensional array with 256 elements
mapped in a CYCLIC manner onto a 16 PE machine.
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Figure 4.4 A 20 x 20 two-dimensional array mapped in a (BLOCK,BLOCK)
fashion onto a 16 PE machine configured as a 4 x 4 matrix.

local data accesses, and then depend upon later compilation phases to optimize them.
Our compiler model relies upon the same mechanism to handle serial source code.
However, Fortran90 array constructs supply additional information which can
allow a compiler to directly recognize and exploit collective communication rou-
tines. Examples of collective communication routines include CSHIFT and TRANS-
POSE. These routines have several features which provide compelling reasons for a

Fortran90D compiler to exploit them:

1. Performance: These routines, implemented in the runtime library, are highly
optimized for the target machine. Since these routines are written by hand

they can often exploit architectural features that are not portable and thus not
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used in higher level compilers, but which can provide significant performance

advantages.

2. Compiler complexity: Since these routines move data in a collective manner,
there is no need for subsequent compilation phases that attempt optimizations
such as message vectorization or message aggregation. This greatly decreases

the complexity of the compiler.

3. Composition: Collective communication operations may be combined to handle
complex communication patterns. Such compositions usually execute faster

than point-to-point communication operations generated by a compiler.

For these reasons a Fortran90D compiler should exploit collective communication rou-
tines whenever possible. This requires the compiler to recognize applicable patterns
in the array syntax used in assignment statements. Our compiler uses a variant of
the pattern matching techniques proposed by Li and Chen [120]. This requires an
analysis of the array subscripts that are used, in conjunction with information about
the array’s alignment and distribution.

After the communication operations have been inserted, all computations reference
data that are strictly local to the associated PEs. For example, the array assignment

statement:

X(2:2558) = X(1:254) + X(2:255) + X(3:256)
would be changed into the following three statements, where TMP1 and TMP2 are arrays
that match the size and distribution of X:

TMP1 CSHIFT(X,SHIFT=-1,DIM=1)
TMP2 = CSHIFT(X,SHIFT=+1,DIM=1)
X(2:255) = TMP1(2:255) + X(2:255) + TMP2(2:255)

Notice that in the third statement all the operands are “perfectly aligned” with each
other and that there is no further communication required to compute the expression
or store the result. This code is equivalent to the code produced by several other

commercial and research compilers [34, 110, 139].

4.6 Fortran90-level Analysis and Optimization

In this phase of the compilation process, we perform array-level analysis and opti-

mizations. The array-level analyses performed are those that are necessary to support
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our optimizations, and include data flow analysis, dependence analysis, and the gen-
eration of static single assignment form. These are discussed in Chapter 5.

The optimizations performed during this phase are the main contributions of
this dissertation and are presented in Chapters 6 — 9. These optimizations address
some of the overheads associated with compiling Fortran90 for distributed-memory

computers, as well as addressing the performance of the compiler itself.

4.7 Fortran77-level Analysis and Optimization

After performing our high-level array optimizations, we turn to optimizing the por-
tions of the program containing DO-loops and array-element references. As with the
optimizations we performed at the array level, these optimizations address the many
issues involved with generating efficient code for distributed-memory machines. These

optimizations fall into several categories:

Reducing Communication: Here we perform optimizations that attempt to re-
duce the amount of communication. These include message vectorization [21,
73], message coalescing [95], message aggregation [120, 131], redundant commu-

nication elimination [17], and the exploitation of collective communication [120].

Hiding Communication: These transformations attempt to hide the cost of com-
munication by overlapping communication and computation. Examples of such
optimizations are communication placement [49, 84], message pipelining [136],

vector message pipelining [95], and iteration reordering [113].

Improving Parallelism: Recognizing reductions and parallel-prefix scan operations
[53, 114] can help to improve the available parallelism. Loop interchange and
strip-mining [13, 160, 162] can be used to adjust the granularity of pipelined

computations to balance parallelism and communication [93].

Storage Management: The use of overlap areas [73] and hash tables can ease the
details of buffer management for certain types of computations. Message block-

ing [95] can be used in situations where buffer storage is limited.

For details on these optimizations see the individual citations or refer to Tseng’s
dissertation [152] where they are all discussed in terms of an optimizing Fortran77D

compiler.
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4.8 Scalarization and Subgrid Looping

As a final step in the compilation process the compiler must generate code that
iterates over the subgrids allocated to the individual PEs. This step is composed of
several sub-steps. First, array expressions are scalarized into serial DO-loops, and
these loops are fused when possible. Next the loops bounds of all parallel loops are
lowered so that they iterate only over the local subgrids. Then guard statements or
context switching code is produced as needed depending upon the target architecture.
Each of these sub-steps is discussed below. The result is a Fortran77 SPMD program

that is ready for compilation and execution on the parallel machine.

4.8.1 Scalarization

The compiler translates the parallelism that is explicit in the Fortran90 array syntax
into code that manipulates the arrays that have been distributed across the PEs.
Since each PE is in fact a serial processor, the array expressions must be scalarized,
i.e., translated into serial code [12, 14, 161]. This process replaces the array expression
with a loop nest containing array references with only scalar subscripts.

As an example, the array assignment statement
X(1:256) = X(1:256) + 1.0
would be translated into the following loop

DO I =1, 256
X(I) = X(I) + 1.0
ENDDO

which iterates over all 256 elements of the array X.

Unfortunately, the naive translation of array statements into serial loops is not
always safe. Recall from Section 2.2 that the semantics for an array assignment
statement specify that all right-hand side array elements are read before any left-

hand side array elements are stored. Thus a naive translation of
X(2:255) = X(1:254) + X(2:255) + X(3:256)
into the following loop nest

DO I = 2, 255
X(I) = X(I-1) + X(I) + X(I+1)
ENDDO
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is incorrect, since on the second and subsequent iterations of the I loop the reference
X(I-1) accesses the new values of the array X assigned on the previous iteration.
Fortunately, we never encounter this situation within our compilation model in
its current instantiation. Recall from Section 4.5 that the generation of communica-
tion operations, with their associated temporary arrays, results in array expressions
whose operands are all perfectly aligned. This property ensures that a naive scalar-
ization of array assignment statements is always correct. The above example, after

communication generation and scalarization, will look like:

TMP1 CSHIFT(X,SHIFT=-1,DIM=1)
TMP2 = CSHIFT(X,SHIFT=+1,DIM=1)
DO I = 2, 255

X(I) = TMP1(I) + X(I) + TMP2(I)
ENDDO

After the array expressions have been scalarized, the program contains many sepa-
rate loop nests, each containing a single scalar assignment statement. Such programs
exhibit poor temporal data locality and a high loop-overhead/computation ratio. To
address these problems our compiler uses loop fusion [10] to merge multiple loop nests
covering the same iteration space into a single loop nest.

The fusion of loops, however, is not always safe. A data dependence between two
adjacent loops is called fusion-preventing if after fusion the direction of the depen-
dence is reversed [1, 154]. The existence of such a dependence means that fusion is
not safe. In our current model however, no such fusion-preventing dependences can
exist between adjacent scalarized loops. This is due to the fact that the generation
of communication causes all subgrid loops to operate on “perfectly aligned” data.
Any fusion-preventing dependence that existed prior to communication generation is
now carried through a communication operation and its compiler temporary. This
communication operation prevents the Fortran90 array expressions (and their corre-
sponding scalarized loops) from becoming adjacent and are thus not considered for
loop fusion.

For example, given the following two array assignments

X(2:255)
B(2:255)

X(2:255) + A(2:255)
X(1:254) + B(2:255) + X(3:256)

communication generation would result in
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X(2:255) = X(2:255) + A(2:255)
TMP1 = CSHIFT(X,SHIFT=-1,DIM=1)
TMP2 = CSHIFT(X,SHIFT=+1,DIM=1)
B(2:255) = TMP1(2:255) + B(2:255) + TMP2(2:255)

in which the fusion-preventing dependences are now carried by the temporary arrays.
The definitions of the temporary arrays prevent the scalarized loops for the array
assignments from becoming adjacent.

Due to this perfect alignment of data within array operations, our compiler can
directly generate a single loop nest for adjacent Fortran90 array statements if they
have identical distributions and cover the same iteration space. We call such array
statements congruent '. This form of scalarization precludes the need for loop fusion.
For example, when presented with the following array statements

X(1:256) X(1:256) + 1.0

A(1:256) = X(1:256) *x 2.0
B(1:256) X(1:256) + A(1:256) + B(1:256)

our compiler would directly generate the following loop during scalarization.

DO I =1, 256

X(I) = X(I) + 1.0

A(I) = X(I) ** 2.0

B(I) = X(I) + A(I) + B(I)
ENDDO

4.8.2 Subgrid Looping

After array statements have been scalarized into DO-loops, we need to adjust the
bounds of the loops so that they iterate over the subgrid that is assigned to each PE.
The resulting loop is known as the subgrid loop. Some Fortran90 compilers combine
scalarization and loop bounds reduction into a single step [156]. We have separated
them since our compiler needs to also lower the bounds of Fortran77 loops written
by the programmer.

Continuing our previous example X(1:256) = X(1:256) + 1.0, where the array
X is distributed as in Figure 4.3, scalarization generates the following loop.

DO I =1, 256

X(I) = X(I) + 1.0
ENDDO

!Congruence is a stronger restriction than conformance [142], which just considers shape and size.
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Loop bounds reduction alters this loop to create the following loop,

DO I = 1, Extent; I Extent; = 16
X'(I) = X(I) + 1.0
ENDDO

where Extent; is the size of the subgrid and is calculated as described in Section 4.2.
Recall that X’ is the local subgrid instantiation of the distributed array X.

For MIMD architectures each PE executes the subgrid loop asynchronously. For
SIMD architectures the execution of the subgrid loop is a cooperative effort between
the FE and the PE array. The FE handles the control flow by executing the looping
construct. For each iteration of the loop, the FE then broadcasts instructions to the
PE array. The broadcast instructions result in each PE adding 1.0 to X'(I), where
the value of I is also broadcast from the FE.

4.8.3 Guard Statements and Context Switching

Up to this point all of our detailed examples have used arrays that, when distributed,
gave an equal number of elements per PE, and all expressions involving the arrays have
accessed the entire array. When either of these conditions is not met, the compiler has
to modify the subgrid loop so that only the desired subgrid elements are processed.

Given the Fortran D declarations in Figure 4.2, assume we now encounter the array
assignment statement X(2:242) = X(2:242) + 1.0, which increments 241 elements
of X starting with the second element. As illustrated in Figure 4.3, PE 1 holds 15
of these elements in X'(2:16), PE 2’s full subgrid is involved, and PEs 3 through 16
each have affected elements in X'(1:15). The subgrid loop for this statement must
only modify the affected subgrid elements.

The manner in which this is done depends upon the target architecture. For
MIMD machines we can further refine the subgrid loop bounds or introduce guard
statements. For SIMD machines we need to insert code to set the execution flags of

the PEs.

MIMD Loop Bounds Refinement and Guard Introduction

When the target architecture is a MIMD machine, each PE has the capability to
determine the values of the loop bounds for the subgrid portion it owns. Thus in
many cases the compiler needs only to generate code that dynamically sets the loop

bounds on each PE. The formulae in Table 4.2 show the calculations necessary to
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BLOCK CYCLIC
Lower | max((pid;-1)*Ext;+1,L)-(pid;-1)*Ext; | 1b; = ((L-1)/P;)+1
Bound if ((pidi~1) < MOD(L-1,P;))
Ib; =1b; +1
Upper | min(pid;xExt,;,U)-(pid;-1)xExt, ub;, = ((U-1)/P;)+1
Bound if ((pid,~1) > MOD(U-1,P,))
ubi = ubi -1

Table 4.2 Loop Bounds Refinement

compute the loop bounds when a subsection of an array is being referenced. The
values for pid;, Ext; (an abbreviation for Extent,), and P, are as defined in Section 4.2
Recall that we use 1-based indexing for all arrays, including the PE array and the
local subgrids.
For the example of incrementing the elements X(2:242), the following code is

produced:

LB; = ((2-1)/Py) + 1

IF ((pid;-1) < MOD(2-1,Py)) LBy = LBy + 1

UB; = ((242-1)/P;) + 1

IF ((pid;-1) > MOD(242-1,P;)) UB, = UB; - 1

DO I = LBy, UB;

X'(1) = X(I) + 1.0
ENDDO

Although the reduction of loop bounds handles the majority of situations arising
from the use of Fortran90 array syntax, there are times when it is insufficient. For
such complex cases it may be necessary to compute the local iteration sets [54, 105]
or it may require the insertion of explicit guards [45, 99, 136]. We do not discuss the
details of these at this point.

SIMD Context Switching

Since SIMD machines have a single instruction stream, the subgrid iteration space
must include the union of all the iteration spaces required by the individual PEs.
The subgrid loop must then contain code to enable and disable different sets of PEs
depending upon which subgrid element is being processed. This is accomplished by
changing the context of the PE array by setting each PE’s execution flag as described
in Section 2.1.2.
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To determine the set of PEs to enable we employ the inverse distribution functions
described in Section 4.2. The context switching code added to our subgrid loop that
increments X(2:242) is:

DO I = 1, Extent; I Extent; = 16
Set _Context(((I-1)*P; + pid; > 2) .AND. ((I-1)*P; + pid; < 242))

X'(I) = X'(I) + 1.0
ENDDO

P; is the number of processors, while pid; and Extent; are as defined previously. The
function Set_Context causes each PE to evaluate the logical expression and enable
its execution flag if the result is true, otherwise the execution flag is disabled.

In a similar manner, operations on arrays that do not “evenly” fill the machine
require context switching code to be inserted into the subgrid loop. Compare the
Fortran D declarations in Figure 4.5 to those in Figure 4.2. On the same 16 processor
machine, array Y2 would be distributed as seen in Figure 4.6. Looking at Figure 4.6,
it can be seen that array Y2 is distributed such that:

e PEs (1:3,1:3) each contain a full subgrid of data,

e PEs (1:3,4) contain data only in the left portion of their subgrids,

e PEs (4,1:3) contain data only in the upper portion of their subgrids,
e PE (4,4) contains data only in the upper-left corner of its subgrid.

Since different PEs contain data in different subgrid locations, the subgrid loop
must contain code to change the context depending upon which subgrid element is
being processed. Again, the inverse distribution functions determine the active set
of PEs. For example, the Fortran90 statement Y2 = ABS( Y2 ) would generate the
following subgrid loop nest:

DO J = 1, Extent, I Extenty = 5
DO I =1, Extent; I Extent; 5
Set _Context (((pid;-1) * Extent; + I < 17) .AND.
((pidy-1) * Extenty + J < 19))
Y2/(I,J) = ABS ( Y2/(1I,J) )
ENDDO
ENDDO

Extent; and pid; are the subgrid extent and PFE index, respectively, along the i-th

dimension.
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REAL Y2(17,19)
DECOMPOSITION B2(17,19)
ALIGN Y2(I,J) WITH B2(I,J)
DISTRIBUTE B2(BLOCK,BLOCK)

Figure 4.5 Fortran D code declaring an odd-shaped array.
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Figure 4.6 A 17 x 19 two-dimensional array mapped in a BLOCK
fashion onto a 16 PE machine configured as a 4 x 4 matrix.

It should be obvious by now that the code required for changing the context can
be quite complex. If the previous example had only operated on a subrange of the
array Y2, for example, then the call to Set_Context would also have required a lower
bound check for each dimension. This would double the number of logical operations.

We do have one mitigating factor. When a single subgrid loop nest is generated for
a set of adjacent congruent array statements, we do not need to change the context
for each individual statement in the subgrid loop; i.e., they all operate under the
same context. This is true by our definition of congruent array statements: they have

the same iteration space and operate on arrays that have identical distributions.

4.9 Summary

In this chapter we have presented our compilation model for compiling Fortran90D

programs for distributed-memory architectures. This model establishes a foundation
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on which we build our optimizations and transformations. However, it is important
to reiterate the fact that our optimizations are quite general and can be applied to

many different Fortran90 compilation models.
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Chapter 5

Analysis of Fortran90 Array Operations

5.1 Introduction

Prior to optimizing a program, a compiler must analyze it to determine facts that can
be used to validate transformations. Since our goal is the optimization of programs
at the Fortran90 array level we need the ability to analyze programs at that level. In
this chapter we present methods for extending scalar analysis algorithms to include
the analysis of Fortran90 array operations. The analysis methods we investigate are
data-flow analysis and dependence analysis, as well as the static single assignment
intermediate representation. The results of these analyses are used by the optimizing

transformations presented in the remainder of this dissertation.

5.2 Data-Flow Analysis

Data-flow analysis is a classical analysis technique which tracks the flow of data
through the program’s variables [11, 100]. Analyzing a program’s data flow can
provide information on reaching definitions, available expressions, and live variables,
which in turn can enable optimizations such as global common subexpression elimina-
tion, loop invariant code motion, strength reduction, and global register allocation [5].
Data-flow analysis and associated optimizations have been standard components of
optimizing compilers for many years.

In this section we discuss analyzing data-flow through Fortran90 array statements.
Since data-flow analysis depends upon a correct control-flow graph (CFG), we first

discuss generating CFGs for Fortran90 programs.

5.2.1 Control-Flow Graphs

Generating a CFG for Fortran90 is not much different than for Fortran77. Fortran90
contains only a single control construct that is not present in Fortran77: the CASE

construct. The CASE construct has identical semantics to similar constructs found in
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other languages. Thus the CFG for the CASE construct is generated as with other
languages.

Another construct added to the Fortran90 language is the WHERE construct. It
is important to note that the WHERE construct is not a control construct. It is
tempting to think of the WHERE construct as an array-level IF statement, but this is
not the case. All the assignment statements in the WHERE construct are executed in
a sequential manner, first those under the WHERE statement and then those under

the ELSEWHERE statement.

5.2.2 Data-Flow Analysis of Array Expressions

Data-flow analysis is traditionally used to analyze the flow of values through scalar
variables. It is too costly to compute data-flow information through each element
of an array. However, there are times when we want to know information about an
array as a single object. In those cases we can treat the array like a scalar variable,
and use existing flow analysis techniques.

Once the CFG for a Fortran90 program is constructed, data-flow analysis proceeds
just as with a Fortran77 program. In fact, our Fortran90 compiler uses the data-flow
analysis engine that was written for the Fortran77D compiler. The challenge comes
in generating the local access sets that are used as input for the analysis.

Local access sets for data-flow analysis, such as use, def, and kill, specify how
each basic block affects the flow of values through the program. Extending these to
include arrays is a fairly straight-forward exercise. If an array is referenced, regardless
of whether it is a reference to a single element or a subsection of the array, it is a use.
Similarly, any assignment to an array is a def. But only a def that defines the entire
array can be considered a kill. This important distinction requires that we examine
the subscript expression used for the array access. Subscripts containing only null
triplets are easily identifiable as full array references. However symbolic analysis may
be required to compare subscript expressions against the declared ranges of the array.

In our compiler, we use data-flow analysis to generate live-variable information
for arrays. With this information we create an interference graph, which we use in

our offset-array optimization presented in Chapter 6.
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5.3 Dependence Analysis of Array Syntax

In this section we present a methodology for performing data dependence analysis
directly on Fortran90 array-section references. We show how direction vectors can be
extended to include the dependence information. We also introduce a special class of
dependences that arise from array syntax, and discuss some of their properties.

The dependence information produced by the algorithms presented here are used
in our compiler to perform context partitioning (see Section 7.2) and advanced scalar-
ization (see Chapter 8).

Before beginning it is important to clarify some terminology that is used in this
section. An array reference is a subscripted variable reference. A subscript is one
element from a subscript list. A triplet, as defined in Section 2.2, is one type of sub-
script. It is assumed that whole array references, array references without a subscript
list, are represented within the compiler to include a subscript list containing the

appropriate number of null triplets.

5.3.1 Data Dependence

The theory of data dependence is well understood and is extensively used in advanced
optimizing and parallelizing compilers. We say that a data dependence exists between
two statements if there is an execution path from one to the other and both statements
access the same memory location. Data dependence is fundamental to compilers that
attempt reordering transformations since it specifies statement orderings that must
be preserved to maintain program semantics [12, 161, 166].

There are four types of data dependence:

o True dependence (§) occurs when one statement writes a memory location that

another statement later reads.

o Antidependence (§) occurs when one statement reads a memory location that

another statement later writes.

e Oulput dependence (6°) occurs when one statement writes a memory location

that another statement later writes.

e Input dependence (8') occurs when one statement reads a memory location that
another statement later reads. Input dependences are different than the others,

in that they do not restrict the order of execution.
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Dependence analysis is the process of determining whether a data dependence
exists between two statements [24]. The principal focus of dependence analysis is
to determine dependences that arise from subscripted array references that appear
within loop nests, since it is not always easy to determine if such references access

the same memory location.

5.3.2 Partition-based Dependence Testing

In the partition-based dependence testing algorithm [76] used in the analysis and
transformation systems at Rice University, pairs of array references are classified
before being tested. This enables us to choose the most efficient test for a given pair
of references and lets us test the subscripts in the order of less expensive to more
expensive. The classification system consists of two orthogonal criteria: complexity
and separability.

Complexity refers to the number of distinct loop induction variables that appear
within a subscript. Individual subscripts are first classified, and then those results
are used during dependence testing to derive a classification for a subscript pair.
Complexity classes include Z1V (zero index variables), SIV (single index variable), and
MIV (multiple index variables).

Separability refers to whether or not different subscript positions contain common
induction variables. A subscript position is separable if the indices it contains do not
appear in other subscript positions [12, 41]. If different subscript positions contain
the same index, they are said to be coupled [121]. The concept of separability is
important when testing multidimensional arrays in that it allows dependence testing
to proceed subscript-by-subscript without a loss of precision. In contrast, coupled
subscripts must be tested as a group to obtain exact results.

The concepts of complexity and separability are combined in the partition-based
dependence testing scheme to determine the most appropriate test to use for a given
pair of references. An outline of the algorithm is given in Figure 5.1. This algo-
rithm has been used with great success in the PFC compiler [13], the ParaScope

programming environment [104], and the Fortran D compiler [93, 152].

5.3.3 Dependence Representation

Data dependences are often represented using direction vectors and/or distance vec-

tors [161]. The direction vector is an ordering vector, containing <, =, >, or #, that
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1. Partition the subscripts into separable and minimal coupled groups.
2. Label each subscript pair as ZIv, SIV, or MIV.

3. For each separable subscript pair, apply the appropriate single subscript test
based upon the complexity of the subscripts.

4. For each coupled group, apply a multiple script test.
5. If any test yields independence, no dependences exist.
6. Otherwise merge all the direction vectors computed by the previous steps into

a single set of direction vectors for the two references.

Figure 5.1 Partition-based dependence testing algorithm.

specifies the relation of the source and target iterations involved in the dependence.
The distance vector contains the vector difference of the source and target iterations.
These vectors are convenient methods for characterizing the relationship between the
values of the loop indices of the two array references involved in the dependence. In
this work we discuss only direction vectors, although the algorithms presented could
easily be adapted to work with distance vectors.

Direction vectors are useful in determining if a dependence is loop-carried or loop-
independent [13]. For loop-carried dependences, the direction vector also tells us
which loop carries the dependence and in which direction. The vectors contain an
element for each loop which encloses both statements involved in the dependence.
The positions in the vectors from left to right correspond to the surrounding loop
indices from outermost to innermost.

To extend direction vectors for array-section references, we add vector elements
to account for the implied loops of the triplets. The number of elements added to
a vector corresponds to the number of triplets that the two array references have in
common. In most cases these vector elements are only considered when the two array
references are congruent?, in which case they have the same number of triplets. These
new direction vector elements appear to the right of those elements corresponding to
surrounding loops. We order the elements from left to right as they appear in the

subscript list, although any consistent ordering will do. In fact some people may want

2See Section 4.8.1 for the definition of congruent arrays.
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to use the opposite ordering since they want the rightmost direction vector position,
corresponding to the innermost loop, to be associated with the leftmost subscript
due to the column-major storage layout of Fortran arrays. We chose the left to right
ordering for its ease of understanding since it matches the order in which the triplets
appear in the program text.

