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Abstract. Model checking is emerging as a practical tool for automa-
ted debugging of complex reactive systems such as embedded controllers
and network protocols (see [23] for a survey). Traditional techniques for
model checking do not admit an explicit modeling of time, and are thus,
unsuitable for analysis of real-time systems whose correctness depends on
relative magnitudes of different delays. Consequently, timed automata [7]
were introduced as a formal notation to model the behavior of real-time
systems. Its definition provides a simple way to annotate state-transition
graphs with timing constraints using finitely many real-valued clock va-
riables. Automated analysis of timed automata relies on the construction
of a finite quotient of the infinite space of clock valuations. Over the years,
the formalism has been extensively studied leading to many results esta-
blishing connections to circuits and logic, and much progress has been
made in developing verification algorithms, heuristics, and tools. This
paper provides a survey of the theory of timed automata, and their role
in specification and verification of real-time systems.

1 Modeling

Transition systems. We model discrete systems by state-transition graphs
whose transitions are labeled with event symbols. A transition system S is a
tuple 〈Q,Q0, Σ,→〉, where Q is a set of states, Q0 ⊆ Q is a set of initial states,
Σ is a set of labels (or events), and →⊆ Q×Σ ×Q is a set of transitions. The
system starts in an initial state, and if q a→ q′ then the system can change its
state from q to q′ on event a. We write q → q′ if q a→ q′ for some label a. The
state q′ is reachable from the state q if q →∗ q′. The state q is a reachable state
of the system if q is reachable from some initial state.

A complex system can be described as a product of interacting transition sy-
stems. Let S1 = 〈Q1, Q

0
1, Σ1,→1〉 and S2 = 〈Q2, Q

0
2, Σ2,→2〉 be two transition

systems. Then, the product, denoted S1‖S2, is 〈Q1 ×Q2, Q
0
1 ×Q0

2, Σ1 ∪Σ2,→〉
where (q1, q2) a→ (q′

1, q
′
2) iff either (i) a ∈ Σ1 ∩Σ2 and q1

a→1 q
′
1 and q2

a→2 q
′
2,

or (ii) a ∈ Σ1 \Σ2 and q1
a→1 q

′
1 and q′

2 = q2, or (iii) a ∈ Σ2 \Σ1 and q2
a→2 q

′
2

and q′
1 = q1. Observe that the symbols that belong to the alphabets of both the

automata are used for synchronization.
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Transition systems with timing constraints. To express system behaviors
with timing constraints, we consider finite graphs augmented with a finite set of
(real-valued) clocks. The vertices of the graph are called locations, and edges are
called switches. While switches are instantaneous, time can elapse in a location.
A clock can be reset to zero simultaneously with any switch. At any instant, the
reading of a clock equals the time elapsed since the last time it was reset. With
each switch we associate a clock constraint, and require that the switch may be
taken only if the current values of the clocks satisfy this constraint. With each
location we associate a clock constraint called its invariant, and require that
time can elapse in a location only as long as its invariant stays true. Before we
define the timed automata formally, let us consider a simple example.

s0 s3
s2s1a, x := 0 b, y := 0

d, y > 2

c
x < 1 x < 1

c

Fig. 1. A timed automaton with 2 clocks

Consider the timed automaton of Figure 1 with two clocks. The clock x gets set
to 0 each time the system switches from s0 to s1 on symbol a. The invariant
(x < 1) associated with the locations s1 and s2 ensures that c-labeled switch from
s2 to s3 happens within time 1 of the preceding a. Resetting another independent
clock y together with the b-labeled switch from s1 to s2 and checking its value
on the d-labeled switch from s3 to s0 ensures that the delay between b and
the following d is always greater than 2. Notice that in the above example, to
constrain the delay between a and c and between b and d the system does not
put any explicit bounds on the time difference between a and the following b, or
c and the following d. This is an important advantage of having multiple clocks
which can be set independently of one another.

