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Abstract. Program verification is the task of automat-
ically generating proofs for a program’s compliance with
a given specification. Program synthesis is the task of
automatically generating a program that meets a given
specification. Both program verification and program syn-
thesis can be viewed as search problems, for proofs and
programs, respectively.

For these search problems, we present approaches
based on user-provided insights in the form of templates.
Templates are hints about the syntactic forms of the in-
variants and programs, and help guide the search for
solutions. We show how to reduce the template-based
search problem to satisfiability solving, which permits
the use of off-the-shelf solvers to efficiently explore the
search space. Template-based approaches have allowed
us to verify and synthesize programs outside the abilities
of previous verifiers and synthesizers. Our approach can
verify and synthesize difficult algorithmic textbook pro-
grams (e.g., sorting, and dynamic programming-based
algorithms, etc.), and difficult arithmetic programs.

1 Introduction

Programming is a difficult task. The programmer comes
up with the high-level insight of the algorithm to be
applied. They then conjecture a particular sequence of
operations to be performed. While these first two con-
ceptualizing tasks require programmer insight, they are
relatively less time consuming and less mundane than
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the subsequent step of writing the program in C, C++,
Java etc. There is additional effort in ensuring that all
corner cases are covered, which is a tiresome and man-
ual process. The dilligent programmer will also verify
that the final program is not only correct but also me-
chanically verifiable, which usually requires them to add
annotations illustrating the correctness.

This makes programming a subtle task, and the ef-
fort involved in writing correct programs is so high that
in practice we accept that programs can only be approx-
imately correct. While developers do realize the pres-
ence of corner cases, the difficulty inherent in enumer-
ating and reasoning about them, or using a verification
framework, ensures that developers typically leave most
of them to be uncovered during the subsequent fixes of
the code. This scenario ensures that even the manual
task of coding the algorithm in a programming language
requires skill, and so we trust the more skillful program-
mers to make fewer mistakes, i.e., envision and cover
more corner cases. Since in common practice there is
no formal system to ensure correctness, we have a sce-
nario where an inherently engineering task is now more
of an art. While the step of coming up with the algo-
rithmic insight necessarily involves human intuition, we
believe translating that into a correct program should
be fairly mechanical. The correctness of the program
written should not depend on the programmers skill but
should instead be an outcome of the programming sys-
tem.

To this end, we propose template-based programming.
We propose a system for program verification, which
proves programs correct, and for program synthesis, which
automatically generates programs, using templates. We
will employ proof-templates for verification, and proof-
and program-templates for synthesis. Templates are a
mechanism for the user to provide the system with their
high-level insight about the desired program. The sys-
tem finds a proof within a template, when verifying a



2 Srivastava, Gulwani and Foster: Template-based Program Verification and Program Synthesis

given program. Or it finds a program within a template,
when synthesizing a program to match a given specifica-
tion. Notice that our proposal is orthogonal to the pro-
gramming discipline of generic programming or template
meta-programming found in languages such as C++. In
our approach the template is a incomplete scaffold of
the final program or proof, and has no meaning until
the synthesizer or verifier has filled in the incomplete
holes.

We believe template-based programming is a signif-
icantly better approach to program development. Algo-
rithmic insights and design will still require artful hu-
man insight, but template-based program verification
and program synthesis reduce the art in software coding.
Program verification helps ensure that all corner cases
are covered, if the programmer manually writes the pro-
gram, and is willing to provide the insights about the
proof using templates. Program synthesis not only cov-
ers corner cases (by generating verified programs), it vir-
tually eliminates the manual coding aspect, by limiting
programmer input to insights about the program struc-
ture (which are very close to the algorithmic insights
they already have in mind), in the form of templates.

In this paper, we describe work we have been pur-
suing in the domain of template-based programming. In
the rest of the paper, we will give a broad overview of the
ideas behind template-based program verification [29,57,
30], and program synthesis [59]. We implemented these
ideas in the VS3 toolset [58], which provides three tools,
that take as input proof- and program-templates as de-
scribed in Section 2. Templates and programs are inter-
preted as formulae as described in Section 3. Using these
interpretations, the tool VS3LIA infers invariants over lin-
ear arithmetic, the tool VS3PA infers invariants over pred-
icate abstraction, and the tool VS3SYN synthesizes pro-
grams, as described in Section 4.

2 Programs, Correctness Assertions, Invariant
Templates, and Program Templates

Programs for us will be standard imperative programs
in a language like C. For instance, the following might
be an example program:

TwoPhase(int n) {
1 Assume n ≥ 0;
2 x := 0; y := 0;
3 while (y ≥ 0) {
4 if (x ≤ n) y++;
5 else y--;
6 x++;
7 }
8 Assert relates(x, n);
}

Notice the use of Assume and Assert statements. Assume
allows the programmer to tell the system that whenever
control reaches the Assume, its argument, a boolean func-
tion, evaluates to true. Assert allows the programmer

to state requirements that the program should meet.
So in this case, the programmer stated that the func-
tion TwoPhase will always be called with an n greater
than 0. Additionally, they want the program to satisfy
a relates clause between x and n. That clause may be
the following:

bool relates(int x, int n) {
1 return x == 2n+ 2;
}

These are correctness assertions for the program. In prac-
tice, the C library implementation of assert ensures the
correctness assertions by evaluating its boolean function
argument and if it evaluates tofalse then aborting exe-
cution. Such runtime failure is not desirable, hence pro-
grammers typically try to test the program over a cou-
ple of inputs and ensure that the assertions are satisfied.
But such testing does not guarantee correctness over ar-
bitrary inputs to the program. Verification attempts to
provide such guarantees. Program verification is done
using properties that hold at a program point whenever
control reaches that program point. Since these proper-
ties hold at all times control reaches that location, they
are invariant, and called as such. For instance, two facts
that holds in between the two assignments on line 2
are x = 0 and n ≥ 0, thus an invariant that holds
there is x = 0 ∧ n ≥ 0. It turns out the important in-
variants needed for verifying a program correct are the
ones right at the start of loops, i.e., at loop headers,
for example on line 3 in our program. One may look at
the start of the program and incorrectly conclude that
x = 0 ∧ y = 0 ∧ n ≥ 0 is invariant. This invariant is
too strong. In particular, it is violated when control tra-
verses the loop and reaches back to line 3. Another in-
variant, and one that holds across loop iterations, would
be x ≥ 0 ∧ n ≥ 0 because it is maintained across loop
iterations. But it does not serve our purpose, which is to
prove the program correct, given the correctness asser-
tion. In fact, the real invariant required to show the as-
sertion correct is: (0 ≤ x ≤ n+1∧x = y)∨(x ≥ n+1∧y ≥
−1∧x+y = 2n+2), or written more programmatically:

bool invariant(int x, int y, int n) {
1 bool fact1 := (0 ≤ x) ∧ (x ≤ n+ 1) ∧ (x = y);
2 bool fact2 := (x ≥ n+ 1) ∧ (y ≥ −1) ∧ (x+ y = 2n+ 2);
3 return fact1 ∨ fact2;

}
Even in this more amenable form, we have immediately
gotten to the point where the overhead to the program-
mer is very severe. Proving this small program correct re-
quires too much annotation effort, even though we have
not even discussed why exactly the invariant contains
these many terms. It is unlikely that a programmer will
write this invariant by hand. This motivates the use of
invariant templates. An invariant template is exactly like
our invariant function above, except that we will only
leave the trivial parts intact and delete the rest.
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bool template(int x, int y, int n) {
1 bool fact1 := [-] ∧ [-] ∧ [-] ∧ [-];

2 bool fact2 := [-] ∧ [-] ∧ [-] ∧ [-];

3 return fact1 ∨ fact2;

}
where the programmer has left out holes “[-]”, which
the tool will fill out with appropriate facts, such that
the invariant proves the correctness assertions, assum-
ing that such an invariant exists. The invariant may not
exist if the program is faulty, i.e., there exists some input
over which the correctness assertion is violated. Another
important thing to note about the invariant template is
that is it not entirely devoid of information. It does im-
pose a certain structure, namely a disjunction (of size
2) of conjunctions (of size 4 each). This captures the
programmer’s insight about what the proof about the
program would look like. Examining TwoPhase we may
notice that there are two phases, one in which y is in-
creasing, and another in which it is decreasing. Hence
the disjuncts. We may also guess, that we may need
facts concerning x, y and one relating them, hence at
least three, although that is more tenuous, and maybe an
educated guess suffices. Note also that a template does
not need to be exact, and may be more general than
needed. For instance, template contains four conjuncts
in each disjunct, while invariant only needs three. On
the other hand, a template that is too specific, i.e., not
general enough, will not suffice. Verification will fail on
too specific a template, similar to how x ≥ 0∧n ≥ 0 did
not suffice.

When writing programs manually programmers typi-
cally are comfortable writing correctness assertions such
as relates. They mostly forgo correctness verification
because of the effort involved in providing details such as
in invariant. Template-based verification on the other
hand requires only the insight provided as hints such as
template while the tool fills out the details of the proof,
i.e., constructs invariant from template, thus bringing
the overhead low enough to be used in practice. We will
encounter more sophisticated invariant templates later,
but in all we will note a significant reduction in pro-
grammer effort as compared to writing the invariants
manually.

We can apply the same principle of omitting the de-
tails using template holes for program statements and
guards, attempting the more ambitious task of generat-
ing the program from the insights provided by the user.
To be more specific, instead of the programmer writ-
ing a program, they can write a program template which
specifies some program structure, e.g., where the loops
appear, while leaving out the details such as guards, con-
ditionals, and assignments, as much as required.

For instance, if the programmer was unsure of the
body of the loop in our example, they may write the
following program template instead:

TwoPhaseTemplate(int n) {
1 Assume n ≥ 0;
2 x := 0; y := 0;
3 while (y ≥ 0)
4 [-]→ [-]y
5 [-]→ [-]y
6 x++;
7 }
8 Assert relates(x, n);
}

where the block consisting of two [-]→ [-]y indicates
that there is a guard hole for a predicate, the first “[-]”,
which if satisfied triggers the statements in the statement
hole, the second “[-]y” with the subscript denoting that
the hole needs to be instantiated with assignment to y.
This example hints at how program templates allow the
programmer to encode the intuition behind the algo-
rithm, without manually writing down the expressions of
the program. The synthesizer takes care of instantiating
the holes such that they meet the correctness assertions.
In more complicated synthesis tasks we will see later, the
correctness assertions encode the entire specification of
the task (modulo termination). Imposing structure using
the program template, and correspondingly the invariant
templates, limits the synthesizer to programs that are se-
mantically correct with respect to the specification. This
allows the tool to generate verified programs given just
the correctness assertions and program template.

