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. INTRODUCTION Yet, by their very nature, existing ORAM mechanisms allow

Regulatory frameworks impose a wide range of policie@i?f‘ts unfettered read/write access to the data, inctuthie
in finance, life sciences, health-care and the governmefPility to alter or remove previously written data records —
Examples include the Gramm-Leach-Bliley Act [1], the Healtthus directly contradicting data retention requirements.
Insurance Portability and Accountability Act [2] (HIPAA), Bas!cconfi_ollentialityandWORMassurances are achievable
the Federal Information Security Management Act [3], th®9-» via traditional systems that could encrypt outsaidzta
Sarbanes-Oxley Act [4], the Securities and Exchange Command dep_loy server-enforced read—onl_y access to data record
sion rule 17a-4 [5], the DOD Records Management PrograPice written. Yet, when alsaccess privacys _to be ensured,
under directive 5015.2 [6], the Food and Drug AdministmatioClient access patterns become necessarily hidden andrtte se
21 CFR Part 11 [7], and the Family Educational Rights arfnnot enforce WORM semantics directly.
Privacy Act [8]. Over 10,000 regulations are believed toggov N this paper we introduce WORM-ORAM, a first mecha-
the management of information in the US alone [9]. nism that combines the access privacy and data confidéytiali

A recurrent theme to be found throughout a large part @ssurances of traditional ORAM with Write Once Read Many
this regulatory body is the need for assured lifecycle sfera(WORM) regulatory data retention guarantees. Clients can
of records. A main goal there is to support WORM semanticgutsource their database to a server with full confidemyiali
once written, data cannot be undetectably altered or atlefd data access privacy, and, for data retention, the server
before the end of its regulation-mandated life span. Thts n&nsures client access WORM semantics, i.e., specificadly th
urally stems from the perception that the primary adveesariclient access is append-only: — once a data record has been
are powerful insiders with superuser powers coupled with funritten it cannot be removed or altered even by its writer.
access to the storage system. Indeed much recent corporalORM-ORAM is built around a set of novel efficient zero
malfeasance has been at the behest of CEOs and CFOs, fivledge (ZK) proofs. The main insight is to allow the
also have the power to order the destruction or alteration @fent unfettered ORAM access with full privacy to the serve
incriminating records [10]. hosted encrypted data set while simultaneously provingéo t

Major storage vendors have responded by offering Compﬁerverin zero-knowledge- at all stages of the ORAM access
ance storage and WORM products, for on-site dep|oymeﬁ(,otocol—that no existing records are overwritten and WORM
including IBM [11], HP [12], EMC [13]. Hitachi Data SystemsSemantics are preserved.
[14], Zantaz [15], StorageTek [16], Sun Microsystem [17] We show that our solution does not change the computa-
[18], Network Appliance [19]. and Quantum Inc. [20]. tional complexity of existing ORAM implementations. Our

However, as data management is increasingly outsourdgtplementations show that the end-to-end cost of a read
to third party “clouds” providers such as Goog|e, Amazoﬁperation is 10s and the amortized cost of a shuffle is 47s.
and Microsoft, existing systems simply do not work. Whedhese costs compare favorably with the costs imposed by
outsourced data lies under the incidence of both mandaté#ssic ORAM solutions that do not offer WORM assurances.
data retentionregulation and privacy/confidentiality concerng-uture work focuses on reducing these overheads toward true
— as it often does in outsourced contexts — new enforcem@hactical efficiency.
mechanisms are to be designed.

This task is non-trivial and immediately faces an apparent 1. RELATED WORK
cqntrad|ct|on. On the one hand, data retention regulatchr? Oblivious RAM
stipulates that, once generated, data records cannot bedera
until their “mandated expiration time’even by their rightful ~ This paper extends the work of [23] with novel construc-
creator— history cannot be rewritten. On the other hand, accens that provide indistinguishability for the read anditer
privacy and confidentiality in outsourced scenarios mamdaiccesses, detailed descriptions of essential componesitas
non-disclosure of data and patterns of access thereto to gh@ment expiration and with proofs for the assurances deavi
providers’ servers, and can be achieved through “Oblivio®y the solution including the zero knowledge properties.

RAM” (ORAM) based client-server mechanisms [21], [22]. Oblivious RAM [21] provides access pattern privacy to
clients (or software processes) accessing a remote databas
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In ORAM, the database is considered a sehadncrypted the desired time complexity. Thus, queries for the loweele
blocks and supported operations are redd(and write¢d, data have a significant chance of sharing locations with alata
newvalue). The data is organized inttogs(n) levels, as a the current level. Because the Cuckoo hash otherwise avoids
pyramid. Leveli consists of up tot’ blocks; each block is collision, any time such an occurrence is observed indicate
assigned to one of thé¢ buckets at this level as determinedeaks access information. That is, when the adversary sees t
by a hash function. Due to hash collisions each bucket mgyeries access the same pair of hash table locations, itslear
contain up tologn blocks. that at least one of those queries was, in fact, for loweellev
ORAM Reads/Writes. To obtain the value of blockd, the (less recently accessed) data. This immediately violatesss
client must perform a read query in a manner that maintaipsivacy. The authors acknowledged this problem.
two invariants: (i) it never reveals which level the desildock
is at, and (ii) it never looks twice in the same spot for the _ ) )
same block. To maintain (i), the client always scans a sindgie Private Information Retrieval
bucket in every level, starting at the top (Level 0, 1 bucket) private Information Retrieval (PIR) [26] protocols aim to
and working down. The hash function informs the client of thgllow (arbitrary, multiple) clients to retrieve informati from
candidate bucket at each level, which the client then scapsiblic or private databases, without revealing to the detab
Once the client has found the desired block, the client stdkrvers which records are retrieved. In initial resultspCét
proceeds to each lower level, scanning random bucketsadstes|. [26] proved that in an information theoretic settingyan
of those indicated by their hash functioRor (ii), once all single-server solution requireé®(n) bits of communication.
levels have been queried, the client re-encrypts the q@syltr \When the information theoretic guarantee is relaxed single
with a different nonce and places it in thep level. This server solutions with better complexities exist; an exal
ensures that when it repeats a search for this block, it wilirvey of PIR can be found online [27], [28]. Recently, we
locate the block immediately (in a different location), aheé have shown [29] that due to computation costs, use of egistin
rest of the search pattern will be randomized. The top levgbn-trivial single-server PIR protocols on current hardsvis
quickly fills up; how to dump the top level into the one belowtill orders of magnitude more time-consuming than triyial
is described later. transferring the entire database.

