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Optimizing Fortran90D/HPF forDistributed-Memory ComputersGerald H. RothAbstractHigh Performance Fortran (HPF), as well as its predecessor FortranD, has attractedconsiderable attention as a promising language for writing portable parallel programsfor a wide variety of distributed-memory architectures. Programmers express dataparallelism using Fortran90 array operations and use data layout directives to directthe partitioning of the data and computation among the processors of a parallelmachine.For HPF to gain acceptance as a vehicle for parallel scienti�c programming, itmust achieve high performance on problems for which it is well suited. To achievehigh performance with an HPF program on a distributed-memory parallel machine,an HPF compiler must do a superb job of translating Fortran90 data-parallel ar-ray constructs into an e�cient sequence of operations that minimize the overheadassociated with data movement and also maximize data locality.This dissertation presents and analyzes a set of advanced optimizations designedto improve the execution performance of HPF programs on distributed-memory ar-chitectures. Presented is a methodology for performing deep analysis of Fortran90programs, eliminating the reliance upon pattern matching to drive the optimizationsas is done in many Fortran90 compilers. The optimizations address the overhead ofdata movement, both interprocessor and intraprocessor movement, that results fromthe translation of Fortran90 array constructs. Additional optimizations address theissues of scalarizing array assignment statements, loop fusion, and data locality. Thecombination of these optimizations results in a compiler that is capable of optimizingdense matrix stencil computations more completely than all previous e�orts in thisarea. This work is distinguished by advanced compile-time analysis and optimizationsperformed at the whole-array level as opposed to analysis and optimization performedat the loop or array-element levels.
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1Chapter 1Introduction1.1 BackgroundSince the dawn of computing there has been a need for high performance computersto solve computationally-intensive problems in a reasonable amount of time. Manydi�erent architectures have been used over the years to create such computers. As oftoday, distributed-memory parallel machines o�er the greatest computing power andscalability for the lowest price/performance ratio and are thus the choice for solvingtoday's most computationally-intensive and memory-intensive problems. However,programming such computers is still the principal obstacle to their general acceptance.Fortran90 is currently the best numerically-oriented programming language forexpressing data parallelism. Fortran90's array syntax and rich set of array intrinsicfunctions has raised the level of abstraction available to Fortran programmers, thusmaking it the programming language of choice in science and engineering.High Performance Fortran (HPF), an outgrowth of Fortran D, has attracted con-siderable attention as a promising language for writing portable parallel programs fora wide variety of distributed-memory architectures. HPF o�ers a simple programmingmodel that shields programmers from the intricacies of concurrent programming andmanaging distributed data. Programmers express data parallelism using Fortran90array operations and use data layout directives to direct the partitioning of the dataand computation among the processors of a parallel machine. It is then the respon-sibility of the compiler to generate e�cient code for manipulating the distributeddata. Thus HPF seems to be the best candidate for programmers to use in creat-ing machine-independent data-parallel programs for execution on distributed-memorymachines.



21.2 Thesis StatementFor Fortran90D/HPF to gain acceptance as vehicles for parallel scienti�c program-ming, they must achieve high performance on problems for which they are well suited.To achieve high performance on a distributed-memory parallel machine, a compilerfor Fortran90D or HPF must do a superb job of translating Fortran90 data-parallelarray constructs into an e�cient sequence of operations that minimize the overheadassociated with data movement and also maximize data locality. Unfortunately, cur-rent Fortran90D/HPF compilers fail to exploit the heightened level of abstractionpresent in Fortran90 array constructs and thus fail to optimize Fortran90 programsas fully as possible.Thesis: A Fortran90D/HPF compiler for distributed-memory parallelmachines can produce more e�cient code if it includes advanced analysisand optimization of the program at the whole-array level.Fortran90/HPF has raised the level of abstraction of Fortran programs. We need asimilar rise in the level of analysis and transformation if we expect to do the bestjob possible in optimizing it. Our work is distinguished by advanced compile-timeanalysis and optimizations performed at the whole-array level as opposed to analysisand optimization performed at the loop or array-element levels.1.3 ContributionsThe main goal of this work is not the design of an HPF compiler for distributed-memory machines. That e�ort has been addressed by others, including Compass,Thinking Machines Corp., MasPar, IBM, Digital Equipment Corp., the PortlandGroup, and Applied Parallel Research. But while there exist several HPF compil-ers, few are able to optimize programs as fully as would be expected. The goal ofthis work is to address the de�ciencies of the current class of HPF compilers. Wehave accomplished that by developing a set of array-level optimizations that can beincorporated into other compilers to produce better code.Here we present a summary of the contributions this dissertation makes in the areaof compiling HPF for distributed-memory machines. It is also worthwhile to notethat most of the optimizations presented are equally applicable to shared-memoryand scalar machines.



3Analysis of Fortran90 Array ConstructsBefore we can optimize Fortran90 array constructs we must be able to analyze themto determine certain facts, and we must be able to represent those facts so they are ac-cessible to the compiler. The analysis methods that are exploited by many advancedcompilers include data ow analysis and dependence analysis. Methods used to rep-resent derived information include control ow graphs, static single assignment, anddependence direction vectors. This dissertation shows how to extend these methodsand representations to support the direct analysis of operations on array sections. Inparticular we classify a new genre of data dependences and present transformationsthat utilize them.O�set Array OptimizationInterprocessor data movement on a distributed-memory parallel machine is typicallyfar more costly than movement within the memory of a single processor. For thisreason, much of the prior research on minimizing data movement has focused on theinterprocessor case. However, although interprocessor data movement is more costlyper element, the number of elements moved within the memory of a single processormay be much larger, causing the cost of local data movement to be dominant.Our o�set array optimization focuses on the problem of minimizing the amount ofintraprocessor data movement when performing Fortran90 array operations. We havedeveloped a set of necessary and su�cient criteria for when this local data movementcan be avoided, and we have designed an algorithm that is capable of verifying thecriteria over entire procedures. This algorithm is able to avoid such data movementin many more cases than the current class of HPF compilers.Context OptimizationWith distributed-memory SIMD machines there is a need to explicitly turn processorson and o�. This is due to the fact that there is only a single instruction stream andnot all processors are to execute each instruction. Only processors containing datarelated to the current instruction should execute it. If a processor is not to executea set of instructions, it must be explicitly \masked out". However, changing theprocessor mask, or context, is an expensive operation. Setting the machine context isan overhead that one must pay to execute on a SIMD architecture.



4We have developed two separate optimizations that address this overhead by re-ducing the number of times that the machine context must be set. First, we rearrangethe program statements so that during code generation as many statements as pos-sible that execute under the same context are placed within the same loop nest.We call this optimization context partitioning. Second, we alter the order in whicharray elements are processed by performing loop transformations on the generatedloop nests. These transformations allow us to hoist the context setting code out ofthe loops and thus reduce the number of context changes. We call this optimizationcontext splitting.Even though the context partitioning optimization was originally designed to opti-mize code for SIMDmachines, it is also bene�cial for MIMD machines. First, it gener-ates loop nests for array statements that do not require conditionals when executed ondistributed-memory machines. Second, the loop nests contain more statements andthus increase the opportunities for data re-use. Third, context partitioning groupstogether as many communication operations as possible which facilitates analysis andthus enables a reduction in the amount of interprocessor data movement.Advanced ScalarizationBefore an array statement of a data-parallel language can be executed on the targetarchitecture, a compiler must rewrite it such that individual array elements are ac-cessed one at a time. This is accomplished by replacing the array statement with aloop nest that contains a subscripted reference to the array. This translation is knownas scalarization. We have developed a new algorithm to perform scalarization in asingle pass over the code, as opposed to the standard two-pass algorithm. The newalgorithm has the same ability as the two-pass algorithm for avoiding the generationof array temporaries or minimizing their size when temporaries are required.Stencil CompilationFor many HPF programs performing dense matrix computations, the main computa-tional portion of the program belongs to a class of kernels known as stencils. We havedeveloped a strategy for optimizing such stencil computations, no matter how theyare instantiated by the programmer. The strategy combines our o�set array optimiza-tion, context partitioning optimization, and advanced scalarization algorithm with anew optimization, communication unioning, that minimizes interprocessor communi-



5cation for such computations. The result is a compilation scheme that is more robustthan all previous work in this area.1.4 OverviewIn the next chapter, we present the necessary background material to understand theissues being addressed in this dissertation. This includes an overview of the targetarchitectures and programming languages. In Chapter 3 we discuss related e�orts andtheir relevance to this work. Chapter 4 presents the compilation model on which therest of the dissertation is built. It introduces many of the issues involved in compiling adata-parallel programming language for execution on a distributed-memory machine.In Chapter 5 we begin the main contributions of this dissertation by describingextensions to common compiler analysis techniques and representations to supportthe array section operations found in Fortran90. In particular, we address data-owanalysis, dependence analysis, and static single assignment. The results of theseanalyses are used in the subsequent optimization phases of our compiler.Chapter 6 describes the o�set array optimization which reduces the cost of intra-processor data movement that is associated with Fortran90 shift intrinsics. Chapter 7discusses two context optimizations for SIMD architectures. We also discuss the re-lationship of these context optimizations to MIMD machines. Chapter 8 presentsan algorithm that is able to perform scalarization more e�ciently than the standardalgorithm that is commonly used.Chapter 9 introduces a new strategy for compiling dense matrix stencil compu-tations for distributed-memory machines. This strategy exploits several of the op-timizations presented earlier in the dissertation and introduces a new optimization,communication unioning, that reduces the cost of interprocessor data movement. Thischapter also includes an extended example that demonstrates the power of this com-pilation strategy. We conclude in Chapter 10 with a summary of our contributionsand a look forward to future work.



6Chapter 2BackgroundIn this chapter we give a brief overview of distributed-memory multiprocessor ar-chitectures, the Fortran90 language, and the data distribution/alignment directivesof Fortran D and High Performance Fortran. In addition we present an overviewof two di�ering compilation models that Fortran90D/HPF compilers use to generatecode for execution on distributed-memory machines. These descriptions introducethe concepts necessary to understand how the machines work, why the compilersmust generate certain code sequences, and why the optimizations described in laterchapters are bene�cial.2.1 Distributed-Memory Multiprocessor ArchitecturesThis section introduces two classes of distributed-memory multiprocessor architec-tures. These classes comprise two of the four classes proposed in Flynn's taxonomyof computer architectures [70]. The �rst isMultiple Instruction streams, Multiple Datastreams, or MIMD architectures. The second is Single Instruction stream, MultipleData streams, or SIMD architectures. We give a brief overview of these two architec-tures in the following subsections. For a more complete discussion of general MIMDand SIMD architectures see an appropriate computer architecture book [88, 96].2.1.1 Distributed-Memory MIMD ArchitecturesA MIMD computer contains many independent central processing units (CPUs) op-erating asynchronously, each executing its own instruction stream. The MIMD archi-tectures in which we are interested associate some local memory with each CPU, fromwhich the CPU fetches instructions and reads/writes data. The CPU along with itsassociated memory is referred to as a processing element (PE) or a processing node.The collection of all PEs is called the PE array. The PE array may be treatedas a linear array or as an array of higher dimensions; e.g., a 16 PE array could betreated as a 16� 1 grid, or an 8� 2 grid, or a 4� 4 grid, or even a 2� 2� 2� 2 grid



7(equivalent to a 4-d hypercube). For simplicity, we limit our discussions to treatingthe PE array as a linear array or a two dimensional square grid.The PEs are connected by an interprocessor communication network. This net-work allows messages to be sent from one PE to another. These messages can beused to allow PEs to share data with one another. The details of such a network arenot important to this dissertation.Examples of MIMD machines include the SP2 from IBM [4], and the Paragonfrom Intel [97, 67]. See Figure 2.1 for a simple schematic of such a machine.2.1.2 Distributed-Memory SIMD ArchitecturesDistributed-memory SIMDmachines are quite similar to MIMDmachines in that theyconsist of an array of PEs connected by a communication network. However, unlikeMIMD machines, the PEs of a SIMD machine operate synchronously, each executingthe same instruction. In a SIMD machine each PE contains an Arithmetic LogicalUnit (ALU) rather than a fully functional CPU. The instructions to be executedby the ALUs are received from a serial front end processor or control unit. Thefront end processor has three responsibilities. The �rst is to drive the PE array by
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Figure 2.1 A distributed-memory MIMD architecture.



8broadcasting instructions and related data to all PEs. The second is to perform allscalar computations and control ow operations. Third, the front end is the systeminterface to the external world.The single instruction stream of a SIMD computer necessitates that each PEhave an execution ag. This execution ag can be set on or o� to indicate whetherthe PE should execute the current instruction. There are several reasons why a PEmay be turned o� during a computation. The two main reasons are that the currentoperation is being performed under a user speci�ed mask (such as a Fortran90 wherestatement), or that the PE does not have any local data on which to operate. Whentaken as a whole, the execution ags of all the PEs are said to determine the contextof the PE array. Some instructions are executed regardless of the execution mask,for example instructions that reset the execution ag. It is the responsibility of thecompiler to generate the code to set the correct PE context for all computationsexecuted on the PE array.Examples of SIMD machines include the CM-2/CM-200 from Thinking MachinesCorporation [90, 148, 150], and the MP-1/MP-2 fromMasPar [26, 130, 124]. A simplediagram of a SIMD machine can be seen in Figure 2.2.
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Figure 2.2 A distributed-memory SIMD architecture.



92.2 Fortran90Fortran90 [18] adds a number of interesting and useful features to the Fortran lan-guage, the most popular being the array features. With Fortran90, entire arrays canbe referenced by simply referring to the array name { no subscripts are necessary.Arrays or subsections of arrays can be speci�ed by using triplet subscripts. A tripletspeci�es a range in the following form.[lower bound]:[upper bound][:stride]If the lower or upper bounds are not speci�ed, the declared bounds of the array areassumed. The stride is 1 if not given. A null triplet is one in which only a singlecolon appears and thus refers to all the elements in the corresponding dimension ofthe array.The use of arrays or array subsections in expressions and assignment statementsgreatly reduces the need for tedious and error-prone DO-loops. In Fortran90, arraysor array subsections are treated as unitary objects when referenced. Thus for an arrayassignment statement the semantics specify that all right-hand side array elementsare read before any left-hand side array elements are stored.Besides adding array references, Fortran90 added a large set of intrinsic functionsthat operate on or manipulate arrays. These intrinsic functions roughly fall into thefollowing categories:� Reduction operations: maxval, minval, sum, count, all, any, and prod-uct.� Inquiry functions: size, shape, lbound, and ubound.� Array construction functions: spread, merge, reshape, pack, and unpack.� Array manipulation functions: cshift, eoshift, and transpose.� Location functions: maxloc and minloc.Other array-related features of Fortran90 include allocatable arrays, pointers, andthe where statement. For more information on these or any of the above mentionedconstructs, the reader is referred to an appropriate text [2, 127].



102.3 Fortran D and High Performance FortranFortran D and High Performance Fortran (HPF) are versions of Fortran that havebeen designed to assist both the programmer and compiler in producing e�cient data-parallel programs for distributed-memory machines. The main extensions found inthese languages are directives for specifying how data arrays are to be distributedover the PE array.Addressing the data distribution problem can be handled best by considering thetwo levels of parallelism in data-parallel applications. First, there is the question ofhow arrays should be aligned with respect to one another, both within and acrossarray dimensions. We call this the problem mapping induced by the structure of theunderlying computation. It represents the minimal requirements for reducing datamovement for the program, and is largely independent of any machine considerations.The alignment of arrays in the program depends on the natural �ne-grain parallelismde�ned by individual members of data arrays.Second, there is the question of how arrays should be distributed onto the ac-tual parallel machine. We call this the machine mapping caused by translating theproblem onto the �nite resources of the machine. It is dependent on the topology,communication mechanisms, size of local memory, and number of processors in theunderlying machine. Data distribution provides opportunities to reduce data move-ment, but must also maintain load balance. The distribution of arrays in the programdepends on the coarse-grain parallelism de�ned by the physical parallel machine.Fortran D's decomposition statement or HPF's equivalent template state-ment specify an abstract problem or index domain; they do not require any storage.Each element of a decomposition represents a unit of computation. These statementsdeclare the name, dimensionality, and size of a decomposition for later use.The align statement is used to map arrays with respect to a decomposition.Arrays mapped to the same decomposition are automatically aligned with each other.Alignment can take place either within or across dimensions. The alignment of arraysto decompositions is speci�ed by placeholders in the subscript expressions of both thearray and decomposition.After arrays have been aligned with a decomposition, the distribute statementmaps the decomposition to the �nite resources of the physical machine. Distributionsare speci�ed by assigning an independent attribute to each dimension of a decompo-sition. Prede�ned attributes for Fortran D are block, cyclic, and block cyclic,



11whereas HPF has block and cyclic(i). The symbol \�" marks dimensions thatare not distributed. Choosing the distribution for a decomposition maps all arraysaligned with the decomposition to the machine.Entire descriptions complete with detailed examples for both Fortran D and HPFcan be found elsewhere [71, 89, 112]. We use Fortran D directives in the examplesthroughout this dissertation with the knowledge that it is usually a trivial task tomap them to the corresponding HPF directives.2.4 Fortran90D/HPF Compilation ModelsIn compiling Fortran90D/HPF for execution on distributed-memory parallel archi-tectures, most compilers use one of two compilation models. These two models usevery di�erent strategies for translating the user's program for execution on the par-allel hardware. Each model has its advantages and its disadvantages. In each casewe will assume that the generated code is in the form of an Fortran77 node programcontaining calls to a message-passing library which is then passed to the hardwarevendor's compiler. We introduce these two models here, and then we use them tocategorize the related projects that are discussed in Chapter 3.2.4.1 Scalarizing CompilersIt is often the case that the quickest and easiest path to a completed software projectis to leverage o� of the use of existing software components. Compilers are no di�er-ent. For this reason many Fortran90 compilers, and now Fortran90D/HPF compilers,are centered around pre-existing Fortran77 compilers. Such compilers consist of aFortran90D/HPF front end that performs parsing and semantic analysis, followedby a scalarizer which translates the parallel Fortran90D/HPF code into equivalentsequential Fortran77D/HPF code, and then a Fortran77D compiler which performsprogram analysis, optimization, and code generation. See Figure 2.3 for an outlineof a compiler which utilizes this model. This strategy is used by many of the HPFcompilers for MIMD architectures [81, 85, 19], and it is not limited to compilers fordistributed-memory machines [20].The advantages of this model are fairly clear. By exploiting an existing Fortran77Dcompiler, a Fortran90D compiler can be created in a much shorter time span. In ad-dition, the Fortran90D compiler gains from the years of e�ort that went into creatingand optimizing the Fortran77/Fortran77D compiler. The scalarizer of the Fortran90D
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CodeFigure 2.3 Components of a scalarizing Fortran90D/HPF compiler.compiler does not need to be concerned with the alignment or distribution of arrays,or with the generation of communication to insure data is correctly passed betweenPEs { all of that is handled by the Fortran77D/HPF compiler.And a �nal key advantage is that the Fortran77D compiler handles all of theincoming code uniformly, whether the code was originally written in a scalar styleby the programmer or was translated into scalar code by the scalarizer. This allowsfor the parallelization and distribution of computation not only for code written withparallel constructs but also for parallelizable code that is not expressible using arraysyntax or forall; e.g., pipelined computations [93, 152, 58].The major drawback of this scheme is that the scalarization process can obfuscatethe code, making it much more di�cult to analyze and optimize than the original



13Fortran90D code. Facts that were clear at the Fortran90 array level become obscuredby strange loop bounds and subscript expressions. In many cases, whole-array op-timizations that could have been performed on the Fortran90D program cannot bedetected in the equivalent Fortran77D program. Missing the opportunity for suchwhole-array optimizations can lead to signi�cant increases in both execution timeand memory requirements due to compiler generated temporary arrays that couldhave otherwise been eliminated.Another drawback is the increase in compile time. Since the Fortran77D/HPFcompiler components only expect sequential programs as input, there are usuallyfew methods for the scalarizer to transmit important information to it. Such lostinformation would include which constructs were originally written in parallel form.The Fortran77D compiler must then perform analysis to rediscover these facts so thatit can produce e�cient code for the parallel machine.2.4.2 Array Operation CompilersIn contrast to the compilers that use the compilation model described in the pre-ceding subsection, there are compilers created expressly for mapping the explicitparallelism of Fortran90 constructs to the parallel hardware. Such compilers arecharacterized by their ability to directly translate the data parallelism found in arrayexpressions or forall statements for execution on the distributed-memory machine.This strategy is used in the majority of Fortran90D/HPF compilers for SIMD ar-chitectures [123, 140, 149], many of which are descendents of compiler technologydeveloped by Compass [7, 9, 108, 109, 110], and is also employed by some MIMDcompilers [28, 32]. We refer to such compilers as array operation compilers or nativeFortran90 compilers.The main phases of a compiler exploiting this model are depicted in Figure 2.4.After the input is parsed, the distributions and alignments of arrays are analyzed.This is used to generate required communication and to partition the computa-tion among the PEs. And as communication operations are so expensive, an at-tempt is usually made to optimize them using methods such as message vectoriza-tion [21, 73, 91], message aggregation [120, 131, 152], and the exploitation of collectivecommunication operations [120].The major advantage of this model is its simplicity. The compiler takes theparallelism that is explicitly stated by the programmer and maps it to the parallel



14
F90D/HPF

Source

Parser

Array Analysis

Communication Generation &
Computation Partitioning

Communication
Optimization

Code
Generation

F77+MPI
CodeFigure 2.4 Components of an arrayoperation Fortran90D/HPF compiler.hardware. This typically only requires analysis of the distribution and alignment ofarrays to determine that data which must be communicated prior to local computa-tion. Often pattern matching is used to recognize and optimize the communication.However there is no need to perform in-depth analysis, such as dependence analysis,to discover parallelism.This simplicity has its cost though, and is the major disadvantage of this compi-lation model. Without the information supplied by detailed analysis the compiler isunable to perform many advanced transformations or optimizations. And since thecompiler only generates parallel code for parallel constructs, any code written in se-quential mode is executed serially or duplicated on all processors. Thus the program



15must be written using array syntax, array intrinsics, or forall constructs whereverpossible. This requires the programmer to translate all sequential code to parallelcode, either by hand or using an automated tool [116, 13]. But some code sequencescontaining parallelism are not expressible with these constructs; e.g., pipelined com-putations. In such cases a compiler must have dependence information to detectthe available parallelism and to perform the necessary loop tiling transformations toe�ectively exploit it [93, 152].2.5 SummaryIn this chapter of background information we have introduced the Fortran90D andHPF languages, and have given an overview of the target distributed-memory ar-chitectures. We have also outlined two possible models that a compiler for theselanguages might utilize. This information provides the concepts necessary to under-stand the material presented in the rest of this dissertation.Throughout the remainder of this dissertation any references to Fortran90D aremeant to include HPF with data-parallel constructs, and any references to Fortran77Dare meant to include HPF with only sequential constructs. As mentioned previously,all examples in this dissertation will use Fortran D syntax rather than HPF syntax.



16Chapter 3Related WorkThe topic of compiling single address-space programs for execution on distributed-memory architectures has received an immense amount of attention over the pastseveral years; both in the academic world and in industry. Initial e�orts concen-trated on the challenge of generating correct code. Later research tackled the task ofgenerating e�cient code.Since this dissertation discusses the optimization of Fortran90 array constructsfor execution on distributed-memory machines, we review in this chapter only thoseprojects that also deal with the compilation & optimization of Fortran90 array fea-tures. However, it is important for the reader to remember that many of the issuesinvolved in compiling Fortran90 for distributed-memory machines are the same forcompiling Fortran77 for distributed-memory machines. In fact, most of these com-mon issues were solved �rst by research projects concentrating on the compilation ofFortran77.The interested reader is referred to any of the following projects which address thebasics of distributed-memory compilers: the Fortran D compilation system at RiceUniversity [83, 91, 92, 93, 94, 115, 152], the Parafrase-2 and Paradigm compilers atUniversity of Illinois at Urbana-Champaign [78, 79, 80, 147, 22, 133], Vienna Fortranand the SUPERB-2 system at the University of Vienna [52, 50, 51, 68], and theSUIF project at Stanford University [16, 145, 157]. For the rest of this chapter weconcentrate solely on projects whose main purpose is the compilation of Fortran90constructs.Compass CompilersCompass (1961-1991) was an independent software house which was involved in thedesign and implementation of several SIMD compilers. The front end and the globaloptimizer from the original versions of both the CM Fortran and MasPar Fortrancompilers were written by Compass; in fact, Compass wrote the entire Paris version



17of the CM Fortran compiler. The CM Fortran compiler is described in more detailbelow. The compilers they produced would be classi�ed as array operation compilersas described in the preceding chapter.The group at Compass, along with their associates at Thinking Machines Corp.,were the �rst to investigate the challenges of compiling Fortran90-style data-parallelconstructs for execution on distributed-memorymachines [7, 8, 9, 110]. Together theycreated what many would consider to be the �rst, commercially viable, distributed-memory compiler.In addition to the general SIMD compiler development e�ort, Compass did muchof the ground-breaking research in the area of data optimization [108, 109, 107, 111,122]. The purpose of data optimization is to automatically align data to improvelocality and thus minimize interprocessor communication. Their method assumesan unlimited number of virtual processors. Then based on usage patterns, it mapsarrays to the virtual processors, striving to align them so that communication costsare minimized. A later stage of the compiler then uses strip mining to map thevirtual processors to the physical processors [156], also known as array distribution.This two stage approach makes each stage conceptually clean, but prevents themfrom interacting.CM FortranThinking Machines Corporation developed three generations of distributed-memoryarchitectures, the �rst two being SIMD machines (the CM-1 and CM-2) [148] andthe third being a MIMD machine (the CM-5) [132, 151]. CM Fortran, their Fortranderivative, was an implementation of Fortran77 augmented with array constructsfrom Fortran90. Their compiler for CM Fortran was also developed through threegenerations. The �rst generation was the Paris, or �eldwise, compiler which usesthe bit-serial processors on the CM-1 and CM-2. The second generation CM Fortrancompiler was the slicewise compiler [140]. The slicewise compiler ignored the bit-serial processors and used only the oating-point accelerator chips of the CM-2. TheCM Fortran compiler can take advantage of the slicewise model of the machine indi�erent ways to improve program performance for many engineering and scienti�capplications. The third generation compiler targeted the CM-5, and was basically anupdated version of the slicewise compiler [139, 141]. As such, it treated the CM-5 as



18a SIMD machine and was thus not able to produce code that took full advantage ofthe architecture.Even though the slicewise compiler gave improved performance, it also had sev-eral weaknesses. The compiler's shortcomings included the lack of transformationsto increase the size of elemental code blocks, ine�cient use of memory for compilertemporary arrays, and generation of poor code for communication along serial di-mensions. Thinking Machines documented many of the shortcomings, and suggestedmethods that programmers may use to work around them [142].Thinking Machines had also done some extensive work on compiling stencils [39].A stencil is a computational pattern that calculates a new value for a matrix ele-ment by combining elements from neighboring matrix locations. The proper han-dling of stencils is very important for distributed-memory compilers, and can resultin substantial performance gains. The performance gains produced by the CM-2stencil compiler were obtained by using multiwire NEWS communication, eliminat-ing memory-to-memory copying of data, and full exploitation of the oating-pointregisters. However, it was the responsibility of the programmer to identify a sten-cil computation, isolate it into a separate subroutine, and compile it with a specialcompiler.NPAC's Fortran90DThe Fortran90D compiler developed by the Northeast Parallel Architectures Center(NPAC) at Syracuse University, like the CM Fortran compiler, is classi�ed as anarray operation compiler [28, 29, 30, 61]. The compiler only exploits the parallelismexpressed in the data parallel constructs. It does not attempt to parallelize scalarconstructs as would a Fortran77D compiler.The basic structure of this compiler is composed of four major modules { parsing,partitioning, communication generation, and code generation. The parsing moduletranslates all parallel constructs, such as array assignments and where statements,into equivalent forall constructs [27]. In this way all subsequent modules needonly deal with forall statements. The �nal result is a loosely synchronous single-program multiple-data (SPMD) program, structured as alternating phases of localcomputation and global communication.