The informed reader will notice similarities between
our program templates and Sketches in the SKETCH
tool [55]. While similar, there are subtle but important
differences. The only structure that is necessarily re-
quired for program templates are the location of loops,
while in Sketches all control flow, and which assignments
occur in which order, are part of the structure that needs
to be specified. Additionally, Sketch synthesizes integers
that are bounded for each hole, while program templates
contain holes that are arbitrary expressions and predi-
cates, and therefore the synthesizer needs to generate
values that are potentially unbounded. Additionally, and
perhaps most importantly, Sketch only has the notion of
partial programs, while our system additionally allows
partial invariants to be specified as well.

2.1 The Origin of Templates

Templates serve two important purposes. First, they are
an expressive yet accessible mechanism for the program-
mer to specify their insight. Second, they limit the search
space of invariants and proofs, and consequently make
verification and synthesis feasible for difficult cases. We
discuss both these in detail below.

First, templates let the programmer specify the in-
tuition behind the program, or proof, in a very system-
atic format. Any attempt at formalizing intuition will
be lacking in significant ways, and so is ours, but we be-
lieve our way of using invariant and program templates
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is an interesting design point. For any formula or pro-
gram that we do not know enough about, and want to
abstract, using template holes as abstract replacement is
a very expressive mechanism. Additionally, it is also very
usable, with a minimal learning curve, and because it fol-
lows the top to bottom thought process that we believe
programmers follow in practice. This belief is substan-
tiated by the observation that it is standard practice in
software engineering to first do the high-level design, and
then subsequently to fill in components in the design.
Templates provide a similar workflow. The programmer
specifies the high-level design of the invariants, or pro-
gram, and the system fills out the details.

Second, templates make verification and synthesis
tractable. In their full generality, verification and syn-
thesis are both undecidable problems. All existing veri-
fication and synthesis systems make assumptions, typi-
cally about the domain over which the program is writ-
ten [55,36], or needs to be analyzed [9], that sufficiently
simplify the problem such that it is amenable to solv-
ing. Our assumption is that programmers feel comfort-
able about partial programs, since techniques like mod-
ular programming and libraries after all simply allow
the programmer to delegate functionality to an exter-
nal component, that they do not care about. Similarly,
templates limit the programmer’s task to the high-level
structure of the invariants and code. Under the assump-
tion that templates are provided the verification and syn-
thesis tasks essentially reduce to search problems for the
missing components in the template. Search problems
are encountered in various subdisciplines of computing,
and hence we have various solutions, heuristic or other-
wise that we can leverage. In particular, we will leverage
satisfiability solving as our mechanism for searching for
the satisfying solutions to the holes.

2.1.1 Invariant Templates for Verification

To make this discussion about templates more concrete,
let us consider the binary search program:

BinarySearch(Array A, int e, int n) {
1 low := 0;high := n− 1;
2 while (low ≤ high) {
3 mid := d(low + high)/2e;
4 if (A[mid] < e)
5 low := mid+ 1;
6 else if (A[mid] > e)
7 high := mid− 1;
8 else return true;

9 }
10 Assert notContains(A,n, e);
11 return false;

}
For this program, we want to prove that when it

fails to find the element e in array A of size n, then
the element truely did not exist, i.e., more formally that
(∀j : (0 ≤ j < n)⇒ A[j] 6= e) holds of the array. This is
specified as the notContains clause:

notContains(Array A, int n, int e) {
1 fact = true;

2 for(j = 0; j < n; j++) // . . . foreach ({j | 0 ≤ j < n})
3 fact = fact ∧ A[j] 6= e
4 return fact;

}
Assuming independent loop iterations, a loop such as
the one on line 2, can be written as a set comprehension
over 0 ≤ j < n, i.e., as that specified by the comment.

Programmers routinely write programs like Binary-
Search and correctness assertions like notContains. They
do not go the extra step to attempt to prove their asser-
tions before running their program (which causes run-
time failure if the assertions are violated, due to unan-
ticipated inputs.) Templates facilitate this extra step of
verification almost without extra effort.

We now discuss the process of obtaining an invari-
ant template. First, our experience has shown that most
invariants need a few simple quantifier-free relations, es-
pecially to show inductiveness, i.e., when we traverse a
loop and come back to the header. Therefore, we start
by adding a simple hole “[-]”. Then, since we are at-
tempting to prove notContains, we should have part of
the invariant template be at least as expressive. In par-
ticular, it should contain a template for each part:

1 fact2 = true;

2 foreach ({j | [-]})
3 fact2 = fact2 ∧ [-]

where the iteration is over values of the index variable
j whose value space is to be discovered. If we attempt
verification with just a simple template hole and one
foreach as above, it fails. Since the quantifier-free hole
is already present, the only option available to the pro-
grammer is to add quantified fact. We follow a strategy
of adding simpler facts, i.e., with one quantified variable,
before increasing expressivity, e.g., by adding facts with
nested quantification. Thus, we make the template more
expressive and we add a few more foreachs:

templateBS(. .) {
1 fact1 = [-];

2 fact2 = true; foreach ({j | [-]})
3 { fact2 = fact2 ∧ [-]}
4 fact3 = true; foreach ({j | [-]})
5 { fact3 = fact3 ∧ [-]}
6 fact4 = true; foreach ({j | [-]})
7 { fact4 = fact4 ∧ [-]}
8 return fact1 ∧ fact2 ∧ fact3 ∧ fact4;

}
Not only is the tool able to verify the program with

this template, it informs us of a condition we missed.
It tells us that the program can be shown valid, by the
invariant:

0 ≤ low ∧ high < n
∀j : (low ≤ j ≤ high)⇒ A[j] ≤ A[j + 1]
∀j : (0 ≤ j < low)⇒ A[j] 6= e
∀j : (high < j < n)⇒ A[j] 6= e


Notice how this is an instantiation of templateBS, just
written mathematically. (We will discuss later how the
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programmer provides hints that enable the tool to get
candidate facts, e.g., 0 ≤ low, which it uses to instanti-
ate the holes.) Probably more notably, the tool outputs
that the invariant proves BinarySearch, but only if it
is called with a sorted array, i.e., there is a (maximally-
weak) precondition:

∀j : (0 ≤ j < n)⇒ A[j] ≤ A[j + 1]

Throughout this paper, maximally-weak precondi-
tions refer to maximally-weak assertions of all instan-
tiations of the template, that are valid preconditions.
Notice that the precondition is also an instantiation of
the invariant template, which is what the tool used as
a template for the precondition. Such gains are com-
mon when applying a verification tool. Very often there
are facts that the programmer assumes always hold, but
are never written down. Using a verification tool makes
those implicit coding assumptions explicit making the
software more maintainable.

Notice how the precondition generated mechanically
is readable and sensible as well. This is a side-effect
of constraining maximal-weakness. Ensuring maximal-
weakness constrains the solver to a precondition that
does not have redundant facts. Additionally, by having
the programmer specify the invariant template and in-
stantiating the precondition from the template, the hu-
man insight about the program structure that is encoded
in the inference process.

To prove that a program meets its specification, our
tool expects the user to provide just templates, instead
of full invariants. The programmer can choose not to use
program verification, but if they want verified programs,
the use of templates significantly reduces the effort in-
volved as the alternative is to write down the invariants.
Experience in program analysis has shown that program-
mer interaction is very valuable. Verification tools that
attempt to be fully automated work well on a narrow
class of programs, but when they fail, they fail in ways
that makes it difficult to proceed without modifying the
underlying tool/theory. Templates provide an expressive
mechanism for the programmer to suggest to the tool the
expected form of the invariants, allowing expressive in-
variant inference, without putting the burden of details
on the programmer.

2.1.2 Program Templates for Synthesis

In synthesis the tool instantiates a programmer-specified
program template to a program matching a specifica-
tion. A program template is the medium through which
the programmer conveys to the tool the insight behind
the program. Consider for example the task of draw-
ing a pixelated line, approximating a real line, between
points (0, 0) and (X,Y ). Figure 1 shows the pixelated
line in green, approximating the real line in bold. We as-
sume that we need a line in the NE quadrant, i.e., with
0 < Y ≤ X. Our program is expected to generate (x, y)

X

Y

y axis

x axis0

0

Fig. 1. Drawing a pixelated line approximating the real line from
(0, 0) to (X,Y ) in the NE quadrant, i.e., with 0 < Y ≤ X.

values for the pixelated line. The specification for this
task is simply that the output values should not deviate
more than half a pixel away from the real value. That is,
we need | y − (Y/X)x |≤ 1/2 for any (x, y) the program
outputs, or written as our correctness assertion, we need
notFar to hold:

bool notFar(int x, y) {
return −1/2 ≤ y − (Y/X)x ≤ 1/2
}

A programmer informed in computer graphics may rec-
ognize the specification for which a solution exists using
only linear operations. Notice that the program is triv-
ial if we are allowed to divide and multiply, as it would
be almost identical to the specification. The challenge
is to come up with a program which uses only linear
operations, i.e., using only additions and subtractions,
as it would be more efficient. If up for a challenge, the
reader should stop reading for a moment and attempt to
manually write this program. The task is not trivial.

Alternatively, one can use program synthesis! To use
template-based synthesis, we need a program template.
The program will necessarily loop over some values, and
possibly have an initialization preceeding the loop. Thus
a plausible program template is:

BresenhamsTemplate(int X,Y ) {
1 Assume 0 < Y ≤ X
2 [-]→ [-]v1,x,y;

3 while ([-]) {
4 Assert notFar(x,y); // print (x,y)

5 [-]→ [-]v1,x,y
6 [-]→ [-]v1,x,y
7 }
}

While it is obvious that the statements will involve up-
dates to x and y, we see an auxiliary variable v1 being
used too. It turns out that when we attempted synthesis
without it, the tool failed to generate a program. There-
fore we conjectured extra temporaries might be needed
taken from the set {v1, v2, . . .}. Adding a single extra
variable v1 leads to a solution, and we realize that the
extra variable is used by the program as a measure of the
error variable between the discrete line and the real line.
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In fact, a non-trivial solution generated by the synthesis
tool is the following:

Bresenhams(int X,Y ) {
Assert 0 < Y ≤ X
v1:=2Y −X; y:=0; x:=0;
while (x ≤ X)

if (v1 < 0)
v1:=v1+2Y ;

else

v1:=v1+2(Y -X); y++;
x++;

}
Notice how the extra variable plays a critical role in the
program, and the programmer did not have to come up
with the complicated manipulations to update it and the
running coordinates.

Our synthesizer builds on top of verifiers, and con-
sequently as a side-effect of successfully solving for the
program, solves for the proof that the program meets
the specification. That is, it generates both invariants,
for partial correctness, and ranking functions, for termi-
nation. In this case, it generates the following invariant: 0 < Y ≤ X

v1 = 2(x+1)Y −(2y+1)X
2(Y −X) ≤ v1 ≤ 2Y


and the following ranking function:

X − x

A ranking function is associated with a loop, like an in-
variant, except for stating a boolean property that holds
in each iteration, it is an integer expression that de-
creases from one iteration to the next. It is also bounded
below during iterations of the loop. Thus in this case, we
can manually check the validity of the ranking function
because X − x is bounded below by 0 and decreases by
1 in each iteration.