Clock constraints and clock interpretations. To define timed automata
formally, we need to say what type of clock constraints are allowed as invariants
and enabling conditions. For a set X of clocks, the set Φ(X) of clock constraints
ϕ is defined by the grammar

ϕ := x ≤ c | c ≤ x | x < c | c < x | ϕ1 ∧ ϕ2,

where x is a clock in X and c is a constant in Q. A clock interpretation ν for a set
X of clocks assigns a real value to each clock; that is, it is a mapping from X to
the set IR of nonnegative reals. For δ ∈ IR, ν+ δ denotes the clock interpretation
which maps every clock x to the value ν(x) + δ. For Y ⊆ X, ν[Y := 0] denotes
the clock interpretation for X which assigns 0 to each x ∈ Y , and agrees with ν
over the rest of the clocks.
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Syntax and semantics. A timed automaton A is a tuple 〈L,L0, Σ,X, I, E〉,
where

– L is a finite set of locations,
– L0 ⊆ L is a set of initial locations,
– Σ is a finite set of labels,
– X is a finite set of clocks,
– I is a mapping that labels each location s with some clock constraint in
Φ(X), and

– E ⊆ L × Σ × 2X × Φ(X) × L is a set of switches. A switch 〈s, a, ϕ, λ, s′〉
represents an edge from location s to location s′ on symbol a. ϕ is a clock
constraint over X that specifies when the switch is enabled, and the set
λ ⊆ X gives the clocks to be reset with this switch.

The semantics of a timed automaton A is defined by associating a transition
system SA with it. A state of SA is a pair (s, ν) such that s is a location of
A and ν is a clock interpretation for X such that ν satisfies the invariant I(s).
The set of all states of A is denoted QA. A state (s, ν) is an initial state if s is
an initial location of A and ν(x) = 0 for all clocks x. There are two types of
transitions in SA:

Elapse of time: for a state (s, ν) and a real-valued time increment δ ≥ 0,
(s, ν) δ→ (s, ν + δ) if for all 0 ≤ δ′ ≤ δ, ν + δ′ satisfies the invariant I(s).

Location switch: for a state (s, ν) and a switch 〈s, a, ϕ, λ, s′〉 such that ν

satisfies ϕ, (s, ν) a→ (s′, ν[λ := 0]).

Thus, SA is a transition system with label-set Σ∪ IR. For instance, for the timed
automaton of Figure 1, the state-space of the associated transition system is
{s0, s1, s2, s3} × IR2, the label-set is {a, b, c, d} ∪ IR, and sample transitions are

(s0, 0, 0) 1.2→ (s0, 1.2, 1.2) a→ (s1, 0, 1.2) 0.7→ (s1, 0.7, 1.9) b→ (s2, 0.7, 0)

Note the time-additivity property: if q δ→ q′ and q′ ε→ q′′ then q
δ+ε→ q′′.

Remark 1 (Nonzenoness). We have omitted requirements on the definition ne-
cessary for executability. First, when the invariant of a location is violated, some
outgoing edge must be enabled. Second, from every reachable state, the automa-
ton should admit the possibility of time to diverge. For example, the automaton
should not enforce infinitely many events in a finite interval of time. Automata
satisfying this operational requirement are called nonZeno. The interested reader
is referred to [1,29,11].

Product construction. We proceed to define a product construction for timed
automata so that a complex system can be defined as a product of component sy-
stems. Let A1 = 〈L1, L

0
1, Σ1, X1, I1, E1〉 and A2 = 〈L2, L

0
2, Σ2, X2, I2, E2〉 be two

timed automata. Assume that the clock sets X1 and X2 are disjoint. Then, the
product automaton A1‖A2 is 〈L1 × L2, L

0
1 × L0

2, Σ1 ∪Σ2, X1 ∪X2, I, E〉, where
I(s1, s2) = I(s1) ∧ I(s2) and the switches are defined by:
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1. for a ∈ Σ1 ∩Σ2, for every 〈s1, a, ϕ1, λ1, s
′
1〉 in E1 and 〈s2, a, ϕ2, λ2, s

′
2〉 in E2,

E has 〈(s1, s2), a, ϕ1 ∧ ϕ2, λ1 ∪ λ2, (s′
1, s

′
2)〉.

2. for a ∈ Σ1 \ Σ2, for every 〈s, a, ϕ, λ, s′〉 in E1 and every t in L2, E has
〈(s, t), a, ϕ, λ, (s′, t)〉.