19Unlike most optimizing compilers, which rely upon program analysis to drive theirtransformations and optimizations, NPAC's Fortran90D compiler relies upon patternmatching:\The foundation of our design lies in recognizing commonly occurringcomputation and communication patterns. These patterns are then re-placed by calls to the optimized run-time support system routines. Theruntime support system includes parallel intrinsic functions, data distribu-tion functions, communication primitives, and several other miscellaneousroutines." [30]This compiler's reliance on run-time support is evident in the fact that its run-time library contains over 500 routines. This shifting of responsibility from compile-time to run-time has its advantages and its disadvantages. The major advantageis that it simpli�es the design and development of the compiler. Unfortunately ittypically cannot generate as e�cient code since it is di�cult to perform optimizingtransformations across the numerous call sites. The same can be said about relyingupon pattern matching to drive transformations and optimizations. It simpli�es thecompiler, and when it works it works surprisingly well. But when it cannot match apattern, the code produced is mediocre at best. An example of the vast di�erencesin code quality produced by such compilers is presented later in this dissertation.xlhpfIBM's xlhpf compiler [81] is naturally classi�ed as a scalarizing compiler as de�ned inSection 2.4.1. This is due to the fact that the �rst action taken after the intermedi-ate representation is created is the scalarization of the array language into Fortran77scalar form. Data dependence analysis is then performed to detect and exploit par-allelism across all the code, whether it was originally written with Fortran90 parallelconstructs or Fortran77 scalar constructs.The xlhpf compiler's strengths come from its ability to perform deep programanalysis. As previously mentioned the compiler uses dependence analysis to detectand exploit parallelism even in scalar code. Dependence information is also used forcommunication placement optimizations and selective loop distribution. The com-piler uses symbolic analysis to generate e�cient code even when the size of arrays orthe number of processors is not known at compile-time. The analysis of data avail-ability enables the elimination of redundant communication [82]. And static singleassignment (SSA) form is exploited to produce an e�cient mapping of scalar variables.



20Taking just the opposite tack as the NPAC Fortran90D compiler, xlhpf actuallyin-lines library routines such as Fortran90 intrinsic functions. This enhances theopportunities for analysis and makes it possible to eliminate extra array temporariesand copying { an important consideration for any Fortran90 compiler which desiresto achieve performance comparable to Fortran77 programs.pghpfThe pghpf compiler, from The Portland Group Inc., is very similar in design toNPAC's Fortran90D compiler [32, 31, 126]. This is no surprise given the close asso-ciation the two groups have had during recent years. The compiler still relies heavilyon run-time routines, which enables it to target both shared-memory and distributed-memory machines. However the compiler does have additional analysis capabilitieswhich enable it to perform optimizations not possible in NPAC's Fortran90D com-piler.The additional analysis performed by the compiler allows it to include optimiza-tions such as heuristic-based data optimization, communication parallelization forreplicated arrays, and communication unioning. Interprocedural analysis is performedwhich enables the global sharing of run-time data structures. By reusing run-timedata structures used for communication scheduling the cost of creating and destroyingsuch structures can be eliminated in many cases.The compiler is also capable of recognizing and optimizing single-statement stencilcomputations. And �nally, the compiler performs enhanced analysis and optimizationof the resulting node program, including vectorizing loops for certain architectures.xHPFApplied Parallel Research Inc.'s xHPF translator is the most recent addition to theFORGE90 parallel programming environment [19, 146, 75]. The system is identicalto the company's xHPF77 system, with the addition of a preprocessor that convertsFortran90 syntax into Fortran77. This structure classi�es the compiler as a scalarizingHPF compiler, similar to IBM's xlhpf. Consistent with the design of other scalarizingHPF compilers, xHPF has the ability to produce parallel code for both Fortran90and Fortran77 constructs.The FORGE90 environment is an integrated system built around a set of data-bases. The databases hold the results of symbolic analysis, control ow analysis, and



21data ow analysis, as well as information regarding user-supplied directives. Thesedatabases contain information about all the procedures associated with an applica-tion. This allows the system to perform deep interprocedural analysis, thus enablingthe parallelization of loops containing subroutine calls. The main limitation of thesystem is that the base distributed memory parallelization tool (DMP) does not at-tempt code restructuring transformations to enhance the detection or generation ofparallel code.AdaptorAdaptor is an HPF-like compilation system that is structured very much like theCM Fortran compiler [33, 34, 35]. It only takes advantage of parallelism present in theexplicitly parallel HPF constructs. It has no feature for automatic parallelization. Inaddition to batch compilation support, Adaptor also has a graphical user environmentwhich allows the user to assist in directing the translation process.Adaptor's compilation strategy can be split into three main phases. After theabstract syntax tree is generated and normalized, the compiler splits program state-ments in local and non-local operations. This step creates temporary variables andarrays as necessary. In the next phase, all parallel array operations are translatedinto an internal forall format and these resulting loops are analyzed. In the �nalphase, parallel loops are adjusted so that they only work on local data, communica-tion statements are generated, and the �nal node program is produced. The systemconcentrates on producing correct code. It does not contain an optimization phase.Fortran90-YThe Fortran-90-Y compiler, developed at Yale University, is designed to support rapidprototyping of compilation and optimization techniques [57, 59, 58]. The compileruses an abstract semantic algebra, Yale Intermediate Representation (YR), as its in-termediate language. YR de�nes a series of semantic domains and sets of operatorswithin each domain, and combines them with shapes that represent iteration spaces.The compiler optimizes a program by performing a sequence of source-to-source trans-formations over the YR code. It produces code for the CM-2 and the CM-5 that iscomparable to that of the CM Fortran compiler.



22Chapter 4Compilation ModelIn this chapter we describe in detail our overall compilation model for Fortran90D.This model is a hybrid of the two models presented in Chapter 2. As such we believethat it exploits the advantages of each model while minimizing their weaknesses.It accomplishes that by interleaving Fortran90 compilation issues with Fortran77compilation issues.This model, however, is not a central contribution of this dissertation. Instead,it gives us a framework on which we can apply and explain our optimizations. Theoptimizations themselves are not tied strictly to this model { they will work witheither of the models presented in Chapter 2 or any hybrid of them.4.1 IntroductionFigure 4.1 contains an outline of our compilation model for Fortran90D. The outlineshows how some aspects of the scalarizing compiler have been combined with thoseof the array operation compiler to produce a uni�ed compilation system.Once the Fortran90D input program has been parsed, we use the Fortran D direc-tives to determine how the data arrays are to be distributed across the PEs. After thedistribution of the arrays, we look at the sequential code that exists in the programto determine which portions of it can be parallelized. Computation partitioning andcommunication generation come next. We then perform our high-level analysis andoptimizations, which are followed by lower-level optimizations. Finally subgrid loopsare generated as the last step before code generation. Each of these steps, with theexception of parsing, is explained in the remainder of this chapter.Readers familiar with the SIMD compiler technology developed at Compass Inc.will notice that our model is an extended version of their Fortran90 compilationscheme. They were the �rst to use the array operation compilation model presentedin Section 2.4.2 to create a compiler for distributed-memory machines. Their workgreatly inuenced subsequent research projects and commercial products (e.g., the
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CodeFigure 4.1 Our Fortran90D compilation model.CM Fortran and MasPar Fortran compilers). Many of our optimizations were origi-nally developed to address weaknesses found in these compilers.4.2 Array DistributionTo exploit parallelism, the Fortran90D compiler distributes the data arrays acrossthe PE array, giving each PE a chunk of the data to process. The manner in whicharrays are distributed is very important for maximizing parallelism while minimiz-ing expensive communication operations. As introduced earlier, Fortran D suppliesthree statements for specifying a data distribution: decomposition, align, anddistribute. When arrays are distributed across the PE array, each PE will locallyallocate an equal-sized subgrid to hold its portion of the distributed array. The rank of



24the subgrid matches the rank of the distributed array. The extent of the i-th subgriddimension is Extenti = dNi=Pie, where Ni and Pi are the extents of the distributedarray dimension and the PE array dimension, respectively. Pi = 1 for dimensionswhich are not distributed. The PE array itself is considered to have a rank equalto the number of distributed dimensions of the distributed array. To simplify ourdiscussion, we limit the number of distributed dimensions to two.The compiler uses a distribution function [92] to calculate the mapping of an arrayelement to a subgrid location within a PE. Given an array A, the distribution function�A(~{) maps an array index~{ into a pair consisting of a PE index ~pid and a subgrid index~|. Inverse distribution functions, ��1A ( ~pid;~|), give the reverse mapping. Table 4.1shows examples of distribution functions and their inverses for one-dimensional arrayswith either block or cyclic distributions. In this dissertation all arrays, whetheruser arrays or the PE array, use one-based indexing.The Fortran D code in Figure 4.2 illustrates the concepts of data distribution.Given a distributed-memorymachine with P = 16 PEs, the compiler would distributearray X as shown in Figure 4.3. Each PE would allocate a local subgrid X 0(16). Thedistribution function for X is:�X(i) = ((i� 1) mod 16 + 1; di=16e).On the same machine, array Y would be distributed by the compiler as shown inFigure 4.4. Notice how the PE array is now treated as a 4 � 4 matrix of PEs; i.e.,P1 = P2 = 4. Thus Extent1 = Extent2 = 5 and each PE would allocate Y 0(5; 5) asthe local subgrid. In this case the distribution function for Y is:�Y (i; j) = ((di=5e; dj=5e); ((i� 1) mod 5 + 1; (j � 1) mod 5 + 1)).REAL X(256), Y(20,20)DECOMPOSITION A(256), B(20,20)ALIGN X(I) WITH A(I)ALIGN Y(I,J) WITH B(I,J)DISTRIBUTE A(CYCLIC)DISTRIBUTE B(BLOCK,BLOCK)Figure 4.2 Fortran D code declaring two distributed arrays.



25�(i) ��1(pid; j)BLOCK (di=Extent1e; (i� 1) mod Extent1+ 1) (pid � 1) � Extent1 + jCYCLIC ((i� 1) mod P1 + 1; di=P1e) (j � 1) � P1 + pidTable 4.1 Distribution functions and their inverses.4.3 Parallelism DetectionOne of the biggest drawbacks of the array operation compilation model presented inSection 2.4.2 was its inability to exploit the parallelism that is present in sequentialcode. To rectify this shortcoming, our compilation model includes a phase that iden-ti�es any serial operations on distributed arrays that are safe to execute in parallel.The search for parallelism is simpli�ed by considering only those loop nests whichiterate over the distributed dimensions of the arrays.The methods used to detect and exploit data parallelism in sequential code havebeen well documented [12, 13, 25, 153, 161, 163] and will not be discussed any furtherhere.4.4 Computation PartitioningThe next step is to map the parallel operations to the processors. The Fortran D com-piler uses the \owner computes" rule, where every processor only performs computa-tions that update data it owns [45, 165]. In essence, the data distribution speci�ed bythe programmer is also a speci�cation for distributing the computation. The compileruses the distribution functions discussed in Section 4.2 to determine ownership.The owner computes rule could be replaced by a data optimization phase, whichmay determine an alternate distribution for the computation and associated interme-diate results, in an attempt to reduce the amount of communication [7, 56, 109, 119].4.5 Communication GenerationOnce data and computation distributions are �nalized, the compiler must insert anynecessary communication operations. These are required to move data so that alloperands of an expression reside on the PE which performs the computation. AFortran77D compiler [152] generates individual Send and Receive pairs for non-
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17 19 2016 18Figure 4.4 A 20 � 20 two-dimensional array mapped in a (block,block)fashion onto a 16 PE machine con�gured as a 4� 4 matrix.local data accesses, and then depend upon later compilation phases to optimize them.Our compiler model relies upon the same mechanism to handle serial source code.However, Fortran90 array constructs supply additional information which canallow a compiler to directly recognize and exploit collective communication rou-tines. Examples of collective communication routines include cshift and trans-pose. These routines have several features which provide compelling reasons for aFortran90D compiler to exploit them:1. Performance: These routines, implemented in the runtime library, are highlyoptimized for the target machine. Since these routines are written by handthey can often exploit architectural features that are not portable and thus not



27used in higher level compilers, but which can provide signi�cant performanceadvantages.2. Compiler complexity: Since these routines move data in a collective manner,there is no need for subsequent compilation phases that attempt optimizationssuch as message vectorization or message aggregation. This greatly decreasesthe complexity of the compiler.3. Composition: Collective communication operations may be combined to handlecomplex communication patterns. Such compositions usually execute fasterthan point-to-point communication operations generated by a compiler.For these reasons a Fortran90D compiler should exploit collective communication rou-tines whenever possible. This requires the compiler to recognize applicable patternsin the array syntax used in assignment statements. Our compiler uses a variant ofthe pattern matching techniques proposed by Li and Chen [120]. This requires ananalysis of the array subscripts that are used, in conjunction with information aboutthe array's alignment and distribution.After the communication operations have been inserted, all computations referencedata that are strictly local to the associated PEs. For example, the array assignmentstatement:X(2:255) = X(1:254) + X(2:255) + X(3:256)would be changed into the following three statements, where TMP1 and TMP2 are arraysthat match the size and distribution of X:TMP1 = CSHIFT(X,SHIFT=-1,DIM=1)TMP2 = CSHIFT(X,SHIFT=+1,DIM=1)X(2:255) = TMP1(2:255) + X(2:255) + TMP2(2:255)Notice that in the third statement all the operands are \perfectly aligned" with eachother and that there is no further communication required to compute the expressionor store the result. This code is equivalent to the code produced by several othercommercial and research compilers [34, 110, 139].4.6 Fortran90-level Analysis and OptimizationIn this phase of the compilation process, we perform array-level analysis and opti-mizations. The array-level analyses performed are those that are necessary to support



28our optimizations, and include data ow analysis, dependence analysis, and the gen-eration of static single assignment form. These are discussed in Chapter 5.The optimizations performed during this phase are the main contributions ofthis dissertation and are presented in Chapters 6 { 9. These optimizations addresssome of the overheads associated with compiling Fortran90 for distributed-memorycomputers, as well as addressing the performance of the compiler itself.4.7 Fortran77-level Analysis and OptimizationAfter performing our high-level array optimizations, we turn to optimizing the por-tions of the program containing DO-loops and array-element references. As with theoptimizations we performed at the array level, these optimizations address the manyissues involved with generating e�cient code for distributed-memorymachines. Theseoptimizations fall into several categories:Reducing Communication: Here we perform optimizations that attempt to re-duce the amount of communication. These include message vectorization [21,73], message coalescing [95], message aggregation [120, 131], redundant commu-nication elimination [17], and the exploitation of collective communication [120].Hiding Communication: These transformations attempt to hide the cost of com-munication by overlapping communication and computation. Examples of suchoptimizations are communication placement [49, 84], message pipelining [136],vector message pipelining [95], and iteration reordering [113].Improving Parallelism: Recognizing reductions and parallel-pre�x scan operations[53, 114] can help to improve the available parallelism. Loop interchange andstrip-mining [13, 160, 162] can be used to adjust the granularity of pipelinedcomputations to balance parallelism and communication [93].Storage Management: The use of overlap areas [73] and hash tables can ease thedetails of bu�er management for certain types of computations. Message block-ing [95] can be used in situations where bu�er storage is limited.For details on these optimizations see the individual citations or refer to Tseng'sdissertation [152] where they are all discussed in terms of an optimizing Fortran77Dcompiler.



294.8 Scalarization and Subgrid LoopingAs a �nal step in the compilation process the compiler must generate code thatiterates over the subgrids allocated to the individual PEs. This step is composed ofseveral sub-steps. First, array expressions are scalarized into serial DO-loops, andthese loops are fused when possible. Next the loops bounds of all parallel loops arelowered so that they iterate only over the local subgrids. Then guard statements orcontext switching code is produced as needed depending upon the target architecture.Each of these sub-steps is discussed below. The result is a Fortran77 SPMD programthat is ready for compilation and execution on the parallel machine.4.8.1 ScalarizationThe compiler translates the parallelism that is explicit in the Fortran90 array syntaxinto code that manipulates the arrays that have been distributed across the PEs.Since each PE is in fact a serial processor, the array expressions must be scalarized;i.e., translated into serial code [12, 14, 161]. This process replaces the array expressionwith a loop nest containing array references with only scalar subscripts.As an example, the array assignment statementX(1:256) = X(1:256) + 1.0would be translated into the following loopDO I = 1, 256X(I) = X(I) + 1.0ENDDOwhich iterates over all 256 elements of the array X.Unfortunately, the naive translation of array statements into serial loops is notalways safe. Recall from Section 2.2 that the semantics for an array assignmentstatement specify that all right-hand side array elements are read before any left-hand side array elements are stored. Thus a naive translation ofX(2:255) = X(1:254) + X(2:255) + X(3:256)into the following loop nestDO I = 2, 255X(I) = X(I-1) + X(I) + X(I+1)ENDDO



30is incorrect, since on the second and subsequent iterations of the I loop the referenceX(I-1) accesses the new values of the array X assigned on the previous iteration.Fortunately, we never encounter this situation within our compilation model inits current instantiation. Recall from Section 4.5 that the generation of communica-tion operations, with their associated temporary arrays, results in array expressionswhose operands are all perfectly aligned. This property ensures that a naive scalar-ization of array assignment statements is always correct. The above example, aftercommunication generation and scalarization, will look like:TMP1 = CSHIFT(X,SHIFT=-1,DIM=1)TMP2 = CSHIFT(X,SHIFT=+1,DIM=1)DO I = 2, 255X(I) = TMP1(I) + X(I) + TMP2(I)ENDDOAfter the array expressions have been scalarized, the program contains many sepa-rate loop nests, each containing a single scalar assignment statement. Such programsexhibit poor temporal data locality and a high loop-overhead/computation ratio. Toaddress these problems our compiler uses loop fusion [10] to merge multiple loop nestscovering the same iteration space into a single loop nest.The fusion of loops, however, is not always safe. A data dependence between twoadjacent loops is called fusion-preventing if after fusion the direction of the depen-dence is reversed [1, 154]. The existence of such a dependence means that fusion isnot safe. In our current model however, no such fusion-preventing dependences canexist between adjacent scalarized loops. This is due to the fact that the generationof communication causes all subgrid loops to operate on \perfectly aligned" data.Any fusion-preventing dependence that existed prior to communication generation isnow carried through a communication operation and its compiler temporary. Thiscommunication operation prevents the Fortran90 array expressions (and their corre-sponding scalarized loops) from becoming adjacent and are thus not considered forloop fusion.For example, given the following two array assignmentsX(2:255) = X(2:255) + A(2:255)B(2:255) = X(1:254) + B(2:255) + X(3:256)communication generation would result in



31X(2:255) = X(2:255) + A(2:255)TMP1 = CSHIFT(X,SHIFT=-1,DIM=1)TMP2 = CSHIFT(X,SHIFT=+1,DIM=1)B(2:255) = TMP1(2:255) + B(2:255) + TMP2(2:255)in which the fusion-preventing dependences are now carried by the temporary arrays.The de�nitions of the temporary arrays prevent the scalarized loops for the arrayassignments from becoming adjacent.Due to this perfect alignment of data within array operations, our compiler candirectly generate a single loop nest for adjacent Fortran90 array statements if theyhave identical distributions and cover the same iteration space. We call such arraystatements congruent 1. This form of scalarization precludes the need for loop fusion.For example, when presented with the following array statementsX(1:256) = X(1:256) + 1.0A(1:256) = X(1:256) ** 2.0B(1:256) = X(1:256) + A(1:256) + B(1:256)our compiler would directly generate the following loop during scalarization.DO I = 1, 256X(I) = X(I) + 1.0A(I) = X(I) ** 2.0B(I) = X(I) + A(I) + B(I)ENDDO4.8.2 Subgrid LoopingAfter array statements have been scalarized into DO-loops, we need to adjust thebounds of the loops so that they iterate over the subgrid that is assigned to each PE.The resulting loop is known as the subgrid loop. Some Fortran90 compilers combinescalarization and loop bounds reduction into a single step [156]. We have separatedthem since our compiler needs to also lower the bounds of Fortran77 loops writtenby the programmer.Continuing our previous example X(1:256) = X(1:256) + 1.0, where the arrayX is distributed as in Figure 4.3, scalarization generates the following loop.DO I = 1, 256X(I) = X(I) + 1.0ENDDO1Congruence is a stronger restriction than conformance [142], which just considers shape and size.



32Loop bounds reduction alters this loop to create the following loop,DO I = 1, Extent1 ! Extent1 = 16X0(I) = X0(I) + 1.0ENDDOwhere Extent1 is the size of the subgrid and is calculated as described in Section 4.2.Recall that X0 is the local subgrid instantiation of the distributed array X.For MIMD architectures each PE executes the subgrid loop asynchronously. ForSIMD architectures the execution of the subgrid loop is a cooperative e�ort betweenthe FE and the PE array. The FE handles the control ow by executing the loopingconstruct. For each iteration of the loop, the FE then broadcasts instructions to thePE array. The broadcast instructions result in each PE adding 1.0 to X0(I), wherethe value of I is also broadcast from the FE.4.8.3 Guard Statements and Context SwitchingUp to this point all of our detailed examples have used arrays that, when distributed,gave an equal number of elements per PE, and all expressions involving the arrays haveaccessed the entire array. When either of these conditions is not met, the compiler hasto modify the subgrid loop so that only the desired subgrid elements are processed.Given the Fortran D declarations in Figure 4.2, assume we now encounter the arrayassignment statement X(2:242) = X(2:242) + 1.0, which increments 241 elementsof X starting with the second element. As illustrated in Figure 4.3, PE 1 holds 15of these elements in X0(2:16), PE 2's full subgrid is involved, and PEs 3 through 16each have a�ected elements in X0(1:15). The subgrid loop for this statement mustonly modify the a�ected subgrid elements.The manner in which this is done depends upon the target architecture. ForMIMD machines we can further re�ne the subgrid loop bounds or introduce guardstatements. For SIMD machines we need to insert code to set the execution ags ofthe PEs.MIMD Loop Bounds Re�nement and Guard IntroductionWhen the target architecture is a MIMD machine, each PE has the capability todetermine the values of the loop bounds for the subgrid portion it owns. Thus inmany cases the compiler needs only to generate code that dynamically sets the loopbounds on each PE. The formulae in Table 4.2 show the calculations necessary to



33BLOCK CYCLICLower max((pidi-1)�Exti+1,L)-(pidi-1)�Exti lbi = ((L{1)/Pi)+1Bound if ((pidi{1) < MOD(L{1,Pi))lbi = lbi + 1Upper min(pidi�Exti,U)-(pidi-1)�Exti ubi = ((U{1)/Pi)+1Bound if ((pidi{1) > MOD(U{1,Pi))ubi = ubi { 1Table 4.2 Loop Bounds Re�nementcompute the loop bounds when a subsection of an array is being referenced. Thevalues for pidi, Exti (an abbreviation for Extenti), and Pi are as de�ned in Section 4.2Recall that we use 1-based indexing for all arrays, including the PE array and thelocal subgrids.For the example of incrementing the elements X(2:242), the following code isproduced:LB1 = ((2-1)/P1) + 1IF ((pid1-1) < MOD(2-1,P1)) LB1 = LB1 + 1UB1 = ((242-1)/P1) + 1IF ((pid1-1) > MOD(242-1,P1)) UB1 = UB1 - 1DO I = LB1, UB1X0(I) = X0(I) + 1.0ENDDOAlthough the reduction of loop bounds handles the majority of situations arisingfrom the use of Fortran90 array syntax, there are times when it is insu�cient. Forsuch complex cases it may be necessary to compute the local iteration sets [54, 105]or it may require the insertion of explicit guards [45, 99, 136]. We do not discuss thedetails of these at this point.SIMD Context SwitchingSince SIMD machines have a single instruction stream, the subgrid iteration spacemust include the union of all the iteration spaces required by the individual PEs.The subgrid loop must then contain code to enable and disable di�erent sets of PEsdepending upon which subgrid element is being processed. This is accomplished bychanging the context of the PE array by setting each PE's execution ag as describedin Section 2.1.2.



34To determine the set of PEs to enable we employ the inverse distribution functionsdescribed in Section 4.2. The context switching code added to our subgrid loop thatincrements X(2:242) is:DO I = 1, Extent1 ! Extent1 = 16Set Context(((I-1)*P1 + pid1 � 2) .AND. ((I-1)*P1 + pid1 � 242))X0(I) = X0(I) + 1.0ENDDOPi is the number of processors, while pidi and Extenti are as de�ned previously. Thefunction Set Context causes each PE to evaluate the logical expression and enableits execution ag if the result is true, otherwise the execution ag is disabled.In a similar manner, operations on arrays that do not \evenly" �ll the machinerequire context switching code to be inserted into the subgrid loop. Compare theFortran D declarations in Figure 4.5 to those in Figure 4.2. On the same 16 processormachine, array Y2 would be distributed as seen in Figure 4.6. Looking at Figure 4.6,it can be seen that array Y2 is distributed such that:� PEs (1:3,1:3) each contain a full subgrid of data,� PEs (1:3,4) contain data only in the left portion of their subgrids,� PEs (4,1:3) contain data only in the upper portion of their subgrids,� PE (4,4) contains data only in the upper-left corner of its subgrid.Since di�erent PEs contain data in di�erent subgrid locations, the subgrid loopmust contain code to change the context depending upon which subgrid element isbeing processed. Again, the inverse distribution functions determine the active setof PEs. For example, the Fortran90 statement Y2 = ABS( Y2 ) would generate thefollowing subgrid loop nest:DO J = 1, Extent2 ! Extent2 = 5DO I = 1, Extent1 ! Extent1 = 5Set Context (((pid1-1) * Extent1 + I � 17) .AND.((pid2-1) * Extent2 + J � 19))Y20(I,J) = ABS ( Y20(I,J) )ENDDOENDDOExtenti and pidi are the subgrid extent and PE index, respectively, along the i-thdimension.



35REAL Y2(17,19)DECOMPOSITION B2(17,19)ALIGN Y2(I,J) WITH B2(I,J)DISTRIBUTE B2(BLOCK,BLOCK)Figure 4.5 Fortran D code declaring an odd-shaped array.
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11 12 13 14 15 16 17 18 19Figure 4.6 A 17 � 19 two-dimensional array mapped in a blockfashion onto a 16 PE machine con�gured as a 4� 4 matrix.It should be obvious by now that the code required for changing the context canbe quite complex. If the previous example had only operated on a subrange of thearray Y2, for example, then the call to Set Context would also have required a lowerbound check for each dimension. This would double the number of logical operations.We do have one mitigating factor. When a single subgrid loop nest is generated fora set of adjacent congruent array statements, we do not need to change the contextfor each individual statement in the subgrid loop; i.e., they all operate under thesame context. This is true by our de�nition of congruent array statements: they havethe same iteration space and operate on arrays that have identical distributions.4.9 SummaryIn this chapter we have presented our compilation model for compiling Fortran90Dprograms for distributed-memory architectures. This model establishes a foundation



36on which we build our optimizations and transformations. However, it is importantto reiterate the fact that our optimizations are quite general and can be applied tomany di�erent Fortran90 compilation models.



