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Abstract

We describe axiomatizations of several aspects of effectiveness: ef-
fectiveness of transitions; effectiveness relative to oracles; and absolute
effectiveness, as posited by the Church-Turing Thesis.

Efficiency is doing things right;
effectiveness is doing the right things.

—Peter F. Drucker

1 Introduction

In 1900, David Hilbert posed, among other problems, the research challenge
of how to effectively determine whether any given polynomial with rational
coefficients has rational roots [25]:1

[Probleme] 10. Entscheidung der Lösbarkeit einer Dio-
phantischen Gleichung. Eine Diophantische Gleichung mit
irgend welchen Unbekannten und mit ganzen rationalen Zahlen-
coefficienten sei vorgelegt: man soll ein Verfahren angeben, nach

∗This work was carried out in partial fulfillment of the requirements for the Ph.D.
degree of the second author.

1[Problem] 10. Determination of the solvability of a Diophantine equation.
Given a Diophantine equation with any number of unknown quantities and with rational
integral numerical coefficients: To devise a process according to which it can be determined
in a finite number of operations whether the equation is solvable in rational integers.
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welchem sich mittelst einer endlichen Anzahl von Operationen
entscheiden läßt, ob die Gleichung in ganzen rationalen Zahlen
lösbar ist.”

In the same lecture, as his famous second problem, Hilbert asked for a
proof of the consistency of (Peano) arithmetic.

Later, he and Wilhelm Ackermann underscored the importance of the de-
cision problem for validity of formulaæ in (first-order predicate) logic, which
they called the Entscheidungsproblem [26, pp. 73–74]:2

Das Entscheidungsproblem ist gelöst, wenn man ein Verfahren
kennt, das bei einem vorgelegten logischen Ausdruck durch
endlich viele Operationen die Entscheindung über die Allgeme-
ingültigkeit bzw. Erfüllbarkeit erlaubt. Das Entscheidungsprob-
lem muss als das Hauptproblem der mathematischen Logik beze-
ichnet werden. . . . Die Lösung des Entscheidungsproblems ist
für die Theorie aller Gebiete, deren Sätze überhaupt einer lo-
gischen Entwickelbarkeit aus endlich vielen Axiomen fähig sind,
von grundsätzlicher Wichtigkeit.

Hilbert was seeking an effective procedure that could solve every instance
of the validity question, positively or negatively: “We assume that we have
the capacity to name things by signs, that we can recognize them again.
With these signs we can then carry out operations that are analogous to
those of arithmetic and that obey analogous laws” (quoted in [51]).

In 1936, Alonzo Church suggested that the recursive functions, or the
computationally equivalent lambda-definable numeric functions, capture the
intended concept of “effectively calculable” procedure [9, p. 356]. With his
formalization of absolute effectivity in hand he proceeded to demonstrate that
no effective solution exists for the Entscheidungsproblem. When Church sub-
sequently learned of Alan Turing’s independent proof of undecidability [56],
he conceded that Turing’s machines have “the advantage of making the iden-
tification with effectiveness in the ordinary (not explicitly defined) sense ev-

2The Entscheidungsproblem is solved when we know a procedure that allows for any
given logical expression to decide by finitely many operations its validity or satisfiability. . . .
The Entscheidungsproblem must be considered the main problem of mathematical logic. . . .
The solution of the Entscheidungsproblem is of fundamental significance for the theory
of all domains whose propositions could be developed on the basis of a finite number of
axioms.
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ident immediately” [10, p. 43]. Similarly, Kurt Gödel [19, pp. 369–370] real-
ized that Turing’s model of effective computation, which provides “a precise
and unquestionably adeqAlonzo Churchuate definition of the general concept
of formal system,” strengthens his earthshaking incompleteness results and
establishes that “the existence of undecidable arithmetical propositions and
the non-demonstrability of the consistency of a system in the same system
can now be proved rigorously for every consistent formal system containing
a certain amount of finitary number theory.” In short, Hilbert’s dream of
devising a complete and consistent finite axiomatization of mathematics, as
expressed in his second problem, is inherently unattainable.

Stephen Kleene reformulated Church’s contention that the recursive func-
tions and the effective numeric functions are one and the same as a “thesis”
([30, p. 60], [31, p. 332], [32, p. 232]):

Thesis I. Every effectively calculable function (effectively decid-
able predicate) is general recursive.

