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ABSTRACT 
In sentiment analysis of product reviews, one important problem 
is to produce a summary of opinions based on product 
features/attributes (also called aspects). However, for the same 
feature, people can express it with many different words or 
phrases. To produce a useful summary, these words and phrases, 
which are domain synonyms, need to be grouped under the same 
feature group. Although several methods have been proposed to 
extract product features from reviews, limited work has been done 
on clustering or grouping of synonym features. This paper focuses 
on this task. Classic methods for solving this problem are based 
on unsupervised learning using some forms of distributional 
similarity. However, we found that these methods do not do well. 
We then model it as a semi-supervised learning problem. Lexical 
characteristics of the problem are exploited to automatically 
identify some labeled examples. Empirical evaluation shows that 
the proposed method outperforms existing state-of-the-art 
methods by a large margin. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval –Clustering.  I.2.7 [Artificial Intelligence]: Natural 
Language Processing – Text analysis. 

General Terms 
Algorithms, Experimentation 

Keywords 
Opinion Mining, Product Feature Grouping 

1. INTRODUCTION 
One form of opinion mining in product reviews is to produce a 
feature-based summary [14, 31]. In this model, product features 
are first identified, and positive and negative opinions on them are 
aggregated to produce a summary on the features. Features of a 
product are attributes, components and other aspects of the 
product, e.g., “picture quality”, “battery life” and “zoom” of a 
digital camera. 

In reviews (or any writings), people often use different words and 
phrases to describe the same product feature. We call the actual 

words or phrases that express the same feature, feature 
expressions. For example, “picture” and “photo” are feature 
expressions referring to the same feature of cameras. In this paper, 
we assume that all feature expressions have been identified by an 
existing algorithm. There are many such algorithms [17-20, 29, 
35, 38]. 

Grouping feature expressions, which are domain synonyms, is 
critical for effective opinion summary [26]. Since there are 
typically hundreds of feature expressions that can be discovered 
from text for an opinion mining application, it’s very time-
consuming and tedious for human users to group them into feature 
categories. Some automated assistance is needed. Unsupervised 
learning or clustering is the natural technique for solving the 
problem. The similarity measures used in clustering are usually 
based on some form of distributional similarity [6, 10, 22, 24, 32, 
34, 37]. Recent work also used topic modeling [12, 40]. However, 
we show that these methods do not perform well. Even the latest 
topic modeling method that consider pre-existing knowledge [3] 
does not do well.  

Obviously, thesaurus dictionaries can be helpful for finding 
synonyms [9, 26], but they are far from sufficient due to a few 
reasons. First, many words and phrases that are not synonyms in a 
dictionary may refer to the same feature in an application domain. 
For example, “appearance” and “design” are not synonymous, but 
they can indicate the same feature, design. Second, many 
synonyms are domain dependent. For example, “movie” and 
“picture” are synonyms in movie reviews, but they are not 
synonyms in camera reviews as “picture” is more likely to be 
synonymous to “photo” while “movie” to “video”.  

Due to the poor performance of the unsupervised methods, we 
formulate the problem as a supervised learning problem, or more 
precisely a semi-supervised learning problem but without asking 
the user to manually label any training examples. This new 
formulation produces much better results as we will see in Section 
5. However, for semi-supervised learning, a small set of labeled 
examples and a set of unlabeled examples are required. The 
problem then is how to partition the feature expressions into a 
labeled set and an unlabeled set automatically. We exploit two 
pieces of natural language knowledge to achieve this:  

 Sharing words: Feature expressions sharing some common 
words are likely to belong to the same group, e.g., “battery 
life”, “battery”, and “battery power”. 

 Lexical similarity: Feature expressions that are similar 
lexically based on WordNet [11, 16, 23, 33, 36] are likely to 
belong to the same group, e.g., “movie” and “picture”. Note 
that synonyms are covered by lexical similarity as they will 
have very high lexical similarity.  
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We call these two pieces of knowledge soft constraints as they 
constrain certain feature expressions to be in the same feature 
group to some extent. They are called soft (rather than hard) 
constraints because they can be relaxed in the learning process. 
This relaxation is important because the above two constraints can 
result in wrong groupings. The semi-supervised learning method 
is allowed to re-assign them to other groups in the learning 
process. Note that sharing words can also be handled by lexical 
similarity, but we do not use lexical similarity due to two reasons. 
First, some words may not exist in WordNet. Second, sharing 
words is much easier to compute and there is no need to refer to 
WordNet.  

