
Babel 2001 Preliminary Version
Compiling Merury to the .NET CommonLanguage RuntimeTyson Dowd, Fergus HendersonDepartment of Computer Sieneand Software EngineeringThe University of Melbourneftrd, fjhg�s.mu.oz.auPeter RossMission Critial, Belgiumpeter.ross�misrit.beAbstratThe .NET Common Language Runtime (CLR) o�ers a new opportunity to exper-iment with multi-language interoperation, and provides a relatively rare hane toexplore deep interoperation of a wide range of programming language paradigms.This artile desribes how the logi/funtional programming language Merury isompiled to the CLR. We desribe the problems we have enountered with generat-ing ode for the CLR, give some preliminary benhmark results, and suggest somepossible improvements to the CLR regarding separate ompilation, veri�ability, tailalls, and eÆieny.1 IntrodutionWe have been researhing language interoperability as part of our researh onthe delarative logi/funtional programming language Merury [9℄.Many programming language researhers (inluding ourselves) have arguedthat if we are to see widespread adoption of new programming languages, theymust inlude omprehensive interfaes with existing languages and systems.Mirosoft's .NET Common Language Runtime (CLR) [11℄ is a new plat-form that may help make suh interfaing easier. The CLR is intended tosupport a range of programming languages using a ommon data representa-tion, garbage olletor, alling onvention, and exeption handling mehanism,and omes with a large set of lass libraries. This provides a high-level basefor interoperation, leaving us with just the built in assumptions and naturalmismathes in language semantis and features to takle.This is a preliminary version. The �nal version will be published inEletroni Notes in Theoretial Computer SieneURL: www.elsevier.nl/loate/ents



Dowd, Henderson, RossThe �rst step towards supporting language interoperability between Mer-ury and other languages on the .NET CLR is to implement a ompiler forMerury that generates ode for the CLR. That step is what this paper de-sribes.2 Preliminaries2.1 The .NET Common Language RuntimeThe .NET CLR is a new virtual mahine developed by Mirosoft. The systemis similar to the Java virtual mahine in that it is based around an objet-oriented type system, a byteode based instrution format, veri�able ode anda builtin seurity system. It di�ers in that it is intended to be a replaementruntime system for Mirosoft's stable of programming languages (Visual Basi,Visual C++, JSript and C℄ ), whereas the JVM is intended to just run Java 1 .In addition, the .NET CLR has some expliit support for languages outsidethe inner irle, suh as a tail-all instrution (see Setion 3.4).The Merury ompiler targets the .NET CLR by generating lasses whihde�ne methods using instrutions in Common Intermediate Language (CILor sometimes simply IL) in an assembly language. A CIL assembler turnsa textual representation of CIL into .NET byte ode in the appropriate �leformats.The .NET CLR implementation loads and optionally veri�es ode as it isrequired by the running program. Native ode is generated from the CIL bya just-in-time ompiler. It is also possible to mix native ode with CIL, ifveri�ation is not required.The CLR's type system is more expressive than the JVM, subsuming all thefamiliar Java types | distinguishing between value lasses (struts) and ref-erene lasses (heap-alloated objets with identity), and providing unsignedinteger types, safe (\managed") pointers for pass-by-referene, and traditionalunsafe (\unmanaged") pointers for ode that doesn't need veri�ability.The system also de�nes a subset of the allowable types, names and otheronstruts whih an appear in omponent interfaes, alled the CommonLanguage Spei�ation (CLS), whih is intended to be a minimal standard forinteroperation between di�erent programming languages and tools.The CLR allows reetion on all the names, types, signatures and pa-rameters of loaded modules. Attributes may be attahed to types, modules,parameters and signatures by users, ompilers or tools in a fairly general way,whih allows new interoperation standards to be built on top of the existingruntime without requiring expliit support.1 Although there have ertainly been many e�orts to run other languages on the JVM:see http://grunge.s.tu-berlin.de/~tolk/vmlanguages.html2

