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Abstract:

The goal of multivariate receptor modeling is to estimate the profiles of major pollution

sources and quantify their impacts based on ambient measurements of pollutants. Tradition-

ally, multivariate receptor modeling has been applied to multiple air pollutant data measured

at a single monitoring site or measurements of a single pollutant collected at multiple moni-

toring sites. Despite the growing availability of multi-pollutant data collected from multiple

monitoring sites, there has not yet been any attempt to incorporate spatial dependence that

may exist in such data into multivariate receptor modeling. We propose a spatial statistics

extension of multivariate receptor models that enables us to incorporate spatial dependence

into estimation of source composition profiles and contributions. The proposed method yields

more precise estimates of source profiles by accounting for spatial dependence in the estima-

tion. In addition, it enables predictions of source contributions at unmonitored sites as well

as monitoring sites when there are missing values. The method is illustrated with the simu-

lated data and real multi-pollutant data collected from 8 monitoring sites in Harris County,

Texas.
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1. INTRODUCTION

Receptor modeling is a collection of methods for identifying major pollution sources and

estimating the contribution of each source based on ambient measurements of air pollutants

obtained at a given monitoring site, or a receptor. A comprehensive review of the field of

receptor modeling can be found in Hopke (1991, 2003). Traditionally, multivariate receptor

models have been used to resolve the observed air pollutant mixtures into contributions

from individual sources (or source types) based on time series of multiple (or multivariate)

air pollutants, such as Volatile Organic Compounds (VOCs) or specific metal constituents

of fine particulate matter (PM2.5), at a receptor site (see e.g., Hopke 1985; Henry 1997a;

Park, Guttorp, and Henry 2001; Wolbers and Stahel 2005; Hopke et al. 2006; Heaton and

Christensen 2010).

A basic multivariate receptor model takes the form of

Yjt =

q
∑

k=1

PjkGkt + Ejt, (1)

where Yjt is the mass concentration of pollutant j (j = 1, . . . , p) measured at time t (t =

1, . . . , T ), q is the number of major pollution sources, Pjk is the relative concentration of

pollutant j in source k (k = 1, . . . , q), Gkt is the mass concentration (contribution) of source

k at time t, and Ejt is the error associated with the jth pollutant concentration measured at

time t. In matrix terms, model in (1) can be written as

Y = PG + E, (2)

where Y is a p by T data matrix containing T concentrations of p pollutants at a receptor,

P is the p by q source composition matrix (where each column, a source composition profile,

can be considered as a chemical fingerprint for a source), G is the q by T source contribution

matrix, and E is an p by T error matrix. In relation to statistical models, this may be viewed

as a factor analysis model or latent variable model (see Park, Oh, and Guttorp 2002) in the

sense that Y is the only observable quantity whereas q (number of factors), P (factor loading

matrix), and G (factor score matrix) are all unknown quantities that need to be estimated

(or predicted). The usual challenges in factor analysis such as the unknown number of factors

(sources) and non-identifiability of parameters (i.e., there are an infinite number of solutions

to (2)) are also encountered in multivariate receptor models.
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Various forms of factor analysis or principal component analysis methods have been ap-

plied in multivariate receptor modeling for more than three decades. Among several methods,

Positive Matrix Factorization (PMF, Paatero and Tapper 1994; Paatero 1997) and UNMIX

(Henry and Kim 1990; Kim and Henry 1999, 2000) gained most popularity among environ-

mental engineers and scientists and have been widely used in practice. Until recently, there

have been relatively few contributions by statisticians to the field of multivariate receptor

modeling. See Pollice (2009) for a review of multivariate receptor modeling from a statistical

perspective. Park et al. (2001) proposed time series extension of multivariate receptor models

to account for temporal correlation in air pollution data into parameter estimation under a

confirmatory factor analysis model. Billheimer (2001) developed compositional receptor mod-

eling assuming that the source contributions and the errors are logistic normally distributed.

Christensen and Sain (2002) developed an approach to account for temporal dependence, a

nested block bootstrap method, in multivariate receptor modeling. Park, Spiegelman, and

Henry (2002) proposed new sets of realistic identifiability conditions for multivariate receptor

models and a constrained nonlinear least squares (CNLS) approach for parameter estimation.

