
Babel 2001 Preliminary Version
Compiling Mer
ury to the .NET CommonLanguage RuntimeTyson Dowd, Fergus HendersonDepartment of Computer S
ien
eand Software EngineeringThe University of Melbourneftrd, fjhg�
s.mu.oz.auPeter RossMission Criti
al, Belgiumpeter.ross�mis
rit.beAbstra
tThe .NET Common Language Runtime (CLR) o�ers a new opportunity to exper-iment with multi-language interoperation, and provides a relatively rare 
han
e toexplore deep interoperation of a wide range of programming language paradigms.This arti
le des
ribes how the logi
/fun
tional programming language Mer
ury is
ompiled to the CLR. We des
ribe the problems we have en
ountered with generat-ing 
ode for the CLR, give some preliminary ben
hmark results, and suggest somepossible improvements to the CLR regarding separate 
ompilation, veri�ability, tail
alls, and eÆ
ien
y.1 Introdu
tionWe have been resear
hing language interoperability as part of our resear
h onthe de
larative logi
/fun
tional programming language Mer
ury [9℄.Many programming language resear
hers (in
luding ourselves) have arguedthat if we are to see widespread adoption of new programming languages, theymust in
lude 
omprehensive interfa
es with existing languages and systems.Mi
rosoft's .NET Common Language Runtime (CLR) [11℄ is a new plat-form that may help make su
h interfa
ing easier. The CLR is intended tosupport a range of programming languages using a 
ommon data representa-tion, garbage 
olle
tor, 
alling 
onvention, and ex
eption handling me
hanism,and 
omes with a large set of 
lass libraries. This provides a high-level basefor interoperation, leaving us with just the built in assumptions and naturalmismat
hes in language semanti
s and features to ta
kle.This is a preliminary version. The �nal version will be published inEle
troni
 Notes in Theoreti
al Computer S
ien
eURL: www.elsevier.nl/lo
ate/ent
s



Dowd, Henderson, RossThe �rst step towards supporting language interoperability between Mer-
ury and other languages on the .NET CLR is to implement a 
ompiler forMer
ury that generates 
ode for the CLR. That step is what this paper de-s
ribes.2 Preliminaries2.1 The .NET Common Language RuntimeThe .NET CLR is a new virtual ma
hine developed by Mi
rosoft. The systemis similar to the Java virtual ma
hine in that it is based around an obje
t-oriented type system, a byte
ode based instru
tion format, veri�able 
ode anda builtin se
urity system. It di�ers in that it is intended to be a repla
ementruntime system for Mi
rosoft's stable of programming languages (Visual Basi
,Visual C++, JS
ript and C℄ ), whereas the JVM is intended to just run Java 1 .In addition, the .NET CLR has some expli
it support for languages outsidethe inner 
ir
le, su
h as a tail-
all instru
tion (see Se
tion 3.4).The Mer
ury 
ompiler targets the .NET CLR by generating 
lasses whi
hde�ne methods using instru
tions in Common Intermediate Language (CILor sometimes simply IL) in an assembly language. A CIL assembler turnsa textual representation of CIL into .NET byte 
ode in the appropriate �leformats.The .NET CLR implementation loads and optionally veri�es 
ode as it isrequired by the running program. Native 
ode is generated from the CIL bya just-in-time 
ompiler. It is also possible to mix native 
ode with CIL, ifveri�
ation is not required.The CLR's type system is more expressive than the JVM, subsuming all thefamiliar Java types | distinguishing between value 
lasses (stru
ts) and ref-eren
e 
lasses (heap-allo
ated obje
ts with identity), and providing unsignedinteger types, safe (\managed") pointers for pass-by-referen
e, and traditionalunsafe (\unmanaged") pointers for 
ode that doesn't need veri�ability.The system also de�nes a subset of the allowable types, names and other
onstru
ts whi
h 
an appear in 
omponent interfa
es, 
alled the CommonLanguage Spe
i�
ation (CLS), whi
h is intended to be a minimal standard forinteroperation between di�erent programming languages and tools.The CLR allows re
e
tion on all the names, types, signatures and pa-rameters of loaded modules. Attributes may be atta
hed to types, modules,parameters and signatures by users, 
ompilers or tools in a fairly general way,whi
h allows new interoperation standards to be built on top of the existingruntime without requiring expli
it support.1 Although there have 
ertainly been many e�orts to run other languages on the JVM:see http://grunge.
s.tu-berlin.de/~tolk/vmlanguages.html2

http://grunge.cs.tu-berlin.de/~tolk/vmlanguages.html


Dowd, Henderson, Ross2.2 Mer
uryMer
ury is a pure logi
/fun
tional programming language intended for generalpurpose large-s
ale programming.We assume familiarity with the basi
 