http://grunge.cs.tu-berlin.de/~tolk/vmlanguages.html


Dowd, Henderson, Ross2.2 MeruryMerury is a pure logi/funtional programming language intended for generalpurpose large-sale programming.We assume familiarity with the basi onepts of logi and funtional pro-gramming. We do not assume familiarity with aspets of Merury beyond thefollowing.� Merury is strongly typed. It has a Hindley-Milner style type system, similarto that of Haskell and ML.� Merury supports funtions as well as prediates. Every prediate and everyfuntion has one or more modes, whih say, for every argument or funtionvalue, whether it is input or output. (The mode system is more sophistiatedthan that, but that is all that matters for this paper.) We all eah modeof a prediate or funtion a proedure.� Merury assoiates with every proedure a determinism, whih expresses up-per and lower bounds on the number of solutions the proedure an have.Proedures that are guaranteed to have exatly one solution have deter-minism det. Proedures that may have one solution for one set of inputsand zero solutions for other inputs have determinism semidet. Proeduresthat may have any number of solutions have determinism nondet; nondetproedures use baktraking searh.� Merury's main must be det. Therefore all ode must eventually interfaewith deterministi ode. A ommit is generated when non-deterministiode is alled from a ontext that expets only one solution; the ommitwill prune the nondet baktraking searh to a single solution.These onepts are introdued in the Merury tutorial [1℄ and desribedin detail in the Merury language referene manual [9℄ and elsewhere [10℄.2.3 Related WorkMany languages have been ported to the JVM to ahieve interoperabilitywith Java. Of these ports, the MLj ompiler [2,3℄ is probably the most loselyrelated work to this paper, sine ML has a similar type system and exeutionalgorithm to Merury. However MLj is a whole-program ompiler, and is nota logi programming language, so we enountered several issues that do notarise in the MLj system.Several Prolog (JProlog, NetProlog) and logi programming languages(Jinni [13℄) have targeted the JVM; however, beause of the strong statitype, mode and determinism information in Merury, the exeution algorithmused for Merury has little in ommon with most logi languages. TheseProlog implementations do provide interesting ideas about interfaing logiprogramming onepts with Java.Little published work is available as yet on systems that interoperate on3



Dowd, Henderson, Ross.NET.3 Operation3.1 Compiler front-end and intermediate representationThe original ompiler for Merury [8,12℄ ompiled to very low-level ode, usingtehniques that were not appropriate for ompiling to the .NET CLR.Reently we developed a new ode-generator for Merury that generateshigher-level ode, whih is more suitable for high-level target languages likeCIL. The new ode-generator is based around a new intermediate data stru-ture, modelled on a high-level abstrat imperative language named the MediumLevel Data Struture, or MLDS. There are several di�erent bak-ends thattransform the MLDS into atual target ode (C, Java, native assembler orCIL).The MLDS onsists of onstruts suh as assignments, alls, simple expres-sions (inluding taking addresses of variables and dereferening pointers), allo-ation and dealloation. The type system ontains the usual primitive types,as well as lasses, strutures, arrays, interfaes, enumerations, and funtionpointers. There is support for instane and stati members, virtual funtions,and aess restritions (publi, private, proteted, or similar). These are om-mon elements in almost all modern imperative programming languages, heneit is relatively easy to target imperative programming languages suh as C orJava.The MLDS ode generator translates Merury ode into relatively simpleimperative programming onstruts. The details of that translation are dis-ussed in depth in a di�erent paper [7℄, so we won't disuss them here. Theaim of this paper is to address the issues whih are spei� to ompiling MLDSto the .NET CLR.3.2 Modules and stati dataEah Merury module beomes a .NET namespae ontaining a lass alled`merury ode'. Here's the CIL ode that the Merury ompiler generates foran empty Merury module. You'll note that the CIL ode looks a bit like aross between a high-level objet oriented language and assembler. Diretiveslike `.namespae' and `.lass' introdue lasses, methods, namespaes, �elds,et. Inside eah method, the ode ontains byteode assembler instrutions.For larity, we've added equivalent C℄ ode in omments..namespae mymodule {.lass publi merury_ode {.field publi stati bool rtti_initialized.method stati default void .tor() {// if (rtti_initialized) return;// rtti_initialized = true;4



