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Abstract

The .NET Common Language Runtime (CLR) offers a new opportunity to exper-
iment with multi-language interoperation, and provides a relatively rare chance to
explore deep interoperation of a wide range of programming language paradigms.
This article describes how the logic/functional programming language Mercury is
compiled to the CLR. We describe the problems we have encountered with generat-
ing code for the CLR, give some preliminary benchmark results, and suggest some
possible improvements to the CLR regarding separate compilation, verifiability, tail
calls, and efficiency.

1 Introduction

We have been researching language interoperability as part of our research on
the declarative logic/functional programming language Mercury [g].

Many programming language researchers (including ourselves) have argued
that if we are to see widespread adoption of new programming languages, they
must include comprehensive interfaces with existing languages and systems.

Microsoft’s .NET Common Language Runtime (CLR) [[[I] is a new plat-
form that may help make such interfacing easier. The CLR is intended to
support a range of programming languages using a common data representa-
tion, garbage collector, calling convention, and exception handling mechanism,
and comes with a large set of class libraries. This provides a high-level base
for interoperation, leaving us with just the built in assumptions and natural
mismatches in language semantics and features to tackle.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs



The first step towards supporting language interoperability between Mer-
cury and other languages on the .NET CLR is to implement a compiler for
Mercury that generates code for the CLR. That step is what this paper de-
scribes.

2 Preliminaries

2.1 The .NET Common Language Runtime

The .NET CLR is a new virtual machine developed by Microsoft. The system
is similar to the Java virtual machine in that it is based around an object-
oriented type system, a bytecode based instruction format, verifiable code and
a builtin security system. It differs in that it is intended to be a replacement
runtime system for Microsoft’s stable of programming languages (Visual Basic,
Visual C++, JScript and C' ), whereas the JVM is intended to just run Java["].
In addition, the .NET CLR has some explicit support for languages outside
the inner circle, such as a tail-call instruction (see Section B.4).

The Mercury compiler targets the .NET CLR by generating classes which
define methods using instructions in Common Intermediate Language (CIL
or sometimes simply IL) in an assembly language. A CIL assembler turns
a textual representation of CIL into .NET byte code in the appropriate file
formats.

The .NET CLR implementation loads and optionally verifies code as it is
required by the running program. Native code is generated from the CIL by
a just-in-time compiler. It is also possible to mix native code with CIL, if
verification is not required.

The CLR’s type system is more expressive than the JVM, subsuming all the
familiar Java types  distinguishing between value classes (structs) and ref-
erence classes (heap-allocated objects with identity), and providing unsigned
integer types, safe (“managed”) pointers for pass-by-reference, and traditional
unsafe (“unmanaged”) pointers for code that doesn’t need verifiability.

The system also defines a subset of the allowable types, names and other
constructs which can appear in component interfaces, called the Common
Language Specification (CLS), which is intended to be a minimal standard for
interoperation between different programming languages and tools.

The CLR allows reflection on all the names, types, signatures and pa-
rameters of loaded modules. Attributes may be attached to types, modules,
parameters and signatures by users, compilers or tools in a fairly general way,
which allows new interoperation standards to be built on top of the existing
runtime without requiring explicit support.

1 Although there have certainly been many efforts to run other languages on the JVM:

see http://grunge.cs.tu-berlin.de/ tolk/vmlanguages.htm]|
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2.2  Mercury

Mercury is a pure logic/functional programming language intended for general
purpose large-scale programming.

We assume familiarity with the basic concepts of logic and functional pro-
gramming. We do not assume familiarity with aspects of Mercury beyond the
following.

* Mercury is strongly typed. It has a Hindley-Milner style type system, similar
to that of Haskell and ML.

* Mercury supports functions as well as predicates. Every predicate and every
function has one or more modes, which say, for every argument or function
value, whether it is input or output. (The mode system is more sophisticated
than that, but that is all that matters for this paper.) We call each mode
of a predicate or function a procedure.

* Mercury associates with every procedure a determinism, which expresses up-
per and lower bounds on the number of solutions the procedure can have.
Procedures that are guaranteed to have exactly one solution have deter-
minism det. Procedures that may have one solution for one set of inputs
and zero solutions for other inputs have determinism semidet. Procedures
that may have any number of solutions have determinism nondet; nondet
procedures use backtracking search.