37Chapter 5Analysis of Fortran90 Array Operations5.1 IntroductionPrior to optimizing a program, a compiler must analyze it to determine facts that canbe used to validate transformations. Since our goal is the optimization of programsat the Fortran90 array level we need the ability to analyze programs at that level. Inthis chapter we present methods for extending scalar analysis algorithms to includethe analysis of Fortran90 array operations. The analysis methods we investigate aredata-ow analysis and dependence analysis, as well as the static single assignmentintermediate representation. The results of these analyses are used by the optimizingtransformations presented in the remainder of this dissertation.5.2 Data-Flow AnalysisData-ow analysis is a classical analysis technique which tracks the ow of datathrough the program's variables [11, 100]. Analyzing a program's data ow canprovide information on reaching de�nitions, available expressions, and live variables,which in turn can enable optimizations such as global common subexpression elimina-tion, loop invariant code motion, strength reduction, and global register allocation [5].Data-ow analysis and associated optimizations have been standard components ofoptimizing compilers for many years.In this section we discuss analyzing data-ow through Fortran90 array statements.Since data-ow analysis depends upon a correct control-ow graph (CFG), we �rstdiscuss generating CFGs for Fortran90 programs.5.2.1 Control-Flow GraphsGenerating a CFG for Fortran90 is not much di�erent than for Fortran77. Fortran90contains only a single control construct that is not present in Fortran77: the caseconstruct. The case construct has identical semantics to similar constructs found in



38other languages. Thus the CFG for the case construct is generated as with otherlanguages.Another construct added to the Fortran90 language is the where construct. Itis important to note that the where construct is not a control construct. It istempting to think of the where construct as an array-level if statement, but this isnot the case. All the assignment statements in the where construct are executed ina sequential manner, �rst those under the where statement and then those underthe elsewhere statement.5.2.2 Data-Flow Analysis of Array ExpressionsData-ow analysis is traditionally used to analyze the ow of values through scalarvariables. It is too costly to compute data-ow information through each elementof an array. However, there are times when we want to know information about anarray as a single object. In those cases we can treat the array like a scalar variable,and use existing ow analysis techniques.Once the CFG for a Fortran90 program is constructed, data-ow analysis proceedsjust as with a Fortran77 program. In fact, our Fortran90 compiler uses the data-owanalysis engine that was written for the Fortran77D compiler. The challenge comesin generating the local access sets that are used as input for the analysis.Local access sets for data-ow analysis, such as use, def, and kill, specify howeach basic block a�ects the ow of values through the program. Extending these toinclude arrays is a fairly straight-forward exercise. If an array is referenced, regardlessof whether it is a reference to a single element or a subsection of the array, it is a use.Similarly, any assignment to an array is a def. But only a def that de�nes the entirearray can be considered a kill. This important distinction requires that we examinethe subscript expression used for the array access. Subscripts containing only nulltriplets are easily identi�able as full array references. However symbolic analysis maybe required to compare subscript expressions against the declared ranges of the array.In our compiler, we use data-ow analysis to generate live-variable informationfor arrays. With this information we create an interference graph, which we use inour o�set-array optimization presented in Chapter 6.



395.3 Dependence Analysis of Array SyntaxIn this section we present a methodology for performing data dependence analysisdirectly on Fortran90 array-section references. We show how direction vectors can beextended to include the dependence information. We also introduce a special class ofdependences that arise from array syntax, and discuss some of their properties.The dependence information produced by the algorithms presented here are usedin our compiler to perform context partitioning (see Section 7.2) and advanced scalar-ization (see Chapter 8).Before beginning it is important to clarify some terminology that is used in thissection. An array reference is a subscripted variable reference. A subscript is oneelement from a subscript list. A triplet, as de�ned in Section 2.2, is one type of sub-script. It is assumed that whole array references, array references without a subscriptlist, are represented within the compiler to include a subscript list containing theappropriate number of null triplets.5.3.1 Data DependenceThe theory of data dependence is well understood and is extensively used in advancedoptimizing and parallelizing compilers. We say that a data dependence exists betweentwo statements if there is an execution path from one to the other and both statementsaccess the same memory location. Data dependence is fundamental to compilers thatattempt reordering transformations since it speci�es statement orderings that mustbe preserved to maintain program semantics [12, 161, 166].There are four types of data dependence:� True dependence (�) occurs when one statement writes a memory location thatanother statement later reads.� Antidependence (�) occurs when one statement reads a memory location thatanother statement later writes.� Output dependence (�o) occurs when one statement writes a memory locationthat another statement later writes.� Input dependence (�i) occurs when one statement reads a memory location thatanother statement later reads. Input dependences are di�erent than the others,in that they do not restrict the order of execution.



40Dependence analysis is the process of determining whether a data dependenceexists between two statements [24]. The principal focus of dependence analysis isto determine dependences that arise from subscripted array references that appearwithin loop nests, since it is not always easy to determine if such references accessthe same memory location.5.3.2 Partition-based Dependence TestingIn the partition-based dependence testing algorithm [76] used in the analysis andtransformation systems at Rice University, pairs of array references are classi�edbefore being tested. This enables us to choose the most e�cient test for a given pairof references and lets us test the subscripts in the order of less expensive to moreexpensive. The classi�cation system consists of two orthogonal criteria: complexityand separability.Complexity refers to the number of distinct loop induction variables that appearwithin a subscript. Individual subscripts are �rst classi�ed, and then those resultsare used during dependence testing to derive a classi�cation for a subscript pair.Complexity classes include ziv (zero index variables), siv (single index variable), andmiv (multiple index variables).Separability refers to whether or not di�erent subscript positions contain commoninduction variables. A subscript position is separable if the indices it contains do notappear in other subscript positions [12, 41]. If di�erent subscript positions containthe same index, they are said to be coupled [121]. The concept of separability isimportant when testing multidimensional arrays in that it allows dependence testingto proceed subscript-by-subscript without a loss of precision. In contrast, coupledsubscripts must be tested as a group to obtain exact results.The concepts of complexity and separability are combined in the partition-baseddependence testing scheme to determine the most appropriate test to use for a givenpair of references. An outline of the algorithm is given in Figure 5.1. This algo-rithm has been used with great success in the PFC compiler [13], the ParaScopeprogramming environment [104], and the Fortran D compiler [93, 152].5.3.3 Dependence RepresentationData dependences are often represented using direction vectors and/or distance vec-tors [161]. The direction vector is an ordering vector, containing <, =, >, or �, that



411. Partition the subscripts into separable and minimal coupled groups.2. Label each subscript pair as ziv, siv, or miv.3. For each separable subscript pair, apply the appropriate single subscript testbased upon the complexity of the subscripts.4. For each coupled group, apply a multiple script test.5. If any test yields independence, no dependences exist.6. Otherwise merge all the direction vectors computed by the previous steps intoa single set of direction vectors for the two references.Figure 5.1 Partition-based dependence testing algorithm.speci�es the relation of the source and target iterations involved in the dependence.The distance vector contains the vector di�erence of the source and target iterations.These vectors are convenient methods for characterizing the relationship between thevalues of the loop indices of the two array references involved in the dependence. Inthis work we discuss only direction vectors, although the algorithms presented couldeasily be adapted to work with distance vectors.Direction vectors are useful in determining if a dependence is loop-carried or loop-independent [13]. For loop-carried dependences, the direction vector also tells uswhich loop carries the dependence and in which direction. The vectors contain anelement for each loop which encloses both statements involved in the dependence.The positions in the vectors from left to right correspond to the surrounding loopindices from outermost to innermost.To extend direction vectors for array-section references, we add vector elementsto account for the implied loops of the triplets. The number of elements added toa vector corresponds to the number of triplets that the two array references have incommon. In most cases these vector elements are only considered when the two arrayreferences are congruent2, in which case they have the same number of triplets. Thesenew direction vector elements appear to the right of those elements corresponding tosurrounding loops. We order the elements from left to right as they appear in thesubscript list, although any consistent ordering will do. In fact some people may want2See Section 4.8.1 for the de�nition of congruent arrays.



42to use the opposite ordering since they want the rightmost direction vector position,corresponding to the innermost loop, to be associated with the leftmost subscriptdue to the column-major storage layout of Fortran arrays. We chose the left to rightordering for its ease of understanding since it matches the order in which the tripletsappear in the program text.Consider the code fragment shown in Figure 5.2. Any dependences among state-ments S1 and S2 due to the references to array A would have an associated directionvector containing three elements: the �rst corresponding to the I loop, the secondcorresponding to the �rst triplet, and the third corresponding to the second triplet.This fragment of code contains the following dependences: S1�(=;>;=)S1, S1�(=;=;=)S1,S1�(=;>;=)S2, and S2�(<;=;=)S1.5.3.4 Scalarization DependencesGiven this extension to the concept of a direction vector, there is a subclass of depen-dences that deserve some special attention: those dependences which have an \="in all non-triplet direction vector positions. We call these dependences scalarizationdependences [138]. Since scalarization dependences arise from parallel constructs inthe Fortran90 program, they do not have the same behavior as non-parallel depen-dences. Note that it is valid for any of the three direction speci�ers to appear in thetriplet-related vector positions. Thus for scalarization dependences, it is no longer thecase that a true dependence with a \>" as the �rst non-\=" direction is equivalentto an antidependence with the direction reversed, as has been previously noted byothers [14, 40].By de�nition, scalarization dependences are loop-independent with regard to sur-rounding loops. This has several implications. First, any such dependence of a state-ment on itself is always an antidependence (ignoring input dependences), whereassuch a dependence from one statement to a subsequent one is either a true or outputdependence. Next, scalarization dependences have no e�ect on the parallelization ofDO I = 1, N-1S1: A(I,2:N-1,1:N) = A(I,1:N-2,1:N) + A(I,2:N-1,1:N)S2: B(I,2:N-1,1:N) = A(I,3:N,1:N) + A(I+1,2:N-1,1:N)END DOFigure 5.2 Fortran 90 code fragment.



43surrounding loops, regardless of what direction the triplet-related positions contain.Finally, it is especially important to point out that such dependences do not a�ect theability to parallelize the DO-loops that get generated during the scalarization of theFortran90 code. This is due to the fact that the array-section subscripts are explicitlyparallel constructs.But this does not mean that we can ignore scalarization dependences. These de-pendences play an important role when the compiler scalarizes the Fortran90 programinto its Fortran77 equivalent. This aspect of the dependences is addressed in moredetail in Chapter 8.Consider again the code in Figure 5.2. This fragment of code contains threescalarization dependences: S1�(=;>;=)S1, S1�(=;=;=)S1, and S1�(=;>;=)S2. The codealso has the dependence S2�(<;=;=)S1 which is carried by the I loop.5.3.5 Classi�cation of Array-Section ReferencesAs introduced in Section 5.3.2, pairs of array references are classi�ed before beingtested by the partition-based dependence testing algorithm. This allows us to choosethe most e�cient test for a given pair of references. We now extend the concepts ofcomplexity and separability to include array-section references.ComplexityWe have created a new complexity class for subscripts containing array syntax. Wecall this new class simply triplet, corresponding to the triplet notation used in thesubscript. Unlike the other complexity classes, a triplet is also sub-classi�ed toindicate the complexity of its components. A triplet is sub-classi�ed as siv if thecorresponding triplet subscript contains no index variables (the siv sub-classi�cationis due to the index variable implicit in the triplet notation). If the triplet containsone or more index variables from enclosing loops in any of its components, then thetriplet is sub-classi�ed as miv. When convenient, we use the shorthand tripletSIVand tripletMIV to represent the complexity and sub-classi�cation of a triplet sub-script.Statement S3 in Figure 5.3 has two array references, each containing two subscriptsthat are classi�ed as triplet. For each reference, the �rst triplet subscript is sub-classi�ed as miv due to the induction variable J , and the second triplet subscript issub-classi�ed as siv.



44DO J = 1, NS3: A(J:N,K,1:N) = A(J:N,1:N,L) + � � �END DOFigure 5.3 Complexity and separability example.SeparabilityThe concept of separability is an important issue for a dependence testing algorithmthat is interested in both precision and e�ciency. It allows dependence testing toproceed subscript-by-subscript, thus breaking down the problem space into smallerpieces, without a loss of precision. Luckily, array-syntax subscripts can cause di�erentsubscript positions to become coupled in only one situation: if corresponding tripletsfor the two array references being tested are in di�erent subscript positions, thosepositions must be coupled.Considering again the two references to array A in Figure 5.3, we see that thesecond and third subscript positions become coupled since the second triplet appearsin each of them. The �rst subscript position is separable. Note however, that if theinduction variable J appeared in another subscript position, that position would becoupled with the position that contains the �rst triplet. That coupling would be dueto J though and has nothing to do with the triplet.5.3.6 Dependence Testing of Array ExpressionsWe have designed our dependence testing methodology to work with the partition-based testing scheme presented in Figure 5.1. We extend the algorithm to �rst deter-mine the separability and complexity for triplet subscripts. In the following subsec-tions we introduce the necessary decision algorithms that determine independence ofarray-section references, or determine dependence and produce the desired directionvectors. As with most dependence testing schemes, we assume that all expressionsused in the subscripts and triplets are linear in the loop induction variables. If non-linear expressions are encountered we assume all direction vectors are possible.In some situations that may occur, we exploit existing siv and miv tests. Thisnecessitates the generation of the appropriate input parameters. To accomplish thiswe translate the triplet notation into a linear function of a pseudo-induction variablei. The pseudo-induction variable runs from 1 to (ub� lb+ st)=st, where lb, ub, and



45st are the lower bound, upper bound, and stride of the triplet, respectively. Thelinear function that is used in place of the triplet within the dependence tests isst � i+ (lb� st). When the lower bound and stride are both one, this simpli�es to i.This translation does not need to be applied to the program representation; it is onlyneeded to produce the necessary input parameters for existing tests when required.Separable Triplet Subscript TestsThe dependence test used for a separable subscript pair in which one of the subscriptsis a triplet depends upon the triplet's sub-classi�cation as well as the complexity ofthe other subscript. When both subscripts in the pair to be tested are classi�ed astripletSIV , an siv test is required. In this case we exploit the existing siv testimplemented in the system. To use the test we produce the appropriate input param-eters by generating the linear function of a pseudo-induction variable, as explainedpreviously.However, there are two common cases which can be tested quite easily withoutrequiring the conversion. The �rst case is when both triplets have a stride of one. Inthat situation the dependence distance is simply the di�erence of the lower bounds:d = lb1 � lb2 (5:1)A dependence exists if and only if jdj � ub1 � lb1. The second case is when bothtriplets have the same non-unit stride, in which the dependence distance is:d = lb1 � lb2st1 (5:2)In this case a dependence exists if and only if d is an integer and jdj < (ub1 � lb1 +st1)=st1. Most triplet subscripts are expected to fall into one of these two specialcases, and as can be see in Equations 5.1 and 5.2, the dependence tests for thesecases are simple and easy to compute.If the case where the triplet is classi�ed as tripletSIV and the other subscript isziv, the pair has the form hlb :ub :st; c1i. For this situation, we de�ne the dependencepoint to be: p = c1 � lb+ stst (5:3)A dependence exists if and only if p is an integer and is in the range 1 : (ub�lb+st)=st.For the common case where both lb and st are equal to one, p is simply equal to c1.



46All dependence directions are possible, except for when p equals lb or ub, in whichcase one direction can be eliminated.In all other cases of separable subscript pairs that contain at least one triplet anmiv test is required. We rely upon the existing miv tests implemented in the systemin the same manner as we used the siv test above, by converting the triplet into alinear function of a pseudo-induction variable.Coupled Triplet Subscript TestWhen triplet subscripts are coupled with other subscripts a multi-subscript test isnecessary. We utilize the existing scalar testing algorithms available in the system byconverting the triplets into linear functions of pseudo-induction variables. However,this conversion has a special consideration in the case of coupled subscripts. If thesubscripts became coupled because corresponding triplets did not appear in matchingsubscript positions, then the linear functions generated for the corresponding tripletsshare the same pseudo-induction variable. Once the triplets have been translated, weexploit whichever multi-subscript test is available in our system [121, 134, 164].5.4 Static Single Assignment FormIn recent years, Static Single Assignment (SSA) form [64, 65] and related intermedi-ate representations have gained in popularity because of their e�ciency in programanalysis and transformations [15, 137, 155]. SSA is loosely characterized by the traitthat each variable has only a single de�nition. This is achieved by creating a newinstance of a variable, typically indicated by a subscript, each time the variable isassigned a new value. For example, the variable V will have a di�erent instantiation,such as V0, V1, and V2, at di�erent de�nition points. When di�erent instances of avariable come together at a control ow merge point, the instances are combined viaa �-function which de�nes yet another instance of the variable. See Figure 5.4 for asample code segment and its equivalent SSA form including the use of a �-function.Often the SSA representation of a program is in the form of a sparse graph, inwhich nodes represent de�nition points of variables and edges connect a variable to allits uses. For the implementation of SSA that exists within the Fortran D compiler [87],the SSA graph of a program does not exist as a separate object but rather is built ontop of the CFG. It is important to realize that we keep a close correspondence betweenthe SSA graph and the CFG. This gives us the capability to use the strengths of each,



47IF (A == 0) THEN IF (A0 == 0) THENB = 0 B0 == 0ELSE ELSEB = C/A B1 = C0/A0END IF END IFB2 = �(B0,B1)D = 2*B D0 = 2*B2(a) Original source. (b) SSA version.Figure 5.4 Example of SSA form.and allows us to e�ciently move between the two as needed. It is also worthwhile tomention for the bene�t of those who use SSA for compiling serial programs that wedo not delete/subsume copy operations that involve arrays3.There are several variants of SSA available. The variations can enhance the pre-cision of di�erent analysis algorithms. For our purposes, we have found that thepruned-SSA form [60] best �ts our needs. In the pruned-SSA form, dead �-functionshave been deleted. We also employ both def-use and use-def edges in our graph.The only other change we make to the SSA representation deals with the handling ofarrays.5.4.1 SSA and Fortran90 Array SectionsWithin the original design of SSA, uses and modi�cations of arrays are representedwith access and update operators, respectively. To enable the analysis of Fortran90programs, we have enhanced these operators to handle array sections by incorporatingregular section descriptors (RSDs) [12]. For instance, the update operator takesthree arguments: the array being modi�ed, a section descriptor indicating the a�ectedelements, and the new values to be stored in those locations. Figure 5.5 contains someexamples of array section references and their corresponding SSA form.The only other modi�cation that we were required to make to the Fortran77Dimplementation of SSA so that it would properly handle Fortran90D programs wasthe identi�cation of array kills. This was accomplished by a quick analysis of thearray-section subscripts, similar to that performed for data-ow analysis as described3We make this point since it has caused confusion when we've discussed the ideas presented in thisdissertation with our comrades in the scalar compiler group.



48� � � = A(1:N) � � � = access(A5,[1:N])A(2:N-1) = � � � A6 = update(A5,[2:N-1],� � �)� � � = A(J) � � � = access(A6,[J])(a) Original source. (b) SSA version.Figure 5.5 Example of SSA form of array-section references.in Section 5.2.2. The identi�cation of array kills is necessary to prevent the genera-tion of useless def-use edges coming into the �rst argument of the update operator.Preventing such useless edges from being inserted into the SSA graph means that�-functions that are created for whole-array de�nitions that appear inside a loop canbe pruned away as useless if they were not referenced after the loop. This is veryimportant since Fortran90 compilers often generate many array temporaries, and theinteraction between the update operators and the �-functions give the appearancethat the temporaries have much larger live-ranges than they actually have.Figure 5.6 contains an example of how this occurs. In the original source, thearray TMP has a very short live range: it is de�ned in one statement and used inthe next. However, the live ranges of the TMPi arrays in the SSA version of thecode span the entire DO-loop. This is because the update operator makes TMP2appear live and the �-function de�ning TMP2 causes TMP1 to become live aroundthe back-edge of the loop. Preventing the generation of the def-use edge from the�-function to the update operator means that the �-function is useless and will bepruned away. This in turn reduces the live-range of TMP1 to be the same as TMPin the original program.In our Fortran90D compiler we use SSA form, enhanced as described above, toperform the analysis required for our o�set array optimization. The use of SSA inthis instance permits advanced analysis and transformations to be performed in lineartime. In addition, no possible applications of the optimization are missed. Full detailsof the o�set array optimization and its use of SSA form are given in Chapter 6.5.5 SummaryIn this chapter we have presented methodologies for extending program analysis tohandle Fortran90 array references. We have given algorithms to extend data owanalysis and SSA form as well as extending dependence testing to directly analyze



49DO I=1,N DO I=1,NTMP2 = �(TMP0,TMP1)� � � � � �TMP(:) = � � � TMP1 = update(TMP2,[:],� � �)� � � = TMP(:) � � � = access(TMP1,[:])� � � � � �END DO END DO! no other uses of TMP ! no other uses of TMPi(a) Original source. (b) SSA version.Figure 5.6 Interaction between �-function and update operator.data dependences arising from array-section references. An important characteristicof the testing procedures presented in this chapter is that they were designed to �tsmoothly into the framework of existing optimizing compilers. These extensions giveFortran90 and HPF compilers analysis capabilities not previously available, allowingthem to make decisions and perform transformations at the Fortran90 level beforescalarizing the program into Fortran77 code.



50Chapter 6O�set Array OptimizationEliminating the local data motion by separating the set of data thatmust move between nodes from the data that stays within local memorymay yield a signi�cant performance improvement. S. L. Johnsson [98]6.1 IntroductionFor Fortran90D or HPF to gain acceptance as a vehicle for parallel scienti�c pro-gramming, they must achieve high performance on problems for which they are wellsuited. To achieve high performance on a distributed-memory parallel machine, aFortran90D compiler must do a superb job of translating Fortran90 data-parallel ar-ray operations into an e�cient sequence of operations that minimize the overheadassociated with data movement.Interprocessor data movement on a distributed-memory parallel machine is typi-cally far more costly than movement within the memory of a single processor. For thisreason, much of the prior research on minimizing data movement has focused on theinterprocessor case. Notable research in this area includes Knobe, Lucas and Steele'swork on automatically aligning and partitioning arrays to minimize data movementassociated with binary operations on arrays [109], and Chatterjee, Gilbert, Schreiber,and Teng's work on optimally mapping the computation of array expressions to pro-cessors to minimize data movement when the mappings of data to processors are�xed [55].While interprocessor data movement is more costly per element, the number ofelements moved within the memory of a single processor may be much larger, causingthe cost of local data movement to be dominant. For example, consider applying theFortran90 cshift intrinsic to perform a circular left shift by one position of a 1Darray of 1000 elements partitioned block-wise across four processors (each processoris responsible for a contiguous block of 250 elements). To perform the shift, eachprocessor sends one element to its left neighbor in a ring, moves 249 elements oneposition left within the processor's local memory, and receives one element previously



51sent by the neighboring processor to the right. Here, each processor moves 249 ele-ments on-processor for every one element moved o�-processor. The cost of local datamovement becomes more important for distributed arrays as the partition size perprocessor increases.In this chapter, we focus on the problem of minimizing the amount of intra-processor data movement when computing Fortran90 array operations. To make ourtechnique as generally applicable as possible, we handle array assignment statementswhere the right-hand side consists of a call to a Fortran90 shift intrinsic. The tech-nique can handle all such assignment statements, even when the de�nition of thearray and its uses are separated by control ow. Such a technique supersedes thosethat are restricted to a single statement.In the next section we briey review the Fortran90 shift operators and their ex-ecution cost on distributed-memory machines. In Section 6.3, we describe the o�setarray strategy for reducing intraprocessor data movement associated with shift op-erations on arrays with block or block cyclic distributions. We have developedtwo analysis algorithms for determining when o�set arrays may be used. Section 6.4presents an algorithm that performs analysis only at the basic block level. Section 6.5describes a global SSA-based analysis algorithm that can exploit o�set arrays overentire procedures. We close the chapter by presenting some empirical results anddiscussing related works.6.2 Fortran90 Shift OperationsThe Fortran90 circular shift operator CSHIFT(ARRAY, SHIFT, DIM) returns an arrayof the same shape, type, and values as array, except that each rank-one section ofarray crossing dimension dim has been shifted circularly shift times. The sign ofshift determines the shift direction. See Figure 6.1 for an example. The end-o� shiftoperator EOSHIFT(ARRAY, SHIFT, BOUNDARY, DIM) is identical to cshift except forthe handling of boundaries: array elements shifted o� the end are lost and BOUNDARYvalues are inserted at the other end. Figure 6.2 has an example of an eoshift.For the rest of the chapter we focus on optimizing cshift operations although ourtechniques can be generalized to handle eoshift as well.



52264 1 4 72 5 83 6 9 375 264 7 1 48 2 59 3 6 375(a) SRC (b) CSHIFT(SRC,SHIFT=-1,DIM=2)Figure 6.1 Example of the cshift intrinsic.264 1 4 72 5 83 6 9 375 264 0 1 40 2 50 3 6 375(a) SRC (b) EOSHIFT(SRC,-1,0,2)Figure 6.2 Example of the eoshift intrinsic.6.2.1 Sources of Shift OperationsFor Fortran90D, optimizing cshift operations is important since cshift operationsare ubiquitous in stencil-based dense array computations for which Fortran90D is bestsuited. Besides cshift operations written by users, compilers for distributed-memorymachines commonly insert them to perform data movement needed for operations onarray sections that have di�erent processor mappings [110, 139, 34]. Section 4.5 de-scribes how the communication generation phase of the compiler transforms certainarray section references into calls to shift intrinsics that perform the necessary inter-processor data movement. For example, given the statementX(2:255) = X(1:254) + X(2:255) + X(3:256)the CM Fortran compiler would translate it into the following statement sequence,where TMP1 and TMP2 are compiler temporary arrays that match the size and distri-bution of X:ALLOCATE TMP1, TMP2TMP1 = CSHIFT(X,SHIFT=-1,DIM=1)TMP2 = CSHIFT(X,SHIFT=+1,DIM=1)X(2:255) = TMP1(2:255) + X(2:255) + TMP2(2:255)DEALLOCATE TMP1, TMP2For the rest of the chapter, we assume that all cshift operations in a program areexplicit (either user-written, or inserted where appropriate during an earlier phase of



53compilation), that each call to cshift occurs as a singleton operation on the right-hand side of an assignment statement, and that each cshift in our intermediate formis applied only to a whole array. All other occurrences of cshift can be translatedinto the required form by factoring expressions and introducing array temporaries.For example, the statement:X = X + CSHIFT(X,SHIFT=-1,DIM=1) + CSHIFT(Y(1:N:2),SHIFT=+1,DIM=1)would be represented, internal to the compiler, by the following set of statements:ALLOCATE TMP1, TMP2, TMP3TMP1 = CSHIFT(X,SHIFT=-1,DIM=1)TMP2 = PACK(Y,MASK=(/ (MOD(I,2).EQ.1),I=1,N /))TMP3 = CSHIFT(TMP2,SHIFT=+1,DIM=1)X = X + TMP1 + TMP3DEALLOCATE TMP1, TMP2, TMP3Temporary arrays TMP1{TMP3 are speci�ed such that they match the size and distri-bution of X.6.2.2 Shift Operations on Distributed-Memory MachinesWhen a distributed array is shifted across a distributed dimension, two major actionstake place:1. Data elements that must be shifted across processing element (PE) boundariesare sent to the neighboring PE. This is the interprocessor component of theshift. The dashed lines in Figure 6.3 represent this data movement for arraysdistributed in a block fashion.2. Data elements that stay within the memory of the PE must be copied to theappropriate locations in the destination array. This is the intraprocessor com-ponent of the shift. The solid lines in Figure 6.3 represent this data movement.Assuming a block distribution and that each PE contains a 2D subgrid of size(g � g), a shift amount of d, d < g, consists of an interprocessor move of d columns(of size g), and an intraprocessor move of g � d columns. The cost of such a shiftoperation is described by the following model [69]:Tshift = g (g � d) tonpe+ Conpe+ g d to�pe + Co�pe (6:1)
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DST DSTFigure 6.3 DST = CSHIFT(SRC,SHIFT=-1,DIM=2)where tonpe and to�pe represent the time to perform an intraprocessor and inter-processor copy respectively, and Conpe and Co�pe represent the startup time (or la-tency) for each type of copy. Table 6.14 presents measured values for each of themodel's parameters for four di�erent SIMD machines. Di�erent models are requiredfor the cases d = g and d > g. block cyclic distributions also require a di�erentmodel which include a parameterization for the blocking factor.The instances in which we are most interested occur when d is small comparedto g. For such cases Equation (6.1) is O(g2 tonpe) and the execution time Tshift isdominated by the cost of the intraprocessor copies, even when tonpe � to�pe.There are also additional costs that should be considered that are not associateddirectly to the execution of the shift operations. These costs relate to the temporaryarrays that are often created to receive the results of the shifts. Not only musttime be spent allocating and deallocating these arrays, but their additional memory4From Fatoohi [69], c1993 ACM.



