
1

Write Once Read Many Oblivious RAM
Bogdan Carbunar, Radu Sion

I. I NTRODUCTION

Regulatory frameworks impose a wide range of policies
in finance, life sciences, health-care and the government.
Examples include the Gramm-Leach-Bliley Act [1], the Health
Insurance Portability and Accountability Act [2] (HIPAA),
the Federal Information Security Management Act [3], the
Sarbanes-Oxley Act [4], the Securities and Exchange Commis-
sion rule 17a-4 [5], the DOD Records Management Program
under directive 5015.2 [6], the Food and Drug Administration
21 CFR Part 11 [7], and the Family Educational Rights and
Privacy Act [8]. Over 10,000 regulations are believed to govern
the management of information in the US alone [9].

A recurrent theme to be found throughout a large part of
this regulatory body is the need for assured lifecycle storage
of records. A main goal there is to support WORM semantics:
once written, data cannot be undetectably altered or deleted
before the end of its regulation-mandated life span. This nat-
urally stems from the perception that the primary adversaries
are powerful insiders with superuser powers coupled with full
access to the storage system. Indeed much recent corporate
malfeasance has been at the behest of CEOs and CFOs, who
also have the power to order the destruction or alteration of
incriminating records [10].

Major storage vendors have responded by offering compli-
ance storage and WORM products, for on-site deployment,
including IBM [11], HP [12], EMC [13]. Hitachi Data Systems
[14], Zantaz [15], StorageTek [16], Sun Microsystem [17]
[18], Network Appliance [19]. and Quantum Inc. [20].

However, as data management is increasingly outsourced
to third party “clouds” providers such as Google, Amazon
and Microsoft, existing systems simply do not work. When
outsourced data lies under the incidence of both mandatory
data retentionregulation and privacy/confidentiality concerns
– as it often does in outsourced contexts – new enforcement
mechanisms are to be designed.

This task is non-trivial and immediately faces an apparent
contradiction. On the one hand, data retention regulation
stipulates that, once generated, data records cannot be erased
until their “mandated expiration time”,even by their rightful
creator– history cannot be rewritten. On the other hand, access
privacy and confidentiality in outsourced scenarios mandate
non-disclosure of data and patterns of access thereto to the
providers’ servers, and can be achieved through “Oblivious
RAM” (ORAM) based client-server mechanisms [21], [22].
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Yet, by their very nature, existing ORAM mechanisms allow
clients unfettered read/write access to the data, including the
ability to alter or remove previously written data records –
thus directly contradicting data retention requirements.

BasicconfidentialityandWORMassurances are achievable
e.g., via traditional systems that could encrypt outsourced data
and deploy server-enforced read-only access to data records
once written. Yet, when alsoaccess privacyis to be ensured,
client access patterns become necessarily hidden and the server
cannot enforce WORM semantics directly.

In this paper we introduce WORM-ORAM, a first mecha-
nism that combines the access privacy and data confidentiality
assurances of traditional ORAM with Write Once Read Many
(WORM) regulatory data retention guarantees. Clients can
outsource their database to a server with full confidentiality
and data access privacy, and, for data retention, the server
ensures client access WORM semantics, i.e., specifically that
client access is append-only: – once a data record has been
written it cannot be removed or altered even by its writer.

WORM-ORAM is built around a set of novel efficient zero
knowledge (ZK) proofs. The main insight is to allow the
client unfettered ORAM access with full privacy to the server-
hosted encrypted data set while simultaneously proving to the
serverin zero-knowledge– at all stages of the ORAM access
protocol – that no existing records are overwritten and WORM
semantics are preserved.

We show that our solution does not change the computa-
tional complexity of existing ORAM implementations. Our
implementations show that the end-to-end cost of a read
operation is 10s and the amortized cost of a shuffle is 47s.
These costs compare favorably with the costs imposed by
classic ORAM solutions that do not offer WORM assurances.
Future work focuses on reducing these overheads toward true
practical efficiency.

II. RELATED WORK

A. Oblivious RAM

This paper extends the work of [23] with novel construc-
tions that provide indistinguishability for the read and write
accesses, detailed descriptions of essential components such as
element expiration and with proofs for the assurances provided
by the solution including the zero knowledge properties.

Oblivious RAM [21] provides access pattern privacy to
clients (or software processes) accessing a remote database
(or RAM), requiring only logarithmic storage at the client.
The amortized communication and computational complexities
are O(log3n). Due to a large hidden constant factor, the
ORAM authors offer an alternate solution with computational
complexity ofO(log4n), that is more efficient for all currently
plausible database sizes.
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In ORAM, the database is considered a set ofn encrypted
blocks and supported operations are read(id), and write(id,
newvalue). The data is organized intolog4(n) levels, as a
pyramid. Leveli consists of up to4i blocks; each block is
assigned to one of the4i buckets at this level as determined
by a hash function. Due to hash collisions each bucket may
contain up tolog n blocks.
ORAM Reads/Writes. To obtain the value of blockid, the
client must perform a read query in a manner that maintains
two invariants: (i) it never reveals which level the desiredblock
is at, and (ii) it never looks twice in the same spot for the
same block. To maintain (i), the client always scans a single
bucket in every level, starting at the top (Level 0, 1 bucket)
and working down. The hash function informs the client of the
candidate bucket at each level, which the client then scans.
Once the client has found the desired block, the client still
proceeds to each lower level, scanning random buckets instead
of those indicated by their hash function. For (ii), once all
levels have been queried, the client re-encrypts the query result
with a different nonce and places it in thetop level. This
ensures that when it repeats a search for this block, it will
locate the block immediately (in a different location), andthe
rest of the search pattern will be randomized. The top level
quickly fills up; how to dump the top level into the one below
is described later.