Clearly, lexical similarity can also be used in clustering. However, 
we again found it quite inaccurate because only those words or 
phrases with very high similarities are reliable. We thus propose 
to combine it with semi-supervised learning, i.e., using limited 
lexical similarity to find some labeled examples for semi-
supervised learning. This combination produces much better 
results.  

For semi-supervised learning, we use the EM algorithm 
formulated in [30], which is based on naïve Bayesian 
classification. Although other supervised methods can also be 
applied, the EM algorithm based on naïve Bayesian is probably 
the most efficient method and it already performs much better 
than the state-of-the-art current methods as we will see later. In 
the future work, we will experiment with other semi-supervised 
learning methods. Instead of using the algorithm in [30] directly, 
we need to augment it to allow EM to re-assign classes of the 
labeled set in order to correct some errors in the automated 
labeling process. Note that, for our problem, each input document 
for the augmented EM is actually the surrounding words of each 
feature expression vi. Here, we further exploit another piece of 
natural language knowledge to help our algorithm to extract more 
discriminative distributional context: 

 Positive and negative correlation: Feature expressions that 
ever co-occur in the same sentence are unlikely to belong to 
the same group, e.g., “I like the picture quality, the battery 
life, and zoom of this camera” and “The picture quality is 
great, the battery life is also long, but the zoom is not good”. 
From either of the sentences, we can infer that “picture 
quality”, “battery life”, and “zoom” are probably not 
synonyms because people are unlikely to repeat the same 
thing in the same sentence. 

Based on this knowledge, when extracting the surroundings words 
context Di for each feature expression vi, any feature expression 
vk, that co-occur with vi in review sentences, are removed from Di. 
Thus, Di and Dk will not compete with each other in the learning 
process, which results in better performances. 

Our evaluation was conducted using a large number of reviews 
from 5 different domains. The results show that the proposed 
method outperforms different variations of topic modeling, 
clustering methods based on distributional similarity and lexical 
similarity, and also the recent unsupervised feature grouping 
method mLSA.  

In summary, this paper makes the following contributions:  

1. The problem solved in this paper is an unsupervised task. 
However, due to the poor performances of existing 
unsupervised methods we formulate it as a semi-supervised 

learning task but without asking the user to label any training 
examples. To our knowledge, this is first such attempt. An EM 
algorithm based on naïve Bayesian classification is adapted to 
solve the problem, which allows EM to re-assign classes of 
the labeled examples to different classes.  

2. Since there are no labeled examples for learning, we propose 
to use two soft constraints to help label some examples and 
one piece of pre-existing natural language knowledge to 
extract more discriminative distributional context for the 
augmented EM. 

3. It is shown experimentally that the new method outperforms 
the main existing state-of-the-art methods based on clustering 
and other techniques that can be applied to the task.  

2. RELATED WORK 
The key to clustering is the similarity measure. There are two 
main kinds of similarity measures for our task [1]: those relying 
on pre-existing knowledge resources (e.g., thesauri, and semantic 
networks) [2, 15, 42], and those relying on distributional 
properties of words in corpora [6, 10, 22, 32, 34, 37]. 

In the category that relies on pre-existing knowledge sources, the 
work of Carenini et al. [9] is most related to ours. The authors 
proposed a method to map discovered feature expressions to a 
given domain product feature taxonomy, using several word 
similarity metrics. This kind of similarities is often called lexical 
similarity. A related approach based on WordNet was also used 
by Liu et al. [26]. Both these works do not use the word 
distribution information, which is their main weakness because 
many expressions of the same feature are not synonyms or even 
similar in WordNet because they are domain dependent. 
Dictionaries do not contain domain specific knowledge, for which 
a domain corpus is needed.   

Distributional similarity is based on the hypothesis that words 
with similar meaning tend to appear in similar contexts [13]. As 
such, it fetches the surrounding words as context for each term 
(e.g., feature expression). Similarity measures such as Cosine, 
Jaccard, Dice, etc [21], can then be employed to compute the 
similarities between words or phrases. [8, 24, 28] also calculate 
PMI (Pointwise Mutual Information) similarity between words, 
and [28] groups words using a graph-based algorithm based on 
PMI or Chi-squared (χ2) test. [24] clusters words with the cosine 
similarity based on PMI weighting. We will show that these 
methods do not perform well in the experiment section. In [43], a 
semi-supervised learning method is used. However, it requires the 
user to provide labeled examples, whereas this study does not 
need any pre-labeled examples. It thus solves a different problem. 
There are also two detailed differences: First, this proposed 
algorithm is further enhanced by lexical (or WordNet) similarity 
(see Section 3.1). Second, another piece of pre-existing natural 
language knowledge is used to extract more discriminative 
context documents for the proposed algorithm (see Section 4). 

