
Clustering Product Features for Opinion Mining
Zhongwu Zhai† Bing Liu‡ Hua Xu† Peifa Jia†

†State Key Lab of Intelligent Tech. & Sys., Tsinghua National Lab for Info.
Sci. and Tech., Dept. of Comp. Sci. & Tech., Tsinghua University

zhaizhongwu@gmail.com
‡Dept. of Comp. Sci., University of Illinois at Chicago

liub@cs.uic.edu

ABSTRACT
In sentiment analysis of product reviews, one important problem
is to produce a summary of opinions based on product
features/attributes (also called aspects). However, for the same
feature, people can express it with many different words or
phrases. To produce a useful summary, these words and phrases,
which are domain synonyms, need to be grouped under the same
feature group. Although several methods have been proposed to
extract product features from reviews, limited work has been done
on clustering or grouping of synonym features. This paper focuses
on this task. Classic methods for solving this problem are based
on unsupervised learning using some forms of distributional
similarity. However, we found that these methods do not do well.
We then model it as a semi-supervised learning problem. Lexical
characteristics of the problem are exploited to automatically
identify some labeled examples. Empirical evaluation shows that
the proposed method outperforms existing state-of-the-art
methods by a large margin.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval –Clustering. I.2.7 [Artificial Intelligence]: Natural
Language Processing – Text analysis.

General Terms
Algorithms, Experimentation

Keywords
Opinion Mining, Product Feature Grouping

1. INTRODUCTION
One form of opinion mining in product reviews is to produce a
feature-based summary [14, 31]. In this model, product features
are first identified, and positive and negative opinions on them are
aggregated to produce a summary on the features. Features of a
product are attributes, components and other aspects of the
product, e.g., “picture quality”, “battery life” and “zoom” of a
digital camera.

In reviews (or any writings), people often use different words and
phrases to describe the same product feature. We call the actual

words or phrases that express the same feature, feature
expressions. For example, “picture” and “photo” are feature
expressions referring to the same feature of cameras. In this paper,
we assume that all feature expressions have been identified by an
existing algorithm. There are many such algorithms [17-20, 29,
35, 38].

Grouping feature expressions, which are domain synonyms, is
critical for effective opinion summary [26]. Since there are
typically hundreds of feature expressions that can be discovered
from text for an opinion mining application, it’s very time-
consuming and tedious for human users to group them into feature
categories. Some automated assistance is needed. Unsupervised
learning or clustering is the natural technique for solving the
problem. The similarity measures used in clustering are usually
based on some form of distributional similarity [6, 10, 22, 24, 32,
34, 37]. Recent work also used topic modeling [12, 40]. However,
we show that these methods do not perform well. Even the latest
topic modeling method that consider pre-existing knowledge [3]
does not do well.

Obviously, thesaurus dictionaries can be helpful for finding
synonyms [9, 26], but they are far from sufficient due to a few
reasons. First, many words and phrases that are not synonyms in a
dictionary may refer to the same feature in an application domain.
For example, “appearance” and “design” are not synonymous, but
they can indicate the same feature, design. Second, many
synonyms are domain dependent. For example, “movie” and
“picture” are synonyms in movie reviews, but they are not
synonyms in camera reviews as “picture” is more likely to be
synonymous to “photo” while “movie” to “video”.

Due to the poor performance of the unsupervised methods, we
formulate the problem as a supervised learning problem, or more
precisely a semi-supervised learning problem but without asking
the user to manually label any training examples. This new
formulation produces much better results as we will see in Section
5. However, for semi-supervised learning, a small set of labeled
examples and a set of unlabeled examples are required. The
problem then is how to partition the feature expressions into a
labeled set and an unlabeled set automatically. We exploit two
pieces of natural language knowledge to achieve this:

 Sharing words: Feature expressions sharing some common
words are likely to belong to the same group, e.g., “battery
life”, “battery”, and “battery power”.

 Lexical similarity: Feature expressions that are similar
lexically based on WordNet [11, 16, 23, 33, 36] are likely to
belong to the same group, e.g., “movie” and “picture”. Note
that synonyms are covered by lexical similarity as they will
have very high lexical similarity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WSDM’11, February 9–12, 2011, Hong Kong, China.
Copyright 2011 ACM 978-1-4503-0493-1/11/02...$10.00.

We call these two pieces of knowledge soft constraints as they
constrain certain feature expressions to be in the same feature
group to some extent. They are called soft (rather than hard)
constraints because they can be relaxed in the learning process.
This relaxation is important because the above two constraints can
result in wrong groupings. The semi-supervised learning method
is allowed to re-assign them to other groups in the learning
process. Note that sharing words can also be handled by lexical
similarity, but we do not use lexical similarity due to two reasons.
First, some words may not exist in WordNet. Second, sharing
words is much easier to compute and there is no need to refer to
WordNet.

Clearly, lexical similarity can also be used in clustering. However,
we again found it quite inaccurate because only those words or
phrases with very high similarities are reliable. We thus propose
to combine it with semi-supervised learning, i.e., using limited
lexical similarity to find some labeled examples for semi-
supervised learning. This combination produces much better
results.