3. for a ∈ Σ2 \ Σ1, for every 〈s, a, ϕ, λ, s′〉 in E2 and every t in L1, E has
〈(t, s), a, ϕ, λ, (t, s′)〉.

Thus, locations of the product are pairs of component-locations, and the invari-
ant of a compound location is the conjunction of the invariants of the component
locations. The switches are obtained by synchronizing the switches with identical
labels.

Train-Gate Controller Example. We consider an example of an automatic
controller that opens and closes a gate at a railroad crossing. The system is
composed of three components: Train, Gate and Controller as shown in
Figure 2. The safety correctness requirement for the system is that whenever
the train is inside the gate, the gate should be closed. This corresponds to esta-
blishing that in every reachable state, if the location of Train is s2 then the
location of Gate should be t2. Observe that such a location is reachable in the
product graph. For example, there is an edge from the initial location (s0, t0, u0)
to (s1, t0, u1), and from (s1, t0, u1) to (s2, t0, u1), corresponding to the scenario
in which the event approach is immediately followed by the event in. This is
because our product is simply a syntactic operation that annotates product lo-
cations with conjunctions of invariants, and product edges with conjunctions of
enabling conditions, without any analysis. If we consider the timing information,
we can establish that the event approach cannot be immediately followed by the
event in: in the location (s1, t0, u1) both clocks x and z have the same value, and
hence the event lower with guard z = 1 is guaranteed to precede the event in
with guard x > 2. The computational problem in timing verification is to make
such deductions by analyzing the timing constraints.

Remark 2 (Compositionality). For communication between system components,
many competing alternatives to the definition used in this paper exist. The choice
of synchronization primitives is somewhat orthogonal to the problem of analysis
of timing constraints, and the algorithmic techniques for timed automata can be
applied to other models. To model open real-time systems (i.e. those interacting
with the environment), one needs to make a distinction between which events are
controlled by the system and which events are controlled by the environment.
Such a compositional framework provides foundations to decompose the analysis
problem into simpler problems [44,11,43]. Issues pertaining to the impact of
timing on synchronization are studied in [19].

2 Reachability Analysis

A location s of the timed automaton A is said to be reachable if some state q with
location component s is a reachable state of the transition system SA. The input
to the reachability problem consists of a timed automaton A and a set LF ⊆ L
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u0
u1u2

z ≤ 1z ≤ 1

s0
s1

s3 s2

Train

outx ≤ 5 x ≤ 5

x ≤ 5x := 0
approach

approach, z := 0

raise

exit, z := 0

z = 1, lower

Controller

t0

t3

y ≤ 1
t1

y ≤ 2 t2

Gate

y := 0

y := 0
raise

lower

x > 2, inexit downy ≥ 1, up

Fig. 2. Train-gate controller

of target locations of A. The reachability problem is to determine whether or
not some target location is reachable. Verification of safety requirements of real-
time systems can be formulated as reachability problems for timed automata,
as illustrated in the train-gate example. Since the transition system SA of a
timed automaton is infinite, our solution to the reachability problem involves
construction of finite quotients.
Time-abstract transition system. The transition system SA of a timed au-
tomaton A has infinitely many states and infinitely many symbols. As a first
step, we define another transition system, called the time-abstract transition sy-
stem and denoted UA, whose transitions are labeled only with the symbols in Σ
by hiding the labels denoting the time increments. The state-space of UA equals
the state-space QA of SA. The set of initial states of UA equals the set of initial
states of SA. The set of labels of UA equals the set Σ of labels of A. The tran-
sition relation of UA is the relation ⇒: for states q and q′ and a label a, q a⇒ q′

iff there exists a state q′′ and a time value δ ∈ IR such that q δ→ q′′ a→ q′ holds
in the transition system SA. In the reachability problem for timed automata,
we wish to determine reachability of target locations. It follows that to solve
reachability problems, we can consider the time-abstract transition system UA

instead of SA.
Stable quotients. While the time-abstract transition system UA has only fini-
tely many labels, it still has infinitely many states. To address this problem, we
consider equivalence relations over the state-space QA. An equivalence relation
∼ over the state-space QA is said to be stable iff whenever q ∼ u and q

a⇒ q′,
there exists a state u′ such that u a⇒ u′ and q′ ∼ u′. The quotient of UA with
respect to a stable partition ∼ is the transition system [UA]∼: states of [UA]∼ are
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the equivalence classes of ∼, an equivalence class π is an initial state of [UA]∼ if
π contains an initial state of UA, the set of labels is Σ, and [UA]∼ contains an
a-labeled transition from the equivalence class π to the class π′ if for some q ∈ π
and q′ ∈ π′, q a⇒ q′ holds in UA.