Thesis I†. Every partial function which is effectively calculable
(in the sense that there is an algorithm by which its value can be
calculated for every n-tuple belonging to its range of definition)
is potentially partial recursive.

Turing’s and Church’s theses are equivalent. We shall usually
refer to them both as Church’s thesis , or in connection with that
one of its. . . versions which deals with “Turing machines” as the
Church-Turing thesis .

Church’s thesis asserted that the recursive functions are the only numeric
functions that can be effectively computed. Turing’s thesis staked the analo-
gous claim that any function on strings that can be mechanically computed
can be computed, in particular, by a Turing machine. Turing showed [56,
Appendix] that with a suitable interpretation of strings as numbers, his ma-
chines compute exactly the recursive functions.

Three main lines of argument have been adduced in support of this thesis
([31, p. 320], [47, pp. 18–19], [31, p. 321]):

• All the many known effective computational models compute only par-
tial recursive functions.
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• “By means of detailed combinatorial studies, the proposed character-
izations of Turing and of Kleene, as well as those of Church , Post,
Markov, and certain others, were all shown to be equivalent.”

• Turing’s analysis of “the sorts of operations which a human computer
could perform, working according to preassigned instructions” showed
that these can be simulated by Turing machines.

Gödel is reported [12] to have believed “that it might be possible . . . to
state a set of axioms which would embody the generally accepted properties
of [effective calculability], and to do something on that basis”. As explained
by Shoenfield [48, p. 26]:

It may seem that it is impossible to give a proof of Church’s
Thesis. However, this is not necessarily the case. . . . In other
words, we can write down some axioms about computable func-
tions which most people would agree are evidently true. It might
be possible to prove Church’s Thesis from such axioms. . . . How-
ever, despite strenuous efforts, no one has succeeded in doing this
(although some interesting partial results have been obtained).

This challenge of proving the Church-Turing Thesis is first in Richard
Shore’s list of “pie-in-the-sky problems” for the twenty-first century [8]. In-
deed, Harvey Friedman [16] has predicted that sometime in this century,
“There will be an unexpected striking discovery that any model of compu-
tation satisfying certain remarkably weak conditions must stay within the
recursive sets and functions, thus providing a dramatic ‘proof’ of Church’s
Thesis.”

We discuss such an axiomatization of effectiveness in Sections 2–5. Unlike
Turing’s analysis [56], and subsequent generalizations [37, 38, 18, 49, 52,
50, 53], our axioms of effective computation are, at the same time, both
formal and generic. They are formal, in that they may be cast as precise
mathematical statements [4, 14]; they are generic, in that they apply to
computations with arbitrary states (Section 3) and arbitrary programmable
transitions (Section 4).

Computability is a more general notion than recursiveness or Turing com-
putability. Just as Turing machinesprovide a computational model for strings
and recursive functions for the natural numbers, there are comparable notions
of effectiveness for other data types, as explained in Sections 3.2 and 5.3.
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Beyond that, Turing extended the notion of computability to devices
provided with oracles that “magically” provide answers to questions for which
there may be no effective means of providing answers. See Sections 3.3
and 5.3.

We draw some conclusions in the final section.

2 Discrete Algorithms

By an algorithm, one invariably means some type of state-transition system.
As Donald Knuth writes [35], for example:

Algorithms are concepts which have existence apart from any pro-
gramming language. . . . I believe algorithms were present long
before Turing et al. formulated them, just as the concept of the
number “two” was in existence long before the writers of first
grade textbooks and other mathematical logicians gave it a cer-
tain precise definition. . . . A computational method comprises a
set Q (finite or infinite) of “states”, containing a subset X of “in-
puts” and a subset Y of “outputs”; and a function F from Q into
itself. (These quantities are usually also restricted to be finitely
definable, in some sense that corresponds to what human beings
can comprehend.)

Classical algorithms proceed step by step, from state to next state. We
formalize this in our first postulate.

Postulate (State Transition) An algorithm determines a (nonempty) set
(or class) of states, a (nonempty) subset (or subclass) of initial states, and
a partial next-state transition function from states to states. Terminal states
are those states for which no transition is defined.

Having the transition depend only on the state means that states must
store all the information needed to determine subsequent behavior. Prior
history is unavailable to the algorithm unless stored in the current state.

