OXFORD UNIVERSITY COMPUTING LABORATORY
PROGRAMMING RESEARCH GROUP

LAaMBDA CALCULUS

C.-H. L. Ong

© C.-H. L. Ong, 1997

Aim

Recursive functions are representable as lambda terms, and definability in the calculus may be regarded
as a definition of computability. This forms part of the standard foundations of computer science.
Lambda calculus is the commonly accepted basis of functional programming languages; and it is folk-
lore that the calculus is the prototypical functional language in purified form. The course investigates
the syntax and semantics of lambda calculus both as a theory of functions from a foundational point
of view, and as a minimal programming language.

Synopsis

Formal theory, fixed point theorems, combinatory logic: combinatory completeness, translations be-
tween lambda calculus and combinatory logic; reduction: Church-Rosser theorem; Bohm’s theorem
and applications; basic recursion theory; lambda calculi considered as programming languages; sim-

ple type theory and PCF: correspondence between operational and denotational semantics; current
developments.

Relationship with other courses

Basic knowledge of logic and computability in paper Bl is assumed.

Selected references

H. Barendregt. The Lambda Calculus. North-Holland, revised edition, 1984.

e J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University Press, 1989.
Cambridge Tracts in Theoretical Computer Science 7.

e C. A. Gunter. Semantics of Programming Languages: Structures and Techniques. MIT Press,
1992.

e G. D. Plotkin. LCF considered as a programming language. Theoretical Computer Science
5:223-255, 1975.

[Please send any correction to 1lo@comlab.ox.ac.uk.]|

CONTENTS 2
Contents
1 Syntax of the A-calculus 4
1.1 Basic definitions L 4
1.2 Variables e e e 4
1.3 Important convention 5
1.4 pB-conversion and substitution L L oL Lo)
1.5 Formal theories AGand ABn 6
1.6 Fixed points L L 7
1.7 Contexts o . o 7
2 Reduction 10
2.1 Preliminaries: rule induction Lo L o 10
2.2 Some basic notions of term rewriting oL oL 10
2.3 Some desirable properties of term rewriting systems L oL 11
2.4 Church-Rosser property of S-reduction oo 12
2.5 Why is the Church-Rosser property important? 15
3 Combinatory logic 18
3.1 Combinatory algebra L 18
3.2 Abstraction algorithm oL 18
3.3 Combinatory completeness L Lo 19
3.4 Extensionality axioms L L e 21
3.5 Translation between A\ and CL 22
4 Bohm’s Theorem 26
4.1 The theorem and its significance oo 26
4.2 Proof of the theorem L 27
5 Call-by-name and call-by-value lambda calculi 31
5.1 Motivations Lo 31
5.2 Call-by-name or Lazy A-calculus 32
5.3 Applicative simulation and context lemma, 33
5.4 Call-by-value A-calculus 36
5.5 Context lemma by Howe’s method L. 37
6 (Very) Basic Recursion Theory 40
6.1 Numerals e 40

CONTENTS 3
6.2 Strong definability L 40
6.3 Undecidability of S-convertibilityo oo 43

A Class problems 52

B Sample examination questions 53

C Lambda Calculus Mini-projects 56

D Overview lecture: copies of slides 64

1 Syntax of the A-calculus

In this section we introduce the syntax of the untyped A-calculus and fix some notations. Substitution
is a key operation of the A-calculus, which should be contrasted with context substitution. There are
fixed-point operators in the A-calculus — this has to do with the possibility of self-application in the
untyped A-calculus. The theories A3 and ABn are introduced.

1.1 Basic definitions

The syntax of the A-calculus is remarkably simple. A-terms are defined by induction over the following
rules:

e any variable is a A-term
e if s and ¢ are A-terms then so is (s - ¢) which is called an application
e if s is a A-term then the A-abstraction (or simply abstraction) (Az.s) is a A-term.
Remark 1.1.1 (i) We use meta-variables s, s, s;,,t', etc. to range over A-terms, and z,y, 2, z;, 2’

etc. to range over (denumerably many) variables. (Do not confuse the object-variables i.e. x,y, z
etc. with meta-variables.)

(ii) The symbols (,), - are part of the language. They play an important role in disambiguating the
structure of expressions. It is possible to minimize their use in a safe way. We write (s-t) simply
as st and (Az.s) as Az.s, omitting - and as many parentheses as we can get away with, subject
to the following convention:

— abstraction associates to the right: Azy--- z,.s means \z1.(Azg. - (Azy.8)).

— application associates to the left: sj--- s, means (---(s182) - sp).

(iii) AZ.s and § are shorthand for Az ---z,.s and sy --- s, respectively, for n > 0. So for example
stu is a shorthand for st; - - - t,u for some n > 0.

1.2 Variables

An occurrence of a variable z in s is said to be bound if it is in the scope of some abstraction \z.—
in s; otherwise z is free in s. Formally we define the set fv(s) of free variables of s by recursion as
follows:

fu(e) = {a}
fu(st) & fu(s) Ufu(t)
f(Az.s) & fu(s)—{z}.

A term is said to be closed if every variable occurrence in it is bound. We write A for the set of
A-terms, and A° for the set of closed A-terms.

1.3 Important convention 5

1.3 Important convention

a-convertibility Two terms s and t are said to be a-conwvertible, written s =, t, if one is obtainable
from the other by renaming bound variables. E.g.

AZY.T =o A2Y.Z =q AZT.Z.

We regard a-convertible terms as identical at the syntactic level; they are to all intents and purposes
equal. We shall use = to mean syntactic equality; and reserve the more common symbol = for
(B-convertibility. So s =, t implies s = ¢.

Variable convention We state the convention informally as:

“We shall assume that there is an inexhaustible supply of fresh variable names so that

given any (finite) number of A-terms si,---,s,, bound variables occurring in them are
renamed where necessary in such a way that none is the same as any variable occurring
free in s1,- -+, sp.”

1.4 [(-conversion and substitution

What do A-terms denote? A-calculus is a theory of functions. Application is a binary operator. The
A-abstractor “Az.—” in any abstraction Az.s can be thought of as a term-constructor of arity one. A
term may act both as an operator (function) and as an operand (argument). E.g. x in the term zz.

B-conversion Think of A-terms as programs for the moment. What happens when a A-term (an
abstraction) is applied to another?

(Az.s)t = s[t/z]

where s[t/z] means “in s substitute ¢ for every free occurrence of 2. Substitution is a very important
operation in formal logic. In the A-calculus

e substitution is an implicit operation i.e. the expression “s[t/z]” is not part of the object language;
we are to understand “s[t/z]” as denoting the A-term that is obtained from s by substituting ¢
for every free occcurrence of x in s.

e substitution is an unrestricted operation; any term may be substituted for any variable. This
is to be contrasted with the substitution mechanism of, say, the m-calculus of Milner, Parrow
and Walker [MPW92], in which only names (as opposed to all 7-terms) may participate in the
operation.

Substitution may be defined by recursion as follows:

s ifex=y
z[s/y] =
x otherwise

(wo)ls/y] = (uls/ylols/y])
(Aat)ls/y] = Aa.(tls/y)).

1.5 Formal theories \G and A\(n 6

Note that in the absence of the variable convention, the last clause should be replaced by

A (t[z) x][s ifz=yorazéefu(s
el & (e falls/) i =y or & € ()
Az.(t[s/y]) otherwise

For example (Azy.zy)[yy/z] is Azu.(yy)u.

Proposition 1.4.1 (Nested substitution) For any variable x distinct from y, if x does not occur
free in u,

slt/zllu/yl = slu/ylltlu/yl/=].

Proof We prove by induction on the structure of s. Consider the base case of s being a variable. If
s = x then both lhs and rhs are t[u/y]. If s = y then the lhs is u; the rhs y[u/y|[t[u/y]/x] is u[t[u/y]/z]
which is u since = does not occur free in u. For the remaining case of s being a variable distinct from
z and y, both sides give s. Next suppose s = s159.

(sis2)[t/x][u/y]l = (s1lt/=][u/y])(s2[t/x][u/y]) by induction hypo.
sifu/yl[tlu/y]/]) (s2lu/y][t[u/y]/])
si[u/ylsa[u/y])[t[u/y]/x]

s1s2)[u/yl[t[u/y]/z].

The case of s being an abstraction is left as an easy exercise. O

(
(
(
(

1.5 Formal theories \3 and \(n
[We shall assume knowledge of elementary logic; see for example Hamilton’s [Ham88] or Mendelson’s

book [Men87].] A theory is a collection of formulae closed under a notion of provability or derivability.
In this course terms are just the A-terms and formulae are equations between terms, written s = ¢.

Proof system A3

There are three groups of axiom and rule schema.

(1) equivalence: these are the rules that define = to be an equivalence relation

(reflexivity) s=3s
s=t
S et
(symmetry)
t t=
(transitivity) a
=u

(2) compatible closure: these rules ensure that = is a congruence i.e. = is preserved by all contexts

1.6 Fixed points 7

s=s t=1t

(application)

st = s't!
s=t
abstraction _
() AL.8 = Ax.t

(3) B-conversion
(8) (Az.s)t = s[t/z].
The formal theory ABn is A3 extended by the following axiom scheme
AL.ST = § provided x does not occur free in s.

We write A3 s =t to mean that s = ¢ is provable in the theory AB3. Similarly for A38n.
Notation We shall often write AB - s =t simply as s = t.

Here are some questions that we should ask about the theories:

(1) Is AB (or ABn) consistent? (A theory is said to be consistent if there is a formula which is not
a theorem. Warning: consistency has several subtly different meanings in logic.)

(2) Is AB (or ABn) maximally consistent (i.e. for any s and ¢, either ABF s =1t or AB+ (s =t) —
the theory obtained by augmenting A3 by the equation (s = t) — is inconsistent)?

(3) Is equality = in AB (or in ABn) decidable?
1.6 Fixed points
For A-terms f and wu, u is said to be a fized point of f if fu = u. A fized-point combinator is a

(closed) term f such that s(fs) = fs for all A-term s. (A combinator is just a closed A-term, for
which more anon.) In the A-calculus, the so-called first recursion theorem is (almost) a triviality.

Proposition 1.6.1 (First Recursion Theorem) There are (many) fixed-point combinators in the
A-calculus. n

Here are two well-known ones:

e Curry’s “paradoxical” combinator: y & Af.(\z.f (zz))(\z.f (zz))

e Turing’s fixed-point combinator: ® < AA where A is defined to be Azy.y(zzy).

For example yg = (Az.g(z2)) (Ar.g(x2)) = g((Ae.g(ex)) Aa.g(z2))) = g(yg)-

1.7 Contexts

Intuitively these are A-terms that contain “holes”. We use meta-variables X, X', Y, Y’ etc. to denote
such “holes” — call them hole-variables. Examples of context: Az.X Xz (or more suggestively Az.[|[]z),
X (zyX (Az.Y")). Contexts are ranged over by C,C’, D etc.

1.7 Contexts 8

Definition 1.7.1 Contexts (or A-contexts) are defined by the following BNF rule:
cC == =z | X | (CC) | (Az.0).

As usual we adopt the convention of leaving out as many parentheses as we can get away with. We
often write a context C' in a more informative way as C[Xy,---, X,]| whenever the hole-variables
occurring in C belong to the set { X1, -+, X, }.

Context substitution

It is important to distinguish context substitution from variable substitution: in the former, variable
capture may happen i.e. variables may become bound as a result of the operation; but not in the
latter. For example take C[X] to be Az.Xyx. Then C[z] is Az.zyz — z is bound or “captured” as a
result; contrast this with (Az.zyz)[z/z], which is Au.zyu.

Formally we define C[sy,---, s,], the context-substitution of A-terms si,---,s, for hole-variables
X1+, Xp in C =C[Xy, -, X,), as follows: (we shall write C[5] as a short hand for C[sy,-- -, sp])

.
C if C is a term variable

def Si if C'is X;

01[§]C2[§] ifC = 0102
Az.C'[5] if C = \z.C".

Context is an important tool for reasoning about properties of syntax.

Problems

Problems contained in this exercise (and in future installments) supplement the lectures. Students are
advised to work through them. Problems marked with % may be difficult.
1.1 (i) Rewrite ((zy)(Ay(Az.(2(zy))))) using the minimum number of parentheses

(ii) Fill in all possible parentheses in (Azyz.zy(zz)) \zy.x.

1.2 Perform the following substitutions:

(i
(i

) (Az.yz)[yz/z]

)
(iii)

)

)

(
(Ay.zy)[yz /]
(Az.(A\z.yz)x2)[22 /]

(iv) Clyz] where C[X] = Az.(Az.yz) Xz
(v) Clyz] where C[X] = \y.Xy.

1.7 Contexts 9

1.3 A proof of the formal system Af is a finite sequence [of formulae (=equations) such that every
formula 6 of [is either an instance of an axiom, or it is the conclusion of an instance of a rule whose
corresponding instances of the premises occcur to the left of 6 in [.

Write down a proof of (Az.(Az.2)((Ay.y)z))u = (Az.zz)u, and construct its proof tree.

1.4 Prove the following:

(i) if s =t then s[u/z] = t[u/z] for any u
(ii) if s =t then u[s/x] = u[t/z] for any u

(iii) if s =t and p = ¢ then s[p/z] = t[q/x].

1.5 Prove that if s = ¢ then for any context C[—]|, C[s] = C[t].

1.6 Show that there exists s such that st = ss for all £.

1.7 Show that there is no A-term f satisfying the following property:
for any A-terms s and ¢, f(st) = s.

[Hint: use the Fixed Point Theorem.]

1.8 Use the Fixed-Point Theorem to construct:
1. a closed A-term ¢ such that ¢ = ¢s where s is the standard S-combinator.
2. a closed A-term M such that Miss = M's where i is the standard identity combinator.