55Parameter CM2 MPP MP-1 610Cto�pe 9.0 3.2 2.7 3.2Co�pe 20.0 13.4 41.9 7.2tonpe 0.7 - 5.6 9.0Conpe 35.0 - 59.1 18.0Table 6.1 Measured cost of communicationparameters for a 32-bit word (in �sec).requirements often limit the size of the problems which may be solved on a givenmachine.6.3 O�set ArraysThe goal of the work described here is to eliminate the intraprocessor copying asso-ciated with a Fortran90 cshift operation when it is safe to do so. When we candetermine that the intraprocessor copying of a cshift is unnecessary, we can trans-form the program to perform only the interprocessor copying and rewrite referencesto the shift's destination array to refer to the source array with indexing adjustedby the shift amount. We call such a destination array an o�set array. In the follow-ing subsections, we present criteria for determining when o�set arrays are safe andpro�table and present the code transformations that avoid intraprocessor copying byexploiting o�set arrays.To hold the data that must move between PEs, we use overlap areas [73]. Overlapareas are subgrid extensions to hold data received from neighboring PEs. The advan-tage of this is that it allows us to access the data of the o�set array, both the portionthat is shared with the source array and the portion received from the neighboringPE, in a straight-forward and simple manner. The disadvantage of this method isthat the storage allocated to the overlap areas is permanent. To limit the impact ofallocating this permanent storage, we place an upper bound on its size. This alsolimits the size of the shift amounts that may be optimized. If the shift does not�t into the overlap areas, then it cannot be an o�set array. But since we are onlyinterested in optimizing small shift amounts, this is not a great concern. This up-per bound should be set at compile-time by a heuristic that considers the machinecharacteristics along with the expected size of the subgrids.



566.3.1 Criteria for O�set ArraysWe have established a set of criteria to determine when it is safe and pro�table to cre-ate an o�set array. Given an assignment statement DST = CSHIFT(SRC,SHIFT,DIM)within our intermediate representation, the array dst may be treated as an o�setarray, and can thus share storage with array src, if the following criteria can beveri�ed for this statement at compile time:1. The source array src is not modi�ed while this de�nition of dst is live.2. The destination array dst is not partially modi�ed5 while src is live.From the work on copy elimination in functional and higher-order programminglanguages [144], we know that the above two criteria are necessary and su�cientconditions for when the two objects can share the same storage. However, the sharingof storage may not always be pro�table. To insure pro�tability, we add the followinge�ciency criteria:3. The src array and the dst array are distributed in the same block (orblock cyclic) fashion and are aligned with one another.4. The values shift and dim are compile-time scalar constants.5. The amount of interprocessor data must �t within the bounds placed on thesize of the overlap areas.6. For each use of dst that is reached by the given de�nition, all the de�nitionsof dst that reach that use are identical o�set arrays of the same source arraysrc.These e�ciency criteria may be relaxed if we are willing to generate multiple ver-sions of code for statements that use the array dst, and then select the appropriateversion depending upon run-time conditions. However, due to the drawbacks of mul-tiple versions of code, in particular code growth, we consider these additional criteriato be important.5Any partial modi�cation requires a copy of the shifted array src and so we simply go ahead andmake the copy at the point of the shift. Any full modi�cation of dst which kills the whole arraydoes not require the copy of src and thus dst may still be treated as an o�set array up to the pointof the killing de�nition.



576.3.2 O�set Array OptimizationOnce we have determined that the destination array of the assignment statementDST = CSHIFT(SRC,SHIFT,DIM) may be an o�set array, we perform the followingtransformations on the code. These transformations take advantage of the data thatmay be shared between the source array src and destination array dst and moveonly the required data between the PEs.1. First we replace the shift operation DST = SHIFT(SRC,SHIFT,DIM) with a callto a routine that moves the interprocessor data into the appropriate overlaparea: CALL OVERLAP SHIFT(SRC,SHIFT,DIM).2. We then replace all uses of the array dst, that are reached from this de�nition,with a use of the array src. The newly created references to src carry alongspecial annotations representing the values of shift and dim. In the examplesthat follow, the annotations are represented by a superscripted vector wherethe dim-th element contains the value shift; e.g., src<:::;SHIFT;:::>.3. Finally, when creating subgrid loops during the code generation phase, we al-ter the subscript indices used for the o�set arrays. The array subscript usedfor the o�set reference to src is identical to the subscript that would havebeen generated for dst with the exception that the dim-th dimension has beenincremented by the shift amount.It is possible, and actually expected, that o�set arrays are themselves used inother shift operations. If these shift operations also meet all of the criteria to be ano�set array then the above transformations can again be applied. We call such arraysmultiple-o�set arrays. If one dimension is shifted multiple times, the shift amountsare simply added together. Figure 6.4 gives an example of a multiple-o�set array.As an example, consider the 5-point stencil routine in Figure 6.5(a). The expectedintermediate representation in Figure 6.5(b) is achieved by separating the communi-cation operations from the computational operations. Once we have determined thatt1 = cshift(a,shift=-1,dim=1) CALL overlap cshift(a,shift=-1,dim=1)t2 = cshift(t1,shift=+1,dim=2) =) CALL overlap cshift(a<�1;0>,shift=+1,dim=2)b = a + t2 b = a + a<�1;+1>Figure 6.4 A multiple-o�set array.



58SUBROUTINE FIVE PT(a,b,n)REAL, ARRAY(n,n) :: a,bDECOMPOSITION decomp(n,n)ALIGN a,b with decompDISTRIBUTE decomp(BLOCK, BLOCK)REAL cc,cn,ce,cw,csCOMMON cc,cn,ce,cw,csb = cc * a& + cn * cshift(a,-1,1)& + cs * cshift(a,+1,1)& + cw * cshift(a,-1,2)& + ce * cshift(a,+1,2)RETURNEND
SUBROUTINE FIVE PT(a,b,n)REAL, ARRAY(n,n) :: a,bREAL, ALLOCATABLE :: t1,t2,t3,t4DIMENSION(:,:) :: t1,t2,t3,t4DECOMPOSITION decomp(n,n)ALIGN a,b,t1,t2,t3,t4 with decompDISTRIBUTE decomp(BLOCK, BLOCK)REAL cc,cn,ce,cw,csCOMMON cc,cn,ce,cw,csALLOCATE(t1(n,n),t2(n,n),& t3(n,n),t4(n,n))t1 = cshift(a,-1,1)t2 = cshift(a,+1,1)t3 = cshift(a,-1,2)t4 = cshift(a,+1,2)b = cc * a& + cn * t1& + cs * t2& + cw * t3& + ce * t4DEALLOCATE(t1,t2,t3,t4)RETURNEND(a) Original program (b) Intermediate representationSUBROUTINE FIVE PT(a,b,n)REAL, ARRAY(n,n) :: a,bDECOMPOSITION decomp(n,n)ALIGN a,b with decompDISTRIBUTE decomp(BLOCK, BLOCK)REAL cc,cn,ce,cw,csCOMMON cc,cn,ce,cw,csCALL overlap cshift(a,-1,1)CALL overlap cshift(a,+1,1)CALL overlap cshift(a,-1,2)CALL overlap cshift(a,+1,2)b = cc * a& + cn * a<�1;0>& + cs * a<+1;0>& + cw * a<0;�1>& + ce * a<0;+1>RETURNEND
SUBROUTINE FIVE PT(a,b,n)REAL, ARRAY(n/p,n/p) :: bREAL, ARRAY(0:n/p+1,0:n/p+1) :: aREAL cc,cn,ce,cw,csCOMMON cc,cn,ce,cw,csCALL overlap cshift(a,-1,1)CALL overlap cshift(a,+1,1)CALL overlap cshift(a,-1,2)CALL overlap cshift(a,+1,2)do j=1,n/pdo i=1,n/pb(i,j) = cc * a(i,j)& + cn * a(i-1,j)& + cs * a(i+1,j)& + cw * a(i,j-1)& + ce * a(i,j+1)enddoenddoRETURNEND(c) O�set array transformations (d) Final node programFigure 6.5 O�set array optimization on a 5-point stencil computation.



59the temporary arrays T1{T4 can be o�set arrays, we perform the above set of trans-formations. Figure 6.5(c) shows the program after the �rst two transformation stepshave been completed. The third step is performed during subgrid loop generationand is shown in Figure 6.5(d). Notice that the declarations for array A and B havebeen changed to declare the local subgrid, and that the declaration for A includes thenecessary overlap area. The node program can now be further enhanced by applyingadditional advanced optimizations as discussed in Chapter 9.6.4 Local O�set Array AnalysisThe last three criteria for determining if a shifted array may be an o�set array canbe very di�cult to verify in the presence of complex control ow. For that reason wehave an analysis algorithm that works on a basic block at a time. After describingthe algorithm we analyze its complexity.6.4.1 Local AnalysisOur local analysis algorithm requires that live information is available for src anddst arrays of the candidate shift operations. Such information tells us if these arraysare either live or dead at the end of each basic block.Our local analysis algorithm is displayed in Figure 6.6. We begin by analyzingeach basic block that contains a shift operation. The shift operations within a basicblock are processed one at a time in the order that they occur. Processing theshift operations in execution order is important for the proper handling of multiply-o�set arrays. For each shift operation encountered, we initially check criteria 3, 4,and 5 speci�ed in Section 6.3.1. If they are satis�ed we then check to see if thetarget array dst is live at the end of the basic block. If it is live then the localanalysis routine cannot determine the safety of the o�set array optimization withoutadditional global information, and so the array is not o�setable within the scope oflocal analysis. However, if dst is dead, we scan forward from the shift operationchecking the remaining criteria.Since we can now limit the scope of the analysis to a single basic block, we caneasily verify criteria 1 and 2 by scanning the rest of the block after the shift operation.Recall that the shift operation is a killing de�nition of the array dst, thus we needonly look for de�nitions of dst or src that occur between the shift operation and thelast reachable use of dst. If a killing de�nition of dst is encountered we can stop



60Procedure Local O�set ArraysInput: Set of basic blocks containing shift operations.Output: Basic blocks optimized with o�set arrays.for each basic block bb in the input set dofor each SHIFT operation stmt found in execution order of bb dodst = stmt :destination arraysrc = stmt :source arrayif criteria 3, 4, or 5 is violated then iterate endif/* Scan rest of basic block bb checking criteria 1, 2, and 6. */current statement = stmt :bblock nexto�setable = truelist of references = nilsrc modi�ed = falsewhile current statement 6= nil and o�setable doif current statement references dst and src modi�ed theno�setable = falsebreakelseif current statement references dst and : src modi�ed thenadd current statement to list of referencesendifif current statement de�nes dst thenif current statement is a killing de�nition of dst thenbreak /* No more reachable uses of dst. */elseif Is Array Dead Here(bb; current statement; src) thenadd current statement to list of referenceselseo�setable = falseendifendifif current statement de�nes src then src modi�ed = true endifcurrent statement = current statement :bblock nextendwhileif o�setable then/* Apply the o�set array transformations to statement stmt and *//* the statements in list of references that reference dst. */endifendforendforreturnBoolean Function Is Array Dead Here(bb,current statement,src)/* Determine if array src is dead at the point of current statement *//* in the basic block bb. This just requires a simple backwards scan from *//* the end of the basic block to statement current statement, starting with *//* the pre-computed global live information. */Figure 6.6 Local o�set array optimization algorithm



61our search for any more reachable uses. If a partial modi�cation of dst is found wemust determine the liveness of src. Since we already have live information availableat the basic block level, this only requires a backward scan starting from the bottomof the block. We annotate the block so that this scan need only be performed onceper src array. If src is dead at the point of the partial modi�cation then it is stillpossible for src and dst to share common storage elements, otherwise dst is noto�setable. If we �nd that src is modi�ed during our scan, then dst is not o�setableif we �nd a subsequent reachable use of dst. If we complete our scan of the basicblock and both criteria 1 and 2 were satis�ed, then criterion 6 is satis�ed implicitlyfor all reachable uses of dst that were encountered.If all of the criteria are satis�ed then the array is o�setable and we apply thetransformations described in Section 6.3.2. We then proceed with the next shiftoperation in the current basic block, if one exists; otherwise we process the next basicblock containing a shift operation. The algorithm is displayed in detail in Figure 6.6.6.4.2 Cost AnalysisThe local analysis algorithm simply scans each basic block that contains a shift op-eration. The basic block is scanned at most twice for each shift operation that itcontains: a forward scan to verify the o�set criteria, and a possible backward scan todetermine the liveness of the src array. The complexity is thus O(bb � s), where bbis the maximum size of a basic block, and s is the number of shift operations in theprogram. If we assume an upper limit on the size of basic blocks, the complexity islinear in the number of shift operations. We note here that the cost to compute liveinformation is O(n log n).6.5 Global O�set Array AnalysisDetermining if it is valid for a shifted array to be an o�set array across multiplebasic blocks can be very di�cult. This is due to the challenge of verifying the criteriaspeci�ed in Section 6.3.1 over complex control ow patterns. In this section we presentan algorithm capable of solving this problem in an e�cient manner.6.5.1 Global AnalysisIf one looks closely at the criteria in Section 6.3.1 it can be seen that criterion 6 isthe most di�cult to verify. This is because of its inherent circularity: an array can



62be an o�set array if it and all other reaching de�nitions of a use can be o�set arrays.To be able to verify such a criterion requires an optimistic analysis framework; i.e.,one must assume all shifted arrays are o�setable, and then attempt to disprove theassumption. We have chosen to base our optimistic analysis framework on the SSAintermediate representation [65] extended as discussed in Section 5.4.In addition to the SSA graph, we generate an interference graph [38]. The in-terference graph indicates those SSA variables with overlapping live ranges, and isused to check for violations of criteria 1 or 2. The live-ness of arrays is computedas described in Section 5.2. The graph is built in the usual manner, but with oneexception: all �-functions occurring at the same merge point are considered to beexecuted simultaneously. This prevents the detection of spurious interferences thatmay prevent the use of o�set arrays across merge points. We use pruned-SSA toprevent live ranges from being extended unnecessarily, thus also preventing spuriousinterferences. We also enhance the accuracy of the interference graph by exploitingthe RSDs in update operations to identify statements that kill the entire array.6.5.2 O�set Array AlgorithmIn this section, we present our algorithm for identifying o�set arrays and transformingthe program to reference them. In describing the algorithm, we typically refer to theSSA variable names rather than their CFG counterparts. The algorithm is shown inFigure 6.7.We begin by traversing the CFG in a reverse depth-�rst order looking for shiftoperations. Upon encountering a shift operation which satis�es criteria 3{5, we checkthe interference graph to see if criterion 1 is not violated. If all the required criteriaare satis�ed, then it is safe for the destination array to be an o�set array. Givensuch a shift operation, we rename the destination array dsti by giving it the sameSSA name as the source array srcj . The new name is annotated with shift anddim information as described in Section 6.3.2. By using the same name we do notviolate the spirit of SSA. This is because the shift really does not create any newvalues but rather just speci�es a new indexing method for existing values. We changethe use of the SHIFT intrinsic into a use of the overlap shift routine, and updatethe interference graph by renaming the changed variable.After we make this change, we propagate the information in an optimistic manner.This insures that criterion 6 is satis�ed wherever possible. The SSA framework allows



63Procedure O�set ArraysInput: CFG, the control ow graph for the procedure.Output: CFG optimized with o�set arrays./* See Figure 6.8 for auxiliary routines. */SSA = Create SSA Form(CFG)IG = Build Interference Graph(SSA;CFG)for each SHIFT operation stmt in a depth-�rst traversal of the CFG dopush stmt onto stack Sendforwhile stack S is not empty dopop stmt o� of stack Sswitch (stmt)case shift operation: DstDsub = shift(SrcSanotSsub ; shift; dim):if criteria 3, 4, or 5 is violated then break endifif Check Interferences(DstDsub; SrcSsub ; IG) then break endifcalculate new annotation Nanot from Sanot, shift, and dimreplace stmt with SrcNanotSsub = overlap shift(SrcSanotSsub ; shift; dim)call Replace Uses(DstDsub,SrcNanotSsub ,S )call Update Graphs(DstDsub; SrcNanotSsub ; SSA; IG)breakcase �-function: DstDsub = �(LvarLanotLsub ;RvarRanotRsub ):if criterion 3 is violated then break endifif LvarLanot 6= RvarRanot then breakelseif DstDsub = LvarLsub or DstDsub = RvarRsub then breakelseif LvarLanotLsub = RvarRanotRsub thenNewNsub = LvarLsubelseNewNsub = Find Phi(LvarLsub ;RvarRsub ; stmt)endifif Check Interferences(DstDsub;NewNsub ; IG) then break endifreplace stmt with NewLanotNsub = �(LvarLanotLsub ;RvarRanotRsub )call Replace Uses(DstDsub,NewLanotNsub ,S )call Update Graphs(DstDsub;NewLanotNsub ; SSA; IG)breakcase update operation: DstDsub = Update(LvarLanotLsub ; section; values):if criterion 3 is violated then break endifNewNsub = Gen Next SSA Var(Lvar)if Check Interferences(DstDsub;NewNsub ; IG) then break endifreplace stmt with NewLanotNsub = Update(LvarLanotLsub ; section; values)call Replace Uses(DstDsub,NewLanotNsub ,S )call Update Graphs(DstDsub;NewLanotNsub ; SSA; IG)breakendswitchendwhilecall Insert Copies(CFG,SSA)return CFGFigure 6.7 Global o�set array optimization algorithm



64Function Check Interferences(DstDsub ; SrcSsub ; IG)/* Return TRUE if there exists an interference between *//* DstDsub and some Srci , i 6= Ssub. */for each Ni adjacent to DstDsub in IG doif N = Src and i 6= Ssub thenreturn trueendifendforreturn falseProcedure Replace Uses(Dest ; Src; S )/* Replace each reference to Dest with a reference to Src. *//* If the use is in a �-function or update operation, then *//* push operation on stack S. */for each use X of Dest doreplace use of Dest at X with a use of Srcif X is a �-function or update operation thenpush X on stack SendifendforreturnProcedure Update Graphs(Old ;New ; SSA; IG)/* Replace node Old with node New in both SSA and IG. */returnFunction Find Phi (LvarLsub ;RvarRsub ; stmt)/* Find the �-function merging LvarLsub and RvarRsub *//* at the same merge point as stmt and return it. *//* If it does not exist, return a new instance of Lvar. */NewNsub = Hash Table Lookup(LvarLsub ;RvarRsub ; stmt)if NewNsub = nil thenNewNsub = Gen Next SSA Var(Lvar)endifreturn NewNsubFigure 6.8 Auxiliary procedures.us to do this in a very e�cient manner. This is accomplished by simply followingthe SSA def-use edges and replacing all uses of dsti with uses of src<:::;SHIFT;:::>j .Depending upon the type of use, further propagation may be possible. Several dif-ferent cases must be handled during this propagation; we discuss them next. Whenthe propagation of a change has completed, we continue the traversal of the programlooking for the next o�setable array. The reverse depth-�rst traversal order is im-portant so that multiple-o�set arrays can be correctly handled in a single pass of theprogram.As stated in the previous paragraph, we propagate the o�set array informationby changing all uses of the original destination array dsti into uses of the new o�set



65array src<:::;SHIFT;:::>j . Since we are dealing with arrays, these uses can only occurin three places: an access operation, an update operation, or a �-function. If thischange is propagated into an array access operator, there are no more opportunitiesfor propagation.If the use is at an update operator we propagate the o�set array through theoperation when possible. It is valid to propagate through the update as long as itdoes not violate criterion 2 and it does not realign or redistribute the array. Thepropagation is accomplished by generating a new instance of the src array, call itsrck, to be the target of the update operation in place of the existing dst arrayinstance. This new srck receives the same annotations as src<:::;SHIFT;:::>j , and thenis propagated to all its uses in a similar manner. If it is not possible to propagatethrough the update operation then a copy of the o�set array may be required priorto the update. This copy is inserted by a subsequent phase which we describe in thenext subsection.When propagating an o�set array into a �-function, in addition to verifying cri-teria 1 and 3, it is only valid to continue the propagation if the other input to the�-function is an equivalent o�set array (see criterion 6). Two o�set arrays are equiv-alent if they are from the same SSA family and have identical annotations. The oneexception to this rule is if a cycle has been created (i.e.; one of the inputs to the�-function, when its annotation is removed, is the same SSA variable being de�nedby the �-function).When it is possible to propagate through the �-function, we need to select thecorrect SSA variable to receive the de�nition of this �-function. If the �-functionhappens to be merging identical values, we simply use one of its inputs as the targetvariable. Otherwise we look for a �-function at the same merge point whose inputs arethe unannotated variables of the current �-function. If found, we use the SSA variablethat it de�nes, otherwise we generate a new instance of the SSA variable in the samemanner as we did for update. In any case, the variable is annotated with the sameannotation as the input variables and is propagated forward. If it is not possibleto propagate through a �-function, then array copy statements must be inserted onthe appropriate branches leading to the �-function. These copies are added by theInsert Copies routine, which is the last function called by the O�set Arrays procedureand which we describe next.



666.5.3 Inserting Array CopiesOnce we have found all the o�set arrays and propagated them as far as possiblethrough the program, it may be necessary to insert some array copy statements tomaintain the original semantics. The copy statements may be needed at points wherean o�set array is used to de�ne, via an update operation or a �-function, a non-o�setarray.It is quite easy to determine the statements that may require a copy while we arepropagating o�set arrays in the O�set Arrays procedure. To track these statements,we maintain a set of such statements (the code has been omitted from Figure 6.7).An update operation which is processed by the algorithm but determined not to beo�setable is added to the set. A �-function which is determined not to be o�setableis also added to the set. If the �-function is later determined to actually be o�setable(after the other input parameter has been processed), then it is removed from theset. The use of pruned-SSA form, where dead �-functions have been eliminated, cangreatly reduce the number of �-functions added to the set.After the propagation of o�set arrays has completed, the procedure Insert Copies,shown in Figure 6.9, is called to add the required array copies to the program. Itexamines each statement in the set that was produced to determine if an array copyis actually needed and to select the best placement for it. If the array copy is trulyrequired, it takes as input the o�set array and de�nes the array originally used bythe statement. This copy statement performs all the intraprocessor data movementthat was avoided at the shift operation. Note, however, that no interprocessor datamovement is required.Given an update operation from the set, an array copy statement is not requiredif the update is a killing de�nition. Otherwise, we insert an array copy immediatelypreceding the update.For a �-function which de�nes a non-o�set array, an array copy statement mustbe generated for each input parameter that is an o�set array. In general, the copystatements are placed on the appropriate branches leading to the merge point repre-sented by the �-function. It is possible to optimize this placement in the case of someloop structures. If a copy must be made for the array values coming around fromthe previous iteration but there is no use within the loop of the values de�ned by the�-function, then it is possible to move the array copy out of the loop by placing it onthe loop exit branch. The copy is moved to the shallowest nesting level such that it



67Procedure Insert Copies(CFG ; SSA; stmt set)/* stmt set is produced in O�set Arrays as described */for each stmt in stmt set doswitch (stmt)case update operation: DstDsub = Update(LvarLanotLsub ; section; values):if (section does not specify the entire array) theninsert Dst = LvarLanot immediately preceding stmt in CFGendifbreakcase �-function: DstDsub = �(LvarLanotLsub ;RvarRanotRsub ):if (Lanot 6= nil) then /* Rvar is handled similarly. */insert Dst = LvarLanot on appropriate branch in CFG/* optimize placement when possible. */endifbreakendswitchendforreturnFigure 6.9 Algorithm to insert array copy statements.still dominates all uses. This is advantageous in situations where it is allowable foran array to be an o�set array inside a loop nest but not outside. The full copy is onlyperformed when the loop nest is exited rather than on each iteration.Consider the example shown in Figure 6.10. In the original program, the de�nitionand use of array B inside the DO-loop can be made o�set arrays, but B cannot be ano�set array after the loop due to the modi�cation of array A. In such a case the �-function for array B at the loop header cannot be made an o�set array, and normallythe copy statement would be placed on the appropriate branch. But in this situation,that would result in the copy statement being placed in the loop. But since B1 is notreferenced within the loop body it is only necessary to create a full, shifted copy ofarray A on the loop exit branch, as is shown in Figure 6.10(c).The insertion of array copy statements into the program raises a concern. We mustanswer the question of whether these inserted copy statements can generate moredata movement than was speci�ed in the original program. The following lemmasand theorem states that a copy statement created for an o�set array cannot executemore times than the original shift operations that generated the o�set array.Lemma 6.1 Given a copy statementC created for an o�set array srcanotwhich was generated by a set of overlap shift operations fS1; S2; S3; : : :g,



68REAL, ARRAY(n,n) :: A,BDOA = � � �B = CSHIFT(A,+1,1)= BENDDOA = � � �= B REAL, ARRAY(n,n) :: A0,B0DOB1 = �(B0,A<+1;0>2 )A2 = � � �CALL overlap cshift(A2,+1,1)= A<+1;0>2ENDDOA3 = � � �= B1(a) Original program (b) Partial SSA representationREAL, ARRAY(n,n) :: A,BDOA = � � �CALL overlap cshift(A,+1,1)= A<+1;0>ENDDOB = A<+1;0> fcopy statement placed heregA = � � �= B(c) Optimized programFigure 6.10 Optimizing the placement of the array copy statement.any path from the beginning of the program (Root) to C must go throughat least one Si.Proof Assume there exists a path P1: Root �! C that does not contain an over-lap shift operation Si. Since C is an inserted copy statement for an o�set array,there must exist an overlap shift operation Sj and a path P2: Sj �! C. Since bothP1 and P2 end at C, and P1 does not contain Sj (by assumption), then there mustexist a merge point X that joins P1 and P2 prior to C. X must contain a �-functionwhich merges the values of srcanot generated at Sj with the other values of src thatreach C along Root �! X. But our algorithm only propagates an o�set array througha �-function when the �-function merges identical o�set arrays. Thus there mustexist an overlap shift operation Si identical to Sj on Root �! X which contradictsour original assumption.Lemma 6.2 C cannot be more deeply nested than all Si 2 fS1; S2; S3; : : :g.



69Proof Assume C is contained in a loop which does not contain an overlap shiftoperation Si. Since C is an inserted copy statement for an o�set array, there mustexist an overlap shift operation Sj outside the loop and a path P : Sj �! C. Thepath P must contain a �-function to merge the values reaching C from Sj with thosethat reach C from the back edge of the loop. By the same argument used in the proofof Lemma 6.1, there must exist an overlap shift operation Si within the loop thatreaches the back edge of the loop, thus contradicting our original assumption.Theorem 6.1 An inserted copy statement C is never executed moreoften than fS1; S2; S3; : : :g, the set of overlap shift operations whichgenerated the o�set array for which the copy statement was required.Proof The theorem follows directly from the preceding two lemmas.6.5.4 Cost AnalysisDuring our o�set array algorithm each SSA def/use edge is processed at most once.Thus our algorithm is guaranteed to terminate. This also means that our algorithmis quite e�cient. The cost of the algorithm is actually dominated by the cost ofgenerating SSA form and building the interference graph, both of which are O(n2) inthe worst case (although building SSA is O(n) in practice [65]). Once these structuresare built, the rest of the algorithm is linear. Finding o�setable arrays isO(n) and theirpropagation through the program is O(e). In addition, the checking of interferencesis O(i). Here n is the size of the program, e is the number if edges in the SSA graph,and i is the number of edges in the interference graph.6.6 Code Generation Issues6.6.1 Scalarization of O�set ArraysIt is important to note that the exploitation of o�set arrays necessitates changes to ourcompilation model's scalarization process. The scalarization methodology describedin Section 4.8.1 utilizes the fact that all operands of an array statement had beenmade perfectly aligned by an early phase of the compiler. Thus a naive scalarizationof such a statement always produces correct code.



