
Defending against large-scale crawls in online social networks

Mainack Mondal
MPI-SWS

Bimal Viswanath
MPI-SWS

Allen Clement
MPI-SWS

Peter Druschel
MPI-SWS

Krishna Gummadi
MPI-SWS

Alan Mislove
Northeastern University

Ansley Post
Google

Technical Report MPI-SWS-2011-006

Abstract

Thwarting large-scale crawls of online social networks
(OSNs) like Facebook and Renren is in the interest of
both the users and the operators of these sites. OSN
users wish to maintain control over their personal infor-
mation, and OSN operators wish to protect their busi-
ness assets and reputation. Traditional defenses against
crawlers involve rate-limiting the browsing activity of in-
dividual users. However, these schemes are ineffective
against crawlers with many accounts, be they fake ac-
counts (Sybils) created by a crawler or compromised ac-
counts of real users obtained on the black market.

We propose Genie, a system that can be deployed by
OSN operators to defend against crawlers. Genie’s de-
sign is based on the observation that the browsing pat-
terns of normal users and crawlers are very different:
most normal users limit their profile views to a small
number of other users that are in their close network
neighborhood, while even a crawler with many accounts
needs to view profiles of users that are relatively more
distant from the closest user account he controls. Ge-
nie exploits this fact by limiting the rate of profile views
based on the connectivity and distance between a profile
viewer and viewee in the social network. An experimen-
tal evaluation using real-world data gathered from a pop-
ular OSN shows that Genie frustrates large-scale crawl-
ing. Most browsing by ordinary users is not affected; the
few users who are affected can recover easily by adding
a few friend links.

1 Introduction

Online social networking sites (OSNs) like Facebook,
MySpace, and Orkut have the personal data of hundreds
of millions of users. OSNs allow users to browse the
(public) profiles of other users in the network, making it
easy for users to connect, communicate, and share con-
tent. Unfortunately, this functionality can be exploited

by third-parties to aggregate and extract data about mil-
lions of OSN users. Once collected, the data can be re-
published [1] and mined in ways that may violate users’
privacy. For instance, it has been shown that private user
attributes like sexual orientation can be inferred from a
user’s set of friends and their profile attributes [1, 15];
a third party with access to aggregated user data could
easily apply these techniques.

These third-party aggregators, which we refer to as
crawlers, represent a significant problem for OSN site
operators as well. User data provides the OSN operators
with a revenue stream, for example, via targeted adver-
tisement. OSN operators wish to protect this asset by
stopping crawlers. Moreover, OSN operators cannot en-
sure that data collected by a third party is used accord-
ing to the operator’s privacy policy. Yet, the OSN oper-
ator is likely to be held responsible if the data is used in
ways that violate the policy, at least in the court of pub-
lic opinion. For example, Facebook was widely blamed
in the popular press [3] when a single crawler gathered
public profiles of over 100 million users [1]. As a re-
sult, OSN operators need effective mechanisms to thwart
large-scale crawling of OSN sites.

Today, OSN operators use rate-limiting techniques to
restrict a crawler’s ability to collect data on a large frac-
tion of the network. These techniques limit the rate at
which a single user account or IP address can view user
profiles [18]. Unfortunately, crawlers can circumvent
these schemes by creating a large number of fake user ac-
counts, by employing botnets to gain access to many IP
addresses, or by using compromised accounts of a large
number of real users.

In this paper, we propose Genie, a system that OSN
operators can deploy to limit crawlers. Genie leverages
the differences in the browsing patterns of normal users
and crawlers to effectively thwart large-scale crawls of
the social network. Genie’s design is based on the in-
sight that legitimate profile views tend to occur between
users who are well connected and close to each other in

1

the social network. A crawler, on the other hand, is lim-
ited in his ability to form or control enough links to be
close to all users whose profiles he wishes to retrieve.
Genie exploits this fact by enforcing rate limits in a way
that is sensitive to the distance and degree of connectivity
between viewer and viewee.

Using profile view data from Renren, a Facebook-
like OSN that is popular in China [17], we observe that
the distance between users who legitimately view each
other’s information tends to be low; the average distance
between the viewer and viewee in the social network is
1.62. A crawler, on the other hand, would require a very
large number of well-distributed accounts to be able to
crawl the entire network with such short path lengths.
Moreover, forming a social link requires the approval of
both users in most OSNs. Thus, it is difficult for an at-
tacker to acquire a sufficient number of them [12]. In
fact, even the purchase of a relatively large number of
compromised accounts on the black market would not
give the attacker access to a sufficient number of links to
quickly crawl the network.

Genie works by deriving a credit network [6, 7, 10]
from the social network. In brief, credit is associated
with links in the social network, and a viewer must “pay”
credits to the viewee, along a path in the social network,
when viewing a profile. Compared to conventional per-
account or per-IP address rate-limiting, credit networks
offers two key advantages. First, in a credit network,
the rate limits are associated with social network links
rather than user accounts or addresses. As a result, the
attacker gains little by creating many (Sybil) accounts or
using many IP addresses [11]. Second, the greater the
distance between viewer and viewee in the social net-
work, the stricter is the rate limit imposed by the credit
network on profile views. Consequently, even attackers
with access to a relatively large number of compromised
user accounts are unable to crawl the network in a short
period of time.

The contributions of this work are as follows:

• We analyze profile viewing data from the Renren
social network and show that there exist significant
differences between normal user and crawler work-
loads. Specifically, we show that even for a pow-
erful crawler, the average distance between viewer
and viewee in the social network is significantly
larger than for legitimate profile views.

• We present the design of Genie, which leverages
credit networks derived from the already-existing
social network to block large-scale crawling activ-
ity, while allowing legitimate browsing unhindered.

• We demonstrate the feasibility of deploying Ge-
nie with an evaluation using large but partial social

network graphs obtained from Renren, Facebook,
YouTube, and Flickr, and a mix of real and synthet-
ically generated profile viewing traces. We demon-
strate that Genie effectively blocks crawlers while
the impact on legitimate users is minimal.

2 Related work

In this section, we describe relevant prior work on lim-
iting large-scale crawls of OSNs and leveraging social
networks to defend against Sybil attacks.

2.1 Limiting large-scale crawls

There exists a limited literature on techniques used for
limiting crawls of web services. Two techniques used in
practice arerobots.txt[4], and IP- or account-based rate
limiting [2].

Robots.txt is a file stored at the web server which
indicates a set of pages on that server that should not
be crawled. Compliance with this list is voluntary
and robots.txt consequently provides no defense against
crawlers intent on scraping the entire network.

Large web sites like Yahoo! often rely on a simple per-
IP rate limit to control access to their web services [2].
Each IP is allocated a maximum number of requests
which are replenished in 24 hour intervals. This ap-
proach limits the work an individual user can impose on
the service, but does not defend against botnets that con-
trol many IPs.

Online social networks like Facebook [18] often use
account-based rate limits on requests to view profile
pages. Similar to IP-based rate limits, this approach
works well if users are assumed to only possess a single
account; in the face of Sybils or compromised accounts,
it provides much weaker guarantees.