Writes are performed identically to reads in terms of the
data traversal pattern, with the exception that the newevedu
inserted into the top level at the end.

Level Overflow. Once a level is full, it is emptied into the A, Deployment and Threat Model

level below. This second level is then re-encrypted and re- )
ordered, according to a new hash function. Thus, accesse! the deploymentmodel for networked compliance storage,

to this new generation of the second level will hence-forfh €ditimate client creates and stores records with a (pialgn
be completely independent of any previous accesses. Eagﬁrusted)_ remote WORM storage service. These records are
level overflows once the level above it has been emptiedtql b_e available _Iater to both the cllen_t for _regd as well as to
times. Any re-ordering must be performed obliviously: Oncgudnors.for audits. Network layer anf'dent'a“t_y, IS as=liby i
complete, the adversary must be unable to make any Correqéechamsms such as SSL/IPSec. Without sacrmcmg_getyerall
tion between the old block locations and the new locations. K€ Will assume that the data is composed of equal-sized slock
sorting network is used to re-order the blocks. (e.g., disk blocks, or database rows). , ,
To enforce invariant (i), note also that all buckets must At @ later time, a previously stored record's existence is
contain the same number of blocks. For example, if the buckg@retted and the client will do everything in her power —
scanned at a particular level has no blocks in it, then tffed- atiempt to convince the server to remove the record —
adversary would be able to determine that the desired bld Prevent auditors from discovering the record. The main
was not at that level. Therefore, each re-order process filRUrPose of a traditional WORM storage service is to defend
all partially empty buckets to the top wilake blocks. Since 29&inst such an adversary. _ _
every block is encrypted with a semantically secure enoypt Moreover, numerous data regulations feature requirements
function, the adversary cannot distinguish between fake aff “secure deletion” of records at the end of their mandated
real blocks. retention periods. Then, in the WORM adversarial model the
Pinkas and Reinman introduce in [24] a mechanism {gCUS is mainly on preventing clients from “rewriting” hisy,
provide O(log2 n) oblivious access with only Iogarithmicrather than “remembering” it. Add|t|_onally, we prgvent the
client storage. The collision-free Cuckoo hash from [25] i&/shed removal of records before their retention periodisisT
employed to remove dogn factor of server storage (andthe tradmgnal Wnte-ane Read-Many (WORM) systems have
eliminate the corresponding query overhead). Data is dtorée following properties:
ORAM-like, in a pyramid-shaped set of levels, with queries « Data records may be written by clients to the server once,
proceeding downward interactively. read many times and not altered for the duration of their
Unfortunately, the premise of this idea is flawed. The con- life-cycle.
struction of the Cuckoo hash function at a given level comsid « Records have associated mandatory expiration times. Af-
only the data to be stored at a given level, not the data alread ter expiration, they should not be accessible for either
stored at lower levels. This property is necessary to aehiev  audit or read purposes.

I1l. M ODEL AND PRELIMINARIES



« In the case of audits, stored data should be accessible to Notations:: Let n = pg be a large composite, where
auditors even in the presence of a non-cooperating cligniand ¢ are primes. Letp(n) denote the Euler totient of.
refusing to reveal encryption keys. We will usez €r A to denote the random uniform choice

We assume however that client participate correctly @f  from the setA. Given a valuem, let P(m) denote the
any record expiration protocol. This is reasonable to agsudfoup of permutations over the sg, 1}™. Letk < [n| be a
because the regulatory compliance scenario allows clierf@CUrity parameter. LeV denote the set of elements stored in
always to by-pass the server-enforced storage servicetarel sth€ ORAM. LetW,, be the universe of all sets ef quadratic
select records elsewhere. residues.

Additionally, when records and their associated access pat
terns are sensitive they need to be concealed from a curious
server that has incentives to illicitly gain informationcal IV. SOLUTION OVERVIEW
the stored data and access patterns thereto. The main purpos
of WORM-ORAM is to enable WORM semantics while pre- A WORM-ORAM system, consists of two ORAMs (W-
serving data confidentiality and access pattern privacenTh ORAM,E-ORAM) and a set of operations (Gen, Enc, Dec,
data records have to be encryptembrfidentiality and the RE, \Write, Read, Expire, Shuffle, Audit) that can be used
server should not distinguish between different read O[eNl'ito access the ORAMs. The client needs to store elements at
operations targeting the same or different data recaadsess the server while preserving the privacy of its accesses and
privacy). We assume that the server is allowed to distinguigfliowing the server to preserve the data’s WORM semantics.
between record expiration and read/write operations. As ty-ORAM serves this purpose: it is used by the client to store
regulatory storage provider, the server is the main enforcgabel’element) pairs.
of WORM semantics and record expiration. The server is\ye organize time into epochs: each element stored at the
ass_umed to not collude with clients illicitly desiring toteal gqpyer expires in an integer number of epochs, as determined
their data. by the client. The client needs to remember the expiratioe ti

We consider a servef with O(N) storage and a client of each element stored in the W-ORAM. The client uses the
C with O(V'N log N) local storage. The client storé3(N) E.ORAM to achieve this, to store expiration times of labels
items on the server. We denote the regulatory compliangged to index elements stored in W-ORAM. When queried
auditor by A. with a time epoch, E-ORAM provides a list of labels expiring
in that epoch. The labels are then used to retrieve the expiri
elements from the W-ORAM.