* Mercury’s main must be det. Therefore all code must eventually interface
with deterministic code. A commit is generated when non-deterministic
code is called from a context that expects only one solution; the commit
will prune the nondet backtracking search to a single solution.

These concepts are introduced in the Mercury tutorial [l and described
in detail in the Mercury language reference manual [g] and elsewhere [[IT].

2.8 Related Work

Many languages have been ported to the JVM to achieve interoperability
with Java. Of these ports, the MLj compiler [}f] is probably the most closely
related work to this paper, since ML has a similar type system and execution
algorithm to Mercury. However ML;j is a whole-program compiler, and is not
a logic programming language, so we encountered several issues that do not
arise in the ML;j system.

Several Prolog (JProlog, NetProlog) and logic programming languages
(Jinni [[3]) have targeted the JVM; however, because of the strong static
type, mode and determinism information in Mercury, the execution algorithm
used for Mercury has little in common with most logic languages. These
Prolog implementations do provide interesting ideas about interfacing logic
programming concepts with Java.

Little published work is available as yet on systems that interoperate on
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NET.

3 Operation

3.1  Compiler front-end and intermediate representation

The original compiler for Mercury [§[19] compiled to very low-level code, using
techniques that were not appropriate for compiling to the .NET CLR.

Recently we developed a new code-generator for Mercury that generates
higher-level code, which is more suitable for high-level target languages like
CIL. The new code-generator is based around a new intermediate data struc-
ture, modelled on a high-level abstract imperative language named the Medium
Level Data Structure, or MLDS. There are several different back-ends that
transform the MLDS into actual target code (C, Java, native assembler or
CIL).

The MLDS consists of constructs such as assignments, calls, simple expres-
sions (including taking addresses of variables and dereferencing pointers), allo-
cation and deallocation. The type system contains the usual primitive types,
as well as classes, structures, arrays, interfaces, enumerations, and function
pointers. There is support for instance and static members, virtual functions,
and access restrictions (public, private, protected, or similar). These are com-
mon elements in almost all modern imperative programming languages, hence
it is relatively easy to target imperative programming languages such as C or
Java.

The MLDS code generator translates Mercury code into relatively simple
imperative programming constructs. The details of that translation are dis-
cussed in depth in a different paper [[], so we won’t discuss them here. The
aim of this paper is to address the issues which are specific to compiling MLDS
to the .NET CLR.

3.2 Modules and static data

Each Mercury module becomes a .NET namespace containing a class called
‘mercury_code’. Here’s the CIL code that the Mercury compiler generates for
an empty Mercury module. You’ll note that the CIL code looks a bit like a
cross between a high-level object oriented language and assembler. Directives
like ‘.namespace’ and ‘. class’ introduce classes, methods, namespaces, fields,
etc. Inside each method, the code contains bytecode assembler instructions.
For clarity, we’ve added equivalent C'f code in comments.

.namespace mymodule {
.class public mercury_code {
.field public static bool rtti_initialized
.method static default void .cctor() {
// if (rtti_initialized) return;
// rtti_initialized = true;
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// mercury.builtin.mercury_code::’.cctor’();
1ldsfld bool mymodule.mercury_code::rtti_initialized
brfalse 11
ret
11:
ldc.i4.1
stsfld bool mymodule.mercury_code::rtti_initialized
call void [mercurylmercury.builtin.mercury_code::.cctor()
ret

} 3}

The ‘mercury_code’ module contains a class constructor (called ‘.cctor’)
which initialises the static data required by this Mercury module. The Mer-
cury compiler generates static data for three purposes: (a) as an optimization,
Mercury terms that don’t contain variables are constructed statically rather
than each time they are referenced; (b) static data structures are needed for
the run-time type information needed to handle Mercury’s parametric poly-
morphism and type classes (see B.8.4); and (c) the Mercury compiler generates
static hash tables for indexing string switches.

The .NET CLR does not allow static objects to be constructed at compile
time or link time[?], so we need to initialize them at runtime. Currently this
means initialising the local run-time type information (RTTT), then initialising
RTTT in other modules on which the current module depends, and finally
filling in any cross-module references in the RTTI data structures. Note that
in this sample program no RTTI is initialised, but the class constructor of
other modules is called. We keep track of whether we have already initialised
the RTTI in a module with a static boolean flag. This allows us to avoid
looping in the case of mutually dependent modules.