Wilson et al. proposed SpikeStrip [20], a system de-
signed to discourage OSN crawlers. SpikeStrip uses
cryptography to make information aggregation from
OSN websites inefficient. SpikeStrip rate limits the num-
ber of allowed profile views per browsing session and
prevents different browsing sessions from sharing data.
Thus, crawlers cannot aggregate or correlate data gath-
ered by different sessions.

Despite its elegant design, SpikeStrip affects the us-
ability of the OSN. For example, SpikeStrip does not al-
low two OSN users to share website links of a common
friend. Moreover, SpikeStrip would require OSNs like
Facebook to change the way they use CDN services like
Akamai to serve users’ content. Unlike SpikeStrip, Ge-
nie does not affect the usage of the OSNs. As we will
show later, Genie can be deployed with minimal disrup-
tion to the browsing activities of normal users.

2

2.2 Social network-based Sybil defenses

Recently there have been proposals to leverage social
networks to defend against Sybil attackers sending spam
in communication systems (Ostra [14]) and cheating in
online marketplaces (Bazaar [16]). Genie’s design bor-
rows some ideas from these Sybil defense works, but
it differs from them in two fundamental ways. First,
we target the general problem of preventing aggregation
of publicly available data in a social network and ad-
dress challenges associated with both Sybil and stolen
accounts, while previous works have focused exclusively
on Sybil accounts. Second, unlike Ostra and Bazaar
which can rely on interacting users to provide the cru-
cial feedback on whether a communication is spam or
whether a transaction is fraudulent, Genie cannot expect
users to provide feedback on whether a profile request re-
ceived is from a crawler. Thus, unlike Ostra and Bazaar,
Genie is tasked with the challenge of differentiating pro-
file views from crawlers and normal users. A substan-
tial novelty in Genie’s design lies in the way it exploits
the differences in the browsing patterns of crawlers and
normal users to limit the former while leaving the latter
unaffected.

3 System and attack model

System modelOnline social networking and sharing
sites such as Facebook, Renren, Google+, and Orkut
share a common system model. Users create personal
accounts, establish friend links with other users, and post
information (which is often of a personal nature). The
graph formed by the entire set of friend links forms a so-
cial network. In the OSNs of interest to us, forming a
friend link requires the consent of both users.

User can chose to make their dataprivate(i.e., visible
only to the user and the site operator),public (i.e., visi-
ble to every user of the social network), orsemi-public
(i.e., visible to subsets of friends or friends of friends).
In practice, many users chose to make their profile infor-
mation public, despite the private nature of some of the
information posted. Contributing to this choice may be
that sites encourage public sharing, that the default pri-
vacy setting is ”public”, that other privacy choices are not
always intuitive, and that many users are not fully aware
of the privacy risks.

In this paper, we are not concerned with the reasons
why users share their information publicly. Instead, we
are concerned with users who seek to aggregate and cre-
ate external copies of the public profile information of as
many other users as they can.

Attack model We are concerned withcrawling attacks
where a user (or group of users) illicitly visits many (if

not all) of the user profiles in the network in order to
gather the publicly available profile information. We
assume that the crawler is agnostic towhich users he
crawls, and is trying to crawl as many user profiles as
possible.

Today, social networking sites tend to impose a rate
limit on the user profile page views a single user can re-
quest, in order to slow down crawlers. However, there are
two ways in which a crawler can overcome these limits.

An attacker can mount aSybil attackby creating mul-
tiple user accounts, thereby overcoming the per-user rate
limit. It is important to note that while the attacker can
form an arbitrary number of friend links among his Sybil
accounts, his ability to form links between his Sybil ac-
counts and real users is limited by his ability to convince
real users to accept a friend link, regardless of how many
user accounts he controls. The significance of this point
will become clear in the following section, where we de-
scribe how Genie leverages social links to limit crawling
activity.

An attacker can also mount acompromised account
attackby taking control (e.g. stealing the passwords) of
existing accounts in the system. The attacker can gain ac-
cess to such accounts, for instance, by first using a phish-
ing attack, or by purchasing the credentials of already
compromised accounts on the black market [12]. This at-
tack is more powerful than a Sybil attack, because every
additional compromised account increases the number of
links to real users that the attacker has access to. Again,
the significance of having access to such links will be-
come clear in the following section.

We assume that an attacker with access to com-
promised accounts cannot compromise the accounts
of strategically positioned users of his choosing. In-
stead, compromised accounts are randomly distributed
throughout the network. Additionally, we assume that
the attacker does not actively form new links involving
compromised accounts. The reason is that such activity
would likely alert the legitimate owner of the account,
who might then alert the site provider and cause the at-
tacker to lose access to the account.

4 Normal vs. crawler workload analysis

In this section, we compare profile viewing workloads of
normal users and crawlers. Our analysis reveals substan-
tial differences between the two workloads. In particu-
lar, we show that normal users mostly visit the profiles
of a small number of 1-hop or 2-hop neighbors in the
network, while even the most strategic crawlers have to
fetch a large number of profiles outside of their imme-
diate (1-hop or 2-hop) network neighborhood to accom-
plish their goal. In later sections, we show how Genie
can exploit the differences in the browsing behavior of

3

normal users and crawlers to rate-limit crawlers, while
leaving normal users unaffected.

4.1 Normal users’ profile viewing behavior

We used data gathered from the Renren social net-
work [17], which is a Facebook-like social network pop-
ular in China. We concentrate on the largest connected
component of the Renren’s Peking University’s network.
We refer to the data set as the Renren Peking University
or simplyRR-PKU [11] data set. The largest connected
component ofRR-PKU network graph has 33,294 nodes
and 705,262 undirected edges [11]. The data set also
includes a trace of profile visits made by users to other
users (both friends or non-friends) within the network.
We analyze a trace containing 96,844 profile views cov-
ering two weeks of browsing by these users in September
2009.1 We highlight our key findings below.

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000

N
u

m
b

er
 o

f
vi

ew
s

Users

Requested
Received

Figure 1: The number of profile view requests made
and received byRR-PKU users over two weeks.

1. Most users make/receive few profile requests, but
a small number of users make/receive a large num-
ber of requests:Figure 1 shows the distribution of pro-
file requests made and received by individual users in the
RR-PKU network. The plots show a considerable skew
in the request distributions. Most (> 90%) of users make
or receive fewer than 10 requests, while a handful of
users (< 140) make 50 or more requests. Thus, most
users in the social network tend to interact with only a
small number of other users in the network. In later sec-
tions, we leverage this social behavior of users to differ-
entiate them from crawlers, who necessarily have to fetch
profiles from a large number of users in the network.
2. The number of profile requests made or received
by users is strongly correlated with their number of
friends: The Pearson correlation coefficients between
the rankings of users ordered based on the number of
requests they make (or received) and their node degree

1The Renren trace does not provide timestamps or an ordering for
individual profile views. Therefore, we generated a time series by as-
signing each profile view a timestamp chosen uniform randomly within
the two-week period covered by the trace. This time series was used in
all analyses conducted in the paper.

 0.01

 0.1

 1

 10

 100

 1 2 4 8 16 32 64 128 256 512

R
eq

u
es

te
d

 +
 R

ec
ei

ve
d

Degree

Avg.
std. dev.