Dowd, Henderson, Ross// merury.builtin.merury_ode::'.tor'();ldsfld bool mymodule.merury_ode::rtti_initializedbrfalse l1retl1: ld.i4.1stsfld bool mymodule.merury_ode::rtti_initializedall void [merury℄merury.builtin.merury_ode::.tor()ret} } }The `merury ode' module ontains a lass onstrutor (alled `.tor')whih initialises the stati data required by this Merury module. The Mer-ury ompiler generates stati data for three purposes: (a) as an optimization,Merury terms that don't ontain variables are onstruted statially ratherthan eah time they are referened; (b) stati data strutures are needed forthe run-time type information needed to handle Merury's parametri poly-morphism and type lasses (see 3.8.4); and () the Merury ompiler generatesstati hash tables for indexing string swithes.The .NET CLR does not allow stati objets to be onstruted at ompiletime or link time 2 , so we need to initialize them at runtime. Currently thismeans initialising the loal run-time type information (RTTI), then initialisingRTTI in other modules on whih the urrent module depends, and �nally�lling in any ross-module referenes in the RTTI data strutures. Note thatin this sample program no RTTI is initialised, but the lass onstrutor ofother modules is alled. We keep trak of whether we have already initialisedthe RTTI in a module with a stati boolean ag. This allows us to avoidlooping in the ase of mutually dependent modules.The Merury standard library is quite large, and ontains many types,and so the Merury ompiler generates a onsiderable amount of RTTI forit. Initializing these stati data struture at run time may have a signi�antperformane impat, partiularly on program start-up times.An alternative approah would be to initialize these strutures lazily, de-laying the initialization of eah data struture until it is �rst used. That wouldlead to better start-up times, but only at the expense of slowing down long-running programs, due to the additional overhead of heking whether the datastrutures are already initialized on eah aess. We have not implementedthat approah.
2 There is some support for stati byte arrays, but sine the .NET CLR is intended tosupport multiple hardware arhitetures, objet layout is not known at ompile time or linktime, so .NET objets an only be reated at runtime. To support statially initialized datain a veri�able way, the JIT would have to optimize the initialization into a stati alloationof data, and ahe suh data on disk. 5



Dowd, Henderson, Ross3.3 ProeduresEah mode of a funtion or prediate is alled a proedure. We map eahproedure to a .NET lass member funtion that is a stati member of the`merury ode' lass.Merury prediates beome stati .NET funtions with `void' return val-ues. Merury funtions beome stati .NET funtions with a return valueorresponding to the funtion output. Funtions whose return value is not anoutput (possible, but not ommon) are treated as prediates.Beause Merury allows funtions and prediates to have the same nameand arity, as well as allowing multiple modes of the same funtion or prediate,we have to do some name mangling. We annot rely on .NET's overloadingto resolve overloading for us, as there are some ases where Merury willmap di�erent prediates or funtions to the same .NET method signatureand name. We use a stati sheme for mangling proedure names so that noollisions our.In pratie, apart from appending the arity to eah proedure, the amountof mangling is quite small.3.4 Tail CallsReursion is the natural looping onstrut in logi programming languages, soit is used extensively. Tail all elimination very important, both for optimiza-tion and to ensure bounded stak spae usage for tail-reursive loops.The .NET CLR provides a tail. instrution pre�x whih when oupledwith a all will perform a all that uses onstant stak spae. Typially thisis implemented by re-using the stak-frame of the aller for the allee. Thetail. pre�x must preede a all, alli or allvirt instrution that isfollowed by a ret.For diretly reursive tail alls, where the aller is the same proedure asthe allee, we implement tail all elimination by generating ode that uses abranh instrution to loop bak to the start of the proedure. For other tailalls, we use the CLR's tail. instrution pre�x to implement tail all elimina-tion. However, as explained below, there are some problems with veri�abilitywhen using the CLR's tall all support to all proedures with multiple outputparameters.3.5 Output ParametersMerury supports proedures with multiple output parameters. This an bediÆult to map to some platforms, beause it is ommon for programminglanguages and virtual mahines to only allow a single return value.Fortunately, however, the .NET CLR provides a mehanism, by-ref pa-rameters, for passing parameters by referene. .NET by-ref parameters areveri�able and safe; the veri�er prevents you from generating by-refs that are6