The E-ORAM is stored and accessed as a regular

We require several cryptographic primitives with all the asORAM [22]. It is used as an auxiliary storage structure by
sociated semantic security [30] properties including: @use, the client and it needs not be WORM compliant. The W-
collision-free hash function which builds a distributioni its ORAM on the other hand stores actual elements and needs
input that is indistinguishable from a uniform random dmfr to be made WORM compliant. The W-ORAM stores two
tion, a semantically secure cryptosysté@n, Ency, Deci), types of elements: "reals” and "fakes”. A real element has
where the encryption functiownc generates unique cipher-a quadratic non-residue component, whereas a fake has a
texts over multiple encryptions of the same item, such thgqtiadratic residue. Each time the ORAM is accessed, elements
a computationally bounded adversary has no non-negligildee re-encrypted to ensure access privacy. The client leas th
advantage at determining whether a pair of encrypted itertts prove in ZK that (i) an element is real or fake and (ii)
of the same length represent the same or unique items, ance-encrypted element decrypts to the same cleartext as the
a pseudo random number generator whose output is indistiriginal element.
guishable from a uniform random distribution over the otitpu |n the following we provide a detailed description for each
space. operation mentioned above. We employ the classic ORAM

The Decisional Diffie-Hellman (DDH) assumption over aperations described in Section 1l-A as the APIs for buiddin
cyclic group G of order ¢ and a generatoy states that no our solution. Specifically, we us®eadoraar to denote the
efficient algorithm can distinguish between two distribn8 standard ORAM read operation, taking as input an ORAM
(9%, 9% g?*) and (¢9%, g%, g°), wherea, b and c are randomly and a label and returning an element stored under that label
chosen fronz,. along with the list of all elements removed from the ORAM

An integerv is said to be aquadratic residuemodulo an (including the one of interest} riteoran IS the standard
integern if there exists an integer such thatz? = v mod n. ORAM write operation, which takes as input a label and an
Let QRA be the quadratic residuosity predicate modulo element and stores the element indexed under the label. Note
Thatis,QR(v,n) = 1if vis aresidue mo& andQR(v,n) = that in the standard ORAM implementation, both operations
0 if v is a quadratic non-residue. Given an odd integer pq, are performed in the same manner. Their operation is only
wherep andgq are odd primes, the quadratic residuosity (QRJifferent for the client. Finally, leOS be the standard ORAM
assumption states that given but not its factorization and re-shuffle operation (see Section II), which takes as input a
an integerv whose Jacobi symbdlb|n) = 1 it is difficult to level id and generates a pseudo-random permutation of the
determine whethe®R(v,n) is 1 or O. re-encrypted elements at that level.

B. Cryptography



V. W-ORAM ELEMENT ENCRYPTION Note that Fnc is semantically secure. The proof can be

We now define the operations for encrypting the elemerff%un(_j in [32]. Similarly RE is IND-CPA: given two en-
to be stored in the WORM compliant ORAM. cryptions (4, By) and (A, B1) of any two messages and

Gen(k): Generatep = 2p/ + 1, ¢ = 24’ + 1 such a re-encryptionRE (A, By), b €r {0,1} of one of the two
that p, p', g ;1, are primes. Lety = qu Let G be the cyclic encryptions, an attacker cannot guéssvith non-negligible

subgroup of orderp — 1)(¢ — 1). DDH is believed to be probability over 1/2.

intractable inG [31]. Let g be a generator ofs. Leta be a

random value and lef = a=! mod ¢(n). Let k be a random

k_ey in a semantically secure symmetric cryptosysté}’nn VI. THE E-ORAM

givesk, n, g, h = g* € G, p, q, a andd to the client and

n, g, h to the serverGen also givesk, p, ¢, a andd to the ) ) )
auditor. The E-ORAM is a standard ORAM, storing labels indexed

Enc((x,T..,).k,9,h,G,Ht: Encrypt an element of value under expiration time epochs. Thg E-ORAM needs to pro-
with expiration timeT,,,, using the client'’s view ofGen’s Vide C with the means to determine how many and which
output as input parameters. The output of the operation [&P€ls expire at a given time epoch and also to insert a new
a tuple (4,B) € G x G that can be stored on the W-(epoch, label) pair. This is achieved in the following manner.
ORAM. If f =0, Enc generates a “real” W-ORAM element:For eachT.,, value used to index labels in E-ORAM, a
the first field of such elements is a quadratic non residg¢advalue is used to store the number of labels expiring at
QR(A,n) = 0. The tuple is computed as follows. First,Lexp’ (Texp, (label, counter)). label is thg flrst label that was
generate a random € {0,1}% and use it to compute indexed undelTemZ_,. Ea_ch of the remaining — 1 Iabels. is
M(z) = {Ep(2), Tenp, “real”,r} Where Ey(z) denotes the stored under a unique index: Thih label's index |S_(Temp,z),
semantically secure encryption of item with symmetric thatis, the label's expiration time concatenated with tieel's
key k and “real” is a pre-defined string. The randamis COUNter at its insertion time.
chosen (using trial and failure) such th@R(M (x),n) = 0 We now present the most important operations for accessing
(quadratic non residue mogd) whose Jacobi symbol is 1.the E-ORAM, Write and Enumerate.