If the reader did indeed stop earlier to manually write
the program themselves they may want to consider the
effort they spent against that involved in writing a pro-
gram template. There is indeed some trial and error in-
volved, but the actual inference of the program can now
be left to the synthesizer. Additionally, they may also
consider how long it would take them, or did take them,
to find the invariants that were output by the synthesizer
as a side effect of template-based program synthesis us-
ing verifiers.

Let us revisit the question of whether templates im-
prove efficiency in the context of synthesis. In verifica-
tion, template specification were for artifacts, i.e., invari-
ant, required for the process of verification. They are of
little interest to the programmer. The average program-
mer is typically only interested in the binary result of
whether their program is correct or not; possibly with
the exception of missing preconditions under which it
may be correct. In synthesis, rather than a template for
an artifact, the template is of the unknown program the

programmer is expecting to generate. So instead of writ-
ing the code from scratch the programmer significantly
benefits because they only need to write the structure of
the code, and the tool fills out the details.

3 Programs as Formulae

Up until now we have described the programmer input
(programs, assertions, and templates), used by our syn-
thesizer and verifier. While our programmatic presenta-
tion until now is human readable, the synthesizer and
verifier need to translate them into a more amenable
form they can reason about. In this section, we describe
how programs are interpreted as formulae, using well
understood approaches. The novel twist to our choice of
formalism will be its ability to handle template holes.
This requirement only appears because of our particular
template-based approach to verification and synthesis.

3.1 With Invariants, Programs are Just Constraints

The control flow graph of a structured program, i.e., one
without gotos, has a very specific form. It is acyclic, ex-
cept for the few backedges created by loops. Using a stan-
dard trick from program analysis we can reason about
the program using a finite representation, even though
actual executions may be infinite. We have already dis-
cussed attaching an invariant fact at each loop header,
i.e., at the end point of each backedge. If we treat these
points as cutting the graph into fragments, then notice
that the graph contains no cycles thereafter. The remain-
der would be program fragments that are acyclic and
start at the program entry or an invariant, and end at
the program exit or an invariant. Our intention would
be to translate each fragment to a formula encoding the
fragment’s meaning, and thus generate a finite formula
that has the meaning of the program. Let us look at
the following example, and let us call the (unknown) in-
variants for the loops on lines 2 and 4, as τ is2 and τ is4 ,
respectively, named as the invariants for insertion sort
at the corresponding lines:

InsertionSort(Array A, int n) {
1 i := 1;
2 while (i < n) {
3 j := i− 1; val := A[i];
4 while (j ≥ 0 ∧A[j] > val) {
5 A[j + 1] := A[j]; j--;
6 }
7 A[j + 1] := val; i++;
8 }
9 Assert preserves(A, Ã, n);
}

where preserves states that the array A has the same
contents as an old version, stored in Ã, up to n elements.
We will look at the definition of preserves later. For
now, let us use our trick of starting and stopping at in-
variants to fragment the program. We reason with the
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following finite set (informally written), even though ac-
tual runs of the program may be arbitrarily long:

(entry ∧ line 1) should imply τ is2
(τ is2 ∧ i < n ∧ line 3) should imply τ is4

(τ is2 ∧ i ≥ n) should imply preserves(A, Ã, n)
(τ is4 ∧ (j ≥ 0 ∧A[j] > val) ∧ line 5) should imply τ is4

(τ is4 ∧ ¬(j ≥ 0 ∧A[j] > val) ∧ line 7) should imply τ is2

There is no assumption at program entry, so entry is
true. That only leaves the encoding of statements on
lines 1, 3, 5 and 7. Looking ahead, in program templates
for synthesis statements might have template holes, and
so we should ensure that our encoding works for them.
The notion of transition systems works for our purposes.
A transition system is an encoding of a basic block trig-
gered by an optional guard condition. A basic block is en-
coded as a relation between its outputs and inputs, which
are respectively the values of the variables at exit and
entry from the block. The outputs values of variables can
be indicated by priming the variable name. So the basic
block on line 3 is encoded as j′ = i−1∧val′ = sel(A, i).
When reasoning formally about state update to arrays,
we employ McCarthy’s theory of arrays [46], which has
predicates for array reads sel(array, index) and array
updates upd(array, index, value). The update is non-
destructive in that the original array is not modified, but
the predicate represents the new array with the index
location holding value instead of the one in array.

Using transition systems for reasoning about pro-
gram fragments works without change in the presence of
program templates that contain holes [-], i.e., a place-
holder for some expression or predicate that will be filled
in later by the synthesizer/verifier. For instance, an as-
signment j := [-] translates to j′ = [-]. (The informed
reader will notice that the alternative of using Hoare’s
backwards substitution for reasoning about assignment
will not work in the case of template holes.)

Using the above approach, the informal translation
we wrote earlier is formally written as logical constraints:

(true ∧ i′ = 1) ⇒ τ is2
′

(τ is2 ∧ i < n ∧ j′ = i− 1 ∧ val′ = sel(A, i)) ⇒ τ is4
′

(τ is2 ∧ i ≥ n) ⇒ preserves(A, Ã, n)(
τ is4 ∧ (j ≥ 0 ∧ sel(A, j) > val)

∧ A′ = upd(A, j + 1, j) ∧ j′ = j − 1

)
⇒ τ is4

′(
τ is4 ∧ ¬(j ≥ 0 ∧ sel(A, j) > val)

∧ A′ = upd(A, j + 1, val) ∧ i′ = i+ 1

)
⇒ τ is2

′

Invariants τ is2 and τ is4 are unknown facts, we cannot di-
rectly ask for whether this constraint system is satisfi-
able. We need to find values for these invariants such
that the constraint system is satisfiable. Specifically, τ is2
and τ is4 are placeholder variables for the true invariant
assertions, and their primed versions are delayed sub-
stitutions. Next we describe the process of discovering
these invariants using templates.

3.2 Using Templates in Constraints; Translating to
Formulae

The translation of programs to formulae in the previous
section contains invariants as symbols, which means we
cannot directly check for its consistency. We employ in-
variant templates to refine the formulae such that it is
simpler to solve. But first, let us discuss in more detail
what preserves is intended to check. The imperatively
written InsertionSort moves the elements of the ar-
ray, and not just by operations that preserve elements
but by overwriting the array intelligently. (An operation
that preserves the element trivially would be swapping.)
It is not immediately obvious, neither intuitively and
definitely not formally, that the output array contains
the same elements as the input. This example shows
that correctness assertions can be much more detailed
in cases. A first order correctness for a sorting program
is that it outputs a sorted array. But a sorted array could
be one that contains n replicas of the first element. Hav-
ing the same set of elements is another aspect of the
correctness specification. We examine one part which is
of checking that the output array A contains every el-
ement that was in the input array (lets call it Ã), i.e.,
∀y∃x : (0 ≤ y < n) ⇒ (Ã[y] = A[x] ∧ 0 ≤ x < n).
This does not entirely prove that the elements are the
same, as some may be replicated. If we were to prove
full correctness, then we would additionally show that
the count of elements is the same.

It is easily seen that the following programmatic ver-
sion of preserves encodes the required ∀∃ formula:

bool preserves(Array A, Array Ã, int n) {
1 holds = true;

2 // foreach ({y | 0 ≤ y < n})
3 for (y = 0; y < n; y++)
4 found = false;

5 // foreach ({x | 0 ≤ x < n})
6 for (x = 0;x < n;x++)

7 found = found ∨ Ã[y] = A[x];
8 holds = holds ∧ found;

9 return holds;

}
This illustrates how one may write a function that can
be matched against a simple syntactic pattern that cor-
responds to simple quantified formulae.

3.2.1 Expressivity of Templates: General (Quantified)
but not Too General (Not Turing Complete)

While writing templates programmatically is easier for
the programmer, the solver will need to translate the
template back into a form amenable to formal reason-
ing. Therefore, we have to be careful about the form
of the template, and what they encode. For instance,
for the above preserves property, we conjecture that
a template which is similarly expressive would suffice:
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template(. .) {
1 fact1 = [-];

2 fact2 = true; foreach ({y | [-]})
3 { fact2 = fact2 ∧ [-]}
4 fact3 = true; foreach ({y | [-]}) {
5 found = false;

6 foreach ({x | [-]})
7 { found = found ∨ [-]};
8 fact3 = fact2 ∧ found }
9 return fact1 ∧ fact2 ∧ fact3;

}
Notice that this template encodes [-] ∧ (∀y : [-]⇒ [-]) ∧
(∀y∃x : [-]⇒ [-]), which is what the tool will syntac-
tically match template to. There are certain code pat-
terns that we recognize as being translatable to formulae
for templates, in particular right now we recognize pat-
terns for single universal quantified formulae or double
alternate universal and existential formulae. The pro-
grammer only needs to understand the underlying pat-
tern matching if their template function fails to match
any of our patterns. We restrict our attention to simple
pattern matches because otherwise inferring the formal
description from the template will be another program
analysis problem, that we would not want to get into.

If we present this to the tool it infers two invariants,
one for each loop, which are each instantiations of the
template. The invariant inferred for the outer loop is:(

∀y : (i ≤ y < n)⇒ (Ã[y] = A[y]) ∧
∀y∃x : (0 ≤ y < i)⇒ (Ã[y] = A[x] ∧ 0 ≤ x < i)

)
and the invariant inferred for the inner loop is:(

val = Ã[i] ∧ −1 ≤ j < i ∧
∀y : (i < y < n)⇒ Ã[y] = A[y] ∧
∀y∃x : (0 ≤ y < i)⇒ (Ã[y] = A[x] ∧ 0 ≤ x ≤ i ∧ x 6= j + 1)

)

4 Solving Technology for Formulae

Until now, we have talked about how one can describe
programs, assertions, and invariants, both exactly, and
as templates. In this framework, verification and syn-
thesis just reduce to finding a substitution map for holes
such that the assertions are provably met, when the tem-
plate is instantiated using the substitution map. In this
section, we describe the technology behind finding such
opportune substitution maps.

Our translation from the previous section converts a
program P to a corresponding formula F . This transla-
tion is well known, but mostly in the context of known
programs and known (i.e., programmer-specified) invari-
ants. If all the components are known then checking the
correctness of P is equivalent to checking whether the
formula F holds. More precisely, what we check is that
F holds for all possible values of X, the set of program
variables that appear in it, i.e., whether ∀X : F holds.
But our formulae have holes, for parts of the invariants,
and for expressions and predicates if a program template
is used instead of a known program. Thus we do not have

as simple a checking problem, but instead the problem
of finding appropriate values for the holes [-] such that
when F is instantiated with them it holds. More pre-
cisely, we need to find if ∃[-]∀X : F holds, and if it
does, then output the values instantiating the ∃[-].