State-transitions are deterministic. Classical algorithms in fact never
leave room for choices, nor do they involve any sort of interaction with the
environment to determine the next step. To incorporate nondeterministic
choice, probabilistic choice, or interaction with the environment, one would
need to modify the above notion of transition.
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This postulate is meant to exclude formalisms, such as [20, 43], in which
the result of a computation—or the continuation of a computation—may
depend on (the limit of) an infinite sequence of preceding (finite or infinites-
imal) steps. Likewise, processes in which states evolve continuously (as in
analog processes, like the position of a bouncing ball), rather than discretely,
are eschewed.

Yuri Gurevich’s “sequential postulates” [23] characterize algorithmicity
in its classical sense. They assert that states are first-order structures and
that transitions respect isomorphisms (see Section 3). An algorithm provides
a prescription for updating states, that is, for changing some of the interpre-
tations given to symbols by states. The essential idea is that there is a fixed
finite set of terms that refer (possibly indirectly) to locations within a state
and which suffice to determine what needs to be tested and how the state
needs to change during any transition (see Section 4). This implies, as we
will see, that it is possible to describe transitions by means of some finite
text (see Section 5.1). These characteristics apply both to effective methods,
such as factoring, and ideal ones, like inverting a matrix of arbitrary reals.

For an algorithm to be effective, there is one additional, crucial issue: it
must be possible to describe (initial) states in some finite fashion.

3 States

States must be comprehensive: they need to incorporate all the relevant
data that, when coupled with the program, completely determine the next
state, and, hence, the whole future of the computation. For instance, the
“instantaneous description” of a Turing-machine computation is just what
is needed to pick up a machine’s computation from where it has been left
off; see [56]. Likewise, the state of a procedural language contains the values
of all variables plus the “program counter”, pointing to the current opera-
tion. Similarly, the “continuation” of a Lisp program contains all the state
information needed to resume its computation.

3.1 Abstract States

In addition to storing mutable data, states of algorithms should incorporate
the means to make changes. So, they (and, by the same token, states of non-
algorithmic processes) may best be regarded as (first-order) logical structures
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with (finitely many) partial functions, relations, and constants. To simplify
matters, relations can be treated as truth-valued functions and constants as
nullary functions. So, each state consists of a domain and interpretations
for its symbols as partial functions over the domain. Structures, or (partial)
algebras, as we sometimes refer to them, suffice to model all salient features
of states. All relevant information about a state is given explicitly in the state
by means of its interpretation of the symbols appearing in the vocabulary of
the structure. Compare [42, pp. 420–429].

The values of programming variables, in and of themselves, are mean-
ingless to an algorithm, which is implementation independent. The specific
details of the implementation of the data types used by the algorithm should
not matter. Rather, it is relationships between values that matter to the al-
gorithm. It follows that an algorithm should work equally well in isomorphic
worlds. Compare [18, p. 128]. In this sense states are “abstract”. These
considerations lead to the second postulate [23, 1]:

Postulate (State) States of an algorithm are (first-order) structures over
a finite vocabulary, closed under isomorphism of domains, such that initial
states and terminal states are also closed under isomorphism. Furthermore,
transitions preserve the domain of states, do not change any defined point
of a function into undefined, respect isomorphisms, in the sense that non-
terminal isomorphic states transition to corresponding isomorphic states.

Qua structure, a state interprets each of the function symbols in its vo-
cabulary. Each state interprets its function symbols as partial operations
and, for every term over its vocabulary, either assigns it a domain value,
or leaves it undefined if any of the operations involved is undefined for its
arguments. States usually include equality, or at least a partially defined
equality. (We presume that state structures are endowed with Boolean truth
values and standard Boolean operations, and vocabularies include symbols
for these.)

Vocabularies are finite, since an algorithm must be describable in finite
terms, so can only refer explicitly to finitely many operations. Hence, an
algorithm cannot, for instance, involve all of Knuth’s [36] arrow operations,
↑, ↑↑, ↑↑↑, etc. Instead one could employ a ternary operation λxyz. x ↑z y.

In restricting structures to be “first-order”, we are limiting the syntax
to be first-order. This precludes states with infinitary operations, like the
supremum of infinitely many objects, which would not make sense from an
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algorithmic point of view. This does not, however, limit the semantics of
algorithms to first-order notions. The domain of states may have sequences,
or sets, or other higher-order objects, in which case, the state would also
need to provide operations for dealing with those objects.