Second, generate a random odd vaiuer {0, 1}* and output Write(E-ORAM, T.,,,label): Record the fact thalabel
the tupleS(z) € G x G as expires at timeT,,, (see Algorithm 1, lines 1-11). Read
_ _ 26 12b the element currently stored und€,, (line 2). If no such
S(@) = (4, B) = (M(z)g™, ™). element exists (line 3), generate an glement encoding ttte fa
S(x) is said to be an “W-ORAM element”, whose firstthat this label is the first to be stored undgr,, (line 4) and
field is the “encrypted element” and second field is callegtore it on the E-ORAM (line 5). Moreover, run a fake E-
the “recovery key”. Notice that sincel/(z) is a QNR, ORAM access (line 6), whose purpose will become clear in
QR(M (x)g**,n) = 0 with (Jacobi symbolYM (z)g?|n) = a few lines. If a label is already stored undgr,, (line 7),
1. retrieve that labellj along with the counter that specifies
If f =1, Enc generates a “fake” W-ORAM element: thehow many labels are already expiring (stored in E-ORAM)
first field of fake elements is a quadratic resid@e?(A,n) = at Tes, (line 8). Note that the read operation performed on
1. To compute a fake elemernc generates random k €  line 2 removes this element from the E-ORAM. Since now
{0,1}* and outputs the tuplés®> mod n, k). That is, the first ¢+ 1 labels expire afl.,, store label and the incremented
field in the pair is a quadratic residue, however, the “recpvecounter in the E-ORAM undef...,, (line 9). Finally, store the
key” is useless — does not recover a meaningful message.inputlabel under an index consisting of a unique valdg;,
Dec((A,B),d,k): Decrypt a real W-ORAM element, given concatenated with: + 1. This will allow the client to later

the secret keyd = a~!. ComputeM = AB~< M has enumerate all labels expiring dt., (see next). The reason
format { E, T...,, “real”,r}. The operation outputs the tuplefor the fake E-ORAM write performed in line 6 is to make

Deci(E), Teoup. the two cases indistinguishable to the server: the E-ORAM
RE(A,B): Re-encrypt elementA, B). Chooseu cj IS @lways accessed twice, independent of how many elements

{0,1}%, called re-encryption factor. Output pairl’, B’) = €Xpire atTe.

(Ag*", Bh*"). Note that knowledge of the messagé en- Enumerate(E-ORAM,T..,): Retrive all the labels in E-

coded in (A4,B) is not required. Alternatively, ifM is ORAM that expire atT,,, (see Algorithm 1, lines 12-26).

known such thatd = Mg? and B = h?', then output First, initialize the result label list (line 13). Then, te¢he

(A", B’) = (Mg*", h*"). u can be specified as input paramehead label stored undét.., along with the counter of labels

ter: RE((A, B),u). expiring atT.,, (lines 14,16). If such an element exists (line

RE(L): Generalization of RE((A, B)), where L = 15), record the head label (line 17). Then, for each of the
{(41,B1),..,(Am,Bm)} is a list of W-ORAM elements. ¢ — 1 (¢ = 2,..,¢) remaining labels, retrieve their actual
Choose i = {uy,.,un}, such thatu; €r {0,1}%. value by reading from E-ORAM the element stored under a
@ is called the re-encryption vector. Outpul’ = unique index consisting of.,, concatenated with. Note

{RE((A;, B;),ui)}i=1..m- We also use the notatiolf = Lu that Enumerate removes all labels expiring &, from E-
and callL’ a “correct re-shuffle” of L. ORAM (Readorap removes accessed elements).



Algorithm 1 E-ORAM: Write new label under expiration
time. Enumerate all labels expiring at a given time. V is
the list of elements returned by a Read.

12 Enumerate(E — ORAM : ORAM, Teyp : int)
13.L: id[]; #store result labels
14.1 := (;

1.Write (E — ORAM : ORAM, Teyy : int, 1bl : id) 15.(e, A) := Readopu(E — ORAM, Teyy);

2. (e, V) := Readgpan(E — ORAM, Teyp); 16.if (e! = null) then

3. if (e = null) then 17. (:|_7 C) = Dk(e)’

4. e = Ex(1b1, l); 18. L:=LU1;

5. Writeopau(Texp; e'); 19. for (i :=2;i<c;i++)do

6.  Writegpau(null,null); 20.  (e,A) := Readorau(E — ORAM, (Texp, 1));

7. else 21, 1:=Dy(e);

8. (1,c) :=Dkle); 22. L:=LUI,;

9. Writeoram(Texp, Ex(1, ¢+ 1)); 23. od

10. WriteORAM((Texp, c+ 1), Ek(lbl)), 24 fi

11.fi 25.return L;

12end 26end

VII. W-ORAM A cCESSOPERATIONS 6-7). The client decrypts the desired elem&mdnd returns the

A. Generating Labels result (line 8). If any proof fails (line 9) the server rester

Elements in the standard ORAM model are stored as a p%pe W-ORAM to the state before the start of Read and returns

o
. error (lines 10-11).
(label, value), wherelabel may denote a memory location or
the subject of an e-mail. In our case to prevent the serven fra 1) Zero Knowledge Proof of ORAM ReadiVe now present

: o ZK-POR, the zero-knowledge proof of WORM compliance of
launching a dictionary attack, we use th&@bel (label, lkey) .
operation to generate labels. Besides the inpit, Label the read operation performed on the W-ORAM. ZK-POR takes

also uses a (random) labeling key, which is used to definé'd argument the lisL of elements removed from W-ORAM

pseudo-random functiofiy.,. The output ofLabe! coincides in line 2 of Algorithm 3 andU, the re-encryption of the real

then with the output ofFjj., (label). We now describe the element fromL. For simplicity of exposition, let us assume
main W-ORAM accessing gperations that L also contains the elements (scanned but not removed)

from the first level of W-ORAM. Letn denote the number of

elements in, m = O(log N).