Recent work also applied topic modeling (e.g., Latent Dirichlet 
Allocation (LDA)) to solve the problem based on a domain 
corpus. Branavan et al.[7] extracted and clustered semantic 
properties of reviews based on pros/cons annotations using 
modified LDA, which performs a different task from ours. Guo et 
al. [12] proposed a multilevel latent semantic association 
technique (called mLSA) to group product feature expressions. At 
the first level, all the words in product feature expressions are 



grouped into a set of concepts using LDA. The results are used to 
build latent topic structures for product feature expressions. At the 
second level, feature expressions are grouped by LDA again 
according to their latent topic structures produced from level 1 
and context snippets in reviews.  

Recently, [3] reported a new formulation of LDA, which is able to 
consider pre-existing knowledge in the form of must-link and 
cannot-link constraints borrowed from constrained clustering [41]. 
The new method is called DF-LDA. Must-links state that some 
data points must be in the same cluster, and cannot-links state that 
some data points cannot be in the same cluster. Our soft 
constraints are similar to must-links. However, DF-LDA does not 
perform as well as the proposed algorithm, which is mainly based 
on semi-supervised learning.  

3. THE PROPOSED ALGORITHM 
Since our original problem is unsupervised, we assume that the 
user will specify the number of clusters k, which is also the 
number of classes used in semi-supervised learning. The input to 
the proposed algorithm consists of: a set of reviews R, and a set of 
discovered feature expressions F from R. Then the proposed 
algorithm assigns the discovered features F to k groups. 

Since unsupervised methods do not perform well, we re-formulate 
the problem a semi-supervised learning problem. However, semi-
supervised learning needs some labeled examples. Since no 
labeled data exist, the proposed algorithm has to first 
automatically label some such data. After that, a semi-supervised 
learning method can be applied. In this work, we adapted the 
naïve Bayesian based EM formulation in [30] for our purpose, 
which will be discussed in Section 3.2. 

In the following, we use a graph to introduce the step for finding 
labeled examples (feature expressions). The given feature 
expressions {v1, v2,… ,vn} are vertices in the graph, and different 
constraints or similarities are considered as edges. Some 
connected components will be used as the labeled data.  

3.1 Generating Labeled Data L  
The labeled set L is generated using two types of pre-existing 
knowledge/constraints in three steps.  

Step 1 (connect feature expressions using sharing words): For 
the task of opinion mining, many feature expressions are phrases 
consisting of multiple words, e.g., “customer service”, “customer 
support”, “service”. Sharing words is an important clue (pre-
existing knowledge) that can be exploited for our purpose, i.e., 
feature expressions sharing some words are likely to belong to the 
same group or cluster. Since this constraint can be violated in 
some occasions, we call this piece of existing knowledge a soft-
constraint SC.  

Then, we add all such constrained pairs into the graph G as a set 
of edges, which gives us a new graph Gsc. That is to say, all 
sharing-words feature expressions are connected in Gsc. 
Stopwords are removed before sharing of words among feature 
expressions is computed.  

Although the sharing-word constraint is useful, the number of 
such pairs is small and does not help us that much. For example, 
in our five experimental real-world data sets, their corresponding 
graphs Gsc are very sparse, which means that there are too many 
disconnected components or sub-graphs. Figure 1 shows the graph 

of one of our experimental data sets. It is difficult to decide which 
connected components should be used as the labeled examples. 
We need another piece of existing knowledge, lexical similarity to 
merge some components of Gsc. 

Step 2 (merge components using lexical similarity): Lexical 
similarity based on WordNet is widely-used in the NLP area to 
measure the similarity of two words [11, 16, 23, 33]. It is another 
piece of knowledge that can be utilized for our grouping task. For 
example, “picture” and “image” has very high similarity in 
WordNet.  

Note that although we say that many domain synonyms may be 
quite dissimilar in WordNet, those words with high similarities in 
WordNet are likely to be synonyms in most (if not all) domains. It 
is also important to note that here we do not use a thesaurus to 
find synonyms because the WordNet lexical similarity can 
quantify the similarity strength, and thus subsumes the synonym 
look-up. This step uses such similarities to merge similar 
components in Gsc. The algorithm is given in Figure 2.  