For semi-supervised learning, we use the EM algorithm
formulated in [30], which is based on naïve Bayesian
classification. Although other supervised methods can also be
applied, the EM algorithm based on naïve Bayesian is probably
the most efficient method and it already performs much better
than the state-of-the-art current methods as we will see later. In
the future work, we will experiment with other semi-supervised
learning methods. Instead of using the algorithm in [30] directly,
we need to augment it to allow EM to re-assign classes of the
labeled set in order to correct some errors in the automated
labeling process. Note that, for our problem, each input document
for the augmented EM is actually the surrounding words of each
feature expression vi. Here, we further exploit another piece of
natural language knowledge to help our algorithm to extract more
discriminative distributional context:

 Positive and negative correlation: Feature expressions that
ever co-occur in the same sentence are unlikely to belong to
the same group, e.g., “I like the picture quality, the battery
life, and zoom of this camera” and “The picture quality is
great, the battery life is also long, but the zoom is not good”.
From either of the sentences, we can infer that “picture
quality”, “battery life”, and “zoom” are probably not
synonyms because people are unlikely to repeat the same
thing in the same sentence.

Based on this knowledge, when extracting the surroundings words
context Di for each feature expression vi, any feature expression
vk, that co-occur with vi in review sentences, are removed from Di.
Thus, Di and Dk will not compete with each other in the learning
process, which results in better performances.

Our evaluation was conducted using a large number of reviews
from 5 different domains. The results show that the proposed
method outperforms different variations of topic modeling,
clustering methods based on distributional similarity and lexical
similarity, and also the recent unsupervised feature grouping
method mLSA.

In summary, this paper makes the following contributions:

1. The problem solved in this paper is an unsupervised task.
However, due to the poor performances of existing
unsupervised methods we formulate it as a semi-supervised

learning task but without asking the user to label any training
examples. To our knowledge, this is first such attempt. An EM
algorithm based on naïve Bayesian classification is adapted to
solve the problem, which allows EM to re-assign classes of
the labeled examples to different classes.

2. Since there are no labeled examples for learning, we propose
to use two soft constraints to help label some examples and
one piece of pre-existing natural language knowledge to
extract more discriminative distributional context for the
augmented EM.

3. It is shown experimentally that the new method outperforms
the main existing state-of-the-art methods based on clustering
and other techniques that can be applied to the task.

2. RELATED WORK
The key to clustering is the similarity measure. There are two
main kinds of similarity measures for our task [1]: those relying
on pre-existing knowledge resources (e.g., thesauri, and semantic
networks) [2, 15, 42], and those relying on distributional
properties of words in corpora [6, 10, 22, 32, 34, 37].

In the category that relies on pre-existing knowledge sources, the
work of Carenini et al. [9] is most related to ours. The authors
proposed a method to map discovered feature expressions to a
given domain product feature taxonomy, using several word
similarity metrics. This kind of similarities is often called lexical
similarity. A related approach based on WordNet was also used
by Liu et al. [26]. Both these works do not use the word
distribution information, which is their main weakness because
many expressions of the same feature are not synonyms or even
similar in WordNet because they are domain dependent.
Dictionaries do not contain domain specific knowledge, for which
a domain corpus is needed.

Distributional similarity is based on the hypothesis that words
with similar meaning tend to appear in similar contexts [13]. As
such, it fetches the surrounding words as context for each term
(e.g., feature expression). Similarity measures such as Cosine,
Jaccard, Dice, etc [21], can then be employed to compute the
similarities between words or phrases. [8, 24, 28] also calculate
PMI (Pointwise Mutual Information) similarity between words,
and [28] groups words using a graph-based algorithm based on
PMI or Chi-squared (χ2) test. [24] clusters words with the cosine
similarity based on PMI weighting. We will show that these
methods do not perform well in the experiment section. In [43], a
semi-supervised learning method is used. However, it requires the
user to provide labeled examples, whereas this study does not
need any pre-labeled examples. It thus solves a different problem.
There are also two detailed differences: First, this proposed
algorithm is further enhanced by lexical (or WordNet) similarity
(see Section 3.1). Second, another piece of pre-existing natural
language knowledge is used to extract more discriminative
context documents for the proposed algorithm (see Section 4).

Recent work also applied topic modeling (e.g., Latent Dirichlet
Allocation (LDA)) to solve the problem based on a domain
corpus. Branavan et al.[7] extracted and clustered semantic
properties of reviews based on pros/cons annotations using
modified LDA, which performs a different task from ours. Guo et
al. [12] proposed a multilevel latent semantic association
technique (called mLSA) to group product feature expressions. At
the first level, all the words in product feature expressions are

grouped into a set of concepts using LDA. The results are used to
build latent topic structures for product feature expressions. At the
second level, feature expressions are grouped by LDA again
according to their latent topic structures produced from level 1
and context snippets in reviews.

Recently, [3] reported a new formulation of LDA, which is able to
consider pre-existing knowledge in the form of must-link and
cannot-link constraints borrowed from constrained clustering [41].
The new method is called DF-LDA. Must-links state that some
data points must be in the same cluster, and cannot-links state that
some data points cannot be in the same cluster. Our soft
constraints are similar to must-links. However, DF-LDA does not
perform as well as the proposed algorithm, which is mainly based
on semi-supervised learning.

3. THE PROPOSED ALGORITHM
Since our original problem is unsupervised, we assume that the
user will specify the number of clusters k, which is also the
number of classes used in semi-supervised learning. The input to
the proposed algorithm consists of: a set of reviews R, and a set of
discovered feature expressions F from R. Then the proposed
algorithm assigns the discovered features F to k groups.