In Park, Oh, and Guttorp (2002) and Park, Guttorp, and Kim (2004), the unknown number

of pollution sources and unknown identifiability conditions have been taken into account in

the form of model uncertainty using a Bayesian approach. Gajewski and Spiegelman (2004)

developed estimators that are robust to outliers. Wolbers and Stahel (2005) proposed the

lognormal structural mixing model assuming a multiplicative error structure. Christensen,

Schauer, and Lingwall (2006) developed an iterated confirmatory factor analysis approach

to source apportionment. Spiegelman and Park (2007) performed a jackknife evaluation

of the uncertainty of the estimates of the source contribution and source composition ma-

trices as a way of incorporating dependence in air pollution data into estimation. Lingwall,

Christensen, and Reese (2008) developed Dirichlet based Bayesian multivariate receptor mod-

eling, and Heaton and Christensen (2010) proposed a Dirichlet Process model to incorporate

time-varying source profiles in multivariate receptor models. Nikolov, Coull, Catalano, and

Godleski (2010) extended the multiplicative factor analysis model proposed by Wolbers and

Stahel (2005) by imposing mixed models on the latent source contributions to include the

covariate effects and to adjust for temporal correlation in the source contribution.

In all of the previous approaches, however, multivariate receptor models were applied to
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multiple air pollutant data measured at a single monitoring site or to single pollutant data

(e.g., non-speciated PM2.5) collected from multiple monitoring sites (see e.g., Henry 1997b;

Park, Spiegelman, and Henry 2002; Park, Oh, and Guttorp 2002; Park et al. 2004). Despite

the growing availability of the multi-pollutant data collected from multiple monitoring sites,

the method that can jointly analyze such data is lacking in receptor modeling. Previous

studies on source identification and apportionment employed a conventional multivariate

receptor modeling approach to analyze the multi-pollutant data at each site separately (see,

e.g., Buzcu and Fraser 2006) and ignored spatial correlations in the data. Incorporating

spatial correlations in the multi-pollutant data collected from multiple monitoring sites into

multivariate receptor modeling has been an open problem for many years (Park et al. 2001;

Park et al. 2004; Pollice 2009).

In this paper we propose a spatial statistics extension of multivariate receptor models that

enables us to incorporate spatial dependence into estimation of source composition profiles

and contributions. We not only account for spatial dependence of each source contribution,

but also account for the cross covariance of pairs of source contributions.

Recently spatial covariance models for multivariate processes have gotten attention in spa-

tial statistics community and a few approaches for multivariate covariance models have been

developed (e.g. Goulard and Voltz 1992; Wackernagel 2003; Gneiting, Kleiber, and Schlather

2010; Apanasovich and Genton 2010). The most traditional method is so called, Linear Model

of Coregionalization (LMC) (Goulard and Voltz 1992; Wackernagel 2003). Gneiting et al.

(2010) developed a multivariate version of Matérn covariance function. In this paper, we use

the multivariate Matérn model for fitting the multivariate receptor model (see Section 2.1 for

more details). The LMC model is used to simulate spatially dependent multivariate source

contributions in Section 3.

Accounting for spatial dependence of multivariate air pollution data in source identifica-

tion and apportionment will lead to more efficient estimation of source profiles and contri-

butions. In addition, it will enable prediction of pollutant concentration and source contri-

butions at locations other than the monitoring sites. Section 2 introduces a spatial model

in multivariate receptor modeling for multi-pollutant data measured from spatially dispersed

monitoring sites. Sections 3 contains a discussion of the performance of the spatial model

as compared to a model not accounting for spatial dependence based on several simulated
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datasets. Section 4 presents a real application to the Harris County air pollution data. Fi-

nally, concluding remarks are made in Section 5.

2. METHOD

We consider an extension of the models in (1) and (2) for the problem of the multiple

pollutants over multiple spatial locations and time points. We write Y = (Y1, . . . ,Yp)
′

(a

p×NT matrix) with Yj a vector of size NT × 1, when N is the number of spatial locations

and T is the number of time points. In particular, we write

Yj = (Yj(s1, t1), . . . , Yj(sN , t1), Yj(s1, t2), . . . , Yj(sN , tT ))
′

.

Note si and ti give the spatial location and time point, respectively. We also write G and E in

a similar way as in (2) except that G is a q×NT matrix and E is a p×NT matrix. The source

composition matrix P is a p×q matrix. The number of major pollution sources, q, is assumed

known throughout the paper. The ordering of spatial and temporal points in the rows of G

and E are the same as that of Yj ’s. We assume G is a Gaussian random field and E is a

mean zero Gaussian white noise (except that each row of E has its own variance). Columns

of G have a common mean vector ξ = (ξ1, . . . , ξq)
′

∈ R
q. The challenge here is to model

the covariance structure of G. We assume temporal independence of G (and thus temporal

independence of Y) throughout the paper (discussion of extension of temporally correlated

model is given in Section 5). We consider G as a multivariate spatio-temporal process and

focus on modeling the spatial dependence within each row as well as cross covariance across

rows of G.