1.9 % Show that every fixed-point combinator can be characterized as a fixed point of a term G.
Find G.

1.10 % Show that there are denumerably many (/-inequivalent) fixed-point combinators. Generate
these combinators by a “uniform” procedure.

1.11 It is known that the n-axiom is not derivable from the formal system AS3. (1 Can you show it?)
However for any s which is S-equivalent to a A-abstraction, Ax.sz = s, for z not occurring free in s.
Why is this so?

10

2 Reduction

Using (-reduction as the main example, we introduce the basic notions of term rewriting such as weak
and strong normalization, and Church-Rosser. g-reduction is shown to be Church-Rosser.

2.1 Preliminaries: rule induction

For an introduction to rule induction see e.g. the treatment in chapter 4 of Winskel’s book [Win93|
(especially the Principle of Rule Induction); for a more foundational approach, see Aczel’s chapter in
the Handbook of Mathematical Logic [Bar77].

Subterm of a A-term is defined by induction as follows:

e a A\-term is a subterm of itself
e if u is a subterm of s then it is a subterm of Az.s

e if u is a subterm of s the it is a subterm of both st and ts.

Let 7 be a set of terms. Typically 7 is defined by induction over a set of formation rules. The
formation rule R. defining a constructor ¢ of 7 has the general form:

s1€T -+ s,€T

R
¢ c(s1, - 8n) €T

where c is a term constructor. For example the collection A of A-terms can be defined by induction
over the following formation rule schema:

s€EA teA s€EA

A -
ve 5 H)EA (\z.s) € A

2.2 Some basic notions of term rewriting

Term rewriting is a subject in theoretical computer science in its own right: for a survey, see the
respective chapters in the MIT Press Handbook of Theoretical Computer Science [vL90] and the oup
Handbook of Logic in Computer Science [AGM93]. We shall not study term rewriting in general in
this section but rather regard A-calculus as a particular term rewriting system.

A redex rule (or notion of reduction) R over T is just a binary relation R over 7 (of a certain
kind). Take 7 to be the set of A-terms, and R the redex rule

B = {((Az.s)t,s[t/z]) : s and t are A\-terms, z a variable }.

We define the corresponding one-step [B-reduction by induction over the following rule schema:

s — s t—t s — s
st — s't st — st! Ax.8 — Ax.s'

s,t) €
——(s,t)ep
The first rule scheme is only applied whenever the predicate on the r.h.s., known as the side condition,
is satisfied.

Though S is the main redex rule we shall study in this course, the idea of one-step reduction is quite
general. Given an arbitrary redex rule or notion of reduction R over a set 7 of terms, we define the
corresponding one-step reduction, which we call one-step R-reduction, as follows.

2.3 Some desirable properties of term rewriting systems 11

Definition 2.2.1 (Informal) A binary relation R over 7 is said to be closed under the formation
rule R. (as above) argumentwise just in case for any si,---, s,, and for each i, if s; R s, then

C(Sla"'asia"'asn)RC(Sla"'aS;a"'asn)'

The compatible closure of the redex rule R, or one-step R-reduction, is defined to be the least
(w.r.t. inclusion) binary relation containing R and closed under all the formation rules argumentwise.

Notation Let R be a redex rule or notion of reduction over T .

—R e compatible closure of R or one-step R-reduction
—»R et reflexive, transitive closure of —p

—>JI§ X transitive closure of — R

=r = reflexive, symmetric, transitive closure of —g.

We shall be a little vague about what exactly is a redex rule or notion of reduction. Intuitively a
notion of reduction is a binary relation from which we derive the corresponding one-step reduction
(by taking compatible closure).

Proposition 2.2.2 For A\-terms s and t, A\B s =t if and only if s =3 1. O

The following are obvious:

e s »p t if and only if for some n > 0 and for some s1,- -+, sp,

$S=8) RSl —FR""" —RSp =1;

® s —>; t if and only if for some n > 1 and for some sq,---, s,

S=8) FRS1—R'"" —RSp =1t.

Intuitively an R-redex is the “smallest” syntactic unit that contributes to (an instance of) one-step
reduction. A (-redex is a A-term that has the general shape (Az.s)t, i.e., the shape of the lhs of the
redex rule .

Remark 2.2.3 Let R be a redex rule over 7. The following is generally valid:

. for some “one-holed” T-context C[X] and
S —R S —
for some R-redex A, C[A] = s and s’ = C[A'] and A R A".

A one-holed context is one in which the hole occurs exactly once.

2.3 Some desirable properties of term rewriting systems

(For the rest of this section, we shall assume that R is a redex rule over 7.)

A term s of T is said to be an R-normal form (R-NF or simply normal form if R is clear from
the context) provided there is no ¢ for which s —p t. By definition of —, a term s is an R-NF if and
only if no subterm of s is an R-redex. A term s has an R-normal form just in case s reduces to
an R-normal form i.e. s =+ $1 —Rr S92 —Rr -+ —r S, and s, is an R-normal form, for some terms

S1577 7 Sne

2.4 Church-Rosser property of S-reduction 12

Example 2.3.1 (i) A, =Xz.z -z, s = Azyz.xz(yz), k = Azy.z are in G-NF.

n

(ii)) @ = (A\z.zz)(A\z.zx), AnA, for m,n > 2, yi and yk do not have any [(-NF, where y is any
fixed-point combinator.

Definition 2.3.2 (i) A term s is said to be normalizable (w.r.t. a one-step reduction —g) if s
has an R-normal form.

(ii) A term s is said to be strongly mormalizable (w.r.t. —p) if there is no infinite one-step
reduction emanating from s; equivalently every one-step reduction sequence emanating from s
terminates at an R-normal form after finitely many steps.

(iii) The one-step reduction —p is weakly normalizing if there is a reduction strategy that reduces
every term to its R-normal form. A reduction strategy is a map that associates to each non-
normal term a subterm that is a redex. A reduction strategy that reduces every term to its
R-normal form if it has one is called normalizing.

(iv) The one-step reduction —p is strongly normalizing if every term s is strongly normalizable

w.r.t. —p; equivalently there is no infinite one-step R-reduction sequence.

Clearly if s is strong normalizable then it is weakly normalizable. Hence if a one-step reduction
is strongly normalizing then it is weakly normalizing. In untyped A-calculus f-reduction is neither
weakly nor strongly normalizing. However S-reduction in simply-typed A-calculus and second-order
polymorphic A-calculus (or System F) is strongly normalizing.

Let R be a redex rule over 7. We say that —p satisfies

(i) diamond property if s —p t1 and s —p to implies t1 — g t and ty — t for some ¢.

(i) Church-Rosser property if s —p t; and s —p to implies t; —p t and to —p ¢ for some ¢;
equivalently if — p satisfies the diamond property.

How are the two properties related?

Lemma 2.3.3 Let Ry be a binary relation. If Ry satisfies the diamond property then the transitive
closure of Ry satisfies the diamond property.

Proof By a “diagram chase”. O

We say that a redex rule R (over T), or — g, has unique normal form property if whenever a term
has normal forms they are equal.

2.4 Church-Rosser property of -reduction

The rest of the section is devoted to a proof of the following result:

Theorem 2.4.1 The one-step B-reduction is Church-Rosser.

We shall prove this theorem by a method of “parallel reduction” due to P. Martin-Lo6f and W. W. Tait.

Define a notion of parallel B-reduction as a binary relation >> over A-terms by induction over the fol-
lowing rules:

2.4 Church-Rosser property of S-reduction 13

(refl) 5>> s
(a) s> ¢ t >t
PP st > s't’
s> s
abs _
(abs) Az.s >> M\z.s'
(||ﬁ) s> t >t

(Az.s)t > §'[t'/x]
Our strategy shall be to prove

(1) >> satisfies the diamond property, and

2) —»3 is the transitive closure of >>.
B

Hence by Lemma 2.3.3 —» 3 satisfies the diamond property. To establish (1) we first prove:
Lemma 2.4.2 (Substitution) If s >> s and t >> t' then s[t/z] > §'[t'/x].

Proof We prove by induction over the structure of s and by case analysis of the definition of s >> s’
by rule induction.

e (refl) Suppose s = 5.

s s[t/x] s'[t')x] = s[t' /]

T t t
y y y
pq | plt/zlqlt/z] | p[t'/z]q[t'/z]

Ay.p | Ay.(plt/z]) | Ay.(p[t'/=])

e (app) Write s = s189, 8’ = s}s}. By supposition s; >> s} and s >>). Since s; and sg are
smaller than s, by the induction hypothesis, s1[t/z] >> s|[t'/z] and sq[t/z] >> s4[t'/x]. Hence
the result follows from (app).

e (abs) Exercise.

e (||-8) Suppose s = (A\y.p)q and s’ = p'[¢'/y] with p >> p’ and ¢ > ¢'. By the induction
hypothesis, p[t/z] > p'[t'/x] and q[t/x] >> ¢'[t'/z]. Thus

(Ay-p)alt/e] = (Ay-plt/a])(qt/x])
> p[t'/x]lg'[t'/«]/y] by (I-0)
= '[d/y)[t' /] by Prop. 1.4.1 (Nested substitution)

2.4 Church-Rosser property of S-reduction 14

Observe that by definition of >> we have

(i) If Az.s >>t then ¢ has the shape Az.s' and s >> ¢/
(ii) If st >> u then

— either u has the shape s't' and s >> s' and t > t/
— or s has the shape Az.p and u = p'[t' /x] with p >> p/ and t >> t'.

Proposition 2.4.3 >> satisfies the diamond property.

Proof Suppose s >3> s1 and s >> s9. We show by structural induction and by case analysis of the
definition of s >> s that s; >> ¢ and s9 >> ¢, for some t.

e (refl) By assumption s >> s = s;. Take t to be ss.

e (app) By assumption s = pq, s1 = p1q1 with p >> p; and g >> ¢;. By the preceding observation
we consider two subcases:

— 89 = poge with p >> po and ¢ >> ¢». By the induction hypothesis p; >> p and ps >> p,
q1 >> g and g2 >> q for some p and g. Hence the result follows by taking ¢ to be pq and b_y
(app).

— p = Az.u and s2 = ugge/z] with u >> ug and ¢ >> ¢2. Suppose p; = Az.u; with u >> u;.
By the induction hypothesis we have, for some w, u; >> u and us >> wu; and for some
¢, ¢1 > q and g» > ¢. Hence by (|-6), (Az.u1)q1 >> u[g/z] and, by the Substitution
Lemma 2.4.2, uz[qa/x] >> ulq/z].

e (abs) Exercise.

e (||-B) By assumption s = (Az.p)q and s; = pi1[q1/z] with p >> p; and ¢ >> ¢;. By the previous
observation there are two cases:

— s3 = (Az.p2)g2 with p >> py and ¢ >> ¢2. By the induction hypothesis, for some p,
p1 and py >> p, and for some ¢, ¢; and g2 >> ¢. Hence, by the Substitution Lemma,

pila1/x] > plg/a], and by (||-6), (\z.p2)q2 > plg/x].
— S92 = po[g2/x] with p >> ps and ¢ >> ¢o, same as before.

Finally we check that
Lemma 2.4.4 — g is the transitive closure of >>.

Proof It suffices to show that
“reflexive closure of —5” C > C —g.

The first inclusion is obvious; the second is easily verified by induction over the rules that define >>.[]

Hence we see that 8 is Church-Rosser.

2.5 Why is the Church-Rosser property important? 15

Other forms of reduction in A-calculus

n-reduction and n-expansion over untyped A-terms are the respective compatible closures of the fol-
lowing notions of reduction:

pred def {(Az.sz,s) : x is not free in s }

n®P = {(s,\r.sz):x is not free in s }.

The notion of reduction 37 is the union of 3 and nd.

Proposition 2.4.5 The one-step fn-reduction is Church-Rosser. O

A proof can be found e.g. in [Bar84, p. 66].

2.5 Why is the Church-Rosser property important?

Church-Rosser property is a standard test for consistency of an equational theory in a sense which we
shall make clear shortly. Let £ be a formal theory of equations over terms of 7. We say that a notion
of reduction R implements £ just when the equivalence relation =g induced by R coincides with £.

Proposition 2.5.1 Suppose R implements £. If R is Church-Rosser and if there are distinct R-
normal forms then £ is consistent (i.e. there are distinct terms s and t that are not provably equal
in€).

Proof Note that by definition s =g t if and only if

S tl tn,1 tn =t
S1 52 Sn

for some sy1,t1,- -, $p,tn. We claim: if R is Church-Rosser then s =g t if and only if for some u, both
sand t —»pr u.

Now take s and ¢ to be two distinct R-normal forms. Suppose R is Church-Rosser. For a contradiction,

suppose s = t is provable in £. Hence by R-implementability, s =g ¢, which implies, by the claim,
that both s and ¢t —g u, for some v — a contradiction. O

Corollary 2.5.2 Since there are distinct $-normal forms, and 3 is Church-Rosser, A3 is consistent.

Proposition 2.5.3 Suppose R implements £. If —p is both weakly normalizing and Church-Rosser
then £ is decidable.

Proof Take any terms s and . Weak normalization gives a strategy that reduces s and ¢ to normal
form in finitely many steps. Since R implements £, s = ¢ in £ if and only if they have the same normal
form. It then remains to appeal to Church’s Thesis. O

2.5 Why is the Church-Rosser property important? 16

Problems

2.1 List all the subterms of Af.(Az.f(zx))(Az.f(zz)).

2.2 Give pairs of A-terms to show that the following inclusions are strict:

=g C =4 C =5 C =5.
2.3 Show that Remark 2.2.3 is true in the case of G-reduction over A-terms.