Writes are performed identically to reads in terms of the
data traversal pattern, with the exception that the new value is
inserted into the top level at the end.
Level Overflow. Once a level is full, it is emptied into the
level below. This second level is then re-encrypted and re-
ordered, according to a new hash function. Thus, accesses
to this new generation of the second level will hence-forth
be completely independent of any previous accesses. Each
level overflows once the level above it has been emptied 4
times. Any re-ordering must be performed obliviously: once
complete, the adversary must be unable to make any correla-
tion between the old block locations and the new locations. A
sorting network is used to re-order the blocks.

To enforce invariant (i), note also that all buckets must
contain the same number of blocks. For example, if the bucket
scanned at a particular level has no blocks in it, then the
adversary would be able to determine that the desired block
was not at that level. Therefore, each re-order process fills
all partially empty buckets to the top withfakeblocks. Since
every block is encrypted with a semantically secure encryption
function, the adversary cannot distinguish between fake and
real blocks.

Pinkas and Reinman introduce in [24] a mechanism to
provide O(log2 n) oblivious access with only logarithmic
client storage. The collision-free Cuckoo hash from [25] is
employed to remove alog n factor of server storage (and
eliminate the corresponding query overhead). Data is stored
ORAM-like, in a pyramid-shaped set of levels, with queries
proceeding downward interactively.

Unfortunately, the premise of this idea is flawed. The con-
struction of the Cuckoo hash function at a given level considers
only the data to be stored at a given level, not the data already
stored at lower levels. This property is necessary to achieve

the desired time complexity. Thus, queries for the lower-level
data have a significant chance of sharing locations with dataat
the current level. Because the Cuckoo hash otherwise avoids
collision, any time such an occurrence is observed indicates
leaks access information. That is, when the adversary sees two
queries access the same pair of hash table locations, it learns
that at least one of those queries was, in fact, for lower-level
(less recently accessed) data. This immediately violates access
privacy. The authors acknowledged this problem.

B. Private Information Retrieval

Private Information Retrieval (PIR) [26] protocols aim to
allow (arbitrary, multiple) clients to retrieve information from
public or private databases, without revealing to the database
servers which records are retrieved. In initial results, Chor et
al. [26] proved that in an information theoretic setting, any
single-server solution requiresΩ(n) bits of communication.
When the information theoretic guarantee is relaxed single-
server solutions with better complexities exist; an excellent
survey of PIR can be found online [27], [28]. Recently, we
have shown [29] that due to computation costs, use of existing
non-trivial single-server PIR protocols on current hardware is
still orders of magnitude more time-consuming than trivially
transferring the entire database.

III. M ODEL AND PRELIMINARIES

A. Deployment and Threat Model

In the deployment model for networked compliance storage,
a legitimate client creates and stores records with a (potentially
untrusted) remote WORM storage service. These records are
to be available later to both the client for read as well as to
auditors for audits. Network layer confidentiality is assured by
mechanisms such as SSL/IPSec. Without sacrificing generality,
we will assume that the data is composed of equal-sized blocks
(e.g., disk blocks, or database rows).

At a later time, a previously stored record’s existence is
regretted and the client will do everything in her power –
e.g., attempt to convince the server to remove the record –
to prevent auditors from discovering the record. The main
purpose of a traditional WORM storage service is to defend
against such an adversary.

Moreover, numerous data regulations feature requirements
of “secure deletion” of records at the end of their mandated
retention periods. Then, in the WORM adversarial model the
focus is mainly on preventing clients from “rewriting” history,
rather than “remembering” it. Additionally, we prevent the
rushed removal of records before their retention periods. Thus,
the traditional Write-Once Read-Many (WORM) systems have
the following properties:

• Data records may be written by clients to the server once,
read many times and not altered for the duration of their
life-cycle.

• Records have associated mandatory expiration times. Af-
ter expiration, they should not be accessible for either
audit or read purposes.
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• In the case of audits, stored data should be accessible to
auditors even in the presence of a non-cooperating client
refusing to reveal encryption keys.

We assume however that client participate correctly in
any record expiration protocol. This is reasonable to assume
because the regulatory compliance scenario allows clients
always to by-pass the server-enforced storage service and store
select records elsewhere.

Additionally, when records and their associated access pat-
terns are sensitive they need to be concealed from a curious
server that has incentives to illicitly gain information about
the stored data and access patterns thereto. The main purpose
of WORM-ORAM is to enable WORM semantics while pre-
serving data confidentiality and access pattern privacy. Then,
data records have to be encrypted (confidentiality) and the
server should not distinguish between different read or write
operations targeting the same or different data records (access
privacy). We assume that the server is allowed to distinguish
between record expiration and read/write operations. As the
regulatory storage provider, the server is the main enforcer
of WORM semantics and record expiration. The server is
assumed to not collude with clients illicitly desiring to alter
their data.

We consider a serverS with O(N) storage and a client
C with O(

√
N log N) local storage. The client storesO(N)

items on the server. We denote the regulatory compliance
auditor byA.

B. Cryptography

We require several cryptographic primitives with all the as-
sociated semantic security [30] properties including: a secure,
collision-free hash function which builds a distribution from its
input that is indistinguishable from a uniform random distribu-
tion, a semantically secure cryptosystem(Gen, Enck, Deck),
where the encryption functionEnc generates unique cipher-
texts over multiple encryptions of the same item, such that
a computationally bounded adversary has no non-negligible
advantage at determining whether a pair of encrypted items
of the same length represent the same or unique items, and
a pseudo random number generator whose output is indistin-
guishable from a uniform random distribution over the output
space.

The Decisional Diffie-Hellman (DDH) assumption over a
cyclic group G of order q and a generatorg states that no
efficient algorithm can distinguish between two distributions
(ga, gb, gab) and (ga, gb, gc), wherea, b and c are randomly
chosen fromZq.