First, we calculate pair-wise similarities between the components 
{c1, c2,… ,cn} (lines 1 to 4). Take components ci and cj as 
examples. Their pair-wise similarity sim(ci, cj) is the average 
value of all the cross similarities of their members, computed 
using PhraseSim(vr,vt), where  vr∈ci, vt∈cj.  PhraseSim(vr,vt) is the 
function for calculating the WordNet similarity between two 
phrases (lines 11 and 12). In line 12, Jcn(wk,wq) is the algorithm 

 
Figure 1. The Gsc of the Insurance data set 

 

Input:    components of  Gsc {c1, c2,… ,cn}; 
               number of  merges K; 
Output: merged components {C1, C2,… ,Cp} 

1 //Calculate pairwise similarities of {c1, c2,… ,cn} 
2 for ci in {c1, c2,… ,cn}: 
3       for cj in {ci+1, ci+2,… ,cn}: 
4            sim(ci, cj) =ܞۯ௩ೝא,௩אೕ൫ࡿࢋ࢙ࢇ࢘ࢎࡼሺݒ,  ௧ሻ൯ݒ
5 Sort pair(i, j) as SortedPairs by sim(ci, cj) in descending 

order, where i≠j, i∈{1,2,…n}, j∈{1,2,…n} 
6 for pair(i, j) in {top K SortedPairs}: 
7        merge ci and cj in  Gsc 
8 Output components in  Gsc  as {C1,C2,… ,Cp} 
9  
10 //Subfunction for calculating similarity between phrases 
ࡿࢋ࢙ࢇ࢘ࢎࡼ 11 (prs1, prs2): 
12        return ܠ܉ۻ௪ೖא௦ଵ, ௪א௦ଶ ݊ܿܬ൫ݓ,  ൯ݓ

Figure 2. Merging components by lexical similarity 
 



for calculating the similarity between two words wk and wq given 
in [16]. We also tried some other similarity calculation algorithms 
Res [36] and Lin [23], but Jcn performs the best for our task. 
These measures all rely on varying degrees of least common 
subsumer (LCS), which is the most specific concept that is a 
shared ancestor of the two concepts represented by the words 
[33]. For example, the LCS of automobile and scooter is vehicle. 
Res simply uses the information content of LCS as the similarity 
value (Equations 1 and 2). Pr(w) is the probability of the concept 
word w (based on the observed frequency counts in the WordNet 
corpus). Both Lin and Jcn try to refine Res by augmenting it with 
the information content of the individual concepts being measured 
in two different ways using Equations 3 and 4, respectively. 

Second, the components are selected to be merged based on 
ranking according to the pair-wise similarities (lines 5 to 7). 
Clearly, one can use these pair-wise similarities for hierarchical 
clustering. However, its results are poorer as we will see in 
Section 5 (see the results of CHC and SHC). We believe that the 
main reason is that only those components with very high 
similarities are reliably. Thus, we only trust those high 
similarities. In the algorithm, we only perform the top k merges 
(lines 6 and 7), where k is the number of clusters required by the 
user. In the experimental section, we will show the effect of the 
number of merges on the final results.   

Step 3 (select the leader components as labeled data L): After 
the above two steps, we obtain a new set of components {C1, 
C2,… ,Cp}. Although the number p of remaining components is 
much smaller than the number of original feature expressions, p is 
usually still much larger than the required number of clusters k 
because the graph Gsc is highly disconnected (see step 1), and only 
limited number of merges (k) are performed. 

This step selects k leader components from the p components {C1, 
C2,… ,Cp} to form the labeled data with k classes or clusters. 
Since in semi-supervised learning, the number of labeled 
examples has a major and positive impact on the final result, i.e., 
the more the better, we thus first rank {C1, C2,… ,Cp} according to 
their sizes (the number of vertices in each component), and then 
select the top k components as the labeled data L. Naturally, the 
vertices or feature expressions in the unselected components in 
{C1, C2,… ,Cp} form the unlabeled set U. 

3.2 Semi-Supervised Learning using EM  
With the labeled (L) and unlabeled (U) examples, we can run the 
EM based semi-supervised learning algorithm to assign a class or 
cluster to each unlabeled feature expression. For learning, each 
example or feature expression is represented with a document, 
which consists of the surrounding words of the feature expression 
(see Section 4). Hence, EM uses the distributional information in 
                                                                 
1 Laplace smoothing is used to prevent zero probabilities for infrequently 

occurring words. 

its classification model building process. However, we should 
note that here we use only the distributional information, not 
distributional similarity, which we will show is less effective. 
Distributional information is critical for finding domain synonyms 
because it gives the domain context. Recall in generating the 
labeled data in Section 3.1, no distributional information was 
used. Only domain independent information, i.e., sharing of words 
and lexical similarity, were employed. Thus, our approach is able 
to exploit both domain independent and domain dependent 
information.  