. Let L = {(s2,k1)sri(52 1 ke 1),S(@0)(52 00, Kri)ren
Write((W-ORAM,E-ORAM,v,I, T.;,params):  Store (52 k. 41 where the elements are listed in the order in which

on the server a value under a label, with expiration time  they were removed from the W-ORAM. The client is interested

Tewp, using as input also the client's view @fen’s output, jn the item from therth ORAM layer, R = S(z,). Let

params = k,g,h,G (see Algorithm 2 for the pseudO-COdeS(xr) = (M(z,)g% h*") = (A,,B,). Its first field is a

of this operation). Generate a newbel as described above qyadratic non-residue. All other elements frainare fakes

(line 2) and callEnc to produce a W-ORAM tupl€A., B.)  _ their first field is a quadratic residue. LBt = RE(R) =

(line 3). Generate a non-interactive zero knowledge prdof oy7(z,.) g2« p2v) = (A,, B,) be the re-encryption of (z,).

QR(Ay,n) = 0 (A,'s quadratic non-residuosity). If the proofThe following steps are executedtimes between the client
verifies (line 5) the server inserts the tugld,,, B,) in the and the server.

top level of the W-ORAM (line 6) and stordabel under the Step 1: Proof Generation: The client selects a

tuple’s expiration time7,,, in E-ORAM (see Section VI). (3ndom permutationt € P(m). The client generates
Otherwise, the server aborts the protocol (line 10). w = {wi,.w,}, where eachw; €r {0,1}™ is odd

B. Writing on the Server

and generates the proof lisP = =(Lw). Let P =

C. Reading from the Server m{(s2g%%1, b h2W1),. (Arg*Pr, B h2vr),

Read(W-ORAM,label): Using as input the W-ORAM ..(s2,g*"", kn,,h**™)}, where, (4,¢%"", B,h*"") is a re-
and alabel, return an element of formgtabel, z, T.,,) (see encryption ofS(x,). The client sends” to the server. The
Algorithm 3). Perform on W-ORAM a standard ORAM reactlient locally stores ;, s;9*?), i = 1..m. As assumed in
on the desiredabel (line 2), returning both the W-ORAM the model, The client ha®)(v/Nlog N) storage which is
elementR of interest and the lisf. of elements (containing sufficient to storen = O(log N) values.
R) removed from the W-ORAM. Ifabel is stored in the W- Step 2: Proof Validation: The server flips a coin. If b
ORAM (line 3), the client compute¥ = (A4,,B.), a re- isO0, the clientreveals, .., w,,. The server verifies that all;
encryption of R (line 3) and calls ZK-POR to prove in zeroare odd and/(A;, B;) € L, (A;g?Vi, B;h*%i) € P. If b is 1,
knowledge thalJ is a re-encryption of the only real elementhe client sends to the server the valugg’:, i = 1..m,7 # r
in L (line 4). ZK-POR is described in detail in Section VII-Clalong with the valuel' = (¢, + w, — «). Note that given
The server verifies in ZK thaQR(A,,n) = 0 and also the s? mod n andn’s factorization, the client can easily recover
validity of the ZK-POR proof. If the proofs are valid (line,5) s;. The server verifies first thats;g*¢)?, i = 1.m,i # r
the server insert§/ in the first level of the W-ORAM (lines occurs in the first field of exactly one tuple iR. That is,



m — 1 of the elements fromP are fakes. The server then Shuffle(W-ORAM,I): Uses as input the W-ORAM and
verifies that(A,¢g?*, B.h**) = RE((Au, By),T). If any the index of a level to reshuffle the corresponding level (see
verification fails, the server outputs "error” and stops. Algorithm 4). First, spill the content of levdl— 1 into level
Analysis: We now present the following results, whosé (lines 3-6) and compute an oblivious permutation of the
proofs can be found in [32]. new levell. Then, build its ZK proof of correctness, ZK-
Theorem 1:A correct execution of Read from W-ORAM PRS, detailed in the following (see Algorithm 4, lines 7-38
hasO(log N) complexity. for pseudo-code).
Theorem 2:ZK-POR is a zero knowledge proof system of
Reade WORM. That is, Read is WORM compliant. A. Zero Knowledge Proof of Re-Shuffle.

VIIl. A CCESSINDISTINGUISHABILITY Similar to ZK-POR (see Section VII-C1), ZK-PRS consists

The solution previously described allows the server f s rounds executed by the client and the server. During
distinguish between read and write operations. In thisieect €ach round, a proof lisP’; is built by the client (line 14 of
we solve this problem, by creating a single operation, Asced\lgorithm 4). P; has the same number of elementg&s 1],
that can be used to both read and write on the W-ORAM. O(N). The client builds the lisT“"[I] and each of thes