on
epts of logi
 and fun
tional pro-gramming. We do not assume familiarity with aspe
ts of Mer
ury beyond thefollowing.� Mer
ury is strongly typed. It has a Hindley-Milner style type system, similarto that of Haskell and ML.� Mer
ury supports fun
tions as well as predi
ates. Every predi
ate and everyfun
tion has one or more modes, whi
h say, for every argument or fun
tionvalue, whether it is input or output. (The mode system is more sophisti
atedthan that, but that is all that matters for this paper.) We 
all ea
h modeof a predi
ate or fun
tion a pro
edure.� Mer
ury asso
iates with every pro
edure a determinism, whi
h expresses up-per and lower bounds on the number of solutions the pro
edure 
an have.Pro
edures that are guaranteed to have exa
tly one solution have deter-minism det. Pro
edures that may have one solution for one set of inputsand zero solutions for other inputs have determinism semidet. Pro
eduresthat may have any number of solutions have determinism nondet; nondetpro
edures use ba
ktra
king sear
h.� Mer
ury's main must be det. Therefore all 
ode must eventually interfa
ewith deterministi
 
ode. A 
ommit is generated when non-deterministi

ode is 
alled from a 
ontext that expe
ts only one solution; the 
ommitwill prune the nondet ba
ktra
king sear
h to a single solution.These 
on
epts are introdu
ed in the Mer
ury tutorial [1℄ and des
ribedin detail in the Mer
ury language referen
e manual [9℄ and elsewhere [10℄.2.3 Related WorkMany languages have been ported to the JVM to a
hieve interoperabilitywith Java. Of these ports, the MLj 
ompiler [2,3℄ is probably the most 
loselyrelated work to this paper, sin
e ML has a similar type system and exe
utionalgorithm to Mer
ury. However MLj is a whole-program 
ompiler, and is nota logi
 programming language, so we en
ountered several issues that do notarise in the MLj system.Several Prolog (JProlog, NetProlog) and logi
 programming languages(Jinni [13℄) have targeted the JVM; however, be
ause of the strong stati
type, mode and determinism information in Mer
ury, the exe
ution algorithmused for Mer
ury has little in 
ommon with most logi
 languages. TheseProlog implementations do provide interesting ideas about interfa
ing logi
programming 
on
epts with Java.Little published work is available as yet on systems that interoperate on3



Dowd, Henderson, Ross.NET.3 Operation3.1 Compiler front-end and intermediate representationThe original 
ompiler for Mer
ury [8,12℄ 
ompiled to very low-level 
ode, usingte
hniques that were not appropriate for 
ompiling to the .NET CLR.Re
ently we developed a new 
ode-generator for Mer
ury that generateshigher-level 
ode, whi
h is more suitable for high-level target languages likeCIL. The new 
ode-generator is based around a new intermediate data stru
-ture, modelled on a high-level abstra
t imperative language named the MediumLevel Data Stru
ture, or MLDS. There are several di�erent ba
k-ends thattransform the MLDS into a
tual target 
ode (C, Java, native assembler orCIL).The MLDS 
onsists of 
onstru
ts su
h as assignments, 
alls, simple expres-sions (in
luding taking addresses of variables and dereferen
ing pointers), allo-
ation and deallo
ation. The type system 
ontains the usual primitive types,as well as 
lasses, stru
tures, arrays, interfa
es, enumerations, and fun
tionpointers. There is support for instan
e and stati
 members, virtual fun
tions,and a

ess restri
tions (publi
, private, prote
ted, or similar). These are 
om-mon elements in almost all modern imperative programming languages, hen
eit is relatively easy to target imperative programming languages su
h as C orJava.The MLDS 
ode generator translates Mer
ury 
ode into relatively simpleimperative programming 
onstru
ts. The details of that translation are dis-
ussed in depth in a di�erent paper [7℄, so we won't dis
uss them here. Theaim of this paper is to address the issues whi
h are spe
i�
 to 
ompiling MLDSto the .NET CLR.3.2 Modules and stati
 dataEa
h Mer
ury module be
omes a .NET namespa
e 
ontaining a 
lass 
alled`mer
ury 
ode'. Here's the CIL 
ode that the Mer
ury 
ompiler generates foran empty Mer
ury module. You'll note that the CIL 
ode looks a bit like a
ross between a high-level obje
t oriented language and assembler. Dire
tiveslike `.namespa
e' and `.
lass' introdu
e 
lasses, methods, namespa
es, �elds,et
. Inside ea
h method, the 
ode 
ontains byte
ode assembler instru
tions.For 
larity, we've added equivalent C℄ 
ode in 
omments..namespa
e mymodule {.
lass publi
 mer
ury_
ode {.field publi
 stati
 bool rtti_initialized.method stati
 default void .

tor() {// if (rtti_initialized) return;// rtti_initialized = true;4



Dowd, Henderson, Ross// mer
ury.builtin.mer
ury_
ode::'.

tor'();ldsfld bool mymodule.mer
ury_
ode::rtti_initializedbrfalse l1retl1: ld
.i4.1stsfld bool mymodule.mer
ury_
ode::rtti_initialized
all void [mer
ury℄mer
ury.builtin.mer
ury_
ode::.

tor()ret} } }The `mer
ury 
ode' module 
ontains a 
lass 
onstru
tor (
alled `.

