Cyclic Lambda Calculi

Zena M. Ariola! and Stefan Blom?

! Department of Computer & Information Sciences
University of Oregon. Eugene, OR 97401, USA
email: ariola@cs.uoregon.edu
2 Department of Mathematics and Computer Science
Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam
email: sccblom@cs.vu.nl

Abstract. We precisely characterize a class of cyclic lambda-graphs,
and then give a sound and complete axiomatization of the terms that
represent a given graph. The equational axiom system is an extension of
lambda calculus with the letrec construct. In contrast to current theo-
ries, which impose restrictions on where the rewriting can take place, our
theory 1s very liberal, e.g., it allows rewriting under lambda-abstractions
and on cycles. As shown previously, the reduction theory is non-confluent.
We thus introduce an approximate notion of confluence. Using this no-
tion we define the infinite normal form or Lévy-Longo tree of a cyclic
term. We show that the infinite normal form defines a congruence on
the set of terms. We relate our cyclic lambda calculus to the traditional
lambda calculus and to the infinitary lambda calculus.

Since most implementations of non-strict functional languages rely on
sharing to avoid repeating computations, we develop a variant of our cal-
culus that enforces the sharing of computations and show that the two
calculi are observationally equivalent. For reasoning about strict lan-
guages we develop a call-by-value variant of the sharing calculus. We
state the difference between strict and non-strict computations in terms
of different garbage collection rules. We relate the call-by-value calculus
to Moggi’s computational lambda calculus and to Hasegawa’s calculus.

1 Introduction

Cyclic lambda-graphs are ubiquitous in a program development system [33].
However, previous work falls short of capturing them in an adequate way. This
lack of explicit treatment of cycles results in the loss of important intensional
information and in weak theories that cannot express many transformations on
recursive functions. For example, consider the following term:

M = letrec even = Az.if # = 0 then true else odd(z-1)
odd = Az.if # = 0 then false else even(z-1)
ineveny .

(A note on syntax: the construct letrec ---in --- stands for a collection of
unordered equations and a main expression written after the keyword in.) At

compile time 1t might make sense to unfold or inline odd in the definition of even,
triggering the constant folding and unused lambda expression transformations
obtaining the term below:

N = letrec even = Ax.if £ = 0 then true
else if © = | then false else even(z-2)
in eveny .

We can express terms M and N in the lambda calculus extended with pairs
(denoted by (,) with destructors Fst and Snd) and the p-operator (rendered
by the p-rule pe. M — M[x := px.M]) as follows (we denote the translation by

[1.):

[M], = let even_odd = pz.{Az.if x = 0 then true else Snd z (2-1),
Az.if # = 0 then false else Fst z (2-1))
in Fst even_odd y
[N]u = let even = py.Az.if x = 0 then true
else if © = | then false else y(z-2)
ineveny .

However, note that [M], does not rewrite to [N], in Ay. The two terms are not
even provably equal. This means that these simple inlining optimizations are not
expressible as source-to-source transformations in Ag; thus, one cannot use the
calculus to reason about their correctness or to study the efficiency of different
application strategies.

Cycles are also important for reasoning about run-time issues. For example,
the execution of M will involve a substitution of even in the main expression,
followed by a S-reduction, obtaining:

letrec even = Az.if x = 0 then true else odd(x-1)
odd = Az.if # = 0 then false else even(z-1)
in if y = 0 then true else odd(y-1) .

Let us consider [M],,. We first apply the g-rule to expose the lambda-abstraction,
and then, as before, perform one substitution followed by a -reduction, obtain-
ing the following term in which we have denoted the p-expression occurring in
[M], by P:

let even odd = (Az.if # = 0 then true else Snd P (z-1),
Az.if x = 0 then false else Fst P (a-1))
in if y = 0 then true else Snd P (y-1) .

The unsuitability of a calculus such as Ay for reasoning about execution now
comes to the surface. While the execution of M has made only one copy of even,
the execution of [M], has created four copies of even and three copies of odd.

Interestingly enough, a theory of cycles turns out to be useful also for defining
a parser. As described by Tomita [38] and Billot et al. [16], a compact represen-
tation of all possible parse trees (that could be an infinite number) associated

with a string is a cyclic graph, called a parse forest. The lack of a theory re-
garding cyclic objects has forced some research projects investigating automatic
programming environment generators, such as the ASF+SDF developed by Klint
[22], to apply a disambiguation process to remove the cycles [23] and so retriev-
ing a tree object. Familiar rewriting can then be applied on that object. This
disambiguation process would not be required if cycles were part of the rewriting
technology.

We conclude that a theory of cycles is necessary if one wants to reason about
compilation, optimization and execution of programs. Presentation of such a
theory is the goal of this paper.

What makes a theory of cycles difficult to develop is that confluence is lost
once lambda-abstraction and cycles are admitted, unless the theory is powerful
enough to represent irregular structures as shown in [6, 7]. To regain confluence,
current formulations of cycles either impose restrictions, such as disallowing
reduction under a lambda-abstraction or on a cycle [6, 7, 15, 31, 35], or adopt a
framework based on interaction nets [24]. As discussed in [28] and [12], cycles do
not destroy confluence in the context of interaction nets, but only at the expense
of greater complexity.