The Mercury standard library is quite large, and contains many types,
and so the Mercury compiler generates a considerable amount of RTTI for
it. Initializing these static data structure at run time may have a significant
performance impact, particularly on program start-up times.

An alternative approach would be to initialize these structures lazily, de-
laying the initialization of each data structure until it is first used. That would
lead to better start-up times, but only at the expense of slowing down long-
running programs, due to the additional overhead of checking whether the data
structures are already initialized on each access. We have not implemented
that approach.

2 There is some support for static byte arrays, but since the .NET CLR is intended to

support multiple hardware architectures, object layout is not known at compile time or link
time, so .NET objects can only be created at runtime. To support statically initialized data
in a verifiable way, the JIT would have to optimize the initialization into a static allocation
of data, and cache such data on disk.



3.8  Procedures

Each mode of a function or predicate is called a procedure. We map each
procedure to a .NET class member function that is a static member of the
‘mercury_code’ class.

Mercury predicates become static .NET functions with ‘void’ return val-
ues. Mercury functions become static .NET functions with a return value
corresponding to the function output. Functions whose return value is not an
output (possible, but not common) are treated as predicates.

Because Mercury allows functions and predicates to have the same name
and arity, as well as allowing multiple modes of the same function or predicate,
we have to do some name mangling. We cannot rely on .NET’s overloading
to resolve overloading for us, as there are some cases where Mercury will
map different predicates or functions to the same .NET method signature
and name. We use a static scheme for mangling procedure names so that no
collisions occur.

In practice, apart from appending the arity to each procedure, the amount
of mangling is quite small.

3.4 Tail Calls

Recursion is the natural looping construct in logic programming languages, so
it is used extensively. Tail call elimination very important, both for optimiza-
tion and to ensure bounded stack space usage for tail-recursive loops.

The .NET CLR provides a tail. instruction prefix which when coupled
with a call will perform a call that uses constant stack space. Typically this
is implemented by re-using the stack-frame of the caller for the callee. The
tail. prefix must precede a call, calli or callvirt instruction that is
followed by a ret.

For directly recursive tail calls, where the caller is the same procedure as
the callee, we implement tail call elimination by generating code that uses a
branch instruction to loop back to the start of the procedure. For other tail
calls, we use the CLR’s tail. instruction prefix to implement tail call elimina-
tion. However, as explained below, there are some problems with verifiability
when using the CLR’s tall call support to call procedures with multiple output
parameters.

3.5  Output Parameters

Mercury supports procedures with multiple output parameters. This can be
difficult to map to some platforms, because it is common for programming
languages and virtual machines to only allow a single return value.
Fortunately, however, the .NET CLR provides a mechanism, by-ref pa-
rameters, for passing parameters by reference. .NET by-ref parameters are
verifiable and safe; the verifier prevents you from generating by-refs that are
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dangling (i.e. you can only pass them into calls, you can’t return them or
store them in static variables or on the heap).
So we implement Mercury’s multiple output parameters using by-refs.

:— func add(int, int) = int.

:— mode add(in, in) = out is det.
:— mode add(out, in) = in is det.
add(X, Y) = X + Y.

Becomes:

.method static default int32 add_3(int32 HeadVar__1_1,
int32 HeadVar__2_2) {
.maxstack 2
// return HeadVar__1_1 + HeadVar__2_2;
ldarg HeadVar__1_1
ldarg HeadVar__2_2
add
ret

.method static default void add_3_f_ml1(int32& HeadVar__1_1,
int32 HeadVar__2_2, int32 HeadVar__3_3) {
.maxstack 3
// *HeadVar__1_1 = HeadVar__3_3 - HeadVar__2_2;
ldarg HeadVar__1_1
ldarg HeadVar__3_3
ldarg HeadVar__2_2
sub
stind.i4 // "indirect store of 4-byte integer"
ret

The CLR and associated tools also have a convention aimed at solving
the dilemma of in/out versus out. There is an ‘out’ attribute that can be
placed on a parameter, which can be used by other compilers and tools to
indicate that a by-ref parameter is output only. This corresponds nicely with
Mercury’s ‘out’ mode, and is an example of how attributes can be used to
improve the interoperability of the system without requiring changes to the
underlying system.