tor')whi
h initialises the stati
 data required by this Mer
ury module. The Mer-
ury 
ompiler generates stati
 data for three purposes: (a) as an optimization,Mer
ury terms that don't 
ontain variables are 
onstru
ted stati
ally ratherthan ea
h time they are referen
ed; (b) stati
 data stru
tures are needed forthe run-time type information needed to handle Mer
ury's parametri
 poly-morphism and type 
lasses (see 3.8.4); and (
) the Mer
ury 
ompiler generatesstati
 hash tables for indexing string swit
hes.The .NET CLR does not allow stati
 obje
ts to be 
onstru
ted at 
ompiletime or link time 2 , so we need to initialize them at runtime. Currently thismeans initialising the lo
al run-time type information (RTTI), then initialisingRTTI in other modules on whi
h the 
urrent module depends, and �nally�lling in any 
ross-module referen
es in the RTTI data stru
tures. Note thatin this sample program no RTTI is initialised, but the 
lass 
onstru
tor ofother modules is 
alled. We keep tra
k of whether we have already initialisedthe RTTI in a module with a stati
 boolean 
ag. This allows us to avoidlooping in the 
ase of mutually dependent modules.The Mer
ury standard library is quite large, and 
ontains many types,and so the Mer
ury 
ompiler generates a 
onsiderable amount of RTTI forit. Initializing these stati
 data stru
ture at run time may have a signi�
antperforman
e impa
t, parti
ularly on program start-up times.An alternative approa
h would be to initialize these stru
tures lazily, de-laying the initialization of ea
h data stru
ture until it is �rst used. That wouldlead to better start-up times, but only at the expense of slowing down long-running programs, due to the additional overhead of 
he
king whether the datastru
tures are already initialized on ea
h a

ess. We have not implementedthat approa
h.
2 There is some support for stati
 byte arrays, but sin
e the .NET CLR is intended tosupport multiple hardware ar
hite
tures, obje
t layout is not known at 
ompile time or linktime, so .NET obje
ts 
an only be 
reated at runtime. To support stati
ally initialized datain a veri�able way, the JIT would have to optimize the initialization into a stati
 allo
ationof data, and 
a
he su
h data on disk. 5



Dowd, Henderson, Ross3.3 Pro
eduresEa
h mode of a fun
tion or predi
ate is 
alled a pro
edure. We map ea
hpro
edure to a .NET 
lass member fun
tion that is a stati
 member of the`mer
ury 
ode' 
lass.Mer
ury predi
ates be
ome stati
 .NET fun
tions with `void' return val-ues. Mer
ury fun
tions be
ome stati
 .NET fun
tions with a return value
orresponding to the fun
tion output. Fun
tions whose return value is not anoutput (possible, but not 
ommon) are treated as predi
ates.Be
ause Mer
ury allows fun
tions and predi
ates to have the same nameand arity, as well as allowing multiple modes of the same fun
tion or predi
ate,we have to do some name mangling. We 
annot rely on .NET's overloadingto resolve overloading for us, as there are some 
ases where Mer
ury willmap di�erent predi
ates or fun
tions to the same .NET method signatureand name. We use a stati
 s
heme for mangling pro
edure names so that no
ollisions o

ur.In pra
ti
e, apart from appending the arity to ea
h pro
edure, the amountof mangling is quite small.3.4 Tail CallsRe
ursion is the natural looping 
onstru
t in logi
 programming languages, soit is used extensively. Tail 
all elimination very important, both for optimiza-tion and to ensure bounded sta
k spa
e usage for tail-re
ursive loops.The .NET CLR provides a tail. instru
tion pre�x whi
h when 
oupledwith a 
all will perform a 
all that uses 
onstant sta
k spa
e. Typi
ally thisis implemented by re-using the sta
k-frame of the 
aller for the 
allee. Thetail. pre�x must pre
ede a 
all, 
alli or 
allvirt instru
tion that isfollowed by a ret.For dire
tly re
ursive tail 
alls, where the 
aller is the same pro
edure asthe 
allee, we implement tail 
all elimination by generating 
ode that uses abran
h instru
tion to loop ba
k to the start of the pro
edure. For other tail
alls, we use the CLR's tail. instru
tion pre�x to implement tail 
all elimina-tion. However, as explained below, there are some problems with veri�abilitywhen using the CLR's tall 
all support to 
all pro
edures with multiple outputparameters.3.5 Output ParametersMer
ury supports pro
edures with multiple output parameters. This 
an bediÆ
ult to map to some platforms, be
ause it is 
ommon for programminglanguages and virtual ma
hines to only allow a single return value.Fortunately, however, the .NET CLR provides a me
hanism, by-ref pa-rameters, for passing parameters by referen
e. .NET by-ref parameters areveri�able and safe; the veri�er prevents you from generating by-refs that are6