This discussion immediately points to the possibil-
ity of using satisfiability solving for our verification and
synthesis problems. SAT solving, and its more expres-
sive version SMT solving, i.e., SAT Modulo Theories,
are well studied problems with practical tools that exist
now. SAT takes a formulae f with boolean variables and
connectives and finds an assignment of the booleans to
truth values such that the entire formula evaluates to
true, i.e., it solves ∃f . SMT takes a formula f̄ with vari-
ables that can more expressive than booleans, such as
integers, bit vectors, or arrays, and operators over them,
and finds an assignment such that the formula evaluates
to true, i.e., it solves ∃f̄ . SMT trivially subsumes SAT.
Since SAT is well-known to be NP-Complete, SMT is
too, yet heuristic solutions that work well in practice
have yielded tools with enormous success in solving in-
stances generated from even industrial applications.

There will be two issues we need to address before we
can use SAT/SMT for solving our formulae. First, our
formulae contain an additional universal quantification
(over program variables X). We will show how we con-
vert to a purely existentially-quantified formula. Second,
our holes are more expressive then just integers, arrays,
or bit-vectors. They are full expressions, or predicates.
Use of templates will come to our rescue here.

4.1 Solving under Domain Assumptions

One way of overcoming the above challenges is by mak-
ing assumptions about the domains. In particular, we
will show how we overcome both these first for the do-
main of linear arithmetic and then for the domain of
predicate abstraction.

4.1.1 Linear Arithmetic

For linear arithmetic, we assume that the program only
manipulates linear expressions, and predicates and in-
variants only refer to linear relations.

Encoding expressions and predicates using integers Un-
der linear arithmetic, we encode program expressions as
c0+

∑
i ciai, where ai ∈ X are the program variables, and

ci are unknown integer coefficients we introduce, includ-
ing a constant term c0. Note that this is the most gen-
eral form of any expression possible under linear arith-
metic. If some program variable does not appear in the
expression, then the solver will instantiate its coefficient
to 0. Thus the task of finding an arbitrary expression
reduces to finding particular integer constants. A sim-
ilar approach can encode predicates. We encode each
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program predicate, and atomic facts that appear in in-
variants as (c0 +

∑
i ciai) ≥ 0. Again, notice that it is

the most general relation within linear arithmetic.

Removing ∀X Converting the formula into one that is
purely existential requires a little bit more work. We take
a detour into linear algebra, by converting our boolean
implications into linear equivalences. Farkas’ lemma [52]
is a well-known result from linear algebra which states
that a boolean implication

(
∧
i

(ei ≥ 0))⇒ e ≥ 0 (1)

holds iff another equivalence

(λ0 +
∑
i

λiei) ≡ e

holds. That is, Farkas’ lemma states that a set of linear
inequalities with expressions ei imply another inequality
e ≥ 0 iff e can be expressed as a linear combination of the
ei, modulo some constant. Intuitively, it states that the
intersection of a set of halfspaces hi is contained within
another halfspace h iff some halfspace made out a com-
bination of some of hi (possibly displaced) is identical to
h. This elementary result allows us to simplify our pro-
gram implications. In particular we note the program
implications we saw in Section 3 are exactly in the form
of Eq. 1; with a little linear algebra to convert each strict
inequality into an inequality, and splitting equalities into
two inequalities. For example, if we had a program impli-
cation i > 0 ∧ j ≥ 0⇒ τ from a program with variables
i and j, and invariant τ that we expanded as above into:

i > 0 ∧ j ≥ 0⇒ (c0 + c1i+ c2j) ≥ 0

Then we can apply Farkas’ lemma to get the equivalence:

λ0 + λ1(i− 1) + λ2j ≡ (c0 + c1i+ c2j)

One way to remember this translation is to rewrite the
equation with + instead of ∧, and ≡ instead of ⇒, re-
move all the ≥ 0, and multiply all left hand side terms
with λi’s and add a constant λ0.

Note that the λi’s introduced in the application of
Farkas’ lemma are real valued (yet-to-be-discovered) con-
stants. Later on we will make an additional assumption
of solving for only integer λi’s, with an additional λrhs
on the right hand side of the equation. This formula-
tion allows for any rational λi’s, but does not allow for
irrationals. We have not found a single instance in prac-
tice where this would hurt completeness. Note that for
rational λi’s this formulation is complete.

The application of Farkas’ lemma, i.e., a detour into
linear algebra, gains us a very significant benefit. The
equivalence needs to hold under forall program variables,
i.e., ∀X. So we can simply collect the coefficients of all
the terms, i.e., the program variables, and construct an-
other system of equations with the same solution, ex-
cept having no universally quantified variables. For our

example, we collect the coefficients of the constant term,
i, and j to get the following three equations:

λ0 − λ1 = c0 . . . for the constant
λ1 = c1 . . . for i
λ2 = c2 . . . for j

This is an equation set from one program implication.
There will be similar ones from all other program impli-
cations. Now we can go back to our boolean domain, as
these are conjunctions of formulae that need to hold. We
therefore get a system of equation that is now only exis-
tentially quantified over the constants we introduced. In
our example, we have a set of equations that are existen-
tially quantified ∃λ0, λ1, λ2, c0, c1, c2. That is, we have a
satisfiability problem.

We send the satisfiability problem, thus constructed
from all program implications, and ask an SMT solver for
the solution. The SMT solver gives us a solution for all
λi and all ci. The ci are used to trivially reconstruct the
required invariants, while we disregard the λi. A more
detailed presentation of this reduction and its applica-
tions are in previous work [29] and in the first author’s
Ph.D. thesis [56].

4.1.2 Predicate Abstraction

Predicate abstraction is a technique in which programs
are analyzed in terms of a suitably chosen set of pred-
icates. These predicates can be arbitrary relations over
program variables, and are potentially significantly more
expressive than just linear relations. For instance, it is
possible to reason about arrays using sel and upd pred-
icates, or bit-vector manipulations such as XOR, AND,
etc. The downside is that there is more programmer in-
volvement in the process. It is not possible to build the
most general template over arbitrary predicates, as we
did in linear arithmetic, but instead we have to explic-
itly enumerate a set of predicates to work with. In our
system, we expect the user to specify this set.

Examples of Predicate Sets Earlier in Section 2.1, for
BinarySearch, we showed the template but not the pred-
icates whose boolean combinations are used to instanti-
ate the holes of the template. The set of predicates is
provided by the user as an enumeration of a set of pos-
sibilities:

enumerate(. .) {
1 set1 = {v op v | v ∈ {j, low, high, 0, n}, op ∈ {≤, <}};
2 set2 = {v op v | v ∈ {A[j], A[j − 1],A[j + 1], e, 0},
3 op ∈ {≤, 6=}};
4 return set1 ∪ set2;

}
Also, in Section 3 we promised to show the atomic

relations that populate the invariant template holes for
InsertionSort. These are enumerated similar to the
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above:
enumerate(. .) {

1 set1 = {v − c op v | v ∈ {x, y, i, j, n}, c ∈ {0,±1},
2 op ∈ {≤,≥, 6=}};
3 set2 = {v = v | v∈{A[t], Ã[t], val | t ∈ {x, y, i, j, n−1}}};
4 return set1 ∪ set2;

}
While these predicate sets help narrow the space of

possibilities, we still need to tackle the two problems
when converting our formulae into satisfiability formu-
lae. We discuss these for the case of predicate abstraction
now.

Encoding expressions and predicates For predicate ab-
straction, the set of expressions and predicates is ob-
tained directly from the programmer. The programmer
makes an educated guess about the possible set of ex-
pressions and predicates that might be needed in the
invariants, and program. This set may be vastly larger
than the exact predicates required. The tool will reason
about the program and pick the exact predicates to in-
stantiate appropriately. Additionally, this enumeration
is global for the entire program’s holes, instead of for in-
dividual holes. This reduces the programmer’s effort by
ensuring that they do not have to look into the program
or its template to write the predicate enumeration.

Removing ∀X We take a different approach towards
taking care of the nested quantification in our program
implications. We notice that satisfiability solvers can
check tautologies, using a simple trick. If we wish to
just infer if ∀X : f ′ holds, i.e., without any nested quan-
tification, then we can simply ask the solver to find a
satisfying assignment to ∃X : ¬f ′, and if one exists then
the tautology does not hold. On the other hand, if the
negation is unsatisfiable then the tautology holds.

We cannot apply this trick directly because of the
nested quantification in ∃[-]∀X : F . But for predicate
abstraction, we have a set of candidates that can pop-
ulate the holes. Therefore, we pick a polynomial set of
instantiations, and fill out the holes in the program im-
plications in F . Once instantiated, we are left with an
implication that is only universally quantified over the
program variables. We can check whether that is a tau-
tology using the SMT solver. Making a polynomial num-
ber of such instantiations (the formal details of which
are in previous work [57] and Ph.D. thesis [56]), we get
enough information about individual predicates to set
up another satisfiability query to evaluate the real ∃[-]
question.

The way we accumulate the information about indi-
vidual predicates is in terms of boolean indicator vari-
ables. Thus, for each predicate p and each hole x in the
template, there is a boolean variable bp,x. The meaning
of this predicate is that if bp,x is true then predicate
p goes into hole x, else not. Using the polynomial num-
ber of SMT queries over the individual program implica-
tions we make, we accumulate boolean constraints over

these indicator variables. The intuitive idea is that each
program implication constrains the booleans in specific
ways. The correctness of the program relies on satisfy-
ing all program implications simultaneously. This cor-
responds to conjoining all boolean constraints accumu-
lated for all boolean indicators and finding a single satis-
fying solution. The satisfying solution assigns truth val-
ues to the indicators, which in turn tell us what predicate
populates what hole—yielding the invariants. Again, the
formal details are in previous work [57] and Ph.D. the-
sis [56].

4.2 Applying the Solving Technology to Synthesis

The solving technology we had discussed up until now
does not make a distinction between invariant and pro-
gram holes. Especially, in the manner we encode basic
blocks as transition systems, statements appear only as
equality predicates, and statements with holes are equal-
ity predicates with one side a hole, e.g., j′ = [-]. Thus
the approach presented for linear arithmetic and pred-
icate abstraction should suffice to infer programs too.
While that is almost correct, it lacks in specific ways. In
particular, if we are inferring programs, they have to be
of a specific form to be translatable back to imperative
code.

4.2.1 Safety + Ranking + Well-formedness

We have up until now encoded safety conditions for the
program using correctness assertions. These suffice when
we are verifying programs, as termination is ensured
externally by the programmer, and if non-terminating
then the program satisfies any postcondition trivially.
But when generating programs, there are a multitude of
solutions that are non-terminating (and so satisfy safety
trivially), and so if we ask the solver for a random solu-
tion, we are left with many uninteresting programs.

To ensure that we get interesting, terminating pro-
grams, we constrain that a valid ranking function ex-
ist, for each loop. Notice that since we are already in-
ferring expressions elsewhere in the program, this addi-
tional expression is inferred in the same framework. For
each ranking function, we have to construct constraints
similar to safety constraints, but just for the loop body
that ensure that in each iteration the ranking function
decreases.