Closure under isomorphism ensures that the algorithm can operate on
the chosen level of abstraction. The states’ internal representation of data is
invisible and immaterial to the program. This means that the behavior of an
algorithm, in contradistinction with its “implementation” as a C program—
cannot, for example, depend on the memory address of some variable. If an
algorithm does depend on such matters, then its full description must also
include specifics of memory allocation.

It is possible to liberalize this postulate somewhat to allow the domain
to grow or shrink, or for the vocabulary to be infinite or extensible, but such
enhancements do not materially change the notion of algorithm.

A fable To illustrate the importance of operating on the correct level of
abstraction, consider the following story:3 A student in an algebraic topol-
ogy course did not hand in the assigned homework. “You know”, said the
student to the lecturer, “I was working hard on the homework. After a while,
I felt hungry and decided to take a break for a cup of coffee and a donut.
But then I spent the whole night trying to understand which one of them I
should eat and which one I should drink.” What actually happened to this
poor fellow? There were two states to consider, one with a cup of coffee and
no donut, the other with only a donut left. Both real-life situations com-
prise many properties, like color, temperature, material, recipe used to cook,
shape, coordinates on the table, etc. But from the algebraic-topology point
of view, one cares only for the genus of the surface and thus cannot distin-
guish between those two states. On the other hand, a proper algorithm for
dealing with midnight hunger should be able to distinguish between food and
drink. In other words, the “algebraic topology algorithm” and the “midnight
hunger algorithm” have different salient properties, a crucial factor, which
the hapless student failed to account for.

3Based on the famous quip of John Kelley, “A topologist is a man who doesn’t know
the difference between a doughnut and a coffee cup” [27, p. 88n.].
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3.2 Effective States

Already in 1922, Emil Post [42, pp. 427–428] noted the following about the
states of effective computations:

We . . . assume [symbolic representations] to be finite and we
might say discrete. . . . Each symbolization can be considered to
consist of a finite number of unanalysable parts (unanalysable
from the standpoint of the symbolization) these parts having cer-
tain properties and certain relations with each other. . . . The ways
in which these parts can be related will be assumed to be specified
for the whole system of symbolizations. . . . The number of these
elementary properties and relations used is finite and . . . there
is a certain specific finite number of elements in each relation. . . .
The symbol-complexes are completely determined by specifying
all the properties and relations of [their] parts. . . . Each complex
of the system can be completely described [by a conjunction of
relations]. . . .

In other words, not only should states be symbolic and be represented
by relational structures, but they need to be finitely representable if they
are to be effective. Accordingly, we insist that effective states harbor no
information beyond the means to reach domain values, plus anything that
can be derived therefrom.

In general, then, the operations in states come in three flavors: domain
constructors; defined functions; and black-box oracles. For a state to be
effective, it should provide means to access all the elements of its domain
and should not have any oracles.

Function symbols C construct a particular domain in a given state if the
state assigns each value in the domain to exactly one term over C (so the
terms over C form a free Herbrand algebra). Constructors are the usual way
of thinking of the domain values of computational models. For example,
strings over an alphabet {a,b,. . .} are constructed from a nullary constructor
ε() and unary constructors a(·), b(·), etc. The positive integers in binary
notation are constructed out of the nullary ε and unary 0 and 1, with the
constructed string understood as the binary number obtained by prepending
the digit 1. A domain consisting of integers and Booleans can be constructed
from true, false, 0, and a “successor” function that takes non-negative
integers (n) to the predecessor of their negation (−n−1) and negative integers
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(−n) to their absolute value (n). To construct 0-1-2 trees, we would have
three constructors, k0(), k1(·), and k2(·, ·), for nodes of outdegree 0 (leaves),
1 (unary), and 2 (binary), respectively.

Definition 1 (Effective State)

• A state is basic if it includes constructors for its domain, plus totally
undefined operations, meaning that they all always yield the same de-
fault value (undef, say), and no oracles.

• Such states are (absolutely) effective.

• Moreover, a state is effective also if all its defined operations can be
effectively computed (in a bootstrapped sense to be made precise below)
from basic states and with the same constructors.

This effectiveness postulate excludes algorithms with ineffective oracles,
such as the halting function, but allows one to be given effective operations,
like equality of trees or division of integers. Having only free constructors at
the foundation prevents the hiding of potentially uncomputable information
by means of equalities between distinct representations of the same domain
element. This is the approach to effectiveness advocated in [4], extended to
include partial functions in states, as in [1].