Figure 2:RR-PKU users are divided into exponential
degree bins. We show the average number of activi-
ties and standard deviation for each degree bin.

is 0.67 (0.5). The high correlation coefficient affirms the
intuitive hypothesis that the more active nodes in the net-
work would also have more friends in the network and
vice-versa. However, nodes degrees and activity are not
always in exact proportion. Figure 2 illustrates this by
plotting the average and standard deviation of activity
(# of requests made or received) of nodes grouped into
bins based on their degree. The plots show that while the
average activity shows a clear upward trend as node de-
grees increase, the standard deviation of nodes’ activity
also increases, suggesting that nodes of a certain degree
do not always exhibit the same amount of activity. In
later sections, we leverage these observations to generate
synthetic workload traces.

Another implication of the above observations is that
the imbalance in user activity, measured as the magni-
tude of the difference between the number of profile re-
quests made and received by individual users, per friend
link would be tightly bounded. Intuitively, this can be
explained as follows: both the number of profile requests
made and received by a user tend to rise or fall with the
user’s degree. So, the difference in requests made and re-
ceived divided by the user’s degree would be expected to
be small. Figure 3 confirms this by plotting the number
of unbalanced views(i.e.,|Req made−Req received|)
per friend link for different users. Almost all users have
the imbalance in viewing activity per friend link lower
than 10. In later sections, we describe how Genie cru-
cially leverages this observation to limit crawlers, while
allowing normal workload unaffected.
3. Not all profiles requests are unique; a small but
non-trivial fraction of requests are repeated: Users
tend to repeatedly visit the profiles of some of their
friends to track updates to their profiles. In our two-week
trace, we found 17,307 (17.8%) out of the 96,844 profile
requests to be such repeat requests. Our estimate of re-
peat views is likely be conservative, as we are restricted
to a two-week trace. One would expect the percent of
repeat views to increase with the length of the work-
load trace as users return to profiles for updates. How-

4

 0.001

 0.01

 0.1

 1

 10

 100

 1 10 100 1000 10000 100000

#U
n

b
al

an
ce

d
 v

ie
w

s
--

--
--

--
-

D
eg

re
e

Ranked users

Figure 3: The number of unbalanced views per link
for RR-PKU users over two weeks.

ever, the take-away here is that repeat requests further
decrease the number of distinct profiles fetched by indi-
vidual users. On the other hand, repeat views represent
sub-optimal use of crawler resources, whose goal is to
fetch profiles of as many distinct users as possible. Later
we present a system design that takes advantage of this
difference between the workloads.
4. Users mostly request profiles of others who are
within their immediate (1- or 2-hop) network neigh-
borhood: Figure 4(a) shows the distribution of network
distance, measured in terms of hops, between interact-
ing RR-PKU users. We observe that over 80% of all
profile requests are between users who are separated by
two hops or less. Figure 4(b) shows the distribution of
network distance for profile requests made by individual
users. For most users, only a small fraction of profiles
they request, as well as a small fraction of users who re-
quest their profiles, lie beyond their 1-hop (direct friends)
and 2-hop (friends-of-friends) neighborhood. As we will
show later, locality in user interaction is yet another fea-
ture that distinguishes normal workloads from crawlers’;
Genie leverages this fact to thwart crawlers.

4.2 Crawlers’ profile viewing behavior

Crawlers attempt to fetch the profiles of all nodes in the
network using nodes that are under their control. So
crawler workloads are closely tied to the structure of the
social network as well as the embedding of the nodes
controlled by the crawler within the network. In this
section, we study crawler workloads generated over five
different social network graphs with varying numbers of
nodes (and links) under the control of the crawler.

Table 1 shows the number of nodes, edges and average
degree per node for network graphs gathered from five
popular social networking sites namely, Renren, Face-
book, YouTube, and Flickr [8,9,17,21]. These networks
exhibit a wide range of nodes (33,000 to 1.6 million),
links (700,000 to 15.4 million), and average node de-
grees (5.2 to 19). We simulated crawlers with varying
degrees of attack power by allowing crawlers to control

Network Nodes Links Avg. deg.
RR-PKU 33 K 700 K 21.18
Facebook 63 K 816 K 25.7
Youtube 1.1 M 2.9 M 5.2
Flickr 1.6 M 15.4 M 19.0

Table 1: Number of nodes, links, and average user
degree in the large-scale social networks used to eval-
uate Genie.

Network 1 10 100 1000
RR-PKU 26 415 3,638 14,938
Facebook 13 237 2,123 15,970
Youtube 6 26 592 4,129
Flickr 5 613 2,242 16,015

Table 2: Strength of attackers in different social
graphs. Each column corresponds to specific num-
ber of random compromised accounts, and the corre-
sponding number of attack links in different graphs.

1, 10, 100, and 1,000 randomly chosen nodes within the
network. Table 2 shows the number of links that connect
crawlers to the rest of the nodes in the different graphs.
Note that while a crawler with 1,000 compromised ac-
counts might not seem as a resourceful attacker, for the
sizes of networks that we are considering, the crawler
does represent a very powerful attacker. For example,
the crawler controlling 1,000 accounts controls around
0.1% of all nodes in the YouTube network. For a point
of comparison, this would be equivalent to controlling
800,000 accounts in the real-world Facebook network.

To generate the crawling workload, we divided the
task of crawling user profiles across the set of nodes con-
trolled by the attacker as follows: for each user profile,
we assigned the task of fetching it to the crawler’s node
closest to the user. Such assignment generated crawler
workloads with best possible network locality in profile
fetches. Below we contrast the properties of the resulting
crawler workloads with those of normal users.

In contrast to normal workloads, profile fetches by
crawlers are highly non-local: Figures 5 (a) and (b)
show the locality in profile visits by crawlers with dif-
ferent attacking capacities across the different network
graphs. For large network graphs like Flickr or YouTube
(not shown, but results are similar to Flickr), we observe
that even a powerful crawler with 1,000 accounts has
only a small fraction (less than 30%) of requested pro-
files within the 2-hop neighborhood of the nodes under
its control. For small network graphs like Facebook and
Renren (not shown, but similar to Facebook), the power-
ful crawler does have a majority of network nodes within
2-hop neighborhood. However, in these networks, 1,000
compromised accounts represents 3% of all nodes (and
2% of all links), and is equivalent to compromising 15

5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

C
D

F

Hop length
(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000

F
ra

c.
 m

o
re

 t
h

an
 2

-h
o

p
s

User rank
(b)

Requester
Receiver

Figure 4:(a) CDF of hop distance separating viewers and viewees inRR-PKU network. The activities are highly
local. (b)Fraction of requested and received views that liebeyond 2 hop-distances for individual users. For most
users, only a small fraction of their views requested or received lie beyond 2-hop neighborhood.

million nodes in the real-world Facebook network.