Since unsupervised methods do not perform well, we re-formulate
the problem a semi-supervised learning problem. However, semi-
supervised learning needs some labeled examples. Since no
labeled data exist, the proposed algorithm has to first
automatically label some such data. After that, a semi-supervised
learning method can be applied. In this work, we adapted the
naïve Bayesian based EM formulation in [30] for our purpose,
which will be discussed in Section 3.2.

In the following, we use a graph to introduce the step for finding
labeled examples (feature expressions). The given feature
expressions {v1, v2,… ,vn} are vertices in the graph, and different
constraints or similarities are considered as edges. Some
connected components will be used as the labeled data.

3.1 Generating Labeled Data L
The labeled set L is generated using two types of pre-existing
knowledge/constraints in three steps.

Step 1 (connect feature expressions using sharing words): For
the task of opinion mining, many feature expressions are phrases
consisting of multiple words, e.g., “customer service”, “customer
support”, “service”. Sharing words is an important clue (pre-
existing knowledge) that can be exploited for our purpose, i.e.,
feature expressions sharing some words are likely to belong to the
same group or cluster. Since this constraint can be violated in
some occasions, we call this piece of existing knowledge a soft-
constraint SC.

Then, we add all such constrained pairs into the graph G as a set
of edges, which gives us a new graph Gsc. That is to say, all
sharing-words feature expressions are connected in Gsc.
Stopwords are removed before sharing of words among feature
expressions is computed.

Although the sharing-word constraint is useful, the number of
such pairs is small and does not help us that much. For example,
in our five experimental real-world data sets, their corresponding
graphs Gsc are very sparse, which means that there are too many
disconnected components or sub-graphs. Figure 1 shows the graph

of one of our experimental data sets. It is difficult to decide which
connected components should be used as the labeled examples.
We need another piece of existing knowledge, lexical similarity to
merge some components of Gsc.

Step 2 (merge components using lexical similarity): Lexical
similarity based on WordNet is widely-used in the NLP area to
measure the similarity of two words [11, 16, 23, 33]. It is another
piece of knowledge that can be utilized for our grouping task. For
example, “picture” and “image” has very high similarity in
WordNet.

Note that although we say that many domain synonyms may be
quite dissimilar in WordNet, those words with high similarities in
WordNet are likely to be synonyms in most (if not all) domains. It
is also important to note that here we do not use a thesaurus to
find synonyms because the WordNet lexical similarity can
quantify the similarity strength, and thus subsumes the synonym
look-up. This step uses such similarities to merge similar
components in Gsc. The algorithm is given in Figure 2.

First, we calculate pair-wise similarities between the components
{c1, c2,… ,cn} (lines 1 to 4). Take components ci and cj as
examples. Their pair-wise similarity sim(ci, cj) is the average
value of all the cross similarities of their members, computed
using PhraseSim(vr,vt), where vr∈ci, vt∈cj. PhraseSim(vr,vt) is the
function for calculating the WordNet similarity between two
phrases (lines 11 and 12). In line 12, Jcn(wk,wq) is the algorithm

Figure 1. The Gsc of the Insurance data set

Input: components of Gsc {c1, c2,… ,cn};
 number of merges K;
Output: merged components {C1, C2,… ,Cp}

1 //Calculate pairwise similarities of {c1, c2,… ,cn}
2 for ci in {c1, c2,… ,cn}:
3 for cj in {ci+1, ci+2,… ,cn}:
4 sim(ci, cj) =ܞۯ௩ೝא,௩אೕ൫ࡿࢋ࢙ࢇ࢘ࢎࡼሺݒ, ௧ሻ൯ݒ
5 Sort pair(i, j) as SortedPairs by sim(ci, cj) in descending

order, where i≠j, i∈{1,2,…n}, j∈{1,2,…n}
6 for pair(i, j) in {top K SortedPairs}:
7 merge ci and cj in Gsc
8 Output components in Gsc as {C1,C2,… ,Cp}
9
10 //Subfunction for calculating similarity between phrases
ࡿࢋ࢙ࢇ࢘ࢎࡼ 11 (prs1, prs2):
12 return ܠ܉ۻ௪ೖא௦ଵ, ௪א௦ଶ ݊ܿܬ൫ݓ, ൯ݓ

Figure 2. Merging components by lexical similarity

for calculating the similarity between two words wk and wq given
in [16]. We also tried some other similarity calculation algorithms
Res [36] and Lin [23], but Jcn performs the best for our task.
These measures all rely on varying degrees of least common
subsumer (LCS), which is the most specific concept that is a
shared ancestor of the two concepts represented by the words
[33]. For example, the LCS of automobile and scooter is vehicle.
Res simply uses the information content of LCS as the similarity
value (Equations 1 and 2). Pr(w) is the probability of the concept
word w (based on the observed frequency counts in the WordNet
corpus). Both Lin and Jcn try to refine Res by augmenting it with
the information content of the individual concepts being measured
in two different ways using Equations 3 and 4, respectively.

Second, the components are selected to be merged based on
ranking according to the pair-wise similarities (lines 5 to 7).
Clearly, one can use these pair-wise similarities for hierarchical
clustering. However, its results are poorer as we will see in
Section 5 (see the results of CHC and SHC). We believe that the
main reason is that only those components with very high
similarities are reliably. Thus, we only trust those high
similarities. In the algorithm, we only perform the top k merges
(lines 6 and 7), where k is the number of clusters required by the
user. In the experimental section, we will show the effect of the
number of merges on the final results.