We assume that G and E are multivariate stochastic processes varying over space and

time. At each spatial location s and time t, we extend the model in (1) as

Y1(s, t) = P11G1(s, t)+ · · · + P1qGq(s, t) + E1(s, t),

Y2(s, t) = P21G1(s, t)+ · · · + P2qGq(s, t) + E2(s, t),

· · ·

Yp(s, t) = Pp1G1(s, t)+ · · · + PpqGq(s, t) + Ep(s, t). (3)

Under the above model, the mean of Yj , µj = E{Yj(s, t)} =
∑q

k=1 Pjkξk, is constant across
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space and time for each j = 1, . . . , p. We focus on building joint covariance models for Gi’s.

The process Ej is modeled as a white noise with Var(Ej) = η2
j .

We estimate parameters using maximum likelihood estimation method through the model,

Y = (Y
′

1, . . . ,Y
′

p)
′

∼ N(µ,Σ + V),

with

µ = Mξ, an NTp × 1 vector,

M =











P111NT P121NT · · · P1q1NT

...
...

...
...

Pp11NT Pp21NT · · · Ppq1NT











, an NTp × q matrix,

Σ =











Σ11 Σ12 · · · Σ1p

...
...

...
...

Σp1 Σp2 · · · Σpp











, an NTp × NTp matrix,

Σjh =











Σ
(1)
jh · · · 0

...
. . .

...

0 · · · Σ
(T )
jh











, an NT × NT block diagonal matrix (j, h = 1, . . . , p),

Σ
(t)
jh , an N×N matrix, the spatial covariance matrix of Y

(t)
j and Y

(t)
h , Y

(t)
j = (Yj(s1, t), . . . , Yj(sN , t))

′

,

and V =











η1INT · · · 0

...
. . .

...

0 · · · ηpINT











, an NTp × NTp diagonal matrix.

Here, 1NT is a vector of ones with dimension NT ×1 and INT is an identity matrix of dimen-

sion NT ×NT . The matrix Σjh is a block diagonal matrix due to the temporal independence

assumption. At time t, the (l,m) element of Σ
(t)
jh is given by

Cov{Yj(sl, t), Yh(sm, t)} =

q
∑

i,k=1

PjiPhkCov{Gi(sl, t), Gk(sm, t)} + η2
j 1(j=h), (4)

and is free of t. That is, we assume that Σ
(t)
jh is the same across t = 1, . . . , T . Note that for

the mean of Y, we estimate P and ξ and then obtain the NTp × 1 vector, µ.

2.1 Spatial model for multiple source contributions

To model the covariance structure of Gi’s (that is, Cov{Gi(sl, t), Gk(sm, t)}), we consider

the following two models. The first model ignores the spatial dependence of Gi’s but only
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considers the cross covariance of Gi’s (we call this spatially independent model, SIM) and the

second model accounts for the spatial dependence of Gi’s as well as their cross covariances

(we call this spatially dependent model, SDM). The model SDM not only accounts for the

spatial dependence of individual Gi’s but also the spatial dependence of cross covariance of

pairs of Gi’s.

Under the SIM, it is easy to see from (4) that, for each t, Σ
(t)
jh is a diagonal matrix.

Under the SDM, on the other hand, Σ
(t)
jh is no longer diagonal and we need a spatial co-

variance model for a multivariate spatial process. We use the multivariate Matérn model

developed by Gneiting et al. (2010). At each time point t, we assume the multivariate pro-

cess {G1(s, t), . . . , Gq(s, t)} is spatially isotropic and temporally independent, and let

Cik(|s1 − s2|) = Cov{Gi(s1, t), Gk(s2, t)}.