Dowd, Henderson, Rossdangling (i.e. you 
an only pass them into 
alls, you 
an't return them orstore them in stati
 variables or on the heap).So we implement Mer
ury's multiple output parameters using by-refs.:- fun
 add(int, int) = int.:- mode add(in, in) = out is det.:- mode add(out, in) = in is det.add(X, Y) = X + Y.Be
omes:.method stati
 default int32 add_3(int32 HeadVar__1_1,int32 HeadVar__2_2) {.maxsta
k 2// return HeadVar__1_1 + HeadVar__2_2;ldarg HeadVar__1_1ldarg HeadVar__2_2addret}.method stati
 default void add_3_f_m1(int32& HeadVar__1_1,int32 HeadVar__2_2, int32 HeadVar__3_3) {.maxsta
k 3// *HeadVar__1_1 = HeadVar__3_3 - HeadVar__2_2;ldarg HeadVar__1_1ldarg HeadVar__3_3ldarg HeadVar__2_2substind.i4 // "indire
t store of 4-byte integer"ret} The CLR and asso
iated tools also have a 
onvention aimed at solvingthe dilemma of in/out versus out. There is an `out' attribute that 
an bepla
ed on a parameter, whi
h 
an be used by other 
ompilers and tools toindi
ate that a by-ref parameter is output only. This 
orresponds ni
ely withMer
ury's `out' mode, and is an example of how attributes 
an be used toimprove the interoperability of the system without requiring 
hanges to theunderlying system.Unfortunately, the veri�er doesn't 
he
k and therefore 
annot rely upon the`out' attribute; CIL 
ode will not be veri�able unless it initializes parametersthat are passed by referen
e before passing them (regardless of whether thereferen
e is just being used for an output parameter).There is, however, a more serious problem with the 
urrent CLR veri�er'streatment of by-refs. The veri�er does not allow tail 
all instru
tions to useby-ref parameters, presumably be
ause the analysis required to ensure noreferen
es refer to the lo
al sta
k frame has not yet been implemented. This7



Dowd, Henderson, Rossis an unfortunate problem, requiring us to give up veri�ability, tail-
alls, orby-ref parameters, so we hope it will be remedied in future versions.In our 
urrent implementation we normally generate unveri�able 
ode withproper tail-
all elimination, but we also provide an option to generate veri-�able 
ode by not doing tail-
all elimination for pro
edures with `out' modeparameters.Another possibility would be to return multiple value in stru
tures (valuetypes). However, there are several drawba
ks to this approa
h. The �rst isthat this approa
h is not quite as natural a mapping as by-ref parameters,whi
h would make interoperability more diÆ
ult. Programmers trying to 
allMer
ury 
ode from another language might have diÆ
ulty understanding thedo
umentation for the Mer
ury 
ode, be
ause 
orresponden
e between theMer
ury 
ode and its CLR interfa
e would not be as dire
t, sin
e the CLRinterfa
e would be returning a value type where the Mer
ury 
ode was using`out' mode parameters.A se
ond drawba
k is that this approa
h 
an make tail 
all eliminationmore diÆ
ult; when return values must be moved from the stru
ture to theirintended destinations after a 
all, tail-
all elimination is inhibited.A third drawba
k of this approa
h is that it would require de�ning a newvalue type for ea
h di�erent set of return types. That might in
rease thesize of the generated 
ode 
onsiderably. (Previous experien
e with the JVMsuggests that this 
an be a real problem.) It would be possible to redu
e thenumber of types needed by using tuple stru
tures whose �elds are the generi
\obje
t" type, but then additional 
ode would be needed for boxing valuesbefore inserting them into the tuples and for down
asting and unboxing themwhen retrieving from the tuples, and this would have very signi�
ant 
osts forexe
ution time.3.6 Non-determinismNon-deterministi
 pro
edures are represented in the MLDS as a set of nestedfun
tions, one for ea
h non-det goal. Ea
h nested fun
tion 
alls a 
ontinuation(to the next non-det goal) if it su

eeds (�nds a solution), and returns if itfails (�nds no solution). The nested fun
tions share an environment (the lo
alvariables and a
tual parameters of the parent fun
tion), whi
h represents thestate of the saved values required to 
ontinue sear
hing if a parti
ular bran
hhappens to fail.All non-deterministi
 
ode will eventually interfa
e to deterministi
 
ode(re
all that Mer
ury's main must be deterministi
). Hen
e there will be asequen
e of (now unne
essary) 
ontinuation 
alls on the sta
k representingthe sear
h spa
e.If the non-deterministi
 
ode fails, it will eventually return to some semi-deterministi
 
ontext (for example the 
ondition of an if-then-else), where thefailure will be handled. 8



Dowd, Henderson, RossNon-deterministi
 
ode su

eeds to deterministi
 
ode by 
ommit, whi
hremoves the 
ontinuation sta
k frames (see Se
tion 3.7).Sin
e .NET does not support nested fun
tions, we eliminate them by anMLDS-to-MLDS transformation that hoists them up to the top level. Theshared environment variables are put into environment stru
tures whi
h areexpli
itly passed when 
ontinuations are 
alled. These environment stru
turesare turned into value 
lasses in the .NET ba
k-end. We use fun
tion pointersto implement 
ontinuation passing, using the ldftn and 
alli instru
tionsto load fun
tion pointers and 
all through them.The transformation to eliminate nested fun
tions works smoothly in the Cba
k-end, but there is a major 
ompli
ation when targeting the .NET CLR.Sin
e Mer
ury uses by-ref parameters to represent output parameters, and theenvironment stru
tures 
ontain the a
tual parameters of the parent fun
tion,the environment stru
tures 
ontain by-refs if there are output parameters.However, on .NET one 
annot put by-ref parameters inside stru
tures; by-refs 
an only be sta
k variables or fun
tion parameters, so as to prevent the
reation of dangling by-ref parameters that live on the heap, or are returnedthrough a stru
ture.It would be a useful 
hange to the .NET CLR to allow value 
lasses to
ontains by-ref parameters, so long as value 
lasses 
ontaining by-refs abideby the same rules for validity and veri�ability that already exist for by-refsthemselves. This extension may be useful for other programming languagesthat support by-ref parameter passing and nested fun
tions.To work around this problem, we use an approa
h that was suggestedto us by Erik Meijer. We generate a di�erent 
alling 
onvention for non-deterministi
 