Due to the way that we generated the labeled data, we need to 
modify the EM algorithm in [30]. In the original algorithm, the 
class labels of the labeled examples do not change in the learning 
process as they are considered correct (manually labeled). 
However, in our case, the labeled data may not be reliable. 
Sharing of words does not work in some occasions. For example, 
“picture quality” and “build quality” share the word “quality”, but 
they should not be grouped to the same class or cluster. For a 
similar reason, lexical similarity may result in errors too.  

To solve this problem, we modify the EM algorithm in [30] to 
allow class labels in the labeled set L to change. That is, EM can 
reassign classes to the labeled examples. The augmented EM 
algorithm for our purpose is given in Figure 3. The algorithm uses 
three equations, i.e., (5), (6) and (7).  

First, the algorithm learns a classifier f0 using only the labeled 
data L and Equations 5 and 6 (line 1). Then, f0 is applied to assign 
probabilistic labels to both the labeled data L and unlabeled data 
U (lines 4 to 6) using Equation 7 (the Expectation step). Next, a 
new classifier is learned using the newly probabilistically labeled 
examples in both L and U, again using Equations 5 and 6 (the 

,ଵݓሺݏܴ݁  ଶሻݓ ൌ ଶሻ൯ (1)ݓ,ଵݓሺܵܥܮ൫ܥܫ

ሻݓሺܥܫ  ൌ െ݈݃Prሺݓሻ (2)

,ଵݓሺ݊݅ܮ  ଶሻݓ ൌ
2 ൈ ,ଵݓሺݏܴ݁ ଶሻݓ
ଵሻݓሺܥܫ  ଶሻݓሺܥܫ

 (3)

,ଵݓሺ݊ܿܬ  ଶሻݓ  ൌ
1

ଵሻݓሺܥܫ  ଶሻݓሺܥܫ െ 2 ൈ ,ଵݓሺݏܴ݁ ଶሻݓ
 (4)

Input:  Labeled examples L 
             Unlabeled examples U 

1  Learn an initial naïve Bayesian classifier f0 using L and 
Equations 5 and 6; 

2  repeat 
3  // E-Step 
4  for each example di in U ∪ L : 
5  Using the current classifier fx to compute P(cj|di) using 

Equation 7. 
6  end 
7  // M-Step 
8  Learn a new naïve Bayesian classifier fx from L and U by 

computing P(wt|cj) and P(cj) using Equations 5 and 6. 
9  until the classifier parameters stabilize 

Output: the classifier fx from the last iteration. 
 Figure 3. The augmented EM algorithm 
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Maximization step). These last two steps iterate until 
convergence. When the algorithm ends, each labeled and 
unlabeled example is assigned a posterior probability of belonging 
to each class or cluster. 

We now explain the notations in the Equations. Given a set of 
training documents D, each document Di in D is considered an 
ordered list of words. ݓௗ, denotes the kth word in Di, where each 
word is from the vocabulary V ={w1, w2,…, w|V|}. C={c1, c2,…, c|C|} 
is the set of pre-defined classes or groups. In our case, |C| = k. Nti 
is the number of times the word wt occurs in document di. 

For our problem, the surrounding words contexts of the labeled 
feature expressions form L, while the surrounding words of the 
non-labeled feature expressions form U. When EM converges, the 
classification labels of all the feature expressions give us the final 
grouping. Surrounding words contexts will be discussed in 
Section 4. 

4. CONTEXT EXTRACTION 
To apply the proposed algorithm, a document Di needs to be 
prepared for each feature expression vi for naïve Bayesian 
learning. Di is formed by aggregating the distributional context of 
every sentence sij in our corpus that contains the expression vi. 
The context of a sentence for vi is the surrounding words of vi in a 
text window of [-t, t], including the words in vi. In our 
experiments, t is empirically set to 15. Given a relevant corpus R, 
the document Di for each feature expression vi in L (or U) is 
generated using the algorithm in Figure 4. Stopwords are 
removed. 

For example, two feature expression from L (or U) are vi = 
“screen” and vk = “picture”, and there are two sentences in our 
corpus R that contain “screen” or “picture”. 

si1 = “The LCD screen gives clear picture”.  