Unfortunately, the verifier doesn’t check and therefore cannot rely upon the
‘out’ attribute; CIL code will not be verifiable unless it initializes parameters
that are passed by reference before passing them (regardless of whether the
reference is just being used for an output parameter).

There is, however, a more serious problem with the current CLR verifier’s
treatment of by-refs. The verifier does not allow tail call instructions to use
by-ref parameters, presumably because the analysis required to ensure no
references refer to the local stack frame has not yet been implemented. This



is an unfortunate problem, requiring us to give up verifiability, tail-calls, or
by-ref parameters, so we hope it will be remedied in future versions.

In our current implementation we normally generate unverifiable code with
proper tail-call elimination, but we also provide an option to generate veri-
fiable code by not doing tail-call elimination for procedures with ‘out’ mode
parameters.

Another possibility would be to return multiple value in structures (value
types). However, there are several drawbacks to this approach. The first is
that this approach is not quite as natural a mapping as by-ref parameters,
which would make interoperability more difficult. Programmers trying to call
Mercury code from another language might have difficulty understanding the
documentation for the Mercury code, because correspondence between the
Mercury code and its CLR interface would not be as direct, since the CLR
interface would be returning a value type where the Mercury code was using
‘out’ mode parameters.

A second drawback is that this approach can make tail call elimination
more difficult; when return values must be moved from the structure to their
intended destinations after a call, tail-call elimination is inhibited.

A third drawback of this approach is that it would require defining a new
value type for each different set of return types. That might increase the
size of the generated code considerably. (Previous experience with the JVM
suggests that this can be a real problem.) It would be possible to reduce the
number of types needed by using tuple structures whose fields are the generic
“object” type, but then additional code would be needed for boxing values
before inserting them into the tuples and for downcasting and unboxing them
when retrieving from the tuples, and this would have very significant costs for
execution time.

3.6 Non-determinism

Non-deterministic procedures are represented in the MLDS as a set of nested
functions, one for each non-det goal. Each nested function calls a continuation
(to the next non-det goal) if it succeeds (finds a solution), and returns if it
fails (finds no solution). The nested functions share an environment (the local
variables and actual parameters of the parent function), which represents the
state of the saved values required to continue searching if a particular branch
happens to fail.

All non-deterministic code will eventually interface to deterministic code
(recall that Mercury’s main must be deterministic). Hence there will be a
sequence of (now unnecessary) continuation calls on the stack representing
the search space.

If the non-deterministic code fails, it will eventually return to some semi-

deterministic context (for example the condition of an if-then-else), where the
failure will be handled.



Non-deterministic code succeeds to deterministic code by commit, which
removes the continuation stack frames (see Section B.1).

Since .NET does not support nested functions, we eliminate them by an
MLDS-to-MLDS transformation that hoists them up to the top level. The
shared environment variables are put into environment structures which are
explicitly passed when continuations are called. These environment structures
are turned into value classes in the .NET back-end. We use function pointers
to implement continuation passing, using the 1dftn and calli instructions
to load function pointers and call through them.

The transformation to eliminate nested functions works smoothly in the C
back-end, but there is a major complication when targeting the .NET CLR.
Since Mercury uses by-ref parameters to represent output parameters, and the
environment structures contain the actual parameters of the parent function,
the environment structures contain by-refs if there are output parameters.
However, on .NET one cannot put by-ref parameters inside structures; by-
refs can only be stack variables or function parameters, so as to prevent the
creation of dangling by-ref parameters that live on the heap, or are returned
through a structure.

It would be a useful change to the .NET CLR to allow value classes to
contains by-ref parameters, so long as value classes containing by-refs abide
by the same rules for validity and verifiability that already exist for by-refs
themselves. This extension may be useful for other programming languages
that support by-ref parameter passing and nested functions.

To work around this problem, we use an approach that was suggested
to us by Erik Meijer. We generate a different calling convention for non-
deterministic code, which we call non-det copy out. Instead of passing output
arguments by reference, and simply assigning to the output arguments when-
ever we produce an output binding, we generate local variables for locally
produced outputs, and pass them to the continuation (and this continuation
passes them to the next, and so on). When non-deterministic code ends (at a
commit) we copy the set of output arguments from the final continuation into
the (by-ref) output arguments.