To reduce the reachability problem (A,LF ) to a reachability problem over the
quotient with respect to ∼, we need to ensure, apart from stability, that ∼
does not equate target states with non-target states. An equivalence relation
∼ is said to be LF -sensitive, for a set LF ⊆ L of target locations, if whenever
(s, ν) ∼ (s′, ν′), either both s and s′ belong to LF , or both s and s′ do not belong
to LF . Consequently, to solve the reachability problem (A,LF ), we search for an
equivalence relation ∼ that is stable, LF -sensitive, and has only finitely many
equivalence classes.

Region equivalence. We define an equivalence relation on the state-space of
an automaton that equates two states with the same location if they agree on
the integral parts of all clock values and on the ordering of the fractional parts
of all clock values. The integral parts of the clock values are needed to determine
whether or not a particular clock constraint is met, whereas the ordering of the
fractional parts is needed to decide which clock will change its integral part
first. For example, if two clocks x and y are between 0 and 1 in a state, then a
transition with clock constraint (x = 1) can be followed by a transition with clock
constraint (y = 1), depending on whether or not the current clock values satisfy
(x < y). The integral parts of clock values can get arbitrarily large. But if a clock
x is never compared with a constant greater than c, then its actual value, once
it exceeds c, is of no consequence in deciding the allowed switches. Here, we are
assuming that all clock constraints involve comparisons with integer constants (if
the clock constraints involve rational constants, we can multiply each constant
by the least common multiple of denominators of all the constants).

Now we formalize this notion. For any δ ∈ IR, fr(δ) denotes the fractional part of
δ, and bδc denotes the integral part of δ; that is, δ = bδc + fr(δ). For each clock
x ∈ X, let cx be the largest integer c such that x is compared with c in some
clock constraint appearing in an invariant or a guard. The equivalence relation ∼=,
called the region equivalence, is defined over the set of all clock interpretations for
X. For two clock interpretations ν and ν′, ν ∼= ν′ iff all the following conditions
hold:

1. For all clocks x ∈ X, either bν(x)c and bν′(x)c are the same, or both ν(x)
and ν′(x) exceed cx.

2. For all clocks x, y with ν(x) ≤ cx and ν(y) ≤ cy, fr(ν(x)) ≤ fr(ν(y)) iff
fr(ν′(x)) ≤ fr(ν′(y)).

3. For all clocks x ∈ X with ν(x) ≤ cx, fr(ν(x)) = 0 iff fr(ν′(x)) = 0.

A clock region for A is an equivalence class of clock interpretations induced by
∼=. The nature of the equivalence classes can be best understood through an
example. Consider a timed transition table with two clocks x and y with cx = 2
and cy = 1. The clock regions are shown in Figure 3. Note that there are only a



14 R. Alur

finite number of regions, at most k! · 2k ·Πx∈X(2cx + 2), where k is the number
of clocks. Thus, the number of clock regions is exponential in the encoding of
the clock constraints.

6

-
0 1 2

1

y

x

6 Corner points: e.g. [(0,1)]

14 Open line segments: e.g. [0 < x = y < 1]

8 Open regions: e.g. [0 < x < y < 1]

Fig. 3. Clock regions

Region automaton. Region equivalence relation ∼= over the clock interpreta-
tions is extended to an equivalence relation over the state-space by requiring
equivalent states to have identical locations and region-equivalent clock inter-
pretations: (s, ν) ∼= (s′, ν′) iff s = s′ and ν ∼= ν′. The key property of region
equivalence is its stability. The quotient [UA]∼= of a timed automaton with res-
pect to the region equivalence is called the region automaton of A, and is denoted
R(A). The number of equivalence classes of ∼= is finite, it is stable, and it is LF -
sensitive irrespective of the choice of the target locations. It follows that to solve
the reachability problem (A,LF ), we can search the finite region automaton
R(A).
Complexity of reachability. Reachability can be solved in time linear in the
number of vertices and edges of the region automaton, which is linear in the
number of locations, exponential in the number of clocks, and exponential in
the encoding of the constants. Technically, the reachability problem is Pspace-
complete. In fact, in [24], it is established that both sources of complexity, the
number of clocks and the magnitudes of the constants, render Pspace-hardness
independently of each other.