An integerv is said to be aquadratic residuemodulo an
integern if there exists an integerx such thatx2 = v mod n.
Let QRA be the quadratic residuosity predicate modulon.
That is,QR(v, n) = 1 if v is a residue modn andQR(v, n) =
0 if v is a quadratic non-residue. Given an odd integern = pq,
wherep andq are odd primes, the quadratic residuosity (QR)
assumption states that givenn but not its factorization and
an integerv whose Jacobi symbol(v|n) = 1 it is difficult to
determine whetherQR(v, n) is 1 or 0.

Notations:: Let n = pq be a large composite, where
p and q are primes. Letφ(n) denote the Euler totient ofn.
We will use x ∈R A to denote the random uniform choice
of x from the setA. Given a valuem, let P(m) denote the
group of permutations over the set{0, 1}m. Let k < |n| be a
security parameter. LetN denote the set of elements stored in
the ORAM. LetWm be the universe of all sets ofm quadratic
residues.

IV. SOLUTION OVERVIEW

A WORM-ORAM system, consists of two ORAMs (W-
ORAM,E-ORAM) and a set of operations (Gen, Enc, Dec,
RE, Write, Read, Expire, Shuffle, Audit) that can be used
to access the ORAMs. The client needs to store elements at
the server while preserving the privacy of its accesses and
allowing the server to preserve the data’s WORM semantics.
W-ORAM serves this purpose: it is used by the client to store
(label, element) pairs.

We organize time into epochs: each element stored at the
server expires in an integer number of epochs, as determined
by the client. The client needs to remember the expiration time
of each element stored in the W-ORAM. The client uses the
E-ORAM to achieve this, to store expiration times of labels
used to index elements stored in W-ORAM. When queried
with a time epoch, E-ORAM provides a list of labels expiring
in that epoch. The labels are then used to retrieve the expiring
elements from the W-ORAM.

The E-ORAM is stored and accessed as a regular
ORAM [22]. It is used as an auxiliary storage structure by
the client and it needs not be WORM compliant. The W-
ORAM on the other hand stores actual elements and needs
to be made WORM compliant. The W-ORAM stores two
types of elements: ”reals” and ”fakes”. A real element has
a quadratic non-residue component, whereas a fake has a
quadratic residue. Each time the ORAM is accessed, elements
are re-encrypted to ensure access privacy. The client has then
to prove in ZK that (i) an element is real or fake and (ii)
a re-encrypted element decrypts to the same cleartext as the
original element.

In the following we provide a detailed description for each
operation mentioned above. We employ the classic ORAM
operations described in Section II-A as the APIs for building
our solution. Specifically, we useReadORAM to denote the
standard ORAM read operation, taking as input an ORAM
and a label and returning an element stored under that label
along with the list of all elements removed from the ORAM
(including the one of interest).WriteORAM is the standard
ORAM write operation, which takes as input a label and an
element and stores the element indexed under the label. Note
that in the standard ORAM implementation, both operations
are performed in the same manner. Their operation is only
different for the client. Finally, letOS be the standard ORAM
re-shuffle operation (see Section II), which takes as input a
level id and generates a pseudo-random permutation of the
re-encrypted elements at that level.
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V. W-ORAM ELEMENT ENCRYPTION

We now define the operations for encrypting the elements
to be stored in the WORM compliant ORAM.

Gen(k): Generatep = 2p′ + 1, q = 2q′ + 1 such
that p, p′, q, q′ are primes. Letn = pq. Let G be the cyclic
subgroup of order(p − 1)(q − 1). DDH is believed to be
intractable inG [31]. Let g be a generator ofG. Let a be a
random value and letd = a−1 mod φ(n). Let k be a random
key in a semantically secure symmetric cryptosystem.Gen
gives k, n, g, h = ga ∈ G, p, q, a and d to the client and
n, g, h to the server.Gen also givesk, p, q, a and d to the
auditor.

Enc((x,Texp),k,g,h,G,f)t: Encrypt an element of valuex
with expiration timeTexp, using the client’s view ofGen’s
output as input parameters. The output of the operation is
a tuple (A, B) ∈ G × G that can be stored on the W-
ORAM. If f = 0, Enc generates a “real” W-ORAM element:
the first field of such elements is a quadratic non residue,
QR(A, n) = 0. The tuple is computed as follows. First,
generate a randomr ∈ {0, 1}k and use it to compute
M(x) = {Ek(x), Texp, “real′′, r} where Ek(x) denotes the
semantically secure encryption of itemx with symmetric
key k and “real” is a pre-defined string. The randomr is
chosen (using trial and failure) such thatQR(M(x), n) = 0
(quadratic non residue modn) whose Jacobi symbol is 1.
Second, generate a random odd valueb ∈R {0, 1}k and output
the tupleS(x) ∈ G × G as

S(x) = (A, B) = (M(x)g2b, h2b)).

S(x) is said to be an “W-ORAM element”, whose first
field is the “encrypted element” and second field is called
the “recovery key”. Notice that sinceM(x) is a QNR,
QR(M(x)g2b, n) = 0 with (Jacobi symbol)(M(x)g2b|n) =
1.

If f = 1, Enc generates a “fake” W-ORAM element: the
first field of fake elements is a quadratic residue,QR(A, n) =
1. To compute a fake element,Enc generates randoms, k ∈R

{0, 1}k and outputs the tuple(s2 mod n, k). That is, the first
field in the pair is a quadratic residue, however, the “recovery
key” is useless – does not recover a meaningful message.

Dec((A,B),d,k): Decrypt a real W-ORAM element, given
the secret keyd = a−1. ComputeM = AB−d. M has
format {E, Texp, “real′′, r}. The operation outputs the tuple
Deck(E), Texp.