In this paper, we limit our attention to cyclic lambda-graphs that occur in
current implementations of strict and non-strict functional languages (we are
not interested in optimality); thus, we will only consider cyclic lambda-graphs
that naturally unwind to regular trees. In contrast to current approaches, we do
not restrict the selection of redexes but introduce an alternative way of guaran-
teeing the consistency of the calculus. This consists of an approximate notion
of confluence - confluence up to information content. This new notion is some-
what reminiscent of another ‘approximate’ notion of rewriting and confluence,
namely, rewriting modulo an equivalence relation and confluence modulo equiv-
alence [20]. However, unlike these notions, we do not combine rewriting with an
equivalence relation, but with an equally fundamental notion, namely a quasi
order, expressing a comparison between the ‘information content’ of the objects
in question. Explicit studies of such a combination of a rewrite relation with a
quasi order are not abundant; the only study that we are aware of is [37]. In
the context of process algebra, Sangiorgi and Milner [36] consider equivalences
of processes up to an asymmetric relation, such as a quasi order, as a technique
to prove bisimulation.

The paper is organized as follows: We start in Sect. 2 by introducing cyclic
lambda-graphs. As in Wadsworth [39], we do not deal with all possible lambda-
graphs, but restrict our focus to the set of well-formed lambda-graphs. To define
this class we introduce in Sect. 2.1 the notion of a scoped lambda-graph. The well-
formed lambda-graphs are those that have associated scoped lambda-graphs. In
Sect. 2.2, we introduce the syntactic formalism used to represent scoped lambda-
graphs. Throughout this paper these syntactic objects are referred to as cyclic
lambda terms. In Sect. 2.3, we present a mapping from cyclic lambda terms
to scoped lambda-graphs. Since different cyclic terms can represent the same
scoped lambda-graph, we introduce in Sect. 2.4 the representational calculus

Ro. Ro equates all distinct representations of a scoped lambda-graph. Since
we would also like to equate different representations of the same well-formed
graph, we extend R¢ with two other axioms in Sect. 2.5. We call the resulting
system Rq. In Sect. 2.6, we further extend R; to make terms that unwind to
the same tree provably equal. We call the calculus Ry. Ro combined with a
notion of B-reduction constitutes our cyclic extension of lambda calculus, which
is presented in Sect. 3. In Sect. 4, we introduce the notions of confluence up to
a quasi order, completeness up to a quasi order and infinite normal form. We
present some sufficient conditions that guarantee soundness of the infinite normal
form with respect to reduction. In Sect. 5, we show confluence up to information
content of the cyclic lambda calculus. In Sect. 6, we prove that the infinite
normal form defines a congruence with respect to the term formation rules,
guaranteeing observational equivalence. In Sect. 7, we relate our cyclic lambda
calculus to the traditional lambda calculus and to the infinitary lambda calculus
of Kennaway et al. [21]. In Sect. 8, we add the notion of sharing to our cyclic
calculus for reasoning about current implementations of non-strict functional
languages. In the call-by-name calculus every term is substitutable, while in the
sharing calculus substitution is restricted to values, thus avoiding duplication of
work. We show that this restriction does not change the infinite normal form
of a cyclic term. For reasoning about strict languages, in Sect. 9, we introduce
the cyclic call-by-value calculus, which is obtained by restricting the garbage
collection axiom of the sharing calculus to collect values only. This expresses the
fact that strict and non-strict computations capture the same amount of sharing.
The call-by-value calculus is then equipped with a term model, which allows us to
relate our calculus to the commutative version of Moggi’s computational lambda
calculus [30] and to the recently developed calculus of Hasegawa [18]. The reader
can refer to [3] for a detailed exposition and the proofs.

2 Graphs as Terms and Terms as Graphs

In this section we establish an isomorphism between cyclic lambda-graphs and
their syntactic representations. We start by introducing a basic formalism for
cyclic lambda-graphs in a format similar to the one used for first-order term
graphs in [14].

2.1 Cyclic Lambda-graphs and Scoped Lambda-graphs

Following an idea used by Bourbaki in Fléments de Théorie des Ensembles to
deal with quantifiers, an occurrence of a bound variable in a lambda-graph is
represented by a back-pointer to the corresponding binding lambda-node. This
implies we will not be able to represent the lambda-graph of Fig. 1, which
Wadsworth [39] calls a non-admissible lambda-graph. Each argument of a node
is either a normal pointer to some node, a back-pointer to a lambda-node, or
is a free variable from the set of variables V. A normal pointer is denoted by
v, w, a back-pointer by ¥,w and a variable by x,y,z. We let A(v); denote the

Fig. 1. Wadsworth’s non-admissible lambda-graph

i*h argument of node v. A graph has a root r, which can be anything that an

argument can be. If the label of a node is e then that node is called a black hole.
The black hole denotes provable non-termination. It was already introduced in
the first-order case to be able to reduce a cyclic graph in the presence of col-
lapsing rules, i.e., rules of the form /& — x. A more thorough discussion of the
black hole is given in [9].

Notational conventions: given sets S and 7', P(S) stands for the powerset of
S, S\ T stands for set difference, ¥* stands for strings over the alphabet 2 |w|
stands for the length of string w, and V& W stands for the disjoint union of sets
V and W. From now on, we will sometimes write graph for cyclic lambda-graph.

Definition1. A lambda-graph is a tuple (V, L, A, r) where

- V' is a set (possibly infinite) of nodes.

- L:V —{) @ e} is a labeling function.