Dowd, Henderson, Rossdangling (i.e. you an only pass them into alls, you an't return them orstore them in stati variables or on the heap).So we implement Merury's multiple output parameters using by-refs.:- fun add(int, int) = int.:- mode add(in, in) = out is det.:- mode add(out, in) = in is det.add(X, Y) = X + Y.Beomes:.method stati default int32 add_3(int32 HeadVar__1_1,int32 HeadVar__2_2) {.maxstak 2// return HeadVar__1_1 + HeadVar__2_2;ldarg HeadVar__1_1ldarg HeadVar__2_2addret}.method stati default void add_3_f_m1(int32& HeadVar__1_1,int32 HeadVar__2_2, int32 HeadVar__3_3) {.maxstak 3// *HeadVar__1_1 = HeadVar__3_3 - HeadVar__2_2;ldarg HeadVar__1_1ldarg HeadVar__3_3ldarg HeadVar__2_2substind.i4 // "indiret store of 4-byte integer"ret} The CLR and assoiated tools also have a onvention aimed at solvingthe dilemma of in/out versus out. There is an `out' attribute that an beplaed on a parameter, whih an be used by other ompilers and tools toindiate that a by-ref parameter is output only. This orresponds niely withMerury's `out' mode, and is an example of how attributes an be used toimprove the interoperability of the system without requiring hanges to theunderlying system.Unfortunately, the veri�er doesn't hek and therefore annot rely upon the`out' attribute; CIL ode will not be veri�able unless it initializes parametersthat are passed by referene before passing them (regardless of whether thereferene is just being used for an output parameter).There is, however, a more serious problem with the urrent CLR veri�er'streatment of by-refs. The veri�er does not allow tail all instrutions to useby-ref parameters, presumably beause the analysis required to ensure noreferenes refer to the loal stak frame has not yet been implemented. This7



Dowd, Henderson, Rossis an unfortunate problem, requiring us to give up veri�ability, tail-alls, orby-ref parameters, so we hope it will be remedied in future versions.In our urrent implementation we normally generate unveri�able ode withproper tail-all elimination, but we also provide an option to generate veri-�able ode by not doing tail-all elimination for proedures with `out' modeparameters.Another possibility would be to return multiple value in strutures (valuetypes). However, there are several drawbaks to this approah. The �rst isthat this approah is not quite as natural a mapping as by-ref parameters,whih would make interoperability more diÆult. Programmers trying to allMerury ode from another language might have diÆulty understanding thedoumentation for the Merury ode, beause orrespondene between theMerury ode and its CLR interfae would not be as diret, sine the CLRinterfae would be returning a value type where the Merury ode was using`out' mode parameters.A seond drawbak is that this approah an make tail all eliminationmore diÆult; when return values must be moved from the struture to theirintended destinations after a all, tail-all elimination is inhibited.A third drawbak of this approah is that it would require de�ning a newvalue type for eah di�erent set of return types. That might inrease thesize of the generated ode onsiderably. (Previous experiene with the JVMsuggests that this an be a real problem.) It would be possible to redue thenumber of types needed by using tuple strutures whose �elds are the generi\objet" type, but then additional ode would be needed for boxing valuesbefore inserting them into the tuples and for downasting and unboxing themwhen retrieving from the tuples, and this would have very signi�ant osts forexeution time.3.6 Non-determinismNon-deterministi proedures are represented in the MLDS as a set of nestedfuntions, one for eah non-det goal. Eah nested funtion alls a ontinuation(to the next non-det goal) if it sueeds (�nds a solution), and returns if itfails (�nds no solution). The nested funtions share an environment (the loalvariables and atual parameters of the parent funtion), whih represents thestate of the saved values required to ontinue searhing if a partiular branhhappens to fail.All non-deterministi ode will eventually interfae to deterministi ode(reall that Merury's main must be deterministi). Hene there will be asequene of (now unneessary) ontinuation alls on the stak representingthe searh spae.If the non-deterministi ode fails, it will eventually return to some semi-deterministi ontext (for example the ondition of an if-then-else), where thefailure will be handled. 8