RE(A,B): Re-encrypt element(A, B). Chooseu ∈R

{0, 1}k, called re-encryption factor. Output pair(A′, B′) =
(Ag2u, Bh2u). Note that knowledge of the messageM en-
coded in (A, B) is not required. Alternatively, ifM is
known such thatA = Mg2b and B = h2b, then output
(A′, B′) = (Mg2u, h2u). u can be specified as input parame-
ter: RE((A, B), u).

RE(L): Generalization ofRE((A, B)), where L =
{(A1, B1), .., (Am, Bm)} is a list of W-ORAM elements.
Choose ū = {u1, .., um}, such that ui ∈R {0, 1}k.
ū is called the re-encryption vector. OutputL′ =
{RE((Ai, Bi), ui)}i=1..m. We also use the notationL′ = Lū
and callL′ a “correct re-shuffle” of L.

Note thatEnc is semantically secure. The proof can be
found in [32]. Similarly RE is IND-CPA: given two en-
cryptions (A0, B0) and (A1, B1) of any two messages and
a re-encryptionRE(Ab, Bb), b ∈R {0, 1} of one of the two
encryptions, an attacker cannot guessb with non-negligible
probability over 1/2.

VI. T HE E-ORAM

The E-ORAM is a standard ORAM, storing labels indexed
under expiration time epochs. The E-ORAM needs to pro-
vide C with the means to determine how many and which
labels expire at a given time epoch and also to insert a new
(epoch, label) pair. This is achieved in the following manner.
For eachTexp value used to index labels in E-ORAM, a
headvalue is used to store the number of labels expiring at
Texp: (Texp, (label, counter)). label is the first label that was
indexed underTexp. Each of the remainingc − 1 labels is
stored under a unique index: Theith label’s index is(Texp, i),
that is, the label’s expiration time concatenated with the label’s
counter at its insertion time.

We now present the most important operations for accessing
the E-ORAM, Write and Enumerate.

Write(E-ORAM, Texp,label): Record the fact thatlabel
expires at timeTexp (see Algorithm 1, lines 1-11). Read
the element currently stored underTexp (line 2). If no such
element exists (line 3), generate an element encoding the fact
that this label is the first to be stored underTexp (line 4) and
store it on the E-ORAM (line 5). Moreover, run a fake E-
ORAM access (line 6), whose purpose will become clear in
a few lines. If a label is already stored underTexp (line 7),
retrieve that label (l) along with the counterc that specifies
how many labels are already expiring (stored in E-ORAM)
at Texp (line 8). Note that the read operation performed on
line 2 removes this element from the E-ORAM. Since now
c + 1 labels expire atTexp, store labell and the incremented
counter in the E-ORAM underTexp (line 9). Finally, store the
input label under an index consisting of a unique value:Texp

concatenated withc + 1. This will allow the client to later
enumerate all labels expiring atTexp (see next). The reason
for the fake E-ORAM write performed in line 6 is to make
the two cases indistinguishable to the server: the E-ORAM
is always accessed twice, independent of how many elements
expire atTexp.

Enumerate(E-ORAM,Texp): Retrive all the labels in E-
ORAM that expire atTexp (see Algorithm 1, lines 12-26).
First, initialize the result label list (line 13). Then, read the
head label stored underTexp along with the counter of labels
expiring atTexp (lines 14,16). If such an element exists (line
15), record the head label (line 17). Then, for each of the
c − 1 (i = 2, .., c) remaining labels, retrieve their actual
value by reading from E-ORAM the element stored under a
unique index consisting ofTexp concatenated withi. Note
that Enumerate removes all labels expiring atTexp from E-
ORAM (ReadORAM removes accessed elements).
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Algorithm 1 E-ORAM: Write new label under expiration
time. Enumerate all labels expiring at a given time. V is
the list of elements returned by a Read.

1.Write (E− ORAM : ORAM, Texp : int, lbl : id)
2. (e, V) := ReadORAM(E− ORAM, Texp);
3. if (e = null) then
4. e′ := Ek(lbl, 1);
5. WriteORAM(Texp, e

′);
6. WriteORAM(null, null);
7. else
8. (l, c) := Dk(e);
9. WriteORAM(Texp, Ek(l, c + 1));
10. WriteORAM((Texp, c + 1), Ek(lbl));
11.fi
12.end

12.Enumerate(E − ORAM : ORAM, Texp : int)
13.L : id[]; #store result labels
14.L := ∅;
15.(e, A) := ReadORAM(E − ORAM, Texp);
16.if (e! = null) then
17. (l, c) := Dk(e);
18. L := L ∪ l;
19. for (i := 2; i ≤ c; i + +) do
20. (e, A) := ReadORAM(E − ORAM, (Texp, i));
21. l := Dk(e);
22. L := L ∪ l;
23. od
24.fi
25.return L;
26.end

VII. W-ORAM A CCESSOPERATIONS

A. Generating Labels

Elements in the standard ORAM model are stored as a pair
(label, value), wherelabel may denote a memory location or
the subject of an e-mail. In our case to prevent the server from
launching a dictionary attack, we use the aLabel(label, lkey)
operation to generate labels. Besides the inputlabel, Label
also uses a (random) labeling key, which is used to define a
pseudo-random functionFlkey . The output ofLabel coincides
then with the output ofFlkey(label). We now describe the
main W-ORAM accessing operations.

B. Writing on the Server

Write((W-ORAM,E-ORAM,v,l, Texp,params): Store
on the server a valuev under a labell, with expiration time
Texp, using as input also the client’s view ofGen’s output,
params = k, g, h, G (see Algorithm 2 for the pseudo-code
of this operation). Generate a newlabel as described above
(line 2) and callEnc to produce a W-ORAM tuple(Au, Bu)
(line 3). Generate a non-interactive zero knowledge proof of
QR(Au, n) = 0 (Au’s quadratic non-residuosity). If the proof
verifies (line 5) the server inserts the tuple(Au, Bu) in the
top level of the W-ORAM (line 6) and storeslabel under the
tuple’s expiration timeTexp in E-ORAM (see Section VI).
Otherwise, the server aborts the protocol (line 10).