- AV = (Vae{v|veV,Lv) = A} $ V)" is a successor function such that if
L(v) = e then |A(v)| =0, if L(v) = A then |A(v)| = 1 and if L(v) = @ then
A =2

-re(Vae{r|veV,Llv)= At V).

In addition to the usual conventions on how to give a graphical representation
of a cyclic lambda-graph, we adopt the convention that if an arrow enters a
lambda-node from above it represents a normal pointer and when it enters from
below it represents a back-pointer. Thus, for example, we distinguish between
the two lambda-graphs of Fig. 2. We draw a free variable as a labeled line and not
as a node labeled . For simplicity, we draw the label of the line at the end of the
line. We picture the root as a pointer or a labeled line that has no starting node.
Fig. 3 shows some examples of lambda-graphs. The lambda-graph on the left
corresponds to a free variable # with a lambda-subgraph not accessible from the
root. Note the difference between an arrow and a labeled line. In the following,
when we talk about a path in a lambda-graph, we mean a directed path using
only the arrows representing normal pointers. We refer to a graph in which all

G

Fig. 2. Pointers versus back-pointers

Fig. 3. Examples of lambda-graphs

nodes are reachable by a path starting at the root as a garbage free graph. We
assume that equality between graphs stands for graph isomorphism.

In this paper, we will only deal with a subset of all possible lambda-graphs.
For example, we will not consider the third lambda-graph of Fig. 3. To charac-
terize this subset, referred to as the subset of the well-formed lambda-graphs, we
introduce the notion of scope, which associates a set of nodes to a lambda-node.
Intuitively, as it will be discussed in Sect. 3, the scope of a lambda-node v corre-
sponds to that part of the graph that is copied when a f-reduction is performed
with v denoting the function part of the application. This notion points out the
main difference between our approach and that based on interaction nets [24]:
interaction nets come equipped with certain operators that allow partial copy-
ing, that is, the copying can occur on a node-to-node basis whereas for us it
occurs all at once.

Definition2. A scoped lambda-graph is a tuple (V, L, A, S, r), where

- (V,L, A, r)is a lambda-graph
- S:{veV|L(v) = A} — P(V) is a function such that for every lambda-node
v the following axioms apply.
- auto: v e S(v)
- bind: Vw : 7 is an argument of w then w € S(v)
- upward-closure: If wy ¢ S(v), ws € S(v) and wy is an argument of wy
then wy = v
- nesting: V lambda-nodes w : S(w) N S(v) = {} or S(w) C S(v)\{v} or
S(0) € S(w)\ {uw)
- root condition: v € V or r € V such that Vv : r ¢ S(v)\{v}.

We depict the scope of v by drawing a line starting at one side of the lambda-
node around all other nodes that are a member of the scope ending at the other
side of the lambda-node.

FEzample 1. The graphs of Fig. 4 and 5 are examples of scoped and ill-formed
scoped graphs, respectively. Since the scope of a lambda-node involves nodes and
not edges, we can take the liberty to draw the label of an edge either inside or
outside the scope. See the second graph of Fig. 4 in which the left label is outside
the scope and the right one is inside. However, we will follow the convention that
labels are drawn inside the scope.

Fig. 4. Examples of scoped graphs

The first graph of Fig. 5 violates the bind scope axiom because the first
application node has a back-pointer to the lambda-node v and is not a member
of the scope of v. The second graph violates the upward-closure scope axiom
because the scope of the upper lambda-node v 1s entered from a node different
than v. The third graph violates the nesting scope axiom because the intersection
of the two scopes is non-empty without one being a proper subset of the other.
The fourth graph violates the root condition because the root points to a node
inside a scope.

By definition, we get a lambda-graph when we drop the scope function from
the tuple. However, not every lambda-graph is obtained by stripping the scope
function from the tuple.

Definition 3. A lambda-graph (V, L, A, r) is well-formed if there exists a scope
function S such that (V, L, A, S, r) is a scoped graph.

From now on we will assume that a graph consists of a finite set of nodes
unless stated otherwise.

For garbage free graphs there is a necessary and sufficient condition to ensure
that they are well-formed.

Proposition4. Given a garbage free graph g. Then g is well-formed iff for every
node v with a back-pointer to w, w s on each path from the root to v.

|

A A

J lb
A @

!

@ @
N / N\

Q z z
/ N\

Fig. 5. Examples of ill-formed scoped graphs

Note that the third graph in Fig. 3 is not well-formed since it does not meet
the condition stated in the proposition above.

2.2 Cyclic Lambda Terms: a Syntactic Representation of Scoped
Lambda-graphs

We now introduce the syntactic formalism used to represent scoped graphs.
The same formalism was already introduced in [8] for the first-order case, and
extended with lambda-abstraction in [6, 7]. However, in that work a precise
connection between terms and lambda-graphs was not established.

Definition5. The following clauses define the syntax of cyclic lambda terms:

Terms (Ao) Mu=2x | AeM | MN | (M| D)
Declarations D=z, =My,...,x, = M,

where the recursion variables x;, 1<i<n, are distinct from each other.