Step 3 (select the leader components as labeled data L): After
the above two steps, we obtain a new set of components {C1,
C2,… ,Cp}. Although the number p of remaining components is
much smaller than the number of original feature expressions, p is
usually still much larger than the required number of clusters k
because the graph Gsc is highly disconnected (see step 1), and only
limited number of merges (k) are performed.

This step selects k leader components from the p components {C1,
C2,… ,Cp} to form the labeled data with k classes or clusters.
Since in semi-supervised learning, the number of labeled
examples has a major and positive impact on the final result, i.e.,
the more the better, we thus first rank {C1, C2,… ,Cp} according to
their sizes (the number of vertices in each component), and then
select the top k components as the labeled data L. Naturally, the
vertices or feature expressions in the unselected components in
{C1, C2,… ,Cp} form the unlabeled set U.

3.2 Semi-Supervised Learning using EM
With the labeled (L) and unlabeled (U) examples, we can run the
EM based semi-supervised learning algorithm to assign a class or
cluster to each unlabeled feature expression. For learning, each
example or feature expression is represented with a document,
which consists of the surrounding words of the feature expression
(see Section 4). Hence, EM uses the distributional information in

1 Laplace smoothing is used to prevent zero probabilities for infrequently

occurring words.

its classification model building process. However, we should
note that here we use only the distributional information, not
distributional similarity, which we will show is less effective.
Distributional information is critical for finding domain synonyms
because it gives the domain context. Recall in generating the
labeled data in Section 3.1, no distributional information was
used. Only domain independent information, i.e., sharing of words
and lexical similarity, were employed. Thus, our approach is able
to exploit both domain independent and domain dependent
information.

Due to the way that we generated the labeled data, we need to
modify the EM algorithm in [30]. In the original algorithm, the
class labels of the labeled examples do not change in the learning
process as they are considered correct (manually labeled).
However, in our case, the labeled data may not be reliable.
Sharing of words does not work in some occasions. For example,
“picture quality” and “build quality” share the word “quality”, but
they should not be grouped to the same class or cluster. For a
similar reason, lexical similarity may result in errors too.

To solve this problem, we modify the EM algorithm in [30] to
allow class labels in the labeled set L to change. That is, EM can
reassign classes to the labeled examples. The augmented EM
algorithm for our purpose is given in Figure 3. The algorithm uses
three equations, i.e., (5), (6) and (7).

First, the algorithm learns a classifier f0 using only the labeled
data L and Equations 5 and 6 (line 1). Then, f0 is applied to assign
probabilistic labels to both the labeled data L and unlabeled data
U (lines 4 to 6) using Equation 7 (the Expectation step). Next, a
new classifier is learned using the newly probabilistically labeled
examples in both L and U, again using Equations 5 and 6 (the

,ଵݓሺݏܴ݁ ଶሻݓ ൌ ଶሻ൯ (1)ݓ,ଵݓሺܵܥܮ൫ܥܫ

ሻݓሺܥܫ ൌ െ݈݃Prሺݓሻ (2)

,ଵݓሺ݊݅ܮ ଶሻݓ ൌ
2 ൈ ,ଵݓሺݏܴ݁ ଶሻݓ
ଵሻݓሺܥܫ ଶሻݓሺܥܫ

 (3)

,ଵݓሺ݊ܿܬ ଶሻݓ ൌ
1

ଵሻݓሺܥܫ ଶሻݓሺܥܫ െ 2 ൈ ,ଵݓሺݏܴ݁ ଶሻݓ
 (4)

Input: Labeled examples L
 Unlabeled examples U

1 Learn an initial naïve Bayesian classifier f0 using L and
Equations 5 and 6;

2 repeat
3 // E-Step
4 for each example di in U ∪ L :
5 Using the current classifier fx to compute P(cj|di) using

Equation 7.
6 end
7 // M-Step
8 Learn a new naïve Bayesian classifier fx from L and U by

computing P(wt|cj) and P(cj) using Equations 5 and 6.
9 until the classifier parameters stabilize

Output: the classifier fx from the last iteration.
 Figure 3. The augmented EM algorithm

P൫ݓ௧| ܿ൯ ൌ

1 ∑ ௧ܰP൫ ܿ|݀൯
||
ୀଵ

|ܸ| ∑ ∑ ܰP൫ ܿ|݀൯
||
ୀଵ

||
ୀଵ

 (51)

P൫ ܿ൯ ൌ

1 ∑ P൫ ܿ|݀൯
||
ୀଵ

|ܥ| |ܦ| (61)

P൫ ܿ|݀൯ ൌ

P൫ ܿ൯∏ P൫ݓௗ,| ܿ൯
|ௗ|
୩ୀଵ

∑ Pሺܿሻ
||
୰ୀଵ ∏ P൫ݓௗ,|ܿ൯

|ௗ|
୩ୀଵ

(7)

Maximization step). These last two steps iterate until
convergence. When the algorithm ends, each labeled and
unlabeled example is assigned a posterior probability of belonging
to each class or cluster.

We now explain the notations in the Equations. Given a set of
training documents D, each document Di in D is considered an
ordered list of words. ݓௗ, denotes the kth word in Di, where each
word is from the vocabulary V ={w1, w2,…, w|V|}. C={c1, c2,…, c|C|}
is the set of pre-defined classes or groups. In our case, |C| = k. Nti
is the number of times the word wt occurs in document di.