C. Reading from the Server

Read(W-ORAM,label): Using as input the W-ORAM
and alabel, return an element of format(label, x, Texp) (see
Algorithm 3). Perform on W-ORAM a standard ORAM read
on the desiredlabel (line 2), returning both the W-ORAM
elementR of interest and the listL of elements (containing
R) removed from the W-ORAM. Iflabel is stored in the W-
ORAM (line 3), the client computesU = (Au, Bu), a re-
encryption ofR (line 3) and calls ZK-POR to prove in zero
knowledge thatU is a re-encryption of the only real element
in L (line 4). ZK-POR is described in detail in Section VII-C1.
The server verifies in ZK thatQR(Au, n) = 0 and also the
validity of the ZK-POR proof. If the proofs are valid (line 5),
the server insertsU in the first level of the W-ORAM (lines

6-7). The client decrypts the desired elementR and returns the
result (line 8). If any proof fails (line 9) the server restores
the W-ORAM to the state before the start of Read and returns
error (lines 10-11).

1) Zero Knowledge Proof of ORAM Read.:We now present
ZK-POR, the zero-knowledge proof of WORM compliance of
the read operation performed on the W-ORAM. ZK-POR takes
as argument the listL of elements removed from W-ORAM
in line 2 of Algorithm 3 andU , the re-encryption of the real
element fromL. For simplicity of exposition, let us assume
that L also contains the elements (scanned but not removed)
from the first level of W-ORAM. Letm denote the number of
elements inL, m = O(log N).

Let L = {(s2
1, k1),...,(s2

r−1, kr−1),S(xr),(s2
r+1, kr+1),..,

(s2
m, km)} where the elements are listed in the order in which

they were removed from the W-ORAM. The client is interested
in the item from therth ORAM layer, R = S(xr). Let
S(xr) = (M(xr)g

2tr , h2tr) = (Ar, Br). Its first field is a
quadratic non-residue. All other elements fromL are fakes
– their first field is a quadratic residue. LetU = RE(R) =
(M(xr)g

2u, h2u) = (Au, Bu) be the re-encryption ofS(xr).
The following steps are executeds times between the client
and the server.

Step 1: Proof Generation: The client selects a
random permutationπ ∈R P(m). The client generates
w̄ = {w1, ..wm}, where eachwi ∈R {0, 1}m is odd
and generates the proof listP = π(Lw̄). Let P =
π{(s2

1g
2w1 , k1h

2w1),..,(Arg
2wr , Brh

2wr),
..,(s2

mg2wm , kmh2wm)}, where, (Arg
2wr , Brh

2wr ) is a re-
encryption ofS(xr). The client sendsP to the server. The
client locally stores (wi, sig

wi), i = 1..m. As assumed in
the model, The client hasO(

√
N log N) storage which is

sufficient to storem = O(log N) values.
Step 2: Proof Validation: The server flips a coinb. If b

is 0, the client revealsw1, .., wm. The server verifies that allwi

are odd and∀(Ai, Bi) ∈ L, (Aig
2wi , Bih

2wi) ∈ P . If b is 1,
the client sends to the server the valuessig

wi , i = 1..m, i 6= r
along with the valueΓ = (tr + wr − u). Note that given
s2

i mod n andn’s factorization, the client can easily recover
si. The server verifies first that(sig

wi)2, i = 1..m, i 6= r
occurs in the first field of exactly one tuple inP . That is,
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m − 1 of the elements fromP are fakes. The server then
verifies that(Arg

2wr , Brh
2wr ) = RE((Au, Bu), Γ). If any

verification fails, the server outputs ”error” and stops.
Analysis: We now present the following results, whose

proofs can be found in [32].
Theorem 1:A correct execution of Read from W-ORAM

hasO(log N) complexity.
Theorem 2:ZK-POR is a zero knowledge proof system of

Read∈ WORM. That is, Read is WORM compliant.

VIII. A CCESSINDISTINGUISHABILITY

The solution previously described allows the server to
distinguish between read and write operations. In this section
we solve this problem, by creating a single operation, Access,
that can be used to both read and write on the W-ORAM.

Access((W-ORAM,E-ORAM,v,l,Texp,params): If Ac-
cess=Write, usel to generate a newlabel (as described in Sec-
tion VII-A) and insertlabel underTexp in the E-ORAM (using
the Write operation described in Section VI). If Access=Read,
perform a fake Write on the E-ORAM, consisting of three
random accesses to the E-ORAM (one for a read and two for
writes, see Section VI). Then, access all the elements in the
top level of the W-ORAM and access and remove one element
from each subsequent level. If Access=Write, all removed
elements have to be fakes. If Access=Read, one of them is real
(unless the read element was found in the top level). LetL =
{(s2

1, k1),...,(s2
r−1, kr−1),S(xr), (s2

r+1, kr+1),..,(s2
m, km)} be

the list of elements accessed in the W-ORAM, whereS(xr)
may be the real element accessed by a Read or a fake
if accessed by a Write. Then, generate two elements R
and N and send them to the server. If Access=Write,
R=RE(S(xr)) and N=Enc((v, Texp), k, g, h, G, 0) is the el-
ement to be written. If Access=Read,R = RE(S(xr))
and N=Enc((null, null), k, g, h, G, 1) is a fresh fake (see
Section V). The zero knowledge proof then proceeds exactly
as ZK-POR.

The following result shows that reads and writes performed
using Access are indistinguishable. The proof can be found
in [32].

Theorem 3:The server cannot decide whether an Access
operation is a Read or a Write with probability significantly
larger than 1/2.