2.4 Show that the following A-terms have a G-normal form: set s = Azyz.zz(yz)

(i) (\yz.zy)(Az.zzz) Az.zzx))(Awz.x)

(i) (Ay-yyy)((Aab.a)(Az.z)(ss))

2.5 Prove the following:

(i) If —p is Church-Rosser then it has unique normal form property, but not vice versa.
(ii) If — R is strongly normalizing and has unique normal form property then it is Church-Rosser.

Is the statement still valid if — is only weakly normalizing?

2.6 Counsider g-reduction. Give three A-terms that are:

in #-normal form

not in B-normal form but strongly normalizable
normalizable but not strongly normalizable
non-normalizable.

2.7 Prove the Subsitution Lemma for B-reduction: for any terms s,t and u, and for any variable
z, if s =g t then s[u/z] — g t[u/x].

2.8 Define by recursion the collection of S-normal forms. Describe the collection of #n-normal forms.
2.9 Write out the argument for the case of (abs) in Lemma 2.4.2 and the same in Lemma 2.4.3.

2.10 Prove that the notion of reduction # implements the proof system A3. That is to say, for any
A-terms s and ¢, AB F s =t if and only if s =g ¢ (the latter is defined w.r.t. the notion of reduction

B

2.11 We say that A-terms s and ¢ are tncompatible just in case the formal theory obtained by
augmenting A3 with s = ¢ is inconsistent. Prove by contradiction that (the usual combinators con-
sidered as A-terms) s and k are incompatible. [Hint: By applying both sides of the equation s = k to
appropriate A-terms p,q and r, show that i = s for all s.]

Show further that

2.5 Why is the Church-Rosser property important? 17

(i) i and k are incompatible
(ii) i and s are incompatible

(iii) zy and yz are incompatible.

[We shall see later in the course by Béhm’s Theorem that any A-theory that equates any two (7-
inequivalent normal forms is inconsistent.]

2.12 Let —1 and —9 be two binary relations on a set 7. Say that —; and —2 commute just in
case whenever s —; t; and s —9 t9 then there is some ¢t such that t; —9 ¢t and t9 — ¢.

A lemma of Hindley and Rosen states that if —; and —9 both satisfy the diamond property and
commute with each other then the reflexive transitive closure of (—; U —9) satisfies the diamond
property.

Prove the lemma. Hence show that if —; and —9 are Church-Rosser and —»; commutes with —»9 then
(—1 U —9) is Church-Rosser.

red

2.13 By using the preceding lemma of Hindley and Rosen, prove that the notion of reduction A3n
is Church-Rosser.

2.14 Add to A (the collection of A-terms) constants J and e. Define on the extended terms the
following notion of reduction d:
dss — e

Show that AB3d is not Church-Rosser.

18

3 Combinatory logic

The section gives a brief introduction to the theory of combinatory logic. Models of combinatory logic
are called combinatory algebras which may be characterized as applicative structures that satisfy the
axiom of combinatory completeness. Various extensionality axioms are introduced. A major theme is
the translation between combinatory logic and the A-calculus, and the nature of their relationship as
theories.

This section assumes basic knowledge of first-order predicate logic; see e.g. the relevant chapters of
[Ham88] or [Men87].

3.1 Combinatory algebra

We shall consider theories in first-order predicate calculus with equality.

Notation Fix such a language Ly that has a binary function symbol “”. For terms a,b of L,
we write a - b simply as ab; and for any variable xz of Ly, a[b/z] shall mean the term obtained from
a by substituting b for every occurrence of . We shall assume the same notational convention for
application as before i.e. abed means ((ab)c)d etc. A model for Ly is called an applicative structure.

Definition 3.1.1 Let £ be the language obtained by adding constant symbols k,s to Ly. Consider
the axioms

kzxy = =x
(Co)
styz = xz(yz).
Note that it is the same as considering the closure of (Cy), i.e.,
Veykzy = x

Vezyzszyz = xz(yz).

A model of this system of axioms is called a (total) combinatory algebra.

We shall use the following notations:

o M E F means the formula F' is satisfied in the model M of L

e S F F means the closed formula F' is a consequence of the set S of formulae.

3.2 Abstraction algorithm

Define an operation £L — L parametrized by variables x of L: for each x, there is a map a — Xz.a,
where a € L and where Xz.a is defined by recursion as:

def

Nx.x skk

Xz.a = ka if 2 does not occur free in o
Mz.ab = s(Mz.a)(Nz.b).

Note that Mz.(-) maps £ to £ — not to be confused with A-abstraction. We shall often use i as a
shorthand for skk. Nested abstractions Mzp.(- - - Mzy,.(-)) shall be written as Mz - - - y,.(-).

3.3 Combinatory completeness 19

Proposition 3.2.1 (f-simulation) For each a € L,

(i) = does not occur free in M\z.a, and
(ii)) Co FVz.((RMz.a)r =a).
(iii) Hence it follows that Cy = (Mz.a)b = a[b/z] for all b € L.

(iv) (ii) extends to
CokFVey-xp.(RNzy - 2p.0)ry - 2y = @)

with fv(a) C {z1, -, 2, }.

Proof (i) can be proved easily by an induction on the size of a. (ii) is proved by structural
induction on a. Suppose D - Cy. Fix a € L. Take any d € D. We write [[t]]p for the interpretation
of t in D given the variable valuation p. Now take p to be a valuation that maps z to d. We aim to
prove ([Mz.a]))d = [a],. Suppose a = z. Then l.h.s. = [i] ,d = d = r.h.s. Suppose z & a. Then
Lh.s.=[(Rz.a)],d=[ka],d=[a], =rh.s. Finally suppose a = a1as.

[Az.a1a2],d = [s(Az.a1)(Nz.02)],d
= T.a1 T.a9 y the induction hypothesis
A pd A pd by the induction h; hesi

= [ai],laz2], =[ara2],.

(iii) is an immediate consequence of (ii). We prove (iv) by induction on n. The base case is (ii). For
the inductive case of n = r+1, note that by (i) variables occurring free in Mz - - - 2, 11.a are contained
in {z; }. Hence by (ii) Cy - (Rz1.(Rz2 - zr11.0))x1 = Nz2 - Tpy1.a; and so

ColF Nz1.(Rze - zpy1.0))T1T2 - Tpp1 = (AT - Tpy1.6)T2 -+ Ty

Hence by the induction hypothesis Co - (Mz1 - Zp41.0)21 -+ - Try1 = a.

Proposition 3.2.2 All non-trivial combinatory algebras are infinite.

Proof Fix n. Suppose there is a combinatory algebra A of size n. For each natural number ¢ where
1 <1< n+1, define a; to be Xxy - zy11.2;. Then, w.lo.g., say, A E a1 = ae. So for any distinct by
and be of A, we have [a; |biba---be = [a2]bibs - --ba, and so by = by — a contradiction. O

3.3 Combinatory completeness

An applicative structure A is said to be combinatory complete if for every term ¢ of Ly with all
free variables of ¢ occurring in {z1,---,x, } and constant parameters from A, there is an element f
in A such that

(cc) A E fry-x, =1t

(This means that fai---ay, = tla1/z1,---,ap/zy] for all a1,---,a, € A.) We say that f represents
t. One may think of ¢ as a polynomial over the set { z1,---,xz, } of variables and constant symbols
from A.

3.3 Combinatory completeness 20

Proposition 3.3.1 (Characterization) An applicative structure A is combinatory complete if and
only if A can be given the structure of a combinatory algebra.

Proof “<”: Given a term t of the required kind, take f to be Nxq---x,.t where fv(t) C
{z1,--,zn }. The result follows by an appeal to Proposition 3.2.1(iv). “=7: Take s to be the
element of A representing z1z3(x9z3) with n = 3, and k to be the element of A representing x; with
n = 2. [l

Note that (cc) is equivalent to the following axioms:
JkVry.krxy =z
As.Vayz.sxyz = x2(yz).
Let e denote the term Mz.(My.zy). By Proposition 3.2.1(iv), we have Cy F exy = zy.
Lemma 3.3.2 Let t be an L-term and suppose = does not occur free in t. Then
Co F Naz.tx =et =s(ki)i.
Proof Any combinatory algebra validates et = Ny.ty = s(Ry.t)i = s(kt)i. O
Now consider the axioms:

k = Xzykzy
(C1)

s = Nryz.szyz.

The following are consequences of Cy + Cj.

kr = Nykzy

STy = Mz.81YZ;
and hence, by Lemma 3.3.2, so are
@) ekz) = kz
e(szy) = sxy.
To summarize we have shown:
Lemma 3.3.3 Cy + C; - CY. O

Proposition 3.3.4 (e-invariance) The following are consequences of Cy + Cj.

(i) XMz.t = e(Nz.t) = Nz.(Nzx.t)x i.e. “e fixes any M-abstraction”

(ii) ee = e;e(ex) = ex.

3.4 Extensionality axioms 21

Proof (i) The second identity follows from Lemma 3.3.2 as does not occur free in (Mz.t). Observe
that

skk or
Azt = kt or
Suv

depending on the shape of t. Hence, by C{, e(W\z.t) = (Nz.t).

(ii) The first equation follows from (i) since e = Nz.(Ay.zy). By Lemma 3.3.2, ex = Ny.zy; the
second equation then follows from (i). O

3.4 Extensionality axioms

Weak extensionality scheme: for all L-terms ¢, u

(WExt) (Vo.t =u) = Nzt = N\z.u.
By induction we get as a consequence the scheme

(Va1 zpt =u) = Moy Tpt = NL1 - Tl
Weak extensionality axiom (which is a formula):
(WExt') Vyz.[Vz.yr = zz) = ey = ez].

Extenstionality axiom is the formula:

(Ext) VyzAVzyr = zz] = y = z}.

The last axiom says that two elements are equal if and only if they are equal applicatively (or exten-
sionally), i.e., they have the same behaviour as functions.

Proposition 3.4.1 WExt and WExt' are equivalent modulo Cy + C; (in fact the weaker axiom
Cy + CY suffices). O

Definition 3.4.2 We denote by CL (combinatory logic) the system of axioms

def

CL £ Cy+C;+WExt

or equivalently Cy + C; + WExt'; and by ECL (extensional combinatory logic) the system of
axioms
def

ECL = Cj+ Ext

Note that in the literature combinatory logic is often the name associated with the weaker formal
system Cg, rather than CL.

3.5 Translation between A3 and CL 22

3.5 Translation between A7 and CL

A-calculus and combinatory logic are very closely related. As formal theories, they are almost, but
not quite, equivalent. The nature of their relationship deserves careful study. There are very natural
translations between the two systems. A major question we shall investigate is the extent to which
each translation preserves the theory.

First we assume that variables of the first-order language £ coincide with variables of the A-calculus.
Define maps between A-terms and combinatory logic terms

(_)cl
()

where t +— ¢ is defined by recursion as follows:

Tl = I
(tu)g = tava
Azt)y = Nz.(ta)
and a — a) by
(def
T\ = T

(ab), L by
Sx < N\oyz.zz(yz)

k) & ATy.x.

Lemma 3.5.1 For any terms a,b of L,

(i) if CL - a =b then AB F ay = by
(ii)) if ECL \ a = b then ABn F a) = by. O

Lemma 3.5.2 (i) For every A-term t, AB F (tq), =t.

(ii) For every L-term a, CL - (ay), = a.

Proof For (i) we prove by induction over the structure of ¢. We shall consider only the hardest
case of t = Az.u. Then ty is Mz.uc. By Proposition 3.2.1(iii), we have CL F ¢4z = ug. Thus by
Lemma 3.5.1 (tq1),2 = (uq),. By induction hypothesis (uq1), = u. Hence (t;),z = u, and so,

Az.(ta)yz = Azu = t

Now since t, = Nz.uq, we have CL F et = tq, by Proposition 3.3.4(i). Thus (e(ta)), = (ta),-
But by Proposition 3.3.4(i), (e(ta)), = Mz.tazy = s(ktq)iy, = sa(katan)in = Az.teyz; hence (ta), =
A2 (ta) \x = t.

Next we prove (ii) by induction on the size of a. The base case of a being a variable is obvious. The
inductive case of a being an application is easily checked. Suppose a is s. We have (Cy): szyz = z2(yz)
for any z,y, z. By (WExt) we have

Mryz.sryz = Nrxyz.axz(yz).
By (C1), s = Mzyz.xz(yz), and so, by definition of (-), and (-)., s = (sx) - O

3.5 Translation between A3 and CL 23

A main result of this section is that the encoding (-), : A — L preserves equations in AB (in the
sense of Theorem 3.5.4). To prove it we need a substitution lemma.

Lemma 3.5.3 For u,t € A, CL I (u[t/z])y = ualta/z].

Proof By induction on the size of u. The cases of v being a variable and application are immediate.
We only consider the case of u = Ay.v.

CrAM: CL & (uglta/z])y = (ut/z])y-

(ult/z]))qy = (Ayv[t/z])qy by definition of (-),
— (Wy.(u]t/z]))y by Proposition 3.2.1
= (vft/2])y by induction hypothesis
= vata/7]
= (uay)[ta/z]
= (ualta/=z])y.

But by definition of (-)

uaqy = (Ny.vq)y by Proposition 3.2.1

= Ul

Hence the claim is proved.

By (WExt') from Claim, we have
CL F e(ualta/z]) = e(ult/z])y (1)
Now ug = Ny.(va) and (ut/z]),, = Ny.(v[t/z]).. Hence by Proposition 3.3.4(i)
CL + euq =1uq, and (2)
CL F e(ult/z])y = (u[t/z])q- (3)
From (2), CL F ug[ta/x] = e(uci[ta/x]). Therefore, from (1) and (3), we get

CL H Ucl[tcl/x] = (u[t/x])cl‘

Theorem 3.5.4 (Equivalence) Let t and u be A-terms. Then

(i) ABF t=w if and only if CL F t¢ = ug
(ii) ABn +t = w if and only if ECL F t. = u,.