For our problem, the surrounding words contexts of the labeled
feature expressions form L, while the surrounding words of the
non-labeled feature expressions form U. When EM converges, the
classification labels of all the feature expressions give us the final
grouping. Surrounding words contexts will be discussed in
Section 4.

4. CONTEXT EXTRACTION
To apply the proposed algorithm, a document Di needs to be
prepared for each feature expression vi for naïve Bayesian
learning. Di is formed by aggregating the distributional context of
every sentence sij in our corpus that contains the expression vi.
The context of a sentence for vi is the surrounding words of vi in a
text window of [-t, t], including the words in vi. In our
experiments, t is empirically set to 15. Given a relevant corpus R,
the document Di for each feature expression vi in L (or U) is
generated using the algorithm in Figure 4. Stopwords are
removed.

For example, two feature expression from L (or U) are vi =
“screen” and vk = “picture”, and there are two sentences in our
corpus R that contain “screen” or “picture”.

si1 = “The LCD screen gives clear picture”.

Here we use the window size of [-3, 3]. For feature expression vi
= “screen”, si1 gives us di1 = <LCD, screen, gives, clear> as a bag
of words, “the” is removed as stopwords. For feature expression vk
= “picture”, si1 gives us dk1 = < gives, clear> as a bag of words.
Note that “picture” is removed in di1 and “screen” is removed in
dk1, because they co-occur in review sentences and they are
unlikely to belong to the same topic. Finally, we obtain the
document Di for feature expression vi and Dk for feature
expression vk:

Di = <LCD, screen, gives, clear>
Dk = <gives, clear >

5. EMPIRICAL EVALUATION
This section evaluates the proposed algorithm and compares it
with the main existing methods that can be applied to solve the

problem.

5.1 Review Data Sets and Gold Standards
To show the generality of the proposed method, experiments were
conducted using reviews from 5 diverse domains: Hometheater
(H), Insurance (I), Mattress (M), Car (C) and Vacuum (V). All
the data sets were obtained from a commercial company that
provides sentiment analysis services.

All the gold standard feature expressions and groups were also
obtained from the company, which were annotated by their
customers, and have been used to produce sentiment analysis
reports based on features. The details of the data sets and the gold
standards are given in Table 1.

5.2 Evaluation Measures
Since the problem of grouping feature expressions is a clustering
task, two common measures for evaluating clustering are used in
this study, Entropy and Purity [25]. Below, we briefly describe
entropy and purity. Given a data set DS, its gold partition is G =
{݃ଵ,…, ݃,…, ݃}, where k is the given number of clusters. The
groups partition DS into k disjoint subsets, DS1,…, DSi, …, DSk.

Entropy: For each resulting cluster, we can measure its entropy
using Equation (8), where Pi(݃) is the proportion of ݃ data
points in DSi. The total entropy of the whole clustering (which
considers all clusters) is calculated by Equation (9).

Purity: Purity measures the extent that a cluster contains only
data from one gold-partition. The cluster purity is computed with
Equation (10). The total purity of the whole clustering (all
clusters) is computed with Equation (11).

5.3 Baseline Methods and Settings
The proposed L-EM algorithm is compared with a number of
existing methods, which can be categorized into k-means (denoted
by Kmeans) clustering series, topic modeling series, correlation
series, lexical similarity series, and EM classification series.

In the Kmeans clustering series, including Kmeans(TF),
Kmeans(PMI) and L-Kmeans(TF), the distributional similarity or
distributional information is used.

1 for each feature expression vi in L (or U) :
2 Si ← all sentences containing vi in R
3 for each sentence sij ∈ Si :
4 for each word v in window [-t, t]: //including the words in vi
5 if v does not co-occur with vi in any review sentences:
6 dij ← v
7 Di ← words from all dij, j = 1, 2, …, |Si|
8 //duplicates are kept as it is not union

Figure 4. Distributional context extraction

Table 1. Data sets and gold standards
H I M C V

#Sentences 6355 12446 12107 9731 8785
#Reviews 587 2802 933 1486 551
#Expressions 237 148 333 317 266
#Groups 15 8 15 16 28

ܦሺݕݎݐ݊݁ ܵሻ ൌ െ Pሺ݃ሻ݈݃ଶPሺ݃ሻ

ୀଵ
 (8)

௧௧ݕݎݐ݊݁ ൌ

ܦ| ܵ|
|ܵܦ| ݕݎݐ݊݁

ሺܦ ܵሻ

ୀଵ
 (9)

ܦሺݕݐ݅ݎݑ ܵሻ ൌ ݔܽ݉

Pሺ݃ሻ (10)

௧௧ݕݐ݅ݎݑ ൌ

ܦ| ܵ|
|ܵܦ| ݕݐ݅ݎݑ

ሺܦ ܵሻ

ୀଵ
 (11)

Kmeans(TF)2: This is the k-means clustering method [27] based
on distributional similarity with cosine as the similarity measure
and TF (Term Frequency) as the term weight.

Kmeans(PMI)2: PMI (Pointwise Mutual Information) values are
used in place of terms’ weights. This method is proposed in [24].

L-Kmeans(TF): This is also based on k-means, but the clusters of
the labeled data L are fixed at the initiation and remain unchanged
afterward.

L-Kmeans’(TF): This is similar to L-Kmeans(TF), but the
clusters of the labeled data L can change after the initiation.

In the topic modeling series, the topic-word distributions are used
for clustering. These methods are listed as follows.