70Unfortunately, the use of o�set arrays invalidates the perfect alignment property ofan array statement. In such cases it is possible for a naive scalarization of a statementto generate a loop-carried true dependence, and in doing so incorrectly change thesemantics of the statement. Our scalarization process must be capable of handlingsuch a situation. In Chapter 8 we present an advanced scalarization algorithm toaddress this problem.6.6.2 eoshift O�set ArraysIn this chapter we have not discussed the eoshift operation, which is similar tocshift except that new boundary values are given to array elements which wrap-around the end of the array. These new values create a conict between eoshiftand cshift as to what values should actually be placed in the overlap areas; i.e., anoverlap area cannot simultaneously hold both the new boundary elements speci�edby an eoshift and the wrap-around elements of a cshift.To handle eoshifts we modify our annotation vector to also include the boundaryvalue for each dimension (this value is NULL for cshifts). We then modify ourcodegen methodology to use bu�ers rather than the overlap areas for eoshifts { thisallows multiple eoshifts and cshifts to be o�set simultaneously.To e�ciently use bu�ers one must apply loop peeling to peel o� the iterations thatreference the bu�ers. This allows us to hoist the conditionals that choose betweensubgrid elements and bu�er elements out of the loop. The performance penalty forleaving the conditionals in the loop outweighs the performance gain we obtained bynot making a full copy of the array. The peeling required to hoist these conditionals isidentical to the context splitting optimization we exploit for optimizing SIMD contextswitches. This optimization is described in Section 7.3.6.7 Experimental ResultsTo verify the usefulness of this optimization we have implemented it within theFortran D system. Since the global o�set array algorithm handles a strict superset ofthe cases the local algorithm can handle, we have only implemented the global algo-rithm. The implementation required that we enhance the system's data ow analysisand SSA representation so that it could properly handle Fortran90 array constructsas described in Chapter 5. The implementation is complete in that it performs thedescribed analysis, propagation, transformations, and insertions of array copies when



71necessary. Unfortunately, the implementation is not fully integrated with the back-end of the Fortran D system, and thus it does not produce executable code. Insteadit outputs modi�ed Fortran90 code that contains annotations but which cannot becompiled.Due to this limitation, we have split our experimental work into two phases. Inthe �rst phase we performed static experiments in which we ran our compiler on aset of Fortran90D/HPF codes and examined the results. In the second phase we thenhand-translated some of the codes into executable form which exploits o�set arrays.We then timed them on a variety of parallel architectures.6.7.1 Static ExperimentsTo test our algorithm's ability to identify and exploit o�set arrays, we modi�ed ourcompiler to collect statistics and then we ran a set of Fortran90D and HPF codesthrough it. The majority of the codes we tested were taken from the High PerformanceFortran Application (HPFA) project [86, 128] at the Northeast Parallel ArchitectureCenter (NPAC), Syracuse University. 6 The HPFA project contains codes rangingfrom code fragments and benchmarking kernels to complete applications. Many of thecodes are available in Fortran90 and HPF source, as well as Fortran77 and message-passing source. In addition to the HPFA codes, we also tested our compiler on theAdvanced Regional Prediction System (ARPS) [66] weather prediction code from theCenter for Analysis and Prediction of Storms (CAPS), University of Oklahoma. 7Our algorithm worked as expected and was able to handle some di�cult codes.As an example, consider the before and after snap-shots of a section of code from anN-BODY kernel shown in Figure 6.11. As can be seen, our optimization was able toturn the array Q into an o�set array. The uses of the array Q were changed and thealgorithm was able to successfully propagate the o�set array through several updatesas well. The propagation stopped at the second cshift which rede�ned the array Q.It was not necessary to insert a copy statement at that point since the de�nition is akilling de�nition. It was not possible to make the second cshift an o�set array sincethe shift amount was not a compile-time constant.A summary of our results is given in Table 6.2. Within the 134 modules whichwe ran through our compiler we encountered 119 shift operations. Of these 119 shift6See http://www.npac.syr.edu/hpfa for information on NPAC's HPFA project.7For more information on ARPS and CAPS, see http://wwwcaps.uoknor.edu/.



72q=CSHIFT(q,SHIFT=1,DIM=1)k=npts/2dx(0:k-1)=p(0:k-1,PX)-q(0:k-1,PX)dy(0:k-1)=p(0:k-1,PY)-q(0:k-1,PY)dz(0:k-1)=p(0:k-1,PZ)-q(0:k-1,PZ)sq(0:k-1)=dx(0:k-1)**2+dy(0:k-1)**2& +dz(0:k-1)**2dist(0:k-1)=SQRT(sq(0:k-1))fac(0:k-1)=p(0:k-1,MM)*q(0:k-1,MM)& /(dist(0:k-1)*sq(0:k-1))tx(0:k-1)=fac(0:k-1)*dx(0:k-1)ty(0:k-1)=fac(0:k-1)*dy(0:k-1)tz(0:k-1)=fac(0:k-1)*dz(0:k-1)p(0:k-1,FX)=p(0:k-1,FX)-tx(0:k-1)q(0:k-1,FX)=q(0:k-1,FX)+tx(0:k-1)p(0:k-1,FY)=p(0:k-1,FY)-ty(0:k-1)q(0:k-1,FY)=q(0:k-1,FY)+ty(0:k-1)p(0:k-1,FZ)=p(0:k-1,FZ)-tz(0:k-1)q(0:k-1,FZ)=q(0:k-1,FZ)+tz(0:k-1)q=CSHIFT(q,SHIFT=npts/2,DIM=1)p(:,FX)=p(:,FX)+q(:,FX)p(:,FY)=p(:,FY)+q(:,FY)p(:,FZ)=p(:,FZ)+q(:,FZ)
CALL OVERLAP CSHIFT(q,SHIFT=1,DIM=1)k=npts/2dx(0:k-1)=p(0:k-1,PX)-q<1;0>(0:k-1,PX)dy(0:k-1)=p(0:k-1,PY)-q<1;0>(0:k-1,PY)dz(0:k-1)=p(0:k-1,PZ)-q<1;0>(0:k-1,PZ)sq(0:k-1)=dx(0:k-1)**2+dy(0:k-1)**2& +dz(0:k-1)**2dist(0:k-1)=SQRT(sq(0:k-1))fac(0:k-1)=p(0:k-1,MM)*q<1;0>(0:k-1,MM)& /(dist(0:k-1)*sq(0:k-1))tx(0:k-1)=fac(0:k-1)*dx(0:k-1)ty(0:k-1)=fac(0:k-1)*dy(0:k-1)tz(0:k-1)=fac(0:k-1)*dz(0:k-1)p(0:k-1,FX)=p(0:k-1,FX)-tx(0:k-1)q<1;0>(0:k-1,FX)=q<1;0>(0:k-1,FX)+tx(0:k-1)p(0:k-1,FY)=p(0:k-1,FY)-ty(0:k-1)q<1;0>(0:k-1,FY)=q<1;0>(0:k-1,FY)+ty(0:k-1)p(0:k-1,FZ)=p(0:k-1,FZ)-tz(0:k-1)q<1;0>(0:k-1,FZ)=q<1;0>(0:k-1,FZ)+tz(0:k-1)q=CSHIFT(q<1;0>,SHIFT=npts/2,DIM=1)p(:,FX)=p(:,FX)+q(:,FX)p(:,FY)=p(:,FY)+q(:,FY)p(:,FZ)=p(:,FZ)+q(:,FZ)(a) Before o�set array optimization (b) After o�set array optimizationFigure 6.11 O�set array optimization on an N-BODY code.operations, only 5 appeared in stand-alone assignment statements (e.g., like the twoappearing in Figure 6.11); all the remaining shifts had started out as part of largerexpressions and were hoisted out by our communication generator (see Section 4.5).Our algorithm was then able to analyze 74 of the 119 shifts. The 45 shifts thatwe were not able to analyze appeared in the ARPS weather code. In that code mostarrays are three dimensional and are distributed in a (block,block,block)manner.However, there are several arrays with an additional time-step dimension that is notdistributed. The code contained 45 shifts of such arrays, where the fourth dimensioncontained a scalar subscript. Currently our implementation is limited to handlingonly the shifting of full arrays. Thus we were not able to analyze these shifts, andthey were left unchanged. However, since the scalar subscript always occurs on a serialdimension, it is possible to apply the o�set array optimization to these references. Wedid not make the adjustment to our algorithm due to additional constraints.Of the 74 shifts analyzed, our algorithm was able to create 53 o�set arrays whichwere referenced 70 times. Of the 53 o�set arrays, 4 were multi-o�set arrays. The



73Parameter CountModules processed 134Shifts encountered 119Shifts analyzed 74O�set shifts 53Multi-o�set shifts 4Uses of o�set arrays 70O�set-able updates 6O�set-able �-function 0Inserted copies 1Table 6.2 Results of o�set array static experiments.reason that 21 of the 74 shifts were not o�setable was because the operations containedshift amounts that were not compile-time constants; almost all of these occurring inthe ARPS code. These 21 shifts could have been handled if we had decided to supportthe generation of multi-version code with an appropriate run-time check of the shiftamount.As was previously noted, almost all of the shift operations encountered were orig-inally parts of larger expressions. Some of these were explicit calls to the Fortran90intrinsics, while others were implicit in the use of array notation. In either case, itappears that a very localized analysis algorithm is all that is currently necessary tomake this optimization e�ective. In fact, a single-statement recognizer performed be-fore our communication generation phase would be able to handle 95% of the shifts.Note that such a single-statement recognizer would have to be able to handle explicitand implicit shifts equally well.Since our compilation model includes the communication generation phase, whichhoists communication operations out of expressions, the simplest analysis algorithmwe would �nd acceptable would be the local analysis algorithm that works at the basicblock level. Such an algorithm would be able to handle 99% of the shifts encounteredin our study. We found only a single case where the de�nition and use of a shiftedarray were separated by control-ow. In that case the o�set array was propagatedinto a �-function, but that �-function was determined not to be o�setable. ThusTable 6.2 reports that one copy statement was inserted.



74It is possible and very likely that this situation will change. Most of the codesavailable for our test appear to simply be vectorized versions of Fortran77 codes. AsFortran90 and HPF gain in popularity more codes will be developed which directlyexploit native Fortran90 constructs. The codes developed will become increasingcomplex, possibly even machine generated. If a programmer or the programmer's toolattempts to optimize the code by performing transformations at the array level suchas common subexpression elimination, partial redundancy elimination or invariantcode motion, it would be very possible that a global analysis algorithm, such as theone presented in Section 6.5 would be required to e�ectively exploit o�set arrays.6.7.2 Dynamic ExperimentsTo demonstrate the e�ectiveness of this optimization, we have compiled and executedthe code from Figure 6.5 on an IBM SP-2 with 8 processors, a Thinking MachinesCM-5 with 128 processors, and a MasPar MP-1 with 16K processors. Figures 6.12,6.14, and 6.16 compare the execution times of the original program displayed inFigure 6.5(a) and the optimized program shown in Figure 6.5(d) for varying subgridsizes. The �gures show that the program exploiting o�set arrays gives a speed-up ofa factor of two or more for the larger subgrid sizes. The �gures also display the timeto execute the four cshifts of Figure 6.5(b) and the four calls to overlap shiftof Figure 6.5(d). Figures 6.13, 6.15, and 6.17 shows the percent of total execution
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Figure 6.12 Timings for5-point stencil computation onIBM SP-2. 0 
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75time that is spent performing the shift operations for the respective machines. Wecan see that in many cases the amount of execution time that is spent performingthe four cshift operations is actually more than the time spent performing thedesired computation. In fact, on the SP-2 the cshift operations account for 65% ofthe total execution time for the largest subgrid. The corresponding number for theoverlap shift operations is 7.3%. Additional experimental results are presented inChapter 9.6.8 Related Work6.8.1 The CM-2 Stencil CompilerThe stencil compiler [36, 39] for the CM-2 avoids the memory-to-memory copyingfor shift operations that occur within speci�c, stylized, array-assignment statements.These statements, or stencils, must be in the form of a weighted sum of circularly-shifted arrays. Not only does the compiler eliminate intraprocessor data movementfor these statements, it also optimizes interprocessor data movement by using theCM-2's multidimensional and bidirectional interconnect, and exploits hand-optimizedlibrary microcode to minimize data movement between local memory and registers.However, use of this special-purpose compiler requires that the user identify thesestylized assignment statements in the source program and separate them into theirown subroutine.Our compilation scheme is a superset of the stencil compiler. We hoist all shiftoperations, whether implicit or explicit, out of expressions and assign them to arraytemporaries. This allows us to handle all shift operations, whether part of a largerexpression or not, in a uniform manner. Since hoisted temporaries have short lifespans and thus never have conicting uses, we will always be able to make them intoo�set arrays.We present a more complete comparison between our work and the stencil compilerin Chapter 9 where we discuss our own stencil compilation strategy.6.8.2 Scalarizing CompilersPrevious work on Fortran90D [62], like the stencil compiler, is capable of avoidingsome intraprocessor data movement for stylized expressions. In this case, the expres-sions have to use array syntax. The compiler translates the array syntax expressions
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Optimized programFigure 6.15 Percent ofexecution time spentperforming shift operations.into equivalent Fortran77D code using forall statements. It is then the job of theFortran77D back-end, using dependence information, to determine the exact amountof interprocessor communication required. Unfortunately, any call to cshift, whetherin an assignment statement or as part of an expression, still makes a full copy of thearray. As with the stencil compiler, our work is a superset of this work.6.8.3 Functional and Single-Assignment LanguagesFunctional and many high-level languages have value semantics, and thus do not havethe concept of state and variable as in Fortran. Naive compilation of such languagescauses the insertion of many copy operations of aggregate objects to maintain programsemantics. It is imperative that compilers for such languages eliminate a majorityof the unnecessary copies if they hope to generate e�cient code. This task is knownas copy optimization. Although our problem di�ers somewhat from those faced byfunctional languages, it is worthwhile to review their work.Schwartz [144] characterizes the task of copy optimization as the destructive use(reuse) of an object v at a point P in the program where it can be shown that allother objects that may contain v are dead at P . He then develops a set of valuetransmission functions that can be used to determine the safety of a destructive usewithin the language SETL.



77
0 

50 

100 

150 

200 

E
xe

cu
tio

n 
tim

e 
(m

s)

4 6 8 10 12 14 16 18 20 
Subgrid size (squared)

 

 

 

 

Original program

4 CSHIFTs

Optimized program

4 OVERLAP_CSHIFTs

Figure 6.16 Timings for5-point stencil computation on16K MasPar MP-1. 0 
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Optimized programFigure 6.17 Percent ofexecution time spentperforming shift operations.Gopinath and Hennessy [77] address the problem of copy elimination by targeting,or the proper selection of a storage area for evaluating an expression, the goal of whichis to reuse the storage of the input parameters. For the lambda calculus extendedwith array operation constructs, they develop a set of equations which, when solvediteratively to a �xpoint, specify targets for array parameters and expressions. Theirapproach can successfully target even divide and conquer algorithms. Unfortunately,solving their equations to a �xpoint is at least exponential in time. To avoid thiscost within their implementation of the SAL language, they use type information to\guess" the �xpoint, which they can then verify in linear time.Schnorf et al. [143] describe their e�orts to eliminate aggregate copies in thesingle-assignment language SISAL. Their work analyzes edges in a data ow graph andattempts to determine when edges, representing values, may share storage. Verticalsubstitution attempts to link an output edge of a node with one of the input edges, thusletting them share storage. Horizontal substitution attempts to link sibling outputedges. Our work is most closely related to the combination of vertical substitutionand horizontal substitution. In their combined algorithm, they �rst attempt verticalsubstitution on a node and then horizontal substitution. Our work more or lessattempts to perform vertical substitution given the constraint that our programmingmodel implies horizontal substitution. That is we assume that all out-edges of anoperation share the same storage (equivalent to horizontal substitution), and then tryto �nd instances where an out-edge of a shift operation can share storage with the



78in-edge (equivalent to vertical substitution). They also rely upon pattern matchingto catch a large percentage of unnecessary copies.6.9 SummaryIn this chapter we have presented a uni�ed framework for analyzing and optimizingshift operations on distributed-memory multicomputers. The framework is capableof handling the majority of such operations, whether written by the user or generatedinternally by the compiler. This work supersedes prior work by others that only han-dled shifts embedded within expressions. In addition, the e�ciency of the presentedalgorithms means they could replace the special-purpose pattern matching algorithmsused by many compilers without drastically a�ecting compile time. And although thiswork has concentrated on distributed-memory machines, the optimizations presentedare also applicable to scalar and shared-memory machines. In Chapter 9 we discussan optimization designed to minimize the residual interprocessor communication ofshift operations.



79Chapter 7Context Optimization7.1 IntroductionSIMDmachines o�er impressive cost/performance ratios, and they are very well suitedfor a large body of engineering and scienti�c applications. However, current compil-ers for SIMD machines do not come close enough to exploiting the full potential ofthese machines. To obtain the best performance on such architectures, aggressivecompilation techniques are required. One issue that SIMD compilers must address isgenerating code to change the machine context; i.e., disabling processors not involvedin the current computation.As described in Section 2.1.2 there is a need with SIMD machines to explicitly turnprocessors on and o�. This is due to the fact that there is only a single instructionstream and not all processors need to execute each instruction. Only processorscontaining data related to the current instruction should execute it. If a processoris not to execute a set of instructions, it must be explicitly \masked out". However,changing the machine state, or context, is an expensive operation. Setting the machinecontext is an overhead that one must pay to execute on a SIMD architecture.As can be seen in the two simple examples given in Section 4.8.3, the code requiredto set the context of the PE array can include multiple logical and arithmetic opera-tions. This code can be a signi�cant portion of the work performed within a subgridloop. It is our goal to reduce the impact of this overhead for programs compiled forSIMD machines.Our compiler strategy has a two-pronged approach to minimize the expense ofcontext switching. First, we rearrange the program statements so that as subgridloops are generated, as many statements as possible that execute under the samecontext are placed within the same subgrid loop. Second, we alter the order inwhich subgrid elements are processed by performing loop transformations on thesubgrid loops. These loop transformations will allow us to hoist the code that setsthe machine context out of the loops and thus reduce the number of context changes.



80These optimizations are described in detail in Sections 7.2 and 7.3, and some codegeneration issues are discussed in Section 7.4. We present some preliminary results inSection 7.5. Section 7.6 discusses related work by others. We conclude in Section 7.7with a brief summary.And although this chapter focuses on SIMD architectures, the optimizations pre-sented are applicable to programs for MIMD architectures as well. Where appropriate,we discuss how these optimizations apply to MIMD machines.7.2 Context PartitioningAs explained in Sections 4.8.1 and 4.8.3, a single subgrid loop nest is generated foradjacent Fortran90 array statements which are congruent, 8 and these statements allexecute within the same context. However, unless an e�ort is made to make congruentarray statements adjacent, many small subgrid loops may still be generated. Sabotrecognized this problem, and recommended that users of the CM Fortran compilerrearrange program statements, when possible, to avoid the ine�ciencies of such sub-grid loops [142]. In order to alleviate this problem automatically, our compiler has anoptimization phase that reorders statements within a basic block. The reordering at-tempts to create separate partitions of congruent array statements, scalar statements,and communication statements. We call this optimization context partitioning. Thepartitioning could group scalar statements and communication statements together;however, we prefer to separate them so that the communication operations can befurther optimized by subsequent phases (see Section 9.5).7.2.1 Context Partitioning AlgorithmTo accomplish context partitioning, we use an algorithm proposed by Kennedy andMcKinley [103]. While they were concerned with partitioning parallel and serialloops into fusible groups, we are partitioning Fortran90 statements into congruenceclasses. The algorithmworks on the data dependence graph (ddg) [117] which must beacyclic. Since we apply it to a set of statements within a basic block, our dependencegraph contains only loop-independent dependences [13] and thus meets that criterion.Besides the ddg, the algorithm takes two other arguments: the set of congruence8Recall from Section 4.8.1 that congruent array statements have the same iteration space and operateon arrays that have identical distributions.



81classes contained in the ddg, and a priority ordering of the congruence classes. Wecreate a congruence class for each set of congruent array statements and then addseparate classes for scalar statements and communication statements.An outline of the context partitioning algorithm is shown in Figure 7.1. For eachcongruence class in priority order, the algorithm makes a single pass over the ddg.During the pass it greedily merges nodes for the given class. Two nodes from thesame class may be merged if there does not exist a path between them that containsa node from another class. A path containing a node from another class is termed abad path. When two nodes are merged, the ddg is updated to reect it.The strength of the algorithm comes in its ability to choose in constant time thecorrect node pred with which to fuse the given node n of the selected congruency class.The logic to do this is not shown in Figure 7.1 due to its complexity. Intuitively, n canfuse with all its ancestors from which there does not exist a bad path, but it cannotProcedure Context PartitioningInput: Stmts, the set of statements to be partitioned.Classes, the set of congruence classes.Priority, the priority ordering for Classes.Output: A linear list of Stmts that has been partitioned.generate DDG, the data dependence graph for Stmtsfor each c 2 Classes in decreasing priority dofor each node n 2 DDG doif n is Data-Ready then add n to WorklistendforwhileWorklist 6= ; doremove arbitrary node n from Worklistif class(n) = c then�nd node pred, previously processed, with which n can be mergedif pred 6= 0 thenfuse nodes n and pred in DDGendifendiffor each edge (n,m) in DDG dovisit node mif m is now Data-Ready then add m to Worklistendforendwhileendfortopologically sort DDG to produce �nal outputend Context PartitioningFigure 7.1 The Context Partitioning algorithm.



82bypass any predecessor to fuse with an ancestor. It can also fuse with nodes whichare neither ancestors nor descendants. As nodes are processed for a given class, thealgorithm determines the highest numbered node m of class c from which there existsa bad path to n. Node n cannot fuse with m or any node with a lower number, wherenodes are numbered breadth-�rst in their fusion group. The algorithm also computesthe highest number of a direct predecessor k of n with which n can fuse. Node ncannot fuse with any node with a lower number than k. Thus the algorithm cancompute the fusion node pred by taking the maximum of k and the next higher nodethan m. The interested reader is referred to the paper by Kennedy and McKinley forcomplete details of the algorithm [103].Figure 7.2 displays how context partitioning would handle a block of eight state-ments. The statements are numbered to represent their textual order. The sub-scripts represent their congruence class. In this example, there are two congruenceclasses: A and B. Statement 6 is a scalar statement. Figure 7.2(a) shows the orig-inal source code, and Figure 7.2(b) shows the data dependence graph. Naive codegeneration would create six subgrid loops for these statements (only statements 4and 5 would occur in the same subgrid loop). Figure 7.2(c) shows the data de-pendence graph after partitioning congruence class B, the larger of the two classes.Figure 7.2(d) displays the �nal result after partitioning class A. The �nal code isdisplayed in Figure 7.2(e). The modi�ed code requires only three subgrid loops tobe generated. (Note: Figures 7.2(b-d) show only true (ow) dependences; anti- andoutput-dependences have not been shown since they clutter the diagrams and addlittle bene�t to the discussion, although they must be respected.)Assigning a priority ordering to the congruence classes is required to handle classconicts. A class conict occurs when there exist dependences such that a pair ofstatements from one class may be merged during partitioning or a pair from anotherclass, but not both since that would introduce a cycle in the ddg and thus makeit unschedulable. The following contrived code segment, whose ddg is shown inFigure 7.3, gives an example of a class conict:s1: A(1:100) = A(1:100) + 1.0s2: B(2:99) = B(2:99) * C(2:99)s3: C(1:100) = B(1:100)s4: D(2:99) = A(2:99)It is possible to merge nodes s1 and s3 or nodes s2 and s4, but we cannot mergeboth pairs. The priority ordering is used to determine which pair should be merged.
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s4Figure 7.3 A context partitioning class conict.The algorithm merges pairs with a higher priority before those with a lower priority.Kennedy and McKinley have shown that choosing an optimal ordering of classes isNP-hard in the number of classes. However, since class conicts are considered rare,a good heuristic for choosing an order should be e�ective. The heuristic that we havechosen is to order the array statement congruence classes by their size, largest tosmallest for the given basic block, and to give the scalar and communication classesthe lowest priority.7.2.2 Context Partitioning for MIMD MachinesIt should be noted that context partitioning is not a SIMD-only optimization. Itis useful for Fortran90 compilers that target MIMD architectures as well. Whencompiling for MIMD machines, in fact any parallel architecture, loop fusion [10] is animportant optimization as it can enhance the granularity of parallelism and increasethe possibility of data reuse while reducing the overhead of parallel loop execution.This is particularly critical in Fortran90 compilation, where the scalarization of arraystatements generates many loop nests each containing a single assignment statement.In previous work on loop fusion for parallel machines [42, 154, 159] two loopsare candidates for fusion if their headers are conformable and there do not exist anyfusion-preventing dependences. Two loop headers are conformable if they specify thesame number of iterations and are both either parallel or sequential loops. A datadependence between two loops is fusion-preventing if after fusion the dependencebecomes loop-carried and its direction is reversed.While these criteria determine the safety of loop fusion and attempt to address itspro�tability on parallel machines, they are insu�cient when considering loop fusionon distributed-memory architectures. This is due to the fact that they ignore the



85distribution and alignment of the arrays accessed within the loops, as well as theexact iteration space of the loops.When the distribution and alignment of the arrays and the iteration space ofthe loops is not considered, it is possible for loops to be over fused. Loops areover fused when the code produced for the resulting parallel loops exhibits worseperformance than the code for the separate parallel loops. As an example, considerthe sample code in Figure 7.4. In Figure 7.4(a) we see two simple Fortran90 arrayassignment statements which operate on arrays with identical iteration spaces, buthave di�erent distributions. In Figure 7.4(b) we see the loops that would resultfrom a naive scalarization. The Rice dHPF compiler [3] generates the code shown inFigure 7.4(c) for the two loops from Figure 7.4(b) when targeting a four processormachine. Since the scalarized loops have the same number of iterations and do nothave any fusion-preventing dependences, many parallel compilers that support loopfusion would fuse the two loops into a single loop, such as seen in Figure 7.4(d). Buteven though the loops have the same iteration space, the arrays upon which theyoperate have di�erent distributions. This causes problems for the code generator. Asof April 1997, the Rice dHPF compiler produces the code seen in Figure 7.4(e) whenthe loops have been fused. When executed on an IBM SP-2, the performance of thecode generated for the fused loops is 22% worse than for the code where the loopswere not fused. This is due to the existence of the conditional and IMOD functionwithin the second loop.When faced with such loops, Tseng [152] proposes using loop distribution to avoidthe complications of code generation. But this is actually doing double work: onephase of the Fortran90D compiler fuses loops only to have a later phase distributethem. The proper resolution is to avoid such loop fusion in the �rst place.Others may claim that this problem can be avoided by delaying loop fusion untilafter subgrid loops have been generated and loop bounds have been reduced. Thisis dubious at best. The generation of subgrid loops often requires the creation ofsymbolic loop bounds which are de�ned at run-time. This obfuscation of the codemakes it doubtful that conformable loop headers would be detected at compile-time.To resolve this situation, loop fusion must consider the distribution and alignmentof arrays as well as the iteration space of the prospective loops. These properties arethose exactly captured by our de�nition of congruency!We thus propose a MIMD compilation scheme that includes context partitioningprior to scalarization, and that subsequent loop fusion be restricted to consider only



86REAL, ARRAY(100) :: A,BDECOMPOSITION DECOMP1(100)DECOMPOSITION DECOMP2(100)ALIGN A WITH DECOMP1ALIGN B WITH DECOMP2DISTRIBUTE DECOMP1(BLOCK)DISTRIBUTE DECOMP2(CYCLIC)A(:) = A(:) + 1B(:) = B(:) + 1(a) Original programREAL, ARRAY(100) :: A,BDECOMPOSITION DECOMP1(100)DECOMPOSITION DECOMP2(100)ALIGN A WITH DECOMP1ALIGN B WITH DECOMP2DISTRIBUTE DECOMP1(BLOCK)DISTRIBUTE DECOMP2(CYCLIC)DO i=1,100A(i) = A(i) + 1ENDDODO i=1,100B(i) = B(i) + 1ENDDO
REAL, ARRAY(25) :: A,BDO i=25*mypid-24,25*mypidA(i-25*(mypid-1)) = A(i-25*(mypid-1)) + 1ENDDODO i=mypid,mypid+96,4B((i+3)/4) = B((i+3)/4) + 1ENDDO(b) After scalarization (c) Generated code without loop fusionREAL, ARRAY(100) :: A,BDECOMPOSITION DECOMP1(100)DECOMPOSITION DECOMP2(100)ALIGN A WITH DECOMP1ALIGN B WITH DECOMP2DISTRIBUTE DECOMP1(BLOCK)DISTRIBUTE DECOMP2(CYCLIC)DO i=1,100A(i) = A(i) + 1B(i) = B(i) + 1ENDDO REAL, ARRAY(25) :: A,BDO i=mypid,25*mypid-28,4B((i+3)/4) = B((i+3)/4) + 1ENDDODO i=25*mypid-24,25*mypidA(i-25*(mypid-1)) = A(i-25*(mypid-1)) + 1IF (imod(i-mypid,4).eq.0) THENB((i+3)/4) = B((i+3)/4) + 1ENDIFENDDODO i=25*mypid+4,mypid+96,4B((i+3)/4) = B((i+3)/4) + 1ENDDO(d) After loop fusion (e) Generated code with loop fusionFigure 7.4 Example of over fusing loops for distributed-memory machines.