In other words, the set of cyclic lambda terms consists of the lambda calculus
terms (i.e., variables, abstractions and applications) and the letrec construct:
(M |21 = My, -, 2y = My). We sometimes refer to D and M as the internal
and external part of (M | D). Terms that differ in the order of the equations are
identified. We adopt the following notation: A context (' is a term with a hole,
O, in the place of one subterm. The operation of filling the context ' with a
term M yields the term C[M], possibly capturing some free variables of M in the
process. By convention, bound and free variables are distinct from each other.
Mz := N] stands for the substitution of N for each free occurrence of # in M,
without capturing any free variables in V. = stands for syntactic equivalence up
to a-renaming, applied to both lambda-bound variables and recursion variables.
If Dy and Dy are the lists of declarations xy = My, -+, 2, = M,, and y; =
Ni,--,Yn = Ny, respectively, such that V¢, j : 2; Z y; then we denote the list of
declarations @1 = My, -, &y = My, y1 = N1, -,y = Np by Dy, Ds. When it
is convenient to do so we sometimes denote a list of declarations as a set, e.g.,
D1 = {1‘1 = M1,~~~,l‘m = Mm}

2.3 Mapping Cyclic Lambda Terms to Scoped Lambda-graphs

We define a mapping from cyclic terms to scoped graphs to give graph-semantics
to cyclic terms. To simplify the definition of this mapping we introduce the notion
of a (scoped) pre-graph, in which the condition on the arity of a black hole is
relaxed.

Definition6. A (scoped) pre-graph is a (scoped) graph where a node labeled
with ¢ may have 0 or 1 argument(s). If such a node has arity 0 we still call it a
black hole but if it has arity 1 we call it an indirection node.

e
©

Fig. 6. Pictorial definition of ppre

We have chosen the same symbol for indirection nodes and black holes be-
cause a black hole can be seen as a special case of an indirection node: an
indirection node that refers to itself and therefore cannot be removed.

We map cyclic terms to scoped graphs via the mappings ppre and Sim:

Ppre © Ao — scoped pre-graphs
Sim : scoped pre-graphs — scoped graphs .

The mapping ppre transforms every lambda, every application and every oc-
currence of a variable that 1s not on the left-hand side of an =-sign into a node
of the appropriate type (lambda, application and indirection, respectively). For
a term Ax.M the scope of the lambda contains the lambda-node itself and ev-
ery node corresponding to the subterm M. The definition i1s given pictorially
in Fig. 6, in which for simplicity we denote ppr(M) by M. Note that in the
case for a lambda-abstraction, each labeled line x is transformed into a back-
pointer. Instead, in the case for a letrec expression, the labeled lines z - - -z,
are transformed into pointers.

The mapping Sim transforms a scoped pre-graph into a scoped graph by
removing all indirection nodes or transforming them into black holes. This is
accomplished by the three rewriting rules described in Fig. 7. The first rule
transforms an indirection node that has itself as argument into a black hole
simply by forgetting the argument. The second rule removes the indirection node
v that points to a different node w (by normal or back-pointer) and redirects
every pointer to v to w. The last rule removes an indirection node v that has a
free variable & as an argument and changes every pointer to v to a line labeled .
The result of the normal form of these operations is well defined because we have
local confluence and termination. We will refer to Sim(g) as the simplification
of the scoped pre-graph g. The mapping p from cyclic terms to scoped graphs is
then obtained by composing ppre and Sim.

\O% Y, \ifi/%\i/ N7 - > (

Fig. 7. Simplification of scoped pre-graphs

@(—y&
N — @
N

Fig. 8. Construction of p({(Az.c y | y = z))

Definition7. Given M € Ao. The scoped graph p(M) is Sim(ppre(M)).

Ezample 2. In Fig. 8 from left to right we have por((Az.zy | y = 2)), the
result of contracting one simplification redex and the result of contracting the
remaining two simplification redexes. Note how the node labeled e with z as an
argument is erased by giving its single argument to the application node.

Definition8. Given M € Ao and a scoped graph ¢g. Then M represents g if
p(M) =g.

Different cyclic terms are mapped to the same scoped graph by p, e.g.,
pley | # = z,y = z)) = p(zz). Thus, our next step is to characterize which
cyclic lambda terms are mapped to the same scoped graph with a sound and
complete set of axioms: the representational calculus.

2.4 Sound and Complete Axiomatization of Scoped Lambda-graphs

For all calculi developed in the paper, we assume the presence of the reflexivity
axiom and the inference rules that make provable equality a congruence relation.
In giving the axioms we assume that no variable capture occurs, e.g., z{z | # = 2)
is not equated to {xx | # = z). Table 1 gives the axioms of the representational
calculus R,.

Theorem 9. The representational calculus s sound: If Ry & M = N then
p(M) = p(N).

To show that the representational calculus is sufficient to equate all distinct
representations of the same scoped graph, we introduce a mapping that asso-
ciates a cyclic term to a scoped (pre)-graph:

YPpre : scoped pre-graphs — Ao .

This mapping is based on the scheme of translating every node to an equation
(z = x for a black hole, # = y for an indirection node, # = y z for an application
node and # = Ay.{(z | D) for a lambda-node) and placing these equations in such
a way that every equation gets placed in a subterm of a lambda-abstraction

Table 1. The axioms of R,

Lift: (M| D) N = (M N |D)
M (N|D)y=(M N|D)
Empty box garbage collection: M)y=M
Merge: (M| D1) | D2y = (M | D1, D2)
(M|z={(N|Di),D2) ={(M |z =N,D1, Do)
Variable substitution: (M |z =y, > (M[x =y]| D[z :=1y]) TZy
Naming: ={(z|z=M) T a new variable

corresponding to node v iff the equation came from a node in the scope of v
except v itself.