LDA2: LDA is a popular topic modeling method [5]. Given a set
of documents, it outputs groups of terms and each group is said to
belong to a topic. In our case, each feature expression is processed
as a term. In LDA, a term may belong to more than one
topic/group, but we take the topic/group with the maximum
probability.

mLSA2: This is a state-of-the-art unsupervised method for solving
the problem. It is also based on LDA, and has been discussed in
related work.

DF-LDA2: This is the method proposed by [3]. It accepts the same
inputs as LDA, and in additions the must-links (edges) extracted
in Section 4 are also inputted. We used the code from the author’s
website3.

L-LDA2: This method is also based on LDA, but the labeled
examples are used as seeds for each group/topic in topic
modeling.

In the correlation series, correlations between feature expressions
are used for clustering [28]. The representative methods are:

2 This method’s result depends on the random initiation, so we use the

average value of 10 runs as the final result.
3 http://pages.cs.wisc.edu/~andrzeje/research/df_lda.html

Newman(PMI): Newman clustering method is employed to group
feature expressions based on the PMI values between them, and
the PMI threshold is set to its default value as in their paper 4.

Newman(χ2): This is similar to Newman(PMI), but it is based on
χ2 values among feature expressions. The χ2 threshold is also set
to its default value4.

In the lexical similarity series, the feature expressions are
hierarchically clustered based on WordNet similarity (see lines
11~12 in Figure 2).

CHC: This method applies complete-link hierarchical clustering
to cluster feature expressions into k clusters based on the WordNet
similarity.

SHC: Compared with CHC, single-link hierarchical clustering is
employed.

The proposed algorithm L-EM belongs to the EM classification
series. In order to illustrate the impact of EM, L-Rand is
implemented as follows.

L-Rand2: This method is based on the labeled data L generated by
the method in Section 3.1, with the unlabeled data U randomly
labeled. This baseline is used to show whether EM is making any
improvement beyond the two soft constraints in Section 3.1.

Note that all these methods are compared in a variety of settings.
For all the LDA based methods, i.e., LDA, mLSA, L-LDA and DF-
LDA, the topic modeling parameters are set to their default values:
α=50/k, β=0.01, where k is the number of groups/topics in the
gold standard for each data set. The number of iterations is 1000.
We used the LDA system in MALLET5. We modified it to suit
different LDA-based methods, e.g., topic constraining. We
implemented mLSA, Kmeans and changed the EM6
implementation to take soft constraints. For all the Kmeans based
methods, the distance function is the cosine similarity.

4 See the footnote 6 of the cited paper.
5 http://mallet.cs.umass.edu/
6 http://alias-i.com/lingpipe/

Table 2. Experimental results on 5 data sets, i.e., H, I, M, C, and V.

Method
Entropy

Purity

H I M C V avg H I M C V avg
Kmeans(TF) 2.45 2.32 2.61 2.67 2.15 2.44 0.35 0.31 0.38 0.32 0.41 0.35
Kmeans(PMI) 2.87 2.37 2.80 2.99 2.66 2.74 0.26 0.35 0.29 0.24 0.27 0.28
LDA 2.63 2.32 2.75 2.63 2.43 2.55 0.31 0.35 0.31 0.32 0.35 0.33
mLSA 2.62 2.31 2.74 2.46 2.38 2.50 0.32 0.35 0.31 0.38 0.37 0.35
Newman(χ2) 2.88 2.48 2.75 2.89 2.54 2.71 0.27 0.32 0.32 0.26 0.34 0.30
Newman(PMI) 3.06 2.42 2.98 3.31 3.64 3.08 0.26 0.30 0.26 0.21 0.23 0.25
CHC 2.73 2.20 2.74 2.82 2.32 2.56 0.28 0.41 0.28 0.30 0.37 0.33
SHC 3.35 2.55 3.15 3.41 3.76 3.24 0.25 0.34 0.23 0.21 0.23 0.25
L-Rand 2.18 2.19 2.52 2.58 1.84 2.26 0.47 0.41 0.42 0.38 0.52 0.44
L-Kmeans(TF) 1.90 2.04 2.24 2.18 1.56 1.98 0.52 0.43 0.46 0.47 0.57 0.49
L-Kmeans’(TF) 1.95 1.91 2.39 2.29 1.85 2.08 0.51 0.46 0.44 0.45 0.50 0.47
L-LDA 2.12 2.11 2.24 2.25 1.70 2.08 0.46 0.43 0.48 0.45 0.55 0.47
DF-LDA 2.19 1.91 2.11 2.14 1.64 2.00 0.41 0.49 0.46 0.47 0.50 0.47
L-EM 1.89 1.59 2.14 2.04 1.58 1.84 0.55 0.59 0.51 0.53 0.59 0.55

5.4 Evaluation Results
We now present and compare the results of L-EM and the 13
baseline methods based on 5 data sets. Since all these 13 methods
require the number of clusters/topics as the input, in order to fairly
compare the results, the number of clusters/topics is set to the
number of gold partitions of each data set (see Section 5.1). The
proposed algorithm L-EM also has a parameter, the number of
merges, which is set to the number of clusters. Section 5.5 will
study the effects of the number of merges.

All the results are shown in Table 2, where H, I, M, C and V are
the abbreviations of the names of the data sets, and avg represents
the average result of the 5 data sets. For Entropy, the smaller the
value is the better, but for Purity the larger the better.