ode, whi
h we 
all non-det 
opy out. Instead of passing outputarguments by referen
e, and simply assigning to the output arguments when-ever we produ
e an output binding, we generate lo
al variables for lo
allyprodu
ed outputs, and pass them to the 
ontinuation (and this 
ontinuationpasses them to the next, and so on). When non-deterministi
 
ode ends (at a
ommit) we 
opy the set of output arguments from the �nal 
ontinuation intothe (by-ref) output arguments.Unfortunately that work-around still does not suÆ
e. The problem is thatenvironment stru
tures may need to 
ontain referen
es to other environmentstru
tures (e.g. the environment for the 
aller) whose exa
t type is not knownat 
ompile time. The .NET CLR type system does provide a refany type(a.k.a. System.TypedRef) whi
h 
an be used for safe referen
es to values ofunknown types; it holds both a pointer and a type, and there's a dynami
ally
he
ked operation for 
onverting a refany to a referen
e to a spe
i�
 type.However, refany is subje
t to similar restri
tions to by-refs. The 
opy-in
opy-out work-around doesn't work for refany, be
ause the size of the typethat a refany value refers to isn't known at 
ompile time.For unveri�able 
ode we 
an solve this by just using an unmanaged pointertype instead of refany, and using un
he
ked 
oer
ions to 
onvert this to9



Dowd, Henderson, Rossa spe
i�
 by-ref type. But if we want veri�able 
ode, the only alternativepossible is to allo
ate the environment stru
tures on the heap, using 
lasstypes, rather than on the sta
k, using value types; this is likely to be lesseÆ
ient.Currently our 
ompiler by default generates unveri�able 
ode that allo-
ates the environments for nondet Mer
ury pro
edures on the sta
k and usesunmanaged pointers to refer to them. However, we also provide an option forgenerating 
ode whi
h allo
ates the environments on the heap.Unfortunately the 
ode that we generate for nondeterministi
 Mer
urypro
edures is still unveri�able, even if this option is enabled, be
ause of ouruse of fun
tion pointers (ldftn and 
alli), whi
h are unveri�able in the
urrent .NET CLR. To remedy that, we plan to move to using the .NETdelegates, whi
h provide similar fun
tionality to fun
tion pointers, and areveri�able, but 
arry the overhead of an obje
t instead of a value.3.7 CommitsThe 
ommit me
hanism in the Mer
ury MLDS ba
k-end requires some sort ofsta
k unwinding me
hanism to return to a previous point in the 
omputation.The Mer
ury 
ompiler's MLDS 
ode generator represents 
ommits usinga pair of spe
ial MLDS 
onstru
ts: try 
ommit en
apsulates a blo
k of 
odewhi
h might do a 
ommit, and do 
ommit unwinds the sta
k ba
k to themat
hing try 
ommit.In the .NET ba
k-end, these are implemented using ex
eptions. The MLDS`try 
ommit' be
omes an ex
eption handling try blo
k and a 
at
h blo
k, and`do 
ommit' simply loads a spe
ial Mer
ury 
ommit type and throws it as anex
eption, whi
h will be 
aught by the 
at
h blo
k of the nearest try 
ommit.3.8 Data Representation3.8.1 Primitive typesImplementing Mer
ury's primitives types on the CLR is straight-forward: wemap ea
h of Mer
ury's primitive types to the 
orresponding CLR type. Mer-
ury int be
omes CLR int32 (32-bit signed integers), Mer
ury 
har be
omesCLR 
har (16-bit Uni
ode 
hara
ters), Mer
ury float be
omes CLR float64(64-bit IEEE 
oat), and Mer
ury string be
omes the CLR System.String
lass.3.8.2 ArraysMer
ury arrays are also represented using CLR arrays. For any Mer
urytype MT, where MT is not a type variable, the Mer
ury type array(MT)be
omes the CLR type CT[℄, where CT is the CLR type 
orresponding toMT. Polymorphi
ally typed Mer
ury arrays need to be treated spe
ially; ifMT is a type variable then the Mer
ury type array(MT) is mapped to the10