The covariance function Cik(·) does not depend on t. The multivariate Matérn model gives

Cii(d) = σ2
i M(d|νi, β), Cik(d) = σiσkρikM(d|νik, β) for 1 ≤ i 6= k ≤ q and

M(d|ν, β) =
1

2ν−1Γ(ν)
(
d

β
)νKν(

d

β
), (5)

with Kν the modified Bessel function of order ν. Here σi, β, and νi are the covariance

parameters to be estimated (σi, β, νi > 0), νik = νi+νk

2 , and ρik (−1 ≤ ρik ≤ 1) is the

co-located correlation coefficient. Theorem 1 of Gneiting et al. (2010) shows that if we let

ρik = γik
Γ(νi + 3

2)1/2

Γ(νi)1/2

Γ(νk + 3
2)1/2

Γ(νk)1/2

Γ(νik)

Γ(νik + 3
2)

,

where the matrix (γik)
q
i,k=1 (with diagonal elements γii = 1 for i = 1, . . . , q and off-diagonal

elements γik for 1 ≤ i 6= k ≤ q) is symmetric and nonnegative definite, then Cii and Cik

together give a valid covariance model for the multivariate process Gi’s.

The spatial range parameter, β, determines how far the spatial correlation of the mul-

tivariate spatial process lasts. Larger β gives longer range of spatial correlation structure.

The smoothness parameter, νi, controls the smoothness of the multivariate spatial process

(the larger νi is, the smoother the ith process is). The parameter σi controls the covariance

level of the ith process. The co-located correlation coefficient determines the strength of

cross-correlation of the multivariate process.
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One limitation of the above covariance model is that each Gi has the same spatial range

parameter, β. However, the number of monitoring sites for pollutants typically used in re-

ceptor modeling (e.g., VOCs or PMs) is usually moderate to small (e.g., less than 15) and

thus the data may not provide enough information to estimate all of the spatial covariance

parameters, in particular the spatial range and smoothness parameters. Moreover, as Zhang

(2004) points out, in general not all of the parameters in Matérn covariance model are consis-

tently estimable. Therefore, the above model may not be limited for the receptor modeling

problems.

2.2 Constraint on source composition matrix

It is well-known that parameters of models in (1) and (2) are not uniquely defined without

imposing additional constraints on them. The same non-identifiability problem continues to

be manifest in model (3). To avoid nonidentifiability of multivariate receptor models, we

enforce additional constraints on either P or G matrix (called ’identifiability conditions’).

See Park, Spiegelman, and Henry (2002) for identifiability conditions that are meaningful in

multivariate receptor models. Here, we employ identifiability conditions on P that are often

used in receptor modeling. One set of such conditions is:

C1 There are at least q − 1 zero elements in each column of P.

C2 The rank of P[k] is q − 1, where P[k] is the matrix composed of the rows containing the

assigned zeros in the kth column with those assigned zeros deleted.

C3

p
∑

j=1

Pjk = 1 for each k = 1, . . . , q.

The conditions C1-C2 imply that some pollutants (corresponding to zeros in P) are not

contributed by a particular source type, and no two sources share the exactly same set of

zeros. These are the same conditions as those used in confirmatory factor analysis to remove

factor indeterminacy problem (see, for example, Anderson (1984), Chapter 14.2.2). Note

that pre-specification of zero elements in P requires of the investigator some prior knowledge

on the source types (that might be obtained from previous studies or exploratory analyses).

The normalization constraint C3 is enforced to remove the multiplication of a column of P

by a scale constant, which is enough for the purpose of receptor modeling.
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2.3 Estimation and spatial prediction of multiple source contributions

We now describe how to estimate (or predict) the source contributions at any spatial

location and time (say s0 and t0) under the SDM, based on the conditional distribution,

Gi(s0, t0)|Y, following Chapter 14.7 of Anderson (1984). These spatial location and time

may or may not be where we have the observations.

Since we assume Gi’s and Ei’s are Gaussian, G(s0, t0) ∈ R
q and Y ∈ R

NTp are jointly

normally distributed with the mean vector (ξ
′

, µ
′

)
′

and the covariance matrix





Φ Λ

Λ
′

Σ + V



 .

Here, ξ, µ, and Σ+V are defined in Section 2.1 and Φ denotes the q×q covariance matrix of

G(s0, t0). The matrix Λ ∈ R
q×NTp is the cross covariance matrix of G(s0, t0) and Y. Then,

the conditional distribution, G(s0, t0)|Y, is Gaussian with mean given by

E{G(s0, t0)|Y} = Λ(Σ + V)−1(Y − µ) + ξ. (6)

This is our estimator or predictor of the source contribution at (s0,t0). Under the SIM, the

same idea applies for the estimation and we use (6) to estimate the source contribution at

the monitoring sites.

When we predict the source contribution at an unmonitored site under the SIM, however,

Λ becomes a matrix consisting of only zeros due to the spatial independence assumption.