Access((W-ORAM,E-ORAM,V,|,T...,,params): If Ac- proofs P in the following steps. Initially,7"“*'[I] and each
cess=Write, uséto generate a newbel (as described in Sec- proof list P; is stored as an empty list at the server. The client
tion VII-A) and insertlabel underT.,,, in the E-ORAM (using generates a symmetric kéyfor the (G, E, D) cryptosystem.
the Write operation described in Section VI). If Access=Rea Step 1: Element Re-Encryption: First, the client takes
perform a fake Write on the E-ORAM, consisting of thre@ach element froni’[/] and stores a re-encrypted version
random accesses to the E-ORAM (one for a read and two for 7"¢“[l] and in each proofP; (lines 7-13). That is,
writes, see Section VI). Then, access all the elements in fia& each elementS; = (A;,B;) € T[] (stored at the
top level of the W-ORAM and access and remove one elemegrver), the client generates fresh random odd valyes; <
from each subsequent level. If Access=Write, all removeld, 1}¥ (lines 9 and 12) and produces one eleméhtto
elements have to be fakes. If Access=Read, one of them is fealinserted in7"<*[l] (line 10) S; = Ej(A;g*“, B;h*"?)
(unless the read element was found in the top level).lLet and one element” to be inserted inP; (line 13) P =
{83 k1) 82 1, kre1),S (), (5200, K1) o820, k)t D ER(Aig®i, Bih®¥,”ma” T[], To[i]) whereTy[i] = —w;
the list of elements accessed in the W-ORAM, whéfe,.) and I';[i] = (u; — w;). The string "mv” denotes that this
may be the real element accessed by a Read or a fgkeof element corresponds to an element frdifi moved to
if accessed by a Write. Then, generate two elements TR“"[l].
and N and send them to the server. If Access=Write, Step 2: Fake Insertion: The client addg fake elements
R=RE(S(z,)) and N=Fnc((v, Tesp), k, g, h, G, 0) is the el- (lines 14-22). For each of thgfakes to be inserted il [1],
ement to be written. If Access=Read®t = RE(S(z,)) the client generates two random valugsk; € {0, 1} (line
and N=Enc((null,null), k,g,h,G,1) is a fresh fake (see 16),i = 1..f, wherew; is odd. The client then adds an element
Section V). The zero knowledge proof then proceeds exact (s?, k;) in T"°“[(] (lines 17-18). It then generates a random
as ZK-POR. value w; €r {0,1}¥ (line 20) for each proof list?; and

The following result shows that reads and writes performexppends an elemet; (s? g?“i, k;h?*,” add” , T'1[i], T'2[i]) to
using Access are indistinguishable. The proof can be foudy (lines 21-22)T'1[i] = 5,9, T'2[i] = (u; — w;) mod ¢(N)
in [32]. and the string "add” denotes that this proof element is a fake

Theorem 3:The server cannot decide whether an Accesalded to level.
operation is a Read or a Write with probability significantly Note thatT';[¢] and I'z[i] are used to keep track of the

larger than 1/2. correspondence between thh element of eachP; and its
re-encryptions ifl'[l] and 7" [l] after the list reshuffle step
IX. SHUFFLING THEW-ORAM (see next).

When thel — 1th level of W-ORAM stores more than Step 3: List Reshuffle: At the end of the set generation
41=1 elements, due to element insertions occurring durirggep, the client and the server have a one-to-one correspon-
Read operation, the level needs to be spilled over into levd#nce between each elementifi“’[l], each element in each
I. Let T[l] denote the list of elements stored in the W#P; and each elementifi[{]. The client then calls the oblivious
ORAM at thel-th level. Thei-th level then needs to be filled scramble, OS, procedure usifig"“*’[/] and eachP; as inputs
with fakes. The fakes are needed to ensure that subsequénes 23-25). During the OS call, elements read froftf™ (]
Read accesses will not run out of fakes (see [22] for mosad P are decrypted (using) and re-encrypted before being
details). Thel-th level then needs to be obliviously permutedyritten back. Due to the semantic security properties of the
using only O(v/Nlog N) client space. Let™**[l] denote encryption scheme employed, at the end of the OS, the server
the re-shuffledi-th level elements. Due to the WORM secan no longer map elements froffili] to elements in the
mantics, the client also needs to prove that the reshufflereshuffled7<*[l] and P; sets.
correct: (iyT™<*[l] is a re-encryption of the old’[/] and (ii) Step 4 - Decryption: The client reads each element
[T (]| — |T[1]| — |T[l — 1]| elements fronT < [{] are fakes. from the reshuffledT¢*[i] list, decrypts the element and
Shuffle performs this operation. writes it back in-place (lines 26-28). The client reads each



Algorithm 2 W-ORAM: Write valuewv expiring atT,,.

1.Write (W — ORAM : ORAM, E — ORAM : ORAM,

Algorithm 3 W-ORAM: Readlabel.

1.Read W — ORAM : ORAM, label : id)