Consider the code fragment shown in Figure 5.2. Any dependences among state-
ments 57 and Sy due to the references to array A would have an associated direction
vector containing three elements: the first corresponding to the I loop, the second
corresponding to the first triplet, and the third corresponding to the second triplet.

This fragment of code contains the following dependences: 515(:7%:)51, 515(:7:7:)51,

515(:7>7:)SQ, and 525(<7:7:)Sl,

5.3.4 Scalarization Dependences

Given this extension to the concept of a direction vector, there is a subclass of depen-
dences that deserve some special attention: those dependences which have an “="
in all non-triplet direction vector positions. We call these dependences scalarization
dependences [138]. Since scalarization dependences arise from parallel constructs in
the Fortran90 program, they do not have the same behavior as non-parallel depen-
dences. Note that it is valid for any of the three direction specifiers to appear in the
triplet-related vector positions. Thus for scalarization dependences, it is no longer the

¢

case that a true dependence with a “>" as the first non-“=" direction is equivalent

to an antidependence with the direction reversed, as has been previously noted by
others [14, 40].

By definition, scalarization dependences are loop-independent with regard to sur-
rounding loops. This has several implications. First, any such dependence of a state-
ment on itself is always an antidependence (ignoring input dependences), whereas
such a dependence from one statement to a subsequent one is either a true or output

dependence. Next, scalarization dependences have no effect on the parallelization of

DO I =1, N-1
Sy A(T,2:N-1,1:N) = A(T,1:N-2,1:N) + A(I,2:N-1,1:N)
Syt B(I,2:N-1,1:N) = A(I,3:N,1:N) + A(I+1,2:N-1,1:N)
END DO

Figure 5.2 Fortran 90 code fragment.
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surrounding loops, regardless of what direction the triplet-related positions contain.
Finally, it is especially important to point out that such dependences do not affect the
ability to parallelize the DO-loops that get generated during the scalarization of the
Fortran90 code. This is due to the fact that the array-section subscripts are explicitly
parallel constructs.

But this does not mean that we can ignore scalarization dependences. These de-
pendences play an important role when the compiler scalarizes the Fortran90 program
into its Fortran77 equivalent. This aspect of the dependences is addressed in more
detail in Chapter 8.

Consider again the code in Figure 5.2. This fragment of code contains three
scalarization dependences: Slg(:%:)Sl, 513(27:7:)51, and Sid(= > ,=)S2. The code

also has the dependence S3d( - —)51 which is carried by the I loop.

5.3.5 Classification of Array-Section References

As introduced in Section 5.3.2, pairs of array references are classified before being
tested by the partition-based dependence testing algorithm. This allows us to choose
the most efficient test for a given pair of references. We now extend the concepts of

complexity and separability to include array-section references.

Complexity

We have created a new complexity class for subscripts containing array syntax. We
call this new class simply TRIPLET, corresponding to the triplet notation used in the
subscript. Unlike the other complexity classes, a TRIPLET is also sub-classified to
indicate the complexity of its components. A TRIPLET is sub-classified as s1v if the
corresponding triplet subscript contains no index variables (the S1v sub-classification
is due to the index variable implicit in the triplet notation). If the triplet contains
one or more index variables from enclosing loops in any of its components, then the
TRIPLET is sub-classified as MIV. When convenient, we use the shorthand TRIPLET g7y
and TRIPLET);jy to represent the complexity and sub-classification of a triplet sub-
script.

Statement S5 in Figure 5.3 has two array references, each containing two subscripts
that are classified as TRIPLET. For each reference, the first triplet subscript is sub-
classified as M1V due to the induction variable J, and the second triplet subscript is

sub-classified as SIV.
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DO J =1, N
Ss: A(J:N,K,1:N) = A(J:N,1:N,L) + ---
END DO

Figure 5.3 Complexity and separability example.

Separability

The concept of separability is an important issue for a dependence testing algorithm
that is interested in both precision and efficiency. It allows dependence testing to
proceed subscript-by-subscript, thus breaking down the problem space into smaller
pieces, without a loss of precision. Luckily, array-syntax subscripts can cause different
subscript positions to become coupled in only one situation: if corresponding triplets
for the two array references being tested are in different subscript positions, those
positions must be coupled.

Considering again the two references to array A in Figure 5.3, we see that the
second and third subscript positions become coupled since the second triplet appears
in each of them. The first subscript position is separable. Note however, that if the
induction variable J appeared in another subscript position, that position would be
coupled with the position that contains the first triplet. That coupling would be due
to J though and has nothing to do with the triplet.

5.3.6 Dependence Testing of Array Expressions

We have designed our dependence testing methodology to work with the partition-
based testing scheme presented in Figure 5.1. We extend the algorithm to first deter-
mine the separability and complexity for triplet subscripts. In the following subsec-
tions we introduce the necessary decision algorithms that determine independence of
array-section references, or determine dependence and produce the desired direction
vectors. As with most dependence testing schemes, we assume that all expressions
used in the subscripts and triplets are linear in the loop induction variables. If non-
linear expressions are encountered we assume all direction vectors are possible.

In some situations that may occur, we exploit existing SIV and MIV tests. This
necessitates the generation of the appropriate input parameters. To accomplish this
we translate the triplet notation into a linear function of a pseudo-induction variable

i. The pseudo-induction variable runs from 1 to (ub — (b + st)/st, where (b, ub, and
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st are the lower bound, upper bound, and stride of the triplet, respectively. The
linear function that is used in place of the triplet within the dependence tests is
st* 14 (Ib— st). When the lower bound and stride are both one, this simplifies to i.
This translation does not need to be applied to the program representation; it is only

needed to produce the necessary input parameters for existing tests when required.

Separable Triplet Subscript Tests

The dependence test used for a separable subscript pair in which one of the subscripts
is a triplet depends upon the triplet’s sub-classification as well as the complexity of
the other subscript. When both subscripts in the pair to be tested are classified as
TRIPLET g7y, an SIV test is required. In this case we exploit the existing SIV test
implemented in the system. To use the test we produce the appropriate input param-
eters by generating the linear function of a pseudo-induction variable, as explained
previously.

However, there are two common cases which can be tested quite easily without
requiring the conversion. The first case is when both triplets have a stride of one. In

that situation the dependence distance is simply the difference of the lower bounds:

A dependence exists if and only if |d| < uby — [by. The second case is when both

triplets have the same non-unit stride, in which the dependence distance is:

by — b,

Stl

d (5.2)

In this case a dependence exists if and only if d is an integer and |d| < (uby — by +
sty)/sti. Most triplet subscripts are expected to fall into one of these two special
cases, and as can be see in Equations 5.1 and 5.2, the dependence tests for these
cases are simple and easy to compute.

If the case where the triplet is classified as TRIPLET g7y and the other subscript is
Z1V, the pair has the form (lb:ub:st,¢;). For this situation, we define the dependence

point to be:

b+ st
po st (5.3)
st

A dependence exists if and only if p is an integer and is in the range 1: (ub—[b+st)/st.

For the common case where both [b and st are equal to one, p is simply equal to ¢;.
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All dependence directions are possible, except for when p equals [b or ub, in which
case one direction can be eliminated.

In all other cases of separable subscript pairs that contain at least one triplet an
MIV test is required. We rely upon the existing MIV tests implemented in the system
in the same manner as we used the SIV test above, by converting the triplet into a

linear function of a pseudo-induction variable.

Coupled Triplet Subscript Test

When triplet subscripts are coupled with other subscripts a multi-subscript test is
necessary. We utilize the existing scalar testing algorithms available in the system by
converting the triplets into linear functions of pseudo-induction variables. However,
this conversion has a special consideration in the case of coupled subscripts. If the
subscripts became coupled because corresponding triplets did not appear in matching
subscript positions, then the linear functions generated for the corresponding triplets
share the same pseudo-induction variable. Once the triplets have been translated, we

exploit whichever multi-subscript test is available in our system [121, 134, 164].

5.4 Static Single Assignment Form

In recent years, Static Single Assignment (SSA) form [64, 65] and related intermedi-
ate representations have gained in popularity because of their efficiency in program
analysis and transformations [15, 137, 155]. SSA is loosely characterized by the trait
that each variable has only a single definition. This is achieved by creating a new
instance of a variable, typically indicated by a subscript, each time the variable is
assigned a new value. For example, the variable V' will have a different instantiation,
such as Vg5, Vi, and V,, at different definition points. When different instances of a
variable come together at a control flow merge point, the instances are combined via
a ¢-function which defines yet another instance of the variable. See Figure 5.4 for a
sample code segment and its equivalent SSA form including the use of a ¢-function.

Often the SSA representation of a program is in the form of a sparse graph, in
which nodes represent definition points of variables and edges connect a variable to all
its uses. For the implementation of SSA that exists within the Fortran D compiler [87],
the SSA graph of a program does not exist as a separate object but rather is built on
top of the CFG. It is important to realize that we keep a close correspondence between
the SSA graph and the CFG. This gives us the capability to use the strengths of each,
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IF (A == 0) THEN IF (Ap == 0) THEN
B=20 By ==
ELSE ELSE
B =C/A By = Co/Ao
END IF END IF
By = ¢(Bg,B1)
D = 2%B Dg = 2x*B,
(a) Original source. (b) SSA version.

Figure 5.4 FExample of SSA form.

and allows us to efficiently move between the two as needed. It is also worthwhile to
mention for the benefit of those who use SSA for compiling serial programs that we
do not delete/subsume copy operations that involve arrays®.

There are several variants of SSA available. The variations can enhance the pre-
cision of different analysis algorithms. For our purposes, we have found that the
pruned-SSA form [60] best fits our needs. In the pruned-SSA form, dead ¢-functions
have been deleted. We also employ both def-use and use-def edges in our graph.
The only other change we make to the SSA representation deals with the handling of

arrays.

5.4.1 SSA and Fortran90 Array Sections

Within the original design of SSA, uses and modifications of arrays are represented
with ACCESS and UPDATE operators, respectively. To enable the analysis of Fortran90
programs, we have enhanced these operators to handle array sections by incorporating
regular section descriptors (RSDs) [12]. For instance, the UPDATE operator takes
three arguments: the array being modified, a section descriptor indicating the affected
elements, and the new values to be stored in those locations. Figure 5.5 contains some
examples of array section references and their corresponding SSA form.

The only other modification that we were required to make to the Fortran77D
implementation of SSA so that it would properly handle Fortran90D programs was
the identification of array kills. This was accomplished by a quick analysis of the

array-section subscripts, similar to that performed for data-flow analysis as described

3We make this point since it has caused confusion when we’ve discussed the ideas presented in this
dissertation with our comrades in the scalar compiler group.
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.= A(1:N) <++ = ACCESS (A5, [1:N])

AC2:N-1) = - A¢ = UPDATE (A5, [2:N-11,--)
C = ACD) .- = ACCESS(Ag, [J1)

(a) Original source. (b) SSA version.

Figure 5.5 Example of SSA form of array-section references.

in Section 5.2.2. The identification of array kills is necessary to prevent the genera-
tion of useless def-use edges coming into the first argument of the UPDATE operator.
Preventing such useless edges from being inserted into the SSA graph means that
¢-functions that are created for whole-array definitions that appear inside a loop can
be pruned away as useless if they were not referenced after the loop. This is very
important since Fortran90 compilers often generate many array temporaries, and the
interaction between the UPDATE operators and the ¢-functions give the appearance
that the temporaries have much larger live-ranges than they actually have.

Figure 5.6 contains an example of how this occurs. In the original source, the
array T'M P has a very short live range: it is defined in one statement and used in
the next. However, the live ranges of the T'M P; arrays in the SSA version of the
code span the entire DO-loop. This is because the UPDATE operator makes T'M P,
appear live and the ¢-function defining T'M P, causes T'M P; to become live around
the back-edge of the loop. Preventing the generation of the def-use edge from the
¢-function to the UPDATE operator means that the ¢-function is useless and will be
pruned away. This in turn reduces the live-range of TM P; to be the same as TTM P
in the original program.

In our Fortran90D compiler we use SSA form, enhanced as described above, to
perform the analysis required for our offset array optimization. The use of SSA in
this instance permits advanced analysis and transformations to be performed in linear
time. In addition, no possible applications of the optimization are missed. Full details

of the offset array optimization and its use of SSA form are given in Chapter 6.

5.5 Summary

In this chapter we have presented methodologies for extending program analysis to
handle Fortran90 array references. We have given algorithms to extend data flow

analysis and SSA form as well as extending dependence testing to directly analyze
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DO I=1,N DO I=1,N
TMP; = ¢(TMPy,TMP;)
TMP(:) = --- TMP; = UPDATE(TMP,,[:], ")
- = TMP(:) -+ = ACCESS(TMP{, [:])
END DO END DO
! no other uses of TMP ! no other uses of TMP;
(a) Original source. (b) SSA version.

Figure 5.6 Interaction between ¢-function and UPDATE operator.

data dependences arising from array-section references. An important characteristic
of the testing procedures presented in this chapter is that they were designed to fit
smoothly into the framework of existing optimizing compilers. These extensions give
Fortran90 and HPF compilers analysis capabilities not previously available, allowing
them to make decisions and perform transformations at the Fortran90 level before

scalarizing the program into Fortran77 code.
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Chapter 6

Offset Array Optimization

Eliminating the local data motion by separating the set of data that
must move between nodes from the data that stays within local memory
may yield a significant performance improvement. S. L. Johnsson [98]

6.1 Introduction

For Fortran90D or HPF to gain acceptance as a vehicle for parallel scientific pro-
gramming, they must achieve high performance on problems for which they are well
suited. To achieve high performance on a distributed-memory parallel machine, a
Fortran90D compiler must do a superb job of translating Fortran90 data-parallel ar-
ray operations into an efficient sequence of operations that minimize the overhead
associated with data movement.

Interprocessor data movement on a distributed-memory parallel machine is typi-
cally far more costly than movement within the memory of a single processor. For this
reason, much of the prior research on minimizing data movement has focused on the
interprocessor case. Notable research in this area includes Knobe, Lucas and Steele’s
work on automatically aligning and partitioning arrays to minimize data movement
associated with binary operations on arrays [109], and Chatterjee, Gilbert, Schreiber,
and Teng’s work on optimally mapping the computation of array expressions to pro-
cessors to minimize data movement when the mappings of data to processors are
fixed [55].

While interprocessor data movement is more costly per element, the number of
elements moved within the memory of a single processor may be much larger, causing
the cost of local data movement to be dominant. For example, consider applying the
Fortran90 CSHIFT intrinsic to perform a circular left shift by one position of a 1D
array of 1000 elements partitioned block-wise across four processors (each processor
is responsible for a contiguous block of 250 elements). To perform the shift, each
processor sends one element to its left neighbor in a ring, moves 249 elements one

position left within the processor’s local memory, and receives one element previously
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sent by the neighboring processor to the right. Here, each processor moves 249 ele-
ments on-processor for every one element moved off-processor. The cost of local data
movement becomes more important for distributed arrays as the partition size per
processor increases.

In this chapter, we focus on the problem of minimizing the amount of intra-
processor data movement when computing Fortran90 array operations. To make our
technique as generally applicable as possible, we handle array assignment statements
where the right-hand side consists of a call to a Fortran90 shift intrinsic. The tech-
nique can handle all such assignment statements, even when the definition of the
array and its uses are separated by control flow. Such a technique supersedes those
that are restricted to a single statement.

In the next section we briefly review the Fortran90 shift operators and their ex-
ecution cost on distributed-memory machines. In Section 6.3, we describe the offset
array strategy for reducing intraprocessor data movement associated with shift op-
erations on arrays with BLOCK or BLOCK_CYCLIC distributions. We have developed
two analysis algorithms for determining when offset arrays may be used. Section 6.4
presents an algorithm that performs analysis only at the basic block level. Section 6.5
describes a global SSA-based analysis algorithm that can exploit offset arrays over
entire procedures. We close the chapter by presenting some empirical results and

discussing related works.

6.2 Fortran90 Shift Operations

The Fortran90 circular shift operator CSHIFT (ARRAY, SHIFT, DIM) returns an array
of the same shape, type, and values as ARRAY, except that each rank-one section of
ARRAY crossing dimension DIM has been shifted circularly SHIFT times. The sign of
SHIFT determines the shift direction. See Figure 6.1 for an example. The end-off shift
operator EOSHIFT(ARRAY, SHIFT, BOUNDARY, DIM) is identical to CSHIFT except for
the handling of boundaries: array elements shifted off the end are lost and BOUNDARY
values are inserted at the other end. Figure 6.2 has an example of an EOSHIFT.
For the rest of the chapter we focus on optimizing CSHIFT operations although our

techniques can be generalized to handle EOSHIFT as well.
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147 71 4
2 5 8 8 2 5
3 69 9 3 6
(a) SRC (b) CSHIFT(SRC,SHIFT=-1,DIM=2)

Figure 6.1 Example of the CSHIFT intrinsic.

147 01 4
2 5 8 0 25
3 69 0 3 6
(a) SRC (b) EOSHIFT(SRC,-1,0,2)

Figure 6.2 Example of the EOSHIFT intrinsic.

6.2.1 Sources of Shift Operations

For Fortran90D, optimizing CSHIFT operations is important since CSHIFT operations
are ubiquitous in stencil-based dense array computations for which Fortran90D is best
suited. Besides CSHIFT operations written by users, compilers for distributed-memory
machines commonly insert them to perform data movement needed for operations on
array sections that have different processor mappings [110, 139, 34]. Section 4.5 de-
scribes how the communication generation phase of the compiler transforms certain
array section references into calls to shift intrinsics that perform the necessary inter-

processor data movement. For example, given the statement
X(2:255) = X(1:254) + X(2:255) + X(3:256)

the CM Fortran compiler would translate it into the following statement sequence,
where TMP1 and TMP2 are compiler temporary arrays that match the size and distri-
bution of X:

ALLOCATE TMP1, TMP2

TMP1 = CSHIFT(X,SHIFT=-1,DIM=1)

TMP2 = CSHIFT(X,SHIFT=+1,DIM=1)

X(2:255) = TMP1(2:255) + X(2:255) + TMP2(2:255)

DEALLOCATE TMP1, TMP2

For the rest of the chapter, we assume that all CSHIFT operations in a program are

explicit (either user-written, or inserted where appropriate during an earlier phase of
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compilation), that each call to CSHIFT occurs as a singleton operation on the right-
hand side of an assignment statement, and that each CSHIFT in our intermediate form
is applied only to a whole array. All other occurrences of CSHIFT can be translated
into the required form by factoring expressions and introducing array temporaries.

For example, the statement:
X = X + CSHIFT(X,SHIFT=-1,DIM=1) + CSHIFT(Y(1:N:2),SHIFT=+1,DIM=1)
would be represented, internal to the compiler, by the following set of statements:

ALLOCATE TMP1, TMP2, TMP3

TMP1 = CSHIFT(X,SHIFT=-1,DIM=1)

TMP2 = PACK(Y,MASK=(/ (MOD(I,?2).EQ.1),I=1,N /))
TMP3 = CSHIFT(TMP2,SHIFT=+1,DIM=1)

X = X + TMP1 + TMP3

DEALLOCATE TMP1, TMP2, TMP3

Temporary arrays TMP1-TMP3 are specified such that they match the size and distri-
bution of X.

6.2.2 Shift Operations on Distributed-Memory Machines

When a distributed array is shifted across a distributed dimension, two major actions

take place:

1. Data elements that must be shifted across processing element ( PE) boundaries
are sent to the neighboring PE. This is the interprocessor component of the
shift. The dashed lines in Figure 6.3 represent this data movement for arrays

distributed in a BLOCK fashion.

2. Data elements that stay within the memory of the PE must be copied to the
appropriate locations in the destination array. This is the intraprocessor com-

ponent of the shift. The solid lines in Figure 6.3 represent this data movement.

Assuming a BLOCK distribution and that each PE contains a 2D subgrid of size
(g X g), a shift amount of d, d < g, consists of an interprocessor move of d columns
(of size g), and an intraprocessor move of g — d columns. The cost of such a shift

operation is described by the following model [69]:

Tshift =4dg (9 - d) tonpe + Conpe + g d toffpe + Coffpe (61)
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Figure 6.3 DST = CSHIFT(SRC,SHIFT=-1,DIM=2)

where tonpe and tompe represent the time to perform an intraprocessor and inter-
processor copy respectively, and Conpe and Cogpe represent the startup time (or la-
tency) for each type of copy. Table 6.1* presents measured values for each of the
model’s parameters for four different SIMD machines. Different models are required
for the cases d = g and d > ¢g. BLOCK_CYCLIC distributions also require a different
model which include a parameterization for the blocking factor.

The instances in which we are most interested occur when d is small compared
to g. For such cases Equation (6.1) is O(¢* tonpe) and the execution time Ty is
dominated by the cost of the intraprocessor copies, even when fonpe < tofipe-

There are also additional costs that should be considered that are not associated
directly to the execution of the shift operations. These costs relate to the temporary
arrays that are often created to receive the results of the shifts. Not only must

time be spent allocating and deallocating these arrays, but their additional memory

4From Fatoohi [69], ©1993 ACM.
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Parameter | CM2 | MPP | MP-1 | 610C
Loffpe 9.0 3.2 2.7 3.2
Cofipe 20.0 | 134 | 41.9 7.2
Lonpe 0.7 - 5.6 9.0
Conpe 35.0 -1 59.1| 18.0

Table 6.1 Measured cost of communication
parameters for a 32-bit word (in psec).

requirements often limit the size of the problems which may be solved on a given

machine.

6.3 Offset Arrays

The goal of the work described here is to eliminate the intraprocessor copying asso-
ciated with a Fortran90 CSHIFT operation when it is safe to do so. When we can
determine that the intraprocessor copying of a CSHIFT is unnecessary, we can trans-
form the program to perform only the interprocessor copying and rewrite references
to the shift’s destination array to refer to the source array with indexing adjusted
by the shift amount. We call such a destination array an offset array. In the follow-
ing subsections, we present criteria for determining when offset arrays are safe and
profitable and present the code transformations that avoid intraprocessor copying by
exploiting offset arrays.

To hold the data that must move between PEs, we use overlap areas [73]. Overlap
areas are subgrid extensions to hold data received from neighboring PEs. The advan-
tage of this is that it allows us to access the data of the offset array, both the portion
that is shared with the source array and the portion received from the neighboring
PE, in a straight-forward and simple manner. The disadvantage of this method is
that the storage allocated to the overlap areas is permanent. To limit the impact of
allocating this permanent storage, we place an upper bound on its size. This also
limits the size of the SHIFT amounts that may be optimized. If the shift does not
fit into the overlap areas, then it cannot be an offset array. But since we are only
interested in optimizing small SHIFT amounts, this is not a great concern. This up-
per bound should be set at compile-time by a heuristic that considers the machine

characteristics along with the expected size of the subgrids.
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6.3.1 Criteria for Offset Arrays

We have established a set of criteria to determine when it is safe and profitable to cre-
ate an offset array. Given an assignment statement DST = CSHIFT(SRC,SHIFT,DIM)
within our intermediate representation, the array DST may be treated as an offset
array, and can thus share storage with array SRC, if the following criteria can be

verified for this statement at compile time:

1. The source array SRC is not modified while this definition of DST is live.

2. The destination array DST is not partially modified® while SRC is live.

From the work on copy elimination in functional and higher-order programming
languages [144], we know that the above two criteria are necessary and sufficient
conditions for when the two objects can share the same storage. However, the sharing
of storage may not always be profitable. To insure profitability, we add the following

efficiency criteria:

3. The SRC array and the DST array are distributed in the same BLOCK (or
BLOCK_CYCLIC) fashion and are aligned with one another.