Dowd, Henderson, RossNon-deterministi ode sueeds to deterministi ode by ommit, whihremoves the ontinuation stak frames (see Setion 3.7).Sine .NET does not support nested funtions, we eliminate them by anMLDS-to-MLDS transformation that hoists them up to the top level. Theshared environment variables are put into environment strutures whih areexpliitly passed when ontinuations are alled. These environment struturesare turned into value lasses in the .NET bak-end. We use funtion pointersto implement ontinuation passing, using the ldftn and alli instrutionsto load funtion pointers and all through them.The transformation to eliminate nested funtions works smoothly in the Cbak-end, but there is a major ompliation when targeting the .NET CLR.Sine Merury uses by-ref parameters to represent output parameters, and theenvironment strutures ontain the atual parameters of the parent funtion,the environment strutures ontain by-refs if there are output parameters.However, on .NET one annot put by-ref parameters inside strutures; by-refs an only be stak variables or funtion parameters, so as to prevent thereation of dangling by-ref parameters that live on the heap, or are returnedthrough a struture.It would be a useful hange to the .NET CLR to allow value lasses toontains by-ref parameters, so long as value lasses ontaining by-refs abideby the same rules for validity and veri�ability that already exist for by-refsthemselves. This extension may be useful for other programming languagesthat support by-ref parameter passing and nested funtions.To work around this problem, we use an approah that was suggestedto us by Erik Meijer. We generate a di�erent alling onvention for non-deterministi ode, whih we all non-det opy out. Instead of passing outputarguments by referene, and simply assigning to the output arguments when-ever we produe an output binding, we generate loal variables for loallyprodued outputs, and pass them to the ontinuation (and this ontinuationpasses them to the next, and so on). When non-deterministi ode ends (at aommit) we opy the set of output arguments from the �nal ontinuation intothe (by-ref) output arguments.Unfortunately that work-around still does not suÆe. The problem is thatenvironment strutures may need to ontain referenes to other environmentstrutures (e.g. the environment for the aller) whose exat type is not knownat ompile time. The .NET CLR type system does provide a refany type(a.k.a. System.TypedRef) whih an be used for safe referenes to values ofunknown types; it holds both a pointer and a type, and there's a dynamiallyheked operation for onverting a refany to a referene to a spei� type.However, refany is subjet to similar restritions to by-refs. The opy-inopy-out work-around doesn't work for refany, beause the size of the typethat a refany value refers to isn't known at ompile time.For unveri�able ode we an solve this by just using an unmanaged pointertype instead of refany, and using unheked oerions to onvert this to9



Dowd, Henderson, Rossa spei� by-ref type. But if we want veri�able ode, the only alternativepossible is to alloate the environment strutures on the heap, using lasstypes, rather than on the stak, using value types; this is likely to be lesseÆient.Currently our ompiler by default generates unveri�able ode that allo-ates the environments for nondet Merury proedures on the stak and usesunmanaged pointers to refer to them. However, we also provide an option forgenerating ode whih alloates the environments on the heap.Unfortunately the ode that we generate for nondeterministi Meruryproedures is still unveri�able, even if this option is enabled, beause of ouruse of funtion pointers (ldftn and alli), whih are unveri�able in theurrent .NET CLR. To remedy that, we plan to move to using the .NETdelegates, whih provide similar funtionality to funtion pointers, and areveri�able, but arry the overhead of an objet instead of a value.3.7 CommitsThe ommit mehanism in the Merury MLDS bak-end requires some sort ofstak unwinding mehanism to return to a previous point in the omputation.The Merury ompiler's MLDS ode generator represents ommits usinga pair of speial MLDS onstruts: try ommit enapsulates a blok of odewhih might do a ommit, and do ommit unwinds the stak bak to themathing try ommit.In the .NET bak-end, these are implemented using exeptions. The MLDS`try ommit' beomes an exeption handling try blok and a ath blok, and`do ommit' simply loads a speial Merury ommit type and throws it as anexeption, whih will be aught by the ath blok of the nearest try ommit.3.8 Data Representation3.8.1 Primitive typesImplementing Merury's primitives types on the CLR is straight-forward: wemap eah of Merury's primitive types to the orresponding CLR type. Mer-ury int beomes CLR int32 (32-bit signed integers), Merury har beomesCLR har (16-bit Uniode haraters), Merury float beomes CLR float64(64-bit IEEE oat), and Merury string beomes the CLR System.Stringlass.3.8.2 ArraysMerury arrays are also represented using CLR arrays. For any Merurytype MT, where MT is not a type variable, the Merury type array(MT)beomes the CLR type CT[℄, where CT is the CLR type orresponding toMT. Polymorphially typed Merury arrays need to be treated speially; ifMT is a type variable then the Merury type array(MT) is mapped to the10