Remark 3 (Choice of timing constraints and decidability). The clock constraints
in the enabling conditions and invariants of a timed automaton compare clocks
with constants. Such constraints allow us to express (constant) lower and upper
bounds on delays. For any generalization of the constraints, our analysis techni-
que breaks down. In fact, if we allow constraints of the form x = 2y (a special
case of linear constraints over clocks), then the reachability problem becomes
undecidable [7].

Zone automata. One strategy to improve the region construction is to collapse
regions by considering convex unions of clock regions. A clock zone ϕ is a set of
clock interpretations described by conjunction of constraints each of which puts
a lower or upper bound on a clock or on difference of two clocks. If A has k
clocks, then the set ϕ is a convex set in the k-dimensional euclidean space.
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The reachability analysis using zones uses the following three operations:

– For two clock zones ϕ and ψ, ϕ∧ψ denotes the intersection of the two zones.
– For a clock zone ϕ, ϕ ⇑ denotes the set of interpretations ν + δ for ν ∈ ϕ

and δ ∈ IR.
– For a subset λ of clocks and a clock zone ϕ, ϕ[λ := 0] denotes the set of

clock interpretations ν[λ := 0] for ν ∈ ϕ.

A key property of the set of clock zones is closure under the above three ope-
rations. A zone is a pair (s, ϕ) for a location s and a clock zone ϕ. We build a
transition system whose states are zones. Consider a zone (s, ϕ) and a switch
e = (s, a, ψ, λ, s′) of A. Let succ(ϕ, e) be the set of clock interpretations ν′ such
that for some ν ∈ ϕ, the state (s′, ν′) can be reached from the state (s, ν) by
letting time elapse and executing the switch e. That is, the set (s′, succ(ϕ, e))
describes the successors of the zone (s, ϕ) under the switch e. The set succ(ϕ, e)
can be computed using the three operations on clock zones as follows:

succ(ϕ, e) = (((ϕ ∧ I(s)) ⇑) ∧ I(s) ∧ ψ)[λ := 0]

Thus, clock zones are effectively closed under successors with respect to switches.
A zone automaton has edges between zones (s, ϕ) and (s′, succ(ϕ, e)). For a timed
automaton A, the zone automaton Z(A) is a transition system: states of Z(A)
are zones of A, for every initial location s of A, the zone (s, [X := 0]) is an initial
location of Z(A), and for every switch e = (s, a, ψ, λ, s′) of A and every clock
zone ϕ, there is a transition ((s, ϕ), a, (s′, succ(ϕ, e))).

Difference-bound matrices. Clock zones can be efficiently represented using
matrices [27]. Suppose the timed automaton A has k clocks, x1, . . . xk. Then a
clock zone is represented by a (k + 1) × (k + 1) matrix D. For each i, the entry
Di0 gives an upper bound on the clock xi, and the entry D0i gives a lower bound
on the clock xi. For every pair i, j, the entry Dij gives an upper bound on the
difference of the clocks xi and xj . To distinguish between a strict and a nonstrict
bound (i.e. to distinguish between constraints such as x < 2 and x ≤ 2), and
allow for the possibility of absence of a bound, define the bounds-domain IK to
be ZZ×{0, 1}∪{∞}. The constant ∞ denotes the absence of a bound, the bound
(c, 1), for c ∈ ZZ, denotes the nonstrict bound ≤ c, and the bound (c, 0) denotes
the strict bound < c. A difference-bound matrix (Dbm) D is a (k + 1) × (k + 1)
matrix D whose entries are elements from IK. As an example, consider the clock
zone

(0 ≤ x1 < 2) ∧ (0 < x2 < 1) ∧ (x1 − x2 ≥ 0)

can be represented by the matrix D as well as by the matrix D′:

Matrix D Matrix D′

0 1 2 0 1 2
0 ∞ (0,1) (0,0) (0, 1) (0,1) (0,0)
1 (2,0) ∞ ∞ (2,0) (0,1) (2,0)
2 (1,0) (0,1) ∞ (1,0) (0,1) (0,1)
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Observe that there are many implied constraints that are not reflected in the
matrix D, while the matrix D′ is obtained from the matrix D by “tightening”
all the constraints. Such a tightening is obtained by observing that sum of the
upper bounds on the clock differences xi − xj and xj − xl is an upper bound on
the difference xi − xl (for this purpose, the operations of + and < are extended
to the domain IK of bounds). Matrices like D′ with tightest possible constraints
are called canonical . The Dbm D is satisfiable if it represents a nonempty clock
zone. Every satisfiable Dbm has an equivalent canonical Dbm. We use canonical
Dbms to represent clock zones. Given a Dbm, using classical algorithms for
computing all-pairs shortest paths, we check whether the Dbm is satisfiable,
and if so, convert it into a canonical form. Two canonical Dbms D and D′ are
equivalent iff Dij = D′

ij for all 0 ≤ i, j ≤ k. This test can be used during
the search to determine if a zone has been visited earlier. The representation
using canonical DBMs supports the required operations of conjunction, ψ ⇑,
and ψ[λ := 0] efficiently (cf. [27]).

Theoretically, the number of zones is exponential in the number of regions, and
thus, the zone automaton may be exponentially bigger than the region automa-
ton. However, in practice, the zone automaton has fewer reachable vertices, and
thus, leads to an improved performance. Furthermore, while the number of clock
regions grows with the magnitudes of the constants used in the clock constraints,
experience indicates that the number of reachable zones is relatively insensitive
to the magnitudes of constants.
Implementation. The input to a verification problem consists of a set of com-
ponent timed automata Ai, and the solution demands searching the region auto-
maton R(‖iAi) or Z(‖iAi). The actual search can be performed by an on-the-fly
enumerative engine or a Bdd-based symbolic engine. We briefly sketch imple-
mentation of the search in timed Cospan [15]. Suppose the input program P
consists of a collection of coordinating timed automata Ai. For each Ai, let A′

i

be the automaton without any timing annotations. A preprocessor generates a
new program P ′ that consists of automata A′

i, together with the description of
a monitor automaton AR encoding the region construction or AZ encoding the
Dbm-based zone construction. Suppose ‖iAi has k clocks, and all the constants
are bounded by c. The automaton AR has 2k variables: k variables ranging over
0..c that keep track of the integral parts of the clocks, and k variables ranging
over 1..k that give the ordering of the fractional parts. The automaton AZ has
(k + 1)2 variables ranging over −c..c that keep track of the numerical entries
in the Dbm and (k + 1)2 boolean variables that keep track of the strictness bit
for each matrix entry. The update rules for these variables refer to the state-
variables of the component automata. Searching the region automaton of ‖iAi

is semantically equivalent to searching the product of ‖iA
′
i with AR, while se-

arching the zone automaton of ‖iAi is semantically equivalent to searching the
product of ‖iA

′
i with AZ . Following the preprocessing step, the search engine

of Cospan is used to perform the search on the input program P ′ using Bdds
or using on-the-fly enumerative search. Experience shows that for enumerative
search the zone construction is preferable, while for symbolic search the region
construction is preferable.
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Remark 4 (Dense vs discrete time). Our choice of time domain is IR, the set of
nonnegative real numbers. Alternatively, we could choose Q, the set of rational
numbers, and all of the results stay unchanged. The key property of the time
domain, in our context, is its denseness, which implies that arbitrarily many
events can happen at different times in any interval of nonzero length. On the
other hand, if we choose IN, the set of nonnegative integers, to model time,
we have a discrete-time model, and the flavor of the analysis problems changes
quite a bit. In the dense-time model, reachability for timed automata is Pspace,
while universality is undecidable; in the discrete-time case, reachability for ti-
med automata is still Pspace, while universality is Expspace. We believe that
discrete-time models, while appropriate for scheduling applications, are inappro-
priate for modeling asynchronous applications such as asynchronous circuits. For
verification of real-time systems using discrete-time models, see, for instance, [28,
21]. In [34], it is established that under certain restrictions the timed reachability
problem has the same answer irrespective of choice between IN and IR.