87blocks of loops generated from congruent array statements. As an example, considerthe simpli�ed program fragment from the Shallow weather prediction benchmarkcode shown in Figure 7.5(a) where all the arrays are perfectly aligned and distributed.Even though the two array statements have the same number of iterations, theyform two congruence classes since their iteration spaces are slightly askew. Followingour proposed strategy, the loops generated for these two statements would not befused even though they have the same number of iterations and there are no fusion-preventing dependences. The reasons for this can be seen in the rest of the �gure.Figure 7.5(b) shows the statements after scalarization, and Figure 7.5(c) shows howloop bounds reduction could be used to generate an e�cient SPMD node program.If on the other hand the compiler had fused the two loops, as shown in Figure 7.5(d),the compiler can no longer use loop bounds reduction to instantiate the computationpartition. This is due to the fact that each PE does not process the same numberof elements for each statement. Instead the compiler inserts guards around eachstatement, as is seen in Figure 7.5(e). This is less e�cient since the guard statementsmust be evaluated at run-time, once per iteration of the loop. For this reason, weonly fuse loops that are generated by congruent array statements.We address the issues of context partitioning and loop fusion in more detail in thechapters that discuss scalarization and stencil compilation.7.2.3 Cost AnalysisGiven the chosen priority ordering, the context partitioning algorithm is incrementallyoptimal; i.e., for each class c, given a partitioning of classes with higher priority, thepartitioning of c results in a minimal number of partitions. The algorithm partitionsthe ddg in O((N +E)C) time, where N is the number of statements, E is the numberof dependence edges, and C is the number of congruence classes.During subgrid loop generation, all statements in a partition are placed in thesame subgrid loop. The number of subgrid loops which operate over statements withthe same context is thus minimal, given the chosen priority ordering.7.3 Context SplittingIn the �rst example in Section 4.8.3, which incremented X(2:242), the PE arrayhas the same context for iterations 2 through 15 of the subgrid loop; during theseiterations all the PEs are active. To take advantage of this invariance, we modify



88REAL, ARRAY(256,256) :: X,Y,ZDECOMPOSITION DECOMP(256,256)ALIGN X,Y,Z WITH DECOMPDISTRIBUTE DECOMP(BLOCK,*)X(2:256,1:255) = F1(Z(2:256,2:256),Z(2:256,1:255))Y(1:255,2:256) = F2(Z(2:256,2:256),Z(1:255,2:256))(a) Shallow: weather prediction codeREAL, ARRAY(256,256) :: X,Y,ZDO j=1,255DO i=2,256X(i,j) = F1(Z(i,j+1),Z(i,j))ENDDOENDDODO j=2,256DO i=1,255Y(i,j) = F1(Z(i+1,j),Z(i,j))ENDDOENDDO REAL, ARRAY(64,256) :: X,Y,Zlb = max(mypid*64,65)-(mypid*64)+1DO j=1,255DO i=lb,64X(i,j) = F1(Z(i,j+1),Z(i,j))ENDDOENDDOub = min(mypid*64,255)-64*(mypid-1)DO j=2,256DO i=1,ubY(i,j) = F1(Z(i+1,j),Z(i,j))ENDDOENDDO(b) After scalarization (c) SPMD code without loop fusionREAL, ARRAY(256,256) :: X,Y,ZDO j=1,255DO i=1,255X(i+1,j) = F1(Z(i+1,j+1),Z(i+1,j))Y(i,j+1) = F1(Z(i+1,j+1),Z(i,j+1))ENDDOENDDO REAL, ARRAY(64,256) :: X,Y,Zlb = max(mypid*64,65)-(mypid*64)ub = min(mypid*64,255)-64*(mypid-1)DO j=1,255DO i=lb,ubIF (i.lt.64) THENX(i+1,j) = F1(Z(i+1,j+1),Z(i+1,j))ENDIFIF (i.gt.0) THENY(i,j+1) = F1(Z(i+1,j+1),Z(i,j+1))ENDIFENDDOENDDO(d) After loop fusion (e) SPMD code with loop fusionFigure 7.5 Example of over fusing loops forthe Shallow weather prediction code.



89the subgrid loop by performing loop splitting, also called index set splitting [23, 161].By splitting the iteration space into disjoint sets, each requiring a single context,we can safely hoist the context setting code out of the resulting loops. We call thisoptimization context splitting.For the reference X(2:242), the iteration space of the subgrid loop is split into 3sets: f1g, f2:15g, and f16g. Applying context splitting to the subgrid loop producesthe code shown in Figure 7.6. Compared to the original subgrid loop, this code hashoisted the call to Set Context out of the loop, eliminated several arithmetic andlogical operations, and the PE array context is now set only three times comparedto the original 16 times. As we can see from this simple example, context splittingsigni�cantly reduces the number of times that the PE array context must be set fora subgrid loop. Whereas the original subgrid loop set the context once per iteration,it is now set only three times, no matter how large the subgrid is.Unlike context partitioning, context splitting is a SIMD-only optimization. ForMIMD machines, compilers can often side-step the issue that is addressed by contextsplitting. Since each PE in a MIMD machine also has control logic, a compiler cangenerate a program such that each PE determines the loop bounds for its own subgridloop. By reducing the loop bounds, the compiler can often avoid iterations for whichthe PE has no work and thus does not need to introduce any guard statements intothe subgrid loop body in those cases [74, 152].We now discuss the details of context splitting. To simplify the discussion, we �rstdiscuss one-dimensional cyclic, block, and block cyclic distributions, and thenshow how to combine one-dimensional splitting to handle multidimensional cases.Set Context(iproc � 2)X0(1) = X0(1) + 1.0Set Context(.TRUE.)DO I = 2, 15X0(I) = X0(I) + 1.0ENDDOSet Context(iproc � 2)X0(16) = X0(16) + 1.0Figure 7.6 Context splitting applied to subgrid loop for X(2:242).



90Our canonical example in the following presentation will be the statement X(N:M)= X(N:M) + 1.0. Context splitting of subgrid loops for full arrays that do not evenly�ll the machine is treated simply as a special case, where N = 1.7.3.1 Context Splitting a cyclic DistributionWith a standard cyclic distribution, element X(N) may reside on any processorrelative to the processor holding element X(M). However, the o�set of X(N) within thesubgrid X0 must be less than or equal to the o�set of X(M). That is given �X(N) =(iprocN ; jN), �X(M) = (iprocM ; jM), and N � M , then jN � jM must hold. Wecannot make any statement regarding the relationship of iprocN and iprocM , exceptthat jN = jM implies iprocN � iprocM .Using this information and our knowledge of cyclic distributions, we know thatall PEs should be enabled for the subgrid iterations jN +1 to jM � 1. This naturallydivides the iteration space into three sets: fjNg, fjN+1:jM�1g, and fjMg. Figure 7.7depicts this situation. When jN = jM , the second iteration set is empty and the �rstand third set are merged into a single set. The subgrid loop after context splittingnow looks like that shown in Figure 7.8.The code can be simpli�ed if N and/or M are known constants. When N and Mare both constants, the IF-test can be evaluated at compile-time and only the codefor the appropriate branch needs to be generated. In the case where the operationis over the full array but the array does not evenly �ll the machine, we know thatN = 1. In this situation the IF-test is unnecessary and the pre-loop statements canbe merged into the DO-loop. This is equivalent to peeling o� the last iteration of thesubgrid loop and hoisting the context setting code accordingly. The result is shownin Figure 7.9.
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91iprocN = (N-1) mod P + 1iprocM = (M-1) mod P + 1jN = dN/PejM = dM/PeIF (jN = jM) THENSet Context(iproc � iprocN .AND. iproc � iprocM)X0(jN) = X0(jN) + 1.0ELSESet Context(iproc � iprocN)X0(jN) = X0(jN) + 1.0Set Context(.TRUE.)DO I = jN+1, jM-1X0(I) = X0(I) + 1.0ENDDOSet Context(iproc � iprocM)X0(jM) = X0(jM) + 1.0ENDIFFigure 7.8 Context splitting a cyclic distribution.iprocM = (M-1) mod P + 1jM = dM/PeSet Context(.TRUE.)DO I = 1, jM-1X0(I) = X0(I) + 1.0ENDDOSet Context(iproc � iprocM)X0(jM) = X0(jM) + 1.0Figure 7.9 Context splitting a cyclic distribution where N=1.7.3.2 Context Splitting a block DistributionGiven a block distribution, the element X(N) always reside on a processor thathas a number less than or equal to the processor holding the element X(M); that is,iprocN � iprocM . Figure 7.10 shows the a�ected elements of array X for the assign-ment X(N:M) = X(N:M) + 1.0 when X has a block distribution. As can be seen, allprocessors between iprocN and iprocM are enabled for all subgrid elements, whereasall processors outside that range are disabled for all subgrid elements. ProcessoriprocN is enabled at iteration jN and subsequent iterations. Processor iprocM isenabled only for iterations up to and including jM .
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MFigure 7.10 X(N:M) when X has a block distribution.The di�culty in context splitting for a block distribution comes from distin-guishing the case where jN � jM from the case where jN > jM . If we let LO =min(jN ; jM + 1) and HI = max(jN � 1; jM), then the iteration space is naturallysplit into the following three sets: f1:LO�1g, fLO:HIg, and fHI+1:Extentg. Thecontext for the �rst iteration set is the processor set fiprocN + 1 : iprocMg. Theprocessor set for the second iteration set includes both iprocN and iprocM if jN � jMholds, otherwise it excludes both. The context for the third iteration set is processorsfiprocN : iprocM � 1g. Figure 7.11 shows the subgrid loop after context splitting.This code can be greatly simpli�ed if both N and M are compile-time constants,in which case both IF expressions can be eliminated. In addition, if LO = 1 orHI = Extent then the body of the �rst or last DO-loop, respectively, is not executed.That DO-loop and its associated call to Set Context can then be safely eliminated.In the case where the operation is over the entire array but the array does not evenly�ll the machine, the code can be simpli�ed to that shown in Figure 7.12.7.3.3 Context Splitting a block cyclic DistributionContext splitting for a block cyclic distribution is more complex. Here we showhow context splitting can be used to optimize a subgrid loop operating over such adistribution.block cyclic is similar to cyclic but it takes a parameter b. It �rst dividesthe dimension into contiguous chunks of size b, then distributes these chunks in thesame manner as cyclic. Figure 7.13 shows the distribution function used to mapan array index to the PE index/subgrid index pair for a block cyclic distribution.Also shown is the inverse function. It is interesting to compare these to the functionsfor the standard block and cyclic distributions, given in Table 4.1. Recall thatit is the inverse function that is used in the calls to Set Context that occur in the



93iprocN = dN/ExtenteiprocM = dM/ExtentejN = (N-1) mod Extent + 1jM = (M-1) mod Extent + 1IF (jN � jM) THENLO = jNHI = jMELSELO = jM + 1HI = jN - 1ENDIFSet Context(iproc > iprocN .AND. iproc � iprocM)DO I = 1, LO-1X0(I) = X0(I) + 1.0ENDDOIF (jN � jM) THENSet Context(iproc � iprocN .AND. iproc � iprocM)ELSESet Context(iproc > iprocN .AND. iproc < iprocM)ENDIFDO I = LO, HIX0(I) = X0(I) + 1.0ENDDOSet Context(iproc � iprocN .AND. iproc < iprocM)DO I = HI+1, ExtentX0(I) = X0(I) + 1.0ENDDOFigure 7.11 Context splitting a block distribution.iprocM = dM/ExtentejM = (M-1) mod Extent + 1Set Context(iproc � iprocM)DO I = 1, jMX0(I) = X0(I) + 1.0ENDDOSet Context(iproc < iprocM)DO I = jM+1, ExtentX0(I) = X0(I) + 1.0ENDDOFigure 7.12 Context splitting a block distribution where N=1.



94naive subgrid loops. In this case, the inverse function is so complex that it adds asigni�cant amount to the overhead of the subgrid loop.Let's consider once again our example X(N:M) = X(N:M) + 1.0. Figure 7.14shows the a�ected elements given a block size b = 3 (dark lines indicate logicalblock boundaries). It can be easily seen that at any given subgrid index di�erentsets of PEs contain elements from the range N : M . On closer inspection, it can befound that the sets of PEs that must be enabled form a logical progression. It is thisprogression that establishes the iteration sets for context splitting.To ease the speci�cation of the iteration sets we not only need to know the valuesof jN and jM , the subgrid indices of X(N) and X(M) respectively, we also need toknow the logical blocks in which they occur. We label these blocks BN and BM .We use one-based indexing for the blocks just as we do for indexing subgrids andPEs.They can be calculated using the following formula:Bk = j k�1b�P1 k+ 1 = djk=be ; for k = N;MOnce we have determined the values of jN , jM , iprocN , iprocM , BN , and BM , we splitthe iteration space into the following �ve sections and determine the set of active PEsas shown:f(BN � 1) � b+ 1 : jN � 1g Turn on PEs where iproc > iprocN .fjN : BN � bg Turn on PEs where iproc � iprocN .fBN � b+ 1 : (BM � 1) � bg Turn on all PEs.f(BM � 1) � b+ 1 : jMg Turn on PEs where iproc � iprocM .fjM + 1 : BM � bg Turn on PEs where iproc < iprocM .Depending upon the values of N and M , one or more of the �ve iteration sets maybe empty. In particular, when N = 1 the �rst set is empty and the second andthird set enable the same PEs and can thus be merged together. It is important tonotice how context splitting has reduced the computations required for the calls to�block cyclic(b)(i) = �l (i�1)mod(b�P1)+1b m ; j i�1b�P1 k b+ i mod b+ 1���1block cyclic(b)(iproc; j) = j j�1b k (P1 � b) + (iproc � 1) � b+ (j � 1) mod b+ 1Figure 7.13 block cyclic distribution function and its inverse.



95
iproc

B

B

M

N
j

iproc

j

N

N

M

MFigure 7.14 X(N:M) when X has a block cyclic distribution.Set Context to simple logical comparisons; the expensive operations of the inversemapping function are no longer required.With a block cyclic distribution, there is one special case which we must handlewhen performing context splitting. It occurs when BN = BM . In this situation, allthe a�ected elements of X(N : M) are at the same logical block level. Furthermore,the elements are distributed across this block level in a normal block distribution.To properly handle this case we could apply the techniques presented in Section 7.3.2,with the modi�cation that the subgrid loop ranges from (BN � 1) � b + 1 to BN � brather than from 1 to Extent. Alternatively, if the block size b is small, we couldsimply generate the naive subgrid loop, since we know that the loop performs at mostb iterations.The subgrid loop for the statement X(N:M)=X(N:M)+1.0 is shown in Figure 7.15.For simplicity, we have used the naive subgrid loop for the case where BN = BM .The variable GlobalIndex holds the value of the inverse distribution function, ��1,computed on each PE for each subgrid location.7.3.4 Context Splitting a Multidimensional DistributionTo perform context splitting on a multidimensional distribution, we apply loop split-ting on each dimension separately. This produces a set of imperfectly nested DO-loops.We then apply loop distribution [117, 129] to produce a set of perfectly nested DO-loops, each of which operates under a single context. The context for each loop nestis the intersection of the contexts produced for each dimension.



96iprocN = d((N-1) mod (b*P) + 1)/beiprocM = d((M-1) mod (b*P) + 1)/bejN = b(N-1)/(b*P)c b + i mod b + 1jM = b(M-1)/(b*P)c b + i mod b + 1BN = djN/beBM = djM/beIF (BN = BM) THEN !! perform naive subgrid loopingDO i = (BN - 1) * b + 1, BN * bGlobalIndex = b(i-1)/bc*(P*b) + (iproc-1)* b + (i-1) mod b + 1Set Context(GlobalIndex � N .AND. GlobalIndex � M)X0(i) = X0(i) + 1.0ENDDOELSESet Context(iproc > iprocN)DO I = (BN-1)*b+1, jN-1X0(I) = X0(I) + 1.0ENDDOSet Context(iproc � iprocN)DO I = jN, BN*bX0(I) = X0(I) + 1.0ENDDOSet Context(.TRUE.)DO I = BN*b+1, (BM-1)*bX0(I) = X0(I) + 1.0ENDDOSet Context(iproc � iprocM)DO I = (BM-1)*b+1, jMX0(I) = X0(I) + 1.0ENDDOSet Context(iproc < iprocM)DO I = jM+1, BM*bX0(I) = X0(I) + 1.0ENDDOENDIF Figure 7.15 Context splitting a block cyclic distribution.



97Let's consider again the array Y2 as declared and distributed in Figures 4.5 and4.6 on page 35. Performing context splitting on the statement Y2 = ABS( Y2 ), we�rst perform loop splitting on each dimension. For the �rst dimension, the iterationspace is divided into the sets f1:2g and f3:5g, while the second dimension producesthe sets f1:4g and f5g. After splitting the loops we use loop distribution, whichproduces these sets of two-dimensional iteration spaces: f1:2,1:4g, f3:5,1:4g, f1:2,5g,and f3:5,5g. The result is the code shown in Figure 7.16, which sets the context fourtimes compared to the 25 times of the naive subgrid loop presented in Section 4.8.3:7.4 Code Generation IssuesA close evaluation of the context splitting optimization reveals two possible concerns:loop overhead and code growth. Both of these occur because context splitting takes asingle subgrid loop nest and generates multiple loop nests (with reduced loop bounds)each with a copy of the loop body (minus context setting code). We will address eachof these concerns separately.Set Context (.TRUE.)DO J = 1, 4DO I = 1, 2Y20(I,J) = ABS ( Y20(I,J) )ENDDOENDDOSet Context (iproc1 < 4)DO J = 1, 4DO I = 3, 5Y20(I,J) = ABS ( Y20(I,J) )ENDDOENDDOSet Context (iproc2 < 4)DO I = 1, 2Y20(I,5) = ABS ( Y20(I,5) )ENDDOSet Context (iproc1 < 4 .AND. iproc2 < 4)DO I = 3, 5Y20(I,5) = ABS ( Y20(I,5) )ENDDOFigure 7.16 Context splitting a multidimensional distribution.



98The additional loop overhead generated by context splitting is not a problem.For SIMD machines, recall that all the control ow operations related to the loopingconstructs are executed on the FE processor. Since the FE processor is usually muchfaster than the PE processors, and is executing asynchronously from them, it is ableto handle the extra loop overhead while still keeping the PE array busy. In essence, wehave increased the workload executed on the FE, but this has allowed us to decreasethe workload sent to the PE array.Since context splitting produces several copies of the loop body for each looplevel which is split, code growth is exponential in the number of nested subgrid loopswhich are split. If this growth is a concern, we have two alternatives that can be usedto address it. First, the loop body could be encapsulated as an internal subroutine,which is branched to and returned from. Since the subroutine is internal, the interfacesimply requires that the return address be saved. Alternatively, by limiting contextsplitting to only the innermost one or two subgrid loop levels, one can keep codegrowth bounded by a linear amount. Our experiments have shown that this smalllimitation still retains most of the performance gains achieved when splitting allsubgrid loop levels.Throughout this presentation we have ignored the context setting required formasked assignment instructions, such as that generated by the WHERE statement.The semantics of masked instructions imply that each element has its own executionmask. This means that the iteration space cannot be divided into convenient sets eachwith a constant execution mask. For this reason context splitting cannot be used tohoist the calls to Set Context out of such subgrid loops. Context partitioning is stillapplicable and can be used to generate a single subgrid loop for groups of congruentstatements.7.5 Experimental ResultsTo verify the e�ectiveness of these optimizations, we performed experiments on bothSIMD and MIMD machines. In this section we report the results from the SIMDexperiments executed on a DECmpp 12000, which is equivalent to a MasPar MP-1.In Section 9.8 we report the results of performing context partitioning on a stencilcode executing on an IBM SP-2, a MIMD machine.For our SIMD experiments, we performed the optimizations by hand on a sectionof code taken from a Fortran90 version of the ARPS weather prediction code [66].



99The code initializes 16 two-dimensional arrays. We chose this section of code sincecontext partitioning would not bene�t additionally from data reuse nor would it bepenalized for generating excessive register pressure. Thus all performance improve-ments are directly attributable to the elimination of redundant context changes andthe reduction of loop overhead.We generated �ve versions of this code segment and timed each on a dedicatedDECmpp 12000. The �rst version was simply the Fortran90 segment as taken fromthe ARPS program. This was compiled with MP Fortran Version 2.1. The secondversion was a translation of the Fortran code into MPL. We optimized this versionby performing the following optimizations by hand: common subexpression elimina-tion, strength reduction, and loop-invariant code motion. We also used registerdeclarations on array pointers. We then took this MPL version and generated threenew versions by applying our context optimizations; one version for each of the op-timizations, and one version which combined both optimizations. All the MPL rou-tines were compiled by Version 3.0 of the MPL compiler. All �ve versions used a(cyclic,cyclic) distribution, the default distribution of the MP Fortran compiler.The version combining context partitioning and splitting reduced the executiontime by 45% when compared to the original MPL code (which itself reduced theexecution time by approximately 10% compared to the Fortran code). See Figure 7.17
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Figure 7.17 Time for ARPS weather code to initialize sixteen 2-D arrays.



100for a comparison of execution time versus subgrid size for these three versions of thecode. Individually, context partitioning and context splitting reduced the executiontime by 35% and 45%, respectively. The reason that the combination of the twooptimizations did not out-perform context splitting is that, once splitting eliminatedthe costly context setting code from the subgrid loops, the loops became memorybound. For subgrid loops that are more computationally intensive, we expect thesetwo optimizations to have an additive e�ect, although the total e�ect may be lessthan the improvement experienced with this code.To consider something more computationally interesting, we looked at a �ve-pointdi�erence computation:RESULT = (A + CSHIFT(A,1,1) + CSHIFT(A,-1,1)+ CSHIFT(A,1,2) + CSHIFT(A,-1,2))/5RESULT and A were both two-dimensional arrays distributed in a (cyclic,cyclic)manner. We generated three versions of the code: a Fortran90 version, a hand-optimized MPL version, and an MPL version which had context splitting applied(since there was only a single statement, context partitioning was not applicable).We then timed the subgrid loops. In all cases, the communication time to set upthe computation was excluded from the measurements. The results are shown inFigure 7.18.Since the time to compute and set the context is a smaller portion of the totalwork performed in this subgrid loop, the performance gain is not as impressive as thatobtained on the array initialization code. But the 13% reduction in the executiontime from the hand-optimized MPL version is still signi�cant. The hand-optimizedMPL had already reduced the execution time by 32% when compared to the Fortranversion.As a �nal point of interest, we took the above �ve-point di�erence computationand performed context splitting only on the innermost subgrid loop as discussed inSection 7.4. Code growth was minimal, adding only two statements to the MPLcode: a call to Set Context and a replication of the loop body (a single assignmentstatement). In comparison, the original split version, in which context splitting wasapplied to both loops in the subgrid loop nest, slightly more than doubled the amountof code. Additionally, the performance di�erence between the two split versions wasminimal. The new split version reduced the execution time of the hand-optimizedMPL version by 12%, compared to the 13% reduction of the original split version.



101
0 50 100 150 200 250 300 350 400

0

10

20

30

40

50

60

MasPar Fortran

Hand-optimized MPL

Context-split MPL

Subgrid size

E
xe

cu
tio

n 
tim

e 
(m

s)

Figure 7.18 Time for 5-point di�erence computation.7.6 Related WorkWork at Compass by Albert, et al., describes the generation and optimization ofcontext setting code [7]. They avoid redundant context computations when adjacentstatements operate under the same context. They also perform classical optimizationson the context expressions, such as common subexpression elimination. They mentionthe possibility of reordering computations to minimize context changes, but they donot discuss such transformations.While giving some optimization hints for the Slicewise CMFortran compiler, Sabotdescribes the need for code motion to increase the size of elemental code blocks (blocksof code for which a single subgrid loop can be generated) [142]. He goes on to statethat the compiler does not perform this code motion on user code, and thus it is upto the programmer to make them as large as possible. In a later paper describingthe internals of the compiler, he describes how it attempts to perform code motionso that subgrid loops may become adjacent and thus fused [140]. However, the codemotion performed is limited to only moving scalar code from between subgrid loops,not in moving the loops themselves. Furthermore, due to the limited dependenceanalysis performed by the compiler, only compiler-generated scalar code is moved. Itwas this work that motivated us to investigate the context partitioning problem.



102Chen and Cowie also recognize the need to fuse parallel loops in their Fortran90compiler [57]. However, they only fuse adjacent loops and perform no code motionto increase the chances of fusion.7.7 SummaryWe have developed a double-edged sword to combat the cost of context switching incodes for SIMD machines. The �rst edge of the sword reduces the number of subgridloops which operate over the same context to a minimum. The second edge reducesthe number of context changes per subgrid loop from O(N) to O(1) for unmaskedarray assignment statements. We have also discussed how they may be used tooptimize code for MIMD machines as well.



103Chapter 8Advanced Scalarization of Array Statements8.1 IntroductionAs introduced in Section 4.8, an array statement must be rewritten so that it accessessmaller chunks of data before it can be executed on the target architecture. The sizeof the chunks must \�t" the hardware of the target machine. For scalar machines,or individual PEs of a parallel machine, that size is a single array element; for vectormachines that size is the size of the vector registers. This translation is known asscalarization when discussed in terms of a scalar machine, and is called sectioning onvector architectures. In this chapter we address compiling to a scalar machine. Thematerial is equally applicable to vector machines.8.2 Two-Pass ScalarizationDue to the semantics of array statements, their translation into correct serial codeis not always trivial, as can be seen in Figure 8.1. The code in Figure 8.1(b), theresult of a naive scalarization, is not equivalent to its Fortran90 counterpart since onthe second and subsequent iterations of the I loop the reference A(I � 1) accessesthe new value of the array A assigned on the previous iteration. This violates the\load-before-store" semantics of the Fortran90 array assignment statement.Fortunately, data dependence information can tell us when the scalarized loop iscorrect. Allen and Kennedy [14] have shown that a scalarized loop is correct if andDO I=2, NA(2:N) = A(1:N-1) + B(1:N-1) A(I) = A(I-1) + B(I-1)END DO(a) array statement (b) naively scalarized codeFigure 8.1 Invalid scalarization example.