Therefore, we take the average of the estimated source contributions at all of the monitoring

sites at a given time point instead as a predicted source contribution at the unmonitored

site at the given time point. Although we described the method for the situation where we

have one spatial location s0 and time point t0, it can easily be extended to multiple spatial

locations and time points.

3. SIMULATION STUDY

In this section, we compare the performances of the SIM and the SDM in terms of

estimation of source composition profiles and other parameters such as the mean of the

source contributions and the error variances. We also compare the estimated (and predicted)

source contributions at monitored (and unmonitored) sites from both methods. We set p = 9,
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q = 3, N = 8, and T = 100. The spatial locations are generated at random (uniformly) over

unit square (see Figure 1). We first generate the source contributions, Gi, i = 1, . . . , q, and

the error process, Ej , j = 1, . . . , p, through Gaussian random fields. The error process, Ej , is

iid normal (that is, independent over space and time) and its variances are set (η2
1 , . . . , η

2
p) =

(0.03, 0.02, 0.03, 0.02, 0.01, 0.04, 0.02, 0.03, 0.03). The true source composition matrix, Ptrue,

is set

P
′

true =











0.1 0.05 0.25 0.1 0 0 0.3 0.1 0.1

0 0.4 0 0.1 0.1 0.05 0.1 0.05 0.2

0.1 0 0.05 0 0.1 0.4 0.05 0.2 0.1











.

This matrix satisfies the conditions C1-C3 in Section 2.2. When we estimate the source

composition matrix, we give the same constraints C1-C3 and we use the same pre-assigned

locations of zeros as those in the true source composition matrix, Ptrue. Therefore, regarding

the source composition matrix, there are 21 nonzero elements (parameters) to be estimated.

We generate spatially dependent source contribution Gi’s. To make a fair comparison

between the SIM and the SDM, we do not use the covariance model for Gi’s in the SDM

to generate Gi’s. Instead, we use the LMC model for the simulation in the following way.

Consider q latent mean zero spatio-temporal processes and we denote them as Wi’s. Here we

assume Wi’s are independent of each other but each Wi process has spatial dependence. For

each Gi, we let

Gi = ξi + αi,1W1 + αi,2W2 + · · · + αi,qWq. (7)

Although each Wi’s are independent, the resulting Gi’s are no longer independent and de-

pending on how we set the coefficients αi,j ’s, the cross-covariance structure of Gi’s can be

quite flexible. For the spatial dependence structure of Wi’s, we use a Matérn covariance

model in (5). That is, we let

Cov{Wi(s1, t1), Wi(s2, t2)} =











M(|s1 − s2||νi, βi), if t1 = t2

0, if t1 6= t2.

Therefore, the variances of Wi’s are one. We set ξ = (4, 6, 10)
′

, α = (αi,k) =











1 0 0

0.1 0.995 0

0.5 −0.553 0.667










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(so that the covariance matrix of Gi’s at the same spatial location is αα
′

=











1 0.1 0.5

0.1 1 −0.5

0.5 −0.5 1











),

β1 = 0.3, β2 = 0.4, β3 = 0.5, ν1 = 0.5, ν2 = 1, and ν3 = 1.5. Note that the covariance model

used in the SDM is somewhat limited for the simulated data under this setting since we

have distinct βi’s in the simulation while the multivariate Matérn model used for the SDM

has common spatial range parameter, β. See the discussion in Section 2.1. We demonstrate

later that despite such limitation, the SDM fits the data quite well and is significantly better

compared to the SIM.

To assess the prediction performance of the SDM and the SIM for the source contributions

at unmonitored sites, we simulate Gi’s at 10 spatial locations. We use the data over 8

locations to fit the model and estimate parameters, and then predict the source contributions

at the other 2 locations for model validation. We repeat the simulation 100 times and

report the estimates and predictions along with their Mean Squared Errors (MSEs) and

Mean Squared Prediction Errors (MSPEs) from both models. At every simulation, we make

sure the numerical maximization of the loglikelihood for both models converge properly.

Figure 2 gives the biases and square root of MSEs (RMSEs) of the estimates for the 21

non-zero elements of Ptrue. Both the SIM and the SDM models give unbiased estimates, but

for several elements the biases of estimates from the SIM are quite large. The RMSEs from

the SDM are consistently small (the largest is 0.026) and much smaller than those from the

SIM. This demonstrates that the estimates for Ptrue from the SDM are much more efficient.

We also compared the estimates of αi,k’s, ξi’s, and η2
i ’s for the two models, and for all of them

the estimates from the SDM were much more efficient (results are omitted for the brevity of

the paper).

