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DC-Free Codes of Rate , Odd

Kees A. Schouhamer Immink, Fellow, IEEE

Abstract—We report on a new class of dc-free codes of rate( 1) ,
is odd. Spectral and runlength properties of the new codes have been

evaluated by computer simulation.

Index Terms—Constrained code, dc-free code, magnetic recording.

I. INTRODUCTION

Binary sequences with spectral nulls at zero frequency, also called
matched spectral null codes, have found widespread application
in communication and recording systems. Letfx0; � � � ; xi; � � �g,
xi 2 f�1; 1g be a bipolar sequence. The (running) digital sumzi is
defined as

zi =

i

j=�1

xj = zi�1 + xi:

If zi is bounded, the spectral density of the sequencefxig vanishes
at zero frequency [1]. Then, at any instanti the running digital sum
(RDS)zi assumes a finite number of sum valuesN , calleddigital sum
variation (DSV). Traditionally, binary input symbolsyi 2 f0; 1g are
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Fig. 1. Running digital sum (RDS) versus time. The binary input symbols
y are translated into the bipolar channel bitsx using a precoder and a range
converter. The other curves show the relationship between the sequencefx g,
the write signal, and the RDS.

translated into the bipolar channel bitsxi using a precoder and a range
converter. The precoder’s operation can be written as

x̂i = x̂i�1 � yi; xi = 2x̂i � 1; 1 � i � n (1)

where� denotes GF(2) addition. The various signals are shown in
Fig. 1.

In this correspondence, we will focus on state-dependent codes of
ratem=n. In its simplest form, the set of encoder states, calledprin-
cipal states, is a subset of theN channel statesfzig. From each of the
principal states there are at least2m constrained words beginning at
such a state and ending in a principal state. The set of principal states
can be found by invoking Franaszek’s procedure [2]. The structure of
the codes at hand allows a simpler approach.

Let xxx denote then-tuple(x1; � � � ; xn), wherexi 2 f�1; 1g, then
we define the disparity ofxxx as

d(xxx) =

n

i=1

xi:

If we require that the running digital sum after concatenation of a new
codeword is not larger (in absolute terms) than that at the beginning
then each source word must have representation of zero-disparity or
it must have two alternative representations of opposite disparity. The
words available can easily be computed. LetN

�

andN+ denote the
number of codewords withd(xxx) � 0 andd(xxx) � 0, respectively. Then,
we find

N
�

= N+ =
2n�1; n odd

2n�1 +
1

2

n
n

2

; n even.
(2)

Whenn is even, we are in the comfortable position that we can choose
2n�1 codewords from the many candidates available. Forn odd, on
the other hand, it can be seen that there are just enough codewords
available to cater to a rate(n � 1)=n code. The implementation of
the latter code is usually termedpolarity switchcode, where(n � 1)
source symbols are supplemented by one symbol called thepolarity bit
[1], [3]. The encoder has the option to transmit then-bit words “as is”
or to invert all symbols. The choice of a specific translation is made
in such a way that the RDS after transmission of the word is as close
to zero as possible. The polarity bit is used by the decoder to undo the
action of the encoder. Spectral properties of the polarity bit code have
been investigated by Greenstein [4] and Immink [1]. From the above
deliberation, it seems, at first glance, that, forn odd, no codes other
than the polarity switch method are feasible. In the next section, we
will demonstrate otherwise.
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Fig. 2. Running digital sum (RDS) versus time. The binary input symbols
y are translated into the bipolar channel bitsx using a precoder and a range
converter. The transitions occur halfway the bit cells. Note that the contribution
to the RDS of the 9-bit wordyyy is nil, while, see Fig. 1, using the conventional
definition the contribution of the same input wordyyy is�1.

TABLE I
SUM VARIANCE OF THE NEW CODE s

AND THE SUM VARIANCE s OF THE POLARITY SWITCH CODE VERSUS

CODEWORDLENGTH n

II. THE NEW CONSTRUCTION

The crux of the new class of dc-free code is the redefinition of the
running digital sum. In the classical definition, see Fig. 1, it is assumed
that transitions occur at the start of the bit cells. In the new definition,
transitions are assumed to occur halfway the bit cells. Fig. 2 shows the
various signals. Note that the new definition does not have a physical
meaning. Essentially, the write signal is delayed by half a channel bit
interval. Letx0 be the value of the bit preceding the wordxxx. Then the
disparity,ds(yyy; x0), of the binaryn-tupleyyy after precoding using the
new definition is

ds(yyy; x0) =

n

i=1

xi + (w(yyy)mod 2)x0 (3)

wherew(yyy) denotes the weight ofyyy. The first right-hand term is the
“conventional” contribution to the RDS, and the second term expresses
a correction term. The interesting result of this new definition is that
zero-disparity, i.e.,ds(yyy; x0) = 0, codewords are possible forn odd.

LetN(s) denote the number of wordsyyy havingds(yyy; 1) = s: Then,
it is not difficult to see thatN(s) can be found with

N(s) =
n� 1

n�1
2

+ s
2

: (4)

The zero-disparity words are uniquely allocated to the source words.
The other codewords are allocated in pairs of opposite disparity. The
choice of a specific representation is made to minimize the absolute
value of the running digital sum. The words available in both modes can
easily be computed. To that end, letNNN

�

andNNN+ denote the sets whose

membersyyy satisfyds(yyy; 1) � 0 andds(yyy; 1) � 0, respectively, and
letN

�

andN+ denote the cardinality of these sets. Then

N
�

= 2n�1 (5)

and

N+ = 2n�1 +
n� 1
n�1
2

: (6)

From (5) and (6) we infer that, asN
�

= 2n�1, the designer has no
other choice than taking the words available, whereas, asN+ > 2n�1,
the designer has the freedom to choose words that satisfy certain de-
sign criteria such as low coder/decoder complexity, minimizing max-
imum run length, etc. It can easily be verified that both10n�1 2 N

�

and0(n�1)=210(n�1)=2 2 N
�

, where0p denotes a string ofp zeros.
We conclude, therefore, that the maximum “zero”-run length equals
3(n � 3)=2.

III. SPECTRAL PERFORMANCE

The spectral performance of the new codes has been investigated
by computer simulation. As an example we studied codes of rate8=9.
The number of codewords with nonnegative disparity,N+, equals 326.
We require 256 words, and from the codewords available we chose the
words with the smallest absolute disparity. The maximum run length is
12. The rate8=9, polarity-switch code shows a 4-dB less rejection at
the low-frequency end. Also the maximum “zero”-run length is much
larger,18, than that of the new code. The quantitysum variance, which
is inversely proportional to the width of the spectral notch at zero fre-
quency, has been adopted to quantify the low-frequency properties of
a dc-free code [1]. TableI lists the sum variance of the new codes2

and the sum variances2P of the polarity switch code versus codeword
lengthn. It can be seen that the new codes perform better as they show
a smaller sum variance than that of the conventional scheme.

IV. CONCLUSIONS

We have reported on a new class of rate(n � 1)=n, n odd, dc-free
codes which have been designed on the basis of a redefinition of the
running digital sum. Properties of the new codes, such as spectral and
run-length distribution have been evaluated by computer simulation.
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