Overall, the results indicate that to mimic the high lo-
cality in profile views for normal users, crawlers would
have to control a non-trivial fraction of all nodes and
links in the network.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

C
D

F

Hop length

1 acc
10 acc

100 acc
1000 acc

(a) Facebook

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16

C
D

F

Hop length

1 acc
10 acc

100 acc
1000 acc

(b) Flickr

Figure 5:The variation in CDF of the hop distribution
generated by attackers in different social graph using
different number of compromised accounts. To fully
mimic the high locality in normal user views the at-
tackers have to control more than1000 compromised
good user accounts.

In contrast to normal users, nodes under control of
crawlers request many more profile requests they re-
ceive: Figure 6 illustrates another aspect of the work-
load in which crawlers differ from normal users. It shows
the imbalance in profile views requested and received by
nodes controlled by the crawlers for each link that is in-
cident on the nodes. The observed imbalance for each
node is a couple of orders of magnitude higher than that

 0.1

 1

 10

 100

 1000

 1 10 100

#U
n

b
al

an
ce

d
 v

ie
w

s
--

--
--

--
-

D
eg

re
e

Crawlers

Figure 6: The number of unbalanced views per link
for crawlers in RR-PKU.

observed for normal users (see Figure 3). In the next sec-
tion, we present a system design that exploits these ob-
served differences in browsing patterns of normal users
and crawlers.

5 Genie Design

In this section, we present the design of Genie, analyze
its security properties, and discuss its vulnerabilities.

5.1 Design overview

Genie relies on a variant of a credit network [7, 10]. A
credit network is a directed graphG = (V,E), where
each edge(u, v) ∈ E is labeled with a scalar credit value
cuv ≥ 0. Genie’s credit network graph is isomorphic
with the OSN graph. That is, each node in the credit
network corresponds to a OSN user and there is a pair of
directed edges(u, v), (v, u) in the credit network iff the
usersu, v are friends in the OSN.

Genie allows users to view usert’s profile information
iff the max-flow betweens andt in the credit network is
at leastf(dst), wheref is a non-decreasing cost func-
tion, anddst is the length of the shortest path betweens

andt in the credit network. That is, there exists a set of
edge-disjoint paths in the credit network froms to t such

6

that (a) every edge along a given pathpi has at leastcpi

credits available, and (b)
∑

i cpi
= f(dst). If the view

is allowed, then the credit value on each edge(u, v) on
each pathpi is reduced bycpi

, and the credit value on
each edge(v, u) in the reverse direction of the same path
is increased bycpi

.
The net effect of this transaction on the credit net-

work is that the viewer hasf(dst) fewer credits available
on his adjacent links, while the viewee hasf(dst) more
credits available on his adjacent links. For intermediate
nodes on the paths, the total amount of available credit
does not change, though the distribution of credit among
their adjacent links does. Whether this distribution mat-
ters to a node depends on how well the credit network
is connected. If a node is well connected and can reach
any other node through any of its adjacent links, then the
distribution is not likely to matter [6]; if it is not, a legiti-
mate node may be unable to view a profile because of the
distribution of credit (liquidity).

It is commonly assumed that social networks have a
very high degree of connectivity, thus ensuring good liq-
uidity in the credit network. However, liquidity may be
an issue for new users, inactitive users, or small fringe
communities who have not (yet) established strong social
connections to the rest of the network. We will consider
this issue in Section 6.

We now describe how Genie leverages the character-
istics of normal profile viewing activity observed in the
previous section, in order to thwart large-scale crawlers.

5.1.1 Leveraging unbalanced view ratios

As noted in the previous section, crawlers inherently re-
quest many more profile views than they receive, while
normal users tend to have a more balanced ratio of pro-
file requests to profile views. Genie leverages this ob-
servation by allowing a node to use credits obtained by
being viewed to view the profiles of other users. This
means that the number of profile views a user can make
depends on how often her own profile is viewed. This
choice causes crawlers to become more likely to run out
of credit, as their viewing is inherently unbalanced.

However, the number of views a normal user receives
may not exactly match the number of views they wish
to legitimately issue. To allow for such imbalances, the
credits on each pair of links between two nodes are re-
balanced at a fixed rate. Specifically, the credit values on
each pair of links(u, v), (v, u) are initially set to a posi-
tive valuei. Any differencecuv − cvu is rebalanced at a
fixed raterb, i.e., at each time step

cuv ← cuv −
rb
2
(cuv − cvu), and

cvu ← cvu + rb
2
(cuv − cvu), where0 < rb ≤ 1.

5.1.2 Leveraging different path lengths

As the previous section noted, crawlers who aim to crawl
a significant fraction of the social network must crawl
users who are further away from themselves than a non-
crawling user would typically crawl. Genie leverages
this to discriminate against crawlers by charging more
credits to view users further away.

This approach is implemented though the functionf .
The cost of a view, in terms of the number of credits
charged, increases with the distance between viewer and
viewee in the OSN, i.e.f(dst) = dst − 1. This creates
a bias against crawlers, whose views tend to cross longer
distances then those of normal users.

Genie must be configured with the initial credit value
i and the rebalancing raterb. We will describe how to
determine these parameters in Section 6.

5.1.3 Leveraging repeated views

Another way in which crawlers differ from legitimate
viewers is that the latter tend to repeatedly view the pro-
files of users they are interested in, as shown in Section 4.
A crawler, on the other hand, would not view the profile
of a given user more than once, or at most very infre-
quently (e.g., when re-crawling the social network to see
what has changed). Genie takes advantage of this fact
by not charging for repeated profile views within a given
time period.

Therefore, the cost functionf is refined to evaluate to
zero if users views the profile of a usert within T days
of whens was last charged for viewingt, anddst − 1
otherwise. A typical value forT would be on the order
of months. As a result, legitimate repeat views within
T are free, while a crawler would be charged for each
profile view.

5.2 Security properties

Genie’s credit network effectively rate-limits profile
views by users in a way that is sensitive to the connectiv-
ity and distance between viewer and viewee in the OSN.
This form of rate limiting discriminates against crawlers
by leveraging the crawler’s inherent connectivity limita-
tions within the OSN.

Let C ∈ V be the set of user accounts controlled by
the attacker andN = V − C be the set of user accounts
not controlled by the attacker. The crawler’s goal is to
view the profiles of all users inN as quickly as possible
(he can trivially obtain the profiles of users inC).

We call an edge(c, n) in the social network anattack
edgeif c ∈ C andn ∈ N . The edge cut separatingC
andN (i.e., the set of attack edges) is called theattack
cut.

7

To determine the raterc at which a crawler can view
profiles inN , we need only consider the attack cut, be-
cause all of the crawler’s views have to cross this cut.
Profile views withinN or within C are irrelevant, be-
cause they must cross the attack cut an even number of
times, and thus won’t change the credit available along
the cut.

The raterc is determined by the following factors:

• A, the size of the attack cut (number of attack
edges): A powerful attacker has a large attack cut.
(Because he is able to form many social links with
users inN , or because he acquired many compro-
mised accounts and the associated social links.)

• dc, the average OSN distance between nodes inN

and the corresponding closest node inC: Per our
threat model, even a powerful attacker faces dimin-
ishing returns when trying to add more attack edges
to reduce the average distance.