3.5 Translation between A3 and CL 24

Proof We shall just prove (i), and leave (ii) as an exercise. “<”: If CL F t, = wu then
(te1)y = (e1) . Thus, by Lemma 3.5.2, t = u.

“=7: It suffices to prove it for the case of t =3 u (one-step f-reduction). We then proceed by induction
of the size of t. Clearly ¢ cannot be a variable. There are two cases. Suppose t = Az.t'. Then v = \z.v/’
and t' —4 v/. By the induction hypothesis, CL - ') = u/;. By WExt, CL - Xz.(t'¢)) = Nz.(u o).
Hence CL - (A\z.t'), = (Az.u')

cl*

Now suppose t = pg. There are three subcases.
e u=p'qand p =3 p': by the induction hypothesis, CL - p = p',j, and so, CL t pige = p' 14
Hence CL F t. = ug.
e v =pq and ¢ =3 ¢+ similar to the previous case.

e t = (Az.w)w and u = v[w/z]: by Lemma 3.5.3, CL F uq = vqlwa/z]; on the other hand,

def

ter = (Mz.vg)we. Hence by Proposition 3.2.1, CL F ¢ = ug.

Problems

3.1 Show that Nzy.yz = s(k(si))(s(kk)i). What is Xzy.zy?

3.2 Basis. Let £ be a collection of A-terms. The set L1 of terms generated by L is the least set P
such that

e LCP

o if 5,¢ € P then st € P.

Let Q C A. £ C A is said to be a basis for Q just in case for every ¢ € Q, there is some ¢, € LT
such that A3t g =t,. L is a basis if L is a basis for A° (the set of closed A-terms).

Prove that {k,s } is a basis. [Hint: Use Lemma 3.5.2]
3.3 Show that # = Az.zrksk is a singleton basis. [Hint: Calculate 8600 and 6(66).]

3.4 (i) (Barendregt) Let X = Az.z(xs(kk))k. Show that { X } is a basis. [Hint: calculate X XX
and Xk.]

(ii) (Rosser) Find a closed A-term J such that JJ =s and Js = k.
3.5 Prove Proposition 3.7.
3.6 Prove Lemma 3.5.1.

3.7 Show that the set of closed A-terms quotiented by [-equivalence is a model of CL. Hence or
otherwise prove Proposition : WExt and WExt' are equivalent modulo Cq + C; (in fact the weaker
axiom Cp + C{ suffices).

3.5 Translation between A3 and CL 25

3.8 The weak combinatory logic notion of reduction is given by the union of the following binary
relations (defined schematically): p,q and r range over combinatory logic terms

(kpg, p)

(spgr, pr(qr))

Show that the corresponding one-step weak reduction —,, is Church-Rosser.

[Hint (Rosser 1935): Define s > ¢ just in case there are disjoint weak-redexes Aj,---, A, in s, and ¢
is obtained by contracting them. For example s(kpq)(spgr) > sp(pr(qr)). Show that

(i) > satisfies the diamond property

(ii) —»y is the transitive closure of >. |

26

4 Bohm’s Theorem

Bohm’s theorem was proved in the late '60s and remains possibly the most significant discovery in the
syntax of untyped A-calculus. It gives rise to a powerful technique for obtaining separability results.

4.1 The theorem and its significance

Theorem 4.1.1 (Bohm) Let s and t be closed normal A-terms that are not n-equivalent. Then
there exist closed terms uy,- -+, uy such that

where t = A\zy.x and £ = \zy.y. O

Exercise 4.1.2 Show that t and f of the theorem can be replaced by any pair of closed G-normal
forms that are not fBn-equivalent.

Bohm’s theorem is a classic result in the syntax of untyped A-calculus. It is a powerful separability
result.

An aside on A-theories

A A-theory is a consistent extension of A3 that is closed under provability. A (closed) equation is a
formula of the form s = ¢ where s and ¢ are closed A-terms. If T is a set of closed equations, then the
theory A8 4+ T is obtained from A by augmenting the axioms by 7.

Definition 4.1.3 Let 7 be a set of closed equations. 7 is the set of closed equations provable in
A3+ T. We say that T is a A-theory just in case T = T and T is consistent (i.e. there are terms s
and ¢ such that s = ¢ is not provable in T).

Corollary 4.1.4 Any A-theory which identifies any two closed normal A-terms that are not (n-
equivalent is inconsistent. O

Proof Take any A-terms A and B. Write
D = Jzyz.zyz.
Then we have
DABf =

DABt =

Hence if £ s =t where s and ¢ are any closed normal A-terms that are not n-equivalent, then for
the @ given by the theorem, we have £ + DAB(si) = DAB(tw), and so,

LFA=B.
O

The so-called “B6hm-out technique” is crucial to the proof of most local structure characterization
theorems of A-models.

4.2 Proof of the theorem 27

4.2 Proof of the theorem

First some notations. The permutator of order n is defined to be the following term

def
an, = AT TpT.TX1ccc Ty

Definition 4.2.1 We shall call Béhm transformation any function from A (the collection of A-

terms) to A defined by composing basic functions of the form ¢+ tuy or ¢ — t[ug/x] where uy and z
are a given term and variable respectively.

We shall denote the functions as follows:
Bu0 : t—=tug

Buyo @ t—tlug/zl.

Lemma 4.2.2 For every Bohm transformation B, there are terms uy, - - -, u such that Bs = suy - - - ug
for every closed term s. O

Exercise 4.2.3 Prove the lemma.

Lemma 4.2.4 Let s,t be two A-terms. If one of the following

(1) s = xs1---8p
t = yt1---t where x # y or p # q
(2) s = Aoy ZpT.xS1 Sp
t = Azy---apzaty---ty wherem #norp#q
holds then
Bs = f
Bt = t

for some Bohm transformation B.

Proof Case (1):

(i) z #vy, take 0 = Az -+ zp.fand 7 = Az; - - z5.t. Take B to be B, ; 0B, . Then

Bs = f

Bt = t.
(ii) z =y and p < ¢q. Then

_ * _ * *
Bo,as = agsi -8y = Azpi1-2q2.287 SpZpi1 %

Bo,al = agli -ty =Azzti--- 1

where (-)* means (-)[cyg/2]. This is case (2)(i).

4.2 Proof of the theorem 28

Case (2):
(i) m # n, say m < n; take distinct variables 21, - -, 2, 2 not occurring in s,t. Let
B B,oB, o---0B,,.
Then
Bs = Zmi18]:ccSpZmi2 ZIn?
where (-)* is (-)[z1/%1,** 2m/Tm, Zm+1/z], and
Bt = zt)--tf

where (-)' is (-)[z1/21,- -, 2n/Tn, 2z/x]. This is just case (1)(i).

def

(i) m=nandp#¢;let B=B;0oB,, o---0B; . We have

Bs = ®xs1---5)p
Bt = wt;---1,
This is just case (1)(ii).
Note: cases (2)(i1) — (1)(i1) — (2)(1) — (1) (7). O
Theorem 4.2.5 Let s and t be non-fn-equivalent normal A-terms, and x1,-- -,z any distinct vari-

ables. Then for any nq, - - - ny, provided they are large enough, there is a B6hm transformation B such
that

B(slam o1, an i) = f

B(tlap, [z1, -, 0n, [zk]) = t.
Proof The size size(s) of a term s is defined by recursion as follows:

size(z) © 1
size(st) & size(s) + size(t)
size(Az.s) = size(s) + 2.
We prove by induction on size(s) + size(t).
Case analysis:
(1) s and t are both abstractions
(2) only one of s and ¢ is an abstraction

(3) both are not abstractions.

4.2 Proof of the theorem 29

Claim: It suffices to consider the last case.

Proof of Claim Take y # x1,-- -, 2 with no occurrence in s and ¢, and let w, and w; be the normal
form of sy and ty respectively. Now wy is not [n-equivalent to w; (why?). Suppose case (1), say
s = Az.u and t = Az’ then ws = uly/z], wy = v[y/2'] and

size(ws) + size(wy) = size(s) + size(t) — 4.

Suppose case (2), say, s = Az.u and t is not an abstraction, then either ¢ is a variable or vvy. Thus
ws = uly/z] and w; =ty and

size(ws) + size(wy) = size(s) + size(t) — 1.
Hence, in both cases, we can apply the induction hypothesis to w,; and w;. Suppose for any ny,---,ng
there exists B such that
B(ws[am, /21, 0m, [zi]) =
B(wi[ap, [z1,- -+, 0m, [zk]) = t.
Take the Bohm transformation B o B, which works for s and ¢. O

We shall consider the case where both s and ¢ are not abstractions, say

5 = xS+ Sp
t = yt--ty
where s;,t; are all normal forms.
Fix distinct numbers ny,---,ng and variables z1,---,zr. We write
()" for ()lom, /21, any [zi]-
There are three subcases:
Case (i): z,y ¢ {z1, -, %k }-
We have
st = ms]---s,
= yti 1ty

If £ # y or p # ¢ then result follows from Lemma 4.2.4. If x = y and p = ¢ take any number
n>p,ny,---,nk. Then take B=B,oB, o---0oB o B, - We have

Zp+1
BS* = zs{--.sizp+1...zn
Bt* = zt{t;zp+lzn

where ()1 is (-)[an, /21, "+, Qn, [Tk, 0 /7]

4.2 Proof of the theorem 30

Since s and ¢ are not #n-equivalent, for some i, s; and ¢; are not Bn-equivalent. Take m; = Az -+ - xp.2;.

(Note that z does not occur free in s} nor t:) Clearly size(s;) + size(t;) < size(s) + size(t). Hence,

by the induction hypothesis, say B’ is the required Bohm transformation for 32 and t}. The Bohm
transformation required is just B o By, , o B.

Case (ii): x € {z1, -+, zx }, say, © = x1, and y ¢ {x1,-- -,z }. Then, for every n; > p,

*

s* = oap, s8] -8

— * *
b = AZptlccZngZ.28] 0 SpZpyl 2y

Take B=B,oB,, o---oB

Zp+17

B(s*) = 28] 8p2pt1°"" Zny,
B(t*) = yti - tyzpe1 2y 2-
Since y # z, result follows from Lemma 4.2.4(1).
Case (iii): z,y € {x1, -,z }.
Suppose £ = 1 and y = 9 are distinct:

* * _ * *
s = ap,s]s, =)\zp+1---znlz.zsl---spzp+1---zm

= ap,ti-ly = Azggrc 22t tgzgr1 Zny
taking my > p, ng > q. Since ny # ng result follows from Lemma 4.2.4(2).
Suppose © =y = x1, take ny > p, ¢:

* * _ * *
s = ap,s]-rs, =)\Zp+1“‘anz.zsl“‘Spr+1“‘Zn1

" = apti-ty = Azgprcc2ng 220 thzghn 2y

If p # q then by Lemma 4.2.4(2), n; —p # ny — ¢, result then follows. If p = ¢ then since s and
t are not (n-equivalent, for some ¢, s; and ¢; are not [n-equivalent. Let 7y = Az;---x,,.2; and

B=B,oB,, oo B., ., Then

Similar argument as before concludes the proof. O

Bohm’s Theorem is an immediate consequence of Theorem 4.2.5. For if s is any closed term and B a
Bohm transformation, then by Lemma 4.2.2 we have Bs = suq - - - u where uy,---,u; depend only on
B. By applying Theorem 4.2.5 we therefore obtain su; - - - uy = f and tu; - - - up, = t. (We may suppose
that @ are closed terms.)

31

5 Call-by-name and call-by-value lambda calculi

According to the so-called function paradigm of computation, the goal of every computation is
to determine its value. Thus to compute is to evaluate. A (by now) standard way to implement
evaluation is by a process of reduction. In this section we shall investigate a couple of important
ideas that have arisen in semantics of functional computation in recent years. We take pure, untyped
A-calculus equipped with call-by-name (CBN) and call-by-value (CBV) reduction strategies as minimal
(and prototypical) functional languages; and consider two operational or behavioural preorders over
terms, namely, applicative simulation and observational (or contextual) preorder. We prove that they
conincide in both ¢BN and ¢BV A-calculi. In other words both languages satisfy the contexzt lemma.

5.1 Motivations

The commonly accepted basis for functional programming is the A-calculus; and it is folklore that the
A-calculus is the prototypical functional language in purified form. But what is the A-calculus? The
syntax is simple and classical; variables, abstraction and application in the pure calculus, with applied
calculi obtained by adding constants. The further elaboration of the theory, covering conversion,
reduction, theories and models, is laid out in Barendregt’s already classical treatise [Bar84]. It is
instructive to recall the following crux, which occurs rather early in that work (p. 39):

Meaning of A-terms: first attempt

e The meaning of a A-term is its normal form (if it exists).

e All terms without normal forms are identified.

This proposal incorporates such a simple and natural interpretation of the A-calculus as a programming
language, that if it worked there would surely be no doubt that it was the right one. However, it gives
rise to an inconsistent theory!

Second attempt: sensible theory

e The meaning of A-terms is based on head normal forms via the notion of Bohm tree.

e All unsolvable terms (no head normal form) are identified.

This second attempt forms the central theme of Barendregt’s book, and gives rise to a very beautiful
and successful theory (henceforth referred to as the “standard theory”), as that work shows.

This, then, is the commonly accepted foundation for functional programming; more precisely, for
the lazy functional languages [FW76, HM76], which represent the mainstream of current functional
programming practice. Examples: Miranda [Tur85], LML [Aug84], Orwell [Wad85], Haskell, and
Gofer. But do these languages as defined and implemented actually evaluate terms to head normal
form? To the best of our knowledge, not a single one of them does so. Instead, they evaluate to weak
head normal form i.e. they do not evaluate under abstractions (see [PJ87] for a comprehensive survey
of the pragmatics of functional programming languages). E.g., Az.(Ay.y)s is in weak head normal
form, but not in head normal form, since it contains the head redex (Ay.y)s.