Dowd, Henderson, RossCLR lass System.Array, whih is the base lass that is inherited by all CLRarray types.3.8.3 Disriminated unionsFor Merury's disriminated union types (also known as algebrai data types),our urrent implementation uses a representation whih is similar to the rep-resentation desribed in [6℄. Every Merury disriminated union type is rep-resented as an array of objets, using the CLR type System.Objet[℄. The�rst element of the array is an integer tag used to distinguish between di�erentonstrutors for disriminated union types.This representation is unappealing, having signi�ant drawbaks for botheÆieny and interoperability, and was used mainly for historial reasons.We've also been working on a higher-level representation, where eah Mer-ury disriminated union type is mapped to a CLR abstrat base lass, andeah onstrutor in a disriminated union type is mapped to a CLR lass thatderives from the abstrat base lass for that disriminated union type. How-ever, this is not yet fully implemented. One diÆulty with this representationis that some triky issues arise with abstrat data types. These are disussedin Setion 3.8.6.3.8.4 Polymorphi typesThe handling of parametri polymorphism and type lasses is very similarto the way it is done in the original Merury ompiler. Polymorphiallytyped Merury variables are represented as System.Objet, the root lassin the CLR lass hierarhy; the ompiler inserts ode to box and unboxvalue types suh as int32, har, and float64 when onverting them to/fromSystem.Objet. For polymorphi proedures, the ompiler inserts extra pa-rameters that hold run-time type information (RTTI) and/or type lass di-tionaries (tables of lass methods). The run-time type information is neededfor Merury's RTTI features, whih are used for purposes suh as optionaldynami typing and serialization/deserialization. The details are disussed inour previous work [6℄.Note that although the CLR has extensive run-time type information andreetion failities, we an't use the CLR's failities to support Merury'sRTTI features; the CLR types don't have enough information. The CLR typesystem doesn't support parametri polymorphism, so information about thevalues of type parameters is lost when mapping Merury types to CLR types.Di�erent Merury types, suh as for example list(string) and list(int),will map to the same CLR type.3.8.5 Higher-order typesClosures are handled using environment strutures and funtion pointers. Thishas some drawbaks for interoperability and veri�ability and, as with ourtreatment of ontinuations, we plan to eventually move to using delegates11



Dowd, Henderson, Rossinstead.3.8.6 Abstrat Data TypesMerury allows modules to de�ne abstrat types that are implemented as typesynonyms. From outside the module, suh a type is onsidered a distint newabstrat type, but from inside the module, the type is onsidered as equivalentto the synonym type.Unfortunately there is no diret support for this in .NET. We need togenerate spei� type names and type spei� ode for referening and ma-nipulating abstrat data types. So we need some way of handling abstratequivalene types for the .NET bak-end 3 .The leanest solution to this problem would be for the .NET CLR tosupport type synonyms, and support generi ode for manipulating types.The type referenes and generi ode ould be expanded into type spei�referenes and ode at runtime.There are several solutions we an use in the Merury ompiler to avoidthis problem, none of whih are ompletely satisfatory.� Map everything to a single type, suh as `Objet'.This is very bad for interoperability (whih is the whole point of this bak-end), and probably very bad for performane too. Exluding value typessuh as `int' and `float' from being mapped to `Objet' might improveperformane and interoperability, but abstrat equivalene types that areequivalent to `int' or `float' will need to be handled somehow.� Map ADTs to referene lasses externally, and ast to equivalene internally.This improves interoperability signi�antly, but at a steep ost in perfor-mane. Converting from a referene type to a value type internally mightseem relatively painless, but if the ADT is nested inside a data struture(for example, the elements of a list or array) we may need to onvert everyelement as part of the ast operation, whih an be arbitrarily expensive.� Treat ADTs as onrete types rather than abstrat types.This solution gives good interoperability and eÆieny, but it fundamen-tally abuses the notion of abstration. While we an (and should, for type-heking purposes) ensure the Merury ompiler hides the de�nition of thedata type from the user, ompilers for other languages might not.Furthermore, this approah has unfortunate onsequenes for versioning.Beause the Merury ompiler does separate ompilation, this solution fun-damentally hanges the ompilation model. With this approah, a modulemust be reompiled if the implementation of an abstrat data type it im-ports hanges.Currently we use a variant of the �rst option. Many languages that supportabstrat data types ould run afoul of this issue, depending upon their data3 the JVM and hene the Merury ompiler's Java bakend su�ers from the same problem12