• rc, the expected rate of profile views received by
nodes inC from nodes inN : Per our threat model,
the attacker has little control over this rate, and we
can conservatively assume that it is the same as the
expected rate of views received by a node inN .

• rb, the rebalancing rate: Determined by the OSN
operator.

• f , the view cost function. Determined by the OSN
operator.

Usingf(d) = d − 1, the maximal steady-state crawling
rate

rc = A
rb + rc(dn − 1)

dc − 1

wheredn is the average distance in the OSN for legiti-
mate profile views. The numerator is the attacker’s “in-
come”, the rate at which he can acquire credits. The
denominator is the attacker’s cost, in credits, per profile
view. As we can see, the maximal crawling rate increases
linearly with the number of attack edges, at a slope de-
fined by the second term. A largerrb, rc or dn increases,
a largerdc decreases the slope.

It is important to note that the only way for the at-
tacker to increase the crawling rate is to obtain more at-
tack edges. Attack edges are relatively hard to obtain in
large quantities. Obtaining an attack edge requires form-
ing a social link with a user not already controlled by the
attacker, or compromising a user account that has social
links with users not already controlled by the attacker.
Creating more user accounts by itself is ineffective, be-
cause it does not yield new attack edges. As a result, the
credit network renders Sybil attacks as such ineffective.

Figure 7:Illustration of attack and αβ cuts.

Additionally, the credit network effectively makes the
power of a corrupted account attack proportional to the
acquired attack edges.

5.3 Potential for denial-of-service attacks

A key concern with any credit-based network is a credit
exhaustion attack, where an attacker seeks to prevent le-
gitimate transactions among innocent users. In the case
of Genie, there are two questions to consider. First, can
an attacker’s attempt to crawl the network prevent good
users from viewing each other’s profiles? Second, can
an attacker target specific users and prevent them from
viewing other users’ profiles, or from having their own
profile viewed by other users?

Due to the properties of the credit network, the sever-
ity of the attack (i.e., the rate of failed profile views the
attacker can cause) is identical in each case. However, in
a targeted attack, the attacker can choose to selectively
inflict pain on a subset of users. In the following, we
consider both types of attacks simultaneously.

First, we note that the cost functionf has a cost of
zero credits for a 1-hop profile view. As a result, profile
views among friends are never denied, no matter what the
state of the credit network. Next, we consider legitimate
profile views among non-friends.

Let us consider any cut of the social network other
than the attack cut. Thisαβ cut partionsV into Vα and
Vβ , C into Cα andCβ , andN into Nα andNβ, respec-
tively. We call the cut betweenCα andNα theα attack
cut, and the cut betweenCβ andNβ theβ attack cut, re-
spectively. Likewise, we call the cut betweenNα andNβ

theN -αβ cut, and the cut betweenCα andCβ theC-αβ
cut, respectively. See Figure 7.

Now, we consider the question to what extent the ac-
tivity of nodes inC can impair nodes inN in their ability
to view the profiles of users on the other side of theαβ

cut.
Observation 0: Without loss of generality, we can ig-

nore views from users inVα to users inVα, and from
users inVβ to users inVβ . The paths associated with such

8

views must cross theαβ cut an even number of times,
which means that they do not change the total amount of
credit available on this cut.

Observation 1: Without loss of generality, we can
focus our attention on the case where the nodes inCα

crawl nodes inNβ , but nodes inCβ do not crawl nodes
in Nα. This is because the credit imbalance caused by
the crawler’s activities along theαβ cut is maximized in
this case.

Observation 2: The nodes inNβ cannot be impaired,
because the crawler’s activity increases the amount of
credit available to them along theαβ cut. However,
nodes inNα may be impaired, because the crawling of
nodes inNβ by nodes inCα reduces the credit available
toNα along theαβ cut.

Observation 3: The crawler’s activities can reduce the
maximal viewing rate available to nodes inNα by the
ratio of the sizes of theα attack cut and theN -αβ cut.
If the α attack cut is larger than theN -αβ cut, then the
crawler can render the nodes inNα unable to view the
profiles of non-friends inVβ .

Observation 4: Social networks are known to have a
very densely connected core, with smaller communities
connected at the edges [13]. This means that cuts through
the core of the network are very large. An attacker would
have to be very powerful (i.e., have a very large attack
cut) to be able to significantly impair such cuts, and thus
a large number of users.

Observation 5: If the attacker is well connected to a
small fringe community, it can exhaust credit along the
cut that separates the small community from the core of
the network. However, by definition this would only af-
fect a relatively small number of users in that community.
Moreover, these users can rectify the problem by adding
more links to the core of the network.

To summarize, an attacker would have to be very pow-
erful to be able to have a noticeable effect on cuts through
the core of the network, which would impact larger num-
bers of users. A modestly strong attacker can impair
users in small fringe communities. However, such users
can respond by forming additional links to the core of the
network. (Recall our assumption that an attacker cannot
compromise the accounts of specific users of his choos-
ing. If an attacker were able to do this, he could target
weakly connected users or small communities very ef-
fectively.)

We will further explore the impact of crawlers on le-
gitimate users empirically in Section 6.

6 Evaluation

In this section we evaluate the performance of Genie over
several different social networks. When evaluating Ge-
nie’s performance, we focus on the two primary metrics

of interest: (i) the time required for an attacker to crawl
a Genie-protected network and (ii) the amount of legiti-
mate activity blocked by Genie.

6.1 Datasets used

To evaluate the performance of Genie, we need four
datasets: (i) a social network graph, (ii) a time-stamped
trace of normal users’ profile views in the form of
(X,Y,T) where X views Y at time T, (iii) a crawler’s at-
tack topology, that is, how the nodes controlled by the
attacker are embedded in the network and (iv) the at-
tacker’s profile crawling trace.
Social network graphs: We evaluate the performance
of Genie on the four different social network graphs
(RR-PKU, Facebook, You Tube and Flickr), which we
discussed earlier. Table 1 shows their high-level charac-
teristics. While ourRR-PKU and Facebook networks are
small with tens of thousands of nodes, our YouTube and
Flickr graphs are large with millions of nodes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

C
D

F

Hop length

Original Renren
Synthetic Renren

Synthetic Facebook

(a) Hop distance

 0.01

 0.1

 1

 10

 100

 1000

 1 4 16 64 256 1024 4096 16384

A
ct

iv
it

y

Degree

Avg.(Orig. Renren)
Avg.(Synth. Renren)

Avg.(Synth. Facebook)

(b) Degree to #interaction correlation forRR-PKU

Figure 8: Comparison of different synthetic work-
loads generated and the original workload.

Gathering and generating workload traces:Gathering
profile viewing traces for large social networks is very
hard because it requires explicit cooperation from social
network site operators, who are often very reluctant to
show traces out of privacy concerns. It does not help
that there have been high profile incidents when site op-
erators have come to regret their decision to share their
user data for research purposes [5]. We found it impossi-
bly hard to obtain workload traces for graphs other than
RR-PKU [11].