Asking for a solution to safety+ranking yields results,
but not all these can be translated back into imperative
programs. The problem occurs when synthesizing condi-
tionals. For instance, there is template fragment:

[-]→ [-]X
[-]→ [-]X

that is intended to represent a conditional that we hope
to translate to a structured if(g){s1}then{s2}. The con-
ditions required for this translation are that the guard
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holes should be a tautology, because in the imperative
version the guards are g and ¬g, respectively for s1 and
s2, and the guards together form a tautology. Addition-
ally the statements inferred should not be false, be-
cause a input-output transition system (relation between
primed and unprimed variables) can never be false. We
call these two constraints well-formedness constraints.
The formal description of these constraints are available
in previous work [59].

Example Putting all of safety, ranking, and well-formedness
constraints together and solving using the satisfiability-
based techniques we have described does yield, well-formed
terminating programs. For example, for BresenhamsTemplate
in Section 2.1.2 the solver generates the following inter-
mediate program after solving using linear arithmetic:
BresenhamsIntermediate(int X,Y ) {
Assert 0 < Y ≤ X
true→ v′1 = 2Y −X ∧ y′ = 0∧x′ = 0

while (x ≤ X) {
v1 < 0→v′1 = v1 + 2Y ∧ x′ = x+ 1

v1 ≥ 0→v′1 = v1 + 2(Y−X) ∧ y′ = y + 1 ∧ x′ = x+ 1

}
}

The solver additionally generates the invariants and
ranking function shown earlier. For these inferred tran-
sition systems and loop guards, a little bit of postpro-
cessing yields the program Bresenhams shown earlier.

Additional constraints Notice that we have incremen-
tally constrained the space of programs with each ad-
dition of correctness, well-formedness, and termination
constraints. While these are arguably the smallest set of
constraints that are guaranteed to give us useful pro-
grams, there are other constraint sets that might be
of interest, e.g., performance constraint, memory usage
constraints etc. These can be imposed in addition, if we
were to for the moment ignore the hardness of formal-
izing them. While the search space might be narrower
with additional constraints, this would not necessarily
lead to faster solving. In our experience, we have found
that while at the start additional constraints help the
solver narrow into a solution faster, excessive constraints
lead to excessive backtracking, thus higher solving times.
Due to these counteracting factors, our system currently
imposes the minimal set of correctness, well-formedness,
and termination constraints. We leave the decision to
either filter candidates post-generation, or through ad-
ditional constraints for future work, as may be required
for performance, or memory considerations, for instance.

Compositionality: Synthesis vs Verification A point sim-
ilar to the above is that of compositionality of synthe-
sis. In verification using traditional iterative approaches
composition of proofs is linear time. That is, proving
two properties takes only as much effort as the sum of
proving each individually. On the other hand, in most

synthesis approaches including ours, such composition-
ality properties do not exist. While this is true, it is
also the case that our satisfiability/template-based ver-
ification does not possess the linear time composition
properties of traditional verification approaches. Thus
we trade-off some properties in the easier problem of
verification, such that synthesis is a natural extension.
Compositional/modular program synthesis is a very ex-
citing open research question.

5 Case Study: Verifying and Synthesizing
Selection Sort

We now present a case study on our experience with
using template-based verification and synthesis tools.

5.1 Verification

Let us first consider analyzing selection sort:
SelectionSort(Array A, int n) {

1 i := 0;
2 while (i < n− 1) {
3 min := i; j := i+ 1;
4 while (j < n) {
5 if (A[j] < A[min]) min := j;
6 j := j + 1;
7 }
8 Assert(i 6= min);
9 if (i 6= min) swap(A, i, min);

10 i := i+ 1;
11 }
}

where the function swap is syntactic sugar in the tem-
plate language that gets expanded to a swapping opera-
tion over integers using a temporary.

Suppose we wish to maximize the number of times
the sorting algorithm swaps elements, i.e., exhibits its
worst case number of swaps. In particular, we want to
infer an input over which the algorithm swaps every time
it can on line 9. We can use our verification tools to gen-
erate the maximally-weak precondition corresponding to
that, by using the assert on line 8. We know that to re-
late any global precondition and some internal assertion,
we would need appropriate loop invariants to summarize
the behavior of the loops. We therefore pick a template
that allows summarizing properties of sets of array ele-
ments:

template(. .) {
1 fact1 = [-];

2 fact2 = true; foreach ({k | [-]})
3 { fact2 = fact2 ∧ [-]}
4 fact3 = true; foreach ({k | [-]})
5 { fact3 = fact3 ∧ [-]}
6 fact4 = true; foreach ({k1, k2 | [-]})
7 { fact4 = fact4 ∧ [-]}
8 return fact1 ∧ fact2 ∧ fact3 ∧ fact4;

}
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This template encodes four conjuncts

[-] ∧
(∀k : [-]⇒ [-]) ∧
(∀k : [-]⇒ [-]) ∧
(∀k1, k2 : [-]⇒ [-])

Since we wish to infer array properties, we choose to use
predicate abstraction to infer our precondition. For pred-
icate abstraction, we additionally need to specify a set
of predicates. We enumerate two sets: set1 represents
linear inequalities between program variables (with an
optional constant c difference), and set2 represents lin-
ear inequalities between array values:

enumerate(. .) {
1 set1 = {v − c op v | v ∈ {0, k, k1, k2, i, j,min, n},
2 c ∈ {0, 1}, op ∈ {≤,≥, >}};
3 set2 = {A[v] op A[v] | v ∈ {0, k, k1, k2, i, j,min, n−1},
4 op ∈ {≤, <}};
5 return set1 ∪ set2;

}
Notice that in set2 we use n − 1 as n cannot be

a valid index into the array. Using this set we run our
template-based verifier and it infers the following loop
invariants. For the outer loop it infers:(

∀k1, k2 : (i ≤ k1 < k2 < n− 1)⇒ A[k1] < A[k2]
∀k : i ≤ k < n− 1⇒ A[n− 1] < A[k]

)
For the inner loop it infers: ∀k1, k2 : (i ≤ k1 < k2 < n− 1)⇒ A[k1] < A[k2]

∀k : (i ≤ k < n− 1)⇒ A[n− 1] < A[k]
∀k : (i ≤ k < j)⇒ A[min] ≤ A[k]
j > i ∧ i < n− 1


But more importantly, the tool infers the following non-
trivial maximally-weak precondition:(

∀k : (0 ≤ k < n− 1)⇒ A[n− 1] < A[k]
∀k1, k2 : (0 ≤ k1 < k2 < n− 1)⇒ A[k1] < A[k2]

)
This states the somewhat surprising precondition that
selection sort exhibits its worst case number of swaps
when the input array is essentially strictly increasingly
sorted (second quantified fact), except that the last el-
ement is strictly smaller than the rest (first quantified
fact). Automation and formal verification guarantees are
required when programs get complicated and we need
inference for such involved preconditions.

5.2 Synthesis

While verification is informative, we wondered if our syn-
thesis system built on top of verification, could in fact
generate the sorting algorithm from high level hints pro-
vided by the programmer, in this case us. We first needed
to come up with a program template. We decided on a
few things to start with. First, we wanted a loop-based,
as opposed to recursive sort. Second, elementary knowl-
edge about algorithms told us that we would need at
least two loops, with loop counters, i1 and i2, respec-
tively. Third, we did not want to get into problems with

the program losing or replicating elements, and so chose
the primitive operation to be a swap. Therefore, we con-
structed the following program template:

SelSort(Array A, int n) {
1 [-]i1
2 while (i1 <[-]) {
3 [-]i2
4 while (i2 <[-]) {
5 [-]→ swap(A, [-], [-]); [-]v1
6 i2++;
7 }
8 i1++;
9 }

10 Assert sorted(A,n); return A;
}

Notice that on line 5 we have introduced another
variable v1. Synthesis attempts without it failed. At that
point the options available to user of the tool are to
either modify the control flow template or add auxil-
iary variables. We conjectured that an auxiliary variable
would be required and updated in the portion of the
program inside the loop where the real work was being
performed.

Of course, we need the sortedness specification en-
coding ∀k1, k2 : (0 ≤ k1 < k2 < n) ⇒ A[k1] ≤ A[k2]
as:

sorted(Array A, int n)
1 fact = true;

2 for(k1 = 0; k1 < n; k1++)
3 for(k2 = k1 + 1; k2 < n; k2++)
4 fact = fact ∧ A[k1] ≤ A[k2];
5 return fact;

}

We ran these templates through the tool, and it pro-
duced selection sort, along with its invariants and rank-
ing functions. But it required some manual tweaks. The
initial attempt failed, subsequent to which we realized
that the program may require a loop that is slightly
non-uniform, a case which we had experienced before. In
some programs the loops are not uniform, and in partic-
ular the first and last iteration of the loop tend to be dif-
ferent. Therefore at times synthesis requires replicating
the body of the loop in the template. In the case of our
template, the body “[-]→ swap(A, [-], [-]); [-]v1” is
replicated before and after the loop. Thus the tool gen-
erates the following intermediate representation (still a
template but elaborated):
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SelSort(Array A, int n) {
1 [-]i1
2 while (i1 <[-]) {
3 [-]i2
4 [-]→ swap(A, [-], [-]); [-]v1
5 while (i2 <[-]) {
6 [-]→ swap(A, [-], [-]); [-]v1
7 i2++;
8 }
9 [-]→ swap(A, [-], [-]); [-]v1

10 i1++;
11 }
12 Assert sorted(A,n); return A;
}

It then proceeds to solve for the holes, using the pred-
icate sets as earlier and some extra predicates for expres-
sions, to get the following intermediate solution:

SelSort(Array A, int n) {
1 i1 := 0
2 while (i1 < n− 1) {
3 i2 := i1 + 1
4 true→ swap(A,0,0); v1 := i1
5 while (i2 < n) {
6 (A[i2] < A[v1]) → swap(A,0,0); v1 := i2
7 i2++;
8 }
9 true→ swap(A,i1,v1); v1 := v1

10 i1++;
11 }
12 Assert sorted(A,n); return A;
}

Manually cleaning up the redundant swaps and re-
dundant assignments, we get the following program:

SelSort(Array A, int n) {
1 i1:=0;
2 whileτ1,ϕ1(i1 < n− 1) {
3 i2:=i1+1;
4 v1:=i1;
5 whileτ2,ϕ2(i2 < n) {
6 if (A[i2]<A[v1]) v1:=i2;
7 i2++;
8 }
9 swap(A,i1, v1);

10 i1++;
11 }
12 return A;
}

The tool also outputs the ranking function ϕ1 and
loop invariant τ1 for the outer loop (with counter i1):

ϕ1: n− i1 − 2
τ1: ∀k1, k2 : 0 ≤ k1 < k2 < n ∧ k1 < i1 ⇒ A[k1] ≤ A[k2]

and the ranking function ϕ2 and loop invariant τ2 for
the inner loop (with counter i2):
ϕ2: n− i2 − 1

τ2:

(
i1 < i2 ∧ i1 ≤ v1 < n
∀k1, k2 : 0 ≤ k1 < k2 < n ∧ k1 < i1 ⇒ A[k1] ≤ A[k2]
∀k : i1 ≤ k < i2 ∧ k ≥ 0⇒ A[v1] ≤ A[k]

)

5.3 Discussion: Benefits and Limitations of a
Template-based/Satisfiability-based approach

It is important to compare the benefits and limitations of
our approach against traditional iterative fixed-point ap-
proximation techniques, such as data-flow analyses and
abstract interpretation.