3.3 Oracular States

Turing [57] introduced the powerful idea of computability relative to oracles.
He said, “We shall not go any further into the nature of this oracle apart
from saying that it cannot be a machine.” We may think of a Turing machine
that equipped with a special tape for querying oracles and special states qM
and qo for each oracle o in O. When, during an execution, the machine enters
state qo, the oracle magically answers by replacing the string x on the query
tape with the value o(x) and reverts to state qM .

In the presence of oracles, we still want the domain to be constructive, or
else there may be no finite way of representing inputs and outputs, but now
we allow basic operations that may not be effective. Accordingly, we speak,
instead, of relative effectiveness.

Definition 2 (Relatively Effective State)
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• A state is basic in oracles O, if it includes constructors for its domain,
totally undefined operations, plus oracles O.

• Such states are relatively effective.

• Moreover, a state is relatively effective also if all its defined operations
can be computed from basic states with the same constructors and
oracles.

One can give an alternate characterization of effective state, one that
is based on oracular Turing machines, extending a suggestion of Wolfgang
Reisig [46].

Lemma A state X is effective relative to a set of oracles if and only if there
is a Turing machine with the same oracles that can semi-decide the congru-
ence induced by X. In other words, given two terms over the vocabulary of
X as input, the machine returns true whenever both terms are defined and
assigned the same values by X, false when both are defined but not equal,
and diverges otherwise. Input and output for the machines’s oracles is via
constructor terms.

The proof is along the lines of the non-oracular one in [5].

4 Transitions

For a process, effective or not, to be deemed algorithmic, it must be possible
to express the transition rules for going from state to state in some finite
fashion. Kleene stressed this point repeatedly ([34, p. 17], [32, pp. 240–
241n.], [33, p. 493]):

An algorithm is a finitely described procedure. . . . In perform-
ing the steps, we simply follow the instructions like robots; no
ingenuity or mathematical invention is required of us.

An algorithm in our sense must be fully and finitely described
before any particular question to which it is applied is selected.
When the question has been selected, all steps must then be pre-
determined and performable without any exercise of ingenuity or
mathematical invention by the person doing the computing.
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The notion of an “effective calculation procedure” or “algorithm”
(for which I believe Church’s thesis) involves its being possible
to convey a complete description of the effective procedure or
algorithm by a finite communication, in advance of performing
computations in accordance with it.

So, algorithms need to be expressible by means of finite texts, making
reference to only finitely many terms and relations among them. Indeed, an
algorithm can only determine relations between values stored in an abstract
state via terms in its vocabulary and equalities (and disequalities) between
their values.

4.1 Effective Transitions

The actions taken by a transition are describable in terms of updates in
which a new interpretation is given by the next state to function symbols.
The set of updates encapsulates the state-transition relation of an algorithm
by providing all the information necessary to change the current state into
the next one. To determine the updates for any given state, the algorithm
needs to evaluate some terms. The third postulate ([23], refined as in [1])
ensures that there is a finite description of the update process, and that its
execution requires only a bounded amount of work. Simply stated, there is
a fixed, finite set of (ground) terms that determines the stepwise behavior of
an algorithm.

Postulate (Transition) For every state of every algorithm, there is a set
of critical terms over its vocabulary, of size up to some bound (determined
by the algorithm). Any set of states that all assign the same values to their
shared critical terms all have the same critical terms and the same updates
(if any).

The intuition is that an algorithm must base its actions on the values
contained at locations in the current state. Unless all states undergo the
same updates unconditionally, an algorithm must explore one or more values
at some accessible locations in the current state before determining how to
proceed. The only means that an algorithm has with which to reference
locations is via terms, since the values themselves are abstract entities. If
every referenced location has the same value in more than one state, then
the behavior of the algorithm must be the same for those states.
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This postulate precludes programs of infinite size (like an infinite table
lookup) or which are input-dependent.

On account of the presence of partial operations, we need to take into
account which locations in the state are actually accessed by the given al-
gorithm. Should an undefined location be accessed, the computation would
go into limbo. That is why critical terms are individual to states. Partial
operations are required for full generality of the formalization of effectiveness.

4.2 Classical Algorithms

A careful analysis of the notion of algorithm in [23] and an examination of the
intent of the founders of the field of computability in [14] demonstrate that
the postulates are in fact true of all ordinary, sequential algorithms, the (only)
kind envisioned by the pioneers of the field. In this sense, the traditional
notion of algorithm is precisely captured by these axioms. Accordingly, we
refer to a process satisfying the above three postulates as a classical algorithm.