So we decided to design a workload generator that re-
produces the key features of the originalRR-PKU trace

9

Network #Nodes #Unique Activities
RR-PKU 33k 77,501
Facebook 63k 123,368
Youtube 1.1m 1,326,184
Flickr 1.6m 1,592,052

Table 3:Statistics of synthetic workload generated for
different large networks.

which we observed in Section 4. These features include
the correlation between request/receiver node degree and
number of interactions, and locality of interactions.

To this end, we assign requesters and receivers in the
originalRR-PKU workload trace into variable sized bins
based on their node degrees. For each degree bin, we cal-
culate the number of profile requests made and received
by users in the bin along with the hop length distribution
of the profile requests. These statistics are then used for
generating a synthetic workload for a given target graph.

Next, nodes of the target network are also divided into
similar sized bins based on their node degree. Based on
theRR-PKU requester/receiver degree and number of in-
teractions statistics, we sample a set of nodes in the target
graph as possible requesters and receivers. From this set,
we pick different requester receiver pairs which fit the
RR-PKU interaction hop length distribution. This gives
us an activity trace for the target graph.

We generate synthetic workload traces for the4 net-
works that we consider:RR-PKU, Facebook, Youtube
and Flickr. The high level statistics of the new work-
loads are shown in Table 3.2 To test if the newly gen-
erated traces preserve the key features we aim to repro-
duce, we plot the locality of interactions in Figure 8(a)
and the correlation between node degree and number of
profile views in Figure 8(b) in both the original and the
synthetic workload traces. The plots match quite well in-
dicating that the synthetic workload generator retains the
key properties of the originalRR-PKU workload.
Crawler’s attack topology: We model attackers by
corrupting random nodes in the graph. We simulate
1,10,100 and 1000 corrupted accounts in theRR-PKU,
Facebook, YouTube and Flickr network and took the av-
erage of multiple simulations to report our results. As
the attacker gets access to more number of corrupted ac-
counts in a network, he also acquires more number of
attack links to honest users. The varying strength of at-
tackers on different networks is discussed in Section 4.2
and Table 2.

2We note that while the larger graphs have higher number of pro-
file request activities in the trace, the number of activities do not scale
linearly with the number of nodes in the trace. This is to be expected
because larger graphs have a greater fraction of low degree nodes in
their network that generate few profile requests, if any. Ourgenerator
faithfully captures the correlation between node degrees and their ac-
tivity. Other studies of social networks, such as [19], haveobserved
similar trends.

Attacker’s profile crawling trace: To generate the at-
tacker crawling workload, we follow the same attacker
model discussed in Section 4.2. The primary objective of
the attacker is to crawl the entire graph in as few refresh
periods as possible. For each user profile, an attacker
closest to that user is assigned the task of crawling that
profile. This strategy ensures that the attacker achieves
maximum network locality in profile crawling.

6.2 Trace-driven simulation methodology

To evaluate the performance of Genie, we built a trace
driven simulator. Our simulator takes the four datasets
described above as inputs. We use the social graph
connecting the users to simulate a credit network. For
each profile request in the workload traces, our simulator
checks if there exists a set of paths in the credit network
that allowp units of credits to flow between the viewer
and the viewee, wherep denotes the shortest path length
separating the viewer and the viewee. To this end, our
simulator computes the max-flow paths [16] between the
viewer and the viewee. If the max-flow is larger thanp,
then the profile view is allowed and if it is not, then the
view is blocked. If the profile view is allowed, the cred-
its along the links of the max-flow paths are updated as
described in Section 5.

A key input to our simulator is the credit refreshment
rate, which denotes the rate at which exhausted credits on
the links are replenished. We set the credit refreshment
rate in our simulator by tuning the following two parame-
ters described in Section 5.1.1: (i) the initial credit value,
i, assigned to each link in the network at the beginning
of the simulation, and (ii) the credit rebalance rate,rb,
which restores some of the exhausted credits on the links
after each time step, say of durationt. We set the param-
eterrb to 1, which has the effect of restoring the credit
values on all links toi after every refresh time period. So
i
t

represents the effective credit refreshment rate, which
determines the number of profile views accepted both for
crawlers and normal users. Larger the value of credit
refreshment rate, the more the number of profile views
accepted from both crawlers and normal users and vice-
versa. Thus, the key evaluation challenge that we address
using our simulator is:does there exist a credit replen-
ishment rate that would offer a good tradeoff between
blocking crawlers and allowing legitimate activity, i.e.,
a credit replenishment rate that forces crawlers to in-
vest a long time to fetch all profiles, while the amount
of blocked user activity is kept minimal.

Problem with scaling simulations to large graphs:
While we were able to run our simulator over the smaller
RR-PKU network with 33 thousand nodes, we found
it computationally hard to scale our simulations to the
much larger YouTube and Flickr social networks with

10

millions of nodes, edges, and profile views. The compu-
tational complexity arises out of three reasons: (i) even a
single max-flow computation over a large graph is expen-
sive (O(V.E2)), (ii) we have to perform millions of such
computations, one for each profile request in the trace,
and (iii) worse, the computations cannot be parallelized
and have to be done online and in sequence, as the max-
flow computation for a profile request has to account for
credit changes on links in the network due to all prior
profile requests in the workload trace.

Precomputing paths to scale simulations to large
graphs: To work around the scalability bottleneck for
large graph simulations, weprecomputedshortest paths
between every pair of viewer and viewee in the workload
trace. To check whether a profile request should be al-
lowed, rather than have the simulator compute max-flow
paths online, we force the simulator to use the offline
precomputed shortest path between the viewer and the
viewee. Precomputing shortest paths offline scales sig-
nificantly better than online max-flow computation be-
cause (i) a single shortest path computation (complexity
(O(V +E))) is considerable less expensive than a single
max-flow (complexityO(V ×E2) in worst case), and (ii)
shortest path computations for individual profile request
can be parallelized on a large cluster of machines.

An upper-bound on blocked user activity: While
approximating max-flow paths with shortest paths scales
well, it comes at a cost: a profile request in the credit net-
work may be denied by our simulator because the pre-
computed single shortest path between the viewer and
viewee lacks sufficient credit, even though there are mul-
tiple potentially longer (max-flow) paths with sufficient
credit. More precisely, for a given pair of nodes in a
given credit network graph, lack of sufficient credit along
a shortest path between them does not necessarily imply
lack of sufficient credit along max-flow paths. However,
if there is sufficient credit along the shortest path, one
can be certain that there exist max-flow paths with suf-
ficient credit between the nodes. Thus, our optimized
simulations result in anover-estimate or upper-bound on
the rejected profile views.

To check how tight the upper-bound estimates using
precomputed shortest paths are to actual numbers of re-
jected profile views, we compared the performance of
max-flow paths and shortest paths over theRR-PKU so-
cial network. The relatively small size ofRR-PKU al-
lows us to simulate max-flow paths as well. Figure 9
shows the percentage of blocked normal user activity for
the different path computation strategies in the presence
of an attacker with10 accounts. As the amount of credit
available per refresh period increases the percentage of
blocked activity also decreases for both types of path
computations. However, our approximation technique
consistently provides an upper bound on the percentage

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

%
 u

se
r

ac
ti

vi
ty

 b
lo

ck
ed

Available credit per refresh period

Upper bound blocked activity
Genie blocked activity

Figure 9: Variation of the fraction of user activi-
ties blocked with different credit values in RR-PKU.
We compare the results obtained using shortest-paths
(red line) with those obtained using max-flow paths
(green line). The red line provides a close upper
bound for the green line.

of blocked user activities across the different values of
available credit. The difference between the actual and
upper-bound plots is always lower than 2% of all user
activities, suggesting a fairly tight upper-bound.