Unfortunately that work-around still does not suffice. The problem is that
environment structures may need to contain references to other environment
structures (e.g. the environment for the caller) whose exact type is not known
at compile time. The .NET CLR type system does provide a refany type
(a.k.a. System.TypedRef) which can be used for safe references to values of
unknown types; it holds both a pointer and a type, and there’s a dynamically
checked operation for converting a refany to a reference to a specific type.
However, refany is subject to similar restrictions to by-refs. The copy-in
copy-out work-around doesn’t work for refany, because the size of the type
that a refany value refers to isn’t known at compile time.

For unverifiable code we can solve this by just using an unmanaged pointer
type instead of refany, and using unchecked coercions to convert this to
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a specific by-ref type. But if we want verifiable code, the only alternative
possible is to allocate the environment structures on the heap, using class
types, rather than on the stack, using value types; this is likely to be less
efficient.

Currently our compiler by default generates unverifiable code that allo-
cates the environments for nondet Mercury procedures on the stack and uses
unmanaged pointers to refer to them. However, we also provide an option for
generating code which allocates the environments on the heap.

Unfortunately the code that we generate for nondeterministic Mercury
procedures is still unverifiable, even if this option is enabled, because of our
use of function pointers (1dftn and calli), which are unverifiable in the
current NET CLR. To remedy that, we plan to move to using the .NET
delegates, which provide similar functionality to function pointers, and are
verifiable, but carry the overhead of an object instead of a value.

3.7 Commits

The commit mechanism in the Mercury MLDS back-end requires some sort of
stack unwinding mechanism to return to a previous point in the computation.

The Mercury compiler’s MLLDS code generator represents commits using
a pair of special MLDS constructs: try_commit encapsulates a block of code
which might do a commit, and do_commit unwinds the stack back to the
matching try_commit.

In the .NET back-end, these are implemented using exceptions. The MLLDS
‘try_commit’ becomes an exception handling try block and a catch block, and
‘do_commit’ simply loads a special Mercury commit type and throws it as an
exception, which will be caught by the catch block of the nearest try_commit.

3.8 Data Representation

3.8.1 Primitive types

Implementing Mercury’s primitives types on the CLR is straight-forward: we
map each of Mercury’s primitive types to the corresponding CLR type. Mer-
cury int becomes CLR int32 (32-bit signed integers), Mercury char becomes
CLR char (16-bit Unicode characters), Mercury float becomes CLR float64
(64-bit IEEE float), and Mercury string becomes the CLR System.String
class.

3.8.2 Arrays

Mercury arrays are also represented using CLR arrays. For any Mercury
type MT, where MT is not a type variable, the Mercury type array(MT)
becomes the CLR type CT[], where CT is the CLR type corresponding to
MT. Polymorphically typed Mercury arrays need to be treated specially; if
MT is a type variable then the Mercury type array(M7T) is mapped to the
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CLR class System. Array, which is the base class that is inherited by all CLR
array types.

3.8.8  Discriminated unions
For Mercury’s discriminated union types (also known as algebraic data types),
our current implementation uses a representation which is similar to the rep-
resentation described in [f]. Every Mercury discriminated union type is rep-
resented as an array of objects, using the CLR type System.0bject[]. The
first element of the array is an integer tag used to distinguish between different
constructors for discriminated union types.

This representation is unappealing, having significant drawbacks for both
efficiency and interoperability, and was used mainly for historical reasons.

We’ve also been working on a higher-level representation, where each Mer-
cury discriminated union type is mapped to a CLR abstract base class, and
each constructor in a discriminated union type is mapped to a CLR class that
derives from the abstract base class for that discriminated union type. How-
ever, this is not yet fully implemented. One difficulty with this representation
is that some tricky issues arise with abstract data types. These are discussed
in Section B.8.6.

3.8.4 Polymorphic types

The handling of parametric polymorphism and type classes is very similar
to the way it is done in the original Mercury compiler. Polymorphically
typed Mercury variables are represented as System.Object, the root class
in the CLR class hierarchy; the compiler inserts code to box and unbox
value types such as int32, char, and float64 when converting them to/from
System.0Object. For polymorphic procedures, the compiler inserts extra pa-
rameters that hold run-time type information (RTTI) and/or type class dic-
tionaries (tables of class methods). The run-time type information is needed
for Mercury’s RTTI features, which are used for purposes such as optional
dynamic typing and serialization/deserialization. The details are discussed in
our previous work [f.