4. The values SHIFT and DIM are compile-time scalar constants.

5. The amount of interprocessor data must fit within the bounds placed on the

size of the overlap areas.

6. For each use of DST that is reached by the given definition, all the definitions
of DST that reach that use are identical offset arrays of the same source array

SRC.

These efficiency criteria may be relaxed if we are willing to generate multiple ver-
sions of code for statements that use the array DST, and then select the appropriate
version depending upon run-time conditions. However, due to the drawbacks of mul-
tiple versions of code, in particular code growth, we consider these additional criteria

to be important.

> Any partial modification requires a copy of the shifted array src and so we simply go ahead and
make the copy at the point of the shift. Any full modification of DST which kills the whole array
does not require the copy of SRC and thus DST may still be treated as an offset array up to the point
of the killing definition.
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6.3.2 Offset Array Optimization

Once we have determined that the destination array of the assignment statement
DST = CSHIFT(SRC,SHIFT,DIM) may be an offset array, we perform the following
transformations on the code. These transformations take advantage of the data that
may be shared between the source array SRC and destination array DST and move

only the required data between the PEs.

1. First we replace the shift operation DST = SHIFT(SRC,SHIFT,DIM) with a call
to a routine that moves the interprocessor data into the appropriate overlap
area: CALL OVERLAP_SHIFT(SRC,SHIFT,DIM).

2. We then replace all uses of the array DST, that are reached from this definition,
with a use of the array SRC. The newly created references to SRC carry along
special annotations representing the values of SHIFT and DIM. In the examples
that follow, the annotations are represented by a superscripted vector where

the DIM-th element contains the value SHIFT; e.g., SRC < SHIFT..>

3. Finally, when creating subgrid loops during the code generation phase, we al-
ter the subscript indices used for the offset arrays. The array subscript used
for the offset reference to SRC is identical to the subscript that would have
been generated for DST with the exception that the DIM-th dimension has been

incremented by the SHIFT amount.

It is possible, and actually expected, that offset arrays are themselves used in
other shift operations. If these shift operations also meet all of the criteria to be an
offset array then the above transformations can again be applied. We call such arrays
multiple-offset arrays. If one dimension is shifted multiple times, the SHIFT amounts
are simply added together. Figure 6.4 gives an example of a multiple-offset array.

As an example, consider the 5-point stencil routine in Figure 6.5(a). The expected
intermediate representation in Figure 6.5(b) is achieved by separating the communi-

cation operations from the computational operations. Once we have determined that

t1 = cshift(a,shift=-1,dim=1) CALL overlap_cshift(a,shift=-1,dim=1)
t2 = cshift(tl,shift=+1,dim=2) =—> CALL overlap cshift(a<~10> shift=+1,dim=2)
b=a+ t2 b=a+ a<-L+1l>

Figure 6.4 A multiple-offset array.
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SUBROUTINE FIVEPT(a,b,n)

REAL, ARRAY(n,n) :: a,b
DECOMPOSITION decomp(n,n)
ALIGN a,b with decomp
DISTRIBUTE decomp(BLOCK, BLOCK)
REAL cc,cn,ce,cw,cs

COMMON cc,cn,ce,cw,cs

b =cc *x a

& + cn * cshift(a,-1,1)
& + cs * cshift(a,+1,1)
& + cw * cshift(a,-1,2)
& + ce * cshift(a,+1,2)
RETURN

END

(a) Original program

SUBROUTINE FIVEPT(a,b,n)

REAL, ARRAY(n,n) :: a,b
DECOMPOSITION decomp(n,n)
ALIGN a,b with decomp
DISTRIBUTE decomp(BLOCK, BLOCK)
REAL cc,cn,ce,cw,cs

COMMON cc,cn,ce,cw,cs

CALL overlap.cshift(a,-1,1)
CALL overlap.cshift(a,+1,1)
CALL overlap.cshift(a,-1,2)
CALL overlap.cshift(a,+1,2)
b =cc *x a

& + cn * a<-1.0>
& + cs * a<ti 0>
g + cu * a<0-1>
& + ce * a<0+1>
RETURN

END

(c) Offset array transformations

I = = =

P

SUBROUTINE FIVE_PT(a,b,n)

REAL, ARRAY(n,n) :: a,b

REAL, ALLOCATABLE :: +t1,t2,t3,t4
DIMENSION(:,:) t1,t2,t3,t4
DECOMPOSITION decomp(n,n)

ALIGN a,b,t1,t2,t3,t4 with decomp
DISTRIBUTE decomp(BLOCK, BLOCK)
REAL cc,cn,ce,cw,cs

COMMON cc,cn,ce,cw,cCs

ALLOCATE(t1(n,n),t2(n,n),
t3(n,n),t4(n,n))
t1 = cshift(a,-1,1)

t2 = cshift(a,+1,1)
t3 = cshift(a,-1,2)
t4 = cshift(a,+1,2)
b =cc ¥ a

+ cn * t1

+ ¢cs * t2

+ cw * t3

+ ce * t4

DEALLOCATE(t1,t2,t3,t4)

RETURN
END

(b) Intermediate representation

SUBROUTINE FIVE_PT(a,b,n)

REAL, ARRAY(n/p,n/p) :: b

REAL, ARRAY(O:n/p+1,0:n/p+1) :: a
REAL cc,cn,ce,cw,cs

COMMON cc,cn,ce,cw,cCs

CALL overlap.cshift(a,-1,1)
CALL overlap.cshift(a,+1,1)
CALL overlap.cshift(a,-1,2)
CALL overlap.cshift(a,+1,2)

do j=1,n/p
do i=1,n/p
b(i,j) = cc * a(i,j)
+ cn * a(i-1,j)
+ cs * a(i+1,j)
+ cw * a(i,j-1)
+ ce * a(i,j+1)
enddo
enddo
RETURN
END

(d) Final node program

Figure 6.5 Offset array optimization on a 5-point stencil computation.
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the temporary arrays T1-T4 can be offset arrays, we perform the above set of trans-
formations. Figure 6.5(c) shows the program after the first two transformation steps
have been completed. The third step is performed during subgrid loop generation
and is shown in Figure 6.5(d). Notice that the declarations for array A and B have
been changed to declare the local subgrid, and that the declaration for A includes the
necessary overlap area. The node program can now be further enhanced by applying

additional advanced optimizations as discussed in Chapter 9.

6.4 Local Offset Array Analysis

The last three criteria for determining if a shifted array may be an offset array can
be very difficult to verify in the presence of complex control flow. For that reason we
have an analysis algorithm that works on a basic block at a time. After describing

the algorithm we analyze its complexity.

6.4.1 Local Analysis

Our local analysis algorithm requires that live information is available for SRC and
DST arrays of the candidate shift operations. Such information tells us if these arrays
are either live or dead at the end of each basic block.

Our local analysis algorithm is displayed in Figure 6.6. We begin by analyzing
each basic block that contains a shift operation. The shift operations within a basic
block are processed one at a time in the order that they occur. Processing the
shift operations in execution order is important for the proper handling of multiply-
offset arrays. For each shift operation encountered, we initially check criteria 3, 4,
and 5 specified in Section 6.3.1. If they are satisfied we then check to see if the
target array DST is live at the end of the basic block. If it is live then the local
analysis routine cannot determine the safety of the offset array optimization without
additional global information, and so the array is not offsetable within the scope of
local analysis. However, if DST is dead, we scan forward from the shift operation
checking the remaining criteria.

Since we can now limit the scope of the analysis to a single basic block, we can
easily verify criteria 1 and 2 by scanning the rest of the block after the shift operation.
Recall that the shift operation is a killing definition of the array DST, thus we need
only look for definitions of DST or SRC that occur between the shift operation and the

last reachable use of DST. If a killing definition of DST is encountered we can stop
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Procedure Local_Offset_Arrays
Input: Set of basic blocks containing shift operations.
Output: Basic blocks optimized with offset arrays.

for each basic block bb in the input set do
for each SHIFT operation stmt found in execution order of b do
dst = stmt.destination_array
src = stmt.source_array

if criteria 3, 4, or 5 is violated then iterate endif

/* Scan rest of basic block bb checking criteria 1, 2, and 6. */
current_statement = stmt.bblock_next
offsetable = true
list_of _references = nil
src_modified = false
while current_statement # nil and offsetable do
if current_statement references dst and src_modified then
offsetable = false
break
elseif current_statement references dst and — src_modified then
add current_statement to list_of_references
endif
if current_statement defines dst then
if current_statement is a killing definition of dst then
break /* No more reachable uses of dst. */
elseif Is_Array_Dead_Here(bb, current_statement, src) then
add current_statement to list_of_references
else
offsetable = false
endif
endif
if current_statement defines src then src_modified = true endif
current_statement = current_statement.bblock _next
endwhile

if offsetable then
/* Apply the offset array transformations to statement stmt and */
/* the statements in list_of_references that reference dst. */
endif
endfor
endfor
return

Boolean Function Is_Array_Dead_Here(bb,current_statement,srec)

/* Determine if array src is dead at the point of current_statement */

/* in the basic block bb. This just requires a simple backwards scan from */
/* the end of the basic block to statement current_statement, starting with */
/* the pre-computed global live information. */

Figure 6.6 Local offset array optimization algorithm
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our search for any more reachable uses. If a partial modification of DST is found we
must determine the liveness of SRC. Since we already have live information available
at the basic block level, this only requires a backward scan starting from the bottom
of the block. We annotate the block so that this scan need only be performed once
per SRC array. If SRC is dead at the point of the partial modification then it is still
possible for SRC and DST to share common storage elements, otherwise DST is not
offsetable. If we find that SRC is modified during our scan, then DST is not offsetable
if we find a subsequent reachable use of DST. If we complete our scan of the basic
block and both criteria 1 and 2 were satisfied, then criterion 6 is satisfied implicitly
for all reachable uses of DST that were encountered.

If all of the criteria are satisfied then the array is offsetable and we apply the
transformations described in Section 6.3.2. We then proceed with the next shift
operation in the current basic block, if one exists; otherwise we process the next basic

block containing a shift operation. The algorithm is displayed in detail in Figure 6.6.

6.4.2 Cost Analysis

The local analysis algorithm simply scans each basic block that contains a shift op-
eration. The basic block is scanned at most twice for each shift operation that it
contains: a forward scan to verify the offset criteria, and a possible backward scan to
determine the liveness of the SRC array. The complexity is thus O(bb * s), where bb
is the maximum size of a basic block, and s is the number of shift operations in the
program. If we assume an upper limit on the size of basic blocks, the complexity is
linear in the number of shift operations. We note here that the cost to compute live

information is O(nlog n).

6.5 Global Offset Array Analysis

Determining if it is valid for a shifted array to be an offset array across multiple
basic blocks can be very difficult. This is due to the challenge of verifying the criteria
specified in Section 6.3.1 over complex control flow patterns. In this section we present

an algorithm capable of solving this problem in an efficient manner.

6.5.1 Global Analysis

If one looks closely at the criteria in Section 6.3.1 it can be seen that criterion 6 is

the most difficult to verify. This is because of its inherent circularity: an array can



62

be an offset array if it and all other reaching definitions of a use can be offset arrays.
To be able to verify such a criterion requires an optimistic analysis framework; i.e.,
one must assume all shifted arrays are offsetable, and then attempt to disprove the
assumption. We have chosen to base our optimistic analysis framework on the SSA
intermediate representation [65] extended as discussed in Section 5.4.

In addition to the SSA graph, we generate an interference graph [38]. The in-
terference graph indicates those SSA variables with overlapping live ranges, and is
used to check for violations of criteria 1 or 2. The [live-ness of arrays is computed
as described in Section 5.2. The graph is built in the usual manner, but with one
exception: all ¢-functions occurring at the same merge point are considered to be
executed simultaneously. This prevents the detection of spurious interferences that
may prevent the use of offset arrays across merge points. We use pruned-SSA to
prevent live ranges from being extended unnecessarily, thus also preventing spurious
interferences. We also enhance the accuracy of the interference graph by exploiting

the RSDs in UPDATE operations to identify statements that kill the entire array.

6.5.2 Offset Array Algorithm

In this section, we present our algorithm for identifying offset arrays and transforming
the program to reference them. In describing the algorithm, we typically refer to the
SSA variable names rather than their CFG counterparts. The algorithm is shown in
Figure 6.7.

We begin by traversing the CFG in a reverse depth-first order looking for shift
operations. Upon encountering a shift operation which satisfies criteria 3—5, we check
the interference graph to see if criterion 1 is not violated. If all the required criteria
are satisfied, then it is safe for the destination array to be an offset array. Given
such a shift operation, we rename the destination array DST; by giving it the same
SSA name as the source array SRC;. The new name is annotated with SHIFT and
DIM information as described in Section 6.3.2. By using the same name we do not
violate the spirit of SSA. This is because the shift really does not create any new
values but rather just specifies a new indexing method for existing values. We change
the use of the SHIFT intrinsic into a use of the OVERLAP_SHIFT routine, and update
the interference graph by renaming the changed variable.

After we make this change, we propagate the information in an optimistic manner.

This insures that criterion 6 is satisfied wherever possible. The SSA framework allows
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Procedure Offset_Arrays

Input: CFG, the control flow graph for the procedure.
Output: CFG optimized with offset arrays.

/* See Figure 6.8 for auxiliary routines. */

SSA = Create _SSA_Form(CFG)
IG = Build_Interference _Graph(SSA, CFG)

for each SHIFT operation stmt in a depth-first traversal of the CFG do
push stmt onto stack 5
endfor

while stack S is not empty do
pop stmt off of stack 5
switch (stmt)

case SHIFT operation: Dst psyup = shift(Src::ggé)t, shift, dim):
if criteria 3, 4, or 5 is violated then break endif
if Check_Interferences(Dst psup, Stcssub, IG) then break endif

calculate new annotation Nanot from Sanot, shift, and dim

replace stmt with Srchin® = overlap_shift(Src2®m?t . shift, dim)

call Replace_Uses(Dst psys, Srcgs%%‘” ,9)

call Update_Graphs(Dst psuy,, Src2no SSA, IG)
break

case ¢-function: Dst peyy = ¢(Lvart™™t Rvariengty:.

if criterion 3 is violated then break endif

if Lvar™" 2 Rvar®®"°" then break

elseif Dst psup = Lvarygys or Dst peyy = Rvar gsup then break
Lanot __

elseif Lvaryy )" = Rvarg?%)t then

Newysup = Lvarpsup
else

New ysyp = Find _Phi(Lvar psyp, Rvar gsys, stmt)
endif

if Check_Interferences(Dst psup, New ysup, IG) then break endif

replace stmt with New 9" = ¢(Lvarfe™¢t Rvarfonet)

call Replace_Uses(Dst pgup,, Newkinot S)

call Update_Graphs(Dst psyb, Newkimot SSA, IG)
break

case UPDATE operation: Dstpe, = Update(Lvart®™¢t section, values):

if criterion 3 is violated then break endif
Newysyp = Gen_Next_SSA_Var(Luvar)

if Check_Interferences(Dst psup, New ysup, IG) then break endif
replace stmt with New e = Update(Lvart®m¢t | section, values)
Lanot

call Replace_Uses(Dstpsys, New g ,S)

call Update_Graphs(Dst psyb, New%izgt, SSA,IG)
break

endswitch
endwhile

call Insert_Copies(CFG,5SA)
return CFG

Figure 6.7 Global offset array optimization algorithm
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Function Check _Interferences(Dst psub, St¢ssub, IG)
/* Return TRUE if there exists an interference between */
/* Dst psup and some Sre;, © # Ssub. */
for each N; adjacent to Dstpsyup in IG do

if N = Src and ¢ # Ssub then

return lrue

endif
endfor
return false

Procedure Replace_Uses(Dest, Sre, S)
/* Replace each reference to Dest with a reference to Sre. */
/* If the use is in a ¢-function or UPDATE operation, then */
/* push operation on stack S. */
for each use X of Dest do

replace use of Dest at X with a use of Sre

if X is a ¢-function or UPDATE operation then

push X on stack S

endif
endfor
return

Procedure Update_Graphs(Old, New, SSA, IG)
/* Replace node Old with node New in both SSA and IG. */

return

Function Find_Phi(Lvar sy, Rvar psys, stmt)
/* Find the ¢-function merging Lvar s and Rvar gsus */
/* at the same merge point as stmt and return it. */
/* I it does not exist, return a new instance of Lvar. */
New ysyp = Hash_Table _Lookup (Lvar psyp, Rvar gsys, stmt)
if New y,up = nil then

Newysyp = Gen_Next_SSA_Var(Luvar)
endif

return New pup

Figure 6.8 Auxiliary procedures.

us to do this in a very efficient manner. This is accomplished by simply following
<...SHIFT,..>
; :

Depending upon the type of use, further propagation may be possible. Several dif-

the SSA def-use edges and replacing all uses of DST; with uses of SRC

ferent cases must be handled during this propagation; we discuss them next. When
the propagation of a change has completed, we continue the traversal of the program
looking for the next offsetable array. The reverse depth-first traversal order is im-
portant so that multiple-offset arrays can be correctly handled in a single pass of the
program.

As stated in the previous paragraph, we propagate the offset array information

by changing all uses of the original destination array DST; into uses of the new offset



65

.,SHIFT,...
array SRCj< ' 2

Since we are dealing with arrays, these uses can only occur
in three places: an ACCESS operation, an UPDATE operation, or a ¢-function. If this
change is propagated into an array ACCESS operator, there are no more opportunities
for propagation.

If the use is at an UPDATE operator we propagate the offset array through the
operation when possible. It is valid to propagate through the UPDATE as long as it
does not violate criterion 2 and it does not realign or redistribute the array. The
propagation is accomplished by generating a new instance of the SRC array, call it
SRCk, to be the target of the UPDATE operation in place of the existing DST array

..,.SHIFT,...
j< ’ " and then

is propagated to all its uses in a similar manner. If it is not possible to propagate

instance. This new SRCj receives the same annotations as SRC

through the UPDATE operation then a copy of the offset array may be required prior
to the UPDATE. This copy is inserted by a subsequent phase which we describe in the
next subsection.

When propagating an offset array into a ¢-function, in addition to verifying cri-
teria 1 and 3, it is only valid to continue the propagation if the other input to the
¢-function is an equivalent offset array (see criterion 6). Two offset arrays are equiv-
alent if they are from the same SSA family and have identical annotations. The one
exception to this rule is if a cycle has been created (i.e.; one of the inputs to the
¢-function, when its annotation is removed, is the same SSA variable being defined
by the ¢-function).

When it is possible to propagate through the ¢-function, we need to select the
correct SSA variable to receive the definition of this ¢-function. If the ¢-function
happens to be merging identical values, we simply use one of its inputs as the target
variable. Otherwise we look for a ¢-function at the same merge point whose inputs are
the unannotated variables of the current ¢-function. If found, we use the SSA variable
that it defines, otherwise we generate a new instance of the SSA variable in the same
manner as we did for UPDATE. In any case, the variable is annotated with the same
annotation as the input variables and is propagated forward. If it is not possible
to propagate through a ¢-function, then array copy statements must be inserted on
the appropriate branches leading to the ¢-function. These copies are added by the
Insert_Copies routine, which is the last function called by the Offset_Arrays procedure

and which we describe next.
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6.5.3 Inserting Array Copies

Once we have found all the offset arrays and propagated them as far as possible
through the program, it may be necessary to insert some array copy statements to
maintain the original semantics. The copy statements may be needed at points where
an offset array is used to define, via an UPDATE operation or a ¢-function, a non-offset
array.

It is quite easy to determine the statements that may require a copy while we are
propagating offset arrays in the Offset_Arrays procedure. To track these statements,
we maintain a set of such statements (the code has been omitted from Figure 6.7).
An UPDATE operation which is processed by the algorithm but determined not to be
offsetable is added to the set. A ¢-function which is determined not to be offsetable
is also added to the set. If the ¢-function is later determined to actually be offsetable
(after the other input parameter has been processed), then it is removed from the
set. The use of pruned-SSA form, where dead ¢-functions have been eliminated, can
greatly reduce the number of ¢-functions added to the set.

After the propagation of offset arrays has completed, the procedure Insert_Copies,
shown in Figure 6.9, is called to add the required array copies to the program. It
examines each statement in the set that was produced to determine if an array copy
is actually needed and to select the best placement for it. If the array copy is truly
required, it takes as input the offset array and defines the array originally used by
the statement. This copy statement performs all the intraprocessor data movement
that was avoided at the shift operation. Note, however, that no interprocessor data
movement 1s required.

Given an UPDATE operation from the set, an array copy statement is not required
if the UPDATE is a killing definition. Otherwise, we insert an array copy immediately
preceding the UPDATE.

For a ¢-function which defines a non-offset array, an array copy statement must
be generated for each input parameter that is an offset array. In general, the copy
statements are placed on the appropriate branches leading to the merge point repre-
sented by the ¢-function. It is possible to optimize this placement in the case of some
loop structures. If a copy must be made for the array values coming around from
the previous iteration but there is no use within the loop of the values defined by the
¢-function, then it is possible to move the array copy out of the loop by placing it on
the loop exit branch. The copy is moved to the shallowest nesting level such that it
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Procedure Insert_Copies(CFG, SSA, stmt _set)
/* stmi_set is produced in Offset_Arrays as described */

for each stmt in stmi_set do
switch (stmt)

case UPDATE operation: Dstpey, = Update(Lvari®™et, section, values):

if (section does not specify the entire array) then
insert Dst = Lvart"o!

endif

break

immediately preceding stmtin CFG

case ¢-function: Dstpgyup = qS(Lvarf?th, Rvarggggt):
if (Lanot # nil) then /* Rvar is handled similarly. */
insert Dst = Lvar®®"°! on appropriate branch in CFG
/* optimize placement when possible. */

endif
break

endswitch
endfor
return

Figure 6.9 Algorithm to insert array copy statements.

still dominates all uses. This is advantageous in situations where it is allowable for
an array to be an offset array inside a loop nest but not outside. The full copy is only
performed when the loop nest is exited rather than on each iteration.

Consider the example shown in Figure 6.10. In the original program, the definition
and use of array B inside the DO-loop can be made offset arrays, but B cannot be an
offset array after the loop due to the modification of array A. In such a case the ¢-
function for array B at the loop header cannot be made an offset array, and normally
the copy statement would be placed on the appropriate branch. But in this situation,
that would result in the copy statement being placed in the loop. But since By is not
referenced within the loop body it is only necessary to create a full, shifted copy of
array A on the loop exit branch, as is shown in Figure 6.10(c).

The insertion of array copy statements into the program raises a concern. We must
answer the question of whether these inserted copy statements can generate more
data movement than was specified in the original program. The following lemmas
and theorem states that a copy statement created for an offset array cannot execute

more times than the original shift operations that generated the offset array.

Lemma6.1 Given a copy statement C' created for an offset array SRC*"*!

which was generated by a set of OVERLAP_SHIFT operations {57, S2, S3,. ..},
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REAL, ARRAY(n,n) :: A,B REAL, ARRAY(n,n) :: Ag,Bg
DO DO
By = ¢(Bo, A7)
A= Ay = -
B = CSHIFT(A,+1,1) CALL overlap.cshift(Ay,+1,1)
=B - A2<+1’0>
A= --- Ay = .o
= B - B,
(a) Original program (b) Partial SSA representation
REAL, ARRAY(n,n) :: A,B
DO
A= ---
CALL overlap.cshift(A,+1,1)
= A<HL0>
ENDDO
B = A<TLO> Leopy statement placed here}
A= ---
=B

¢) Optimized program
(c) Op prog

Figure 6.10 Optimizing the placement of the array copy statement.

any path from the beginning of the program (Root) to C' must go through

at least one 5;.