Table 2 clearly shows that the proposed algorithm (L-EM)
outperforms all 13 baseline methods by a large margin on every
dataset. In addition, we make the following observations:

 Methods without using any pre-existing knowledge all
performed poorly, i.e., Kmeans(TF), Kmeans(PMI), LDA,
mLSA, Newman(χ2) and Newman(PMI), which illustrate that
only the distributional information of feature expressions is far
from sufficient.

 Methods using only lexical similarity also do not work well,
i.e., CHC and SHC. They are even worse than the 6
distributional information based methods. On the one hand,
this observation shows that lexical similarity is also unreliable.
On the other hand, it illustrates the importance of domain
dependences of our task.

 The PMI based methods, Kmeans(PMI) and Newman(PMI),
performed worse than Kmeans(TF) and Newman(χ2). This
observation is consistent with the conclusion in [39], which
observed that the quality of the PMI-based algorithms largely
depends on the size of training corpus. The poorer results of
Kmeans(PMI) and Newman(PMI) are probably the result of
our small corpora.

 Methods using the labeled data L achieve better performances,
i.e., L-Rand, L-Kmeans, L-LDA, DF-LDA and the proposed L-
EM. Recall that the labeled data L is generated by two pieces
of pre-existing knowledge. Thus, the two pieces of pre-
existing knowledge proposed in this paper help to improve the
results, which is intuitive.

 Compared with L-Kmeans(TF), L-Kmeans’(TF), L-LDA and
DF-LDA, the proposed L-EM method outperformed them on
average by more than 0.16 in Entropy and 8% in Purity. This
shows that the classification based method (L-EM) is more
suitable than clustering for our task. Note that, the Kmeans
algorithm corresponds to a particular non-probabilistic limit of
EM applied to mixtures of Gaussians [4]. The mixture
components of the proposed algorithm are a set of
multinomial distributions on which the naive Bayesian
classification is based. Thus, we call the proposed algorithm a
classification based method.

 Compared with L-Rand, the improvements made by L-EM are
more than 0.42 in Entropy and 11% in Purity, which shows
that the augmented EM algorithm is competent in revising the
labeled feature expressions in L and grouping the unlabeled
feature expressions in U.

5.5 Influence of the number of merges
We varied the number of merges as discussed in Section 3.1 from
0 to 100 to see how it impacts on the performance of the proposed
algorithm L-EM. The results are given in Figure 5 (they are
averages of the 5 data sets). When the number of merges is set to
zero, it means that we skip the step 2 of Section 3.1, and the
lexical similarity is not incorporated into our algorithm at all.
With the growth of the number of merges, we incorporate more
and more lexical similarity knowledge with the ranking based on
similarities’ strength. As shown in Figure 5, the performance of
the proposed algorithm L-EM increases at first, and then decreases
after some critical point. This phenomenon gives two pieces of
information: the lexical similarity knowledge helps our task, but
only the strong similarities are reliable. Weak similarities can
harm the overall performance.

6. CONCLUSION
This paper studied the problem of product feature clustering for
opinion mining applications. Although it is an unsupervised
learning task, due to the poor performances of various clustering
algorithms based on distributional and lexical similarities, we
casted the problem as a semi-supervised learning task. Two soft
constraints based on sharing of words and the lexical similarity
were used to identify some initial labeled examples automatically
for training. The paper then proposed to use the EM algorithm to
solve the problem, which was improved by allowing the labeled
examples to switch classes because the constraints can make
mistakes. Empirical evaluations using 5 data sets show that the
proposed method is superior to 13 baselines, which represent
various current state-of-the-art solutions for this class of
problems.

Figure 5. The influence of the number of merges to the
proposed algorithm L-EM

1.5

2.0

2.5

3.0

0 20 40 60 80 100

E
nt

ro
py

#Merges

L-Rand
L-EM

25%

35%

45%

55%

0 20 40 60 80 100

Pu
ri

ty

#Merges

L-Rand
L-EM

7. ACKNOWLEDGMENTS
This work was done when the first author was visiting the
University of Illinois at Chicago. He was also partially supported
by a grant (Grant No: 60875073) from National Natural Science
Foundation of China.

8. REFERENCES
[1] Agirre E, Alfonseca E, Hall K, Kravalova J, Pa ca M, and

Soroa A. A study on similarity and relatedness using
distributional and WordNet-based approaches. in
Proceedings of ACL. 2009.19-27

[2] Alvarez M and Lim S. A Graph Modeling of Semantic
Similarity between Words. in Proceeding of the Conference
on Semantic Computing. 2007.355-362

[3] Andrzejewski D, Zhu X, and Craven M. Incorporating
domain knowledge into topic modeling via Dirichlet forest
priors. in Proceedings of ICML. 2009.25-32

[4] Bishop C, Pattern recognition and machine learning. 2006:
Springer.

[5] Blei D, Ng A Y, and Jordan M I, Latent Dirichlet Allocation.
Journal of Machine Learning Research, 2003. 3(3): 993-
1022.

[6] Bollegala D, Matsuo Y, and Ishizuka M. Measuring semantic
similarity between words using web search engines. in
Proceedings of WWW. 2007.757-766

[7] Branavan S R K, Chen H, Eisenstein J, and Barzilay R.
Learning document-level semantic properties from free-text
annotations. in Proceedings of ACL. 2008.569-603

[8] Brown P, Mercer R, Della Pietra V, and Lai J, Class-based n-
gram models of natural language. Computational Linguistics,
1992. 18(4): 467-479.