The estimates of the covariance parameters, β and νi’s, are given in Figure 3. Despite the

limitation of the covariance model used for the SDM, the estimates for β are mostly within

the range of the true range parameters, β1, β2, and β3. We do not see much differences

between the estimates for ν2 and ν3, although the true ν3 is larger than the true ν2. Note,

though, that the smoothness parameters in the multivariate Matérn model and those in the

LMC models are not quite comparable from the construction of the covariance models.

Next, we estimate (predict) the source contribution, Gi’s, at the 8 sites used for the
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modeling fitting as well as at the two unmonitored sites. Figure 4 gives the MSEs of the

estimated source contributions under the two methods at 8 spatial locations. The estimates

from the SDM are consistently more accurate across all 8 locations. For both methods, the

errors are largest for source 1 and smallest for source 2. The MSE values are consistent across

the 8 spatial locations for both methods. Table 1 gives MSPEs for the source contributions at

the two sites. Clearly, the SDM gives much better prediction results, in particular for sources

1 and 3. Overall the errors at site 9 are bigger than those at site 10 and this is because, unlike

site 10 that has a few nearby sites, site 9 does not have any nearby sites (see Figure 1). Both

models have some trouble predicting source 1 at site 9. This may be due to the facts that

site 9 is an isolated site and that the true source 1 has the smallest spatial range (β1 = 0.3).

Thus even under the SDM, we cannot borrow much information from the neighboring sites

for source 1 at site 9.

4. APPLICATION TO REAL DATA

The method developed in the paper, the SDM, has been applied to the 24-hour Volatile

Organic Compounds (VOC) data collected every 6 days from 8 monitoring sites in Harris

County during January 1/1/2000 - 8/29/2009. Figure 5 shows the locations of the 8 moni-

toring sites used in this study.

The first important step in multivariate receptor modeling is to select an appropriate

subset of species for an analysis; inclusion of noisy or unhelpful species could hinder source

apportionment (Park et al. 2001). Ten VOC species (names listed in Table 2) that are major

compounds at the sites considered (in Figure 5) were selected from 107 VOC species originally

measured. There were a total of 669 days when VOC measurements were made for at least

one of the 8 monitoring sites. The number of non-missing observations at each site ranges

from 521 to 553, which implies that there were typically more than 100 missing observations

(days with no VOC measurements) at each site during the study period. Figure 6 gives the

location of missing observations for each site over time.

To build a reasonable multivariate receptor model in terms of the number of major pol-

lution sources for the area and the identifiability conditions, the exploratory data analysis at

each site preceded the analysis combining data from all 8 sites together. Based on the previ-
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ous studies on the region (e.g., Buzcu and Fraser 2006), refineries, petrochemical production

facilities, gasoline and natural gas/accumulation emissions were presumed to be the four most

important sources affecting the region. This prior knowledge was utilized in pre-specification

of zeros in the source composition profile matrix to achieve model identifiability as well as in

selecting the appropriate subset of species that are contributed by those sources (see Table 2

for the pre-specification of zeros in the source composition matrix). Table 3 gives the major

compounds for each of the four aforementioned sources.

We now fit the SDM model to the data to estimate the source composition matrix, mean

and covariance parameters for source contributions along with the error variances. We then

predict the source contribution at an unmonitored site. In fitting the model, we only use

available observations and no imputation is performed.

Table 2 gives the estimated source composition matrix, Pjk’s, along with the means (ξi’s)

and standard deviations (σi’s) of source contributions and the error standard deviations (ηi’s).

The table also provides the asymptotic standard errors of the estimates based on the inverse

of the Hessian matrix of the loglikelihood function evaluated at the MLE estimates. For three

parameters, P22 (source composition for Ethane from petrochemical production), η5 (error

standard deviation of Isopentane), and η6 (error standard deviation of Propane), the estimates

were too small and we were not able to obtain the asymptotic standard errors numerically.

Overall, the estimated source composition profiles appear to be consistent with presumed

four major sources for the region in terms of major compounds. No prior information from

presumed sources, other than pre-assigned zeros (assuming that the species corresponding to

pre-assigned zeros are not present in the emissions from that source), was used in fitting the

source composition matrix of Table 2.

The estimated mean source contributions indicate that overall refineries and petrochem-

ical production facilities play a major role in VOC emissions for the region and this agrees

with the result in Buzcu and Fraser (2006). Estimated standard deviations for contributions

from gasoline and natural gas are rather large compared to their estimated means.