IX. SHUFFLING THE W-ORAM

When the l − 1th level of W-ORAM stores more than
4l−1 elements, due to element insertions occurring during
Read operation, the level needs to be spilled over into level
l. Let T [l] denote the list of elements stored in the W-
ORAM at thel-th level. Thel-th level then needs to be filled
with fakes. The fakes are needed to ensure that subsequent
Read accesses will not run out of fakes (see [22] for more
details). Thel-th level then needs to be obliviously permuted,
using only O(

√
N log N) client space. LetT new[l] denote

the re-shuffledl-th level elements. Due to the WORM se-
mantics, the client also needs to prove that the reshuffle is
correct: (i)T new[l] is a re-encryption of the oldT [l] and (ii)
|T new[l]|− |T [l]|− |T [l−1]| elements fromT new[l] are fakes.
Shuffle performs this operation.

Shuffle(W-ORAM,l): Uses as input the W-ORAM and
the index of a level to reshuffle the corresponding level (see
Algorithm 4). First, spill the content of levell − 1 into level
l (lines 3-6) and compute an oblivious permutation of the
new level l. Then, build its ZK proof of correctness, ZK-
PRS, detailed in the following (see Algorithm 4, lines 7-38
for pseudo-code).

A. Zero Knowledge Proof of Re-Shuffle.

Similar to ZK-POR (see Section VII-C1), ZK-PRS consists
of s rounds executed by the client and the server. During
each round, a proof listPj is built by the client (line 14 of
Algorithm 4).Pj has the same number of elements asT new[l],
O(N). The client builds the listT new[l] and each of thes
proofs P in the following steps. Initially,T new[l] and each
proof list Pj is stored as an empty list at the server. The client
generates a symmetric keyk for the (G, E, D) cryptosystem.

Step 1: Element Re-Encryption: First, the client takes
each element fromT [l] and stores a re-encrypted version
in T new[l] and in each proofPj (lines 7-13). That is,
for each elementSi = (Ai, Bi) ∈ T [l] (stored at the
server), the client generates fresh random odd valuesui, wi ∈
{0, 1}k (lines 9 and 12) and produces one elementS′

i to
be inserted inT new[l] (line 10) S′

i = Ek(Aig
2ui , Bih

2ui)
and one elementP to be inserted inPj (line 13) P =
Ek(Aig

2wi , Bih
2wi , ”mv”, Γ1[i], Γ2[i]) where Γ1[i] = −wi

and Γ2[i] = (ui − wi). The string ”mv” denotes that this
proof element corresponds to an element fromT [l] moved to
T new[l].

Step 2: Fake Insertion: The client addsf fake elements
(lines 14-22). For each of thef fakes to be inserted inT new[l],
the client generates two random valuessi, ki ∈R {0, 1}k (line
16),i = 1..f , wherewi is odd. The client then adds an element
Ek(s2

i , ki) in T new[l] (lines 17-18). It then generates a random
value wi ∈R {0, 1}k (line 20) for each proof listPj and
appends an elementEk(s2

i g
2wi , kih

2wi , ”add”, Γ1[i], Γ2[i]) to
Pj (lines 21-22).Γ1[i] = sig

wi , Γ2[i] = (ui −wi) mod φ(N)
and the string ”add” denotes that this proof element is a fake
added to levell.

Note that Γ1[i] and Γ2[i] are used to keep track of the
correspondence between theith element of eachPj and its
re-encryptions inT [l] andT new[l] after the list reshuffle step
(see next).

Step 3: List Reshuffle: At the end of the set generation
step, the client and the server have a one-to-one correspon-
dence between each element inT new[l], each element in each
Pj and each element inT [l]. The client then calls the oblivious
scramble, OS, procedure usingT new[l] and eachPj as inputs
(lines 23-25). During the OS call, elements read fromT new[l]
andP are decrypted (usingk) and re-encrypted before being
written back. Due to the semantic security properties of the
encryption scheme employed, at the end of the OS, the server
can no longer map elements fromT [l] to elements in the
reshuffledT new[l] andPj sets.

Step 4 - Decryption: The client reads each element
from the reshuffledT new[l] list, decrypts the element and
writes it back in-place (lines 26-28). The client reads each
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Algorithm 2 W-ORAM: Write valuev expiring atTexp.

1.Write (W− ORAM : ORAM, E− ORAM : ORAM,
v : string, l : id, Texp : int)

2. label := newLabel(l, lkey);
3. (Au, Bu) := Enc(label, v, Texp, params);
4. ZKP := getQNRProof(Au, n);
5. if (verify(ZKP, Au) = 1) then
6. T0 := getLevel(W− ORAM, 1);
7. insert(T0, (Au, Bu));
8. Write(E− ORAM, Texp, label);
9. else
10. return error;
11.fi
12.end

Algorithm 3 W-ORAM: Readlabel.

1.Read(W− ORAM : ORAM, label : id)
2. (R, L) := ReadORAM(W − ORAM, label);
3. U := (Au, Bu) := RE(R);
4. Proof := ZK− POR(L, U);
5. if (verifyQNR(Au, n)

& verify(Proof, L, U)) then
6. T0 := getLevel(W− ORAM, 1);
7. insert(T0, U);
8. return Dec(R, d, k);
9. else
10. undo(W− ORAM);
11. return error;
12.fi end

Algorithm 4 Shuffle of levell.
1.Shuffle(W− ORAM : ORAM, l : int)
2. Tnew[l] : string[]#new level l array

#spill T[l− 1] into T[l]
3. T[l− 1] := getLevel(W− ORAM, l− 1);
4. T[l] := getLevel(W− ORAM, l);
5. T[l] := T[l− 1] ∪ T[l];
6. T[l− 1] := ∅;
#re− encrypt elements from T[l]
7. for (i := 1; i ≤ |T[l]|; i+ +) do
8. e := T[l][i];
9. u[i] := genRandom();
10. Tnew[l][i] := Ek(RE(e, u[i]));
11. for (j := 1; j ≤ s; j+ +) do
12. w[i] := genRandom();
13. Pj[i] := Ek(RE(e, w[i]),