104only if it does not carry a true dependence. Using this fact, most compilers performscalarization in the following manner:1. Perform a naive scalarization of the array statement into a scalar loop nest.2. Compute the data dependences of the resulting code.3. While a scalarized loop carries a true dependence, perform code transformationsto either eliminate the dependence or change it into an antidependence.The code transformations that can be applied to handle the loop carried true de-pendences include loop reversal, loop interchange, prefetching, and as a last resortthe generation of array temporaries. The interested reader is referred to Allen andKennedy [14] for a complete discussion.The Allen & Kennedy algorithm requires two passes over the code, one to performthe naive scalarization and another to perform code transformations to restore thesemantics of the program if the initial scalarization is invalid. Using the dependenceinformation produced by the methods described in Chapter 5, we propose a newalgorithm that eliminates the need for the �rst pass and is able to determine a validscalarization before attempting any transformations.8.3 One-Pass ScalarizationOur new scalarization algorithm begins by performing dependence analysis directly onFortran90 array statements [138]. When attempting to scalarize an array statement,we only need to be concerned with the scalarization dependences of that statementon itself. As discussed in Section 5.3.4, such dependences are always antidependencesand may contain any of the three direction speci�ers in triplet positions. If we per-form naive scalarization on a triplet that has a forward (<) or loop independent (=)antidependence, the resulting loop has an equivalent dependence. However, if wenaively scalarize a triplet that carries a backward (>) antidependence, the resultingloop carries a forward true dependence indicating an incorrect scalarization. Thus wemust be careful to address the antidependences that contain an \>" in the positioncorresponding to a triplet we are scalarizing.Our algorithm proceeds to scalarize the statement one triplet at a time, payingparticular attention to those triplets that carry backward antidependences. There are



105several methods we can use to handle these dependences; basically the same methodsthat the two-pass algorithm uses to address loop carried true dependences.First we can choose the order in which the triplets are scalarized. If we choosea triplet position that contains only \<" and \=" elements in the scalarization de-pendences, we can perform a naive scalarization of that triplet and know that it iscorrect. Afterward we can eliminate from further consideration those dependenceswhich contained an \<" in that position, since those dependences are carried by thescalarized loop. This is advantageous when the eliminated dependences containednon-\=" elements in other positions.Second, if all dependences contain either a \>" or \=" in a given position, thecorresponding triplet can be correctly scalarized with a reversed loop. Again, thosedependences that were carried at that triplet position can be eliminated. Failingthese, we can continue to attempt all the transformations that the two-pass algorithmutilized, including prefetching.If there are triplets remaining that cannot be scalarized by any of the transforma-tions, we generate a temporary array whose size equals the remaining array section.We then create two adjacent loop nests for the remaining triplets. The �rst nest per-forms the desired computation and stores it in the temporary array, and the secondcopies the results from the temporary array into the destination array.As an example, consider the statement in Figure 8.2(a) and its correspondingscalarization dependences in Figure 8.2(b). After scanning the dependences, we seethat the second triplet can safely be scalarized using the naive method. This elim-inates the �rst two dependences from further consideration since they both containan \<" in the position corresponding to the second triplet. That leaves us with asingle dependence of (>;=) and only the �rst triplet to scalarize. The direction vec-tor quickly tells us that the remaining triplet can safely be scalarized by generatinga reversed loop. The resulting code is shown in Figure 8.3.A(2:N-1,2:N-1) = A(1:N-2,3:N) (>,<)+ A(3:N,3:N) (<,<)+ A(1:N-2,2:N-1) (>,=)(a) array statement (b) dependence vectorsFigure 8.2 One-pass scalarization example.



106DO J = 2, N-1DO I = N-1, 2, -1A(I,J) = A(I-1,J+1)+ A(I+1,J+1)+ A(I-1,J)END DOEND DOFigure 8.3 Generated scalar code.8.4 Scalarization of O�set ArraysRecall from Chapter 6 that our compilationmodel includes the creation of o�set arraysto eliminate the intraprocessor copying of data associated with shift intrinsics. Thepresence of such arrays necessitates that the rest of the compiler be modi�ed asappropriate to handle them. In particular, dependence analysis needs to produce theproper dependence vectors for them, and scalarization must insure the production ofcorrect code.Dependence analysis can easily be modi�ed to handle o�set arrays by includ-ing the o�set annotation, as described in Section 6.3.2, in the analysis of the arraysubscripts. In this way, subscript analysis would treat the o�set array referenceA<�1;+1>(1:N,1:N) simply as the array reference A(1-1:N-1,1+1:N+1).Once dependence analysis has determined the dependences arising from both nor-mal and o�set array references, scalarization proceeds as described previously. Whengenerating scalar subscript references for o�set arrays, we need to alter the subscriptexpressions. This is accomplished by incrementing each subscript by the correspond-ing annotation entry. This was described in Section 6.3.2 and an example was givenin Figure 6.5.As a �nal note, we would like to once again address the issue of array copies. InSection 6.5.3 we proved a theorem that showed that an array copy statement insertedby our o�set array algorithm could never execute more often than the shift operationsit optimized. However, we also noted in Section 6.6.1 that the use of o�set arraysinvalidates the perfect alignment property that is a part of our compilation model (seeSection 4.8.1). Due to this, the naive scalarization of array assignment statementsthat reference o�set arrays may no longer be valid and array temporaries may berequired.



107CALL overlap cshift(a,-1,1)CALL overlap cshift(a,+1,1)CALL overlap cshift(a,-1,2)CALL overlap cshift(a,+1,2)a = cc * a& + cn * a<�1;0>& + cs * a<+1;0>& + cw * a<0;�1>& + ce * a<0;+1>Figure 8.4 5-point stencil computation using o�setarrays that requires a scalarization temporary.As an example, consider the code fragment in Figure 8.4. In this example we have a5-point stencil computation which references four o�set arrays. The four o�set arraysare based on the same array which is being de�ned in the statement. Due to the scalar-ization dependences that exists for this statement ((>;=); (<;=); (=; >); (=; <)),proper scalarization requires a temporary array. This temporary array �rst getsassigned the results of the computation and is then copied back into the array A.This leads us to the following question: Can the combination of copies insertedby the o�set array algorithm and copies inserted for scalarization temporaries due too�set arrays cause more data movement than speci�ed in the original program? Thefollowing two theorems prove that this cannot happen. The �rst theorem states thatthe generation of an o�set array can lead to either a copy statement being insertedby the o�set array algorithm or a copy statement being generated for a scalariza-tion temporary, but never both. The second theorem states that if a scalarizationtemporary is needed, it cannot be more deeply nested than the shift statement thatgenerated the o�set array.Theorem 8.1 An o�set array can never cause a copy statement to begenerated by both the o�set array algorithm and the scalarization algo-rithm.Proof The proof is in two parts. Each part states that the conditions that mustexist for one of the algorithms to insert a copy statement end the live range of theo�set array.1. The o�set array algorithm inserts an array copy statement when it can no longerpropagate the o�set array through the SSA graph. This can occur either at an



108update operation or a �-function. In each case, the copy statement marks theend of the o�set array's live range { the algorithm was not able to propagatethe o�set array past that point. Since the o�set array was not propagated pastthat point there can be no subsequent references to it. Thus its live range endsthere. Therefore the o�set array could not possibly lead to temporaries beinggenerated by the scalarization algorithm.2. For the scalarization algorithm to generate an array temporary due to an o�setarray, the o�set array must be based on the same array which is being de�ned onthe left-hand side of the assignment statement. See Figure 8.4 for an example.This de�nition constitutes a modi�cation of the source of the o�set array. Sinceit would be a violation of criterion 1 to propagate the o�set array past thispoint, there can be no subsequent references to the o�set array. Thus the liverange of the o�set array ends at that statement.Since the live range of the o�set array ends at the point of the copy, there are nofurther possibilities for subsequent copy statements to be inserted by either the o�setarray algorithm or the scalarization algorithm due to the use of the o�set array.Theorem 8.2 An array statement which requires a scalarization tem-porary due to an o�set array cannot be more deeply nested than the shiftoperation that created the o�set array.Proof As stated in the previous proof, if the scalarization algorithm must generatean array temporary for an assignment statement referencing an o�set array, then theo�set array must be based on the same array which is being de�ned on the left-handside of the assignment statement. This de�nition requires that a �-function exist forthe base array in any enclosing loops. Using these facts, the rest of the proof followsthe same lines as Lemma 6.2 and is thus omitted.



109Chapter 9Putting It All Together { Stencil Compilation9.1 IntroductionIn many programs performing dense matrix computations, the main computationalportion of the program belongs to a class of kernels known as stencils. For Fortran90Dand HPF to gain acceptance as a vehicle for parallel scienti�c programming, they mustachieve high performance on this class of problems. This chapter describes a strategyfor optimizing such stencil computations for execution on distributed-memory multi-processors. The strategy orchestrates many of the optimizations previously presentedin this dissertation, and introduces a new optimization that enhances the use of o�setarrays. The optimizations presented target the overhead of data movement that oc-curs between processors, within the local memory of the processors, and between thememory and registers of the processors. We focus on the application of this strategyon distributed-memory architectures, although it is more broadly applicable.In the next section we introduce stencil computations and discuss their execu-tion cost on distributed-memory machines. In Section 9.3 we give an overview ofour compilation strategy, and then address the individual optimizations in detail inSections 9.4, 9.5, and 9.6. We then trace through an extended example to show howthe optimizations work in concert. In Section 9.8 we give some experimental results,and in Section 9.9 we compare this strategy with other known e�orts.9.2 Stencil ComputationsIn this section we introduce stencil computations and discuss their execution cost ondistributed-memory machines.9.2.1 StencilsA stencil is a stylized matrix computation in which a group of neighboring dataelements are combined to calculate a new value. They are typically combined in the



110form of a sum of products. This type of computation is common in solving partialdi�erential equations, image processing, and geometric modeling. The Fortran90array assignment statement in Figure 9.1 is commonly referred to as a 5-point stencil.In this statement src and dst are arrays, and C1{C5 are either scalars or arrays.Each interior element of the result array dst is computed from the correspondingelement of the source array src and the neighboring elements of src on the North,West, South, and East. A 9-point stencil that computes all grid elements by exploitingthe cshift intrinsic might be speci�ed as shown in Figure 9.2.Stencils are not necessarily symmetrical as in the two previous examples. Considerthe stencil computation shown in Figure 9.3 which has a pattern in the shape of acapital \L".In the previous three examples the stencils were speci�ed as a single array assign-ment statement, but this need not always be the case. Consider again the 9-pointDST(2:N-1,2:N-1) = C1 * SRC(1:N-2,2:N-1)& + C2 * SRC(2:N-1,1:N-2)& + C3 * SRC(2:N-1,2:N-1)& + C4 * SRC(3:N ,2:N-1)& + C5 * SRC(2:N-1,3:N )Figure 9.1 5-point stencil computation.DST = C1 * CSHIFT(CSHIFT(SRC,-1,1),-1,2)& + C2 * CSHIFT(SRC,-1,1)& + C3 * CSHIFT(CSHIFT(SRC,-1,1),+1,2)& + C4 * CSHIFT(SRC,-1,2)& + C5 * SRC& + C6 * CSHIFT(SRC,+1,2)& + C7 * CSHIFT(CSHIFT(SRC,+1,1),-1,2)& + C8 * CSHIFT(SRC,+1,1)& + C9 * CSHIFT(CSHIFT(SRC,+1,1),+1,2)Figure 9.2 9-point stencil computation.DST = C1 * SRC& + C2 * CSHIFT(SRC,-1,1)& + C3 * CSHIFT(SRC,-2,1)& + C4 * CSHIFT(CSHIFT(SRC,-2,1),+1,2)Figure 9.3 An odd-shaped stencil computation.



111stencil above. If the programmer attempted to optimize the program by hand, or ifthe stencil was pre-processed by other optimization phases of the compiler, we mightbe presented with the code shown in Figure 9.49.When encountering a set of statements such as these, we would like to be able toproduce code equivalent to that produced for the single-statement stencil. Thus wehave designed our optimizer to handle the most general input form, which has severaldistinguishing characteristics:� cshift intrinsics and temporary arrays have been inserted to perform datamovement needed for operations on array sections that have di�erent processormappings.� Each cshift intrinsic occurs as a singleton operation on the right-hand side ofan array assignment statement and is only applied to whole arrays.� The expression that actually computes the stencil operates on operands thatare perfectly aligned, and thus no communication operations are required.All stencil and stencil-like computations can be translated into this general formby factoring expressions and introducing temporary arrays. In fact, this is the in-termediate form used by several distributed-memory compilers [110, 139, 34]. Forexample, given the 5-point stencil computation presented in Figure 9.1 above, theRIP = CSHIFT(U,SHIFT=+1,DIM=1)RIN = CSHIFT(U,SHIFT=-1,DIM=1)T = U + RIP + RINT = T + CSHIFT(U,SHIFT=-1,DIM=2)T = T + CSHIFT(U,SHIFT=+1,DIM=2)T = T + CSHIFT(RIP,SHIFT=-1,DIM=2)T = T + CSHIFT(RIP,SHIFT=+1,DIM=2)T = T + CSHIFT(RIN,SHIFT=-1,DIM=2)T = T + CSHIFT(RIN,SHIFT=+1,DIM=2)Figure 9.4 Problem 9 from the Purdue Set.9This example was taken from Problem 9 of the Purdue Set [135] as adapted for Fortran D bench-marking by Thomas Haupt of NPAC.



112CM Fortran compiler would translate it into the sequence of statements shown inFigure 9.510.For the rest of this chapter we assume that all stencil computations have beenput into this form, and that all arrays are distributed in a block fashion. And al-though we concentrate on stencils expressed using the cshift intrinsic, the techniquespresented can be generalized to handle the eoshift intrinsic as well.9.2.2 Stencil Execution CostsThe cost of a stencil computation on a distributed-memory machine can be analyzedby breaking it down into its two major components: the set of cshift operations andthe calculation of the sum of products.When a cshift operation is performed on a distributed array, two major actionstake place:1. Data elements that must be shifted across processing element (PE) boundariesare sent to the neighboring PE. This is the interprocessor component of theshift.2. Data elements that stay within the memory of the PE must be copied to theappropriate locations in the destination array. This is the intraprocessor com-ponent of the shift.ALLOCATE TMP1, TMP2, TMP3, TMP4TMP1 = CSHIFT(SRC,SHIFT=-1,DIM=1)TMP2 = CSHIFT(SRC,SHIFT=-1,DIM=2)TMP3 = CSHIFT(SRC,SHIFT=+1,DIM=1)TMP4 = CSHIFT(SRC,SHIFT=+1,DIM=2)DST(2:N-1,2:N-1) = C1 * TMP1(2:N-1,2:N-1)& + C2 * TMP2(2:N-1,2:N-1)& + C3 * SRC (2:N-1,2:N-1)& + C4 * TMP3(2:N-1,2:N-1)& + C5 * TMP4(2:N-1,2:N-1)DEALLOCATE TMP1, TMP2, TMP3, TMP4Figure 9.5 Intermediate form of 5-point stencil computation.10For this reason most CM Fortran programmers use CSHIFTs explicitly in their stencil computa-tions. Array-syntax stencils produced the same CSHIFT intrinsic calls but then had the additionaloverhead of the vector masking operations required for handling the array subsections [140].



113Since the costs of these two actions were discussed in Chapter 6, we do not addressthem further here.The sum of products is calculated within the subgrid loop nest, which is the resultof scalarization and SPMD code generation as discussed in Section 4.8. At this point,speci�c array elements are referenced rather than full arrays or array sections. If thestencil is not computed over the entire matrix, or if the subgrid size is not known atcompile time, each PE must compute its subgrid loop bounds. The subgrid loop forthe 5-point stencil presented in Figure 9.5 is shown in Figure 9.6 (where $MY PIDreturns the processor id number (one based) for the given dimension, G is the extentof the local subgrid, and N is the extent of the original array).Calculating the execution cost of such a loop nest is usually accomplished bytotalling the number of oating point operations in the loop, dividing that numberby the rate the target machine can execute those ops, and then multiplying by thetotal number of iterations. Unfortunately, due to the large number of array referencesfound in such a loop, this metric is insu�cient. To better measure the performanceof subgrid loops in relation to their memory accesses we use the notion of balance asde�ned by Callahan, et al. [44].Themachine balance (�M) for a particular machine is de�ned to be the relationshipbetween the rate at which memory can be accessed compared to the rate that oating-point operations can be executed:�M = max words=cyclemax flops=cycleLB1 = MAX((($MYPID(1)-1)*G)+1,2) - (($MYPID(1)-1)*G)UB1 = MIN($MYPID(1)*G,N-1) - (($MYPID(1)-1)*G)LB2 = MAX((($MYPID(2)-1)*G)+1,2) - (($MYPID(2)-1)*G)UB2 = MIN($MYPID(2)*G,N-1) - (($MYPID(2)-1)*G)DO J = LB2, UB2DO I = LB1, UB1DST(I,J) = C1 * TMP1(I,J)& + C2 * TMP2(I,J)& + C3 * SRC (I,J)& + C4 * TMP3(I,J)& + C5 * TMP4(I,J)ENDDOENDDOFigure 9.6 Subgrid loop for 5-point stencil.



114The loop balance (�L) for a given loop is de�ned as:�L = number of memory referencesnumber of flopsIf �L = �M , then the loop is balanced for the target machine and will run well.If �L < �M , then data can be supplied faster than it can be processed, and theloop is said to be compute bound. In this case the machine is running at its peakcomputational rate. If �L > �M , then data can be processed faster then it can besupplied, and there exists idle computational cycles. Such a loop is memory bound.For many advanced architectures that o�er e�cientmultiply-add operations, the valueof �L for loops generated from stencils is often larger than �M , resulting in memory-bound loops. The value of �L is also signi�cantly increased if the stencil is speci�edwith array-valued coe�cients rather than with scalar values, thus exacerbating theproblem.9.3 Compilation StrategyIn this section we give an overview of our compilation strategy. We then present thedetails of this strategy in the subsequent sections.Assuming that the program containing the stencil has been put into the formpresented at the end of Section 9.2.1, we begin by optimizing the cshift operations.We apply two separate optimization phases: the �rst addresses the intraprocessordata movement and the second handles the interprocessor data movement.Intraprocessor data movement is completely eliminating when possible. This isaccomplished by exploiting our o�set array optimization described in Chapter 6. Wethen follow this with our context partitioning optimization, as described in Chapter 7,to separate the communication operations from the computational operations.Once the intraprocessor data movement has been eliminated and we have parti-tioned the statements into groups of congruent operations, we analyze the resultinginterprocessor data movement to eliminate redundant and partially redundant move-ment. We call this optimization communication unioning. The resulting programrequires only a single communication operation across each edge11 of the stencil.This optimization produces only four communication operations for the 9-point sten-cil example presented in Figure 9.2, even though its original speci�cation required11An edge is determined by the dimension and direction speci�ed in a shift operation.



115twelve cshift intrinsics. Similarly, a 27-point 3D stencil, originally speci�ed using54 cshift intrinsics, would require only 6 communication operations.Finally, after scalarization has produced a subgrid loop nest, we optimize it by ap-plying a set of loop transformations designed to improve the performance of memory-bound programs. These transformations include unroll-and-jam, which addressesmemory references, and loop permutation, which addresses cache references. Each ofthese optimize the program by exploiting reuse of data values.9.4 Eliminating Intraprocessor MovementAs briey mentioned in the preceding section, intraprocessor data movement associ-ated with stencil computations is eliminated by employing our o�set array optimiza-tion [101]. Since Chapter 6 was entirely devoted to describing this optimization, wedo not discuss it further here. However, it is important to note that due to the al-gorithm's optimistic nature, it is able to eliminate the intraprocessor data movementassociated with shift operations in many di�cult situations. In particular, it candetermine when o�set arrays can be exploited even when their de�nition and uses areseparated by program control ow. This allows our stencil compilation strategy toeliminate the intraprocessor data movement in situations that other strategies wouldnot even consider.After o�set arrays have been identi�ed and optimized, we apply our context parti-tioning algorithm [106]. As explained in Section 7.2, this optimization separates a setof statements into groups of congruent array statements, scalar expressions, and com-munication operations. This assists the compilation of stencils in two ways. First,by grouping congruent array statements together, we ensure that as subgrid loopsare generated, via scalarization and loop fusion, as much computation as possibleis placed within each loop. Also, the structure of the subgrid loops is very regular.These increase the chances that loop transformations performed later are successfulin exploiting data reuse and data locality. Second, by grouping together the com-munication operations, we simplify the task of reducing the amount of interprocessordata movement, which is our next topic.9.5 Reducing Interprocessor MovementAfter eliminating the intraprocessor data movement via our o�set array optimization,we now focus our attention on the interprocessor data movement that occurs during



116the calls to overlap shift. Due to the nature of o�set arrays, we are presentedwith many opportunities to eliminate redundant and partially redundant data move-ment. We call this optimization communication unioning, since it combines a set ofcommunication operations to produce a smaller set of operations.Before proceeding to discuss our strategy, we need to extend the de�nition of ouroverlap shift routine (see Section 6.3.2 for the original de�nition). We add anoptional fourth argument that takes a regular section descriptor (RSD) [12]. TheRSD is used to specify those data elements in the overlap areas of other dimen-sions are to be transferred along with the speci�ed subgrid elements. This extensionallows us to include \corner" elements that are a part of multi-o�set arrays. TheRSD contains a null speci�er \�" for the dimension being shifted. The default RSDwould contain the range 1 : N for all other dimensions. Here's an example of anoverlap shift along the second dimension that carries along the data in the over-lap area from the top of the column but not the overlap area from the bottom:OVERLAP SHIFT(SRC,+1,2,[0:N,�]).There are two key observations that allow communication unioning to �nd andeliminate redundant interprocessor data movement. First, shift operations, includingoverlap shift, are commutative:CSHIFT(CSHIFT(SRC,+1,1),-1,2) � CSHIFT(CSHIFT(SRC,-1,2),+1,1)Thus, for arrays that are shifted more than once, we can order the shift operationsin any manner we like without a�ecting the result. And secondly, since all over-lap shifts move data into the overlap areas of the subgrids, a shift of a large amountin a given direction and dimension may subsume all shifts of smaller amounts in thesame direction and dimension. More formally, an overlap shift of amount i indimension k is redundant if there exists an overlap shift of amount j in dimen-sion k such that jjj � jij and sign(j) = sign(i). Given these two points, we proceedto eliminate redundant data movement in the following manner. Note that since wehave already applied our context partitioning optimization to the program, we canrestrict our focus to the individual groups of calls to overlap shift.In communication unioning, we �rst use the commutative property to rewrite allthe shifts for multi-o�set arrays such that the overlap shifts for the lower dimen-sions occur �rst and are used as input to the overlap shifts for higher dimensions.We then reorder all the calls to overlap shift, sorting them by the shifted dimen-sion, lowest to highest. We now scan the overlap shifts for the lowest dimension



117and keep only the largest shift amount in each direction. All others can be eliminatedas redundant.Communication unioning then proceeds to process the overlap shifts for eachhigher dimension in ascending order by performing the following three actions:1. First we scan the overlap shifts for the given dimension to determine thelargest shift amount in each direction.2. Then we look for source arrays that are already o�set arrays, indicating a multi-o�set array. For these, we use the annotations associated with the source arrayto create an RSD to be used as the fourth argument in the call to over-lap shift. Mapping the annotations to the RSD is simply a matter of addingthe annotations to the corresponding RSD dimension; the annotation is addedto the lower bound of the RSD if the shift amount is negative, otherwise it isadded to the upper bound. As with shift amounts, larger RSDs subsume smallerRSDs.3. Finally, we generate a single overlap shift in each direction, using the largestshift amount and including the RSD as needed { all other overlap shifts forthat dimension can be eliminated.This eliminates all communication for an o�set array, except for a single messagein each direction of each dimension. The number of messages for the o�set array isthus minimized.As an example, consider again the 9-point stencil computation that we presented inFigure 9.2. The original stencil speci�cation required twelve cshift intrinsics. Afterapplying the above transformations, only the following four calls are required:CALL OVERLAP SHIFT(SRC,-1,1)CALL OVERLAP SHIFT(SRC,+1,1)CALL OVERLAP SHIFT(SRC,-1,2,[0:N+1,*])CALL OVERLAP SHIFT(SRC,+1,2,[0:N+1,*])Figures 9.7{9.10 display the data movement that results from these calls. The �gurescontain a 5 � 5 subgrid (solid lines) surrounded by its overlap area (dashed lines).Portions of the adjacent subgrids are also shown. Figure 9.7 depicts the data move-ment speci�ed by the �rst two calls. The result of that data movement is shown inFigure 9.8, where the overlap areas have been properly �lled in. The data movementof the last two calls is shown in Figure 9.9. Notice how the last two calls pick up



118data from the overlap areas that were �lled in by the �rst two calls, and thus theypopulate all overlap area elements needed for the subsequent computation, as shownin Figure 9.10.As another example consider a 27-point 3D stencil, which is similar to a 9-pointstencil but adds a third dimension. Such a stencil requires 54 CSHIFT intrinsics.After communication unioning there would only exist six communication operations:one across each face of the stencil.At this point we have generated the minimal number of messages for an o�set ar-ray. However, there may be additional opportunities for optimizing the interprocessordata movement. If the program is computing multiple stencils or if the stencil beingcomputed uses multiple source arrays, there may be several o�set arrays with similarcommunication patterns. Since we have already ordered the calls to overlap shiftby dimension, it is a trivial task to use message aggregation to join into a single mes-sage all the data that must be moved across a given dimension for all the di�erento�set arrays.Additionally, since we have ordered the calls to overlap shift by dimension,there are never any data dependences that exist between two calls that go across thesame dimension but in opposite directions. Thus they can be performed in parallel ifthe target architecture supports bi-directional communication. For example, the twooverlap shifts depicted in Figure 9.7 can be performed simultaneously if supportedby the hardware.
Figure 9.7 First half of9-point stencil communication Figure 9.8 Result ofcommunication operations



119
Figure 9.9 Second half of9-point stencil communication Figure 9.10 Result ofcommunication operations9.6 Optimizing the ComputationOnce the o�set array and communication unioning optimizations have been com-pleted, we must optimize the performance of the stencil computation on each node.Our strategy involves the following compiler optimizations to improve data locality:1. Improve the order of memory accesses through loop permutation [47].2. Improve loop balance through unroll-and-jam and scalar replacement [43, 46].Note that strip-mine-and-interchange can be included here [158]. We have omittedit because of its relative instability and the large amount of cache reuse that alreadyexists in stencil computations [63, 118]. In the rest of this section we give an overviewof loop permutation, unroll-and-jam and scalar replacement. More information canbe found elsewhere [125].9.6.1 Loop PermutationNot all loops exhibit good cache locality, resulting in idle computational cycles whilewaiting for main memory to return data. For example, in the loop,DO I = 1, NDO J = 1, NB(I,J) = A(I,J) + A(I+1,J)ENDDOENDDO



120references to successive elements of B and A are a long distance apart in number ofmemory accesses (this assumes Fortran's column-major storage). Most likely, cur-rent cache architectures would not be able to capture the potential cache-line reuseavailable because of the volume of data accessed between reuse points. With eachreference to B(I,J) and A(I+1,J) causing a cache miss, the loop would spend a ma-jority of its time waiting on main memory. However, if we interchange the I- andJ-loops to getDO J = 1, NDO I = 1, NB(I,J) = A(I,J)+ A(I+1,J)ENDDOENDDOthe references to successive elements of B(I,J) and A(I+1,J) immediately follow oneanother. In this case, we have attained locality of reference for B(I,J) and A(I+1,J)by moving reuse points closer together. The result is fewer idle cycles waiting onmain memory. For a more complete discussion of loop permutation see Wolf andLam [158], Kennedy and McKinley [102] and Carr, et al. [47].9.6.2 Scalar ReplacementEven with better cache performance through loop permutation, a loop may still notperform as well as possible. If a loop is memory bound, then its balance must belowered. Balance can be lowered by reducing the number of memory references in aloop, replacing references to arrays with sequences of scalar variables. In the codeshown below,DO 10 J = 1, NDO 10 I = 1, NB(I,J) = A(I,J)+ A(I+1,J)ENDDOENDDOthe value accessed by A(I,J) is de�ned on the previous iteration of the loop byA(I+1,J) on all but the �rst iteration. Using this knowledge, the ow of valuesbetween the references can be expressed with scalar temporaries as follows.DO 10 J = 1, NT1 = A(1,J)DO 10 I = 1, N



121T0 = A(I+1,J)B(I,J) = T0 + T1T1 = T0ENDDOENDDOSince the values held in scalar quantities will probably be in registers, the load ofA(I,J) has been removed, resulting in a reduction in the memory cycle requirementsof the loop (the register copy, T1 = T0, can be removed by unrolling I) [48]. Thistransformation is called scalar replacement and is described in detail elsewhere [43].9.6.3 Unroll-And-JamUnroll-and-jam is a transformation that can be used in conjunction with scalar re-placement to improve the performance of many memory-bound loops [6, 10, 44]. Thetransformation unrolls an outer loop and then fuses the resulting inner loops backtogether. Using unroll-and-jam, more computation can be introduced into an inner-most loop body without a proportional increase in memory references. For example,the loopDO 10 J = 1, 2*NDO 10 I = 1, NB(I,J) = A(I,J)+ A(I,J+1)ENDDOENDDOafter unroll-and-jam of I by a factor of 1 becomesDO 10 J = 1, 2*N, 2DO 10 I = 1, NB(I,J) = A(I,J)+ A(I,J+1)B(I,J+1) = A(I,J+1)+ A(I,J+2)ENDDOENDDOIn the original loop, one oating-point operation and three memory references areleft after scalar replacement, giving a balance of 3. After applying unroll-and-jam,two oating-point operations and �ve memory references exist in the loop, givinga balance of 2.5 (the second reference to A(I,J+1) can be scalar replaced). If theoriginal loop were memory bound, the unroll-and-jammed loop would perform better,since it has a lower balance.