The mappings ppre and ¢pre do not satisfy either ¢ = ppre(Ypre(y)) or
M = Ypre(ppre(M)). For example, given M = zz, pre(ppre(M)) is (21 | 21 =
zy x3,29 = x,x3 = z). We do, however, have that ppre(t¥pre(g)) simplifies
to g. This means that for a scoped graph ¢ there is a term M such that
p(M) = g. Moreover, Rqg b M = tpre(p(M)) and if ¢ simplifies to ~ then
Ro F Ypre(9) = Ypre(h). This implies that the representational calculus is com-
plete.

Theorem 10. Given M, N € Ao. If p(M) = p(N) then Ry - M = N.

2.5 Complete Axiomatization of Well-formed Graphs

We have now established how scoped graphs are represented by cyclic terms.
Since a well-formed cyclic graph can have different scoped graphs associated
with it, our next goal is to find axioms that equate the representations of these
alternatively scoped graphs.

Definition11. A scoped graph h is an alternatively scoped version of a graph
g=(V,L,A S r) (written as h ~ g) if h = (V, L, A, 5", r).

For example, the first two graphs of Fig. 4 are alternatively scoped ver-
sions of the same graph (i.e., the fourth graph of Fig. 3). These two graphs
are represented by the terms (¢ | # = Ay (w | w = wiy),w; = zz) and
(z | © = Ay{w | w = wiy, w1 = zz)), respectively. It is then clear that if
we want to equate the above two terms we need to extend the representational
calculus with the following lambda lift axiom:

AeAM | D) = (Ae.M | D) z not freein D .

However, on graphs with garbage, the lambda lift axiom is not necessarily pow-
erful enough. Consider Fig. 9, in which we have drawn two graphs that are
alternatively scoped versions of the same graph. They are represented by the
terms (z | zo = Ao e | 21 = Apn{y | 22 = yo y1))) and (z | &1 = Apn {y | w0 =
Ayo.{x | £2 = yo y1))). Therefore, we introduce the garbage collection axiom:

(M |Dy=M D-M,

z Y

N e/

T

Fig. 9. Two scoped versions of the same graph

where D — M means that the set of variables that occur as the left-hand side
of an equation in D does not intersect with the set of free variables of M. We
will also adopt the notation D — D’ where D’ is ¢y = My, -+, x, = M,,, which
stands for D — M;, 1 < ¢ < n. We call Ry the representational calculus extended
with the lambda lift and garbage collection axioms.

Theorem 12. Given M, N € Ao. If (M) ~ p(N) then Ry - M = N.

2.6 Sound and Complete Axiomatization of Tree Unwinding

We now want to prove equal every two representations of graphs with the same
tree unwinding. The R representational calculus is sound with respect to tree
unwinding. To guarantee completeness we need another axiom, as was already
pointed out in [7] for the first-order case. This axiom is the copy axiom, defined
as:

M=N 30: V-V N =M,

where ¢ is a function from recursion variables to recursion variables, and N7 is
the term obtained by replacing all occurrences of recursion variables x by o(x)
(leaving the free variables of N unchanged), followed by a reduction to normal
form with the unification rule:

e=Mxr=M—ac=M .

For example, {y |y = Az.w,w = Az.y) = (y |y = Az.w',w' = dey/, v = Az.w'),
where the mapping o is: v’ — w, y — y and y’ — y. This extension is called
R,. We then have the following completeness result:

Theorem 13. Given scoped graphs g and h with the same tree unwinding. If M
and N represent g and h, respectively, then R, = M = N.

We summarize the representational calculi in Table 2.

3 The Cyclic Lambda Calculus Aoyame

The representational calculus R, makes terms and graphs isomorphic. We now
add computational power to our graphs and terms. This is done by first intro-
ducing f-reduction on scoped graphs. We will then give an axiomatic view of
this reduction.

Table 2. Complete axiomatization of cyclic lambda-graphs and of tree unwinding.

Ro (M| D) N={(M N |D)
M (N |D)= (MN|D>
(M) =
(Wt 02| D) = 0| v,)
<M|$:<N|D1>,D2>:<M|$—ND1,D2>

M={(z|zs=M) T a new variable
(M |z =y, D)= (M[z:=y]| D[:=y]) TZy
Ry (M| D) =M D1M
Az (M | D) = (Az. M | D) = not free in D
R, M=N Jo: V=V, N =M

G-reduction on lambda-graphs

A [-redex in a lambda-graph is an application node whose first argument is
a lambda-node. The contraction of a S-redex is a two-step process (see Fig.
10). In the first step we check if the reference to the lambda-node from the
application node is unique and if the application node is outside the scope of
the lambda-node. If one of these tests fails we copy the lambda-node and its
scope in such a way that the test succeeds on the result (see the left step of Fig.
10). We then place the lambda-node (or the copy, if one has been made) and its
scope in the same scope as the application node (the original if a copy has been
made). The second step is a redirection of pointers consisting of: 1) replacing
the application node by an indirection node whose argument is the argument of
the lambda-node, 2) replacing the lambda-node by an indirection node whose
argument is the former right argument of the application node. Note that all
pointers to the indirection node replacing the lambda-node need to be changed
from back-pointers to normal pointers. This second step is drawn on the right of
Fig. 11. On the left of the same figure we have drawn the f-reduction principle
used by interaction nets [24]. There the use of indirection nodes is superfluous
because there is exactly one reference to the application node and exactly one
back-pointer to the lambda-node.