”mv”, u[i], u[i]− w[i]);
#add fakes
14.f := fakeCount(T[l]);
15.for (i := 1; i ≤ f; i + +) do
16. (s[i], k[i]) := genRandom();
17. e := (s[i]2, k[i]);
18. append(Tnew[l], Ek(e));

19. for (j := 1; j ≤ s; j + +) do
20. w[i] := genRandom();
21. re := RE(e, w[i]),

”add”, s[i]gw[i], u[i] − w[i]);
22. append(Pj[i], Ek(re));
#Shuffle Tnew[l] and proofs
23.Tnew[l] := OS(Tnew[l]);
24.for (j := 1; j ≤ s; j+ +) do
25. Pj := OS(Pj);
#decrypt shuffled elements
26.for (i := 1; i ≤ |Tnew[l]|; i + +) do
27. e := Tnew[l][i];
28. Tnew[l][i] := Dk(e);
29. for (j := 1; j ≤ s; j + +) do
30. e := Pj[i];
31. (A, B, str, C, D) := Dk(e);
32. Pj[i] := (A, B, Ek(str, C, D));
#proof verification step
34.for (j := 1; i ≤ s; i+ +) do
35. if (!verify(T[l], Tnew[l], Pj)) then
36. undo(W− ORAM, l− 1, l);
37. return error;
#commit new level
38.T[l] := Tnew[l];

element from each proof listPj , decrypts it and writes back
(Aig

2wi , Bih
2wi , Ek(str, Γ1[i], Γ2[i])), where str is either

”mv” or ”add” (lines 29-32).

Step 5 - Proof Verification: The server verifies each
proof list Pj (lines 34-37). If any verification fails, restore the
W-ORAM to the state at the beginning of the operation and
return error (lines 36-37). Each verification, for a proof list P ,
works as follows.

The server flips a coinb. If b = 0, the server asks the client
to prove thatP is a valid reshuffle ofT [l] and all the remaining
elements inP are fakes. For this, the client reads each element
of P , (Aig

2wi , Bih
2wi , Ek(str, Γ1[i], Γ2[i])), retrievesΓ1[i]

and sends to the server,Aig
2wi , Bih

2wi , str and Γ1[i]. If
str = ”mv”, the server first verifies that indeedΓ1[i] is an
odd number, then verifies thatRE((Aig

2wi , Bih
2wi), Γ1[i])

appears inT [l] exactly once. Ifstr = ”add”, the server

verifies thatΓ1[i]
2 is the first field of exactly one tuple in

T new[l]. If at the end of this step the client has proved
that |T [l]| elements fromT new[l] are re-encryptions of the
elements fromT [l] and thatf elements fromT new[l] are fakes,
the server continues. Otherwise it outputs ”error” and stops.

If b = 1, the client needs to prove thatP is a valid
reshuffle of T new[l]. For this, the client reads each ele-
ment from P , recoversΓ2[i] and sends to the server the
values Aig

2wi , Bih
wi and Γ2[i]. The server verifies that

RE((Aig
2wi , Bih

2wi), Γ2[i]) occurs inT new[l] once.

Analysis: We now present the following results, whose
proofs can be found in [32].

Theorem 4:A correct execution of ZK-PRS has
O(log N log log N) amortized complexity.

Theorem 5:ZK-PRS is a zero knowledge proof system of
Shuffle ∈ WORM .
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X. ELEMENT EXPIRATION

Expire(T): Use as input a time epochT and remove all
the elements from the W-ORAM that expire in that epoch (see
Algorithm 5). Use the E-ORAM to enumerate all the labels
that expire atT (line 4). For each suchlabel (line 5) read
(and remove) from the W-ORAM the corresponding element
(line 6). Note that theReadORAM operation also returns
the entire listE of elements removed from the W-ORAM
– containinglog N elements. Then, build a zero knowledge
proof of correctness, ZK-PEE (line 7). ZK-PEE proves that
E contains one real element that expires atT and the rest
(log N −1 elements) are fakes. If the proof verifies, the server
accepts the expiration, otherwise restores the W-ORAM to the
state before the Read of line 6 (line 9) and returns error (line
10). We now describe ZK-PEE.

1) Zero Knowledge Proof of Element Expiration.:ZK-PEE
takes as input the element to be expired,R and the listE
of all elements that were removed from W-ORAM whenR
was read (line 6). Note thatR ∈ E. Let m be the number of
elements inE and letE = {(s2

1, k1), .., R, .., (s2
m, km)}. Let r

beR’s index inE. ZK-PEE consists ofs rounds. During each
round the following steps are executed by the client and the
server.

Step 1: Proof Generation: The client generates a
random permutationπ ∈R Pm and a random vector̄w =
{w1, .., wm}, where wi ∈R {0, 1}k are odd. The client
computes the listP = π(Ew̄) and sends it to the server.

Step 2: Proof Verification: The server flips a bitb.
If b = 0, the client revealsw̄. The server verifies that all
wi ∈ w̄ are odd and thatP = π(Ew̄). If b = 1, the client
revealsDec(R, d, k) = M(x) = (Ek(x), Texp, ”real”, rnd)
to the server along with the encryption factoruwr and the
square roots of the remaining m-1 (fake) elements inP ,
s1g

w1 , .., smgwm . The server verifies the revealed element: (i)
its format, that is,Texp = T and the third field is ”real” and
(ii) its correctness,(M(x)g2uwr , h2uwr ) ∈ P . The server also
verifies that the remaining m-1 elements inP are fakes, by
checking that(sig

wi)2 occurs in the first field of exactly one
element inP .

Analysis: Let e be the number of elements that expire
simultaneously. Then, the following result holds (see proofs
in [32]).