[9] Carenini G, Ng R, and Zwart E. Extracting knowledge from
evaluative text. in Proceedings of International Conference
on Knowledge Capture. 2005.11-18

[10] Chen H, Lin M, and Wei Y. Novel association measures
using web search with double checking. in ACL. 2006.1016

[11] Fellbaum C, WordNet: An electronic lexical database. 1998:
MIT press Cambridge, MA.

[12] Guo H, Zhu H, Guo Z, Zhang X, and Su Z. Product feature
categorization with multilevel latent semantic association. in
Proceedings of CIKM. 2009.1087-1096

[13] Harris Z S, Mathematical structures of language. Interscience
tracts in pure and applied mathematics, no. 21. 1968, New
York: Interscience Publishers. ix, 230 p.

[14] Hu M and Liu B. Mining and summarizing customer
reviews. in Proceedings of SIGKDD. 2004.168-177

[15] Hughes T and Ramage D. Lexical semantic relatedness with
random graph walks. in EMNLP. 2007.581-589

[16] Jiang J and Conrath D. Semantic similarity based on corpus
statistics and lexical taxonomy. in Proceedings of Research
in Computational Linguistics. 1997.19–33

[17] Jin W, Ho H, and Srihari R. OpinionMiner: a novel machine
learning system for web opinion mining and extraction. in
Proceedings of KDD. 2009.1195-1204

[18] Kim S and Hovy E. Extracting opinions, opinion holders, and
topics expressed in online news media text. in Proceedings of
EMNLP. 2006.1065-1074

[19] Kobayashi N, Inui K, and Matsumoto Y. Extracting aspect-
evaluation and aspect-of relations in opinion mining. in
Proceedings of EMNLP. 2007.1065-1074

[20] Ku L, Liang Y-T, and Chen H-H. Opinion Extraction,
Summarization and Tracking in News and Blog Corpora. in
Proceedings of AAAI. 2006.100-107

[21] Lee L. Measures of distributional similarity. 1999:
Proceedings of ACL.25-32

[22] Lin D. Automatic retrieval and clustering of similar words.
1998: Proceedings of ACL.768-774

[23] Lin D. An information-theoretic definition of similarity. in
Proceedings of ICML. 1998.296-304

[24] Lin D and Wu X. Phrase clustering for discriminative
learning. in Proceedings of ACL. 2009.1030-1038

[25] Liu B, Web data mining; Exploring hyperlinks, contents, and
usage data. 2006, Springer.

[26] Liu B, Hu M, and Cheng J. Opinion Observer: Analyzing
and Comparing Opinions on the Web. in Proceedings of
WWW. 2005.342-351

[27] MacQueen J. Some methods for classification and analysis of
multivariate observations. in Proceedings of Symposium on
Mathematical Statistics and Probability. 1966.281-297

[28] Matsuo Y, Sakaki T, Uchiyama K, and Ishizuka M. Graph-
based word clustering using a web search engine. 2006.
Proceedings of EMNLP.542-550

[29] Mei Q, Ling X, Wondra M, Su H, and Zhai C. Topic
sentiment mixture: Modeling facets and opinions in weblogs.
in Proceedings of WWW. 2007.171-180

[30] Nigam K, McCallum A, Thrun S, and Mitchell T, Text
classification from labeled and unlabeled documents using
EM. Machine Learning, 2000. 39(2): 103-134.

[31] Pang B and Lee L, Opinion Mining and Sentiment Analysis.
Foundations and Trends in IR. 2008. 1-135.

[32] Pantel P, Crestan E, Borkovsky A, Popescu A, and Vyas V.
Web-scale distributional similarity and entity set expansion.
in Proceedings of EMNLP. 2009.938-947

[33] Pedersen T. Information Content Measures of Semantic
Similarity Perform Better Without Sense-Tagged Text. in
Proceedings of NAACL HLT. 2010

[34] Pereira F, Tishby N, and Lee L. Distributional clustering of
English words. in Proceedings of ACL. 1993.183-190

[35] Popescu A-M and Etzioni O. Extracting Product Features
and Opinions from Reviews. in EMNLP. 2005.339-346

[36] Resnik P. Using information content to evaluate semantic
similarity in a taxonomy. in IJCAI. 1995.448-453

[37] Sahami M and Heilman T. A web-based kernel function for
measuring the similarity of short text snippets. in
Proceedings of WWW. 2006.377-386

[38] Stoyanov V and Cardie C. Topic identification for fine-
grained opinion analysis. in COLING. 2008.817-824

[39] Su Q, Xiang K, Wang H, Sun B, and Yu S. Using pointwise
mutual information to identify implicit features in customer
reviews. in ICCPOL. 2006.22-30

[40] Titov I and McDonald R. Modeling online reviews with
multi-grain topic models. in WWW. 2008.111-120

[41] Wagstaff K, Cardie C, Rogers S, and Schroedl S.
Constrained k-means clustering with background knowledge.
in In Proceedings of ICML. 2001.577-584

[42] Yang D and Powers D. Measuring semantic similarity in the
taxonomy of WordNet. 2005. Proceedings of the
Australasian conference on Computer Science.322

[43] Zhai Z, Liu B, Xu H, and Jia P, Grouping Product Features
Using Semi-supervised Learning with Soft-Constraints, in
Proceedings of COLING. 2010.