v :string,1:id, Teyxp : int) g I(JRLL)(A: ge)afigmﬁ'lé‘&; ORAM, label);
2. label := newLabel(l, lkey); 4 Proot 2k .—_POR(L ’U)-
i. (Ay,By) := Enc(label, v, Texp, params); 5: i (Ver.i_nyNR(Au n)a ;
5 ﬁKfve;lgfe;(%l\g{%}?X:ff:(ﬁu)’ ?r)]én & verify(Proof,L,U)) then
6. To:=getLevel(W — ORAM, 1); g- Icr)l ;r%?j;L%‘f)?l(W — ORAM, 1);
! insert(To, (A Bu)): 8. return Dg’c(R, d, k);
8. Write(E — ORAM, Teyp, label); 9 else ,d, k);
9. else .
10. return error; %? ?233?;’121‘05:3[)7
Algorithm 4 Shuffle of levell.
1.Shuffle(w — ORAM : ORAM, 1 : int) %g' for Tgfl]— L Je I;:D(Jio; (J)F) do
2. T"¥[1] : string[|#new level 1 array 21, ro o Rg(e wli]),
#spill T[1 — 1] into T[1] - R ’;ﬁ” [[] ]ng?r]el)lg i] —wli]);
3. T[1 — 1] := getLevel(W — ORAM,1 — 1); #S.huffle ?gew[l] Y r};ofs
v TR 23 o 1] = 0 (T(1
6. T{l]—_l][ S o 24for(J_1J<s31L+)d0
gre Al A element; fron 711 2#SdecrpJ t_slonﬁfjl)ed elements
. for (1 ::T[ll;ﬁ.]ﬁ IT[1]|;i ++) do Sefor (1= 14 < [T¥1] .1 + +) do
. e = 1 - ’
S il ) S e
10, T[1][1] = B (RE(e,uli))); 28, Tl =Bes
11. for (j:=1;j<s;j++) do 20, eJ*_P [’iJ]'_ 7J
12 b~ cehendon) 3 (A5str.C.D)= Do)
' i fi[(] (T ]W[ vgfl]) 32. P,[i] := (A,B,Ex(str,C,D));
#add fakes #proof verification step

34.for (j:=1;i<s;i++)do

35. if (lverify(T[1],T**"[1],P;)) then
16. (s[i],k[i]) := genRandom(); 36. undo(W — ORAM, 1 — 1,1);

17.  e:= (s[i]? k[i]); 37. return error;

18 eppendlTl le)) e

14.f := fakeCount(T[1]);
15.for (i :=1;i <f;i++) do

element from each proof lisP;, decrypts it and writes back verifies thatl';[i]? is the first field of exactly one tuple in
(A;g%vi, B;h?vi, Ey(str,T1[i],T2[i])), where str is either Tm[l]. If at the end of this step the client has proved
"mv” or "add” (lines 29-32). that |T'[l]| elements fromT™<[l] are re-encryptions of the
elements fron¥'[{] and thatf elements fron¥ "< []] are fakes,

proof list P; (lines 34-37). If any verification fails, restore the the server continues. Otherwise it outputs "error” and stop

W-ORAM to the state at the beginning of the operation and If b = 1, the client needs to prove that is a valid

return error (lines 36-37). Each verification, for a proat IP, reshuffle of 7[i]. For this, the client reads each ele-
works as follows. ment from P, recoversl“g[z] and sends to the server the

values A;g?*i, B;h*i and I'z[i]. The server verifies that
The server flips a coin. If b = 0, the server asks the chentRE((A g2 B, h2wl) T»[i]) oceurs inT™*[l] once.

to prove thatP is a valid reshuffle of’[/] and all the remaining Anal Wi t the followi its. wh
elements inP are fakes. For this, the client reads each element nalysis: We now present the following results, whose
of P, (A;g?%i, B;h*¥i, Ey(str,T'1[i], T2[i])), retrievesT'[i] proofs can be found in [32]. _

and sends to the serveAZgQ“h, B:h?vi, str and Ty [i]. If Theorem 4:A correcf[ execut|0n_ of
str = "mv”, the server first verifies that indedd[i] is an ©(log Vloglog N) amortized complexity.
odd number, then verifies tha®@F((A;g>"¢, B;h*+), T4 [i]) Theorem 5:ZK-PRS is a zero knowledge proof system of

appears inT[l] exactly once. Ifstr = ”add’, the server Shuffle € WORM.

Step 5 - Proof Verification: The server verifies each

ZK-PRS has



X. ELEMENT EXPIRATION

Algorithm 5 Operation that removes all W-ORAM
elements that expire at timE.

1 Expire(E — ORAM, W — ORAM : ORAM, T : int
L: id[]; #expiring labels

E: string|]; #removed from W — ORAM
L := Enumerate(E — ORAM, T);

. for each label in L do

(R,E) := Readgray(W — ORAM, Label);
Proof := ZK — PEE(R, E);

Expire(T): Use as input a time epoch and remove all
the elements from the W-ORAM that expire in that epoch (see
Algorithm 5). Use the E-ORAM to enumerate all the labels
that expire atT’ (line 4). For each sucliabel (line 5) read
(and remove) from the W-ORAM the corresponding element
(line 6). Note that theReadoran Operation also returns
the entire list ' of elements removed from the W-ORAM
— containinglog N elements. Then, build a zero knowledge , )
proof of correctness, ZK-PEE (line 7). ZK-PEE proves that i (‘Gizzf(%(flb?:ﬁf) =0) then
E contains one real element that expires7atand the rest 10. return error; ’

(log N —1 elements) are fakes. If the proof verifies, the server 11. fi od

accepts the expiration, otherwise restores the W-ORAM¢o th ~ 12end

state before the Read of line 6 (line 9) and returns erroe(lin
10). We now describe ZK-PEE.

1) Zero Knowledge Proof of Element ExpiratioZK-PEE
takes as input the element to be expirétland the listE
of all elements that were removed from W-ORAM whéh
was read (line 6). Note thak € E. Let m be the number of
elements inE and letE = {(s%, k1), .., R, .., (s2,, km)}. Letr
be R’s index in E. ZK-PEE consists of rounds. During each
round the following steps are executed by the client and t
server.

Step 1: Proof Generation: The client generates a
random permutationrr €z P,, and a random vectow =
{wy,..,wn}, where w; €g {0,1}¥ are odd. The client
computes the lisP = n(Ew) and sends it to the server.

Step 2: Proof Verification: The server flips a bith.