Remark 5 (Minimization). Suppose we wish to explicitly construct a represen-
tation of the state-space of a timed automaton. Then, instead of building the
region or the zone automaton, we can employ a minimization algorithm that
constructs the coarsest stable refinement of a given initial partition by refining
it as needed [4,54,37,50].

Remark 6 (Alternative Symbolic Representations). There have been many at-
tempts to combine Bdd-based representation of discrete locations with Dbm-
based representation of zones. Sample approaches include encoding Dbms using
Bdds with particular attention to bit patterns in the variable ordering [20], and
variants of Bdds specifically designed to represent clock constraints [18].

3 Discussion

We have summarized the basic techniques for analysis of timed automata (see
also [41] for an introduction). We conclude by briefly discussing tools, applicati-
ons, and theoretical results.
Tools. A variety of tools exist for specification and verification of real-time
systems. We list three that are most closely related to the approach discussed
in this paper. The tool timed Cospan is is an automata-based modeling and
analysis tool developed at Bell Labs (see [15,13]). The tool Kronos, developed
at VERIMAG, supports model checking of branching-time requirements [25].
The Uppaal toolkit is developed in collaboration between Aalborg University,
Denmark and Uppsala University, Sweden [40] and allows checking of safety
and bounded liveness properties. All these tools incorporate many additional
heuristics for improving the performance.
Applications. The methodology described in this paper is suitable for finding
logical errors in communication protocols and asynchronous circuits. Examples
of analyzed protocols include Philips audio transmission protocol, carrier-sense
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multiple-access with collision detection, and Bang-Olufsen audio/video protocol
(a detailed description of these and other case studies can be obtained from the
homepages of Kronos or Uppaal). The application of Cospan to verification
of the asynchronous communication on the STARI chip is reported in [49], and
to a scheduling problem in telecommunication software is reported in [14].
Automata-theoretic Verification. Reachability analysis discussed in Sec-
tion 2 is adequate to check safety properties of real-time systems. To verify
liveness properties such as “if a request occurs infinitely often, so does the re-
sponse” we need to consider nonterminating, infinite, executions. Specification
and verification of both safety and liveness properties can be formulated in a
uniform and elegant way using an automata-theoretic approach [52,39,7]. In this
approach, a timed automaton, possibly with acceptance conditions (e.g. Büchi),
is viewed as a generator of a timed language – a set of sequences in which a
real-valued time of occurrence is associated with each symbol. Verification cor-
responds to queries about the timed language defined by the timed automaton
modeling the system. If the query is given by a timed automaton that accepts
undesirable behaviors, then verification question reduces to checking emptiness
of the intersection, and can be solved in Pspace. On the other hand, if the query
is given by a timed automaton that accepts all behaviors satisfying the desired
property, verification corresponds to testing inclusion of the two timed languages,
and is undecidable in general [7]. Decidability of the language-inclusion problem
can be ensured by requiring the specification automaton to be deterministic, or
an event-clock automaton.

Since theory of regular (or ω-regular) languages finds many applications inclu-
ding modeling of discrete systems, many attempts have been made to develop
a corresponding theory of timed languages. Timed languages defined by timed
automata can be characterized using timed version of S1S [53], timed regular ex-
pressions [17], and timed temporal logics [36]. The complexity of different types
of membership problems for timed automata is studied in [16]. Timed languages
definable by timed automata are closed under union and intersection, but not
under complementation. This has prompted identification of subclasses such as
event-clock automata [9] with better closure properties.
Equivalence and Refinement Relations. While timed language equivalence
for timed automata is undecidable, stronger equivalences such as timed bisimula-
tion and simulation are decidable. For a timed automaton A, a timed bisimulation
is an equivalence relation ∼ on the state-space QA such that whenever q1 ∼ q2,
if q1