Dowd, Henderson, RossCLR 
lass System.Array, whi
h is the base 
lass that is inherited by all CLRarray types.3.8.3 Dis
riminated unionsFor Mer
ury's dis
riminated union types (also known as algebrai
 data types),our 
urrent implementation uses a representation whi
h is similar to the rep-resentation des
ribed in [6℄. Every Mer
ury dis
riminated union type is rep-resented as an array of obje
ts, using the CLR type System.Obje
t[℄. The�rst element of the array is an integer tag used to distinguish between di�erent
onstru
tors for dis
riminated union types.This representation is unappealing, having signi�
ant drawba
ks for botheÆ
ien
y and interoperability, and was used mainly for histori
al reasons.We've also been working on a higher-level representation, where ea
h Mer-
ury dis
riminated union type is mapped to a CLR abstra
t base 
lass, andea
h 
onstru
tor in a dis
riminated union type is mapped to a CLR 
lass thatderives from the abstra
t base 
lass for that dis
riminated union type. How-ever, this is not yet fully implemented. One diÆ
ulty with this representationis that some tri
ky issues arise with abstra
t data types. These are dis
ussedin Se
tion 3.8.6.3.8.4 Polymorphi
 typesThe handling of parametri
 polymorphism and type 
lasses is very similarto the way it is done in the original Mer
ury 
ompiler. Polymorphi
allytyped Mer
ury variables are represented as System.Obje
t, the root 
lassin the CLR 
lass hierar
hy; the 
ompiler inserts 
ode to box and unboxvalue types su
h as int32, 
har, and float64 when 
onverting them to/fromSystem.Obje
t. For polymorphi
 pro
edures, the 
ompiler inserts extra pa-rameters that hold run-time type information (RTTI) and/or type 
lass di
-tionaries (tables of 
lass methods). The run-time type information is neededfor Mer
ury's RTTI features, whi
h are used for purposes su
h as optionaldynami
 typing and serialization/deserialization. The details are dis
ussed inour previous work [6℄.Note that although the CLR has extensive run-time type information andre
e
tion fa
ilities, we 
an't use the CLR's fa
ilities to support Mer
ury'sRTTI features; the CLR types don't have enough information. The CLR typesystem doesn't support parametri
 polymorphism, so information about thevalues of type parameters is lost when mapping Mer
ury types to CLR types.Di�erent Mer
ury types, su
h as for example list(string) and list(int),will map to the same CLR type.3.8.5 Higher-order typesClosures are handled using environment stru
tures and fun
tion pointers. Thishas some drawba
ks for interoperability and veri�ability and, as with ourtreatment of 
ontinuations, we plan to eventually move to using delegates11



Dowd, Henderson, Rossinstead.3.8.6 Abstra
t Data TypesMer
ury allows modules to de�ne abstra
t types that are implemented as typesynonyms. From outside the module, su
h a type is 
onsidered a distin
t newabstra
t type, but from inside the module, the type is 
onsidered as equivalentto the synonym type.Unfortunately there is no dire
t support for this in .NET. We need togenerate spe
i�
 type names and type spe
i�
 
ode for referen
ing and ma-nipulating abstra
t data types. So we need some way of handling abstra
tequivalen
e types for the .NET ba
k-end 3 .The 
leanest solution to this problem would be for the .NET CLR tosupport type synonyms, and support generi
 
ode for manipulating types.The type referen
es and generi
 
ode 
ould be expanded into type spe
i�
referen
es and 
ode at runtime.There are several solutions we 
an use in the Mer
ury 
ompiler to avoidthis problem, none of whi
h are 
ompletely satisfa
tory.� Map everything to a single type, su
h as `Obje
t'.This is very bad for interoperability (whi
h is the whole point of this ba
k-end), and probably very bad for performan
e too. Ex
luding value typessu
h as `int' and `float' from being mapped to `Obje
t' might improveperforman
e and interoperability, but abstra
t equivalen
e types that areequivalent to `int' or `float' will need to be handled somehow.� Map ADTs to referen
e 
lasses externally, and 
ast to equivalen
e internally.This improves interoperability signi�
antly, but at a steep 
ost in perfor-man
e. Converting from a referen
e type to a value type internally mightseem relatively painless, but if the ADT is nested inside a data stru
ture(for example, the elements of a list or array) we may need to 
onvert everyelement as part of the 
ast operation, whi
h 
an be arbitrarily expensive.� Treat ADTs as 
on
rete types rather than abstra
t types.This solution gives good interoperability and eÆ
ien
y, but it fundamen-tally abuses the notion of abstra
tion. While we 
an (and should, for type-
he
king purposes) ensure the Mer
ury 
ompiler hides the de�nition of thedata type from the user, 
ompilers for other languages might not.Furthermore, this approa
h has unfortunate 
onsequen
es for versioning.Be
ause the Mer
ury 
ompiler does separate 
ompilation, this solution fun-damentally 
hanges the 
ompilation model. With this approa
h, a modulemust be re
ompiled if the implementation of an abstra
t data type it im-ports 
hanges.Currently we use a variant of the �rst option. Many languages that supportabstra
t data types 
ould run afoul of this issue, depending upon their data3 the JVM and hen
e the Mer
ury 
ompiler's Java ba
kend su�ers from the same problem12