Proof Assume there exists a path Pi: Root = C that does not contain an OVER-
LAP_SHIFT operation 5;. Since (' is an inserted copy statement for an offset array,
there must exist an OVERLAP_SHIFT operation S; and a path P;: S; = (. Since both
Py and P, end at C, and P; does not contain S; (by assumption), then there must
exist a merge point X that joins P; and P, prior to C'. X must contain a ¢-function
which merges the values of SRC*™ generated at S; with the other values of SRC that
reach C along Root =+ X. But our algorithm only propagates an offset array through
a ¢-function when the ¢-function merges identical offset arrays. Thus there must
exist an OVERLAP SHIFT operation S; identical to S; on Root —+ X which contradicts

our original assumption. (]

Lemma6.2 (' cannot be more deeply nested than all S; € {57, 5, 55,...}.
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Proof Assume (' is contained in a loop which does not contain an OVERLAP_SHIFT
operation ;. Since C'is an inserted copy statement for an offset array, there must
exist an OVERLAP SHIFT operation S; outside the loop and a path P: S; = C. The
path P must contain a ¢-function to merge the values reaching C' from S; with those
that reach C' from the back edge of the loop. By the same argument used in the proof
of Lemma 6.1, there must exist an OVERLAP_SHIFT operation \5; within the loop that

reaches the back edge of the loop, thus contradicting our original assumption. (]

Theorem 6.1 An inserted copy statement C is never executed more
often than {S;, S, 53,...}, the set of OVERLAP_SHIFT operations which

generated the offset array for which the copy statement was required.

Proof The theorem follows directly from the preceding two lemmas. (]

6.5.4 Cost Analysis

During our offset array algorithm each SSA def/use edge is processed at most once.
Thus our algorithm is guaranteed to terminate. This also means that our algorithm
is quite efficient. The cost of the algorithm is actually dominated by the cost of
generating SSA form and building the interference graph, both of which are O(r?) in
the worst case (although building SSA is O(n) in practice [65]). Once these structures
are built, the rest of the algorithm is linear. Finding offsetable arrays is O(n) and their
propagation through the program is O(e). In addition, the checking of interferences
is O(7). Here n is the size of the program, e is the number if edges in the SSA graph,

and ¢ is the number of edges in the interference graph.

6.6 Code Generation Issues
6.6.1 Scalarization of Offset Arrays

It is important to note that the exploitation of offset arrays necessitates changes to our
compilation model’s scalarization process. The scalarization methodology described
in Section 4.8.1 utilizes the fact that all operands of an array statement had been
made perfectly aligned by an early phase of the compiler. Thus a naive scalarization

of such a statement always produces correct code.
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Unfortunately, the use of offset arrays invalidates the perfect alignment property of
an array statement. In such cases it is possible for a naive scalarization of a statement
to generate a loop-carried true dependence, and in doing so incorrectly change the
semantics of the statement. Our scalarization process must be capable of handling
such a situation. In Chapter 8 we present an advanced scalarization algorithm to

address this problem.

6.6.2 EOSHIFT Offset Arrays

In this chapter we have not discussed the EOSHIFT operation, which is similar to
CSHIFT except that new boundary values are given to array elements which wrap-
around the end of the array. These new values create a conflict between EOSHIFT
and CSHIFT as to what values should actually be placed in the overlap areas; i.e., an
overlap area cannot simultaneously hold both the new boundary elements specified
by an EOSHIFT and the wrap-around elements of a CSHIFT.

To handle EOSHIFTs we modify our annotation vector to also include the boundary
value for each dimension (this value is NULL for ¢cSHIFTs). We then modify our
codegen methodology to use buffers rather than the overlap areas for EOSHIFTs — this
allows multiple EOSHIFTs and CSHIFTs to be offset simultaneously.

To efficiently use buffers one must apply loop peeling to peel off the iterations that
reference the buffers. This allows us to hoist the conditionals that choose between
subgrid elements and buffer elements out of the loop. The performance penalty for
leaving the conditionals in the loop outweighs the performance gain we obtained by
not making a full copy of the array. The peeling required to hoist these conditionals is
identical to the context splitting optimization we exploit for optimizing SIMD context

switches. This optimization is described in Section 7.3.

6.7 Experimental Results

To verify the usefulness of this optimization we have implemented it within the
Fortran D system. Since the global offset array algorithm handles a strict superset of
the cases the local algorithm can handle, we have only implemented the global algo-
rithm. The implementation required that we enhance the system’s data flow analysis
and SSA representation so that it could properly handle Fortran90 array constructs
as described in Chapter 5. The implementation is complete in that it performs the

described analysis, propagation, transformations, and insertions of array copies when
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necessary. Unfortunately, the implementation is not fully integrated with the back-
end of the Fortran D system, and thus it does not produce executable code. Instead
it outputs modified Fortran90 code that contains annotations but which cannot be
compiled.

Due to this limitation, we have split our experimental work into two phases. In
the first phase we performed static experiments in which we ran our compiler on a
set of Fortran90D /HPF codes and examined the results. In the second phase we then
hand-translated some of the codes into executable form which exploits offset arrays.

We then timed them on a variety of parallel architectures.

6.7.1 Static Experiments

To test our algorithm’s ability to identify and exploit offset arrays, we modified our
compiler to collect statistics and then we ran a set of Fortran90D and HPF codes
through it. The majority of the codes we tested were taken from the High Performance
Fortran Application (HPFA) project [86, 128] at the Northeast Parallel Architecture
Center (NPAC), Syracuse University. © The HPFA project contains codes ranging
from code fragments and benchmarking kernels to complete applications. Many of the
codes are available in Fortran90 and HPF source, as well as Fortran77 and message-
passing source. In addition to the HPFA codes, we also tested our compiler on the
Advanced Regional Prediction System (ARPS) [66] weather prediction code from the
Center for Analysis and Prediction of Storms (CAPS), University of Oklahoma. 7

Our algorithm worked as expected and was able to handle some difficult codes.
As an example, consider the before and after snap-shots of a section of code from an
N-BODY kernel shown in Figure 6.11. As can be seen, our optimization was able to
turn the array () into an offset array. The uses of the array ) were changed and the
algorithm was able to successfully propagate the offset array through several updates
as well. The propagation stopped at the second CSHIFT which redefined the array ().
It was not necessary to insert a copy statement at that point since the definition is a
killing definition. It was not possible to make the second CSHIFT an offset array since
the shift amount was not a compile-time constant.

A summary of our results is given in Table 6.2. Within the 134 modules which

we ran through our compiler we encountered 119 shift operations. Of these 119 shift

8See http://www.npac.syr.edu/hpfa for information on NPAC’s HPFA project.
"For more information on ARPS and CAPS, see http://wwwcaps.uoknor.edu//.
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q=CSHIFT(q,SHIFT=1,DIN=1) CALL OVERLAP CSHIFT(q,SHIFT=1,DIM=1)
k=npts/2 k=npts/2
dx(0:k-1)=p(0:k-1,PX)-q(0:k-1,PX) dx(0:k-1)=p(0:k-1,PX)-q<">(0:k-1,PX)
dy(0:k-1)=p(0:k-1,PY)-q(0:k-1,PY) dy(0:k-1)=p(0:k-1,PY)-q<"Y>(0:k-1,PY)
dz(0:k-1)=p(0:k-1,PZ)-q(0:k-1,PZ) dz(0:k-1)=p(0:k-1,PZ)-q<1:°>(0:k-1,PZ)
59q(0:k-1)=dx(0:k-1)**2+dy(0:k-1)**2  5q(0:k-1)=dx(0:k-1)**2+dy(0:k-1)**2

& +dz(0:k-1)**2 & +dz(0:k-1)**2
dist(0:k-1)=SQRT(sq(0:k-1)) dist(0:k-1)=SQRT(sq(0:k-1))
fac(0:k-1)=p(0:k~1,MM)*q(0:k~1,MM) fac(0:k-1)=p(0:k-1,MM)*q<10>(0:k-1,MM)

& /(dist(0:k-1)*sq(0:k-1)) g /(dist(0:k-1)*sq(0:k-1))
tx(0:k-1)=fac(0:k-1)*dx(0:k-1) tx(0:k-1)=fac(0:k-1)*dx(0:k-1)
ty(0:k-1)=fac(0:k-1)*dy(0:k-1) ty(0:k-1)=fac(0:k-1)*dy(0:k-1)
tz(0:k-1)=fac(0:k-1)*dz(0:k-1) tz(0:k-1)=fac(0:k-1)*dz(0:k-1)
p(0:k-1,FX)=p(0:k-1,FX)-tx(0:k-1) p(0:k-1,FX)=p(0:k-1,FX)-tx(0:k-1)
q(0:k-1,FX)=q(0:k-1,FX)+tx(0:k-1) q<%>(0:k-1,FX)=q<"?>(0:k-1,FX)+tx(0:k-1)
p(0:k-1,FY)=p(0:k-1,FY)-ty(0:k-1) p(0:k-1,FY¥)=p(0:k-1,FY)~ty(0:k-1)
q(0:k-1,FY)=q(0:k-1,FY)+ty(0:k-1) q<19>(0:k-1,FY)=q<">(0:k~1,FY)+ty(0:k-1)
p(0:k-1,FZ)=p(0:k-1,FZ)-tz(0:k-1) p(0:k-1,FZ)=p(0:k-1,FZ)~tz(0:k-1)
q(0:k-1,FZ)=q(0:k-1,FZ)+tz(0:k-1) q<1’0>(0:k—1,FZ)=q<1’0>(O:k—1,FZ)+tz(O:k—1)
q=CSHIFT(q, SHIFT=npts/2,DIM=1) q=CSHIFT(q<"%>,SHIFT=npts/2,DIN=1)
pC:,FR)=p(:, FH)+q(:, FX) (:,FX)=p(:,FX)+q(: ,FX)

p(:, p(:, a(:,
(:,F2)=p(:,FZ)+q(: ,FZ) IR O
PRz, Tasmphi, halTqtt, p(:,FZ)=p(:,F2)+q(: ,FZ)
(a) Before offset array optimization (b) After offset array optimization

Figure 6.11 Offset array optimization on an N-BODY code.

operations, only 5 appeared in stand-alone assignment statements (e.g., like the two
appearing in Figure 6.11); all the remaining shifts had started out as part of larger
expressions and were hoisted out by our communication generator (see Section 4.5).

Our algorithm was then able to analyze 74 of the 119 shifts. The 45 shifts that
we were not able to analyze appeared in the ARPS weather code. In that code most
arrays are three dimensional and are distributed in a (BLOCK,BLOCK,BLOCK ) manner.
However, there are several arrays with an additional time-step dimension that is not
distributed. The code contained 45 shifts of such arrays, where the fourth dimension
contained a scalar subscript. Currently our implementation is limited to handling
only the shifting of full arrays. Thus we were not able to analyze these shifts, and
they were left unchanged. However, since the scalar subscript always occurs on a serial
dimension, it is possible to apply the offset array optimization to these references. We
did not make the adjustment to our algorithm due to additional constraints.

Of the 74 shifts analyzed, our algorithm was able to create 53 offset arrays which

were referenced 70 times. Of the 53 offset arrays, 4 were multi-offset arrays. The
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Parameter Count
Modules processed 134
Shifts encountered 119
Shifts analyzed 74
Offset shifts 53
Multi-offset shifts 4
Uses of offset arrays 70
Offset-able updates 6
Offset-able ¢-function 0
Inserted copies 1

Table 6.2 Results of offset array static experiments.

reason that 21 of the 74 shifts were not offsetable was because the operations contained
shift amounts that were not compile-time constants; almost all of these occurring in
the ARPS code. These 21 shifts could have been handled if we had decided to support
the generation of multi-version code with an appropriate run-time check of the shift
amount.

As was previously noted, almost all of the shift operations encountered were orig-
inally parts of larger expressions. Some of these were explicit calls to the Fortran90
intrinsics, while others were implicit in the use of array notation. In either case, it
appears that a very localized analysis algorithm is all that is currently necessary to
make this optimization effective. In fact, a single-statement recognizer performed be-
fore our communication generation phase would be able to handle 95% of the shifts.
Note that such a single-statement recognizer would have to be able to handle explicit
and implicit shifts equally well.

Since our compilation model includes the communication generation phase, which
hoists communication operations out of expressions, the simplest analysis algorithm
we would find acceptable would be the local analysis algorithm that works at the basic
block level. Such an algorithm would be able to handle 99% of the shifts encountered
in our study. We found only a single case where the definition and use of a shifted
array were separated by control-flow. In that case the offset array was propagated
into a ¢-function, but that ¢-function was determined not to be offsetable. Thus

Table 6.2 reports that one copy statement was inserted.
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It is possible and very likely that this situation will change. Most of the codes
available for our test appear to simply be vectorized versions of Fortran77 codes. As
Fortran90 and HPF gain in popularity more codes will be developed which directly
exploit native Fortran90 constructs. The codes developed will become increasing
complex, possibly even machine generated. If a programmer or the programmer’s tool
attempts to optimize the code by performing transformations at the array level such
as common subexpression elimination, partial redundancy elimination or invariant
code motion, it would be very possible that a global analysis algorithm, such as the

one presented in Section 6.5 would be required to effectively exploit offset arrays.

6.7.2 Dynamic Experiments

To demonstrate the effectiveness of this optimization, we have compiled and executed
the code from Figure 6.5 on an IBM SP-2 with 8 processors, a Thinking Machines
CM-5 with 128 processors, and a MasPar MP-1 with 16K processors. Figures 6.12,
6.14, and 6.16 compare the execution times of the original program displayed in
Figure 6.5(a) and the optimized program shown in Figure 6.5(d) for varying subgrid
sizes. The figures show that the program exploiting offset arrays gives a speed-up of
a factor of two or more for the larger subgrid sizes. The figures also display the time
to execute the four CSHIFTs of Figure 6.5(b) and the four calls to OVERLAP_SHIFT
of Figure 6.5(d). Figures 6.13, 6.15, and 6.17 shows the percent of total execution
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time that is spent performing the shift operations for the respective machines. We
can see that in many cases the amount of execution time that is spent performing
the four CSHIFT operations is actually more than the time spent performing the
desired computation. In fact, on the SP-2 the CSHIFT operations account for 65% of
the total execution time for the largest subgrid. The corresponding number for the
OVERLAP _SHIFT operations is 7.3%. Additional experimental results are presented in
Chapter 9.

6.8 Related Work
6.8.1 The CM-2 Stencil Compiler

The stencil compiler [36, 39] for the CM-2 avoids the memory-to-memory copying
for shift operations that occur within specific, stylized, array-assignment statements.
These statements, or stencils, must be in the form of a weighted sum of circularly-
shifted arrays. Not only does the compiler eliminate intraprocessor data movement
for these statements, it also optimizes interprocessor data movement by using the
CM-2’s multidimensional and bidirectional interconnect, and exploits hand-optimized
library microcode to minimize data movement between local memory and registers.
However, use of this special-purpose compiler requires that the user identify these
stylized assignment statements in the source program and separate them into their
own subroutine.

Our compilation scheme is a superset of the stencil compiler. We hoist all shift
operations, whether implicit or explicit, out of expressions and assign them to array
temporaries. This allows us to handle all shift operations, whether part of a larger
expression or not, in a uniform manner. Since hoisted temporaries have short life
spans and thus never have conflicting uses, we will always be able to make them into
offset arrays.

We present a more complete comparison between our work and the stencil compiler

in Chapter 9 where we discuss our own stencil compilation strategy.

6.8.2 Scalarizing Compilers

Previous work on Fortran90D [62], like the stencil compiler, is capable of avoiding
some intraprocessor data movement for stylized expressions. In this case, the expres-

sions have to use array syntax. The compiler translates the array syntax expressions
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into equivalent Fortran77D code using FORALL statements. It is then the job of the
Fortran77D back-end, using dependence information, to determine the exact amount
of interprocessor communication required. Unfortunately, any call to CSHIFT, whether
in an assignment statement or as part of an expression, still makes a full copy of the

array. As with the stencil compiler, our work is a superset of this work.

6.8.3 Functional and Single-Assignment Languages

Functional and many high-level languages have value semantics, and thus do not have
the concept of state and variable as in Fortran. Naive compilation of such languages
causes the insertion of many copy operations of aggregate objects to maintain program
semantics. It is imperative that compilers for such languages eliminate a majority
of the unnecessary copies if they hope to generate efficient code. This task is known
as copy optimization. Although our problem differs somewhat from those faced by
functional languages, it is worthwhile to review their work.

Schwartz [144] characterizes the task of copy optimization as the destructive use
(reuse) of an object v at a point P in the program where it can be shown that all
other objects that may contain v are dead at P. He then develops a set of wvalue
transmission functions that can be used to determine the safety of a destructive use

within the language SETL.
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Gopinath and Hennessy [77] address the problem of copy elimination by targeting,
or the proper selection of a storage area for evaluating an expression, the goal of which
is to reuse the storage of the input parameters. For the lambda calculus extended
with array operation constructs, they develop a set of equations which, when solved
iteratively to a fixpoint, specify targets for array parameters and expressions. Their
approach can successfully target even divide and conquer algorithms. Unfortunately,
solving their equations to a fixpoint is at least exponential in time. To avoid this
cost within their implementation of the SAL language, they use type information to
“guess” the fixpoint, which they can then verify in linear time.

Schnorf et al. [143] describe their efforts to eliminate aggregate copies in the
single-assignment language SISAL. Their work analyzes edges in a data flow graph and
attempts to determine when edges, representing values, may share storage. Vertical
substitution attempts to link an output edge of a node with one of the input edges, thus
letting them share storage. Horizontal substitution attempts to link sibling output
edges. Our work is most closely related to the combination of vertical substitution
and horizontal substitution. In their combined algorithm, they first attempt vertical
substitution on a node and then horizontal substitution. Our work more or less
attempts to perform vertical substitution given the constraint that our programming
model implies horizontal substitution. That is we assume that all out-edges of an
operation share the same storage (equivalent to horizontal substitution), and then try

to find instances where an out-edge of a shift operation can share storage with the
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in-edge (equivalent to vertical substitution). They also rely upon pattern matching

to catch a large percentage of unnecessary copies.

6.9 Summary

In this chapter we have presented a unified framework for analyzing and optimizing
shift operations on distributed-memory multicomputers. The framework is capable
of handling the majority of such operations, whether written by the user or generated
internally by the compiler. This work supersedes prior work by others that only han-
dled shifts embedded within expressions. In addition, the efficiency of the presented
algorithms means they could replace the special-purpose pattern matching algorithms
used by many compilers without drastically affecting compile time. And although this
work has concentrated on distributed-memory machines, the optimizations presented
are also applicable to scalar and shared-memory machines. In Chapter 9 we discuss
an optimization designed to minimize the residual interprocessor communication of

shift operations.
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Chapter 7

Context Optimization

7.1 Introduction

SIMD machines offer impressive cost /performance ratios, and they are very well suited
for a large body of engineering and scientific applications. However, current compil-
ers for SIMD machines do not come close enough to exploiting the full potential of
these machines. To obtain the best performance on such architectures, aggressive
compilation techniques are required. One issue that SIMD compilers must address is
generating code to change the machine context; ¢.e., disabling processors not involved
in the current computation.

As described in Section 2.1.2 there is a need with SIMD machines to explicitly turn
processors on and off. This is due to the fact that there is only a single instruction
stream and not all processors need to execute each instruction. Only processors
containing data related to the current instruction should execute it. If a processor
is not to execute a set of instructions, it must be explicitly “masked out”. However,
changing the machine state, or context, is an expensive operation. Setting the machine
context is an overhead that one must pay to execute on a SIMD architecture.

As can be seen in the two simple examples given in Section 4.8.3, the code required
to set the context of the PE array can include multiple logical and arithmetic opera-
tions. This code can be a significant portion of the work performed within a subgrid
loop. It is our goal to reduce the impact of this overhead for programs compiled for
SIMD machines.

Our compiler strategy has a two-pronged approach to minimize the expense of
context switching. First, we rearrange the program statements so that as subgrid
loops are generated, as many statements as possible that execute under the same
context are placed within the same subgrid loop. Second, we alter the order in
which subgrid elements are processed by performing loop transformations on the
subgrid loops. These loop transformations will allow us to hoist the code that sets

the machine context out of the loops and thus reduce the number of context changes.
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These optimizations are described in detail in Sections 7.2 and 7.3, and some code
generation issues are discussed in Section 7.4. We present some preliminary results in
Section 7.5. Section 7.6 discusses related work by others. We conclude in Section 7.7
with a brief summary.

And although this chapter focuses on SIMD architectures, the optimizations pre-
sented are applicable to programs for MIMD architectures as well. Where appropriate,

we discuss how these optimizations apply to MIMD machines.

7.2 Context Partitioning

As explained in Sections 4.8.1 and 4.8.3, a single subgrid loop nest is generated for
adjacent Fortran90 array statements which are congruent, ® and these statements all
execute within the same context. However, unless an effort is made to make congruent
array statements adjacent, many small subgrid loops may still be generated. Sabot
recognized this problem, and recommended that users of the CM Fortran compiler
rearrange program statements, when possible, to avoid the inefficiencies of such sub-
grid loops [142]. In order to alleviate this problem automatically, our compiler has an
optimization phase that reorders statements within a basic block. The reordering at-
tempts to create separate partitions of congruent array statements, scalar statements,
and communication statements. We call this optimization context partitioning. The
partitioning could group scalar statements and communication statements together:;
however, we prefer to separate them so that the communication operations can be

further optimized by subsequent phases (see Section 9.5).

7.2.1 Context Partitioning Algorithm

To accomplish context partitioning, we use an algorithm proposed by Kennedy and
Mc¢Kinley [103]. While they were concerned with partitioning parallel and serial
loops into fusible groups, we are partitioning Fortran90 statements into congruence
classes. The algorithm works on the data dependence graph (DDG) [117] which must be
acyclic. Since we apply it to a set of statements within a basic block, our dependence
graph contains only loop-independent dependences [13] and thus meets that criterion.

Besides the DDG, the algorithm takes two other arguments: the set of congruence

8Recall from Section 4.8.1 that congruent array statements have the same iteration space and operate
on arrays that have identical distributions.
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classes contained in the DDG, and a priority ordering of the congruence classes. We
create a congruence class for each set of congruent array statements and then add
separate classes for scalar statements and communication statements.

An outline of the context partitioning algorithm is shown in Figure 7.1. For each
congruence class in priority order, the algorithm makes a single pass over the DDG.
During the pass it greedily merges nodes for the given class. Two nodes from the
same class may be merged if there does not exist a path between them that contains
a node from another class. A path containing a node from another class is termed a
bad path. When two nodes are merged, the DDG is updated to reflect it.

The strength of the algorithm comes in its ability to choose in constant time the
correct node pred with which to fuse the given node n of the selected congruency class.
The logic to do this is not shown in Figure 7.1 due to its complexity. Intuitively, n can

fuse with all its ancestors from which there does not exist a bad path, but it cannot

Procedure Context_Partitioning
Input: Stmts, the set of statements to be partitioned.
Classes, the set of congruence classes.
Priority, the priority ordering for Classes.
Output: A linear list of Stmts that has been partitioned.

generate DD(, the data dependence graph for Stmts

for each ¢ € Classes in decreasing priority do
for each node n € DDG do
if n1s DATA-READY then add n to Worklist
endfor

while Worklist £ () do

remove arbitrary node n from Worklist

if class(n)} = ¢ then
find node pred, previously processed, with which n can be merged
if pred # 0 then
fuse nodes n and pred in DDG
endif
endif

for each edge (n,m) in DDG do

visit node m

if m 1s now DATA-READY then add m to Worklist
endfor

endwhile
endfor

topologically sort DD to produce final output

end Context_Partitioning

Figure 7.1 The Context Partitioning algorithm.
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bypass any predecessor to fuse with an ancestor. It can also fuse with nodes which
are neither ancestors nor descendants. As nodes are processed for a given class, the
algorithm determines the highest numbered node m of class ¢ from which there exists
a bad path to n. Node n cannot fuse with m or any node with a lower number, where
nodes are numbered breadth-first in their fusion group. The algorithm also computes
the highest number of a direct predecessor £ of n with which n can fuse. Node n
cannot fuse with any node with a lower number than k& Thus the algorithm can
compute the fusion node pred by taking the maximum of £ and the next higher node
than m. The interested reader is referred to the paper by Kennedy and M¢Kinley for
complete details of the algorithm [103].