Theorem 6:A correct execution of Expire hasO(e log N)
complexity.

Theorem 7:ZK-PEE is a zero knowledge proof system of
Expire∈ WORM.

XI. A UDIT

Audit(d,k).: Take as input the decryption keysd
and k to search for desired elements in W-ORAM. Call
Dec((A, B), d, k), for all elements(A, B) in the W-ORAM.
Once all the elements are recovered, they can be searched for
desired keywords.

XII. K EY MANAGEMENT

For the sake of presentation clarity, we have presented a
simplified element encoding operation (Enc). Specifically,an

Algorithm 5 Operation that removes all W-ORAM
elements that expire at timeT .

1.Expire(E− ORAM, W− ORAM : ORAM, T : int
2. L : id[]; #expiring labels
3. E : string[]; #removed from W − ORAM
4. L := Enumerate(E− ORAM, T);
5. for each label in L do
6. (R, E) := ReadORAM(W− ORAM, label);
7. Proof := ZK− PEE(R, E);
8. if (verify(Proof, E) = 0) then
9. undo(W− ORAM);
10. return error;
11. fi od
12.end

element x is stored as the pair(M(x)g2b, h2b), consisting of an
encrypted part and a recovery key. However, during element
expiration (see Section X) the client needs to prove to the
server (in zero knowledge) the fact that one element in the
list of accessed elements expires. For this, the client needs to
provide the server not only with the decrypted element but
also with the obfuscating exponent (b in the above example).
Since an element may have been accessed and re-encrypted
many times during read and reshuffle operations, the client
keeps track of the changes in the obfuscation exponent.

We address this by storing a third field for any element:
the encrypted exponent, e.g.,E(b) in the above case, where E
is any semantically secure symmetric key encryption method,
whose key is private to the client. Whenever the element
is re-encrypted (during read and re-shuffle operations), the
new exponent is stored encrypted, replacing the existing one.
The use of a semantically secure encryption method prevents
the server from using this third field to correlate reshuffled
elements. For fake elements the third field is random and
changes whenever a fake is being “re-encrypted”.

XIII. E XPERIMENTAL EVALUATION

We have implemented our solution using OpenSSL and we
have tested it on the configuration depicted in Table I. We
used the same PC configuration (single core 2.4GHz with
256MB of RAM and 120MB/s sustained read/write rates)
for both server and client platforms. As such, the server and
client can perform 250 modular exponentiations per second,
leading to 125 record re-encryptions per second and 272K
AES encryptions on 1024 blocks. The link between client and
server was a duplex 10MB/s. The outsourced dataset consists
of 1024 bit records. In the following, we look at the overheads
of read and shuffle as they are the most expensive operations.
The element expiration operation follows the same steps as a
read and thus its cost is similar.

Read Overheads: Figure 1 shows the overhead of the
ZK-POR process as a function of the number of records,N .
The number of proof sets employed is 40, for a client cheating
probability of2−40. The x-axis shows the number of records in
logarithmic scale. We have experimented with datasets ranging
from 1Mb to 1Tb. For a 1Tb dataset (230 records of size 1024),
the client cost is under 7s and the server cost is under 4s.
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Resource Spec

Processor 2.4GHz
RAM 256KB
Disk bandwidth 120MB/s
Link bandwidth 10MB/s
Block size 1024b
TRE 125 ops/s
Tsym on 1024b 272355 ops/s

TABLE I
CLIENT AND SERVER CONFIGURATIONS.
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Fig. 1. ZK-POR client and server overheads. Read overhead (shown in
seconds) as a function of the dataset size, on the dataset size.

The transfer cost of the 41 sets of records including also the
disk read/write times is only a fraction of a second. Thus, the
total overhead of a read is around 10s. The server overhead
is roughly half the overhead of the client, since the server has
to verify re-encryptions only on half the sets generated by the
client.

Shuffle Overheads: We have measured the amortized
impact of shuffles on the operation of the WORM ORAM
structure and Figure 2 shows our results. The amortized cost
includes the cost of re-shuffle incurred atall the levels in
the ORAM, over all the ORAM accesses. Figure 2 shows
the dependence of the cost of ZK-PRS on the number of
records stored at the server, shown on the x-axis in logarithmic
scale. The number of proof sets is 40. Similar to the read
overheads, the client and server computation components of
ZK-PRS show a logarithmic dependence on the size of the
dataset. The client and server overheads are similar, up to
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Fig. 2. Client, server and communication components of the amortized cost
of ZK-PRS. Shuffle overhead (shown in seconds) as a function of the dataset
size, log

2
N .

20 seconds for240 datasets, due to the fact that the server
has to verify set re-encryptions irrespective of the outcome of
the coin flip process. The communication overhead during the
shuffle operation, including the time to read/write and transfer
proof sets takes around 7 seconds for 1Tb datasets. This is
because the client needs to shuffle not one but 41 proof sets.
Thus, the total, amortized overhead of a shuffle operation is
around 47s.

In ORAM, the network transfer time alone for reshuffling
level i consists of about 10 sorts of4ilogn data, each sort
requiring 4ilog(n)log2(4iilogn) block transfers, for a total
of 104ilog(n)log2(4ilogn)210/10MB/se. Summing over the
log4 n levels, and amortizing each level over4i1 queries,
ORAM has an amortized network traffic cost per query of
3.680Gb. Over the sample 10MB/s link this is a 48 sec/query
amortized transfer time. Thus, by using an improved oblivious
scramble protocol, we are able to support regulatory compli-
anceand maintain the cost imposed by the original ORAM.

XIV. CONCLUSIONS

In this paper we introduce WORM-ORAM, a solution that
provides WORM compliant Oblivious RAMs. Our solution
is based on a set of zero knowledge proofs that ensure that
all ORAM operations are WORM compliant. The protocol
features the same asymptotic computational complexity as
ORAM.
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