For the spatial covariance parameters, we get β̂=33.812 (6.061), ν̂1=1.244 (0.326), ν̂2=0.164

(0.026), ν̂3=0.005 (0.001), and ν̂4=0.126 (0.024). Here the order of the sources is the same as

in Table 2. The numbers in parentheses are the asymptotic standard errors. The unit for β̂ is

Km. The estimated spatial range of roughly 33 Km is reasonable considering the size of the
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spatial domain considered. Based on the estimated smoothness parameter values, gasoline

gives the roughest spatial process (ν̂3) and refinery gives the smoothest spatial process (ν̂1).

The estimated co-located correlation coefficients between source contributions is given by

(ρ̂ik)i,j=1,...,4 =

















1.000 0.614 0.120 0.117

0.614 1.000 0.341 0.076

0.120 0.341 1.000 0.030

0.117 0.076 0.030 1.000

















.

The estimated cross-correlations are positive and mostly small except ρ̂12 = 0.614, the co-

located cross correlation between refinery and petrochemical production.

Now we estimate and predict the source contribution as described in Section 2.3. Figure 7

gives the time series plots of source contributions at site 2 (HRM-3 site), located to the south

of a major interstate highway. Overall the estimated time series of the source contribution

look reasonable. The contribution of evaporative gasoline emissions at this site is much higher

than that can be anticipated from the overall mean contribution of gasoline for the entire

region in Table 2. In fact, it is consistent with the observation of Buzcu and Fraser (2006)

that the evaporative gasoline factor was a major contributor to VOC emissions together

with the refinery factor at the HRM-3 site. It is worth to point out that even if we have

missing observations on several days at the HRM-3 site, we can still estimate the source

contribution for those days since we are borrowing information from the neighboring sites

considering spatial dependence in estimating G. This is a clear advantage of spatial modeling

conducting the simultaneous analysis at all sites, rather than conducting a one-site-at-a-time

analysis. We can obtain predictions of G at all of 669 time points at the HRM-3 site, although

the HRM-3 site contains the observations only for 556 days.

Figure 8 gives the time series plots of the predicted source contributions at an unmonitored

site given in Figure 5. This location belongs to super neighborhood in Houston, and while

no monitoring site is available, air pollution epidemiologists or people in charge of developing

air quality management plans may desire to know contributions of sources at such location.

We can see that while the contributions of refineries and petrochemical production facilities

are still in the same order of magnitude, the contribution from gasoline at this location is

much smaller compared to that of the HRM-3 site, as expected.
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5. CONCLUDING REMARKS

We have presented a new multivariate receptor modeling approach that can incorporate

spatial dependence in the multiple pollutant data collected from multiple monitoring sites

into estimation of source composition profiles and prediction of source contributions. The

proposed method resulted in more precise estimates of source profiles by accounting for spatial

dependence in the estimation. More importantly, it enabled predictions of source contribu-

tions when pollution measurements were not made at a specific monitoring site or even at

an unmonitored site. These predicted source contributions can greatly enhance air pollution

epidemiological studies and facilitate development of an effective air quality management

plan by quantifying environmental impacts of pollution sources where no monitoring sites

are available.

There are several possible directions for future work. First, we assumed isotropic covari-

ance structure in our spatial model. When the spatial covariance structure of the multiple

source contributions is nonisotropic or nonstationary, we may need to incorporate this into our

covariance model for Gi’s. Currently there are only a few such covariance models available.

Jun (2009) gives a nonstationary cross-covariance models for multivariate spatial processes

but the approach is geared towards global processes. The nonstationary version of the LMC

model such as in Gelfand, Schmidt, Banerjee, and Sirmans (2004) may be applied to the sit-

uation, but the model may require quite a number of parameters and unless we have enough

number of monitoring sites, the estimation of the parameters may be difficult. Currently the

authors are pursuing the development of nonstationary covariance models for multivariate

processes suitable for our problem.

Second, when pollutants are measured at hourly intervals, temporal dependence often

exists in the data. In our spatial modeling, we assumed the independence of observations

over time, which is typically satisfied when the data are measured at longer time intervals such

as every 6 days. The spatial statistics extension of multivariate receptor modeling presented

in this paper can be further generalized to account for spatio-temporal correlation in the data.

In that case, we may use parametric spatio-temporal covariance functions for modeling the

covariance structure of the source contributions. We could extend the multivariate version of

Matérn covariance function used in this paper for spatio-temporal setting or we may consider
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the covariance model developed in Apanasovich and Genton (2010).