The key difference between a satisfiability-based ap-
proach and traditional techniques is the lack of itera-
tive approximations. By encoding the problem as a so-
lution to a SAT instance, we are able to delegate fixed-
point solving to the SAT solver, and verification is non-
iterative, and so correspondingly is synthesis.

We note two advantages of a satisfiability-based ap-
proach. First, a satisfiability-based approach is goal-directed
and hence has the potential to be more efficient. The
data-flow analyses or abstract interpreters typically work
either in a forward direction or in a backward direction,
and hence are not goal-directed. Some efforts to incor-
porate goal-directedness involve repeatedly performing
a forward (or backward) analysis over refined abstrac-
tions obtained using counterexample guidance, or by re-
peatedly iterating between forward and backward anal-
yses [10]. However, each forward or backward analysis
attempts to compute the most precise information over
the underlying domain, disregarding what might really
be needed. On the other hand, the satisfiability-based
approach is goal-directed; it abstracts away the control-
flow of the program and incorporates information from
both the precondition as well as the postcondition in the
constraints. Second, a satisfiability-based approach does
not require widening heuristics, that can lead to uncon-
trolled loss of precision, but are required for termination
of iterative fixed-point techniques. Abstract interpreters
iteratively compute approximations to fixed-points and
use domain-specific extrapolation operators (widening)
when operating over infinite height lattices (e.g., lat-
tice of linear inequalities) to ensure termination. Use of
widening leads to an uncontrolled loss of precision. This
has led to development of several widening heuristics
that are tailored to specific classes of programs [63,23,
20,21]. Our technique on the other hand, can handle all
the programs they can handle by just using appropriate
templates, and without specialization of the theory or
implementation of the analysis.

We now note some limitations of a satisfiability-based
approach. First, the execution time of analyses in this
framework is expected to be less deterministic as it de-
pends on the underlying SAT solver. As yet, we have
not encountered such brittleness for our benchmarks, but
anomalous runtimes may appear in pathological exam-
ples. Second, a domain-specific approach, e.g., Farkas’
lemma for linear arithmetic, or our novel reduction for
predicate abstraction, is needed to reduce constraints to
SAT. We require such domain specific reductions as do
previous techniques (e.g., join, widen, and transfer func-
tions in abstract interpretation). Domain specifications
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help make the problem tractable from what is other-
wise an undecidable problem. The key to successfully ex-
ploiting the power of a satisfiability-based framework for
program analysis will be the development such domain-
specific reductions. Lastly, we note that comparisons with
other techniques are necessarily orthogonal as our tech-
nique relies on user-provided templates while previous
techniques attempt to be fully-automated. We perceive
this to be an advantage since this allows the user to
choose the level of expressivity they needs for analyz-
ing/synthesizing their program, without having to mod-
ify the development tools themselves.

6 Evaluation

We built our tools as part of the VS3 (Verification and
Synthesis using SMT Solvers) project that implement
the techniques described here. We ran our experiments
on a 2.5GHz Intel Core 2 Duo machine with 4GB of
memory. We use Z3 version 1.2 SMT solver.

6.1 Verification

We consider small but complicated programs that ma-
nipulate unbounded data structures. These programs have
been considered in state-of-the-art alternative techniques
that infer data-sensitive properties of programs.

In each verification instance, the programmer sup-
plies the program as C code, and additionally templates
that guide the verification process. For verification, our
tool requires templates for invariants, which are typi-
cally composed of the quantifier structure and usually
nested within a “[−]⇒ [−]” term. Additionally, to pop-
ulate the holes the programmer supplies an enumeration
of predicates derived by separate program variables and
trivial constants using relational operators. These typi-
cally total about 10 lines of extra annotations for each
instance.

Simple array/list manipulation Table 1 presents the as-
sertions that we prove for some small benchmarks that
are difficult for mechanical verification, along with run-
times using our tool. By adding axiomatic support for
reachability  , we were able to verify simple list pro-
grams.

Consumer Producer [37] is a program loop that non-
deterministically writes (produces) a new value into a
buffer at the head or reads (consumes) a value at the
tail; we verify that the values read by the consumer are
exactly those that are written by the producer. Parti-
tion Array [3,37] splits an array into two separate arrays,
one containing the zero entries and the other the non-
zero; we verify that the resulting arrays indeed contain
zero and non-zero entries. List Init [28] initializes the val
fields of a list to 0; we verify that every node reachable

from the head has been initialized. List Delete [28] (re-
spectively, List Insert [28]) assumes a properly initialized
list and deletes (respectively inserts) a properly initial-
ized node; we verify that the resulting lists still have val
fields as 0.

Sortedness property Sorting benchmarks are some of the
hardest verification instances for array programs. We
verify sortedness for all major sorting procedures. Ta-
ble 2 presents the assertions that we proved for these
procedures, and the corresponding runtimes.

We evaluate over selection sort, insertion sort and
bubble sort (one that iterates n2 times irrespective of
array contents, and one that maintains a flag indicating
whether the inner loop swapped any element or not, and
breaks if it did not). For quick sort and merge sort we
consider their partitioning and merge steps, respectively.

The reader may be wondering why the semantically
equivalent, but syntactically different postconditions are
used in the different versions of sorting. The answer lies
in the way the proof of correctness, i.e., the inductive
invariants, for each procedure are structured. One set re-
quires a simple induction hypothesis, while the other re-
quires complete/strong induction. Since the SMT-solver
is not capable of generalizing from a single step to mul-
tiple steps, we need to help it out by giving it either a
doubly quantified template, or a singly quantified tem-
plate.

∀∃ properties: Our tools additionally can be used to
prove that under the assumption that the elements of
the input array are distinct, the sorting algorithms do
not lose any elements of the input. Table 3 shows the ∀∃
facts it proves along with the runtimes required to infer
the invariants corresponding to them.

Worst-case upper bounds: Not only can our tool prove
sortedness and input preservation, it can also derive in-
puts (as preconditions) that lead to worst-case execution
times for the given algorithm. We generate the max-
imally weak preconditions, i.e., worst-case inputs, for
each of the sorting examples as shown in Table 4 along
with their runtimes. Notice that the inner loop of merge
sort and the n2 version of bubble sort always perform
the same number of writes, and therefore no assertions
are present and the precondition is true.

Functional correctness: Often, procedures expect con-
ditions to hold on the input for functional correctness.
These can be met by initialization, or by just assuming
facts at entry. We consider the synthesis of the maxi-
mally weak such conditions. Table 5 lists our programs,
the interesting non-trivial preconditions (pre) we com-
pute under the functional specification (post) supplied
as postconditions, along with their runtimes. (We omit
other non-interesting preconditions that do not give us
more insights into the program but are generated by the
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Benchmark Assertion proved Time (s)

Consumer Producer ∀k : 0 ≤ k < n⇒ C[k] = P [k] 0.45

Partition Array
∀k : 0 ≤ k < j ⇒ B[k] 6= 0
∀k : 0 ≤ k < l⇒ A[k] = 0

0.15

List Init ∀k : x k ∧ k 6= ⊥ ⇒ k → val = 0 0.06
List Delete - same as above - 0.03
List Insert - same as above - 0.12

Table 1. The assertions proved for verifying simple array/list programs.

Benchmark Assertion proved Time (s)

Selection Sort ∀k1, k2 : 0 ≤ k1 < k2 < n⇒ A[k1] ≤ A[k2] 1.32
Bubble Sort (n2) - same as above - 0.47

Insertion Sort ∀k : 0 ≤ k < n⇒ A[k] ≤ A[k+1] 2.90
Bubble Sort (flag) - same as above - 0.16

Quick Sort (inner)
∀k : 0 ≤ k < pivot⇒ A[k] ≤ pivotval
∀k : pivot < k < n⇒ A[k] > pivotval

0.43

Merge Sort (inner) under sorted input arrays A, B, output C is sorted 2.19

Table 2. The assertions proving that sorting programs output sorted arrays.

Benchmark Assertion proved Time (s)

Selection Sort ∀y∃x : 0 ≤ y < n⇒ Ã[y] = A[x] ∧ 0 ≤ x < n 17.02
Insertion Sort - same as above - 2.62
Bubble (n2) - same as above - 1.10
Bubble (flag) - same as above - 1.56
Quick Sort (inner) - same as above - 1.83

Merge Sort (inner)
∀y∃x : 0 ≤ y < m⇒ A[y] = C[x] ∧ 0 ≤ x < t
∀y∃x : 0 ≤ y < n⇒ B[y] = C[x] ∧ 0 ≤ x < t

7.00

Table 3. The assertions proved for verifying that sorting programs preserve the elements of the input. Ã is the array A at the entry to
the program.

Benchmark Precondition inferred Time (s)

Selection Sort
∀k : 0 ≤ k < n−1⇒ A[n−1] < A[k]
∀k1, k2 : 0≤k1<k2<n−1⇒ A[k1] < A[k2]

16.62

Insertion Sort ∀k : 0 ≤ k < n−1⇒ A[k] > A[k+1] 39.59

Bubble Sort (flag) ∀k : 0 ≤ k < n−1⇒ A[k] > A[k+1] 9.04

Quick Sort (inner) ∀k1, k2 : 0 ≤ k1 < k2 ≤ n⇒ A[k1] ≤ A[k2] 1.68

Table 4. The preconditions inferred by our algorithms for worst case upper bounds runs of sorting programs.

Benchmark Preconditions inferred under given postcondition Time (s)

Partial Init
pre:

(a) m ≤ n
(b) ∀k : n ≤ k < m⇒ A[k] = 0

post: ∀k : 0 ≤ k < m⇒ A[k] = 0
0.50

Init Synthesis
pre:

(a) i = 1 ∧max = 0
(b) i = 0

post: ∀k : 0 ≤ k < n⇒ A[max] ≥ A[k]
0.72

Binary Search
pre: ∀k1, k2 : 0 ≤ k1 < k2 < n⇒ A[k1] ≤ A[k2]
post: ∀k : 0 ≤ k < n⇒ A[k] 6= e

13.48

Merge
pre:

∀k : 0 ≤ k < n⇒ A[k] ≤ A[k+1]
∀k : 0 ≤ k < m⇒ B[k] ≤ B[k+1]

post: ∀k : 0 ≤ k < t⇒ C[k] ≤ C[k+1]
3.37

Table 5. Given a functional specification (post), the maximally weak preconditions (pre) inferred by our algorithms for functional
correctness.
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tool nonetheless while enumerating maximally weak pre-
conditions.)