So we have a fundamental mismatch between theory and practice. Since current practice is well-
motivated by efficiency considerations and is unlikely to be abandoned readily, it makes sense to see if
a good modified theory can be developed for it. To see that the theory really does need to be modified,
we consider the following example.

5.2 Call-by-name or Lazy A-calculus 32

Example 5.1.1 Let @ = (Az.zz)(Az.zz) be the standard unsolvable term. Then Az.Q = Q in the
standard theory, since Az.€2 is also unsolvable; but Az.€2 is in weak head normal form, hence should
be distinguished from €2 in our “lazy” theory.

We now turn to a second point in which the standard theory is not completely satisfactory.

Is the A-calculus a programming language?

In the standard theory, the A-calculus may be regarded as being characterized by the type equation
D = |[D— D]

(for justification of this in a general categorical framework, see e.g. [Sco80, Koy82, LS86]).

It is one of the most remarkable features of the various categories of domains used in denotational
semantics that they admit non-trivial solutions of this equation. However, there is no canonical
solution in any of these categories (in particular, the initial solution is trivial — the one-point domain).

We regard this as a symptom of the fact that the pure A-calculus in the standard theory is not a
programming language. Of course, this is to some extent a matter of terminology, but we feel that the
expression “programming language” should be reserved for a formalism with a definite computational
interpretation (an operational semantics). The pure A-calculus as ordinarily conceived is too schematic
to qualify.

5.2 Call-by-name or Lazy M-calculus

We introduce a “toy” functional language that has closed A-terms as programs and (closed) abstrac-
tions as values. The operational semantics is given by a Martin-Lof style evaluation relation
(which is also known as “big-step” reduction relation) simulating a normal order (or leftmost)
reduction strategy that terminates whenever the reduction reaches a weak head normal form (WHNF).

Definition 5.2.1 We define a family |},, (n € w) of binary relations over closed A-terms as follows.
For each n, the relation s |}, v (“the program s converges to value v in n steps”) is defined inductively
by the following rules:
s m Az.p p[t/]?] Inwv

st bmant1 v

Az.p o Az.p

Notation It is useful to fix some shorthand.

s{wv L Inecws Unv “s converges to v”
s{ E s Jv “s converges”
P - —[s] “s diverges”

For example, i(ii) | i and k(ii) | Ay.ii, and Q. Take a A-term s that is not in S-normal form.
Informally the leftmost (B-redex of s is the redex that literally “occurs leftmost” in s. We define
a reduction strategy informally: at each step, contract the leftmost redex and stop as soon as an
abstraction (weak head normal form) is reached. Convince yourself that for any program s, s |} v
if and only if s reduces to v by the reduction strategy.

Proposition 5.2.2 (i) Show that (Az.p)t7 |p+1 v <= p[t/z]7 |y v.

(ii) Prove that |} is deterministic i.e. it defines a partial function from programs to values: whenever
s vands | v then v and v’ are the same. O

5.3 Applicative simulation and context lemma 33

The BN A-calculus was first introduced by Plotkin in [Plo75]. An extensive study of the calculus can
be found in [AO93].

5.3 Applicative simulation and context lemma

Under the reduction strategy |}, the possible “results” are of a particularly simple, indeed atomic kind.
That is to say, a term s either converges to an abstraction (and according to this strategy, we have
no clue as to the structure “under” the abstraction), or it diverges. The relation |} by itself is too
“shallow” to yield information about the behaviour of a term under all experiments.

Inspired by the work of Robin Milner [Mil80] and David Park [Par80] on concurrency, we shall use
the reduction relation |} as a building block to yield a deeper relation which we call applicative
stmulation. To motivate this relation, let us spell out the observational scenario we have in mind:
Given a closed term s, the only experiment of depth 1 we can do is to evaluate s and see if it converges
to some abstraction (weak head normal form) Az.p;. If it does so, we can continue the experiment to
depth 2 by supplying a term ¢; as input to Az.p;, and so on. Note that what the experimenter can
observe at each stage is only the fact of convergence, not which term lies under the abstraction. We
can picture matters thus:

Stage 1 of experiment: s || Az.p1;
environment “consumes” A,
produces t; as input

Stage 2 of experiment: pi[t;/z] | ...

Definition 5.3.1 We define a family of binary relations 55 (k € w) over A° as follows:

e for any s and s', s 5o s'.
e s 5y s provided Vaz.p.[s | Ae.p = Tz p' [| Azp' & Vr e A%plr/z] 5k p[r/z]).

We then define s 5 s’ to be s 5 s’ for all & € w. The definition can be extended to all A-terms by
considering closures in the usual way i.e. for s,s’ € A,

! def !
sks = Vo:var — A%s, 5 sy

where s, means the “term that is obtained from s by simultaneously substituting o(x) for each free
occurrence of z, with 2 ranging over the collection var of A-calculus variables”. For example Q & =
and Qx S .

Write s ~ s’ to mean s 5 s and s’ & s; and set
M Y f{s=t:s~twheres,te A%}

We say that s and s’ are applicatively bisimilar or simply bisimilar just in case s ~ s’. The theory
M is clearly (non-trivial and) consistent.

5.3 Applicative simulation and context lemma 34

Exercise 5.3.2 (i) Show that & is a preorder over A i.e. a reflexive and transitive binary relation.

(ii) Show that (Az.zz)(A\z.zz) ~ (Az.xze)(Ar.zzr) & Az.(Ar.zz)(Az.zz); show that Az.z, k and s
are pairwise incompatible w.r.t. &.

(iii) Suppose s{ and t{}. Show that Az - - z,.s 5 Azy -+ 2y 1
(iv) Show that Azy---zp.s 5 Az -+ 2.5 iff n < m.

For an alternative description of £, recall that the set R of binary relations over A° is a complete
lattice under set inclusion. Now, define F' : R — R by

def

F(R) = {(s,8):Yzp.[s | zp = Iap' [| Azvp’ & Vt € A°([p[t/x],p'[t/=x]) € R]]}

It is easy to check that F' is a monotone function with respect to the inclusion ordering. A relation
R € R is said to be a pre-simulation just in case R C F(R) i.e. R is a post-fixpoint of F. Since F
is monotone, by Tarski’s Theorem [Tar55], it has a maximal pre-simulation given by

U R

RCF(R)

since the closure ordinal [Mos74] of (Si: k € w) is w. Note that the maximal post-fixpoint of F is
also its maximal fixpoint (and this holds generally).

Lemma 5.3.3 Applicative simulation is precisely the maximal pre-simulation. O

We give a useful characterization of &.

Theorem 5.3.4 (Characterization) For any s,s' € A°, s s’ if and only if for any finite (possibly
empty) sequence t of closed A-terms, if st|} then s't|. O

To prove the theorem, we first establish a useful result:

Lemma 5.3.5 (i) If s |} Az.p and s’ || Az.p' then for any r € A°, for any n > 0,

srS,s'r = plr/z] 5, p[r/x].
(ii) Hence if s and s' are both convergent then s 5,11 s' < Vr € A%sr 5, s'r.

Proof (i) The case of n = 0 is vacuous. Assume s | Az.p and s’ || Az.p’. Then sr | \y.q iff
plr/z] § Ay.q, and s'r || Ay.¢" iff p'[r/z] | Ay.¢ Now for the case of n = [+ 1: by definition, sr 5,41 s'r
iff if sr || Ay.q then s'r || A\y.¢" and for any closed ¢, q[t/y] 5; ¢'[t/y]; i.e. iff if p[r/z] | A\y.q then
p'[r/z] J Ay.¢' and for any closed ¢, ¢[t/y] 5; ¢'[t/y]; i.e. iff p[r/z] Si41 p'[r/z]. (i) follows from (i)
and the definition of 5,4 1. O

We define a family of relations <,, with n > 0: s < s’ holds for any s and s'; for n > 0 we define
s <p §' by “for any finite sequence ¢ = t1,---, ¢y such that m < n, if st{ then s'¢]”. To prove the
theorem, it suffices to show:

for allm > 0, <,, and 5,, are equal.

5.3 Applicative simulation and context lemma 35

We shall prove it by induction on n. The base case is obvious. For the inductive case of n =1+ 1, we
may assume w.l.o.g. that s and s’ are both convergent. Observe that s <, 1 s’ iff “whenever s} then
s'|}, and for any closed ¢, st <,, s't”. Hence

s<ip1 8 by the preceding and assumption
<= Vt.st <;s't by induction hypothesis
< Vt.st5; s't by Lemma 5.3.5(ii)

— s 9.
Hence the theorem is proved.

Recall that programs are closed terms. Thus program contexts are just closed contexts i.e. contexts
that have no free A\-variables. We say that s observationally approximates s’ just in case for any
program context C[X], if C[s] converges then so must C[s']. Informally this means that whatever we
can observe about s, the same can be observed about s’. (Note that convergence is the only thing we
can observe about a computation in the CBN A-calculus.)

Definition 5.3.6 The binary relation =™ over A, called observational or contextual preorder

is defined as
sE ¢ ¥ VO[X] e AC[s|4 = Cs]I

Observational equivalence captures the intuitive idea that two program fragments are indisguishable
in all possible programming contexts. Though observational preorder is clearly important, it is hard
to reason about it directly. Try proving that Az.zQ * Az.zz or Az.zz 5 Az.(A\y.zy). Fortunately
there is a convenient characterization.

Proposition 5.3.7 (Context lemma) Applicative simulation and context preorder coincide.

Proof This is a variation of Berry’s proof of a Context Lemma in [Ber81].

It suffices to prove the following: Let s, s’ range over A°.
s = ViewVC[X]eA’C[sly = C[s]|.

We prove the assertion by induction on /. The base case is obvious. Without loss of generality, consider
the following two cases of closed contexts:

—

(1) CIX] = (. PIX])(QIX]) RIX],

—

(2) ClX] = X (PX])QLX].

—

(1): Suppose Cls|l;;. Define D[X] = (P[X])[Q[X]/z]R[X]. Then by Proposition 5.2.2 D[s|{},.
Invoking the induction hypothesis, we have D[s']{}, which implies that C[s']{}.

—

(2): Let s = (Az.p)q. Suppose C[s|{}j+1. Define D[X] = (Az.p)¢(P[X])Q[X], a context of case (1).

-

Note that C[s] = D[s]. By an appeal to (1), we have D[s']|. But D[s'] = sP[s'|Q[s'], and so by

—

Theorem 5.3.4, because s & ', we have s'P[s"|Q[s'|{}, i.e. C[s']{. O

5.4 Call-by-value A-calculus 36

Remark 5.3.8 (i) The above result says that if two programs are distinguishable by some program
context then there is some applicative context that distinguishes them. In other words, the com-
putational behaviour of CBN A-calculus program is functional, which is what one would expect of a
functional programming language. This property is called operational extensionality in [Blo88].
Milner [Mil77] proved a similar result in the case of simply typed combinatory algebra which he
referred to as the Context Lemma.

(i) Tt follows immediately from the definition of £ that the application operation in A° is monotone
in the left argument with respect to 5. Operational extensionality is equivalent to the monotonicity
of the application operation in the right argument, i.e.

sCs = VteA°tsEts';
which is the same as saying that 5 is a precongruence i.e.

sCs &ttt = stLs't.

5.4 Call-by-value A-calculus

We let p,r,s and t range over A-terms. Programs of Plotkin’s call-by-value (CBV) A-calculus are
closed A-terms, and values, ranged over by u and v, are closed abstractions. Evaluation is defined by
induction over the following rules: for programs Az.p,s and ¢

syAzp tlu plu/z] v

Az.p | Ax.p st 0o

As before we read s || v as “program s converges or evaluates to value v”, and write s{} to mean s || v
for some value v.

Notation: We shall not bother to distinguish notationally the evaluation relation of the CBv A-calculus
from that of the CBN A-calculus, though they are of course distinct relations.

We present the operational semantics in terms of a Plotkin-style transition relation (which is also
known as “small-step” reduction relation) by induction over the following rules:

s> s

(Az.p)v > plv/x] E[s] > E[s]

where E[X] ranges over the collection of evaluation contexts defined by the following rules: v and
s range over values and programs respectively

e X is an evaluation context
e if I/ is an evaluation context, then so is vF

e if I/ is an evaluation context, then so is E's.

Note that by definition, the hole occurs exactly once in every evaluation context. We call a term of
the shape (Az.p)v a CBV f(-redex, and write >> to be the reflexive, transitive closure of >.

Lemma 5.4.1 (Evaluation context) For any program s, s > s’ iff there is a unique evaluation
context E[X] and a unique CBV redex A = (\z.p)v such that E[A] = s and s' = E[p[v/z]]. Hence
big-step (Martin-L6f style evaluation relation) and small-step operational semantics coincide. O

5.5 Context lemma by Howe’s method 37

Proposition 5.4.2 (Equivalence) For any program s, s || v iff s >> v where v is a value. O

As in the case of ¢BN A-calculus, for closed terms s and ¢, we define s S ¢, read s simulates ¢
applicatively, as the conjunction of a countable family of binary relations as follows:

e for any s and s', s 5o §'.

e 5541 s just in case whenever s || Az.p then s’ || Az.p’ and for every value v, p[v/z]| S p'[v/x].

We then define s S s’ to be s 5 s’ for all k¥ € w. The relation can be extended to A-terms in general:
for any s and ¢, define s S ¢ just in case s, S t, for every value substitution o.