Dowd, Henderson, RossTable 1Preliminary ben
hmark resultsLanguage 
ompiler target true tak queensMer
ury mm
 -s asm fast.g
 native 0.07 31.4 2.24Mer
ury mm
 -s asm fast native 0.07 31.4 0.86Mer
ury mm
 -s hl
.g
 native 0.07 34.2 1.76Mer
ury mm
 -s il CLR N/A N/A 9.28Mer
ury mm
 -s il
 CLR 1.80 34.6 14.4C 
l native 0.05 35.5 N/AC g

 -O3-fomit-frame-pointer native 0.07 35.6 N/AC℄ 
s
 /o CLR 0.16 40.6 N/Arepresentation and 
ompilation model.4 Ben
hmarksAll ben
hmarks were 
arried out a 366 MHz Celeron, with 128 kb L2 
a
heand 256 Mb RAM, using Mi
rosoft .NET Beta 2 and Cygwin g

 2.95.2-6 onWindows 2000. Ea
h ben
hmark program was run 6-8 times in su

ession, tofully prime the 
a
he, with the result being the fastest time re
orded.We 
ompared �ve di�erent Mer
ury 
ompiler ba
k-ends | the one de-s
ribed in this paper (`il
'), an experimental variant whi
h uses the higher-level data representation for algebrai
 types dis
ussed in Se
tion 3.8.3 (`il'),and three existing ba
k-ends (`asm fast', `asm fast.g
', and `hl
.g
') 4 Forthe il and il
 ba
k-ends, the `--verifiable-
ode' option was not enabled.In addition, for two of the ben
hmarks we also measured the performan
eof equivalent programs written in C, 
ompiled with MSVC (
l) or GNU C(g

 -O3 -fomit-frame-pointer), and in C℄ , 
ompiled with the Mi
rosoftC℄ 
ompiler (
s
 /o).We ran three di�erent ben
hmarks, `true', `tak', and `queens'; the resultsare shown in table 4. All �gures are exe
ution times, measured in se
onds.Start-up time. To measure the impa
t on start-up times of initializing theMer
ury RTTI data stru
tures, we measured the time taken to exe
ute a4 asm fast is the original ba
k-end of the Mer
ury 
ompiler; it 
ompiles to native 
odevia low-level GNU C. It has no garbage 
olle
tor, but heap spa
e is re
overed automati
allyon ba
ktra
king. asm fast.g
 is same as asm fast.g
, ex
ept that it uses the Boehm (etal) 
onservative garbage 
olle
tor [4℄. hl
.g
 is the MLDS-based high-level C ba
k-end ofthe Mer
ury 
ompiler; it 
ompiles to native 
ode via standard C. It too uses the Boehm
olle
tor. 13



Dowd, Henderson, Rosstrivial \do-nothing" Mer
ury program, true. When 
ompiled to the .NETCLR, this program took about 1.8 se
onds, 
ompared with about 0.07 se
-onds for the same program 
ompiled via C to native 
ode, and about 0.16se
onds for a do-nothing C℄ program.Re
ursion. tak is an arti�
ial ben
hmark, originally written in Lisp; it isheavily re
ursive and does lots of simple integer arithmeti
. We 
hose thisben
hmark be
ause it was the only ben
hmark in our standard set thatdidn't use dis
riminated union types. To redu
e the e�e
ts of start-uptime, we wrote a test harness that ran the test 10000 times.All versions ran at pretty similar speeds, with C℄ falling a little behind,probably be
ause it was the only one that failed to perform tail 
all elimi-nation. This shows that the CLR 
an mat
h native 
ode for at least someben
hmarks.Ba
ktra
king and lists. queens �nds a solution to the problem of pla
ing11 queens on an 11x11 
hess-board without any queen atta
king any otherqueen; it makes heavy use of ba
ktra
king, lists, and heap allo
ation.On this ben
hmark our CLR ba
k-end does substantially worse than theother Mer
ury implementations; even when using a higher-level data repre-sentation rather than arrays of System.Obje
t, it is a fa
tor of 5 worse thanthe MLDS-based C ba
k-end, and a fa
tor of 10 worse than the best Mer-
ury implementation, whi
h re
overs heap storage 
heaply on ba
ktra
king,rather than using garbage 
olle
tion.A large part of this is no doubt due to the immature nature of our 
ur-rent implementation; for example, our 
ompiler emits many unne
essary`
ast
lass' instru
tions, whi
h 
ould easily be eliminated by 
ommon sub-expression elimination. We emphasize that these ben
hmark results arepreliminary. 5Overall, the ben
hmarks show widely varying results. No �rm 
on
lusionsshould be drawn about the overall performan
e 
ompetitiveness of 
ompilingto the CLR from the ben
hmark results at this stage. However, the 
ost ofinitializing stati
 data at start-up is de�nitely problemati
 for us.5 Con
lusions & Further workWe have implemented a 
ompiler for Mer
ury that generates .NET CLR CIL
ode and whi
h handles all of the standard Mer
ury language features.By generating 
ode for the CLR, many aspe
ts of our language implemen-tation have been simpli�ed, be
ause we have been able to make dire
t use ofthe high-level fa
ilities that it o�ers, su
h as garbage 
olle
tion and ex
eptionhandling. But more importantly, having a 
ompiler for the CLR is the �rststep towards a
hieving a mu
h greater degree of interoperation between Mer-5 In fa
t, for the il version we had to hand-edit the generated CIL 
ode slightly to makeit work. 14