Array Init initializes the locations 0 . . . n while the
functional specification expects initialization from 0 . . .m.
Our algorithms, interestingly, generate two alternative
preconditions, one that makes the specification expect
less, while the other expects locations outside the range
to be pre-initialized. Init Synthesis computes the index of
the maximum array value. Restricting to equality pred-
icates we compute two incomparable preconditions that
correspond to the missing initializers, for the loop counter
variable i and location max of the maximum element.
Notice that the second precondition is indeed maximally
weak for the specification, even though max could be
initialized out of bounds. If we expected to strictly out-
put an array index and not just the location of the
maximum, then the specification should have contained
0 ≤ max < n. Binary Search is the standard binary
search for the element e with the correctness specifica-
tion that if the element was not found in the array, then
the array does not contain the element. We generate the
precondition that the input array must have been sorted.
Merge Sort (inner) outputs a sorted array. We infer that
the input arrays must have been sorted for the procedure
to be functionally correct.

6.2 Synthesis

Table 6 presents the runtimes of our synthesizer over
arithmetic, sorting and dynamic programming bench-
marks. We measure the time for verification and the
time for synthesis using the same tool. The benchmarks
that we consider are difficult even for verification. Conse-
quently the low average runtimes for proof-theoretic syn-
thesis are encouraging. Synthesis takes on average only
17.36 times and median 6.68 times longer than verifica-
tion, which is encouraging and shows that we can indeed
exploit the advances in verification to our advantage for
synthesis.

For each synthesis instance, the programmer supplies
the scaffold, i.e., the program template which is usually
very few lines of code, since a single placeholder hole
gets instantiated to an entire acyclic fragment of code
in the final synthesized output. Additionally they sup-
ply predicates and invariant templates as is the case for
verification. Again, these extra annotations are typically
about 10 lines of code. Statements, which are instanti-
ated as equality predicates are encapsulated within the
predicate set as equality relations between program vari-
ables and expressions.

Algorithms that use arithmetic We chose a set of arith-
metic benchmarks with simple-to-state functional spec-

1 These timings are for separately (i) synthesizing the loop
guards, and (ii) synthesizing the acyclic fragments. We fail to syn-
thesize the entire program, but with these hints provided by the
user, our synthesizer can produce the remaining program.

Benchmark Verif. Synthesis

Swap two 0.11 0.12
Strassen’s 0.11 4.98
Sqrt (linear search) 0.84 9.96
Sqrt (binary search) 0.63 1.83
Bresenham’s 166.54 9658.52

Bubble Sort 1.27 3.19
Insertion Sort 2.49 5.41
Selection Sort 23.77 164.57
Merge Sort 18.86 50.00
Quick Sort 1.74 160.57

Fibonacci 0.37 5.90
Checkerboard 0.39 0.96
Longest Common Subseq. 0.53 14.23
Matrix Chain Multiply 6.85 88.35
Single-Src Shortest Path 46.58 124.01

All-pairs Shortest Path1 112.28
(i) 226.71

(ii) 750.11

Table 6. Experimental results for proof-theoretic synthesis for (a)
Arithmetic benchmarks (b) Sorting benchmarks, and (c) Dynamic
Programming. For each category, we indicate the tool used to solve
the verification conditions and the synthesis conditions.

ifications but each containing some tricky insight that
human programmers may miss.

– Swapping without Temporaries We synthesize a pro-
gram that swaps two integer-valued variables without
using a temporary. We give the synthesizer the pre-
condition (x = c2 ∧ y = c1) and the postcondition
(x = c1 ∧ y = c2).

– Strassen’s 2 × 2 Matrix Multiplication We synthe-
size a program for Strassen’s matrix multiplication,
which computes the product of two n×n matrices in
Θ(n2.81) time instead of Θ(n3). The key to this algo-
rithm is an acyclic fragment that computes the prod-
uct of two 2× 2 input matrices {aij , bij}i,j=1,2 using
7 multiplications instead of the expected 8. Used re-
cursively, this results in asymptotic savings. The key
insight of the algorithm lies in this core. Recursive
block multiplication was well known, and Strassen
augmented it with an efficient core. We synthesize the
crucial acyclic fragment, which is shown in Figure 2.
Here the precondition is true and the postcondition
is the conjunction of four equalities as (over the out-
puts {cij}i,j=1,2):(

c11 c12
c21 c22

)
=

(
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

)
– Integral Square Root We synthesize a program that

computes the integral square root b
√
xc of a positive

number x using only linear or quadratic operations.
The precondition is x ≥ 1 and the postcondition over
the output i is (i−1)2 ≤ x < i2. Our synthesizer gen-
erates two versions, corresponding to a linear search
and a binary search for the integral square root.
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Strassens(int aij , bij) {
v1:=(a11+a22)(b11+b22)
v2:=(a21+a22)b11
v3:=a11(b12-b22)
v4:=a22(b21-b11)
v5:=(a11+a12)b22
v6:=(a21-a11)(b11+b12)
v7:=(a12-a22)(b21+b22)
c11:=v1+v4-v5+v7
c12:=v3+v5
c21:=v2+v4
c22:=v1+v3-v2+v6
return cij;

}

Fig. 2. Synthesis result for Strassen’s Matrix Multiplication using
the arithmetic solver.

– Bresenham’s Line Drawing Algorithm We discussed
Bresenham’s line drawing algorithm earlier. Our syn-
thesizer cannot synthesize the algorithm with the full
set of holes as described earlier. We therefore guessed
some of the values for the easiest of the unknown
holes, e.g., that x := 0; y := 0; v1 := 2Y −X at ini-
tialization and that x+ + is present within the loop,
and one of the guards is e ≥ 0 and v1 := v1 + 2Y ,
and then the synthesizer generates the rest. Given
the difficulty of this benchmark, we use it to ex-
plore the limitations of our synthesizer (and current
SMT solvers). We submitted versions, that succes-
sively contain more unknowns, as hard benchmarks
to the SMT solving community and they have been
incorporated in the latest SMTCOMP competitions.

Sorting Algorithms The sortedness specification consists
of the precondition true and the postcondition ∀k :
0 ≤ k < n ⇒ A[k] ≤ A[k + 1]. The full functional
specification would also ensure that the output array
is a permutation of the input, but verifying—and thus,
synthesizing—the full specification is outside the capa-
bilities of most automated tools today. By only allow-
ing swap and move operations we restrict the space of
possible programs and can thus use only the sortedness
condition as the specification.

Our synthesizer generates the algorithms for non-
recursive sorting algorithms and also the main bodies
of the recursive sorting algorithms.

Dynamic Programming Algorithms We choose all the
textbook dynamic programming examples [8] and at-
tempt to synthesize them from their functional speci-
fications.

The first hurdle (even for verification) for these al-
gorithms is that the meaning of the computation is not
easily specified. We need a mechanism that makes the
solver aware of the inductive definitions declaratively.
We do this by encoding the inductive definitions as re-
cursively specified axioms over symbols which encode

SelSort(int A[], n) {
i1:=0;
whileτ1,ϕ1(i1 < n− 1)
v1:=i1;
i2:=i1+1;
whileτ2,ϕ2(i2 < n)
if (A[i2]<A[v1])

v1:=i2;
i2++;

swap(A[i1], A[v1]);
i1++;

return A;
}

Ranking functions:
ϕ1 : n− i1 − 2
ϕ2 : n− i2 − 1
Invariant τ1:
∀k1, k2 : 0 ≤ k1 < k2 < n ∧ k1 < i1 ⇒ A[k1] ≤ A[k2]
Invariant τ1:
i1 < i2 ∧ i1 ≤ v1 < n
∀k1, k2 : 0 ≤ k1 < k2 < n ∧ k1 < i1 ⇒ A[k1] ≤ A[k2]
∀k : i1 ≤ k < i2 ∧ k ≥ 0⇒ A[v1] ≤ A[k]

Fig. 3. Synthesizing Selection Sort. For presentation, we omit
degenerate conditional branches, i.e. true/false guards, We name
the loop iteration counters L = {i1, i2, . .} and the temporary stack
variables T = {v1, v2, . .}.

the function. To address this issue, we need support for
axioms, which are typically recursive definitions.

Our tool allows the user to define the meaning of
a computation as an uninterpreted symbol, with (re-
cursive) quantified facts defining the semantics of the
symbol axiomatically. For example, the semantics of Fi-
bonacci are defined in terms of the symbol Fib and the
axioms:

Fib(0) = 0
Fib(1) = 1
∀k : k ≥ 0⇒ Fib(k + 2) = Fib(k + 1) + Fib(k)

The tool passes the given symbol and its definitional ax-
ioms to the underlying theorem prover (Z3 [13]), which
assumes the axioms before every theorem proving query.
This allows the tool to verify dynamic programming pro-
grams.

– Fibonacci We synthesize a program for computing
the nth Fibonacci number. Our synthesizer gener-
ates a program that memoizes the solutions to the
two subproblems Fib(i1) and Fib(i1 + 1) in the i1th
iteration. The solver does not have the opportunity
to synthesize a recursive more naive program because
the template enforces an iterative solution. Figure 4
shows the program.

– Checkerboard Our synthesizer generates a program
for computing the least-cost path in a rectangular
grid (with costs at each grid location), from the bot-
tom row to the top row.
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Fib(int n) {
v1:=0; v1:=1; i1:=0;
whileτ,ϕ(i1 ≤ n)
v1:=v1+v2; swap(v1, v2);
i1++;

return v1;
}

Ranking function ϕ:
x− s
Invariant τ :
v1 = Fib(i1) ∧ v2 = Fib(i1+1)

Fig. 4. Synthesis results for a dynamic programming program, Fi-
bonacci. Here, we name the loop iteration counters L = {i1, i2, . .}
and the temporary stack variables T = {v1, v2, . .}.

– Longest Common Subsequence (LCS) Our synthe-
sizer generates a program for computing the longest
common substring that appears in the same order in
two given input strings (as arrays of characters).

– Matrix Chain Multiply Our synthesizer generates a
program for computing the optimal way to multiply
a matrix chain. Depending on the bracketing, the to-
tal number of multiplications varies. We wish to find
the bracketing that minimizes the number of multi-
plications.

– Single Source Shortest Path Our synthesizer gener-
ates a program for computing the least-cost path
from a designated source to all other nodes where
the weight of edges is given as a cost function for
each source and destination pair.

– All-pairs Shortest Path Our synthesizer generates a
program for computing all-pairs shortest paths using
a recursive functional specification similar to the one
we used for single source shortest path. Our synthe-
sizer times out for this example. We therefore at-
tempt synthesis by (i) specifying the acyclic frag-
ments and synthesizing the guards, and (ii) speci-
fying the guards and synthesizing the acyclic frag-
ments. In each case, our synthesizer generates the
other component, corresponding to Floyd-Warshall’s
algorithm.