A lower-bound on time taken to finish crawls: A
key goal of our simulations is to determine whether there
exist credit replenishment rates that offer a good tradeoff
between maximizing the crawling time for attackers and
minimizing blocked profile requests by legitimate users.
A conservative approach to determining the existence of
such credit replenishment rates would consider lower-
bounds on time taken for an attacker to finish its crawls,
while considering upper-bounds on blocked user activ-
ity. Having proposed a scalable way to upper-bound the
blocked user activity, we now propose a scalable way to
lower-bound the time taken for an attacker to finish his
crawl of the entire network.

Let C be the set of nodes that are under the control of
the attacker,L the set of links that connect these nodes to
other nodes in the network,N the set of remaining nodes
in the network, andi be the credit value on links that
is replenished after every refresh period. We can com-
pute a lower-bound on the time it would take to fetch
the profiles as follows: within a single credit refreshment
period, the maximum amount of credit available the at-
tacker to fetch user profiles isi×|L|. We can computeT ,
the minimum number of credits that the attacker would
need to fetch all theN user profiles, by summing the
credits required to fetch each of theN nodes from the
attacker controlled node that is closest to them. Then,
the attacker would need at leastT

i×|L| refresh periods to
fetch all the profiles, which constitutes a lower-bound on
crawl time.

To check how tight the lower-bound obtained using
our formula above is, we compared the estimates of the
time needed to perform complete crawls of theRR-PKU
social network given by our formula with those obtained
by running max-flow computations over theRR-PKU so-

11

 0.1

 1

 10

 100

 0 5 10 15 20 25 30
0.2

2

20

200
#M

o
n

th
s

to
 c

ra
w

l

#R
ef

re
sh

 p
er

io
d

s
to

 c
ra

w
l

Available credit per refresh period

Lower bound #months to crawl
Genie #months to crawl

Figure 10:Variation of the time taken (both in terms
of months and number of refresh periods) by an at-
tacker to complete a crawl with different credit val-
ues. We compare the lower bounds (red line) calcu-
lated with our formula with the experimental results
(green line). The lower bounds are tight.

cial network. Figure 9 shows the number of credit re-
freshment periods as well as the time needed to crawl
the entire network for an attacker controlling 10 nodes.
The time needed to crawl is obtained by multiplying the
number of credit refreshment periods with duration of
the credit refreshment period, which is 2-weeks in our
traces.3 As the available credit per refresh period in-
creases the estimated time to crawl the entire network
decreases as well. However, our formula consistently
provides a very tight lower bound on the time taken
to crawl the network for attackers with varying attack
power across the different values of credit replenishment
rates.

6.3 Tradeoff between limiting crawlers
and blocked activity

We now switch our attention to the core tradeoff that is
being made as we select the appropriate credit refresh-
ment rate — the amount of time it takes the crawler to
crawl the entire graph and the fraction of legitimate ac-
tivity that is blocked. We have already observed that to
block crawlers effectively we need to replenishing credits
at a slow rate. However, a limited rate of credit replenish-
ment opens up the possibility of legitimate users’ views
getting blocked. In this section, we explore the extent to
which legitimate user activity is blocked by Genie as it
tries to limit crawlers.

We ran our simulator for various different values of
available credit per refresh period. For each value, we
compute two metrics: (i) the time it would take for an
attacker to finish its crawl and (ii) the percentage of le-
gitimate user activity that is blocked. We compare these
two metrics looking for a good tradeoff, where crawlers
are effectively slowed down, while good user activities

3Our originalRR-PKU workload trace covers a 2-week period and
hence, the synthetic workload traces we generated are also over the
same period.

 1

 10

 100

 1000

 0 1 2 3 4 5

#M
o

n
th

s
to

 c
ra

w
l

% user activity blocked

1 year

1 account
10 account

(a) RR-PKU

 1

 10

 100

 1000

 0 1 2 3 4 5

#M
o

n
th

s
to

 c
ra

w
l

% user activity blocked

1 account
10 account

100 account

(b) Facebook

 1

 10

 100

 1000

 10000

 0 1 2 3 4 5

#M
o

n
th

s
to

 c
ra

w
l

% user activity blocked

1 account
10 account

100 account
1000 account

(c) Youtube

 1

 10

 100

 1000

 10000

 100000

 0 1 2 3 4 5

#M
o

n
th

s
to

 c
ra

w
l

% user activity blocked

1 account
10 account

100 account
1000 account

(d) Flickr

Figure 11: Trade off between fraction of user ac-
tivity blocked and time taken to finish a complete
crawl with attackers of varying strengths over differ-
ent social network graphs. We conservatively used
the upper-bounds for blocked user activity and the
lower-bounds for time to crawl here. Further, we con-
servatively allowed crawlers to exhaust the credits on
links before allowing any legitimate user activity.

blocked is held to a minimum. We present the basic
tradeoff for our different social networks in Figure 11.
For each social network, we show the results for attack-
ers of different strengths. On YouTube and Flickr graphs
with more than 1 million nodes, we considered an at-

12

Total activity blocked Src Dest Middle
2,574 1,961 423 190

Table 4: Classification of total activity blocked for
RR-PKU.

tacker controlling up to 1000 nodes, while forRK-PKU
with only 30 thousand nodes, we limited the attacker
strength to 10 nodes. While the absolute number of com-
promised accounts controlled by the attacker might seem
small, it is worth noting that the percentage of compro-
mised nodes in these networks is still substantial. For a
point of comparison, controlling 1000 nodes in a 1 mil-
lion node network is equivalent to controlling 800,000
accounts in the current Facebook network with 800 mil-
lion accounts.

The plots show that it is possible to slow-down crawls
sufficiently to force an attacker to spend several months
to tens of months to complete a single crawl. At the same
time, the percentage of blocked user activity can be held
to less than 5%. In many instances, the blocked activ-
ity can be held lower than 1%. Thus, there are two im-
portant take-away from these results: first, when Genie
is employed a certain amount of legitimate activity will
unavoidably be blocked. Second, unless the attacker is
overwhelmingly powerful, the impact of the attacker on
legitimate users is minimal.

6.4 Alternate strategies for blocked users

We observed in the previous section that a certain amount
of blockage of legitimate activity is unavoidable. We
now pose a simple question: can users do anything to
minimize the amount of their blocked activity? To an-
swer this question, we first investigate the blocked views
in more detail. We then propose some recourses avail-
able to users with blocked activity.

We analyze the set of blocked activities in our exten-
siveRR-PKU simulation, where we compute max-flow
paths to verify if a profile view has to be allowed. We
intentionally focused on max-flow based simulations be-
cause of the certainty that profile views blocked during
such simulations are rejected due to lack of credit in
the network. In simulations that yield upper-bounds on
blocked activities, an activity might be rejected due to
using shortest paths to approximate max-flows.