122Carr and Kennedy describe an automatic method for applying unroll-and-jam.Their method computes the unroll amount for a loop that best balances the nestwith respect to a target architecture while limiting register pressure. For a detaileddiscussion of this method, see their paper [46].9.7 An Extended ExampleIn this section, we trace our compilation strategy through an extended example. Thisdetailed examination shows how our strategy is able to produce code that matchesor beats hand-optimized code. It will also demonstrate how we are able to handlestencil computations that cause other methods to fail.For this exercise, we have chosen to use Problem 9 of the Purdue Set [135], asadapted for Fortran D benchmarking by Thomas Haupt of NPAC [128, 86]. Theprogram kernel is shown in Figure 9.11. The arrays T, U, RIP, and RIN are all two-dimensional and have been distributed in a (block,block) fashion.This kernel computes a standard 9-point stencil, identical to that computed bythe single-statement stencil shown in Figure 9.2. The reason it has been writtenin this fashion is to reduce memory requirements. Recall from Section 6.2 that thesemantics of cshift state that a copy of the source array is returned with the speci�eddimension shifted the given number of times. Almost all Fortran90 compilers performthis operation by making a copy of the source array and storing it into a compiler-generated temporary array. Thus for the 9-point stencil shown in Figure 9.2, 12temporary arrays are created to compute the single statement. This greatly restrictsthe size of the problem that can be solved on a given machine.RIP = CSHIFT(U,SHIFT=+1,DIM=1)RIN = CSHIFT(U,SHIFT=-1,DIM=1)T = U + RIP + RINT = T + CSHIFT(U,SHIFT=-1,DIM=2)T = T + CSHIFT(U,SHIFT=+1,DIM=2)T = T + CSHIFT(RIP,SHIFT=-1,DIM=2)T = T + CSHIFT(RIP,SHIFT=+1,DIM=2)T = T + CSHIFT(RIN,SHIFT=-1,DIM=2)T = T + CSHIFT(RIN,SHIFT=+1,DIM=2)Figure 9.11 Problem 9 from the Purdue Set.



123In contrast, the 9-point stencil written in Figure 9.11 requires only three copiesof array U at any one time: the two copies that are in RIP and RIN plus an addi-tional compiler-generated temporary that can be shared among all the subsequentstatements. This reduces the temporary storage requirements by a factor of four!Additionally, the assignments of the cshifts into RIP and RIN perform a commonsubexpression elimination, removing four duplicate cshifts from the original speci-�cation of the stencil.Figure 9.12 shows a comparison of execution times for the single-statement cshiftstencil in Figure 9.2 and the multi-statement stencil in Figure 9.11. The programswere compiled with IBM's xlhpf compiler and executed on an 8 processor SP-2 forvarying problem sizes. As can be seen, the single-statement stencil speci�cationexhausted the available memory for the larger problem sizes, even though each PEhad 256Mbytes of real RAM. We attribute the di�erence in execution time mainly tothe elimination of the four duplicate cshifts, but the strain that the large numberof temporary arrays imposes on the memory system may also be a factor.
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Figure 9.12 Comparison of two 9-point stencil speci�cations.



1249.7.1 PreprocessingA certain amount of preprocessing is performed by our compilation model as speci�edin Chapter 4. In particular, the communication generation phase of our compilerseparates communication operations from computational operations. This results intemporary arrays being generated for all cshift operations that are a part of largerexpressions.For our example, the six cshifts that are subexpressions in the assignment state-ments to array T are hoisted from the statements and assigned to compiler-generatedtemporary arrays. Since the live ranges of the temporary arrays do not overlap, asingle temporary can be shared among all the statements. Alternatively, each cshiftcould receive its own temporary array { that would not a�ect the results of our stencilcompilation strategy. The result is shown in Figure 9.13.9.7.2 O�set Array OptimizationOnce all shift operations have been identi�ed and hoisted into their own assign-ment statements, we apply our o�set array optimization. For this example, ouralgorithm determines that all the shifted arrays can be made into o�set arrays. Ascan be seen in Figure 9.14, all the cshift operations have been changed into over-RIP = CSHIFT(U,SHIFT=+1,DIM=1)RIN = CSHIFT(U,SHIFT=-1,DIM=1)T = U + RIP + RINALLOCATE TMPTMP = CSHIFT(U,SHIFT=-1,DIM=2)T = T + TMPTMP = CSHIFT(U,SHIFT=+1,DIM=2)T = T + TMPTMP = CSHIFT(RIP,SHIFT=-1,DIM=2)T = T + TMPTMP = CSHIFT(RIP,SHIFT=+1,DIM=2)T = T + TMPTMP = CSHIFT(RIN,SHIFT=-1,DIM=2)T = T + TMPTMP = CSHIFT(RIN,SHIFT=+1,DIM=2)T = T + TMPDEALLOCATE TMPFigure 9.13 Problem 9 after preprocessing.



125CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=1)CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=1)T = U + U<+1;0> + U<�1;0>CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=2)T = T + U<0;�1>CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=2)T = T + U<0;+1>CALL OVERLAP CSHIFT(U<+1;0>,SHIFT=-1,DIM=2)T = T + U<+1;�1>CALL OVERLAP CSHIFT(U<+1;0>,SHIFT=+1,DIM=2)T = T + U<+1;+1>CALL OVERLAP CSHIFT(U<�1;0>,SHIFT=-1,DIM=2)T = T + U<�1;�1>CALL OVERLAP CSHIFT(U<�1;0>,SHIFT=+1,DIM=2)T = T + U<�1;+1>Figure 9.14 Problem 9 after o�set array optimization.lap shift operations, and references to the assigned arrays have been replaced witho�set references to the source array U. All intraprocessor data movement has thusbeen eliminated.In addition, notice how the temporary arrays, both the compiler-generated TMParray and the user-de�ned RIP and RIN, are no longer needed to compute the stencil.If there are no other uses of these arrays in the routine, they need not be allocated.This reduction in storage requirements allows for larger problems to be solved on agiven machine.9.7.3 Context Partitioning OptimizationOnce we have completed our o�set array optimization, we move on to contextpartitioning. Our algorithm begins by determining the congruence classes present inthe section of code. In this example there are only two congruence classes: the arraystatements, which are all congruent, and the communication statements. The depen-dence graph is computed next. There are only two types of dependences that exist inthe code: true dependences from the overlap shift operations to the expressionsthat use the o�set arrays, and the true and anti-dependences that exist between themultiple occurrences of the array T. Since all the dependences between the two classesare from statements in the communication class to statements in the congruent array



126CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=1)CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=1)CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=2)CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=2)CALL OVERLAP CSHIFT(U<+1;0>,SHIFT=-1,DIM=2)CALL OVERLAP CSHIFT(U<+1;0>,SHIFT=+1,DIM=2)CALL OVERLAP CSHIFT(U<�1;0>,SHIFT=-1,DIM=2)CALL OVERLAP CSHIFT(U<�1;0>,SHIFT=+1,DIM=2)T = U + U<+1;0> + U<�1;0>T = T + U<0;�1>T = T + U<0;+1>T = T + U<+1;�1>T = T + U<+1;+1>T = T + U<�1;�1>T = T + U<�1;+1>Figure 9.15 Problem 9 after context partitioning optimization.class, the context partitioning algorithm is able to partition the statements perfectlyinto two groups. The result is shown in Figure 9.15.9.7.4 Communication Unioning OptimizationWe now turn our attention to the interprocessor data movement speci�ed in theoverlap shift operations. As directed in Section 9.5, we begin by exploiting theircommutative property to rewrite multi-dimensional overlap shifts so that thelower dimensions are shifted �rst. No rewriting is necessary for this example since allthe dimension 1 shifts occur �rst, as can be seen in Figure 9.15.Next we look at the shifts across the �rst dimension. Since there is only a singleshift of distance one in each direction, there is no redundant communication to beeliminated. Moving on to the second dimension we again �nd only shifts of distanceone. However, we do discover four multi-o�set arrays. Examining the annotationsof the o�set arrays, we create RSD's that summarize the overlap areas that arenecessary. We generate the two calls to overlap shift that include the RSD'sand then eliminate all other overlap shift calls for the second dimension. Thisresults in the code shown in Figure 9.16. As can be seen, communication unioninghas reduced the amount of communication to a minimum: a single communicationoperation for each dimension in each direction.



127CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=1)CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=1)CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=2,[0:N+1,*])CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=2,[0:N+1,*])T = U + U<+1;0> + U<�1;0>T = T + U<0;�1>T = T + U<0;+1>T = T + U<+1;�1>T = T + U<+1;+1>T = T + U<�1;�1>T = T + U<�1;+1>Figure 9.16 Problem 9 after communication unioning optimization.9.7.5 Scalarization and Memory OptimizationsOur next task is to scalarize the code and generate an optimized SPMD nodeprogram. Using the data dependences calculated for context partitioning, our advancescalarization algorithm (presented in Chapter 8) e�ciently scalarizes the code in asingle pass over the program source. Since there is no possibility of generating aloop-carried dependence, the scalarized loops are easily fused into a single loop nest.This code is shown in Figure 9.17. To keep the example simple and help the readerfollow the ow of the optimizations, we have not re�ned the loop bounds as would bedone to generate a node program that only accesses the subgrids local to each PE.At this point the main contributions of this dissertation have been completed. Wenow hand this code over to our node compiler that performs the optimizations outlinein Section 9.6. The code is ripe with opportunities for improvements, of which wediscuss a few.We begin by performing loop interchange, if necessary, to make the i-loop theinner-most loop. This results in the arrays being accessed in memory order, improvingthe cache behavior of the program. We use scalar replacement on the references toT(i,j) so that the array is only accessed when actually storing the result. The scalarthat is used is likely to be kept in a register. See Figure 9.18.To further improve the loop balance, we now apply the unroll-and-jam transforma-tion. For this example we have chosen an unroll amount of four. The resulting codeis shown in Figure 9.19. There are now many duplicate array references that appearon the right-hand side of the assignment statements. In fact, of the 36 references tothe array U, only 18 of them are unique. This e�ectively cuts the loop balance (�L)



128CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=1)CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=1)CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=2,[0:N+1,*])CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=2,[0:N+1,*])DO i=1,NDO j=1,NT(i,j) = U(i,j) + U(i+1,j) + U(i-1,j)T(i,j) = T(i,j) + U(i,j-1)T(i,j) = T(i,j) + U(i,j+1)T(i,j) = T(i,j) + U(i+1,j-1)T(i,j) = T(i,j) + U(i+1,j+1)T(i,j) = T(i,j) + U(i-1,j-1)T(i,j) = T(i,j) + U(i-1,j+1)ENDDOENDDOFigure 9.17 Problem 9 after scalarization.CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=1)CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=1)CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=2,[0:N+1,*])CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=2,[0:N+1,*])DO j=1,NDO i=1,NR0 = U(i,j) + U(i+1,j) + U(i-1,j)R0 = R0 + U(i,j-1)R0 = R0 + U(i,j+1)R0 = R0 + U(i+1,j-1)R0 = R0 + U(i+1,j+1)R0 = R0 + U(i-1,j-1)R0 = R0 + U(i-1,j+1)T(i,j) = R0ENDDOENDDOFigure 9.18 Problem 9 after memory optimizations.



129in half. This loop runs signi�cantly faster than the original on machines that have arelatively small machine balance (�M). For architectures with instruction-level paral-lelism, the assignments to the di�erent scalars R0--R3, which will likely be assignedto registers, can be executed in parallel.9.8 Experimental ResultsTo measure the performance boost supplied by each step of our stencil compilationstrategy, we ran a set of tests on an 8-processor IBM SP-2. We started by generatinga naive translation of the Problem 9 test case into Fortran77+MPI. This is consideredour \original" version. We then successively applied the transformation as outlinedin the preceding subsection and measured the execution time. The results are shownin Figure 9.20.Before analyzing the results in Figure 9.20, it is worthwhile to compare it to theresults shown in Figure 9.12 for the Problem 9 code. Our \original" MPI version ofthe code has already resulted in an order of magnitude improvement over the codeproduced by IBM's xlhpf compiler: 0.475 seconds versus 4.77 seconds for the largestproblem size.Starting with our Fortran77+MPI test case, we �rst applied our o�set array op-timization to the code, as shown in Figure 9.14. This resulted in a 45% reductionin execution time, equivalent to a speedup of 1.80. Context partitioning was appliednext, as shown in Figure 9.15. This optimization allowed scalarization to merge allthe computation into a single loop nest, resulting in a 31% reduction in executiontime over the previous version. At this point we have reduced the execution time ofthe original program by 62%, a speedup of 2.64.We then applied our communication unioning optimization, as shown in Figure9.16. This results in only four communication operations being performed, and re-duces the execution time by 41% when compared to the context-optimized version.Applying the memory optimizations described in Section 9.6 reduced the executiontime another 14%. This �nal version has reduced the execution time of the originalprogram by 81%, equivalent to a speedup of 5.19!Lest someone think that we have chosen IBM's xlhpf compiler as a straw man, wehave collected some additional performance numbers. We generated a third versionof a 9-point stencil computation, this one using array syntax similar to the 5-pointstencil shown in Figure 9.1. This 9-point stencil computation only computes the



130CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=1)CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=1)CALL OVERLAP CSHIFT(U,SHIFT=-1,DIM=2,[0:N+1,*])CALL OVERLAP CSHIFT(U,SHIFT=+1,DIM=2,[0:N+1,*])DO j=1,N,4DO i=1,NR0 = U(i,j) + U(i+1,j) + U(i-1,j)R0 = R0 + U(i,j-1)R0 = R0 + U(i,j+1)R0 = R0 + U(i+1,j-1)R0 = R0 + U(i+1,j+1)R0 = R0 + U(i-1,j-1)R0 = R0 + U(i-1,j+1)T(i,j) = R0R1 = U(i,j+1) + U(i+1,j+1) + U(i-1,j+1)R1 = R1 + U(i,j)R1 = R1 + U(i,j+2)R1 = R1 + U(i+1,j)R1 = R1 + U(i+1,j+2)R1 = R1 + U(i-1,j)R1 = R1 + U(i-1,j+2)T(i,j) = R1R2 = U(i,j+2) + U(i+1,j+2) + U(i-1,j+2)R2 = R2 + U(i,j+1)R2 = R2 + U(i,j+3)R2 = R2 + U(i+1,j+1)R2 = R2 + U(i+1,j+3)R2 = R2 + U(i-1,j+1)R2 = R2 + U(i-1,j+3)T(i,j) = R2R3 = U(i,j+3) + U(i+1,j+3) + U(i-1,j+3)R3 = R3 + U(i,j+2)R3 = R3 + U(i,j+4)R3 = R3 + U(i+1,j+2)R3 = R3 + U(i+1,j+4)R3 = R3 + U(i-1,j+2)R3 = R3 + U(i-1,j+4)T(i,j) = R3ENDDOENDDOFigure 9.19 Problem 9 after unroll-and-jam.
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Figure 9.20 Step-wise results from stencil compilationstrategy on Problem 9 when executed on an SP-2.interior elements of the matrix; that is, elements 2:N-1 in each dimension. A graphcomparing its execution time to the other two 9-point stencil speci�cations is givenin Figure 9.21. The IBM xlhpf compiler was used in all cases.It is obvious that the xlhpf compiler is able to minimize the interprocessor com-munication, prevent the generation of intraprocessor copying, and optimize the com-putation for the array-syntax stencil. In fact, this speci�cation of the kernel producedperformance numbers that tracked our best performance numbers for all problem sizesexcept the largest, where we had a 10% advantage.This demonstrates the problem with compiler optimizations based upon patternmatching. When the compiler is able to match a pattern in the user's program, itcan produce excellent code. But if the user's program deviates slightly, the compilercannot match a pattern and the code it produces is mediocre at best. It is importantto note that the stencil compilation strategy that we have presented handles all threespeci�cations of the 9-point stencil equally well. That is because our algorithm isbased upon the analysis and optimization of the base constructs upon which stencilsare built. Our algorithm is designed to handle the lowest common denominator { aform into which our compiler can transform all stencil computations.
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Figure 9.21 Comparison of three 9-point stencil speci�cations.9.9 Related WorkOne of the �rst major e�orts to speci�cally address the compilation of stencil compu-tations for a distributed-memory machine was the stencil compiler for the CM-2, alsoknown as the convolution compiler [36, 37, 39]. They eliminated the intraprocessordata movement and optimized the interprocessor data movement by exploiting theCM-2's polyshift communication [72]. The �nal computation was performed by hand-optimized library microcode that took advantage of several loop transformations anda specialized register allocation scheme.Our general compilation methodology produces code equivalent to that producedby this specialized compiler. We both eliminate intraprocessor data movement andminimize interprocessor data movement. We also show how our method can exploitbi-directional communication, similar to the parallel communication performed bythe polyshift routine. Finally, our use of the unroll-and-jam loop optimizations ac-complish the same data reuse as the stencil compiler's \multi-stencil swath". It islikely that our \swath" will be smaller than those used by the stencil compiler. Thisis because we consider machine balance, whereas they consider only the number of



133available registers. The smaller swath does not su�er a loss of e�ciency if we are ableto attain the machine balance.The CM-2 stencil compiler had many limitations however. It could only handlesingle-statement stencils. The stencil had to be speci�ed using the cshift intrinsic;no array-syntax stencils would be accepted. Since the compiler relied upon patternmatching, the stencil had to be in a very speci�c form: a sum of terms, each ofwhich is a coe�cient multiplying a shift expression. No variations were possible. And�nally, the programmer had to recognize the stencil computation, extract it from theprogram and place it in its own subroutine to be compiled by the stencil compiler.Our compilation scheme handles a strict superset of patterns handled by the CM-2stencil compiler. In their own words, they \avoid the general problem by restrictingthe domain of applicability." [39] We have placed no such restrictions upon our work.Our strategy optimizes single-statement stencils, multi-statement stencils, cshiftintrinsic stencils, and array-syntax stencils all equally well. And since our optimiza-tions were designed to be incorporated into an F90D/HPF compiler, they bene�tthose computations that only slightly resemble stencils.There are also some other commercially available compilers that can handle cer-tain stylized, single-statement stencils. The MasPar Fortran compiler avoids theintraprocessor data movement for single-statement stencils written using array no-tation. This is accomplished by scalarizing the Fortran90 expression (avoiding thegeneration of cshifts) and then using dependence analysis to �nd loop-carried de-pendences that indicate interprocessor data movement. Only the interprocessor datais moved, and no local copying is required. However, the compiler still performs allthe data movement for single-statement stencils written using shift intrinsics. Thisstrategy is shared by many Fortran90/HPF compilers that really only want to handlescalarized code, as discussed in Section 2.4.1. As with the CM-2 stencil compiler, ourmethodology is a strict superset of this strategy.Gupta, et al. [81], in describing IBM's xlhpf compiler, state that they are ableto reduce the number of messages for multi-dimensional shifts by exploiting methodssimilar to ours. However, they do not describe their algorithm for accomplishing this,and it is unknown whether they would be able to eliminate the redundant communi-cation that arises from shifts over the same dimension and direction but of di�erentdistances.The Portland Group's pghpf compiler, as described by Bozkus, et al. [31, 32],performs stencil recognition and optimizes the computation by using overlap shift



134communication. They also perform a subset of our communication unioning optimiza-tion. However, they are limited to single-statement expressions in both cases.In general, there have been several di�erent methods for handling speci�c sub-classes of stencil computations. In this paper, we have presented a strategy thatencompasses all of them and more.9.10 SummaryIn this chapter, we have presented a general compilation scheme for compiling HPFand Fortran90D stencil computations for distributed-memory architectures. Thestrategy optimizes such computations by orchestrating a unique set of optimizations.These optimizations eliminate unnecessary intraprocessor data movement resultingfrom cshift intrinsics, eliminate redundant interprocessor data movement, and opti-mize memory accesses via loop-level transformations. The optimizations are generalenough to be included in a general-purpose Fortran90D/HPF compiler, and theybene�t many computations, not just those that �t a stencil pattern. The strengthof these optimizations is that they optimize all stencil computation no matter howthey were originally speci�ed. It does not matter if array syntax was used or explicitshift intrinsics, or if the stencil was computed by a single statement or across multiplestatements. It is the most robust stencil compilation system of which we are aware.Even though we have concentrated on distributed-memory machines in this chapter,the techniques presented are equally applicable to optimizing stencil computations onshared-memory and scalar machines (with the exception of reducing interprocessormovement).



135Chapter 10ConclusionsCurrently there are a large number of HPF compiler projects in both industry andacademia. Their success has shown that technology exists to correctly translateFortran90 programs, which have been annotated with data distribution directives,into e�cient executables for distributed-memory machines, both MIMD and SIMD.The advanced compilation techniques described in this dissertation demonstrate theadditional performance gains attainable when a compiler performs analysis and op-timization of programs at the array level. In this chapter we summarize the researchpresented in this dissertation, give our perspective on compiling the Fortran90 arrayconstructs of HPF, and close by considering areas for future research.10.1 Compiling HPFAs was discussed early on in this dissertation, the compilation of the array-levelconstructs of HPF share many of the same characteristics as the compilation of thescalar constructs of HPF. In both cases arrays need to be distributed across theprocessors of the machine so that parallelism can be e�ectively exploited. Then thecomputations speci�ed in the program must be partitioned so that each processorhas some amount of work to do. Once data and computation distributions have been�nalized, the compiler must insert communication operations to move data so that alloperands of an expression reside on the processor which performs the computation.And �nally subgrid loops must be generated which iterate over the local subgridsallocated to the individual processors.However, when it comes to taking advantage of the implicit parallelism presentin Fortran90 array constructs, HPF compilers fall into one of two vastly di�erentcategories. Each of the two categories has its advantages and its disadvantages. The�rst category of compilers we have classi�ed as scalarizing compilers. These com-pilers translate the Fortran90 array constructs into equivalent sequential Fortran77constructs. The resulting program is then passed to a scalar HPF compiler for opti-



136mization and code generation. Such compilers are capable of parallelizing sequentialconstructs of the program. The other category of compilers we have classi�ed asarray operation compilers. Such compilers are characterized by their ability to di-rectly translate the data parallelism found in array constructs for execution on thedistributed-memorymachine. These compilers usually do an excellent job of handlingthe explicit parallel constructs found in the program; however they typically do nothave the ability to parallelize sequential constructs.To bridge the chasm between these two categories of HPF compilers, we proposeda new compilation model. The model is a hybrid of the compilation models used bythe two categories, and as such we believe that it exploits the advantages of eachwhile minimizing their weaknesses. It accomplishes that by interleaving Fortran90compilation issues with Fortran77 compilation issues.We then designed a set of optimizations that are performed at the whole-arraylevel. This is in contrast to most Fortran compilers that only perform optimizationsat or below the level of loops or array elements. These array-level optimizations arecapable of optimizing dense matrix stencil computations more completely than allother known e�orts.10.2 ContributionsThis dissertation make contributions in two main areas: the analysis of Fortran90 ar-ray constructs, and the transformation & optimization of Fortran90D/HPF programsat the array level.10.2.1 Array Analysis TechniquesIn this dissertation we presented algorithms for extending data ow analysis, depen-dence analysis, and SSA form to directly handle Fortran90 array constructs. Theseextensions provide HPF compilers with analysis capabilities not previously available,allowing them to make decisions and perform transformations at the Fortran90 ar-ray level before scalarizing the program into Fortran77 code. In particular, we haveshown how to extend dependence analysis to directly handle Fortran90 array-sectionreferences, and we have introduced a new class of dependences and showed how theycan be used to perform advanced program transformations. An important character-istic of the testing procedures presented is that they were designed to �t smoothlyinto the framework of existing optimizing compilers.



13710.2.2 Optimization TechniquesThis dissertation developed a number of novel array-level optimizations for boost-ing the performance of Fortran90D/HPF programs on distributed-memory machines.The optimizations presented are all based on advanced analysis of Fortran90 ar-ray constructs, eliminating the reliance upon pattern matching as is done in manyFortran90 compilers. These optimizations include:� The o�set array optimization which can eliminate the intraprocessor data mo-tion associated with Fortran90 shift operations. This optimization is based onan e�cient framework which is global in scope and is capable of optimizing shiftoperations even when the de�nitions and uses are separated by control ow.� Communication unioning optimization which is able to eliminate redundant andpartially redundant interprocessor data movement associated with Fortran90shift operations. Given a group of shift operations, this optimization reduces thenumber of interprocessor messages to a minimum: one message in each directionfor each dimension. This optimization accomplishes its goal by understandingthe underlying semantics of the shift operations, as opposed to pattern matchingtechniques used by other compilers.� Two di�erent context optimizations which can reduce the cost of context switch-ing code on SIMD machines. The �rst, context partitioning, reorders the codeso that as subgrid loops are generated as many statements as possible that re-quire the same context are placed in the same loop nest. The second, contextsplitting, splits the iteration space of the subgrid loops into sets that have in-variant contexts { this allows us to hoist the context setting code out of thesubgrid loops. We have also shown how context partitioning can optimize thecode produced for MIMD machines by enhancing the amount of loop fusionpossible while preventing loops from being over fused.� An advanced scalarization algorithm which can scalarize array statements ina single pass over the source code. This algorithm has the same ability tominimize the size of temporary arrays as the standard two-pass scalarizationalgorithm, but is more e�cient.We have also demonstrated how these optimizations can work in unison to createa powerful stencil compiler. The stencil compiler incorporates the optimizations to



138target the overhead of data movement that occurs between processors, within the localmemory of the processors, and between the memory and registers of the processors.The strength of these optimizations is that they optimize all stencil computation nomatter how they were originally speci�ed. It does not matter if array syntax wasused or explicit shift intrinsics, or if the stencil was computed by a single statementor across multiple statements. These optimizations make this stencil compiler morerobust than all previous e�orts in this area.10.3 Future WorkWe conclude by taking a look at areas for continued research in the area of high-leveloptimizations for Fortran90.10.3.1 Scalarization and FusionIn this thesis we presented a methodology for performing dependence analysis directlyon array expressions. We classi�ed a new genre of dependences and showed howthey could be used to perform scalarization in a single pass over the source code.It is interesting to note that these same scalarization dependences contain all theinformation needed to determine the validity of loop interchange and loop fusion. Itwould seem possible, and highly desirable, to develop a single algorithm that wouldperform all three optimizations at once.10.3.2 Array TemporariesWhen compiling array languages such as Fortran90, a compiler must often generatearray temporaries. Such temporaries are required to maintain the semantics of theprogram. However, the compiler has exibility in determining where, when, and howmany temporaries are generated. There are many conicting concerns that revolvearound the issue of temporary arrays. For example, memory usage verses executionspeed. It is sometime possible to reduce total storage requirements by sharing arraytemporaries; however the sharing of these temporaries will usually prevent the fusionof scalarized loop nests. Such issues must be resolved if we hope to develop Fortran90compilers that produce code that is both small and e�cient.



13910.3.3 where OptimizationOne Fortran90 array construct not explored in this dissertation is the where state-ment. In the future we plan to explore the application of our context partitioningoptimization and advance scalarization algorithm on code containing where state-ments and where blocks.10.3.4 Irregular and Spare ComputationsThe optimizations presented in this dissertation do an excellent job of optimizingdense matrix stencil computations. Unfortunately, they have little applicability toprograms performing irregular or sparse computations. In the future we would like tosee if we can extend our success of performing high-level analysis and optimizationsinto this realm.
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