Axiomatization of g-reduction
We now proceed by giving axioms on cyclic terms that describe F-reduction.
The first step is described by the axioms introduced so far. For the second step

\

gl

Fig. 10. B-reduction on scoped lambda-graphs

~

| N/ N/

@ @
AN r AN 7\
A A —®
N /] o/
Fig. 11. Beta-reduction principles for interaction nets and lambda-graphs

we need to introduce the following fo-axiom:
Az MYN=(M|z=N) .
Frample 3. The f-reduction of {(x | # = Ay.x y) (see Fig. 12) is described below.

(xle=dyzy) ={z|e= " y o' =/ xy) copy
={x|x= Xy y|2 =2y .xy)) merge
={x|x=dy{z | =Xy xy)y) lift
={z|x=Ay.(AY .2y)y) naming
=(z|e=xy(ay |y =v)) go.

In [6] we have called the subterm zy of (x | # = Ay.xy) an implicit B-redex
which needs to be made explicit, i.e., of the form (Az.P)@, in order to be reduced.
In our cyclic calculus, an implicit S-redex can be made explicit by the use of
the Ry representational axioms. However, we would also like to make a redex
explicit by applying a representational rewriting system. In that respect the rules
obtained by orienting the R» axioms from left to right are not sufficient. We thus
introduce the following two axioms:

(Clyl ly=M,D) ={(C[M]|y=M,D)
(Nlz=Clyl,y=M,D)=(N|z=C[M],y= M, D) ,

called external and internal substitution, respectively. These axioms capture the
inlining transformations described in the introduction, and they are derivable in
Ro. The rules obtained by orienting these axioms from left to right are enough
to expose implicit redexes. Referring to Example 3 we have: (¢ | # = Ay.zy) —

(e =dy.(AY 2y)y)y — (& |z =dy{zy | Y = y)).

Definition14. The axioms of the call-by-name cyclic calculus (Aopame) are
given in Table 3. ———— denotes the reduction relation obtained by orient-

AOname

ing all axioms from left to right and by imposing the restriction D’ # {} to the
garbage collection rule and to the lambda lift rule.

Fig.12. f-reducing {z | = = Ay.z y).

Table 3. The axioms of Aopame

Bo: (Az.M)N =(M |z=N)
Substitution: (Clz] |z =M,D)=(C[M] |+ = M,D)
(N|z=Clz1),s1 =M,D)=(N |z =C[M],z1 = M, D)
Lift: (M| D)N = (MN | D)
M(N|D)y=(MN|D)

Az M | D,D"y={{Az.M | D)| D'y D L D'and z not free in D'
Merge: (M |s=(N|D),D1)={(M|xz=N,D, D)

(M| D)| D) =(M|D,D"
Garbage collection: (M | D, D'y = (M | D) D' L (M| D)

(M |)=M

Copying: M=N Jo: V=V, N =M

In general, we denote by — the reflexive and transitive closure of a reduction
relation —~. From now on, we will omit the subscript name when no confusion
arises. We have omitted naming and the variable substitution axioms since they
are derivable. We have also adopted a more general form of the lambda lift
axiom, t.e., we move subsets of equations out of a letrec. This is because we
want to have a common reduct for the two reducts Ae{y |y = z2) | z = 2)
and de{y|ly=zx,z==2)of \e.{{y |y =2z x) | z = z). By a similar argument,
we have introduced a more general form of the garbage collection axiom which
allows us to remove subsets of equations.

The main difference between Aopame and the Ag-caleuli [6, 7] involves the
substitution and merge operations. Here, these operations may occur in any
context, whereas in [6, 7] they cannot occur on a cycle. For example, the A¢-
calculi disallow the step {(z | # = Az.y(Sz),y = dw.z(Sw)) — (x| = =
Az.(Aw.z(Sw))(Sz),y = Aw.x(Sw)). This is an example of a cyclic substitu-
tion, since z and y lie on the same cyclic plane. Cyclic substitution is the cause
of non-confluence, as shown by the following example:

M= (¢|x=X2y(S2),y = Aw.z(Sw))

— {z]|z = Az.(Aw.e(Sw))(Sz),y = dw.z(Sw))

— (x| = Az.2(5(52)),y = Aw.x(Sw)) (%)
M — (x| x=Azy(52),y = Aw.(Az.y(S2))(Sw))

— (x| = Az.y(S2),y = Aw.y(S(Sw)) (+%)

Now, the terms (*) and (**) have no common reduct, since in the term (*) an
even number of S’s is reachable from the root # , while the term (**) will contain
an odd number. This ‘out-of-synch’ phenomenon is also observed by reducing
(in at most w steps) the infinite terms that arise by unwinding the cyclic graphs.
By disallowing the substitutions for and y the counterexample disappears.
Moreover, in the A¢-calculi the merge rules had the proviso that only acyclic
letrec’s could be merged. For example, the following step is illegal: (# | & =
Azy(Sz) | v = Aw.e(Sw))) — (x| © = Azy(S2),y = Aw.z(Sw)). If the

above step were allowed then confluence would have been lost, since the acylic

substitution for y is turned into a cyclic substitution once the internal letrec is
removed.