Figure 7.2 displays how context partitioning would handle a block of eight state-
ments. The statements are numbered to represent their textual order. The sub-
scripts represent their congruence class. In this example, there are two congruence
classes: A and B. Statement 6 is a scalar statement. Figure 7.2(a) shows the orig-
inal source code, and Figure 7.2(b) shows the data dependence graph. Naive code
generation would create six subgrid loops for these statements (only statements 4
and 5 would occur in the same subgrid loop). Figure 7.2(c) shows the data de-
pendence graph after partitioning congruence class B, the larger of the two classes.
Figure 7.2(d) displays the final result after partitioning class A. The final code is
displayed in Figure 7.2(e). The modified code requires only three subgrid loops to
be generated. (Note: Figures 7.2(b-d) show only true (flow) dependences; anti- and
output-dependences have not been shown since they clutter the diagrams and add
little benefit to the discussion, although they must be respected.)

Assigning a priority ordering to the congruence classes is required to handle class
conflicts. A class conflict occurs when there exist dependences such that a pair of
statements from one class may be merged during partitioning or a pair from another
class, but not both since that would introduce a cycle in the DDG and thus make
it unschedulable. The following contrived code segment, whose DDG is shown in
Figure 7.3, gives an example of a class conflict:

si: A(1:100) = A(1:100) + 1.0
s2: B(2:99) = B(2:99) * C(2:99)

s3: C(1:100) = B(1:100)
sf: D(2:99) = A(2:99)

It is possible to merge nodes s and s3 or nodes s2 and s4, but we cannot merge

both pairs. The priority ordering is used to determine which pair should be merged.
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Ta
(b) dependence graph (c) dependence graph after (d) dependence graph after

merging class B merging class A
1a: X(1:256) = X(1:256) + 1.0 14t X(1:256) = X(1:256) + 1.0
25 ¢ 7(1:100) = Z(1:100) + W(1:100) 341 V(1:256) = X(1:256) ** 2
341 V(1:256) = X(1:256) ** 2 25 ¢ 7(1:100) = Z(1:100) + W(1:100)
4 : W(1:100) = X(1:100) + Z(1:100) 4+ W(1:100) = X(1:100) + %(1:100)
55 : U(1:100) = 7%(1:100) + SCALARI 55 : U(1:100) = Z(1:100) + SCALARI
6s: SCALARI = SCALARIL * V(I) 85 ¢ 7(1:100) = SQRT(W(1:100))
Ta: X(1:256) = W(1:256) * SCALARL 6s: SCALARL = SCALARL * V(1)
85 ¢ 7(1:100) = SQRT(W(1:100)) 7a: X(1:256) = W(1:256) * SCALARI

(a) source code (e) modified code

Figure 7.2 Partitioning congruent statements.
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Figure 7.3 A context partitioning class conflict.

The algorithm merges pairs with a higher priority before those with a lower priority.
Kennedy and M¢Kinley have shown that choosing an optimal ordering of classes is
NP-hard in the number of classes. However, since class conflicts are considered rare,
a good heuristic for choosing an order should be effective. The heuristic that we have
chosen is to order the array statement congruence classes by their size, largest to
smallest for the given basic block, and to give the scalar and communication classes

the lowest priority.

7.2.2 Context Partitioning for MIMD Machines

It should be noted that context partitioning is not a SIMD-only optimization. It
is useful for Fortran90 compilers that target MIMD architectures as well. When
compiling for MIMD machines, in fact any parallel architecture, loop fusion [10] is an
important optimization as it can enhance the granularity of parallelism and increase
the possibility of data reuse while reducing the overhead of parallel loop execution.
This is particularly critical in Fortran90 compilation, where the scalarization of array
statements generates many loop nests each containing a single assignment statement.

In previous work on loop fusion for parallel machines [42, 154, 159] two loops
are candidates for fusion if their headers are conformable and there do not exist any
fusion-preventing dependences. Two loop headers are conformable if they specify the
same number of iterations and are both either parallel or sequential loops. A data
dependence between two loops is fusion-preventing if after fusion the dependence
becomes loop-carried and its direction is reversed.

While these criteria determine the safety of loop fusion and attempt to address its
profitability on parallel machines, they are insufficient when considering loop fusion

on distributed-memory architectures. This is due to the fact that they ignore the
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distribution and alignment of the arrays accessed within the loops, as well as the
exact iteration space of the loops.

When the distribution and alignment of the arrays and the iteration space of
the loops is not considered, it is possible for loops to be over fused. Loops are
over fused when the code produced for the resulting parallel loops exhibits worse
performance than the code for the separate parallel loops. As an example, consider
the sample code in Figure 7.4. In Figure 7.4(a) we see two simple Fortran90 array
assignment statements which operate on arrays with identical iteration spaces, but
have different distributions. In Figure 7.4(b) we see the loops that would result
from a naive scalarization. The Rice dHPF compiler [3] generates the code shown in
Figure 7.4(c) for the two loops from Figure 7.4(b) when targeting a four processor
machine. Since the scalarized loops have the same number of iterations and do not
have any fusion-preventing dependences, many parallel compilers that support loop
fusion would fuse the two loops into a single loop, such as seen in Figure 7.4(d). But
even though the loops have the same iteration space, the arrays upon which they
operate have different distributions. This causes problems for the code generator. As
of April 1997, the Rice dHPF compiler produces the code seen in Figure 7.4(e) when
the loops have been fused. When executed on an IBM SP-2, the performance of the
code generated for the fused loops is 22% worse than for the code where the loops
were not fused. This is due to the existence of the conditional and IMOD function
within the second loop.

When faced with such loops, Tseng [152] proposes using loop distribution to avoid
the complications of code generation. But this is actually doing double work: one
phase of the Fortran90D compiler fuses loops only to have a later phase distribute
them. The proper resolution is to avoid such loop fusion in the first place.

Others may claim that this problem can be avoided by delaying loop fusion until
after subgrid loops have been generated and loop bounds have been reduced. This
is dubious at best. The generation of subgrid loops often requires the creation of
symbolic loop bounds which are defined at run-time. This obfuscation of the code
makes it doubtful that conformable loop headers would be detected at compile-time.

To resolve this situation, loop fusion must consider the distribution and alignment
of arrays as well as the iteration space of the prospective loops. These properties are
those exactly captured by our definition of congruency!

We thus propose a MIMD compilation scheme that includes context partitioning

prior to scalarization, and that subsequent loop fusion be restricted to consider only
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REAL, ARRAY(100) :: A,B
DECOMPOSITION DECOMP1(100)
DECOMPOSITION DECOMP2(100)
ALIGN A WITH DECOMP1
ALIGN B WITH DECOMP2
DISTRIBUTE DECOMP1(BLOCK)
DISTRIBUTE DECOMP2(CYCLIC)

AC:) = A(:)
B(:) = B(:)

+ 1
+ 1

(a) Original program

REAL, ARRAY(100) :: A,B REAL, ARRAY(25) :: A,B
DECOMPOSITION DECOMP1(100)
DECOMPOSITION DECOMP2(100) DO i=25*mypid-24,25*mypid
ALIGN A WITH DECOMP1 A(i-25%(mypid-1)) = A(i-25*%(mypid-1)) + 1
ALIGN B WITH DECOMP2 ENDDO
DISTRIBUTE DECOMP1(BLOCK) DO i=mypid,mypid+96,4
DISTRIBUTE DECOMP2(CYCLIC) B((i+3)/4) = B((i+3)/4) + 1
ENDDO
DO i=1,100
A1) = A(R) + 1
ENDDO
DO i=1,100
B(i) = B(i) + 1
ENDDO
(b) After scalarization (¢) Generated code without loop fusion
REAL, ARRAY(100) :: A,B REAL, ARRAY(25) :: A,B
DECOMPOSITION DECOMP1(100)
DECOMPOSITION DECOMP2(100) DO i=mypid,25*mypid-28,4
ALIGN A WITH DECOMP1 B((i+3)/4) = B((i+3)/4) + 1
ALIGN B WITH DECOMP2 ENDDO
DISTRIBUTE DECOMP1(BLOCK) DO i=25*mypid-24,25*mypid
DISTRIBUTE DECOMP2(CYCLIC) A(i-25%(mypid-1)) = A(i-25*%(mypid-1)) + 1
IF (imod(i-mypid,4).eq.0) THEN
DO i=1,100 B((i+3)/4) = B((i+3)/4) + 1
A1) = A(R) + 1 ENDIF
B(i) = B(i) + 1 ENDDO
ENDDO DO i=25*mypid+4,mypid+96,4
B((i+3)/4) = B((i+3)/4) + 1
ENDDO
(d) After loop fusion (e) Generated code with loop fusion

Figure 7.4 Example of over fusing loops for distributed-memory machines.
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blocks of loops generated from congruent array statements. As an example, consider
the simplified program fragment from the SHALLOW weather prediction benchmark
code shown in Figure 7.5(a) where all the arrays are perfectly aligned and distributed.
Even though the two array statements have the same number of iterations, they
form two congruence classes since their iteration spaces are slightly askew. Following
our proposed strategy, the loops generated for these two statements would not be
fused even though they have the same number of iterations and there are no fusion-
preventing dependences. The reasons for this can be seen in the rest of the figure.
Figure 7.5(b) shows the statements after scalarization, and Figure 7.5(c¢) shows how
loop bounds reduction could be used to generate an efficient SPMD node program.
If on the other hand the compiler had fused the two loops, as shown in Figure 7.5(d),
the compiler can no longer use loop bounds reduction to instantiate the computation
partition. This is due to the fact that each PE does not process the same number
of elements for each statement. Instead the compiler inserts guards around each
statement, as is seen in Figure 7.5(e). This is less efficient since the guard statements
must be evaluated at run-time, once per iteration of the loop. For this reason, we
only fuse loops that are generated by congruent array statements.

We address the issues of context partitioning and loop fusion in more detail in the

chapters that discuss scalarization and stencil compilation.

7.2.3 Cost Analysis

Given the chosen priority ordering, the context partitioning algorithm is incrementally
optimal; i.e., for each class ¢, given a partitioning of classes with higher priority, the
partitioning of ¢ results in a minimal number of partitions. The algorithm partitions
the DDG in O((N + E)C') time, where N is the number of statements, E is the number
of dependence edges, and C is the number of congruence classes.

During subgrid loop generation, all statements in a partition are placed in the
same subgrid loop. The number of subgrid loops which operate over statements with

the same context is thus minimal, given the chosen priority ordering.

7.3 Context Splitting

In the first example in Section 4.8.3, which incremented X(2:242), the PE array
has the same context for iterations 2 through 15 of the subgrid loop; during these

iterations all the PEs are active. To take advantage of this invariance, we modify
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REAL, ARRAY(256,256)

X,Y,Z

DECOMPOSITION DECOMP(256,256)

ALIGN X,Y,Z WITH DECOMP
DISTRIBUTE DECOMP (BLOCK,*)

X(2:256,1:255)
Y(1:255,2:2586)

= F,(Z2(2:256,2:256),Z(2:256,1:255))
F4(Z(2:256,2:256),Z(1:255,2:256))

(a) SHALLOW: weather prediction code

REAL, ARRAY(256,256) :: X,Y,Z

DO j=1,255
DO i=2,256
X(i,3) = Fi(z(i,j+1),2(i,3))
ENDDO
ENDDO
DO j=2,256
DO i=1,255
Y(i,j) = F1(Z(i+1,3),2(1,3))
ENDDO
ENDDO

(b) After scalarization

REAL, ARRAY(256,256) :: X,Y,Z

DO j=1,255
DO i=1,255
X(i+1,3) = F(Z(i+1,j+1),Z2(i+1,3))
Y(i,j+1) = F1(Z(i+1,j+1),2(i,j+1))
ENDDO
ENDDO

(d) After loop fusion

REAL, ARRAY(64,256) :: X,Y,Z

1b = max(mypid#64,65)-(mypid*64)+1
DO j=1,255

DO i=1b,64

X(i,j) = F1(2(4,j+1),2(i,3))
ENDDO
ENDDO
ub = min(mypid*64,255)-64+* (mypid-1)
DO j=2,256
DO i=1,ub
Y(i,j) = F1(2(i+L,3),2(1,3))
ENDDO
ENDDO

(¢) SPMD code without loop fusion

REAL, ARRAY(64,256) :: X,Y,Z

1b = max(mypid#64,65)-(mypid*64)
ub = min(mypid*64,255)-64+* (mypid-1)
DO j=1,255
DO i=1b,ub
IF (i.1t.64) THEN
X(i+1,3) = F(Z(i+1,j+1),Z2(i+1,3))
ENDIF
IF (i.gt.0) THEN
Y(i,j+1) = F1(Z(i+1,j+1),2(i,j+1))
ENDIF
ENDDO
ENDDO

(e) SPMD code with loop fusion

Figure 7.5 Example of over fusing loops for
the SHALLOW weather prediction code.
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the subgrid loop by performing loop splitting, also called index set splitting [23, 161].
By splitting the iteration space into disjoint sets, each requiring a single context,
we can safely hoist the context setting code out of the resulting loops. We call this
optimization context splitting.

For the reference X(2:242), the iteration space of the subgrid loop is split into 3
sets: {1}, {2:15}, and {16}. Applying context splitting to the subgrid loop produces
the code shown in Figure 7.6. Compared to the original subgrid loop, this code has
hoisted the call to Set_Context out of the loop, eliminated several arithmetic and
logical operations, and the PE array context is now set only three times compared
to the original 16 times. As we can see from this simple example, context splitting
significantly reduces the number of times that the PE array context must be set for
a subgrid loop. Whereas the original subgrid loop set the context once per iteration,
it is now set only three times, no matter how large the subgrid is.

Unlike context partitioning, context splitting is a SIMD-only optimization. For
MIMD machines, compilers can often side-step the issue that is addressed by context
splitting. Since each PE in a MIMD machine also has control logic, a compiler can
generate a program such that each PE determines the loop bounds for its own subgrid
loop. By reducing the loop bounds, the compiler can often avoid iterations for which
the PE has no work and thus does not need to introduce any guard statements into
the subgrid loop body in those cases [74, 152].

We now discuss the details of context splitting. To simplify the discussion, we first
discuss one-dimensional CYCLIC, BLOCK, and BLOCK_CYCLIC distributions, and then

show how to combine one-dimensional splitting to handle multidimensional cases.

Set_Context (iproc > 2)
X(1) = X)) + 1.0
Set_Context (.TRUE.)
DOI = 2, 15

X'(I) = X(I) + 1.0
ENDDO
Set _Context (iproc < 2)
X'(16) = X'(16) + 1.0

Figure 7.6 Context splitting applied to subgrid loop for X(2:242).
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Our canonical example in the following presentation will be the statement X (N :M)
= X(N:M) + 1.0. Context splitting of subgrid loops for full arrays that do not evenly

fill the machine is treated simply as a special case, where N = 1.

7.3.1 Context Splitting a cycLic Distribution

With a standard cycLic distribution, element X(N) may reside on any processor
relative to the processor holding element X (M). However, the offset of X(N) within the
subgrid X’ must be less than or equal to the offset of X(M). That is given px(N) =
(iprocy, jn ), px (M) = (iprocar,jm), and N < M, then jy < jy must hold. We
cannot make any statement regarding the relationship of iprocy and iprocys, except
that jy = ja implies iproey < iprocy.

Using this information and our knowledge of cycLIC distributions, we know that
all PEs should be enabled for the subgrid iterations jy + 1 to jay — 1. This naturally
divides the iteration space into three sets: {jn}, {jn+1:jpr—1}, and {jrr}. Figure 7.7
depicts this situation. When jny = jas, the second iteration set is empty and the first
and third set are merged into a single set. The subgrid loop after context splitting
now looks like that shown in Figure 7.8.

The code can be simplified if N and/or M are known constants. When N and M
are both constants, the IF-test can be evaluated at compile-time and only the code
for the appropriate branch needs to be generated. In the case where the operation
is over the full array but the array does not evenly fill the machine, we know that
N = 1. In this situation the IF-test is unnecessary and the pre-loop statements can
be merged into the DO-loop. This is equivalent to peeling off the last iteration of the
subgrid loop and hoisting the context setting code accordingly. The result is shown

in Figure 7.9.

in

iprocy iprocy,

Figure 7.7 X(N:M) when X has a cycLIC distribution.
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iprocy = (N-1) mod P + 1

iprocy; = (M-1) mod P + 1

jn = [N/P]

jm = [M/P]

IF (jn = jm) THEN
Set_Context(iproc > iprocy .AND. iproc < iprocys)
X'(Gn) = X'(Gn) + 1.0

ELSE
Set _Context (iproc
() = X(Gn) +
Set_Context (.TRUE.
DO I = jN+1, jM—l

X'(I) = X(I) + 1.0

ENDDO
Set _Context (iproc < iprocyy)
X'(GGa) = X¥(Gu) + 1.0

ENDIF

iprocy)

>
1.0
)

Figure 7.8 Context splitting a cYCLIC distribution.

iprocy; = (M-1) mod P + 1
im = [M/P]
Set_Context (.TRUE.)
DOI =1, jyu-1
X'(I) = X(I) + 1.0
ENDDO
Set _Context (iproc < iprocys)
X'(Gam) = X(Gu) + 1.0

Figure 7.9 Context splitting a cYCLIC distribution where N=1.

7.3.2 Context Splitting a BLOCK Distribution

Given a BLOCK distribution, the element X(N) always reside on a processor that
has a number less than or equal to the processor holding the element X(M); that is,
iprocy < iprocyr. Figure 7.10 shows the affected elements of array X for the assign-
ment X(N:M) = X(N:M) + 1.0 when X has a BLOCK distribution. As can be seen, all
processors between iprocy and iprocys are enabled for all subgrid elements, whereas
all processors outside that range are disabled for all subgrid elements. Processor
iprocy 1s enabled at iteration jy and subsequent iterations. Processor iprocys is

enabled only for iterations up to and including jas.
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In

Jm

iproc, iproc,,

Figure 7.10 X(N:M) when X has a BLOCK distribution.

The difficulty in context splitting for a BLOCK distribution comes from distin-
guishing the case where jny < ja from the case where jx > ja. If we let LO =
min(jy,jp + 1) and HI = max(yy — 1,7a), then the iteration space is naturally
split into the following three sets: {1:L0—1}, {LO:HI}, and {HI+1:Extent}. The
context for the first iteration set is the processor set {iprocy + 1 : iprocys}t. The
processor set for the second iteration set includes both iprocy and iprocys if 75 < jur
holds, otherwise it excludes both. The context for the third iteration set is processors
{iprocy :iprocpyy — 1}. Figure 7.11 shows the subgrid loop after context splitting.

This code can be greatly simplified if both N and M are compile-time constants,
in which case both IF expressions can be eliminated. In addition, if LO = 1 or
HI = Extent then the body of the first or last DO-loop, respectively, is not executed.
That DO-loop and its associated call to Set_Context can then be safely eliminated.
In the case where the operation is over the entire array but the array does not evenly

fill the machine, the code can be simplified to that shown in Figure 7.12.

7.3.3 Context Splitting a BLOCK_CcYCLIC Distribution

Context splitting for a BLOCK_CYCLIC distribution is more complex. Here we show
how context splitting can be used to optimize a subgrid loop operating over such a
distribution.

BLOCK_CYCLIC is similar to CYCLIC but it takes a parameter b. It first divides
the dimension into contiguous chunks of size b, then distributes these chunks in the
same manner as CYCLIC. Figure 7.13 shows the distribution function used to map
an array index to the PE index/subgrid index pair for a BLOCK_CYCLIC distribution.
Also shown is the inverse function. It is interesting to compare these to the functions
for the standard BLOCK and cycLIC distributions, given in Table 4.1. Recall that

it is the inverse function that is used in the calls to Set_Context that occur in the
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iprocy = [N/Extent]
iprocy = |[M/Extent]
jnv = (N-1) mod Extent + 1
jm = (M-1) mod Extent + 1
IF (jyv < jm) THEN

LO =jN

HI =jM
ELSE

LO = jy + 1

HI = jy - 1
ENDIF

Set_Context (iproc > iprocy .AND. iproc < iprocys)
DOTI =1, LO-1

X'(I) = X(I) + 1.0
ENDDO
IF (jy < jam) THEN

Set_Context(iproc > iprocy .AND. iproc < iprocys)
ELSE

Set_Context (iproc > iprocy .AND. iproc < iprocys)
ENDIF
DO I = LO, HI

X'(I) = X(I) + 1.0
ENDDO
Set _Context(iproc > iprocy .AND. iproc < iprocys)
DO I = HI+1, Extent

X'(I) = X(I) + 1.0
ENDDO

Figure 7.11 Context splitting a BLOCK distribution.

iprocy = |[M/Extent]
jm = (M-1) mod Extent + 1
Set _Context (iproc < iprocys)
DOI =1, ju

X'(I) = X(I) + 1.0
ENDDO
Set _Context(iproc < iprocys)
DO I = jp+1, Extent

X'(I) = X(I) + 1.0
ENDDO

Figure 7.12 Context splitting a BLOCK distribution where N=1.
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naive subgrid loops. In this case, the inverse function is so complex that it adds a
significant amount to the overhead of the subgrid loop.

Let’s consider once again our example X(N:M) = X(N:M) + 1.0. Figure 7.14
shows the affected elements given a block size b = 3 (dark lines indicate logical
block boundaries). It can be easily seen that at any given subgrid index different
sets of PEs contain elements from the range N : M. On closer inspection, it can be
found that the sets of PEs that must be enabled form a logical progression. It is this
progression that establishes the iteration sets for context splitting.

To ease the specification of the iteration sets we not only need to know the values
of jn and jus, the subgrid indices of X(N) and X (M) respectively, we also need to
know the logical blocks in which they occur. We label these blocks By and Bjyy.
We use one-based indexing for the blocks just as we do for indexing subgrids and

PEs.They can be calculated using the following formula:

By = | +1 = [j/b], for k=NM

b*Pl

Once we have determined the values of jn, jar, tprocy, iprocys, By, and By, we split
the iteration space into the following five sections and determine the set of active PEs

as shown:

{(BNn =1)*b+1 : jx—1} Turn on PEs where iproc > iprocy.
{jn : By b} Turn on PEs where iproc > iprocy.

{Bnv*b+1 : (By—1)*b} Turn on all PEs.
{(Buy—1)*b+1 : gy} Turn on PEs where iproc < iprocyy.
{jm+1 : By *b} Turn on PEs where iproc < iprocy.

Depending upon the values of N and M, one or more of the five iteration sets may
be empty. In particular, when N = 1 the first set is empty and the second and
third set enable the same PEs and can thus be merged together. It is important to

notice how context splitting has reduced the computations required for the calls to

/ublock_cyclic(b)(i) = (’V(i—l)moc;(b*]%)-l-l-‘ , \‘Z*_PllJ b _I_ Z mod b —I— 1)
lub_lick_cyclic(b)(iproc7j) = \‘%J (Pl * b) + (ipTOC — 1) x b + (] — 1) mod b + 1

Figure 7.13 BLOCK_CYCLIC distribution function and its inverse.
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BN J'N*

L

iproc iprocy

Figure 7.14 X(N:M) when X has a BLOCK_CYCLIC distribution.

Set_Context to simple logical comparisons; the expensive operations of the inverse
mapping function are no longer required.