Dowd, Henderson, RossTable 1Preliminary benhmark resultsLanguage ompiler target true tak queensMerury mm -s asm fast.g native 0.07 31.4 2.24Merury mm -s asm fast native 0.07 31.4 0.86Merury mm -s hl.g native 0.07 34.2 1.76Merury mm -s il CLR N/A N/A 9.28Merury mm -s il CLR 1.80 34.6 14.4C l native 0.05 35.5 N/AC g -O3-fomit-frame-pointer native 0.07 35.6 N/AC℄ s /o CLR 0.16 40.6 N/Arepresentation and ompilation model.4 BenhmarksAll benhmarks were arried out a 366 MHz Celeron, with 128 kb L2 aheand 256 Mb RAM, using Mirosoft .NET Beta 2 and Cygwin g 2.95.2-6 onWindows 2000. Eah benhmark program was run 6-8 times in suession, tofully prime the ahe, with the result being the fastest time reorded.We ompared �ve di�erent Merury ompiler bak-ends | the one de-sribed in this paper (`il'), an experimental variant whih uses the higher-level data representation for algebrai types disussed in Setion 3.8.3 (`il'),and three existing bak-ends (`asm fast', `asm fast.g', and `hl.g') 4 Forthe il and il bak-ends, the `--verifiable-ode' option was not enabled.In addition, for two of the benhmarks we also measured the performaneof equivalent programs written in C, ompiled with MSVC (l) or GNU C(g -O3 -fomit-frame-pointer), and in C℄ , ompiled with the MirosoftC℄ ompiler (s /o).We ran three di�erent benhmarks, `true', `tak', and `queens'; the resultsare shown in table 4. All �gures are exeution times, measured in seonds.Start-up time. To measure the impat on start-up times of initializing theMerury RTTI data strutures, we measured the time taken to exeute a4 asm fast is the original bak-end of the Merury ompiler; it ompiles to native odevia low-level GNU C. It has no garbage olletor, but heap spae is reovered automatiallyon baktraking. asm fast.g is same as asm fast.g, exept that it uses the Boehm (etal) onservative garbage olletor [4℄. hl.g is the MLDS-based high-level C bak-end ofthe Merury ompiler; it ompiles to native ode via standard C. It too uses the Boehmolletor. 13



Dowd, Henderson, Rosstrivial \do-nothing" Merury program, true. When ompiled to the .NETCLR, this program took about 1.8 seonds, ompared with about 0.07 se-onds for the same program ompiled via C to native ode, and about 0.16seonds for a do-nothing C℄ program.Reursion. tak is an arti�ial benhmark, originally written in Lisp; it isheavily reursive and does lots of simple integer arithmeti. We hose thisbenhmark beause it was the only benhmark in our standard set thatdidn't use disriminated union types. To redue the e�ets of start-uptime, we wrote a test harness that ran the test 10000 times.All versions ran at pretty similar speeds, with C℄ falling a little behind,probably beause it was the only one that failed to perform tail all elimi-nation. This shows that the CLR an math native ode for at least somebenhmarks.Baktraking and lists. queens �nds a solution to the problem of plaing11 queens on an 11x11 hess-board without any queen attaking any otherqueen; it makes heavy use of baktraking, lists, and heap alloation.On this benhmark our CLR bak-end does substantially worse than theother Merury implementations; even when using a higher-level data repre-sentation rather than arrays of System.Objet, it is a fator of 5 worse thanthe MLDS-based C bak-end, and a fator of 10 worse than the best Mer-ury implementation, whih reovers heap storage heaply on baktraking,rather than using garbage olletion.A large part of this is no doubt due to the immature nature of our ur-rent implementation; for example, our ompiler emits many unneessary`astlass' instrutions, whih ould easily be eliminated by ommon sub-expression elimination. We emphasize that these benhmark results arepreliminary. 5Overall, the benhmarks show widely varying results. No �rm onlusionsshould be drawn about the overall performane ompetitiveness of ompilingto the CLR from the benhmark results at this stage. However, the ost ofinitializing stati data at start-up is de�nitely problemati for us.5 Conlusions & Further workWe have implemented a ompiler for Merury that generates .NET CLR CILode and whih handles all of the standard Merury language features.By generating ode for the CLR, many aspets of our language implemen-tation have been simpli�ed, beause we have been able to make diret use ofthe high-level failities that it o�ers, suh as garbage olletion and exeptionhandling. But more importantly, having a ompiler for the CLR is the �rststep towards ahieving a muh greater degree of interoperation between Mer-5 In fat, for the il version we had to hand-edit the generated CIL ode slightly to makeit work. 14