For the analysis in this section, we focus on one simu-
lation experiment, where2.6%(or2, 574 activities) of the
user activities are blocked and the attacker controlling10
compromised accounts needs8 months to complete the
crawl.

A profile view request can be blocked due to one of
the three reasons: the profile viewer runs out of credit
on all links connected to itself (i.e., source blocked re-
quest), the credit on links connecting the profile viewee

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

C
D

F

Hop length

Normal users
User 1
User 2
User 3

Crawlers

Figure 12: Comparison of the hop distance distri-
bution of 3 users with too many views inRR-PKU.
Their profile view characteristics deviates consider-
ably from the normal user activities.

is exhausted (i.e., destination blocked request), or the re-
quest is blocked due to credit exhaustion somewhere in
the middle of the network. We quantify the different
number of blocked activities falling in the above three
categories in Table 4. Strikingly, only 7% of the blocked
requests (i.e., 0.18% of all requests) are blocked due to
lack of credit on links in the middle of the network. Most
blocked activity is due to credit exhaustion on links con-
necting the viewers or the viewees. On examining the de-
grees of these viewers and viewees, we find that 96% of
them have node degree 1 and 99% of them have degrees 5
or less! That is, most activities blocked near the source or
destination, is due to source or destination nodes having
way too few number of friends and lying on the fringes of
the network graph. Our results support our observation
in Section 5 that social network graphs are sufficiently
well connected in their core that most blocked activity
(and credit exhaustion) occurs close to the fringes.

Next, we investigated the amount of blocked activi-
ties for individual users. We found that a small number
users are bearing the brunt of the blocked activities. 1808
of the 2574 (or 70%) of the blocked profile requests are
made by 3 users in the network. Interestingly, all three
users issue two order of magnitude more requests than
an averageRR-PKU user and they are all blocked near
the source. Further, investigation suggests that these top
3 users exhibit crawler-like characteristics. Figure 12
shows that the three most blocked users issue consider-
ably more long distance views than normal users. In fact,
network locality of their profile requests resembles that
of a crawler (see Figure 5) than that of a normal user (see
Figure 4(a)). Ignoring these three users, whose request
trace bears strong resemblance to crawlers, the percent-
age of total blocked activity falls to less than third of its
original value, which is already a low percentage (2.6%)
of all activity.

For the remaining users who contribute to only30%
of blocked views, we have already observed that most
(99%) of the users have degree less than5. These
are users who got blocked because their low number

13

of friend links are insufficient to support the reasonable
number (on average6 views) of view requests they is-
sued. However, we argue that there is a simple and nat-
ural recourse available to them. They can simply make
more friends!

 0

 4

 8

 12

 16

 20

 1 10 100 1000

#F
ri

en
d

s
ad

d
ed

Users

Figure 13: We observed how many extra links most
of the blocked RR-PKU users needed for completing
their activities. Evidently they needed just a few more
links.

In order to test this hypothesis, we perform a simple
experiment. We re-run the Genie simulation where each
blocked user (falling in the low degree category), estab-
lishes a friend link to the destination of the blocked re-
quest (i.e requester sends a friendship request and the re-
ceiver approves it). This immediately leads to the accep-
tance of that view request. At the end of the simulation,
we look at the number of friend links established by each
blocked user so that all the earlier blocked requests could
now be accepted.

Figure 13 shows the distribution of number of friend
links established versus the ranked set of users. A signif-
icant majority (97%) of the blocked users can get their
requests accepted by only establishing very few links
(less than4). Thus, most of the activity blocked by Ge-
nie would be accepted if the users of the blocked re-
quests spent a minimal effort to establish a small num-
ber of friends. In fact, if Genie were to be deployed,
it would naturally incentivize users to form a few more
friend links. Given that many OSN sites already explic-
itly encourage their users to form more friend links, we
believe that the overheads from Genie would be accept-
able for a majority of users.

7 Conclusion

In this paper, we address the problem of preventing large-
scale crawls in online social networks, and present Ge-
nie, a system that can be deployed by OSN operators to
thwart crawlers. Based on trace data from the Renren
OSN, we show that the browsing patterns of normal users
and crawlers are very different. While most normal users
view the profiles of a modest number of users who tend
to be nearby in the social network, even a strong, strate-

gic crawler must view profiles of users who are further
away. Genie exploits this fact by limiting the rate of pro-
file views based on the connectivity and social network
distance between a profile viewer and viewee. An ex-
perimental evaluation on multiple OSNs shows that Ge-
nie frustrates large-scale crawling while rarely impacting
browsing by ordinary users; the few honest users who are
affected can recover easily by adding a few additional
friend links.

References

[1] http://tcrn.ch/9JvvmU.
[2] Rate limiting for yahoo! search web services.http://

developer.yahoo.com/search/rate.html.
[3] http://on.msnbc.com/qvLkX2.
[4] A standard for robot exclusion.http://www.robotstxt.

org/orig.html, 1994.
[5] http://cnet.co/6JiHr8, 2011.
[6] P. Dandekar, A. Goel, R. Govindan, and I. Post. Liquidityin

credit networks: A little trust goes a long way. InNetEcon, 2010.
[7] D. DeFigueiredo and E. T. Barr. Trustdavis: A non-exploitable

online reputation system. InCEC’05.
[8] Facebook.http://www.facebook.com.
[9] Flickr. http://www.flickr.com.

[10] A. Ghosh, M. Mahdian, D. Reeves, D. Pennock, and R. Fugger.
Mechanism design on trust networks. InNetEcon, 2007.

[11] J. Jiang, C. Wilson, X. Wang, P. Huang, W. Sha, Y. Dai, and
B. Y. Zhao. Understanding latent interactions in online social
networks. InIMC, 2010.

[12] S. S. Marti Motoyama Damon McCoy, Kirill Levchenko and
G. M. Voelker. Dirty jobs: The role of freelance labor in web
service abuse. InProceedings of the USENIX Security Sympo-
sium, 2011.

[13] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee. Measurement and Analysis of Online Social
Networks. InIMC, 2007.

[14] A. Mislove, A. Post, K. P. Gummadi, and P. Druschel. Os-
tra: Leveraging Trust to Thwart Unwanted Communication. In
NSDI’08.

[15] A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel. You
are who you know: Inferring user profiles in online social net-
works. InWSDM, 2010.

[16] A. Post, V. Shah, and A. Mislove. Bazaar: Strengtheninguser
reputations in online marketplaces. InNSDI, 2011.

[17] Renren.http://www.renren.com.
[18] T. Stein, E. Chen, and K. Mangla. Facebook Immune System. In

SNS’11.
[19] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the

Evolution of User Interaction in Facebook. InProc. WOSN’09,
Barcelona, Spain, Aug 2009.

[20] C. Wilson, A. Sala, J. Bonneau, R. Zablit, and B. Y. Zhao.Don’t
tread on me: Moderating access to osn data with spikestrip. In
WOSN, 2010.

[21] YouTube.http://www.youtube.com.

14