Here we use the window size of [-3, 3]. For feature expression vi  
= “screen”, si1 gives us di1 = <LCD, screen, gives, clear> as a bag 
of words, “the” is removed as stopwords. For feature expression vk 
= “picture”, si1 gives us dk1 = < gives, clear> as a bag of words. 
Note that “picture” is removed in di1 and “screen” is removed in 
dk1, because they co-occur in review sentences and they are 
unlikely to belong to the same topic. Finally, we obtain the 
document Di for feature expression vi and Dk for feature 
expression vk: 

Di = <LCD, screen, gives, clear> 
Dk = <gives, clear > 

5. EMPIRICAL EVALUATION 
This section evaluates the proposed algorithm and compares it 
with the main existing methods that can be applied to solve the 

problem. 

5.1 Review Data Sets and Gold Standards 
To show the generality of the proposed method, experiments were 
conducted using reviews from 5 diverse domains: Hometheater 
(H), Insurance (I), Mattress (M), Car (C) and Vacuum (V). All 
the data sets were obtained from a commercial company that 
provides sentiment analysis services.  

All the gold standard feature expressions and groups were also 
obtained from the company, which were annotated by their 
customers, and have been used to produce sentiment analysis 
reports based on features. The details of the data sets and the gold 
standards are given in Table 1.  

5.2 Evaluation Measures 
Since the problem of grouping feature expressions is a clustering 
task, two common measures for evaluating clustering are used in 
this study, Entropy and Purity [25]. Below, we briefly describe 
entropy and purity. Given a data set DS, its gold partition is G = 
{݃ଵ,…, ݃,…, ݃}, where k is the given number of clusters. The 
groups partition DS into k disjoint subsets, DS1,…, DSi, …, DSk. 

Entropy: For each resulting cluster, we can measure its entropy 
using Equation (8), where Pi(݃) is the proportion of ݃ data 
points in DSi. The total entropy of the whole clustering (which 
considers all clusters) is calculated by Equation (9). 

Purity: Purity measures the extent that a cluster contains only 
data from one gold-partition. The cluster purity is computed with 
Equation (10). The total purity of the whole clustering (all 
clusters) is computed with Equation (11). 

5.3 Baseline Methods and Settings 
The proposed L-EM algorithm is compared with a number of 
existing methods, which can be categorized into k-means (denoted 
by Kmeans) clustering series, topic modeling series, correlation 
series, lexical similarity series, and EM classification series.  

In the Kmeans clustering series, including Kmeans(TF), 
Kmeans(PMI) and L-Kmeans(TF), the distributional similarity or 
distributional information is used. 

1  for each feature expression vi in L (or U) : 
2      Si ← all sentences containing vi in R 
3      for each sentence sij ∈ Si : 
4          for each word v in window [-t, t]: //including the words in vi 
5               if v does not co-occur with  vi in any review sentences: 
6                   dij ← v  
7      Di ← words from all dij, j = 1, 2, …, |Si| 
8      //duplicates are kept as it is not union 

Figure 4. Distributional context extraction 

Table 1. Data sets and gold standards 
H I M C V 

#Sentences 6355 12446 12107 9731 8785 
#Reviews 587 2802 933 1486 551 
#Expressions 237 148 333 317 266 
#Groups 15 8 15 16 28 
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Kmeans(TF)2: This is the k-means clustering method [27] based 
on distributional similarity with cosine as the similarity measure 
and TF (Term Frequency) as the term weight. 

Kmeans(PMI)2: PMI (Pointwise Mutual Information) values are 
used in place of terms’ weights. This method is proposed in [24].  

L-Kmeans(TF): This is also based on k-means, but the clusters of 
the labeled data L are fixed at the initiation and remain unchanged 
afterward. 

L-Kmeans’(TF): This is similar to L-Kmeans(TF), but the 
clusters of the labeled data L can change after the initiation. 

In the topic modeling series, the topic-word distributions are used 
for clustering. These methods are listed as follows. 

LDA2: LDA is a popular topic modeling method [5]. Given a set 
of documents, it outputs groups of terms and each group is said to 
belong to a topic. In our case, each feature expression is processed 
as a term. In LDA, a term may belong to more than one 
topic/group, but we take the topic/group with the maximum 
probability. 

mLSA2: This is a state-of-the-art unsupervised method for solving 
the problem. It is also based on LDA, and has been discussed in 
related work. 

DF-LDA2: This is the method proposed by [3]. It accepts the same 
inputs as LDA, and in additions the must-links (edges) extracted 
in Section 4 are also inputted. We used the code from the author’s 
website3. 