Note that although the CLR has extensive run-time type information and
reflection facilities, we can’t use the CLR’s facilities to support Mercury’s
RTTI features; the CLR types don’t have enough information. The CLR type
system doesn’t support parametric polymorphism, so information about the
values of type parameters is lost when mapping Mercury types to CLR types.
Different Mercury types, such as for example 1ist (string) and list(int),
will map to the same CLR type.

3.8.5  Higher-order types

Closures are handled using environment structures and function pointers. This
has some drawbacks for interoperability and verifiability and, as with our
treatment of continuations, we plan to eventually move to using delegates
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instead.

3.8.6 Abstract Data Types

Mercury allows modules to define abstract types that are implemented as type
synonyms. From outside the module, such a type is considered a distinct new
abstract type, but from inside the module, the type is considered as equivalent
to the synonym type.

Unfortunately there is no direct support for this in .NET. We need to
generate specific type names and type specific code for referencing and ma-
nipulating abstract data types. So we need some way of handling abstract
equivalence types for the .NET back-end[?].

The cleanest solution to this problem would be for the .NET CLR to
support type synonyms, and support generic code for manipulating types.
The type references and generic code could be expanded into type specific
references and code at runtime.

There are several solutions we can use in the Mercury compiler to avoid
this problem, none of which are completely satisfactory.

* Map everything to a single type, such as ‘Object’.

This is very bad for interoperability (which is the whole point of this back-
end), and probably very bad for performance too. Excluding value types
such as ‘int’ and ‘float’ from being mapped to ‘Object’ might improve
performance and interoperability, but abstract equivalence types that are
equivalent to ‘int’ or ‘float’ will need to be handled somehow.

e Map ADTs to reference classes externally, and cast to equivalence internally.
This improves interoperability significantly, but at a steep cost in perfor-
mance. Converting from a reference type to a value type internally might
seem relatively painless, but if the ADT is nested inside a data structure
(for example, the elements of a list or array) we may need to convert every
element as part of the cast operation, which can be arbitrarily expensive.

e Treat ADTs as concrete types rather than abstract types.

This solution gives good interoperability and efficiency, but it fundamen-
tally abuses the notion of abstraction. While we can (and should, for type-
checking purposes) ensure the Mercury compiler hides the definition of the
data type from the user, compilers for other languages might not.

Furthermore, this approach has unfortunate consequences for versioning.
Because the Mercury compiler does separate compilation, this solution fun-
damentally changes the compilation model. With this approach, a module
must be recompiled if the implementation of an abstract data type it im-
ports changes.

Currently we use a variant of the first option. Many languages that support
abstract data types could run afoul of this issue, depending upon their data

3 the JVM and hence the Mercury compiler’s Java backend suffers from the same problem
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Table 1
Preliminary benchmark results

Language compiler target | true tak queens
Mercury mmc -s asm_fast.gc native | 0.07 314 2.24
Mercury mmc -s asm_fast native | 0.07 31.4 0.86
Mercury mmc -s hlc.gc native | 0.07 34.2 1.76
Mercury  mmc -s il CLR | N/JA N/A 9.28
Mercury mmc -s ilc CLR 1.80 34.6 14.4
C cl native | 0.05 35.5 N/A
C gcc -03 native | 0.07 35.6 N/A
-fomit-frame-pointer
Ct csc /o CLR 0.16 40.6 N/A

representation and compilation model.

4 Benchmarks

All benchmarks were carried out a 366 MHz Celeron, with 128 kb L2 cache
and 256 Mb RAM, using Microsoft .NET Beta 2 and Cygwin gcc 2.95.2-6 on
Windows 2000. Each benchmark program was run 6-8 times in succession, to
fully prime the cache, with the result being the fastest time recorded.

We compared five different Mercury compiler back-ends the one de-
scribed in this paper (‘ilc’), an experimental variant which uses the higher-
level data representation for algebraic types discussed in Section (‘i17),
and three existing back-ends (‘asm_fast’, ‘asm fast.gc’, and ‘hlc.gc’)[] For
the i1 and ilc back-ends, the ‘-—-verifiable-code’ option was not enabled.