Proposition 5.4.3 For any closed terms s and t, the following are equivalent:

(i) sGt
(ii) for every finite sequence of closed terms ry,-- -, ry, if st} then t7
(ii) for every finite sequence of values vy, -+, vy, if s} then tv].

5.5 Context lemma by Howe’s method

Context lemma is valid for ¢BvV A-calculus but the argument in the proof of Proposition 5.3.7 does
not work for the cBv calculus. We shall present a proof using what is known as Howe’s method as an
extended exercise.

A value substitution o is just a function o from variables to values. Suppose the variables occurring

free in s are xq,---,x, then
def
s = slo(x)/x1,-,0(zn) /0]

Exercise 5.5.1 Prove the following:
(i) £ is a preorder.
(ii) For any s and t (which are not necessarily closed) and for any value v,
sEt = s[v/z]Stv/z].
Definition 5.5.2 (Pre-simulation) Let R be the set of binary relations over the set of closed A-
terms. Define a function F': R — R by: for any R € R
F(R) ¥ {(s,¢):Voslv = [T s | & Vi.(vt,0't) € R]}.

F is a monotone function with respect to the inclusion ordering. A relation R € R is said to be a
pre-simulation just in case R C F(R). Define < to be the maximal pre-simulation i.e.

s £ U kR
RCF(R)

5.5 Context lemma by Howe’s method 38

Exercise 5.5.3 Prove the following:
(i) F is a monotone function (with respect to the inclusion ordering).
(ii) < is the same as k.

Our aim is to prove the Context Lemma.

Definition 5.5.4 (Precongruence candidate) Define a binary relation <, called precongruence
candidate, over the collection of all (not just closed) A-terms by induction over the following rules:

o if tC s then z <s
o ifs<s' andt <t and st/ T r then st < r

o if s < s’ and Az.s' & r then Az.s < r.

Exercise 5.5.5 Prove the following:

(i) Whenever s <t andt5r then s <r.

(ii) < is a precongruence i.e. whenever s < s’ and t < t' then st < s't', and whenever s < s’ then
Az.s < Az.s'.

Exercise 5.5.6 Prove that < is reflexive. Hence deduce that & is contained in <.

Lemma 5.5.7 (Substitution Lemma) Prove that whenever s < s’ and values v < v' then

sjo/z] < S/

Exercise 5.5.8 For closed s and s', if s < s’ and s || v, then for some v', s’ || v and v < v'.

[Hint: Define a notion of “convergence in n steps” s |, v, and prove by induction over n, using the
Substitution Lemma.]

Exercise 5.5.9 Prove that < coincides with . Hence deduce the context lemma.

[Hint: To prove that < is contained in &, it suffices to show that < is a pre-simulation (why?).]

Problems

Unless otherwise specified, assume | and < as defined in the CBN \-calculus in the following.

5.1 Formalize a small-step reduction for the CBN A-calculus and prove that it is equivalent (in the
sense of Proposition 5.4.2) to the big-step presentation.

5.5 Context lemma by Howe’s method 39
5.2 Prove Proposition 5.2.2.

5.3 Prove Lemma 5.3.3.

5.4 (i) Show that @ = (Az.zx)(Az.zz) is a bottom element and yk a top element with respect to

(iii)

(iv)
5.8

5.9

applicative simulation.

A classification of closed A-terms.

For any (closed) A-term s, say that s has order 0 just in case s is not [-conertible to an
abstraction. Suppose s is B-convertible to an abstraction. For n > 1, say that s has order n if
n is largest k£ such that for some p, AG + s = Azy--- x.p. We say that s has order oo just in
case for no n € w is s of order n. Observe that every closed A-term has a unique order.

Show that a A-term is a bottom element w.r.t. applicative simulation iff it is of order 0; and top
element iff it is of order oo.

M is a A-theory

Is it true that if A3 s = ¢ then s ~ ¢7 Is it true that if s = s’ and t = ¢’ in A8 and if s £ ¢ then
s Et'?

Prove that A\ is a A-theory.

Show that the axiom (7) is not valid in A¢. Rather a weaker version, called conditional-n,
s = Ar.sx=s

is valid, where we interpret s] to mean “s converges”.

(i) Show that zz £ z(Ay.zy) in the CBN A-calculus. Is it true in the cBv A-calculus?
Are there On-inequivalent S-normal forms that are equal in A¢?7

The answer to (ii) is yes if we relax the S-normality requirement, or if the pair are only required
to be (-inequivalent. Why?

Convergence testing %

A convergence test is a closed A-term c¢ such that cl}, and for any s € A°

sy = cs| Az
s = cst
Show that there is no convergence test in the CBN A-calculus.

Let T be any order-oo term, and L any order-0 term. Let p = Az.x(Ay.2T Ly)T and q =
Az.z(xTL)T. Prove that p ~ q.

Let p’ and ¢’ be obtained from p and q respectively by replacing T in them by Ay. L. Prove that
we still have p’ ~ ¢'.

Show that there is a convergence test in the CBvV A-calculus.
Describe, and characterize if possible, the least and greatest terms w.r.t. & in the cBv A-calculus.

Use Howe’s method to prove that & in the ¢BN A-calculus is a precongruence.

40

6 (Very) Basic Recursion Theory

In this section we show the Turing completeness of the call-by-value A-calculus (viewed as a minimal
programming language) and the undecidability of S-convertibility.

In the following s |} v shall mean the evaluation of program s to value v in the call-by-value A-calculus;
and s >> s’ the reflexive, transitive closure of the one-step call-by-value reduction. Note that

sfv <= s>wv & wvisa value.

6.1 Numerals

The salient feature of Scott numerals is the simplicity of the definition of predecessor. (Compare it
with Church numerals.)

Definition 6.1.1

' = k
417 & Azy.y n’
suce = ANTy.yn
pred = Ap.pbi
case = ATYZ.TYZ

where 6 is any closed term and i the identity.

Note that for any values f and ¢

ifnis0
case'n’'fg >
g("n —17) otherwise.

6.2 Strong definability

A function can be defined by specifying its graph. We associate to every partial recursive function a
CBV A-calculus program that defines it i.e. the extensional behaviour of the program coincides with
the graph of the function. Note that the program gives a way of computing it.

Definition 6.2.1 We say that a partial function ¢ : N — N is strongly A, -definable by a program
f just in case for every m-tuple ny,---,n,, of natural numbers,
()T = [T
¢(ﬁ) =l < [Ty Y0

«,

where “---1” means that “ -- is undefined”.

Theorem 6.2.2 (Turing completeness) A partial function N™ — N is partial recursive if and only
if it is strongly A, -definable.

6.2 Strong definability 41

Notation We write ¢ > f to mean “¢ is strongly Ay-definable by f”.

Lemma 6.2.3 st;---t, | v if and only if for each 1, t; || u; and suq ---u, | v. O

Exercise 6.2.4 (i) Prove the lemma.

(ii) The lemma is not true for CBN A-calculus. Give a counterexample.

Proof of the theorem

It should be evident that a program of CBV A-calculus defining a numeric function gives an algorithm
for computing it. The direction “<” can be shown by appealing to Church’s Thesis'. It then remains
to prove “=".

Projection
Tproj* T is Axy - Ty

Composition

Suppose x I> g and ; I> f; and ¢(7) = x(¢¥1 (7)), -, Ym(7)). Now

¢(m) =p iff for each i, 1;(7) = p; and x(p1,--+,pm) =P
iff fz('?) |} p; for each 4 and g'? Ip by Lemma 6.2.3
it (AT g(AT) (@) Up

Also

$(m) 1+ iff for some i, ¢; (7)1 or for each i, () = p; and x(P) T
iff for some ¢, f,('?) 1} or for each 1, f,('?) | p; and g'? 0
it (AT g(A2) (@) 1.

Primitive recursion

Suppose

$0,7) = $(7)

pk+1.7) = X6k T)kT)
where ¢ > g and x > h. Define B = Azy.y(Az.xzxyz). Note for any value v

BBv > (Ay.y(Az.BByz))v

> v(Az.BBuz).

!By Church’s Thesis, we shall mean the assertion that the effectively computable (partial) numeric functions are
exactly the (partial) recursive functions.

6.2 Strong definability 42

Now set
©® = BB
v = Ay .casez(9Y)(Aah(zaW)aT)
FT < op

Take a, T to be values, and set f to be ©v. Then

fa_b> >> U()\z.sz)oL_b>

>> casea(g_b>)(Aa.h((kz.@vz)a_(;)oz?)

e ifa is "0 then f'—()—'z> >> p provided g_b> Ip

e ifais"n+ 17 then

f'—n—l—l_'_b> >> (Aa.h(()\z@vz)a_b))a_b))'—n—'
> h((Az.@vz)'—n—'_b))'—n—'_b)

> W((Ov) B D,

Minimalization

Suppose 1) > ¢g. Define ¢(7/)to be pz.ap(x, 7). Set

v = Azx.case (g)z(Aa.z(succ) Y)

Claim: For values _b>,

—
n if o n T A

h(succ '—n—')_b> otherwise if g'—rﬂ_b> J "m + 17 for some m.

Now put f &R,

Church numerals are defined as follows:

def

n = Az f(---(fz)--)

n

Think of the Church numeral n as the procedure that takes a function-input and an argument-input,
and applies the function n-times to the argument.

6.3 Undecidability of -convertibility 43

6.3 Undecidability of -convertibility

Fix an effective Géodel numbering of A-terms i.e. a (bijective) function g : A — N that is computable.
It should be clear that we have the following:

Fact 6.3.1 (i) There is a total recursive function T such that for any \-terms s and t, 7(g(s), g(t)) =
g(st).

(ii) There is a total recursive function v such that for any natural number n, v(n) = g(n). O

Notation In the following we shall write

for each s € A i.e. [s] is the Church numeral of the Gédel numbering of s.

Lemma 6.3.2 From the preceding fact it follows that there are \-terms p and q such that
plslft] = [st]
an = [n]

for any \-terms s and t, and for any n € N. O

Theorem 6.3.3 (Scott-Curry) Let A and B be two collections of A-terms that are closed under
B-convertibility. There is no A-term F' such that for each n, Fn =0 or 1, and satisfying

|=

ifue A
Flul =

)

ifueB

Note that the = is that of the formal system AS.

Proof W.l.o.g. assume that A and B are disjoint. Suppose, for a contradiction, such an F exists.

Claim Fix some A € A and B € B. There is a J such that

F[J]=1 = J=B8

FIJ]

0 = J=A

The Claim gives a contradiction. (Convince yourself that this is so.)

Construction of J: Let D be Azyz.z(ky)x. Then for any A and B, by a simple calculation, we see
that

DAB1L =

DABO =

6.3 Undecidability of -convertibility 44

Let H = \y.DAB(F(py(qy))) and write H[H| as J. Now

J = H[H]
= DAB(F(p[H]|(q[H]))) by Lemma 6.3.2
= DAB(F(p[H][[H]])) by Lemma 6.3.2
= DAB(F|J)).
It follows that J thus defined satisfies the two implications in the Claim. O

“B is decidable” (by Church’s Thesis) is the statement that there is A-term G such that for any s,t € A,

ifs=t

|—=

Gls][t] =

jen

otherwise.

Corollary 6.3.4 =g is undecidable.

Proof Suppose not. Take any A-term, say, s. Let A be the =g-equivalence class of s and B be
A — A. Write F' = GJs]|. Then F violates the theorem. O

Theorem 6.3.5 (Second Fixed-Point Theorem) For any F, there exists an X such that

FIX] = X.

Problems

6.1 (i) Give the respective A-terms that define the successor and predecessor (hard!) functions,
and definition by cases (boolean conditional) for Church numerals.

(ii) Prove that ¢Bv A-calculus is Turing complete relative to Church numerals.
(iii) Prove that CBN A-calculus is Turing complete.

6.2 Give an effective Gddel numbering of A-terms i.e. a (bijective) function g : A — N that is
computable.

[Your encoding should be invariant over terms that are a-convertible. Hint: use de Bruiyn notation
to represent A-terms.]

6.3 Prove the following results:

(i) There is a total recursive function 7 such that for any A-terms s and ¢, 7(g(s), g(t)) = g(st).

6.3 Undecidability of -convertibility 45

(ii) There is a total recursive function v such that for any natural number n, v(n) = g(n).

6.4 (i) Why is the Claim in the proof of the Undecidability Theorem sufficient to force a contra-
diction?

(ii) Prove the Second Fixed-point Theorem. [Hint: Use the trick in the construction of J (in the
proof of the undecidability Theorem) to construct the required X.]

6.5 Prove that { s: s has a S-nf} is an r.e. set that is not recursive.

REFERENCES 46

References

[AGM93] S. Abramsky, D. Gabbay, and T. S. E. Maibaum, editors. Handbook of Logic in Computer

[A093]

[Aug84]

[Bar77]
[Bar84]
[Ber79]

[Ber8l1]

[Blo8S]

[Chu40]
[Cur93a]

[Cur93b]

[DPYO]

[FW76]

[Gir72]

[GLT89]

[God58]

[G6d90]

[GS90]

[Gun92]

Science, Vol 1. Oxford University Press, 1993.

S. Abramsky and C.-H. L. Ong. Full abstraction in the lazy lambda calculus. Information
and Computation, 105:159-267, 1993.

L. Augustsson. A compiler for lazy ML. In ACM Symp. on Lazy and Functional Program-
ming, pages 218-227, 1984.

J. Barwise, editor. Handbook of Mathematical Logic. North-Holland, 1977.
H. Barendregt. The Lambda Calculus. North-Holland, revised edition, 1984.

G. Berry. Modeles compléetement adéquats et stables des lambda calculs typés. Technical
report, Université Paris VII, 1979. These de Doctorat d’Etat.