With a BLOCK_cYCLIC distribution, there is one special case which we must handle
when performing context splitting. It occurs when By = Bjs. In this situation, all
the affected elements of X (N : M) are at the same logical block level. Furthermore,
the elements are distributed across this block level in a normal BLOCK distribution.
To properly handle this case we could apply the techniques presented in Section 7.3.2,
with the modification that the subgrid loop ranges from (By — 1) *b+ 1 to By * b
rather than from 1 to Fxtent. Alternatively, if the block size b is small, we could
simply generate the naive subgrid loop, since we know that the loop performs at most
b iterations.

The subgrid loop for the statement X(N:M)=X(N:M)+1.0 is shown in Figure 7.15.
For simplicity, we have used the naive subgrid loop for the case where By = By,.

1

The variable GlobalIndex holds the value of the inverse distribution function, p=,

computed on each PE for each subgrid location.

7.3.4 Context Splitting a Multidimensional Distribution

To perform context splitting on a multidimensional distribution, we apply loop split-
ting on each dimension separately. This produces a set of imperfectly nested DO-loops.
We then apply loop distribution [117, 129] to produce a set of perfectly nested DO-
loops, each of which operates under a single context. The context for each loop nest

is the intersection of the contexts produced for each dimension.
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iprocy = [((N-1) mod (b*P) + 1)/b]
iprocy = [((M-1) mod (b*P) + 1)/b]
= |(N-1)/(b*P)| b + i mod b + 1
|(M-1)/(b*P)| b + i mod b + 1

N
Jm
By
By
IF

[in/b]
= [ju/b]

(By = Bpy) THEN !l perform naive subgrid looping
DO i= By -1) *b + 1, By * b

GlobalIndex = [(i-1)/b|*(P*b) + (iproc-1)* b + (i-1) mod b + 1

Set_Context(Globallndex > N .AND. GlobalIndex < M)

X(i) = ¥(i) + 1.0
ENDDO

ELSE

Set _Context (iproc > iprocy)

DO I = (By-1)*b+1, jn-1
X'(I) = X(I) + 1.0

ENDDO

Set _Context (iproc > iprocy)

DO I = jN: By *b
X'(I) = X(I) + 1.0

ENDDO

Set_Context (.TRUE.)

DO I = By*b+1, (By-1)*b
X'(I) = X(I) + 1.0

ENDDO

Set _Context (iproc < iprocyy)

DO I = (By-1)*b+1, M
X'(I) = X(I) + 1.0

ENDDO

Set _Context (iproc < iprocys)

DO I = ja+1, Ba#b
X'(I) = X(I) + 1.0

ENDDO

ENDIF

Figure 7.15 Context splitting a BLOCK_CYCLIC distribution.
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Let’s consider again the array Y2 as declared and distributed in Figures 4.5 and
4.6 on page 35. Performing context splitting on the statement Y2 = ABS( Y2 ), we
first perform loop splitting on each dimension. For the first dimension, the iteration
space is divided into the sets {1:2} and {3:5}, while the second dimension produces
the sets {1:4} and {5}. After splitting the loops we use loop distribution, which
produces these sets of two-dimensional iteration spaces: {1:2,1:4}, {3:5,1:4}, {1:2,5},
and {3:5,5}. The result is the code shown in Figure 7.16, which sets the context four

times compared to the 25 times of the naive subgrid loop presented in Section 4.8.3:

7.4 Code Generation Issues

A close evaluation of the context splitting optimization reveals two possible concerns:
loop overhead and code growth. Both of these occur because context splitting takes a
single subgrid loop nest and generates multiple loop nests (with reduced loop bounds)
each with a copy of the loop body (minus context setting code). We will address each

of these concerns separately.

Set_Context (.TRUE.)

DO J =1, 4
DOI =1, 2
Y2/(I,J) = ABS ( Y2/(I,J) )
ENDDO
ENDDO
Set_Context (iproc; < 4)
DO J =1, 4
DO I =3, 5
Y2/(I,J) = ABS ( Y2/(I,J) )
ENDDO
ENDDO
Set_Context (iprocy < 4)
DOI =1, 2
Y2/(I,5) = ABS ( Y2/(I,5) )
ENDDO
Set _Context (iproc; < 4 .AND. iproc, < 4)
DOI =3, 5
Y2/(I,5) = ABS ( Y2/(I,5) )
ENDDO

Figure 7.16 Context splitting a multidimensional distribution.
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The additional loop overhead generated by context splitting is not a problem.
For SIMD machines, recall that all the control flow operations related to the looping
constructs are executed on the FE processor. Since the FE processor is usually much
faster than the PE processors, and is executing asynchronously from them, it is able
to handle the extra loop overhead while still keeping the PE array busy. In essence, we
have increased the workload executed on the FE, but this has allowed us to decrease
the workload sent to the PE array.

Since context splitting produces several copies of the loop body for each loop
level which is split, code growth is exponential in the number of nested subgrid loops
which are split. If this growth is a concern, we have two alternatives that can be used
to address it. First, the loop body could be encapsulated as an internal subroutine,
which is branched to and returned from. Since the subroutine is internal, the interface
simply requires that the return address be saved. Alternatively, by limiting context
splitting to only the innermost one or two subgrid loop levels, one can keep code
growth bounded by a linear amount. Our experiments have shown that this small
limitation still retains most of the performance gains achieved when splitting all
subgrid loop levels.

Throughout this presentation we have ignored the context setting required for
masked assignment instructions, such as that generated by the WHERE statement.
The semantics of masked instructions imply that each element has its own execution
mask. This means that the iteration space cannot be divided into convenient sets each
with a constant execution mask. For this reason context splitting cannot be used to
hoist the calls to Set_Context out of such subgrid loops. Context partitioning is still
applicable and can be used to generate a single subgrid loop for groups of congruent

statements.

7.5 Experimental Results

To verify the effectiveness of these optimizations, we performed experiments on both
SIMD and MIMD machines. In this section we report the results from the SIMD
experiments executed on a DECmpp 12000, which is equivalent to a MasPar MP-1.
In Section 9.8 we report the results of performing context partitioning on a stencil
code executing on an IBM SP-2, a MIMD machine.

For our SIMD experiments, we performed the optimizations by hand on a section

of code taken from a Fortran90 version of the ARPS weather prediction code [66].
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The code initializes 16 two-dimensional arrays. We chose this section of code since
context partitioning would not benefit additionally from data reuse nor would it be
penalized for generating excessive register pressure. Thus all performance improve-
ments are directly attributable to the elimination of redundant context changes and
the reduction of loop overhead.

We generated five versions of this code segment and timed each on a dedicated
DECmpp 12000. The first version was simply the Fortran90 segment as taken from
the ARPS program. This was compiled with MP Fortran Version 2.1. The second
version was a translation of the Fortran code into MPL. We optimized this version
by performing the following optimizations by hand: common subexpression elimina-
tion, strength reduction, and loop-invariant code motion. We also used register
declarations on array pointers. We then took this MPL version and generated three
new versions by applying our context optimizations; one version for each of the op-
timizations, and one version which combined both optimizations. All the MPL rou-
tines were compiled by Version 3.0 of the MPL compiler. All five versions used a
(cycLic,cYcLIc) distribution, the default distribution of the MP Fortran compiler.

The version combining context partitioning and splitting reduced the execution
time by 45% when compared to the original MPL code (which itself reduced the

execution time by approximately 10% compared to the Fortran code). See Figure 7.17
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Figure 7.17 Time for ARPS weather code to initialize sixteen 2-D arrays.
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for a comparison of execution time versus subgrid size for these three versions of the
code. Individually, context partitioning and context splitting reduced the execution
time by 35% and 45%, respectively. The reason that the combination of the two
optimizations did not out-perform context splitting is that, once splitting eliminated
the costly context setting code from the subgrid loops, the loops became memory
bound. For subgrid loops that are more computationally intensive, we expect these
two optimizations to have an additive effect, although the total effect may be less
than the improvement experienced with this code.

To consider something more computationally interesting, we looked at a five-point

difference computation:

RESULT = (A + CSHIFT(A,1,1) + CSHIFT(A,-1,1)
+ CSHIFT(A,1,2) + CSHIFT(A,-1,2))/5

RESULT and A were both two-dimensional arrays distributed in a (CYCLIC,CYCLIC)
manner. We generated three versions of the code: a Fortran90 version, a hand-
optimized MPL version, and an MPL version which had context splitting applied
(since there was only a single statement, context partitioning was not applicable).
We then timed the subgrid loops. In all cases, the communication time to set up
the computation was excluded from the measurements. The results are shown in
Figure 7.18.

Since the time to compute and set the context is a smaller portion of the total
work performed in this subgrid loop, the performance gain is not as impressive as that
obtained on the array initialization code. But the 13% reduction in the execution
time from the hand-optimized MPL version is still significant. The hand-optimized
MPL had already reduced the execution time by 32% when compared to the Fortran
version.

As a final point of interest, we took the above five-point difference computation
and performed context splitting only on the innermost subgrid loop as discussed in
Section 7.4. Code growth was minimal, adding only two statements to the MPL
code: a call to Set_Context and a replication of the loop body (a single assignment
statement). In comparison, the original split version, in which context splitting was
applied to both loops in the subgrid loop nest, slightly more than doubled the amount
of code. Additionally, the performance difference between the two split versions was
minimal. The new split version reduced the execution time of the hand-optimized

MPL version by 12%, compared to the 13% reduction of the original split version.
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Figure 7.18 Time for 5-point difference computation.

7.6 Related Work

Work at Compass by Albert, et al., describes the generation and optimization of
context setting code [7]. They avoid redundant context computations when adjacent
statements operate under the same context. They also perform classical optimizations
on the context expressions, such as common subexpression elimination. They mention
the possibility of reordering computations to minimize context changes, but they do
not discuss such transformations.

While giving some optimization hints for the Slicewise CM Fortran compiler, Sabot
describes the need for code motion to increase the size of elemental code blocks (blocks
of code for which a single subgrid loop can be generated) [142]. He goes on to state
that the compiler does not perform this code motion on user code, and thus it is up
to the programmer to make them as large as possible. In a later paper describing
the internals of the compiler, he describes how it attempts to perform code motion
so that subgrid loops may become adjacent and thus fused [140]. However, the code
motion performed is limited to only moving scalar code from between subgrid loops,
not in moving the loops themselves. Furthermore, due to the limited dependence
analysis performed by the compiler, only compiler-generated scalar code is moved. It

was this work that motivated us to investigate the context partitioning problem.



102

Chen and Cowie also recognize the need to fuse parallel loops in their Fortran90
compiler [57]. However, they only fuse adjacent loops and perform no code motion

to increase the chances of fusion.

7.7 Summary

We have developed a double-edged sword to combat the cost of context switching in
codes for SIMD machines. The first edge of the sword reduces the number of subgrid
loops which operate over the same context to a minimum. The second edge reduces
the number of context changes per subgrid loop from O(N) to O(1) for unmasked
array assignment statements. We have also discussed how they may be used to

optimize code for MIMD machines as well.
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Chapter 8

Advanced Scalarization of Array Statements

8.1 Introduction

As introduced in Section 4.8, an array statement must be rewritten so that it accesses
smaller chunks of data before it can be executed on the target architecture. The size
of the chunks must “fit” the hardware of the target machine. For scalar machines,
or individual PEs of a parallel machine, that size is a single array element; for vector
machines that size is the size of the vector registers. This translation is known as
scalarization when discussed in terms of a scalar machine, and is called sectioning on
vector architectures. In this chapter we address compiling to a scalar machine. The

material is equally applicable to vector machines.

8.2 Two-Pass Scalarization

Due to the semantics of array statements, their translation into correct serial code
is not always trivial, as can be seen in Figure 8.1. The code in Figure 8.1(b), the
result of a naive scalarization, is not equivalent to its Fortran90 counterpart since on
the second and subsequent iterations of the [ loop the reference A(I — 1) accesses
the new value of the array A assigned on the previous iteration. This violates the
“load-before-store” semantics of the Fortran90 array assignment statement.
Fortunately, data dependence information can tell us when the scalarized loop is

correct. Allen and Kennedy [14] have shown that a scalarized loop is correct if and

DO I=2, N

A(2:N) = A(1:N-1) + B(1:N-1) A(I) = A(I-1) + B(I-1)
END DO

(a) array statement (b) naively scalarized code

Figure 8.1 Invalid scalarization example.
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only if it does not carry a true dependence. Using this fact, most compilers perform

scalarization in the following manner:

1. Perform a naive scalarization of the array statement into a scalar loop nest.
2. Compute the data dependences of the resulting code.

3. While a scalarized loop carries a true dependence, perform code transformations

to either eliminate the dependence or change it into an antidependence.

The code transformations that can be applied to handle the loop carried true de-
pendences include loop reversal, loop interchange, prefetching, and as a last resort
the generation of array temporaries. The interested reader is referred to Allen and
Kennedy [14] for a complete discussion.

The Allen & Kennedy algorithm requires two passes over the code, one to perform
the naive scalarization and another to perform code transformations to restore the
semantics of the program if the initial scalarization is invalid. Using the dependence
information produced by the methods described in Chapter 5, we propose a new
algorithm that eliminates the need for the first pass and is able to determine a valid

scalarization before attempting any transformations.

8.3 One-Pass Scalarization

Our new scalarization algorithm begins by performing dependence analysis directly on
Fortran90 array statements [138]. When attempting to scalarize an array statement,
we only need to be concerned with the scalarization dependences of that statement
on itself. As discussed in Section 5.3.4, such dependences are always antidependences
and may contain any of the three direction specifiers in triplet positions. If we per-
form naive scalarization on a triplet that has a forward (<) or loop independent (=)
antidependence, the resulting loop has an equivalent dependence. However, if we
naively scalarize a triplet that carries a backward (>) antidependence, the resulting
loop carries a forward true dependence indicating an incorrect scalarization. Thus we
must be careful to address the antidependences that contain an “>" in the position
corresponding to a triplet we are scalarizing.

Our algorithm proceeds to scalarize the statement one triplet at a time, paying

particular attention to those triplets that carry backward antidependences. There are
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several methods we can use to handle these dependences; basically the same methods
that the two-pass algorithm uses to address loop carried true dependences.

First we can choose the order in which the triplets are scalarized. If we choose
a triplet position that contains only “<” and “=" elements in the scalarization de-
pendences, we can perform a naive scalarization of that triplet and know that it is
correct. Afterward we can eliminate from further consideration those dependences
which contained an “<” in that position, since those dependences are carried by the
scalarized loop. This is advantageous when the eliminated dependences contained
non-“=" elements in other positions.

Second, if all dependences contain either a “>” or “=" in a given position, the
corresponding triplet can be correctly scalarized with a reversed loop. Again, those
dependences that were carried at that triplet position can be eliminated. Failing
these, we can continue to attempt all the transformations that the two-pass algorithm
utilized, including prefetching.

If there are triplets remaining that cannot be scalarized by any of the transforma-
tions, we generate a temporary array whose size equals the remaining array section.
We then create two adjacent loop nests for the remaining triplets. The first nest per-
forms the desired computation and stores it in the temporary array, and the second
copies the results from the temporary array into the destination array.

As an example, consider the statement in Figure 8.2(a) and its corresponding
scalarization dependences in Figure 8.2(b). After scanning the dependences, we see
that the second triplet can safely be scalarized using the naive method. This elim-
inates the first two dependences from further consideration since they both contain
an “<” in the position corresponding to the second triplet. That leaves us with a
single dependence of (>, =) and only the first triplet to scalarize. The direction vec-
tor quickly tells us that the remaining triplet can safely be scalarized by generating

a reversed loop. The resulting code is shown in Figure 8.3.

A(2:N-1,2:N-1) = A(1:N-2,3:) >,
+ A(3:N,3:N) (<,<)
+ A(1:N-2,2:N-1) >,=)
(a) array statement (b) dependence vectors

Figure 8.2 One-pass scalarization example.
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DO J = 2, N-1
DO I = N-1, 2, -1
A(I,J) = A(I-1,J+1)
+ A(I+1,J+1)
+ A(I-1,0)
END DO
END DO

Figure 8.3 Generated scalar code.

8.4 Scalarization of Offset Arrays

Recall from Chapter 6 that our compilation model includes the creation of offset arrays
to eliminate the intraprocessor copying of data associated with SHIFT intrinsics. The
presence of such arrays necessitates that the rest of the compiler be modified as
appropriate to handle them. In particular, dependence analysis needs to produce the
proper dependence vectors for them, and scalarization must insure the production of
correct code.

Dependence analysis can easily be modified to handle offset arrays by includ-
ing the offset annotation, as described in Section 6.3.2, in the analysis of the array
subscripts. In this way, subscript analysis would treat the offset array reference
A<=LH>(1:N 1:N) simply as the array reference A(1-1:N-1,1+1:N+1).

Once dependence analysis has determined the dependences arising from both nor-
mal and offset array references, scalarization proceeds as described previously. When
generating scalar subscript references for offset arrays, we need to alter the subscript
expressions. This is accomplished by incrementing each subscript by the correspond-
ing annotation entry. This was described in Section 6.3.2 and an example was given
in Figure 6.5.

As a final note, we would like to once again address the issue of array copies. In
Section 6.5.3 we proved a theorem that showed that an array copy statement inserted
by our offset array algorithm could never execute more often than the shift operations
it optimized. However, we also noted in Section 6.6.1 that the use of offset arrays
invalidates the perfect alignment property that is a part of our compilation model (see
Section 4.8.1). Due to this, the naive scalarization of array assignment statements
that reference offset arrays may no longer be valid and array temporaries may be

required.
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CALL overlap.cshift(a,-1,1)
CALL overlap.cshift(a,+1,1)
CALL overlap.cshift(a,-1,2)
CALL overlap.cshift(a,+1,2)

cCc * a
cn a_<—1,0>

cs a<+1,0>
cw a<0.—1>
a<0’+1>

1)
1]

ge 80 g9 &
+ + + +
¥ K ¥ X

ce

Figure 8.4 5-point stencil computation using offset
arrays that requires a scalarization temporary.

As an example, consider the code fragment in Figure 8.4. In this example we have a
5-point stencil computation which references four offset arrays. The four offset arrays
are based on the same array which is being defined in the statement. Due to the scalar-
ization dependences that exists for this statement ((>,=),(<,=),(=,>),(=,<)),
proper scalarization requires a temporary array. This temporary array first gets
assigned the results of the computation and is then copied back into the array A.

This leads us to the following question: Can the combination of copies inserted
by the offset array algorithm and copies inserted for scalarization temporaries due to
offset arrays cause more data movement than specified in the original program? The
following two theorems prove that this cannot happen. The first theorem states that
the generation of an offset array can lead to either a copy statement being inserted
by the offset array algorithm or a copy statement being generated for a scalariza-
tion temporary, but never both. The second theorem states that if a scalarization
temporary is needed, it cannot be more deeply nested than the shift statement that

generated the offset array.

Theorem 8.1 An offset array can never cause a copy statement to be
generated by both the offset array algorithm and the scalarization algo-

rithm.

Proof The proof is in two parts. Each part states that the conditions that must
exist for one of the algorithms to insert a copy statement end the live range of the

offset array.

1. The offset array algorithm inserts an array copy statement when it can no longer

propagate the offset array through the SSA graph. This can occur either at an
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UPDATE operation or a ¢-function. In each case, the copy statement marks the
end of the offset array’s live range — the algorithm was not able to propagate
the offset array past that point. Since the offset array was not propagated past
that point there can be no subsequent references to it. Thus its live range ends
there. Therefore the offset array could not possibly lead to temporaries being

generated by the scalarization algorithm.

2. For the scalarization algorithm to generate an array temporary due to an offset
array, the offset array must be based on the same array which is being defined on
the left-hand side of the assignment statement. See Figure 8.4 for an example.
This definition constitutes a modification of the source of the offset array. Since
it would be a violation of criterion 1 to propagate the offset array past this
point, there can be no subsequent references to the offset array. Thus the live

range of the offset array ends at that statement.

Since the live range of the offset array ends at the point of the copy, there are no
further possibilities for subsequent copy statements to be inserted by either the offset

array algorithm or the scalarization algorithm due to the use of the offset array. [

Theorem 8.2 An array statement which requires a scalarization tem-
porary due to an offset array cannot be more deeply nested than the shift

operation that created the offset array.

Proof As stated in the previous proof, if the scalarization algorithm must generate
an array temporary for an assignment statement referencing an offset array, then the
offset array must be based on the same array which is being defined on the left-hand
side of the assignment statement. This definition requires that a ¢-function exist for
the base array in any enclosing loops. Using these facts, the rest of the proof follows

the same lines as Lemma 6.2 and is thus omitted. ]
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Chapter 9

Putting It All Together — Stencil Compilation

9.1 Introduction

In many programs performing dense matrix computations, the main computational
portion of the program belongs to a class of kernels known as stencils. For Fortran90D
and HPF to gain acceptance as a vehicle for parallel scientific programming, they must
achieve high performance on this class of problems. This chapter describes a strategy
for optimizing such stencil computations for execution on distributed-memory multi-
processors. The strategy orchestrates many of the optimizations previously presented
in this dissertation, and introduces a new optimization that enhances the use of offset
arrays. The optimizations presented target the overhead of data movement that oc-
curs between processors, within the local memory of the processors, and between the
memory and registers of the processors. We focus on the application of this strategy
on distributed-memory architectures, although it is more broadly applicable.

In the next section we introduce stencil computations and discuss their execu-
tion cost on distributed-memory machines. In Section 9.3 we give an overview of
our compilation strategy, and then address the individual optimizations in detail in
Sections 9.4, 9.5, and 9.6. We then trace through an extended example to show how
the optimizations work in concert. In Section 9.8 we give some experimental results,

and in Section 9.9 we compare this strategy with other known efforts.

9.2 Stencil Computations

In this section we introduce stencil computations and discuss their execution cost on

distributed-memory machines.

9.2.1 Stencils

A stencil is a stylized matrix computation in which a group of neighboring data

elements are combined to calculate a new value. They are typically combined in the
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form of a sum of products. This type of computation is common in solving partial
differential equations, image processing, and geometric modeling. The Fortran90
array assignment statement in Figure 9.1 is commonly referred to as a 5-point stencil.
In this statement SRC and DST are arrays, and C1-C5 are either scalars or arrays.
Each interior element of the result array DST is computed from the corresponding
element of the source array SRC and the neighboring elements of SRC on the North,
West, South, and East. A 9-point stencil that computes all grid elements by exploiting
the CSHIFT intrinsic might be specified as shown in Figure 9.2.

Stencils are not necessarily symmetrical as in the two previous examples. Consider
the stencil computation shown in Figure 9.3 which has a pattern in the shape of a
capital “L”.

In the previous three examples the stencils were specified as a single array assign-

ment statement, but this need not always be the case. Consider again the 9-point

DST(2:N-1,2:N-1) = C1 * SRC(1:N-2,2:N-1)
& + C2 * SRC(2:N-1,1:N-2)
& + C3 * SRC(2:N-1,2:N-1)
& + C4 * SRC(3:N ,2:N-1)
& + C5 * SRC(2:N-1,3:N )

Figure 9.1 5-point stencil computation.

DST = C1 * CSHIFT(CSHIFT(SRC,-1,1),-1,2)
& + C2 * CSHIFT(SRC,-1,1)

& + C3 * CSHIFT(CSHIFT(SRC,-1,1),+1,2)
& + C4 * CSHIFT(SRC,-1,2)

& + C5 * SRC

& + C6 * CSHIFT(SRC,+1,2)

& + C7 * CSHIFT(CSHIFT(SRC,+1,1),-1,2)
& + C8 * CSHIFT(SRC,+1,1)

& + C9 * CSHIFT(CSHIFT(SRC,+1,1),+1,2)

Figure 9.2 9-point stencil computation.