In summary, in [6, 7], the focus was on finding a confluent calculus that could
express cyclic lambda graph rewriting. Instead, we do not take confluence as the
guiding factor in designing the calculus. Thus, we do not restrict the calculus, but
introduce a new way of proving the consistency of the calculus. More specifically,
we introduce an approximate notion of confluence - confluence up to information
content. This notion allows us to abstract away syntactic details.

4 Approximate Notion of Confluence

Once cycles are admitted 1t seems natural to consider infinite normal forms
instead of normal forms. We thus introduce a new property, confluence up to a
quasi order, which guarantees unicity of infinite normal forms. In the rest of this
section we work with abstract rewriting systems, since we do not need the extra
structure terms have to define the necessary notions.

Confluence up to a quasi order

We start by introducing a few notions about abstract rewriting system where
the set of objects also has a quasi order defined on it.

Definition15. An ordered abstract rewriting system is a structure (4, —, <),
where (A4, —) is an ARS (abstract rewriting system) and (A, <) is a quasi order.
Given an ordered ARS (A, —, <). Then
- — 1s monotonic with respect to < if Va,b € A :a — b implies a < b.
- —is confluent up to < ifVa,b,c e A : a—b,a—cimplies3d € A : b—d,c < d.

- We denote by <= the reflexive transitive closure of ((—U—=)N=).

Next, we give an analysis of confluence up to in terms of some simpler prop-
erties. We begin with some definitions.

Definition16. Given an ordered ARS (A, —, <), and another reduction rela-
tion —C—. Then
- +—is complete for — up to < if Va,b € A : a—bimplies3ce A :arc, b <c.
- +— commutes with — up to < if Va,b,c e A : a—b,a — c implies Ad € A :
b d,c<d.
- We denote by o— the reduction relation — \ .

Lemma17. Given an ordered ARS (A, —, <). Let —C— such that — is com-
plete for — up to < and — commutes with — up to <. Then — is confluent up
to <.

To prove that the conditions stated in the lemma above hold for our cyclic
calculi we will use the following lemma.

Lemma18. Given an ordered ARS (A, —, <) and a relation —C—. If the fol-
lowing two diagrams hold

then — commutes with — up to < and — is complete up to <.

Infinite normal form

We define the infinite normal form of a term as the maximum information that
can be obtained by reducing that term. We model the information content of
a term as a function from the set of objects of an ARS to a partial order.
This function and the partial order induce a quasi order on the elements of the
ARS. The intuition of information content demands that the rewrite relation is
monotonic with respect to the induced order. Formally:

Definition19. The structure {(A, —, <), w, (B, <)) is called an ARS with or-
dered information content if:

- (A,—, =) is an ordered ARS

- — 18 monotonic with respect to <

- (B, <) is a partially order set

- w is a function A — B

- a=xbiff w(e) <w(b).

We often refer to w(a) as the information content of a.

Definition 20. Given a partial order (B, <). We define the downward closure
of aset C'C B, denoted by | C,as {be B|b<aeC}.

Definition 21. Given an ARS A with ordered information content {(A4, —, <
)oio, (B, <)),
- The infinite normal form of an a € A4, Inf(a), is defined as | {w(b) | a—b}.
- A has unique infinite normal forms if @ — b implies Inf(a) = Inf(b).

Next, we show that confluence up to guarantees that the infinite normal form
is an ideal. Given a partial order (B, <), a subset I of B is an ideal iff (i) I is
non-empty, (ii) Va,b € I,3c e I,a < cand b < ¢, (ili)Vee I,if 3d e B, d < ¢
then d e I.

Proposition22. Given an ARS with ordered information content {(A,—, =<
), w, (B, <)). If — is confluent up to < then Inf(a) is an ideal.

Confluence up to is a sufficient and necessary condition for the unicity of
infinite normal forms to hold.

Proposition23. Given an ARS A with ordered information content {(A, —, <
),w, (B, <)). — s confluent up to < iff A has the unique infinite normal form

property.

Table 4. Evaluation calculus: Aoeyal

Bo: (Az.M)N £ (M |z=N)
Eaxternal substitution: (C[z] |c = M, D) & (C[M] |z =M, D)
Lift: (M| D)N & (MN | D)

5 Basic Properties of the Cyclic Lambda Calculus

We start by showing that Ao is an abstract reduction system with ordered in-
formation content that is confluent up to information content. The information
content corresponds to the approzimate normal form of Wadsworth [39], also
called direct approzimation by Lévy [27]. In contrast to [27], we do not send all
redexes and compatible redexes to 2. Only Fo and the occurrences of variables
that correspond to external substitution redexes are sent to §2. As in lambda
calculus, £2M is also sent to {2, since i1t could become a fo-redex by replacing
2 with a lambda-abstraction. The inaccessible equations are then removed.

Definition24. Given M, N € Ao. The information content of M is given by the
function w, which given M returns the normal form of M with respect to the
following rules (also called w-rules):

(Ax. M)N — 02
(Cle) |2 = M, D) — (C[2] |« = M, D)
QM - 02
(M|D) — M D—-—M

We define M =<pame N if w(M) <p w(N), where the order <g is generated by
the axiom 2 <o M, for every term M. If M <pame N and N <pame M then we
let M ~pame N.