In addition, for two of the benchmarks we also measured the performance
of equivalent programs written in C, compiled with MSVC (c1) or GNU C
(gcc -03 -fomit-frame-pointer), and in Cf , compiled with the Microsoft
C't compiler (csc /o).

We ran three different benchmarks, ‘true’, ‘tak’, and ‘queens’; the results
are shown in table [l All figures are execution times, measured in seconds.

Start-up time. To measure the impact on start-up times of initializing the
Mercury RTTT data structures, we measured the time taken to execute a

4 asm_fast is the original back-end of the Mercury compiler; it compiles to native code

via low-level GNU C. It has no garbage collector, but heap space is recovered automatically
on backtracking. asm fast.gc is same as asm_fast.gc, except that it uses the Boehm (et
al) conservative garbage collector [E] hlc.gc is the MLDS-based high-level C back-end of
the Mercury compiler; it compiles to native code via standard C. It too uses the Boehm
collector.
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trivial “do-nothing” Mercury program, true. When compiled to the .NET
CLR, this program took about 1.8 seconds, compared with about 0.07 sec-
onds for the same program compiled via C to native code, and about 0.16
seconds for a do-nothing C'f program.

Recursion. tak is an artificial benchmark, originally written in Lisp; it is
heavily recursive and does lots of simple integer arithmetic. We chose this
benchmark because it was the only benchmark in our standard set that
didn’t use discriminated union types. To reduce the effects of start-up
time, we wrote a test harness that ran the test 10000 times.

All versions ran at pretty similar speeds, with C'f falling a little behind,
probably because it was the only one that failed to perform tail call elimi-
nation. This shows that the CLR can match native code for at least some
benchmarks.

Backtracking and lists. queens finds a solution to the problem of placing
11 queens on an 11x11 chess-board without any queen attacking any other
queen; it makes heavy use of backtracking, lists, and heap allocation.

On this benchmark our CLR back-end does substantially worse than the
other Mercury implementations; even when using a higher-level data repre-
sentation rather than arrays of System.0Object, it is a factor of 5 worse than
the MLDS-based C back-end, and a factor of 10 worse than the best Mer-
cury implementation, which recovers heap storage cheaply on backtracking,
rather than using garbage collection.

A large part of this is no doubt due to the immature nature of our cur-
rent implementation; for example, our compiler emits many unnecessary
‘castclass’ instructions, which could easily be eliminated by common sub-
expression elimination. We emphasize that these benchmark results are
preliminary.[]

Overall, the benchmarks show widely varying results. No firm conclusions
should be drawn about the overall performance competitiveness of compiling
to the CLR from the benchmark results at this stage. However, the cost of
initializing static data at start-up is definitely problematic for us.

5 Conclusions & Further work

We have implemented a compiler for Mercury that generates .NET CLR CIL
code and which handles all of the standard Mercury language features.

By generating code for the CLR, many aspects of our language implemen-
tation have been simplified, because we have been able to make direct use of
the high-level facilities that it offers, such as garbage collection and exception
handling. But more importantly, having a compiler for the CLR is the first
step towards achieving a much greater degree of interoperation between Mer-

5 In fact, for the il version we had to hand-edit the generated CIL code slightly to make
it work.
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cury and a variety of other different languages that target the .NET CLR.
Programmers can benefit from this interoperability with increased code reuse,
e.g. by making use of the wide variety of existing components available on
this platform.

We have also identified a number of areas in which the .NET CLR or future
VMs could be improved to better support Mercury and other languages:

» support for static initialization of static data objects

* support for returning multiple values (instead of just one)
* more “first-class” support of by-ref and refany types
 allowing by-refs parameters for tail-calls in verifiable code
e verifiable function pointers

e verifier-enforced ‘out’ mode parameters

 support for parametric polymorphism

» support for type synonyms as abstract data types

The work described in this paper is just a first step towards achieving easy
language interoperability between Mercury and other languages on the CLR;
it provides a base upon which we can then build specific compiler and/or
language support for interoperating with other languages.

Future work includes tighter integration of the Mercury’s type system and
the CLR’s type system, finding suitable interfaces for language feature mis-
matches, improving the efficiency of the code our compiler generates, and
overcoming the remaining issues of verifiability. We would also like to do
more detailed performance measurements.
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