If b = 0, the client revealso. The server verifies that all
w; € w are odd and thaP = n(Ew). If b = 1, the client
revealsDec(R,d, k) = M(x) = (Ex(2), Texp, "real” ,rnd)
to the server along with the encryption factew, and the
square roots of the remaining m-1 (fake) elementsHn
s19™1, .., smg™™. The server verifies the revealed element: (i
its format, that is,T.,, = T and the third field is "real” and
(ii) its correctness(M (x)g*“wr, h?*wr) € P. The server also
verifies that the remaining m-1 elements ihare fakes, by

checking that(s;g*#)? occurs in the first field of exactly one . . )
element inP. We have implemented our solution using OpenSSL and we

Analysis: Let e be the number of elements that expirBave tested it on the configuration depicted in Table I. We
simultaneously. Then, the following result holds (see fsooused the same PC configuration (single core 2.4GHz with

CONDUHWN

element x is stored as the paiv/ (x)g%", h?"), consisting of an
encrypted part and a recovery key. However, during element
expiration (see Section X) the client needs to prove to the
server (in zero knowledge) the fact that one element in the
list of accessed elements expires. For this, the clientsiezd
rovide the server not only with the decrypted element but
r[:;)\'?so with the obfuscating exponeiiti6 the above example).
Since an element may have been accessed and re-encrypted
many times during read and reshuffle operations, the client
keeps track of the changes in the obfuscation exponent.

We address this by storing a third field for any element:
the encrypted exponent, e.dg(b) in the above case, where E
is any semantically secure symmetric key encryption method
whose key is private to the client. Whenever the element
is re-encrypted (during read and re-shuffle operations), th
new exponent is stored encrypted, replacing the existiregy on
The use of a semantically secure encryption method prevents
he server from using this third field to correlate reshuffled
lements. For fake elements the third field is random and
changes whenever a fake is being “re-encrypted”.

XIIl. EXPERIMENTAL EVALUATION

in [32]). 256MB of RAM and.120MB/s sustained read/write rates)
Theorem 6:A correct execution of Expire ha®(elog N)  for both server and client platforms. As such, the server and
complexity. client can perform 250 modular exponentiations per second,
Theorem 7:ZK-PEE is a zero knowledge proof system oféading to 125 record re-encryptions per second and 272K
Expire € WORM. AES encryptions on 1024 blocks. The link between client and
server was a duplex 10MB/s. The outsourced dataset consists
XI. AUDIT of 1024 bit records. In the following, we look at the overhgad

of read and shuffle as they are the most expensive operations.

Audit(d k).. ~Take as input the decryption key8 o olement expiration operation follows the same steps as a
and k to search for desired elements in W-ORAM. Cal}ead and thus its cost is similar.

Dec((4, B),d, k), for all elements(4, B) in the W-ORAM. Read Overheads: Figure 1 shows the overhead of the

Once all the elements are recovered, they can be searchedeR[POR process as a function of the number of reconds

desired keywords. The number of proof sets employed is 40, for a client cheating
probability of2~4%. The x-axis shows the number of records in
XIl. KEY MANAGEMENT logarithmic scale. We have experimented with datasetsmang
For the sake of presentation clarity, we have presentedram 1Mb to 1Tb. For a 1Th datasex®{ records of size 1024),
simplified element encoding operation (Enc). Specifically, the client cost is under 7s and the server cost is under 4s.
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Resource | Spec |

Processor 2.4GHz

RAM 256KB

Disk bandwidth | 120MB/s
Link bandwidth | 10MB/s
Block size 1024b

TrE 125 ops/s
Tsym On 1024b| 272355 ops/s

TABLE |

CLIENT AND SERVER CONFIGURATIONS
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number of records (IggN)

ZK-POR client and server overheads. Read overheaow(s in
seconds) as a function of the dataset size, on the dataset siz

20 seconds for*? datasets, due to the fact that the server
has to verify set re-encryptions irrespective of the outearh

the coin flip process. The communication overhead during the
shuffle operation, including the time to read/write and $fen
proof sets takes around 7 seconds for 1Tb datasets. This is
because the client needs to shuffle not one but 41 proof sets.
Thus, the total, amortized overhead of a shuffle operation is
around 47s.

In ORAM, the network transfer time alone for reshuffling
level i consists of about 10 sorts dflogn data, each sort
requiring 4'log(n)log?(4i‘logn) block transfers, for a total
of 104%0g(n)log?(4'logn)2'° /10M B/se. Summing over the
log, n levels, and amortizing each level ovef' queries,
ORAM has an amortized network traffic cost per query of
3.680Gh. Over the sample 10MB/s link this is a 48 sec/query
amortized transfer time. Thus, by using an improved obligio
scramble protocol, we are able to support regulatory compli
anceand maintain the cost imposed by the original ORAM.

XIV. CONCLUSIONS

In this paper we introduce WORM-ORAM, a solution that
provides WORM compliant Oblivious RAMs. Our solution
is based on a set of zero knowledge proofs that ensure that
all ORAM operations are WORM compliant. The protocol
features the same asymptotic computational complexity as

The transfer cost of the 41 sets of records including also tegr AM.
disk read/write times is only a fraction of a second. Thus, th

total overhead of a read is around 10s. The server overhead
is roughly half the overhead of the client, since the senzs h
to verify re-encryptions only on half the sets generatedHsy t

client.
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includes the cost of re-shuffle incurred all the levels in

the ORAM, over all the ORAM accesses. Figure 2 shows
the dependence of the cost of ZK-PRS on the number (H]
records stored at the server, shown on the x-axis in logaiith

scale. The number of proof sets is 40. Similar to the reat?]
overheads, the client and server computation components
ZK-PRS show a logarithmic dependence on the size of thgj
dataset. The client and server overheads are similar, up Eé)
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