6.3 Limitations and Scalability

To explore the scalability and limitations of our syn-
thesis approach, we took versions of Bresenham’s and
Strassen’s bechmarks by successively making the syn-
thesis task harder. For Bresenham’s benchmark, we start
with a template with a single unknown and successively
add unknowns noting the synthesis times for each until
the tool fails. For Strassen’s our synthesizer easily solves
the case that Strassen proposed for multiplication with
7 intermediate values. We attempt to synthesize with 6
intermediate values by block splitting using a 3x3 grid
(as opposed to 2x2) and asking for a solution using 16

intermediates. If such a solution existed it would yield
matrix multiplication in better than O(n2.51) complex-
ity (which is the theoretically best known to date using
the Coppersmith-Winograd algorithm).

Table 7 shows the result of this experiment. We note
that our synthesizer times out for Bresenham’s with the
full set of unknowns. For the four initial versions each
additional unknown increases the synthesis time. For
Strassen’s our synthesizer reinvents the known algorithm
but fails to find ones with better complexity bounds.
Lastly, since the solving time is entirely dependent on the
efficiency of the solver, we submitted these benchmarks
to the SMT competition (SMTCOMP) and all except
the last benchmark were incorporated in the BitVector
category in the 2010 competition.

7 Related Work

The problem of verification has been well studied, and
so we restrict our comparisons to other techniques which
have either similar inputs, expressivity goals or method-
ology. Program synthesis is not as widely studied, and
we discuss our approach in the context of the spectrum
defined by inductive and deductive approaches at either
end. For a more detailed survey, see [24].

7.1 Verification

Approaches similar in input: Templates for invariant in-
ference The use of templates for restricting the space
of invariants is not entirely new [5,50]; although defin-
ing them as explicitly as we do here, and leveraging
satisfiability-solving, is new. In fact, domains in abstract
interpretation [9] are templates of sorts. Abstraction re-
finement techniques have also used template to instan-
tiate proof terms [34]. Lately, refinement templates have
been used for inferring limited dependent types [49].
There have been various approaches in the past incorpo-
rating placeholder/holes into languages with various dif-
ferent objectives, but the common theme of facilitating
the programmer’s task in writing specifications [48], pro-
gram refinements [14], axiomatic definition [38], trans-
formational programming [1].

Approaches with similar expressivity goals: Quantified
invariants Quantification in invariants is critical for ver-
ifying important properties of programs. In fact, sorting
programs are the staple benchmarks for the verification
community precisely because they require complicated
quantified invariants. Previous proposals for handling
quantification attempted to either specialize the anal-
ysis depending on the quantification present resulting in
complicated decision procedures [28], or the full literal
specification of quantified predicates [11], or use implicit
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Benchmark Synthesis Time Unknowns SMTCOMP

Bresenham’s v1 11 mins 1 expr ’10
Bresenham’s v2 45 mins 2 expr ’10
Bresenham’s v3 114 mins 3 expr ’10
Bresenham’s v4 160 mins 4 expr ’10
Bresenham’s v5 Timeout 5 expr ’10
Bresenham’s v6 Timeout 4 expr + 1 guard ’09/’10
Bresenham’s v7 Timeout 6 expr + 1 guard ’10
Strassen’s v1 13 secs with 7 intermediate ’09/’10
Strassen’s v2 Timeout with 6 intermediate ’10
Strassen’s v3 Memout 16 intermediates (3x3 grid) -

Table 7. Gradations of the Bresenham’s and Strassen’s benchmarks. Solving times reported are for Z3 version 1.2. We addi-
tionally submitted the benchmarks to the SMT competition SMTCOMP. All but one were included in the 2010 SMTCOMP
(http://www.smtexec.org/exec/?jobs=684). Two were included in the 2009 SMTCOMP (http://www.smtexec.org/exec/?jobs=529). In
2009 the winner was able to solve S1 but not A12. In 2010 the winner was additionally able to solve A7.

quantification through free variables for limited prop-
erties [40,42,41,18]. Our approach is arguably more ro-
bust because we delegate the concern of reasoning about
quantification to SMT solvers, which have been well en-
gineered to handle quantified queries that arise in prac-
tice [12]. As the handling of quantification gets more
robust in these solvers, our tools will benefit. Even with
the current technology, quantification handling was ro-
bust for even the most difficult verification examples.

Approaches similar in methodology: Satisfiability-based
invariant inference Satisfiability-based invariant infer-
ence for linear arithmetic has been explored by others in
developing efficient program analyses. InvGen generates
SAT instances that are simpler to solve by augmenting
the core constraints with constraints over a set of sym-
bolic paths derived from test cases [31,32]. Satisfiability-
based solutions find applications in hardware synthesis
as well [7]. The satisfiability-based approach we propose
was inspired by constraint-based analyses proposed ear-
lier [5,50,51]. Additionally, by unrolling loops, and bit-
blasting data structures, a previous approach encodes
the existence of a bug as SAT [64], but it differs from
our approach in not addressing correctness.

7.2 Synthesis

Deductive Synthesis Deductive synthesis is an approach
to synthesis that generates programs through iterative
refinement of the specification. At each step of the re-
finement, well-defined proof rules are used, each of which
corresponds to the introduction of a programming con-
struct. For instance, case splits in the proof leads to a
conditionals in the program, induction in the program
leads to loops in the program. Deductive synthesis was
explored in work by Manna, Waldinger and others in
the 1960’s and 1970’s [44]. The core idea was to extract
the program from the proof of realizability of the for-
mula ∀x : ∃y : pre(x) ⇒ post(x,y), where x and y
are the input and output vectors, respectively [22,62].

The problem is that these approaches provide little au-
tomation and additionally involve the programmer in the
proof-refinement, which experience has shown is hard to
achieve.

Most of the work in deductive synthesis stems from
the seminal work of Manna and Waldinger [43,44]. Suc-
cessful systems developed based on this approach include
Bates and Constable’s NuPRL [6] system, and Smith’s
KIDS [53], Specware [47], and Designware [54]. In these
systems, the synthesizer is seen as a compiler from a
high-level (possibly non-algorithmic) language to an exe-
cutable (algorithmic) language, guided by the human. To
quote Smith, “the whole history of computer science has
been toward increasingly high-level languages--machine
language, assembler, macros, Fortran, Java and so on—
and we are working at the extreme end of that.”

While such systems have been successfully applied in
practice, they require significant human effort, which is
only justified for the case of safety/mission-critical soft-
ware [16]. As such, these systems can be viewed as pro-
gramming aids for these difficult software development
tasks, somewhat related to the idea of domain-specific
synthesizers such as AutoBayes for data-analysis prob-
lems [17], StreamIt for signal-processing kernels [60], or
Simulink for synthesis of control systems and digital sig-
nal processing applications [2].

Our approach can be seen as midway between deduc-
tive and schema-guided synthesis. Schema-guided syn-
thesis takes a template of the desired computations and
generates a program using a deductive approach [19].
Some heuristic techniques for automating schema-guided
synthesis have been proposed, but they cater to a very
limited schematic of programs, and thus are limited in
their applicability [15]. Schema-guided synthesis special-
ized to the arithmetic domain has been proposed using
a constraint-based solving methodology [4]. While the
specification of our program synthesis task is comparable
to these approaches, satisfiability-based solving makes
our technique more efficient.
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There has been some more recent work that can be
viewed as deductive synthesis. One proposal consists of
refining the proof of correctness, simultaneously with the
process of program refinement [61]. This is a novel take
on deductive synthesis, but it is unclear whether the pro-
gram can be efficiently found in this much larger search
space. In the line of work treating synthesis as a search
problem, decision procedures for program synthesis [39,
45] have also been proposed. Their expressivity is lim-
ited, i.e., they work for restricted classes of programs,
but the efficiency of synthesis is more predictable.

Inductive Synthesis Inductive synthesis generalizes from
instances to generate a program that explains all in-
stances or traces that meet a specification. The instances
could be positive ones that define valid behavior or coun-
terexamples that eliminate invalid behavior.

Of particular note in this category is the work by
Bodik and Solar-Lezama et al. on the Sketch system,
which synthesizes from partial programs [55]. The Sketch
system fills out integer holes, whose values may be diffi-
cult for the programmer to specify, in a partial program.
On the other hand, our verification inspired approach
infers and fills out holes with arbitrary expressions, or
arbitrary predicate sets, as required. In particular, while
holes in Sketch have finite values, in our approach they
can be symbolic and thus arbitrary valued. Additionally,
sketch only allows partial programs, while we have both
partial program and partial invariants.

In Sketch, a model checker eliminates invalid can-
didate programs, by attempting to verify a candidate
program that the synthesizer enumerates heuristically
using a guided search. We never generate any candidate
programs, but any solutions to our system of constraints
is a valid synthesis solutions. Loops are handled incom-
pletely in Sketch, by unrolling or by using a predefined
skeleton, while there is precise invariant-based summa-
rization in our approach.

Inductive synthesis has also been used for synthesiz-
ing programs in specialized domains such as loop-free
programs [26,36] (e.g., bit-vector algorithms) and pro-
grams represented by simple logical formulas [35] (e.g.,
graph classifiers). These techniques also perform coun-
terexample guided inductive synthesis using SAT/SMT
solvers. However, the restriction to specialized domains
allows searching for full programs as opposed to filling
holes in partial programs or templates.

One of the biggest success stories of inductive synthe-
sis has been in the domain of end-user programming in-
cluding synthesis of string processing macros [25] and ta-
ble layout transformations[33]. Unlike above-mentioned
systems, which use SAT/SMT solvers, the key technique
employed by these systems is to structurally reduce the
synthesis problem to that of synthesizing simpler sub-
expressions. Another interesting application of induc-
tive synthesis has been in the educational domain of
ruler/compass based geometry constructions [27] in the

context of building intelligent tutoring systems. The key
technique used here is to prune exhaustive search by us-
ing AI-style heuristics.

8 Conclusion

Program verification consists of finding invariants that
prove program correctness, and optionally inferring pre-
conditions for correctness. Program synthesis consists of
finding a program which meets a given specification.
This paper describes program synthesis and program
verification techniques based on templates. Templates
are programmer-specified partial descriptions with holes.
For program verification, the verifier completes templates
into concrete invariants. For program synthesis, the syn-
thesizer completes the templates into concrete programs.

We have found that templates enable two things.
One, they allow the programmer to specify the invari-
ants, and programs of interest, in the process restricting
the search space and making verification and synthesis
feasible for difficult domains as well. Two, they permit
the use of satisfiability solvers as a mechanism for solving
these problems. Satisfiability solvers have seen incredible
engineering advances and leveraging them brings those
advances to verification and synthesis.

Our experiments with using template-based techniques
has shown promise for this approach in verifying and
synthesizing programs that were outside the scope of
previous approaches.
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