a→ q′
1 for a ∈ Σ ∪ IR, then there exists q′

2 with q2
a→ q′

2 and q′
1 ∼ q′

2. While
the number of equivalence classes of the maximal timed bisimulation relation is
infinite, the problem of deciding whether there exists a timed bisimulation that
relates two specified initial states is, surprisingly, decidable [51] (the algorithm
involves analysis of the region automaton of the product space Q(A) × Q(A)).
The same proof technique is useful to obtain algorithms for checking existence of
timed simulation [48] (timed simulation relations are useful for establishing refi-
nement between descriptions at different levels of abstractions). The complexity
of deciding timed (bi)simulation is Exptime. A hierarchy of approximations to
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timed bisimulation relation can be defined on the basis of the number of clocks
that an observer must use to distinguish between two timed automata [6]. The
impact of the precision of the observer’s clocks on the distinguishing ability is
studied in [42].
Linear real-time temporal logics. Linear temporal logic (Ltl) [46] is a po-
pular formalism for writing requirements regarding computations of reactive
systems. A variety of real-time extensions of Ltl have been proposed for writ-
ing requirements of real-time systems [45,38,10,8]. In particular, the real-time
temporal logic Metric Interval Temporal Logic (Mitl) admits temporal connec-
tives such as always, eventually , and until , subscripted with intervals. A typical
bounded-response requirement that “every request p must be followed by a res-
ponse q within 3 time units” is expressed by the Mitl formula 2( p → 3≤3 q).
To verify whether a real-time system modeled as a timed automaton A satis-
fies its specification given as a Mitl formula ϕ, the model checking algorithm
constructs a timed automaton A¬ϕ that accepts all timed words that violate
ϕ, and checks whether the product of A with A¬ϕ has a nonempty language
[8]. The definition of Mitl requires the subscripting intervals to be nonsingu-
lar. In fact, admitting singular intervals as subscripts (e.g. formulas of the form
2(p → 3=1 q)) makes translation from Mitl to timed automata impossible,
and the satisfiability and model checking problems for the resulting logic are
undecidable. See [31] for a recent survey of real-time temporal logics.
Branching real-time temporal logics. Many tools for symbolic model check-
ing employ the branching-time logic Ctl [22,47] as a specification language.
The real-time logic Timed Computation Tree Logic (Tctl) [3] allows temporal
connectives of Ctl to be subscripted with intervals. For instance, the bounded
response property that “every request p must be followed by a response q within
3 time units” is expressed by the Tctl formula ∀2( p → ∀3≤3 q). It turns
out that two states that are region-equivalent satisfy the same set of Tctl-
formulas. Consequently, given a timed automaton A and a Tctl-formula ϕ,
the computation the set of states of A that satisfy ϕ, can be performed by a
labeling algorithm that labels the vertices of the region automaton R(A) with
subformulas of ϕ starting with innermost subformulas [3]. Alternatively, the
symbolic model checking procedure computes the set of states satisfying each
subformula by a fixpoint routine that manipulates zone constraints [35].
Probabilistic models. Probabilistic extensions of timed automata allow mo-
deling constraints such as “the delay between the input event a and the output
event b is distributed uniformly between 1 to 2 seconds” (cf. [2]). With introduc-
tion of probabilities, the semantics of the verification question changes. Given
a probabilistic timed automaton A and a specification automaton AS that ac-
cepts the undesirable behaviors, verification corresponds to establishing that the
probability that the run of the system A generates a word accepted by AS is
zero. A modification of the cycle detection algorithm on the region automaton
of the product of A and AS can solve this problem [2]. A similar approach works
for verifying Tctl properties of a probabilistic timed automaton. However, if
we introduce explicit probabilities in the requirements (e.g. event a will happen
within time 2 with probability at least 0.5), then model checking algorithms are
known only for a discrete model of time [26].
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Hybrid systems. The model of timed automata has been extended so that con-
tinuous variables other than clocks, such as temperature and imperfect clocks,
can be modeled. Hybrid automata are useful in modeling discrete controllers
embedded within continuously changing environment. Verification of hybrid au-
tomata is undecidable in general. For the subclass of rectangular automata, ana-
lysis is possible via language-preserving translation to timed automata [33], and
for the subclass of linear hybrid automata, analysis is possible based on symbolic
fixpoint computation using polyhedra [12]. See [5] for an introduction to the
theory, to [32] for an introduction to the tool HyTech, and to [30] for a survey.
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