5 Effectiveness

Having axiomatized algorithmic processes, we turn to the question of how to
describe them by finite means.

5.1 Algorithms

Gurevich [23] showed that his abstract state machines [22], constitute a
most general model of computation, one that can precisely describe effec-
tive transitions of any classical algorithm, on any desired level of abstrac-
tion of data structures and native operations. Programs in this formalism
may be built from just three components: There are generalized assign-
ments f(s1, . . . , sn) := t, where f is any function symbol and the si and t
are arbitrary (ground) terms. Statements may be prefaced by a conditional
test. Program statements are composed in parallel. The semantics of as-
signment statements, parallel composition, and conditionals are as expected.
A program describes a single transition step; its statements are executed
repeatedly, as a unit, until no assignments have their conditions enabled.

This very simple model of computation suffices to precisely capture the
behavior of the whole class of classical algorithms over any domain, includ-
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ing those with partial operations, be they effective or oracular, that hang
outside their domain of definition [1]. This model is not wedded to any
particular data representation—in the way, say, that Turing machines ma-
nipulate strings using a small set of tape operations. In this sense, abstract
state machines are the most generic of computational models.

A simple program in this framework is the following:

if |b−a| > ε then do

{
if sgn f((a+ b)/2) = sgn f(a) then a := (a+ b)/2

if sgn f((a+ b)/2) = sgn f(b) then b := (a+ b)/2

The conditional is repeated over and over until the outer condition turns
false, and no more assignments are made. The domain is the reals plus the
Booleans; the operations for addition (+), subtraction (−), halving (/2),
equality (=), greater than (>), absolute value (| · |), and signum (sgn) are
fixed in all states; the values of f and ε are given in the initial state as
inputs; the values of the nullary symbols a and b are also given as inputs,
but they are changed by the transitions from state to state. Should the signs
of a and b start out the same, then both inner conditions will hold, and both
assignments will be performed forever. Also if ε is nonpositive, the program
will never terminate.

The critical term is |b − a| > ε in states that falsify this condition, and
includes also f((a + b)/2) = sgn f(a) and f((a + b)/2) = sgn f(b) when the
condition is true.

This program describes the standard bisection search for the root of a
function, as described in [21, Algorithm #4]. The point is that this abstract
formulation is, as the author of [21] wrote, “applicable to any continuous
function” f over the reals—including ones that are not programmable. This
program cannot be considered effective; indeed its domain is uncountable.
See [45] for examples of geometric constructions with compass and straight-
edge.

5.2 Effective Algorithms

The sequential postulates limit transitions to be effective, in the sense of
being amenable to finite description, but they place no constraints on the
nature of the contents of states. In particular, states may contain ineffective
oracles. To preclude that and ensure that an algorithm is effective, in an
absolute sense, it suffices to place limits on initial states.
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Postulate (Initial State) The initial states of an effective algorithm are
all (absolutely) effective (in the sense of Definition 1) and are all identical,
up to isomorphism, except for input values. The initial states of a relatively
effective algorithm are all relatively effective (in the sense of Definition 2).
In both cases, initial states are all identical, up to isomorphism, except for
input values.

Since transitions make only finitely many changes, once initial states are
effective, then so are all subsequent states.

We will say that an algorithm computes a partial function f over a domain
D if there are input terms such that their values in all initial states with
domain D cover all possible input values. We also demand that those states
otherwise agree on the values of all terms, so no information is hidden in
individual states. Given values ā for the input terms, the corresponding
input state leads, via a sequence of transitions specified by the algorithm, to
a terminal state in which the value of some designated output term is f(ā)
whenever the latter is defined, and leads to an infinite computation whenever
it is not.

When we spoke earlier (Definitions 1 and 2) of “bootstrapping”, we meant
that there is a way of programming the defined operations, using construc-
tors and oracles, if any. And if there is any way of programming them, then
there is an abstract-state-machine program that fits the bill. For example,
with 0 and successor, one can program addition, starting from basic states,
so addition my be included in the initial states of (absolutely) effective algo-
rithms over the natural numbers. Multiplication is also effective, since there
is a program for multiplication that makes use of addition.