L-LDA2: This method is also based on LDA, but the labeled 
examples are used as seeds for each group/topic in topic 
modeling.  

In the correlation series, correlations between feature expressions 
are used for clustering [28]. The representative methods are: 

                                                                 
2 This method’s result depends on the random initiation, so we use the 

average value of 10 runs as the final result. 
3 http://pages.cs.wisc.edu/~andrzeje/research/df_lda.html 

Newman(PMI): Newman clustering method is employed to group 
feature expressions based on the PMI values between them, and 
the PMI threshold is set to its default value as in their paper 4. 

Newman(χ2): This is similar to Newman(PMI), but it is based on 
χ2 values among feature expressions. The χ2 threshold is also set 
to its default value4.  

In the lexical similarity series, the feature expressions are 
hierarchically clustered based on WordNet similarity (see lines 
11~12 in Figure 2). 

CHC: This method applies complete-link hierarchical clustering 
to cluster feature expressions into k clusters based on the WordNet 
similarity. 

SHC: Compared with CHC, single-link hierarchical clustering is 
employed. 

The proposed algorithm L-EM belongs to the EM classification 
series. In order to illustrate the impact of EM, L-Rand is 
implemented as follows. 

L-Rand2: This method is based on the labeled data L generated by 
the method in Section 3.1, with the unlabeled data U randomly 
labeled. This baseline is used to show whether EM is making any 
improvement beyond the two soft constraints in Section 3.1.  

Note that all these methods are compared in a variety of settings. 
For all the LDA based methods, i.e., LDA, mLSA, L-LDA and DF-
LDA, the topic modeling parameters are set to their default values: 
α=50/k, β=0.01, where k is the number of groups/topics in the 
gold standard for each data set. The number of iterations is 1000. 
We used the LDA system in MALLET5. We modified it to suit 
different LDA-based methods, e.g., topic constraining. We 
implemented mLSA, Kmeans and changed the EM6 
implementation to take soft constraints. For all the Kmeans based 
methods, the distance function is the cosine similarity. 

                                                                 
4 See the footnote 6 of the cited paper. 
5 http://mallet.cs.umass.edu/ 
6 http://alias-i.com/lingpipe/ 

Table 2. Experimental results on 5 data sets, i.e., H, I, M, C, and V. 

Method 
Entropy 

 
Purity   

H I M C V avg H I M C V avg 
Kmeans(TF) 2.45 2.32 2.61 2.67 2.15 2.44 0.35 0.31 0.38 0.32 0.41 0.35 
Kmeans(PMI) 2.87 2.37 2.80 2.99 2.66 2.74 0.26 0.35 0.29 0.24 0.27 0.28 
LDA 2.63 2.32 2.75 2.63 2.43 2.55 0.31 0.35 0.31 0.32 0.35 0.33 
mLSA 2.62 2.31 2.74 2.46 2.38 2.50 0.32 0.35 0.31 0.38 0.37 0.35 
Newman(χ2) 2.88 2.48 2.75 2.89 2.54 2.71 0.27 0.32 0.32 0.26 0.34 0.30 
Newman(PMI) 3.06 2.42 2.98 3.31 3.64 3.08 0.26 0.30 0.26 0.21 0.23 0.25 
CHC 2.73 2.20 2.74 2.82 2.32 2.56 0.28 0.41 0.28 0.30 0.37 0.33 
SHC 3.35 2.55 3.15 3.41 3.76 3.24 0.25 0.34 0.23 0.21 0.23 0.25 
L-Rand 2.18 2.19 2.52 2.58 1.84 2.26 0.47 0.41 0.42 0.38 0.52 0.44 
L-Kmeans(TF) 1.90 2.04 2.24 2.18 1.56 1.98 0.52 0.43 0.46 0.47 0.57 0.49 
L-Kmeans’(TF) 1.95 1.91 2.39 2.29 1.85 2.08 0.51 0.46 0.44 0.45 0.50 0.47 
L-LDA 2.12 2.11 2.24 2.25 1.70 2.08 0.46 0.43 0.48 0.45 0.55 0.47 
DF-LDA 2.19 1.91 2.11 2.14 1.64 2.00 0.41 0.49 0.46 0.47 0.50 0.47 
L-EM 1.89 1.59 2.14 2.04 1.58 1.84 0.55 0.59 0.51 0.53 0.59 0.55 

 



5.4 Evaluation Results 
We now present and compare the results of L-EM and the 13 
baseline methods based on 5 data sets. Since all these 13 methods 
require the number of clusters/topics as the input, in order to fairly 
compare the results, the number of clusters/topics is set to the 
number of gold partitions of each data set (see Section 5.1). The 
proposed algorithm L-EM also has a parameter, the number of 
merges, which is set to the number of clusters. Section 5.5 will 
study the effects of the number of merges. 