Third, we assumed that the number of sources and model identifiability conditions are

known or set a priori. When the number of sources and model identifiability conditions

are unknown, accounting for such model uncertainty in multivariate receptor modeling is

a challenging problem. Park, Oh, and Guttorp (2002) and Park et al. (2004) developed a

Bayesian approach to account for model uncertainty in multivariate receptor models for the

conventional multivariate receptor modeling data, i.e., for multiple pollutant data measured

at a single monitoring site or a single pollutant data collected from multiple monitoring sites.

Accounting for uncertainty in the number of sources and identifiability conditions in spatial

multivariate receptor modeling such as the one developed in this paper is an important future

research area.
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Tables.

Table 1. MSPEs at the two unmonitored sites in the simulation study.

site 9 site 10

model source 1 source 2 source 3 source 1 source 2 source 3

SIM 3.254 0.851 2.236 3.144 0.863 2.239

SDM 1.036 0.434 0.565 0.798 0.316 0.443
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Table 2. Estimated source composition profile matrix (Pij ’s) along with the mean (ξi’s),

the standard deviation (σi’s) estimates for the source contribution and the standard deviation

(ηi’s) estimates for the error terms. The asymptotic standard errors of the estimates are given

in parentheses. Each entry of the source composition profile matrix displays the percentage

and zeros in bold give the locations of pre-assigned zeros.

row name Refinery Petrochem Gasoline Natural Gas ηi

1 Benzene 2.431(0.148) 0 4.335 (0.173) 0 0.891 (0.131)

2 Ethane 44.605 (0.821) 0.000(-) 0 44.105 (0.703) 3.220 (0.506)

3 Ethylene 0 33.420(1.115) 0 0 2.404 (0.545)

4 Isobutane 5.057 (0.606) 13.154 (1.150) 16.433 (0.650) 7.572 (0.414) 3.702 (0.551)

5 Isopentane 7.077 (0.463) 0 35.750 (0.403) 1.116 (0.384) 0.007 (-)

6 Propane 26.401 (0.569) 8.370 (1.152) 1.002 (0.494) 36.096 (0.461) 0.0003 (-)

7 Propylene 0 36.578 (0.950) 0 0 7.358 (1.115)

8 n-Butane 11.734 (0.152) 4.949 (0.462) 26.436 (0.234) 9.090 (0.150) 2.676(0.393)

9 n-Hexane 0 3.630(1.384) 1.338 (0.108) 0.510 (0.063) 0.496 (0.078)

10 n-Pentane 2.694 (0.902) 0 14.704(0.703) 1.511 (0.810) 0.630 (0.093)

ξi 22.755(1.533) 10.043(0.399) 2.588(0.372) 1.215(1.521)

σi 12.240 (0.882) 8.044 (0.309) 8.394 (0.148) 14.147 (0.480)

Table 3. Major compounds for the four main pollution sources considered in the analysis.

Refinery Petrochemical Production Gasoline Evaporation Natural Gas

Major compounds Propane Ethylene n-Butane Ethane

Ethane Propylene Isopentane Propane

n-Butane Isobutane

Isobutane n-Pentane
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Figure 1. Location of 10 sites in the simulation study. Numbered circles give the locations of

2 prediction sites.
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Figure 2. Biases and root-mean-squared-errors of the estimates of non-zero elements of the

source composition matrix based on 100 simulations. We display non-zero elements of the

matrix column-wise (there are a total of 21 non-zero elements). Top panel: thick lines give

the mean and thin lines give 5th and 95th percentiles based on 100 simulations.
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Figure 3. The estimates of the covariance parameters of the SDM model based on 100 simu-

lations.
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Figure 4. MSEs of the estimated source contributions at the 8 simulation locations given in

Figure 1. The numbers in the figure represent the source number.
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Figure 5. Map of 9 locations in Houston area. Observations over numbered 8 locations are

used for model fitting and prediction of source contribution is made at an unmonitored location

(cross).
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Figure 6. Locations of missing data in space and time are marked in black.

25



0 100 200 300 400 500 600

20
60

Refinery

0 100 200 300 400 500 600

10
40

Petrochemical

0 100 200 300 400 500 600

0
40

80

Gasoline

0 100 200 300 400 500 600

0
50

Natural Gas

so
ur

ce
 c

on
tr

ib
ut

io
n

Figure 7. Estimated source contribution at the HRM-3 site (site 2 in Figure 5) over time.
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Figure 8. Predicted source contribution at the unmonitored site (cross in Figure 5) over time.
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