DST = C1 * SRC

& + C2 * CSHIFT(SRC,-1,1)
& + C3 * CSHIFT(SRC,-2,1)
& + C4 * CSHIFT(CSHIFT(SRC,-2,1),+1,2)

Figure 9.3 An odd-shaped stencil computation.
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stencil above. If the programmer attempted to optimize the program by hand, or if
the stencil was pre-processed by other optimization phases of the compiler, we might
be presented with the code shown in Figure 9.4°.

When encountering a set of statements such as these, we would like to be able to
produce code equivalent to that produced for the single-statement stencil. Thus we
have designed our optimizer to handle the most general input form, which has several

distinguishing characteristics:

e CSHIFT intrinsics and temporary arrays have been inserted to perform data
movement needed for operations on array sections that have different processor

mappings.

e Each CSHIFT intrinsic occurs as a singleton operation on the right-hand side of

an array assignment statement and is only applied to whole arrays.

e The expression that actually computes the stencil operates on operands that

are perfectly aligned, and thus no communication operations are required.

All stencil and stencil-like computations can be translated into this general form
by factoring expressions and introducing temporary arrays. In fact, this is the in-
termediate form used by several distributed-memory compilers [110, 139, 34]. For

example, given the 5-point stencil computation presented in Figure 9.1 above, the

RIP = CSHIFT(U,SHIFT=+1,DIM=1)
RIN = CSHIFT(U,SHIFT=-1,DIM=1)
T =7U + RIP + RIN

= CSHIFT(U,SHIFT=-1,DIM=2)
CSHIFT(U,SHIFT=+1,DIM=2)
CSHIFT(RIP,SHIFT=-1,DIM=2)
CSHIFT(RIP,SHIFT=+1,DIM=2)
CSHIFT(RIN,SHIFT=-1,DIM=2)
CSHIFT(RIN,SHIFT=+1,DIM=2)

e e i
e e i
4+ o+ o+ o+

Figure 9.4 Problem 9 from the Purdue Set.

°This example was taken from Problem 9 of the Purdue Set [135] as adapted for Fortran D bench-
marking by Thomas Haupt of NPAC.
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CM Fortran compiler would translate it into the sequence of statements shown in
Figure 9.5'°.

For the rest of this chapter we assume that all stencil computations have been
put into this form, and that all arrays are distributed in a BLOCK fashion. And al-
though we concentrate on stencils expressed using the CSHIFT intrinsic, the techniques

presented can be generalized to handle the EOSHIFT intrinsic as well.

9.2.2 Stencil Execution Costs

The cost of a stencil computation on a distributed-memory machine can be analyzed
by breaking it down into its two major components: the set of CSHIFT operations and
the calculation of the sum of products.

When a CSHIFT operation is performed on a distributed array, two major actions

take place:

1. Data elements that must be shifted across processing element ( PE) boundaries
are sent to the neighboring PE. This is the interprocessor component of the

shift.

2. Data elements that stay within the memory of the PE must be copied to the
appropriate locations in the destination array. This is the intraprocessor com-

ponent of the shift.

ALLOCATE TMP1, TMP2, TMP3, TMP4

TMP1 CSHIFT(SRC,SHIFT=-1,DIM=1)
TMP2 = CSHIFT(SRC,SHIFT=-1,DIM=2)
TMP3 = CSHIFT(SRC,SHIFT=+1,DIM=1)

TMP4 = CSHIFT(SRC,SHIFT=+1,DIM=2)

DST(2:N-1,2:N-1) = C1 * TMP1(2:N-1,2:N-1)
& + C2 * TMP2(2:N-1,2:N-1)
& + C3 * SRC (2:N-1,2:N-1)
& + C4 * TMP3(2:N-1,2:N-1)
& + C5 * TMP4(2:N-1,2:N-1)

DEALLOCATE TMP1, TMP2, TMP3, TMP4

Figure 9.5 Intermediate form of 5-point stencil computation.

10For this reason most CM Fortran programmers use CSHIFTs explicitly in their stencil computa-
tions. Array-syntax stencils produced the same CSHIFT intrinsic calls but then had the additional
overhead of the vector masking operations required for handling the array subsections [140].
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Since the costs of these two actions were discussed in Chapter 6, we do not address
them further here.

The sum of products is calculated within the subgrid loop nest, which is the result
of scalarization and SPMD code generation as discussed in Section 4.8. At this point,
specific array elements are referenced rather than full arrays or array sections. If the
stencil is not computed over the entire matrix, or if the subgrid size is not known at
compile time, each PE must compute its subgrid loop bounds. The subgrid loop for
the 5-point stencil presented in Figure 9.5 is shown in Figure 9.6 (where $MY PID
returns the processor id number (one based) for the given dimension, (7 is the extent
of the local subgrid, and N is the extent of the original array).

Calculating the execution cost of such a loop nest is usually accomplished by
totalling the number of floating point operations in the loop, dividing that number
by the rate the target machine can execute those flops, and then multiplying by the
total number of iterations. Unfortunately, due to the large number of array references
found in such a loop, this metric is insufficient. To better measure the performance
of subgrid loops in relation to their memory accesses we use the notion of balance as
defined by Callahan, et al. [44].

The machine balance () for a particular machine is defined to be the relationship
between the rate at which memory can be accessed compared to the rate that floating-

point operations can be executed:

max words/cycle

Bu =

mazx flops/cycle

LB1 = MAX((($MYPID(1)-1)*G)+1,2) - (($MYPID(1)-1)*G)
UB1 = MIN($MYPID(1)*G,N-1) - (($MYPID(1)-1)*G)
LB2 = MAX((($MYPID(2)-1)*G)+1,2) - (($MYPID(2)-1)*G)
UB2 = MIN($MYPID(2)*G,N-1) - (($MYPID(2)-1)*G)
DO J = LB2, UB2

DO I = LB1, UB1

DST(I,J) = C1 * TMP1(I,J)
& + C2 * TMP2(I,J)
& + C3 * SRC (I,J)
& + C4 * TMP3(I,J)
& + C5 * TMP4(I,J)
ENDDO
ENDDO

Figure 9.6 Subgrid loop for 5-point stencil.
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The loop balance (1) for a given loop is defined as:

number of memory references

b= number of flops

If 8, = Bar, then the loop is balanced for the target machine and will run well.
If B < Bar, then data can be supplied faster than it can be processed, and the
loop is said to be compute bound. In this case the machine is running at its peak
computational rate. If 3; > [as, then data can be processed faster then it can be
supplied, and there exists idle computational cycles. Such a loop is memory bound.
For many advanced architectures that offer efficient multiply-add operations, the value
of [z for loops generated from stencils is often larger than 3y, resulting in memory-
bound loops. The value of 3, is also significantly increased if the stencil is specified
with array-valued coefficients rather than with scalar values, thus exacerbating the

problem.

9.3 Compilation Strategy

In this section we give an overview of our compilation strategy. We then present the
details of this strategy in the subsequent sections.

Assuming that the program containing the stencil has been put into the form
presented at the end of Section 9.2.1, we begin by optimizing the CSHIFT operations.
We apply two separate optimization phases: the first addresses the intraprocessor
data movement and the second handles the interprocessor data movement.

Intraprocessor data movement is completely eliminating when possible. This is
accomplished by exploiting our offset array optimization described in Chapter 6. We
then follow this with our context partitioning optimization, as described in Chapter 7,
to separate the communication operations from the computational operations.

Once the intraprocessor data movement has been eliminated and we have parti-
tioned the statements into groups of congruent operations, we analyze the resulting
interprocessor data movement to eliminate redundant and partially redundant move-
ment. We call this optimization communication unioning. The resulting program
requires only a single communication operation across each edge!! of the stencil.
This optimization produces only four communication operations for the 9-point sten-

cil example presented in Figure 9.2, even though its original specification required

1 An edge is determined by the dimension and direction specified in a shift operation.
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twelve CSHIFT intrinsics. Similarly, a 27-point 3D stencil, originally specified using
54 CSHIFT intrinsics, would require only 6 communication operations.

Finally, after scalarization has produced a subgrid loop nest, we optimize it by ap-
plying a set of loop transformations designed to improve the performance of memory-
bound programs. These transformations include unroll-and-jam, which addresses
memory references, and loop permutation, which addresses cache references. Each of

these optimize the program by exploiting reuse of data values.

9.4 Eliminating Intraprocessor Movement

As briefly mentioned in the preceding section, intraprocessor data movement associ-
ated with stencil computations is eliminated by employing our offset array optimiza-
tion [101]. Since Chapter 6 was entirely devoted to describing this optimization, we
do not discuss it further here. However, it is important to note that due to the al-
gorithm’s optimistic nature, it is able to eliminate the intraprocessor data movement
associated with shift operations in many difficult situations. In particular, it can
determine when offset arrays can be exploited even when their definition and uses are
separated by program control flow. This allows our stencil compilation strategy to
eliminate the intraprocessor data movement in situations that other strategies would
not even consider.

After offset arrays have been identified and optimized, we apply our context parti-
tioning algorithm [106]. As explained in Section 7.2, this optimization separates a set
of statements into groups of congruent array statements, scalar expressions, and com-
munication operations. This assists the compilation of stencils in two ways. First,
by grouping congruent array statements together, we ensure that as subgrid loops
are generated, via scalarization and loop fusion, as much computation as possible
is placed within each loop. Also, the structure of the subgrid loops is very regular.
These increase the chances that loop transformations performed later are successful
in exploiting data reuse and data locality. Second, by grouping together the com-
munication operations, we simplify the task of reducing the amount of interprocessor

data movement, which is our next topic.

9.5 Reducing Interprocessor Movement

After eliminating the intraprocessor data movement via our offset array optimization,

we now focus our attention on the interprocessor data movement that occurs during
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the calls to OVERLAP_SHIFT. Due to the nature of offset arrays, we are presented
with many opportunities to eliminate redundant and partially redundant data move-
ment. We call this optimization communication unioning, since it combines a set of
communication operations to produce a smaller set of operations.

Before proceeding to discuss our strategy, we need to extend the definition of our
OVERLAP_SHIFT routine (see Section 6.3.2 for the original definition). We add an
optional fourth argument that takes a regular section descriptor (RSD) [12]. The
RSD is used to specify those data elements in the overlap areas of other dimen-
sions are to be transferred along with the specified subgrid elements. This extension
allows us to include “corner” elements that are a part of multi-offset arrays. The
RSD contains a null specifier “x” for the dimension being shifted. The default RSD
would contain the range 1 : N for all other dimensions. Here’s an example of an
OVERLAP_SHIFT along the second dimension that carries along the data in the over-
lap area from the top of the column but not the overlap area from the bottom:
OVERLAP _SHIFT(SRC,+1,2,[0:N,*]).

There are two key observations that allow communication unioning to find and
eliminate redundant interprocessor data movement. First, shift operations, including

OVERLAP _SHIFT, are commutative:

CSHIFT(CSHIFT(SRC,+1,1),-1,2) = CSHIFT(CSHIFT(SRC,-1,2),+1,1)

Thus, for arrays that are shifted more than once, we can order the shift operations
in any manner we like without affecting the result. And secondly, since all OVER-
LAP_SHIFTs move data into the overlap areas of the subgrids, a shift of a large amount
in a given direction and dimension may subsume all shifts of smaller amounts in the
same direction and dimension. More formally, an OVERLAP_SHIFT of amount 7 in
dimension k is redundant if there exists an OVERLAP_SHIFT of amount j in dimen-
sion k such that |j]| > |¢] and sign(j) = sign(i). Given these two points, we proceed
to eliminate redundant data movement in the following manner. Note that since we
have already applied our context partitioning optimization to the program, we can
restrict our focus to the individual groups of calls to OVERLAP_SHIFT.

In communication unioning, we first use the commutative property to rewrite all
the shifts for multi-offset arrays such that the OVERLAP_SHIFTs for the lower dimen-
sions occur first and are used as input to the OVERLAP_SHIFTs for higher dimensions.
We then reorder all the calls to OVERLAP_SHIFT, sorting them by the shifted dimen-
sion, lowest to highest. We now scan the OVERLAP_SHIFTs for the lowest dimension
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and keep only the largest shift amount in each direction. All others can be eliminated
as redundant.
Communication unioning then proceeds to process the OVERLAP _SHIFTs for each

higher dimension in ascending order by performing the following three actions:

1. First we scan the OVERLAP_SHIFTs for the given dimension to determine the

largest shift amount in each direction.

2. Then we look for source arrays that are already offset arrays, indicating a multi-
offset array. For these, we use the annotations associated with the source array
to create an RSD to be used as the fourth argument in the call to OVER-
LAP_SHIFT. Mapping the annotations to the RSD is simply a matter of adding
the annotations to the corresponding RSD dimension; the annotation is added
to the lower bound of the RSD if the shift amount is negative, otherwise it is

added to the upper bound. As with shift amounts, larger RSDs subsume smaller
RSDs.

3. Finally, we generate a single OVERLAP _SHIFT in each direction, using the largest
shift amount and including the RSD as needed — all other OVERLAP _SHIFTs for

that dimension can be eliminated.

This eliminates all communication for an offset array, except for a single message
in each direction of each dimension. The number of messages for the offset array is
thus minimized.

As an example, consider again the 9-point stencil computation that we presented in
Figure 9.2. The original stencil specification required twelve CSHIFT intrinsics. After
applying the above transformations, only the following four calls are required:

CALL OVERLAP_SHIFT(SRC,-1,1)

CALL OVERLAP_SHIFT(SRC,+1,1)

CALL OVERLAP_SHIFT(SRC,-1,2,[0:N+1,%])

CALL OVERLAP_SHIFT(SRC,+1,2,[0:N+1,%])
Figures 9.7-9.10 display the data movement that results from these calls. The figures
contain a 5 x 5 subgrid (solid lines) surrounded by its overlap area (dashed lines).
Portions of the adjacent subgrids are also shown. Figure 9.7 depicts the data move-
ment specified by the first two calls. The result of that data movement is shown in
Figure 9.8, where the overlap areas have been properly filled in. The data movement

of the last two calls is shown in Figure 9.9. Notice how the last two calls pick up
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data from the overlap areas that were filled in by the first two calls, and thus they
populate all overlap area elements needed for the subsequent computation, as shown
in Figure 9.10.

As another example consider a 27-point 3D stencil, which is similar to a 9-point
stencil but adds a third dimension. Such a stencil requires 54 CSHIFT intrinsics.
After communication unioning there would only exist six communication operations:
one across each face of the stencil.

At this point we have generated the minimal number of messages for an offset ar-
ray. However, there may be additional opportunities for optimizing the interprocessor
data movement. If the program is computing multiple stencils or if the stencil being
computed uses multiple source arrays, there may be several offset arrays with similar
communication patterns. Since we have already ordered the calls to OVERLAP_SHIFT
by dimension, it is a trivial task to use message aggregation to join into a single mes-
sage all the data that must be moved across a given dimension for all the different
offset arrays.

Additionally, since we have ordered the calls to OVERLAP_SHIFT by dimension,
there are never any data dependences that exist between two calls that go across the
same dimension but in opposite directions. Thus they can be performed in parallel if
the target architecture supports bi-directional communication. For example, the two
OVERLAP_SHIFTs depicted in Figure 9.7 can be performed simultaneously if supported
by the hardware.

Figure 9.7 First half of Figure 9.8 Result of
9-point stencil communication communication operations
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Figure 9.9 Second half of Figure 9.10 Result of
9-point stencil communication communication operations

9.6 Optimizing the Computation

Once the offset array and communication unioning optimizations have been com-
pleted, we must optimize the performance of the stencil computation on each node.

Our strategy involves the following compiler optimizations to improve data locality:

1. Improve the order of memory accesses through loop permutation [47].

2. Improve loop balance through unroll-and-jam and scalar replacement [43, 46].

Note that strip-mine-and-interchange can be included here [158]. We have omitted
it because of its relative instability and the large amount of cache reuse that already
exists in stencil computations [63, 118]. In the rest of this section we give an overview
of loop permutation, unroll-and-jam and scalar replacement. More information can
be found elsewhere [125].

9.6.1 Loop Permutation

Not all loops exhibit good cache locality, resulting in idle computational cycles while

waiting for main memory to return data. For example, in the loop,

DOI =1, N
DO J =1, N
B(I,J) = A(I,J) + A(I+1,J)
ENDDO

ENDDO
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references to successive elements of B and A are a long distance apart in number of
memory accesses (this assumes Fortran’s column-major storage). Most likely, cur-
rent cache architectures would not be able to capture the potential cache-line reuse
available because of the volume of data accessed between reuse points. With each
reference to B(I,J) and A(I+1,J) causing a cache miss, the loop would spend a ma-
jority of its time waiting on main memory. However, if we interchange the I- and

J-loops to get

pDO0J =1, N
DOI =1, N
B(I,J) = A(I,J)+ A(I+1,J)
ENDDO
ENDDO

the references to successive elements of B(I,J) and A(I+1,J) immediately follow one
another. In this case, we have attained locality of reference for B(I,J) and A(I+1,7J)
by moving reuse points closer together. The result is fewer idle cycles waiting on

main memory. For a more complete discussion of loop permutation see Wolf and

Lam [158], Kennedy and McKinley [102] and Carr, et al. [47].

9.6.2 Scalar Replacement

Even with better cache performance through loop permutation, a loop may still not
perform as well as possible. If a loop is memory bound, then its balance must be
lowered. Balance can be lowered by reducing the number of memory references in a
loop, replacing references to arrays with sequences of scalar variables. In the code

shown below,

DO 10 J =1, N

DO 10 I 1, N
B(I,J) = A(I,J)+ A(I+1,J)
ENDDO
ENDDO

the value accessed by A(I,J) is defined on the previous iteration of the loop by
A(I+1,3) on all but the first iteration. Using this knowledge, the flow of values
between the references can be expressed with scalar temporaries as follows.

DO 10 J =1, N

T1 = A(L1,J)
DO 10 I =1, N



TO = A(I+1,7J)
B(I,J) = TO + T1
T1 = TO
ENDDO
ENDDO
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Since the values held in scalar quantities will probably be in registers, the load of

A(T,J) has been removed, resulting in a reduction in the memory cycle requirements

of the loop (the register copy, T1 = TO, can be removed by unrolling I) [48]. This

transformation is called scalar replacement and is described in detail elsewhere [43].

9.6.3 Unroll-And-Jam

Unroll-and-jam is a transformation that can be used in conjunction with scalar re-

placement to improve the performance of many memory-bound loops [6, 10, 44]. The

transformation unrolls an outer loop and then fuses the resulting inner loops back

together. Using unroll-and-jam, more computation can be introduced into an inner-

most loop body without a proportional increase in memory references. For example,

the loop
DO 10 J = 1, 2*N
DO 10 I =1, N
B(I,J) = A(I,J)+ A(I,J+1)
ENDDO
ENDDO

after unroll-and-jam of I by a factor of 1 becomes

DO 10 J = 1, 2*N, 2

DO 10 I 1, N
B(I,J) = A(I,J)+ A(I,J+1)
B(I,J+1) = A(I,J+1)+ A(I,J+2)
ENDDO
ENDDO

In the original loop, one floating-point operation and three memory references are

left after scalar replacement, giving a balance of 3. After applying unroll-and-jam,

two floating-point operations and five memory references exist in the loop, giving

a balance of 2.5 (the second reference to A(I,J+1) can be scalar replaced). If the

original loop were memory bound, the unroll-and-jammed loop would perform better,

since it has a lower balance.
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Carr and Kennedy describe an automatic method for applying unroll-and-jam.
Their method computes the unroll amount for a loop that best balances the nest
with respect to a target architecture while limiting register pressure. For a detailed

discussion of this method, see their paper [46].

9.7 An Extended Example

In this section, we trace our compilation strategy through an extended example. This
detailed examination shows how our strategy is able to produce code that matches
or beats hand-optimized code. It will also demonstrate how we are able to handle
stencil computations that cause other methods to fail.

For this exercise, we have chosen to use Problem 9 of the Purdue Set [135], as
adapted for Fortran D benchmarking by Thomas Haupt of NPAC [128, 86]. The
program kernel is shown in Figure 9.11. The arrays T, U, RIP, and RIN are all two-
dimensional and have been distributed in a (BLOCK,BLOCK) fashion.

This kernel computes a standard 9-point stencil, identical to that computed by
the single-statement stencil shown in Figure 9.2. The reason it has been written
in this fashion is to reduce memory requirements. Recall from Section 6.2 that the
semantics of CSHIFT state that a copy of the source array is returned with the specified
dimension shifted the given number of times. Almost all Fortran90 compilers perform
this operation by making a copy of the source array and storing it into a compiler-
generated temporary array. Thus for the 9-point stencil shown in Figure 9.2, 12
temporary arrays are created to compute the single statement. This greatly restricts

the size of the problem that can be solved on a given machine.

RIP = CSHIFT(U,SHIFT=+1,DIM=1)
RIN = CSHIFT(U,SHIFT=-1,DIM=1)
T =T + RIP + RIN

= CSHIFT(U,SHIFT=-1,DIM=2)
CSHIFT(U,SHIFT=+1,DIM=2)
CSHIFT(RIP,SHIFT=-1,DIM=2)
CSHIFT(RIP,SHIFT=+1,DIM=2)
CSHIFT(RIN,SHIFT=-1,DIM=2)
CSHIFT(RIN,SHIFT=+1,DIM=2)

HHa a4
HHa a4
4+ o+ o+ 4+

Figure 9.11 Problem 9 from the Purdue Set.
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In contrast, the 9-point stencil written in Figure 9.11 requires only three copies
of array U at any one time: the two copies that are in RIP and RIN plus an addi-
tional compiler-generated temporary that can be shared among all the subsequent
statements. This reduces the temporary storage requirements by a factor of four!
Additionally, the assignments of the CSHIFTs into RIP and RIN perform a common
subexpression elimination, removing four duplicate CSHIFTs from the original speci-
fication of the stencil.

Figure 9.12 shows a comparison of execution times for the single-statement CSHIFT
stencil in Figure 9.2 and the multi-statement stencil in Figure 9.11. The programs
were compiled with IBM’s xlhpf compiler and executed on an 8 processor SP-2 for
varying problem sizes. As can be seen, the single-statement stencil specification
exhausted the available memory for the larger problem sizes, even though each PE
had 256Mbytes of real RAM. We attribute the difference in execution time mainly to
the elimination of the four duplicate CSHIFTs, but the strain that the large number

of temporary arrays imposes on the memory system may also be a factor.

10000

exceeded
memory

-m— CSHIFT specification

8000 + -| e PurdueProblem9 | -----/---------------

6000 + - - - - e

4000

Execution time (ms)

2000 £ - A g

| | |
64 128 192 256 320 384 448 512
Subgrid size (squared)

Figure 9.12 Comparison of two 9-point stencil specifications.
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9.7.1 Preprocessing

A certain amount of preprocessing is performed by our compilation model as specified
in Chapter 4. In particular, the communication generation phase of our compiler
separates communication operations from computational operations. This results in
temporary arrays being generated for all CSHIFT operations that are a part of larger
expressions.

For our example, the six CSHIFTs that are subexpressions in the assignment state-
ments to array T are hoisted from the statements and assigned to compiler-generated
temporary arrays. Since the live ranges of the temporary arrays do not overlap, a
single temporary can be shared among all the statements. Alternatively, each CSHIFT
could receive its own temporary array — that would not affect the results of our stencil

compilation strategy. The result is shown in Figure 9.13.