Dowd, Henderson, Ross
ury and a variety of other di�erent languages that target the .NET CLR.Programmers 
an bene�t from this interoperability with in
reased 
ode reuse,e.g. by making use of the wide variety of existing 
omponents available onthis platform.We have also identi�ed a number of areas in whi
h the .NET CLR or futureVMs 
ould be improved to better support Mer
ury and other languages:� support for stati
 initialization of stati
 data obje
ts� support for returning multiple values (instead of just one)� more \�rst-
lass" support of by-ref and refany types� allowing by-refs parameters for tail-
alls in veri�able 
ode� veri�able fun
tion pointers� veri�er-enfor
ed `out' mode parameters� support for parametri
 polymorphism� support for type synonyms as abstra
t data typesThe work des
ribed in this paper is just a �rst step towards a
hieving easylanguage interoperability between Mer
ury and other languages on the CLR;it provides a base upon whi
h we 
an then build spe
i�
 
ompiler and/orlanguage support for interoperating with other languages.Future work in
ludes tighter integration of the Mer
ury's type system andthe CLR's type system, �nding suitable interfa
es for language feature mis-mat
hes, improving the eÆ
ien
y of the 
ode our 
ompiler generates, andover
oming the remaining issues of veri�ability. We would also like to domore detailed performan
e measurements.A
knowledgementsThanks to Zoltan Somogyi, Peter S
ha
hte, Kevin Glynn, David Je�eryand the anonymous referees for reviewing earlier drafts of this paper.A paragraph or two in the ba
kground material des
ribing Mer
ury (Se
-tion 2.2) 
ame from a paper by Thomas Conway and Zoltan Somogyi [5℄.This work has been �nan
ially supported by grants from Mi
rosoft toZoltan Somogyi at the University of Melbourne, and by Mission Criti
al.Thanks to Mi
rosoft, Mission Criti
al, and Zoltan Somogyi for their support,both �nan
ial and otherwise.Referen
es[1℄ R. Be
ket. Mer
ury tutorial, 1999. Available from <http://www.
s.mu.oz.au/resear
h/mer
ury/tutorial>.[2℄ N. Benton and A. Kennedy. Interlanguage working without tears: BlendingSML with Java. In International Conferen
e on Fun
tional Programming, pages126{137, 1999. 15



Dowd, Henderson, Ross[3℄ N. Benton, A. Kennedy, and G. Russell. Compiling Standard ML to Javabyte
odes. In Pro
eedings of the ACM SIGPLAN International Conferen
e onFun
tional Programming (ICFP '98), volume 34(1), pages 129{140, 1999.[4℄ H. Boehm and M. Weiser. Garbage 
olle
tion in an un
ooperative environment.Software Pra
ti
e and Experien
e, 18:807{820, 1988.[5℄ T. Conway and Z. Somogyi. Deep pro�ling: engineering a pro�ler for ade
larative programming language. Te
hni
al Report 2001/24, Department ofComputer S
ien
e, The University of Melbourne, Melbourne, Australia, July2001.[6℄ T. Dowd, Z. Somogyi, F. Henderson, T. Conway, and D. Je�ery. Run time typeinformation in Mer
ury. In Pro
eedings of the 1999 International Conferen
e onthe Prin
iples and Pra
ti
e of De
larative Programming, pages 224{243, Paris,Fran
e, September 1999.[7℄ F. Henderson. Compiling Mer
ury to high-level C 
ode. Submitted forpubli
ation; available from the author on request, June 2001.[8℄ F. Henderson, T. Conway, and Z. Somogyi. Compiling logi
 programs to Cusing GNU C as a portable assembler. In ILPS'95 Post
onferen
e Workshopon Sequential Implementation Te
hnologies for Logi
 Programming, pages 1{15,Portland, Oregon, 1995.[9℄ F. Henderson, T. Conway, Z. Somogyi, D. Je�ery, P. S
ha
hte, S. Taylor,and C. Speirs. The Mer
ury language referen
e manual. Available from<http://www.
s.mu.oz.au/mer
ury/>, 1995{2001.[10℄ F. Henderson, Z. Somogyi, and T. Conway. Determinism analysis in theMer
ury 
ompiler. In Pro
eedings of the Australian Computer S
ien
eConferen
e, pages 337{346, Melbourne, Australia, January 1996.[11℄ Mi
rosoft. Mi
rosoft .NET. <http://www.mi
rosoft.
om/net/>.[12℄ Z. Somogyi, F. Henderson, and T. Conway. The exe
ution algorithm of Mer
ury,an eÆ
ient purely de
larative logi
 programming language. Journal of Logi
Programming, 1997.[13℄ P. Tarau. Intelligent mobile agent programming at the interse
tion of Javaand Prolog. In Pro
eedings of The Fourth International Conferen
e on ThePra
ti
al Appli
ation of Intelligent Agents and Multi-Agents, pages 109{123,London, U.K., 1999.
16