We are requiring that all elements of an algorithm’s domain be accessible
via terms in initial states (inaccessible superfluous elements may be removed
with no ill effect). But note that a transition may cause accessible elements
to become inaccessible in later states [46].

5.3 Relatively Effective Algorithms

Just like Turing extended his machines to incorporate oracles, the notion of
recursive functions has been extended to allow oracles, for total functions by
Turing [57, p. 175] and for partial ones later by Kleene [31, p. 178].

One form of this generalization is as follows: The partial-recursive func-
tions relative to oracles O is the class of partial functions over the naturals,
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N, that includes the constant zero function, successor, all the projections,
plus the operations in O and is closed under composition, primitive recur-
sion, and minimization. We say that an algebra (with finitely or infinitely
many partial functions) over the naturals is recursive in O if all its functions
are.

Another extension of recursion theory applies it to domains other than
the naturals. For this, we need the concept of “simulation” under encodings.
An algebra A with domain D simulates an algebra B with domain E if there
is an injective encoding ρ of E into D such that for every partial function g
of B there is a partial function f of A, such that g = ρ−1 ◦ f ◦ ρ. A detailed
discussion of simulations may be found in [2].

So, a state X over vocabulary F and arbitrary domain D is computable
over oracles O if there is an encoding of D into the naturals and a recursive
structure Y with domain N over oracles ρ ◦ o ◦ ρ−1 for all o ∈ O that simulates
X via ρ. An algorithm is relatively computable if all its initial states are
computable all over the same oracle. And a model is relatively computable if
all its algorithms are, via the same encoding and same oracle. Sans oracles, we
call it computable. This is akin to a computable algebra, as in [17, 40, 44, 55],
but we are not placing restrictions on the injective encoding.

Were we not to require the encoding to be an injection, we could trivially
simulate everything by encoding everything by a single constant. One may
ask whether the allowance of any injective encoding between the arbitrary
domain and the natural numbers is sensible. But it turns out that, as long as
all domain elements are reachable by ground terms, any arbitrary injective
representation implies the existence of a bijection between the domain and
the natural numbers [5, Lemma 1]. Hence, the initial functions of a com-
putable algorithm are isomorphic to some partial-recursive functions, which
makes their effectiveness hard to dispute.

For example, one standard injective encoding of lists, with nullary ε and
binary : as constructors, is given by ρ(ε) = 0 and ρ(x : y) = 2ρ(x)3ρ(y). The
standard bijective encoding is ρ(ε) = 0 and ρ(x : y) = 2ρ(x)(2ρ(y) + 1).

These two notions, effective relative to oracles and computable over ora-
cles, are coextensional (cf. the non-oracle case proved in [4]).

An alternative An equivalent definition—along the lines of Gödel’s [19]
original definition of recursive equations—is to say that an algebra over do-
main D, with finitely many operations F , is computable relative to O if there
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exist constructors C for D and a finite set E of equations defining F . Each
equation in E is of the form f(s̄) = t, where f is a symbol for an operation
in F , s̄ is a tuple of constructor terms built from C and variables, and t is
an arbitrary term built from F , C, and variables. The equations define an
operation f in F relative to O if for all tuples c̄ of ground constructor terms,
one can deduce (by substitution of equals for equals) E ∪ O ` f(c̄) = d for
at most one ground constructor term d, where O is now an infinite set of
(ground) equations giving the (defined) values of the oracular functions in
constructor terms.

For example, a computable algebra of lists with an append operation ?
is defined by ε ? z = z and (x : y) ? z = x · (y ? z). With ? as the (in this
case, computable) oracle, one can define list reversal using just r(ε) = ε and
r(x : y) = r(y) ? (x : ε).

6 Conclusion

To summarize, we have seen that a model of computation is effective relative
to oracles if and only if the congruences of its states are semi-decidable by
oracular Turing machines if and only if it is computable over those oracles
each algorithm in the model, there is a partial-recursive function under some
encoding.

Theorem Every relatively effective algorithm can be simulated by an oracu-
lar Turing machine.

The fact that these three prima facie different definitions of relative
effectiveness over arbitrary domains, building on competing suggestions
in [4, 14, 46], comprise exactly the same functions, strengthens our con-
viction that the essence of the underlying notion of effectiveness has in fact
been captured.

In the special case of no oracles, this proves (a formalization of) what
Church and Turing have claimed:

Theorem (Church-Turing Thesis [4]) Every absolutely effective algo-
rithm can be simulated by a Turing machine.