G. Berry. Some syntactic and categorical constructions of lambda calculus models. Pap-
port de Recherche 80, Institute National de Recherche en Informatique et en Automatique
(INRIA), 1981.

B. Bloom. Can LCF be topped? flat lattice models of typed lambda calculus. In Proceedings
of the third Symposium on LICS. Computer Society Press, 1988.

A. Church. A formulation of the simple theory of types. J. Symbolic Logic, 5:56—68, 1940.

P.-L. Curien. Categorical Combinators, Sequential Algorithms, and Functional Program-
ming. Birkhiuser, second edition, 1993. Progress in Theoretical Computer Science Series.

P.-L. Curien. Observable algorithms on concrete data structures. Information and Com-
putation, 1993. To appear.

B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge University
Press, 1990. Cambridge Mathematical Textbooks.

D. P. Friedman and D. S. Wise. Cons should not evaluate its arguments. In Michaelson
and Milner, editors, Automata, Languages and Programming. Edinburgh University Press,
1976.

J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures dans 'arithmétique
d’ordre supérieur. These de Doctorat d’Etat, Paris, 1972.

J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University Press,
1989.

K. Godel. Uber eine bisher noch nicht beniitzte Erweiterung des finiten Standpunktes.
Dialectica, pages 280-287, 1958.

K. Godel. Kurt Gadel Collected Works, Volumes I and II, S. Feferman, et al (editors).
Oxford Univ. Press, 1990.

C. A. Gunter and D. S. Scott. Semantic domains. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, Vol. B, pages 635-674. Elsevier, 1990.

C. A. Gunter. Semantics of Programming Languages: Structures and Techniques. MIT
Press, 1992.

REFERENCES 47

[Ham88]

[HMT76]

[TMO1]

[Kle59]

[Kle63]

[Koy82]

[LS86]

[MC88]

[Men87]
[Mil77]

[Mil80]

[ML79]

[Mos74]

[MPW92]

[Mul86]

[Mul87]

[Par80)]

[Pit94]

[PJ87]

A. G. Hamilton. Logic for Mathematicians. Cambridge University Press, revised edition,
1988.

P. Henderson and J. H. Morris. A lazy evaluator. In Third ACM Symposium on The
Principles of Programming Languages, Atlanta, GA, 1976.

T. Jim and A. R. Meyer. Full abstraction and the context lemma. In Ito and Meyer, editors,
Proc. Int. Conf. Theoretical Aspects of Computer Software, pages 131-151. Springer, 1991.
LNCS Vol. 526.

S. C. Kleene. Recursive functionals and quantifiers of finite types I. Trans. American
Mathematical Society, 91:1-52, 1959.

S. C. Kleene. Recursive functionals and quantifiers of finite types II. Trans. American
Mathematical Society, 108:106-142, 1963.

C. P. J. Koymans. Models of the lambda calculus. Information and Control, 52:206-332,
1982.

J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic. Cambridge
Studies in Advanced Mathematics No. 7. Cambridge University Press, 1986.

A. R. Meyer and S. C. Cosmadakis. Semantical paradigms: notes for an invited lecture. In
Proc. 3rd Annual IEEE Symp. Logic in Computer Science. Computer Society Press, 1988.

E. Mendelson. Introduction to Mathematical Logic. Wadsworth, Inc., third edition, 1987.

R. Milner. Fully abstract models of typed lambda-calculus. Theoretical Computer Science,
4:1-22, 1977.

R. Milner. A Calculus for Communicating Systems, volume 92 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 1980.

P. Martin-L6f. Constructive mathematics and computer programming. In International
Congress for Logic, Methodology and Philosophy of Science, pages 538-571. North-Holland,
1979.

Y. Moschovakis. Elementary Induction on Abstract Structures. North Holland, 1974.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II. Information
and Computation, 100:1-77, 1992.

K. Mulmuley. Fully abstract submodels of typed lambda calculus. Journal of Computer
and System Sciences, 33:2-46, 1986.

K. Mulmuley. Full Abstraction and Semantic Equivalence. MIT Press, 1987.

D. M. Park. Concurrency on automata and infinite sequences. In P. Deussen, editor,
Conference on Theoretical Computer Science, Berlin, 1980. Springer-Verlag. Lecture Notes
in Computer Science Vol. 104.

A. M. Pitts. Computational adequacy via “mixed” inductive definitions. In Proc. 18th
Int. Symp. Mathematical Foundations of Computer Science, IX, New Orleans, 1993.
Springer, 1994. LNCS. To appear.

S. L. Peyton Jones. The Implementation of Functional Programming Languages. Prentice-
Hall, 1987.

REFERENCES 48

[P1a66]
[Plo72]

[Plo75]

[Plo76]
[Plo77]

[Plo81]

[P1o85]

[Sco80]

[Sco93]

[Sie92]

[Spe62]

[Stas5]

[Sto91a]

[Sto91b]

[Sto91c]

[Tai67]

[Tarb5]

[Tur85]

R. A. Platek. Foundations of Recursion Theory. PhD thesis, Standford University, 1966.

G. D. Plotkin. A set-theoretical definition of application. Technical Report MIP-R-95,
School of A.L., Univ. of Edinburgh, 1972.

G. D. Plotkin. Call-by-name, call-by-value and the lambda calculus. Theoretical Computer
Science, 1:125-159, 1975.

G. D. Plotkin. A powerdomain construction. SIAM J. Computing, 5(3):452-487, 1976.

G. D. Plotkin. LCF as a programming language. Theoretical Computer Science, 5:223-255,
1977.

G. D. Plotkin. Cpo’s: Tools for making meanings. Post-Graduate Lecture Notes in Ad-
vanced Domain Theory, Dept. of Computer Science, Univ. of Edinburgh, 1981.

G. D. Plotkin. Types and partial functions. Post-Graduate Lecture Notes, Dept. of Com-
puter Science, University of Edinburgh, 1985.

D. S. Scott. Relating theories of lambda calculus. In J. R. Hindley and J. P. Seldin, editors,
To H. B. Curry: FEssays in Combinatory Logic, Lambda Calculus and Formalism, pages
403-450. Academic Press, 1980.

D. S. Scott. A type-theoretical alternative to CUCH, ISWIM and OWHY. Theoretical Computer
Science, 121:411-440, 1993.

K. Sieber. Reasoning about sequential functions via logical relations. In M. P. Fourman
et al, editor, Applications of Categories in Computer Science, pages 66-94. Cambridge
University Press, 1992.

C. Spector. Provably recursive functionals of analysis: a consistency proof of analysis by an
extension of principles formulated in current intuitionistic mathematics. In Recursive Func-
tion Theory, Proc. Symposia in Pure Mathematics V, pages 1-27. American Mathematical
Society, Providence, RI, 1962.

R. Statman. Logical relations and the typed A-calculus. Information and Control, 65:85-97,
1985.

A. Stoughton. Equationally fully abstract models of PCF. In Proc. 5th
Int. Conf. Math. Foundations of Programming Semantics, pages 271-283. Springer, 1991.
LNCS Vol. 442.

A. Stoughton. Interdefinability of parallel operations in PCF. Theoretical Computer Science,
79:357-358, 1991.

A. Stoughton. Parallel PCF has a unique extensional model. In Proc. 6th IEEE Annual
Symp. Logic in Computer Science, pages 146-151. IEEE Computer Society Press, 1991.

W. W. Tait. Intensional interpretation of functionals of finite type i. J. Symb. Logic,
32:198-212, 1967.

A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Mathemat-
ics, 5:285-309, 1955.

D. A. Turner. Miranda — a non-strict functional language with polymorphic types. In
J. P. Jouannaud, editor, Functional Programming Languages and Computer Architectures.
LNCS 201, Springer-Verlag, Berlin, 1985.

REFERENCES 49

[vL90] J. van Leeuwen, editor. Handbook of Theoretical Computer Science, Vol. B. Elsevier, 1990.

[Wad85] P. Wadler. Introduction to orwell. Technical report, Oxford University Programming
Research Group, 1985.

[(Win93] G. Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993. Foun-
dations of Computing Series.

Index

R-normal form, 11

R-redex, 11

a-convertible, 5

B-redex, 11

Ck, 33

n-expansion, 15

n-reduction, 15

A-theory, 26

s simulates ¢ applicatively, 37
A is a A-theory, 39

“big-step” reduction relation, 32
“small-step” reduction relation, 36

abstraction, 4
application, 4

applicative context, 36
applicative simulation, 33
applicative structure, 18
applicatively bisimilar, 33

Bohm transformation, 27
Bohm tree, 31

basis, 24

basis for, 24

bisimilar, 33

bound, 4

Church numerals, 42
Church-Rosser property, 12
closed, 4

closure ordinal, 34
combinator, 7
combinatory algebra, 18
combinatory complete, 19
combinatory logic, 21
commute, 17

compatible closure, 6, 11
conditional-n, 39
consistency, 7
consistent, 15

consistent theory, 26
consistently complete, 62
Context Lemma, 36
context-substitution, 8
Contexts, 8

contextual preorder, 35
convergence test, 60
Convergence testing, 39

converges, 32
cover, 62

de Bruiyn notation, 44
dI-domain, 62
diamond property, 12
distributive, 62
diverges, 32

effectively computable function, 41
evaluation contexts, 36, 60
extensional combinatory logic, 21
Extensionality axiom, 21
extensionally, 63

fixed point, 7

fixed-point combinator, 7
formation rules, 10

free, 4

function paradigm, 31

Godel numbering, 43, 44

has an R-normal form, 11
head normal forms, 31

implements, 15
incompatible, 16

leftmost [-redex, 32

local structure characterization theorems, 26

Martin-Lof style evaluation relation, 32

normal form, 11
normalizable, 12
normalizing, 12
notion of reduction, 10

observational, 35
observationally approximates, 35
one-step (-reduction, 10
one-step R-reduction, 10, 11
operational extensionality, 36
order oo, 39

order n, 39

order 0, 39

parallel 8-reduction, 12
permutator of order n, 27

INDEX 51

Please send any correction to, 1
Plotkin-style transition relation, 36
post-fixpoint, 34
pre-simulation, 34
precongruence, 36

prime, 62

prime algebraic, 62

program contexts, 35
Programs, 36

programs, 32

proof, 9

proof tree, 9

redex rule, 10
redex rules, 60
represents, 19
rule induction, 10

Scott domain, 62

Scott numerals, 40

side condition, 10

stable, 63

stable ordering, 63
strategy, 12

strongly Ay-definable, 40
strongly normalizable, 12
strongly normalizing, 12
Subsitution Lemma, 16
substitution, 5

Subterm, 10

syntactic equality, 5

Term rewriting, 10
theory, 6

unique normal form property, 12
unsolvable terms, 31

value substitution, 37
values, 32, 36
variable capture, 8

weak combinatory logic, 25
Weak extensionality axiom, 21
Weak extensionality scheme, 21
weak head normal form, 32
weak head normal form, 31, 32
weakly normalizing, 12

52

A Class problems

Class 1

Syntax of the A-calculus

Class 2

Reduction

Class 3

Combinatory logic

Class 4

Bohm'’s Theorem

Class 5

A-calculus as a programming language

Class 6

Recursion theory

Class 7

Simply-typed A-calculus, PCF, adequacy

53

B Sample examination questions

B.1 Prove that the A-calculus is consistent.

[You should state what you mean by consistency carefully.]

B.2 (i) State and prove a result that relates the Church-Rosser property to the consistency of a
formal theory of equations over a set of terms.

(iii) Prove that the formal theory Af is consistent.

(iii) Is the formal theory obtained from A3 by augmenting it by s = k consistent? Justify your result.

B.3 (i) State the Church-Rosser Theorem for -reduction. Explain briefly why it is an important
result in A-calculus.

(ii) What is a fixed point combinator? Set g = Ayf.f(yf). Prove that any A-term s is a fixed point
combinator if and only if s is a fixed point of g.

(iii) Show that if y is a fixed point combinator, then so is yg. Hence, or otherwise, show that there
are infinitely many ((-inequivalent) fixed point combinators.

B.4 (i) Give a Godel numbering on A-terms i.e. an effectively given (computable) injective map
#—: A — N

(ii) Use the Second Fixed Point Theorem to prove the Scott-Curry Theorem: Let A and B be two
collections of A-terms that are closed under (-convertibility. There is no A-term p such that for
each natural number n, pn =0 or 1, and

ifue A

|=

pl—u_l —

0 ifueB

where = is the equational theory of the formal system AS.

(iii) Hence, or otherwise, prove that the formal equational theory A\f is undecidable.

B.5 “The A-calculus is Turing complete.” Discuss.

[You should state carefully any relevant definition and theorem, and give a proof of a major theorem
in developing your argument.]

B.6 (i) Define Scott numerals and Church numerals.

(ii) Give a Godel numbering on A-terms i.e. an effectively given (computable) injective map #— :
A — N

54

(iii) For each A-term s, define "s7< #s where n is the n-th Church numeral. Prove the Second Fixed

Point Theorem: for any ¢ € A, there is a u € A such that t"u7 = u.

B.7 (i) Define applicative simulation S for the call-by-name (CBN) A-calculus.

(ii) Prove that applicative simulation is the maximal fixed point of a monotone function F': R — R
where R is the set of binary relations over the set A of closed A-terms ordered by set inclusion.

(iii) State and prove a characterization result for <.

(iv) Is it true that Azx.sz S s for all s € A°?

B.8 Let s,s',t and t’ range over closed \-terms.

(i) Define applicative simulation 5 for the call-by-name (CBN) A-calculus, and give (without proof)
a characterization of it solely in terms of the convergence predicate (—){}.