9.7.2 Offset Array Optimization

Once all shift operations have been identified and hoisted into their own assign-
ment statements, we apply our offset array optimization. For this example, our
algorithm determines that all the shifted arrays can be made into offset arrays. As

can be seen in Figure 9.14, all the CSHIFT operations have been changed into OVER-

RIP = CSHIFT(U,SHIFT=+1,DIM=1)
RIN = CSHIFT(U,SHIFT=-1,DIM=1)
T =10 + RIP + RIN

ALLOCATE TMP
TMP = CSHIFT(U,SHIFT=-1,DIM=2)

T =T+ TMP

TMP = CSHIFT(U,SHIFT=+1,DIM=2)

T =T+ TMP

TMP = CSHIFT(RIP,SHIFT=-1,DIM=2)
T =T+ TMP

TMP = CSHIFT(RIP,SHIFT=+1,DIM=2)
T =T+ TMP

TMP = CSHIFT(RIN,SHIFT=-1,DIM=2)
T =T+ TMP

TMP = CSHIFT(RIN,SHIFT=+1,DIM=2)
T =T+ TMP

DEALLOCATE TMP

Figure 9.13 Problem 9 after preprocessing.
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CALL OVERLAP_CSHIFT(U,SHIFT=+1,DIM=1)

CALL OVERLAP_CSHIFT(U,SHIFT=-1,DIM=1)
T=1U + U<+1’0> + U<_1’0>

CALL OVERLAP_CSHIFT(U,SHIFT=-1,DIM=2)
T=T + U<0’_1>

CALL OVERLAP_CSHIFT(U,SHIFT=+1,DIM=2)

T =T+ U<0tt>

CALL OVERLAP_CSHIFT(U<t1.0> ,SHIFT=-1,DIM=2)
T =T + U<+17—1>

CALL OVERLAP_CSHIFT(U<t1.0> ,SHIFT=+1,DIM=2)
T = T + ys<ti+i>

CALL OVERLAP CSHIFT(U<-1.0> ,SHIFT=-1,DIM=2)
T=T + U<_1’_1>

CALL OVERLAP CSHIFT(U<-1.0> ,SHIFT=+1,DIM=2)
T =T+ y<-btl>

Figure 9.14 Problem 9 after offset array optimization.

LAP_SHIFT operations, and references to the assigned arrays have been replaced with
offset references to the source array U. All intraprocessor data movement has thus
been eliminated.

In addition, notice how the temporary arrays, both the compiler-generated TMP
array and the user-defined RIP and RIN, are no longer needed to compute the stencil.
If there are no other uses of these arrays in the routine, they need not be allocated.
This reduction in storage requirements allows for larger problems to be solved on a

given machine.

9.7.3 Context Partitioning Optimization

Once we have completed our offset array optimization, we move on to context
partitioning. Our algorithm begins by determining the congruence classes present in
the section of code. In this example there are only two congruence classes: the array
statements, which are all congruent, and the communication statements. The depen-
dence graph is computed next. There are only two types of dependences that exist in
the code: true dependences from the OVERLAP_SHIFT operations to the expressions
that use the offset arrays, and the true and anti-dependences that exist between the
multiple occurrences of the array T. Since all the dependences between the two classes

are from statements in the communication class to statements in the congruent array
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CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=1)
CALL OVERLAP_ CSHIFT(U,SHIFT=-1,DIM=1)
CALL OVERLAP_ CSHIFT(U,SHIFT=-1,DIM=2)
CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=2)
CALL OVERLAP CSHIFT(U<*1.0> SHIFT=-1,DIM=2)
CALL OVERLAP CSHIFT(U<*1.0> SHIFT=+1,DIM=2)
CALL OVERLAP CSHIFT(U<-1.0> SHIFT=-1,DIM=2)

CALL OVERLAP_CSHIFT(U<~1:9> SHIFT=+1,DIM=2)

U<0’_1>
U<o+1>
U<+l -1>
U<+ 41>
U<_1’_1>
U<_1’+1>

HH A
HH A C

+
+
+
+
+
=T +

Figure 9.15 Problem 9 after context partitioning optimization.

class, the context partitioning algorithm is able to partition the statements perfectly

into two groups. The result is shown in Figure 9.15.

9.7.4 Communication Unioning Optimization

We now turn our attention to the interprocessor data movement specified in the
OVERLAP_SHIFT operations. As directed in Section 9.5, we begin by exploiting their
commutative property to rewrite multi-dimensional OVERLAP_SHIFTs so that the
lower dimensions are shifted first. No rewriting is necessary for this example since all
the dimension 1 shifts occur first, as can be seen in Figure 9.15.

Next we look at the shifts across the first dimension. Since there is only a single
shift of distance one in each direction, there is no redundant communication to be
eliminated. Moving on to the second dimension we again find only shifts of distance
one. However, we do discover four multi-offset arrays. Examining the annotations
of the offset arrays, we create RSD’s that summarize the overlap areas that are
necessary. We generate the two calls to OVERLAP_SHIFT that include the RSD’s
and then eliminate all other OVERLAP_SHIFT calls for the second dimension. This
results in the code shown in Figure 9.16. As can be seen, communication unioning
has reduced the amount of communication to a minimum: a single communication

operation for each dimension in each direction.
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CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=1)
CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=1)
CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=2,[0:N+1,%])
CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=2,[0:N+1,*])

T=1U + U<+1’0> + U<_1’0>
T=T + U<0’_1>
T =T+ U<0t+t>
T =T+ U<ti-1>
T = T + ys<ti+i>
T=T + U<_1’_1>
T =T+ U<-L+>

Figure 9.16 Problem 9 after communication unioning optimization.

9.7.5 Scalarization and Memory Optimizations

Our next task is to scalarize the code and generate an optimized SPMD node
program. Using the data dependences calculated for context partitioning, our advance
scalarization algorithm (presented in Chapter 8) efficiently scalarizes the code in a
single pass over the program source. Since there is no possibility of generating a
loop-carried dependence, the scalarized loops are easily fused into a single loop nest.
This code is shown in Figure 9.17. To keep the example simple and help the reader
follow the flow of the optimizations, we have not refined the loop bounds as would be
done to generate a node program that only accesses the subgrids local to each PE.

At this point the main contributions of this dissertation have been completed. We
now hand this code over to our node compiler that performs the optimizations outline
in Section 9.6. The code is ripe with opportunities for improvements, of which we
discuss a few.

We begin by performing loop interchange, if necessary, to make the i-loop the
inner-most loop. This results in the arrays being accessed in memory order, improving
the cache behavior of the program. We use scalar replacement on the references to
T(1,j) so that the array is only accessed when actually storing the result. The scalar
that is used is likely to be kept in a register. See Figure 9.18.

To further improve the loop balance, we now apply the unroll-and-jam transforma-
tion. For this example we have chosen an unroll amount of four. The resulting code
is shown in Figure 9.19. There are now many duplicate array references that appear
on the right-hand side of the assignment statements. In fact, of the 36 references to

the array U, only 18 of them are unique. This effectively cuts the loop balance ()
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CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=1)
CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=1)

CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=2, [0:N+1,%])
CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=2,[0:N+1,*])

DO i=1,

N

DO j=1,N
T(1,3)
T(1,3)
T(1,3)
T(1,3)
T(1,3)
T(1,3)
T(1,3)

ENDDO
ENDDO

= U(4,j)

+ U(i+1,) + U(i-1,3)
T(i,j) + U(L,j-1)
T(i,j) + U(i,j+1)
T(i,3) + U(i+1,3j-1)
T(i,j) + U(i+1,j+1)
T(i,j) + U(i-1,3-1)
T(i,j) + U(i-1,j+1)

Figure 9.17 Problem 9 after scalarization.

CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=1)
CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=1)

CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=2, [0:N+1,%])
CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=2,[0:N+1,*])

DO j=1,N
DO i=1,N
RO = U(i,j) + U@i+1,3) + U®i-1,7)
RO = RO + U(i,j-1)
RO = RO + U(i,j+1)
RO = RO + U(i+1,j-1)
RO = RO + U(i+1,j+1)
RO = RO + U(i-1,j-1)
RO = RO + U(i-1,j+1)
T(i,j) = RO
ENDDO
ENDDO

Figure 9.18 Problem 9 after memory optimizations.
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in half. This loop runs significantly faster than the original on machines that have a
relatively small machine balance (3y7). For architectures with instruction-level paral-
lelism, the assignments to the different scalars RO--R3, which will likely be assigned

to registers, can be executed in parallel.

9.8 Experimental Results

To measure the performance boost supplied by each step of our stencil compilation
strategy, we ran a set of tests on an 8-processor IBM SP-2. We started by generating
a naive translation of the Problem 9 test case into Fortran77-+MPI. This is considered
our “original” version. We then successively applied the transformation as outlined
in the preceding subsection and measured the execution time. The results are shown
in Figure 9.20.

Before analyzing the results in Figure 9.20, it is worthwhile to compare it to the
results shown in Figure 9.12 for the Problem 9 code. Our “original” MPI version of
the code has already resulted in an order of magnitude improvement over the code
produced by IBM’s xlhpf compiler: 0.475 seconds versus 4.77 seconds for the largest
problem size.

Starting with our Fortran774+MPI test case, we first applied our offset array op-
timization to the code, as shown in Figure 9.14. This resulted in a 45% reduction
in execution time, equivalent to a speedup of 1.80. Context partitioning was applied
next, as shown in Figure 9.15. This optimization allowed scalarization to merge all
the computation into a single loop nest, resulting in a 31% reduction in execution
time over the previous version. At this point we have reduced the execution time of
the original program by 62%, a speedup of 2.64.

We then applied our communication unioning optimization, as shown in Figure
9.16. This results in only four communication operations being performed, and re-
duces the execution time by 41% when compared to the context-optimized version.
Applying the memory optimizations described in Section 9.6 reduced the execution
time another 14%. This final version has reduced the execution time of the original
program by 81%, equivalent to a speedup of 5.19!

Lest someone think that we have chosen IBM’s xlhpf compiler as a straw man, we
have collected some additional performance numbers. We generated a third version
of a 9-point stencil computation, this one using array syntax similar to the 5-point

stencil shown in Figure 9.1. This 9-point stencil computation only computes the
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CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=1)
CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=1)

CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=2, [0:N+1,%])
CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=2,[0:N+1,*])

DO j=1,N,4
DO i=1,N
RO = U(i,j) + U(i+1,j) + U(i-1,3)
RO = RO + U(i,j-1)
RO = RO + U(i,j+1)
RO = RO + U(i+1,j-1)
RO = RO + U(i+1,j+1)
RO = RO + U(i-1,j-1)
RO = RO + U(i-1,j+1)
T(i,j) = RO
R1 = U(i,j+1) + U(i+1,j+1) + U(i-1,]j+1)
R1 = R1 + U(i,j)
R1 = Rl + U(i,j+2)
R1 = R1 + U(i+1,3)
R1 = R1 + U(i+1,j+2)
R1 = Rl + U(i-1,j)
R1 = R1 + U(i-1,3j+2)
T(i,j) = Rl
R2 = U(i,j+2) + U(i+1,j+2) + U(i-1,]j+2)
R2 = R2 + U(i,j+1)
R2 = R2 + U(i,j+3)
R2 = R2 + U(i+1,j+1)
R2 = R2 + U(i+1,j+3)
R2 = R2 + U(i-1,j+1)
R2 = R2 + U(i-1,3j+3)
T(i,j) = R2
R3 = U(i,j+3) + U(i+1,j+3) + U(i-1,]j+3)
R3 = R3 + U(i,j+2)
R3 = R3 + U(i,j+4)
R3 = R3 + U(i+1,j+2)
R3 = R3 + U(i+1,j+4)
R3 = R3 + U(i-1,3j+2)
R3 = R3 + U(i-1,]j+4)
T(i,j) = R3
ENDDO
ENDDO

Figure 9.19 Problem 9 after unroll-and-jam.
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Figure 9.20 Step-wise results from stencil compilation
strategy on Problem 9 when executed on an SP-2.

interior elements of the matrix; that is, elements 2:N-1 in each dimension. A graph
comparing its execution time to the other two 9-point stencil specifications is given
in Figure 9.21. The IBM xlhpf compiler was used in all cases.

It is obvious that the xlhpf compiler is able to minimize the interprocessor com-
munication, prevent the generation of intraprocessor copying, and optimize the com-
putation for the array-syntax stencil. In fact, this specification of the kernel produced
performance numbers that tracked our best performance numbers for all problem sizes
except the largest, where we had a 10% advantage.

This demonstrates the problem with compiler optimizations based upon pattern
matching. When the compiler is able to match a pattern in the user’s program, it
can produce excellent code. But if the user’s program deviates slightly, the compiler
cannot match a pattern and the code it produces is mediocre at best. It is important
to note that the stencil compilation strategy that we have presented handles all three
specifications of the 9-point stencil equally well. That is because our algorithm is
based upon the analysis and optimization of the base constructs upon which stencils
are built. Our algorithm is designed to handle the lowest common denominator — a

form into which our compiler can transform all stencil computations.
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Figure 9.21 Comparison of three 9-point stencil specifications.

9.9 Related Work

One of the first major efforts to specifically address the compilation of stencil compu-
tations for a distributed-memory machine was the stencil compiler for the CM-2, also
known as the convolution compiler [36, 37, 39]. They eliminated the intraprocessor
data movement and optimized the interprocessor data movement by exploiting the
CM-2’s polyshift communication [72]. The final computation was performed by hand-
optimized library microcode that took advantage of several loop transformations and
a specialized register allocation scheme.

Our general compilation methodology produces code equivalent to that produced
by this specialized compiler. We both eliminate intraprocessor data movement and
minimize interprocessor data movement. We also show how our method can exploit
bi-directional communication, similar to the parallel communication performed by
the polyshift routine. Finally, our use of the unroll-and-jam loop optimizations ac-
complish the same data reuse as the stencil compiler’s “multi-stencil swath”. It is
likely that our “swath” will be smaller than those used by the stencil compiler. This

is because we consider machine balance, whereas they consider only the number of
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available registers. The smaller swath does not suffer a loss of efficiency if we are able
to attain the machine balance.

The CM-2 stencil compiler had many limitations however. It could only handle
single-statement stencils. The stencil had to be specified using the CSHIFT intrinsic;
no array-syntax stencils would be accepted. Since the compiler relied upon pattern
matching, the stencil had to be in a very specific form: a sum of terms, each of
which is a coefficient multiplying a shift expression. No variations were possible. And
finally, the programmer had to recognize the stencil computation, extract it from the
program and place it in its own subroutine to be compiled by the stencil compiler.

Our compilation scheme handles a strict superset of patterns handled by the CM-2
stencil compiler. In their own words, they “avoid the general problem by restricting
the domain of applicability.” [39] We have placed no such restrictions upon our work.
Our strategy optimizes single-statement stencils, multi-statement stencils, CSHIFT
intrinsic stencils, and array-syntax stencils all equally well. And since our optimiza-
tions were designed to be incorporated into an F90D/HPF compiler, they benefit
those computations that only slightly resemble stencils.

There are also some other commercially available compilers that can handle cer-
tain stylized, single-statement stencils. The MasPar Fortran compiler avoids the
intraprocessor data movement for single-statement stencils written using array no-
tation. This is accomplished by scalarizing the Fortran90 expression (avoiding the
generation of CSHIFTs) and then using dependence analysis to find loop-carried de-
pendences that indicate interprocessor data movement. Only the interprocessor data
is moved, and no local copying is required. However, the compiler still performs all
the data movement for single-statement stencils written using SHIFT intrinsics. This
strategy is shared by many Fortran90/HPF compilers that really only want to handle
scalarized code, as discussed in Section 2.4.1. As with the CM-2 stencil compiler, our
methodology is a strict superset of this strategy.

Gupta, et al. [81], in describing IBM’s xlhpf compiler, state that they are able
to reduce the number of messages for multi-dimensional shifts by exploiting methods
similar to ours. However, they do not describe their algorithm for accomplishing this,
and it is unknown whether they would be able to eliminate the redundant communi-
cation that arises from shifts over the same dimension and direction but of different
distances.

The Portland Group’s pghpf compiler, as described by Bozkus, et al. [31, 32],
performs stencil recognition and optimizes the computation by using OVERLAP_SHIFT
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communication. They also perform a subset of our communication unioning optimiza-
tion. However, they are limited to single-statement expressions in both cases.

In general, there have been several different methods for handling specific sub-
classes of stencil computations. In this paper, we have presented a strategy that

encompasses all of them and more.

9.10 Summary

In this chapter, we have presented a general compilation scheme for compiling HPF
and Fortran90D stencil computations for distributed-memory architectures. The
strategy optimizes such computations by orchestrating a unique set of optimizations.
These optimizations eliminate unnecessary intraprocessor data movement resulting
from CSHIFT intrinsics, eliminate redundant interprocessor data movement, and opti-
mize memory accesses via loop-level transformations. The optimizations are general
enough to be included in a general-purpose Fortran90D/HPF compiler, and they
benefit many computations, not just those that fit a stencil pattern. The strength
of these optimizations is that they optimize all stencil computation no matter how
they were originally specified. It does not matter if array syntax was used or explicit
shift intrinsics, or if the stencil was computed by a single statement or across multiple
statements. It is the most robust stencil compilation system of which we are aware.
Even though we have concentrated on distributed-memory machines in this chapter,
the techniques presented are equally applicable to optimizing stencil computations on
shared-memory and scalar machines (with the exception of reducing interprocessor

movement).
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Chapter 10

Conclusions

Currently there are a large number of HPF compiler projects in both industry and
academia. Their success has shown that technology exists to correctly translate
Fortran90 programs, which have been annotated with data distribution directives,
into efficient executables for distributed-memory machines, both MIMD and SIMD.
The advanced compilation techniques described in this dissertation demonstrate the
additional performance gains attainable when a compiler performs analysis and op-
timization of programs at the array level. In this chapter we summarize the research
presented in this dissertation, give our perspective on compiling the Fortran90 array

constructs of HPF, and close by considering areas for future research.

10.1 Compiling HPF

As was discussed early on in this dissertation, the compilation of the array-level
constructs of HPF share many of the same characteristics as the compilation of the
scalar constructs of HPF. In both cases arrays need to be distributed across the
processors of the machine so that parallelism can be effectively exploited. Then the
computations specified in the program must be partitioned so that each processor
has some amount of work to do. Once data and computation distributions have been
finalized, the compiler must insert communication operations to move data so that all
operands of an expression reside on the processor which performs the computation.
And finally subgrid loops must be generated which iterate over the local subgrids
allocated to the individual processors.

However, when it comes to taking advantage of the implicit parallelism present
in Fortran90 array constructs, HPF compilers fall into one of two vastly different
categories. Each of the two categories has its advantages and its disadvantages. The
first category of compilers we have classified as scalarizing compilers. These com-
pilers translate the Fortran90 array constructs into equivalent sequential Fortran77

constructs. The resulting program is then passed to a scalar HPF compiler for opti-
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mization and code generation. Such compilers are capable of parallelizing sequential
constructs of the program. The other category of compilers we have classified as
array operation compilers. Such compilers are characterized by their ability to di-
rectly translate the data parallelism found in array constructs for execution on the
distributed-memory machine. These compilers usually do an excellent job of handling
the explicit parallel constructs found in the program; however they typically do not
have the ability to parallelize sequential constructs.

To bridge the chasm between these two categories of HPF compilers, we proposed
a new compilation model. The model is a hybrid of the compilation models used by
the two categories, and as such we believe that it exploits the advantages of each
while minimizing their weaknesses. It accomplishes that by interleaving Fortran90
compilation issues with Fortran77 compilation issues.

We then designed a set of optimizations that are performed at the whole-array
level. This is in contrast to most Fortran compilers that only perform optimizations
at or below the level of loops or array elements. These array-level optimizations are
capable of optimizing dense matrix stencil computations more completely than all

other known efforts.

10.2 Contributions

This dissertation make contributions in two main areas: the analysis of Fortran90 ar-
ray constructs, and the transformation & optimization of Fortran90D /HPF programs

at the array level.

10.2.1 Array Analysis Techniques

In this dissertation we presented algorithms for extending data flow analysis, depen-
dence analysis, and SSA form to directly handle Fortran90 array constructs. These
extensions provide HPF compilers with analysis capabilities not previously available,
allowing them to make decisions and perform transformations at the Fortran90 ar-
ray level before scalarizing the program into Fortran77 code. In particular, we have
shown how to extend dependence analysis to directly handle Fortran90 array-section
references, and we have introduced a new class of dependences and showed how they
can be used to perform advanced program transformations. An important character-
istic of the testing procedures presented is that they were designed to fit smoothly

into the framework of existing optimizing compilers.
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10.2.2 Optimization Techniques

This dissertation developed a number of novel array-level optimizations for boost-
ing the performance of Fortran90D/HPF programs on distributed-memory machines.
The optimizations presented are all based on advanced analysis of Fortran90 ar-
ray constructs, eliminating the reliance upon pattern matching as is done in many

Fortran90 compilers. These optimizations include:

o The offset array optimization which can eliminate the intraprocessor data mo-
tion associated with Fortran90 shift operations. This optimization is based on
an efficient framework which is global in scope and is capable of optimizing shift

operations even when the definitions and uses are separated by control flow.

e Communication unioning optimization which is able to eliminate redundant and
partially redundant interprocessor data movement associated with Fortran90
shift operations. Given a group of shift operations, this optimization reduces the
number of interprocessor messages to a minimum: one message in each direction
for each dimension. This optimization accomplishes its goal by understanding
the underlying semantics of the shift operations, as opposed to pattern matching

techniques used by other compilers.

e Two different context optimizations which can reduce the cost of context switch-
ing code on SIMD machines. The first, context partitioning, reorders the code
so that as subgrid loops are generated as many statements as possible that re-
quire the same context are placed in the same loop nest. The second, context
splitting, splits the iteration space of the subgrid loops into sets that have in-
variant contexts — this allows us to hoist the context setting code out of the
subgrid loops. We have also shown how context partitioning can optimize the
code produced for MIMD machines by enhancing the amount of loop fusion

possible while preventing loops from being over fused.

o An advanced scalarization algorithm which can scalarize array statements in
a single pass over the source code. This algorithm has the same ability to
minimize the size of temporary arrays as the standard two-pass scalarization

algorithm, but is more efficient.

We have also demonstrated how these optimizations can work in unison to create

a powerful stencil compiler. The stencil compiler incorporates the optimizations to
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target the overhead of data movement that occurs between processors, within the local
memory of the processors, and between the memory and registers of the processors.
The strength of these optimizations is that they optimize all stencil computation no
matter how they were originally specified. It does not matter if array syntax was
used or explicit shift intrinsics, or if the stencil was computed by a single statement
or across multiple statements. These optimizations make this stencil compiler more

robust than all previous efforts in this area.

10.3 Future Work

We conclude by taking a look at areas for continued research in the area of high-level

optimizations for Fortran90.

10.3.1 Scalarization and Fusion

In this thesis we presented a methodology for performing dependence analysis directly
on array expressions. We classified a new genre of dependences and showed how
they could be used to perform scalarization in a single pass over the source code.
It is interesting to note that these same scalarization dependences contain all the
information needed to determine the validity of loop interchange and loop fusion. It
would seem possible, and highly desirable, to develop a single algorithm that would

perform all three optimizations at once.

10.3.2 Array Temporaries

When compiling array languages such as Fortran90, a compiler must often generate
array temporaries. Such temporaries are required to maintain the semantics of the
program. However, the compiler has flexibility in determining where, when, and how
many temporaries are generated. There are many conflicting concerns that revolve
around the issue of temporary arrays. For example, memory usage verses execution
speed. It is sometime possible to reduce total storage requirements by sharing array
temporaries; however the sharing of these temporaries will usually prevent the fusion
of scalarized loop nests. Such issues must be resolved if we hope to develop Fortran90

compilers that produce code that is both small and efficient.
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10.3.3 WHERE Optimization

One Fortran90 array construct not explored in this dissertation is the WHERE state-
ment. In the future we plan to explore the application of our context partitioning
optimization and advance scalarization algorithm on code containing WHERE state-

ments and WHERE blocks.

10.3.4 Irregular and Spare Computations

The optimizations presented in this dissertation do an excellent job of optimizing
dense matrix stencil computations. Unfortunately, they have little applicability to
programs performing irregular or sparse computations. In the future we would like to
see if we can extend our success of performing high-level analysis and optimizations

into this realm.
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