All the results are shown in Table 2, where H, I, M, C and V are 
the abbreviations of the names of the data sets, and avg represents 
the average result of the 5 data sets. For Entropy, the smaller the 
value is the better, but for Purity the larger the better.  

Table 2 clearly shows that the proposed algorithm (L-EM) 
outperforms all 13 baseline methods by a large margin on every 
dataset. In addition, we make the following observations:  

 Methods without using any pre-existing knowledge all 
performed poorly, i.e., Kmeans(TF), Kmeans(PMI), LDA, 
mLSA, Newman(χ2) and Newman(PMI), which illustrate that 
only the distributional information of feature expressions is far 
from sufficient. 

 Methods using only lexical similarity also do not work well, 
i.e., CHC and SHC. They are even worse than the 6 
distributional information based methods. On the one hand, 
this observation shows that lexical similarity is also unreliable. 
On the other hand, it illustrates the importance of domain 
dependences of our task. 

 The PMI based methods, Kmeans(PMI) and Newman(PMI), 
performed worse than Kmeans(TF) and Newman(χ2). This 
observation is consistent with the conclusion in [39], which 
observed that the quality of the PMI-based algorithms largely 
depends on the size of training corpus. The poorer results of 
Kmeans(PMI) and Newman(PMI) are probably the result of 
our small corpora. 

 Methods using the labeled data L achieve better performances, 
i.e., L-Rand, L-Kmeans, L-LDA, DF-LDA and the proposed L-
EM. Recall that the labeled data L is generated by two pieces 
of pre-existing knowledge. Thus, the two pieces of pre-
existing knowledge proposed in this paper help to improve the 
results, which is intuitive. 

 Compared with L-Kmeans(TF), L-Kmeans’(TF), L-LDA and 
DF-LDA, the proposed L-EM method outperformed them on 
average by more than 0.16 in Entropy and 8% in Purity. This 
shows that the classification based method (L-EM) is more 
suitable than clustering for our task. Note that, the Kmeans 
algorithm corresponds to a particular non-probabilistic limit of 
EM applied to mixtures of Gaussians [4]. The mixture 
components of the proposed algorithm are a set of 
multinomial distributions on which the naive Bayesian 
classification is based. Thus, we call the proposed algorithm a 
classification based method. 

 Compared with L-Rand, the improvements made by L-EM are 
more than 0.42 in Entropy and 11% in Purity, which shows 
that the augmented EM algorithm is competent in revising the 
labeled feature expressions in L and grouping the unlabeled 
feature expressions in U.  

5.5 Influence of the number of merges 
We varied the number of merges as discussed in Section 3.1 from 
0 to 100 to see how it impacts on the performance of the proposed 
algorithm L-EM. The results are given in Figure 5 (they are 
averages of the 5 data sets). When the number of merges is set to 
zero, it means that we skip the step 2 of Section 3.1, and the 
lexical similarity is not incorporated into our algorithm at all. 
With the growth of the number of merges, we incorporate more 
and more lexical similarity knowledge with the ranking based on 
similarities’ strength. As shown in Figure 5, the performance of 
the proposed algorithm L-EM increases at first, and then decreases 
after some critical point. This phenomenon gives two pieces of 
information: the lexical similarity knowledge helps our task, but 
only the strong similarities are reliable. Weak similarities can 
harm the overall performance. 

6. CONCLUSION 
This paper studied the problem of product feature clustering for 
opinion mining applications. Although it is an unsupervised 
learning task, due to the poor performances of various clustering 
algorithms based on distributional and lexical similarities, we 
casted the problem as a semi-supervised learning task. Two soft 
constraints based on sharing of words and the lexical similarity 
were used to identify some initial labeled examples automatically 
for training. The paper then proposed to use the EM algorithm to 
solve the problem, which was improved by allowing the labeled 
examples to switch classes because the constraints can make 
mistakes. Empirical evaluations using 5 data sets show that the 
proposed method is superior to 13 baselines, which represent 
various current state-of-the-art solutions for this class of 
problems.  

 

Figure 5. The influence of the number of merges to the 
proposed algorithm L-EM 
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