In fact [5, Theorem 4], the set of Turing-computable string functions (and
likewise the set of partial recursive functions each algorithm in the model,
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there is a partial-recursive function) is the unique maximal effective model,
up to isomorphism, over any countable domain. By “maximal”, we mean
that adding any function would make it impossible to show the model to be
computable (by simulation).

Moreover, we have recently demonstrated the validity of the widely be-
lieved (classical; non-physical) Extended Church-Turing Thesis :

Theorem (Extended Church-Turing Thesis [13]) Every effective algo-
rithm can be polynomially simulated by a Turing machine.

It follows from all the above that any model purporting to be hypercompu-
tational model, that computes all the Turing-computable functions and then
some, be they (idealized) humans (as claimed, for example, in [39, 41, 6]),
theoretical contrivance (e.g. [20, 43, 7]), or hypothetical (or idealized) physi-
cal apparatus (as proposed, for instance, in [15, 28, 54]), must violate one of
our postulates. Note that, to be truly hypercomputational, it is crucial that
a model that encodes strings in some way also be capable of computing the
ordinary computable functions. It is not sufficient to merely compute one
additional function,4 as explained in [3].
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[19] Kurt Gödel, On undecidable propositions of formal mathematical sys-
tems, Lecture notes by S. C. Kleene and J. B. Rosser, Inst. for Advanced
Study, Princeton, 1934. Reprinted with corrections and postscriptum in
M. Davis (ed.): The Undecidable – Basic Papers on Undecidable Propo-
sitions, Unsolvable Problems and Computable Functions, Raven Press,
1965, pp. 39–74. The postscriptum is also reprinted in God̈el’s Collected
Works, vol. I, pp. 369–371.

[20] E. Mark Gold. Limiting recursion. J. Symbolic Logic, 30(1):28–48, 1965.
doi:10.2307/2270580

[21] Saul Gorn. Algorithms: Bisection routine. Communications of the ACM,
3(3):174, 1960. doi:10.1145/367149.367173

[22] Yuri Gurevich. Evolving algebras 1993: Lipari guide. In Egon Börger,
editor, Specification and Validation Methods, pages 9–36. Oxford Uni-
versity Press, 1995. Available at http://research.microsoft.com/

~gurevich/opera/103.pdf (viewed Apr. 15, 2009).

[23] Yuri Gurevich. Sequential abstract state machines capture sequen-
tial algorithms. ACM Transactions on Computational Logic, 1(1):77–
111, July 2000. doi:10.1145/343369.343384. Available at http:

//research.microsoft.com/~gurevich/opera/141.pdf (viewed Apr.
15, 2009).

[24] David Harel. On folk theorems. Communications of the ACM,
23(7):379–389, July 1980. doi:10.1145/358886.358892

[25] David Hilbert, Mathematische Probleme: Vortrag, gehalten auf
dem internationalen Mathematiker-Kongreß zu Paris 1900 (in Ger-
man). Available at http://wikilivres.info/wiki/Mathematische_

Probleme (viewed Dec. 1, 2011).

[26] David Hilbert and Wilhelm Ackermann, Grundzüge der theoretischen
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Gödel, Kurt, 3, 4, 16
Gurevich, Yuri, 6, 13

Hilbert’s Second Problem, 2
Hilbert’s Tenth Problem, 1
Hilbert, David, 1–3
Hypercomputation, 18

Kelley, John L., 8
Kleene, Stephen C., 3, 4
Knuth, Donald E., 5, 7

Markov, Andrey A. (the younger), 4

Oracles, 5, 9–11, 14–17

Post, Emil L., 4, 9

Recursive functions, 2–4
Oracular, 15, 17
Partial, 3, 15–17

Reisig, Wolfgang, 11

Sequential postulates, 6, 14
Shoenfield, Josef R., 4
Shore, Richard A., 4
Simulation, 16, 17
Structures, first order, 6, 7

Turing machines, 3, 4, 14, 17, 18
Oracular, 10, 11, 17

Turing’s thesis, 3
Turing, Alan M., 2, 4, 10, 15, 17

26


	Introduction
	Discrete Algorithms
	States
	Abstract States
	Effective States
	Oracular States

	Transitions
	Effective Transitions
	Classical Algorithms

	Effectiveness
	Algorithms
	Effective Algorithms
	Relatively Effective Algorithms

	Conclusion