(ii) Prove that AB F s = Az.p if and only if s||. Deduce that s = s’ and s{} imply s’}
(iii) Hence, or otherwise, prove that if \G F s = s’ then s ~ s’ (i.e. sE s’ and s’ € s)

(iv) Recall that a A-theory is a consistent extension of A\ that is closed under provability. Deduce
def

that M= {s=1t:s~1t} is a A-theory.

B.9 (i) Define the call-by-name A-calculus, and give its operational semantics in terms of a Martin-
Lof style evaluation relation and a Plotkin-style transition relation. Show that the two are
equivalent.

(ii) What is the Context Lemma? Give a careful proof in the case of the call-by-name A-calculus.

B.10 Let £ be the (first-order) language with constant symbols k,s and a binary function symbol
for application.

(i) Define an operation MNe.—: L — L parametrized by variables z of L: for each z, there is a map
a — Az.a, where a € £ and where Az.a is defined by recursion as:

Az = skk
Ar.a € ka if @ is a variable Z z or a € {s,k }
Az.ab £ s(Az.a)(Az.b). if the previous cases do not apply

Prove that Cp b Vz.(Az.a)z = a. Hence prove that Co - (Az.a)b = a[b/x] for all b € L.
(ii) What is a combinatory algebra? Define combinatory completeness (of an applicative structure).

(iii) Using (i), or some other abstraction algorithm, prove that an applicative structure is combinatory
complete if and only if it can be given the structure of a combinatory algebra.

95

B.11 “The A-calculus and Combinatory Logic are essentially equivalent.” Discuss.

B.12 (i) Define the call-by-value (CBV) A-calculus and give its operational semantics in terms of
both the Martin-Lof style evaluation (big-step) relation |} and Plotkin-style transition (small-
step) relation >.

(ii) Prove that the big-step and small-step reduction relations are equivalent i.e. for any s,v € A°
sdv <= s>0v & v)

where >> is the reflexive transitive closure of > and v means there is no v € A for which v > u
holds.

(iii) Say that convergence testing is definable in a A-calculus endowed with an evaluation relation |
if there is a term ¢ € A° such that for any s € A°

sl = cs| Az
st = cst

Is convergence testing definable in ¢BvV A-calculus?

B.13 (i) Define the syntax of Scott’s language PCF and give its operational semantics in terms of
either a small-step or a big-step reduction relation.

(ii) State and prove the Context Lemma for PCF.

B.14 State and prove the Weak Adequacy Theorem for Scott’s language PCF.

56

C Lambda Calculus Mini-projects

University of Oxford, MSc (Maths & FoCS)

Lambda Calculus
Mini-project 1: Context lemma for the call-by-value A-calculus

Michaelmas 1995

Instructions to candidates: The following series of problems take you through a proof of the context
lemma for the call-by-value A-calculus. Your project should take the form of a mathematical report on
your progress in solving the problems.

We let p,r,s and ¢ range over A-terms. Programs of Plotkin’s call-by-value A-calculus are closed \-
terms, and wvalues, ranged over by u and v, are closed abstractions. Evaluation is defined by induction
over the following rules: for programs Az.p,s and ¢

syAzp tlu plu/z]v
st v '

Az.p | Ax.p

We read s || v as “the program s converges or evaluates to value v”, and write s{| to mean s | v for
some value v. Recall that |} is deterministic i.e. |} defines a partial function.

Definition 1 (Applicative simulation) (i) For closed s and ¢, s is said to simulate t applica-
tively, written s 5 ¢, just in case for every finite (possibly empty) sequence of closed terms
ri,- T, if s7 then t7.

i1) Applicative simulation can be extended to a relation over A-terms in general: for any s and ¢
1YY g Yy)
define s £ ¢ just in case s, 5 ¢, for every value substitution o.

A walue substitution o is just a function o from variables to values. Suppose the variables
occurring free in s are x1,---,x, then

se E slo(z)/z1, 0, 0(T0) /20

Problem 1 Prove the following:
(i) £ is a preorder.
(ii) For any s and t (which are not necessarily closed) and for any value v,
sBt = s[v/z]Stv/z].
O
Definition 2 (Pre-simulation) Let R be the set of binary relations over the set of closed A-terms.
Define a function F': R — R by: for any R € R

F(R) ¥ {(s,8):Vvslv = [.¢ v & Vi.(vt,v't) € R]}.

o7

F is a monotone function with respect to the inclusion ordering. A relation R € R is said to be a
pre-simulation just in case R C F(R). Define < to be the maximal pre-simulation i.e.

s £ U kR

RCF(R)
Problem 2 Prove the following:

(i) F is a monotone function (with respect to the inclusion ordering).

(ii) < is the same as . O

Definition 3 (Observational preorder) For closed s and ¢, s is said to approzimate t observation-
ally just in case for any closed context C[X] whenever C[s]{ then C[t]{}.

Context lemma is said to be valid for call-by-value A-calculus if applicative simulation (restricted
to closed terms) coincides with observational preorder. Our aim is to prove the Context Lemma.

Definition 4 (Precongruence candidate) Define a binary relation <, called precongruence candi-
date, over the collection of all (not just closed) A-terms by induction over the following rules:

o if tC s then z < s

o ifs<s' andt <t and st/ C r then st < r

o if s < s’ and Az.s' 5 r then Az.s < r.

Problem 3 Prove the following:

(i) Whenever s <t andt5r then s <r.
(ii) < is a precongruence i.e. whenever s < s’ and t < t' then st < s't', and whenever s < s’ then
Az.s < Az.s'. O

Problem 4 Prove that < is reflexive. Hence deduce that T is contained in <. O

Problem 5 (Substitution Lemma) Prove that whenever s < s’ and values v < v’ then
sfo/z] < s'[v'/=].

O

Problem 6 For closed s and s, if s < s’ and s || v, then for some v', s’ || v' and v < v'. O

[Hint: Define a notion of “convergence in n steps” s {,, v, and prove by induction over n, using the
Substitution Lemma.]

Problem 7 Prove that < coincides with £. Hence deduce the context lemma. [l

[Hint: To prove that < is contained in &, it suffices to show that < is a pre-simulation (why?).]

o8

University of Oxford, MSc (Maths & FoCS)

Lambda Calculus
Mini-project 2: Two exercises on PCF

Michaelmas 1995

Instructions to candidates: Your project should take the form of a mathematical report on your
progress in solving problems in both Parts I and II.

I. An adequacy theorem

Let D be a cpo. A subset X of D is said to be inductive if it is downward closed and, for every
w-increasing chain (d; }ic, C X, the least upper bound (lub) | |; d; is an element of X.

Let r,s and ¢ range over terms of PCF and « and v over values.

Definition 1 For each PCF-type A, for each d in the standard domain D4 of type A, and for each
closed term s of type A, define d <14 s if

e d=1or
e s vandd <y v where

— f <dB=c u if for each g € Dp and for each closed term ¢t of type B,
g<pt = fg<cut
—tdot, f<yf
—n < n.
Problem 1 Prove that for each type A, and for each closed term s of type A, the set
{deDy:d<y s}

is inductive.

Problem 2 Suppose z : Ay, -+, zn : Ay Fs: Aforn > 0. For each 1 < i < n, for each d; € Dy,,
and for each closed term t; of type A; such that d; <4, t;, prove that

[[Sﬂ[Il’_)dl,"',In?—)dn} <A S[tl/xl,"- atn/wn]-

Problem 3 (Adequacy theorem) (i) Prove that for each closed term s of program type (i.e. o
ori), [s] # L if and only if s |} v for some v.

(ii) Is the result valid for closed terms of higher type? Justify your answer.

99

II. A combinatory logic version of PCF

The aim is to define a combinatory logic version of PCF called PCFC. The type structure and the con-
stants (numerals, booleans, successor, predecessor, test-for-zero, conditional and fixed-point constants)
should have the same sense as those of the standard PCF.

Problem 4 Define the syntax of PCF and give the formal system that defines typing sequents of
the form z4,,---,x4, F s : A which means that the term s has type A in the context where (free)
variables x1,-- -, x, have types Ay, --, A, respectively.

Problem 5 Define either a “small-step” (Plotkin-style transition relation s — s') or a “big-step”
(Martin-Lof style evaluation relation s | v) call-by-name operational semantics for PCr. What
properties can you establish for the semantics?

Problem 6 Examine the relationship between PCF®! and PCF. To what extent do they agree?

60

University of Oxford, MSc (Maths & FoCS)

Lambda Calculus
Mini-project 1: Call-by-name A-calculus and convergence testing

Michaelmas 1996

Instructions to candidates: Answer as many problems as you can.

Ac-terms, ranged over by s, t, etc., are defined as follows:
s u= xz | ¢ | (st) | (Az.s)

where x ranges over a denumerable collection of variables, and c is a constant, known as convergence
test. Write A(c) (respectively A(c)?) for the collection of Ac-terms (respectively closed Ac-terms).
Programs are closed terms; and wvalues, ranged over by wu,v,v’, etc., are closed abstractions and c.
Evaluation is defined by induction over the following rules:

s Azp plt/z] v sle tlvw
st v st | i

where i = Ay.y. We read s || v as “program s converges or evaluates to value v”, and write s{ to
mean s || v for some value v.

Az.p | Ax.p clc

Problem 1 (i) Give a Plotkin-style transition relation > C A(c)? x A(c)? that is equivalent to |
in the sense that for any program s, and for any value v,

shv <= s>v & v¥
where >> is the reflexive, transitive closure of >, and ¢%# means —[3¢".t > ¢'].

(ii) A transition relation > is said to be characterized by a set £ of evaluation contexts (each of
which must have exactly one “hole”) and a set R of redex rules just in case for any s and s/,
s = s iff there is a unique FE € & such that s = E[f], ' = E[f'] and 6 > ' is an instance of a
redex rule in R.

Set R to be the following redex rules:

B) Qazp)t > plt/z]
(c) c(Az.p) > i

Define the set £ of evaluation contexts that, together with R, characterize the transition relation
> in (i). Justify your answer.

Problem 2 Define the one-step reduction relation — (as a binary relation over A(c)) by induction
over the following rules:

s — s s — s s — g
ts — ts' st — s't A\z.5 — Ax.s'

(Az.p)t — p[t/z] c(Az.p) — i

Prove that — is Church-Rosser.

[Hint: Define an appropriate “parallel reduction” relation that satisfies the diamond property.]

61

Problem 3 (i) Show that convergence testing is not definable in call-by-name A-calculus (as defined
in section 5 of your notes). That is to say, writing || as the evaluation relation of call-by-name
A-calculus, show that there is no closed A-term ¢ such that c|}, and for any s € A°

sy = esi

st = csfh

where sft means —[Jv.s | v].

(ii) Let T be any order-oo term, and L any order-0 term. Let p = Az.z(Ay.zTLly)T and ¢ =
Az.z(zTL)T. Prove that p ~ ¢ where ~ is applicative bisimilarity i.e. p 5 ¢ and ¢ £ p.

(iii) Let p’ and ¢’ be obtained from p and ¢ respectively by replacing T in them by Ay.L. Prove that
!/ /
p~q.

(iv) Is it still the case that p ~ ¢ in A-calculus with convergence testing (where ~ is applicative
bisimilarity of the augmented calculus)? No proof is required.

Michaelmas 1996, CHLO

62

University of Oxford, MSc (Maths & FoCS)
Lambda Calculus

Mini-project 2: Stable model for PCF
Michaelmas 1996

Instructions to candidates: Answer as many problems as you can.

Problem 1 Show that the following conditions on a CPO (i.e. a poset that has a least element and
such that every directed subset has a LUB) are equivalent:

(1) Any two points that are bounded above have a LUB.
(2) Every subset that is bounded above has a LUB.

(3) Every non-empty subset has a GLB.

A cPo is said to be consistently complete just in case condition (2) (and hence, equivalently, (1) or
(3)) is satisfied.

A consistently complete CPO D is said to be distributive just in case for any z,y,z € D, if y and z
are bounded above, then
zA(yVz) = (xAy)V(rAz).

A Scott domain is a consistently complete, w-algebraic cPo. A dI-domain is a distributive Scott
domain that satisfies the following axiom:

(I): Every compact element dominates only finitely many elements.

An element x of a CPO D is a prime just in case for any subset X C D that has a LUB,
x<|_|X = dyeXz<y.

A cpois prime algebraic if every element z is the LUB of the set of prime elements that are dominated

by x.

Problem 2 (i) Prove that a Scott domain D is distributive if and only if for all z,y,z € D, if
{z,y,z} is bounded above then

zAyVz) = (xAy)V(zAz).
(ii) Suppose that a subset X = X; U Xy of a Scott domain is bounded above then

X = Uxov(]x.

(iii) An element y of a CPO is said to cover z just in case z < y, and for any z, whenever z < z <y
then z = y or z = x. Prove that in a dI-domain, prime elements are precisely those compact
elements that cover exactly one element.

63

(iv) Using (i) to (iii), or otherwise, prove that in a Scott domain D that satisfies the axiom (I),
distributivity is equivalent to prime algebraicity.

Let D and F be cpPOs such that any two elements that are bounded above have a GLB. A function
f: D — FE is said to be stable just in case it is continuous, and for any two elements x and y that
are bounded above,

flany) = [fl@)Afy).
Let f and g be functions from D to E. f is said to be less than g extensionally just in case

def

f<™g = VreD.f(r)<gz).
f is said to be less than g according to the stable ordering just in case

f<g € VayeDa<y = f(z) = f(y) Agla).

Problem 3 (i) Show that with the extensional ordering on the set D = E of stable functions from
D to E, the application function (D = E) x D — FE is not stable.

(ii) Prove that application is stable if and only if D = E is ordered stably.

Problem 4 (i) Show (informally) that stable functions give a model of PCF.

(ii) Show that parallel-or is not definable in the model.

Michaelmas 1996, CHLO

64

D Overview lecture: copies of slides