Dowd, Henderson, Rossury and a variety of other di�erent languages that target the .NET CLR.Programmers an bene�t from this interoperability with inreased ode reuse,e.g. by making use of the wide variety of existing omponents available onthis platform.We have also identi�ed a number of areas in whih the .NET CLR or futureVMs ould be improved to better support Merury and other languages:� support for stati initialization of stati data objets� support for returning multiple values (instead of just one)� more \�rst-lass" support of by-ref and refany types� allowing by-refs parameters for tail-alls in veri�able ode� veri�able funtion pointers� veri�er-enfored `out' mode parameters� support for parametri polymorphism� support for type synonyms as abstrat data typesThe work desribed in this paper is just a �rst step towards ahieving easylanguage interoperability between Merury and other languages on the CLR;it provides a base upon whih we an then build spei� ompiler and/orlanguage support for interoperating with other languages.Future work inludes tighter integration of the Merury's type system andthe CLR's type system, �nding suitable interfaes for language feature mis-mathes, improving the eÆieny of the ode our ompiler generates, andoveroming the remaining issues of veri�ability. We would also like to domore detailed performane measurements.AknowledgementsThanks to Zoltan Somogyi, Peter Shahte, Kevin Glynn, David Je�eryand the anonymous referees for reviewing earlier drafts of this paper.A paragraph or two in the bakground material desribing Merury (Se-tion 2.2) ame from a paper by Thomas Conway and Zoltan Somogyi [5℄.This work has been �nanially supported by grants from Mirosoft toZoltan Somogyi at the University of Melbourne, and by Mission Critial.Thanks to Mirosoft, Mission Critial, and Zoltan Somogyi for their support,both �nanial and otherwise.Referenes[1℄ R. Beket. Merury tutorial, 1999. Available from <http://www.s.mu.oz.au/researh/merury/tutorial>.[2℄ N. Benton and A. Kennedy. Interlanguage working without tears: BlendingSML with Java. In International Conferene on Funtional Programming, pages126{137, 1999. 15



Dowd, Henderson, Ross[3℄ N. Benton, A. Kennedy, and G. Russell. Compiling Standard ML to Javabyteodes. In Proeedings of the ACM SIGPLAN International Conferene onFuntional Programming (ICFP '98), volume 34(1), pages 129{140, 1999.[4℄ H. Boehm and M. Weiser. Garbage olletion in an unooperative environment.Software Pratie and Experiene, 18:807{820, 1988.[5℄ T. Conway and Z. Somogyi. Deep pro�ling: engineering a pro�ler for adelarative programming language. Tehnial Report 2001/24, Department ofComputer Siene, The University of Melbourne, Melbourne, Australia, July2001.[6℄ T. Dowd, Z. Somogyi, F. Henderson, T. Conway, and D. Je�ery. Run time typeinformation in Merury. In Proeedings of the 1999 International Conferene onthe Priniples and Pratie of Delarative Programming, pages 224{243, Paris,Frane, September 1999.[7℄ F. Henderson. Compiling Merury to high-level C ode. Submitted forpubliation; available from the author on request, June 2001.[8℄ F. Henderson, T. Conway, and Z. Somogyi. Compiling logi programs to Cusing GNU C as a portable assembler. In ILPS'95 Postonferene Workshopon Sequential Implementation Tehnologies for Logi Programming, pages 1{15,Portland, Oregon, 1995.[9℄ F. Henderson, T. Conway, Z. Somogyi, D. Je�ery, P. Shahte, S. Taylor,and C. Speirs. The Merury language referene manual. Available from<http://www.s.mu.oz.au/merury/>, 1995{2001.[10℄ F. Henderson, Z. Somogyi, and T. Conway. Determinism analysis in theMerury ompiler. In Proeedings of the Australian Computer SieneConferene, pages 337{346, Melbourne, Australia, January 1996.[11℄ Mirosoft. Mirosoft .NET. <http://www.mirosoft.om/net/>.[12℄ Z. Somogyi, F. Henderson, and T. Conway. The exeution algorithm of Merury,an eÆient purely delarative logi programming language. Journal of LogiProgramming, 1997.[13℄ P. Tarau. Intelligent mobile agent programming at the intersetion of Javaand Prolog. In Proeedings of The Fourth International Conferene on ThePratial Appliation of Intelligent Agents and Multi-Agents, pages 109{123,London, U.K., 1999.
16