The w-function is well defined due to the termination and confluence of the w-
rules (due to Newman’s lemma). Termination of the w-rules follows from count-
ing the number of non-£2 symbols in every term. Examples: w({Az.yz | y =
Awaw)) = Ae 2, w({z | 2 = 2) = 2, w({zy | v = Aww)z) = (22)z, and
w({(zz | © = Aw.aw)) = 2. Note that even though (zy | y = dw.w)z is a lift
redex, its information content is not {2.

Since = is monotonic with respect to <, We have the following:
Proposition25. ((A0, 5—, Zname),w, (w(Ao), <g)) 15 an ARS with ordered in-
formation content.

Next, we present a standard reduction strategy that is complete up to infor-
mation content. The idea behind standard reduction is that we take a simple
subset of the rewriting system, such that only standard steps can increase in-
formation. We first restrict the system to the evaluation system of Table 4. We

need [o and external substitution because those two rules potentially increase
information content. We need lift to expose [o-redexes that are implicit. We
then restrict the standard redex so that it cannot occur in the internal part D of
a construct (M | D). We also disallow reduction of redexes that could be moved
into an environment by contracting a fo-redex. This guarantees confluence of
the standard reduction.

We illustrate the basic idea behind the formal definition of standard reduction
through an example. Let us consider the term Ax.({z | y = y)({(Aw.w | y = y)2)).
We start by looking for a standard redex at the outermost position. Since we find
a lambda, we look inside it and find a lift redex which we could neglect, since the
redex is not obstructing a fo-redex. Assuming we do neglect it, we next look at
the left argument of the application. Since variable z is a lambda bound variable,
it can never become a redex, so we start looking in the right-hand side of the
application. We again find a lift redex. This time we must reduce it because it
is obstructing a fo-redex. This informal discussion points out how we split lift
redexes into two categories: those redexes that (will in the future) obstruct a
Bo-redex (e.g., (Ax.M | D)N and ({y | D)N |y = Az.M)), and those that never
will (e.g., {y | DyM). The redexes in the first category must be reduced and the
other ones can be delayed.

Definition26. Given M, N e Ao. M standard rewrites to N (M ~— N) if

M = E[R] 5 E[R] = N, where R and R’ stand for a Aoeya-redex and its
contractum, and % is defined as follows:

E = AIE | <E | D> | APP[D,Ml,"',Mn] | App[yaMlaEaMn]
App =0 AppQ | (App | D)
where the y must be bound by a lambda or free in the final expression.
Frample 4. de.({x | y = 9)({Aw.w | y = y)z)) is partitioned as E1[({z | y =
Y({(Aww |y = y)z))], where Ey is Aze.0, or as Es[{Aw.w | y = y)z], where Fs is
Az Az |y = y)0. {x | # = y)y is partitioned as Fs[z], where E3is (O | # = y)y.
The redex (Az.z)(Az.z) in {z | # = y)}(Az.2)(Az.2) is not a standard redex, since

(z | x = y)O # E[O]. To make it standard, an external substitution step must
first take place.

Proposition27. Given M, N ¢ Ao. If Mos— N then M ~pame N.

Lemma 28. We have the following two diagrams:

Ao T Ao T
| |
Ao Ao | Ao Ao |
Zmame ¥ <name Y
- = — > - = — >
Ao Ao

From the above lemma, Lemmas 17 and 18 we then have:

Theorem 29. Given ((Ao, 5=, Zname),w, (w(A0), <n)). —7 is confluent up to

jname .

6 Semantics of the Cyclic Lambda Calculus

Since —— 1s confluent up to information content, by Proposition 23 the infinite

normal form of any cyclic term M, written as Infy, (M), is well defined and
unique. Next, we want to show that the infinite normal form defines a congruence,
i.e., if Infyo (M) = Infro(N) then Infyo(C[M]) = Infyo(C[N]), for all contexts
C'. To that end, let us first show that the infinite normal forms of a cyclic term

computed with respect to ——, =— (written as Infsq) and Y (written as

Infeval) are the same. By the infinite normal form of a cyclic term computed
with respect to —+, we mean the infinite normal form computed with respect to

<(/10,) jname)a w, (W(Ao)a SQ))
Proposition 30. Given a term M € Ao. Infgq(M) = Infeya (M) = Infyo (M).

This result allows us to prove that the infinite normal form computed with
respect to —— is a congruence, by showing congruence of the infinite normal form
computed with respect to the evaluation calculus. Congruence with respect to
the evaluation calculus is easier to prove, since that calculus is confluent by using
the complete development method.

As in [27], we prove some properties of reduction and of w-reduction. How-
ever, we formulate these properties in terms of information content.

Proposition31. Given a term M € Ao and a context C.
- If O[M]— N then there exists an My such that M ——» M, C[M1]—P
without reducing any redex inside My (—G) and N——=»P.

eval
- If C[M] =g N then Clw(M))—>Ny with N ~pame N
- Infeyar(Clw(M)]) C Infoyar(C[M]).

Theorem 32. Given M, N € Ao. If Infyo(M) = Infyo(N) then Infy,(C[M]) =
Infyo (C[N]).

7 The Cyclic Lambda Calculus, the Traditional Lambda
Calculus and the Infinitary Lambda Calculus

As it was done in [2] for the first-order case, we can use the model to relate
Ao to the traditional lambda calculus. We show that cycles can be explained
in terms of their expansions, which are finite lambda calculus terms. To define

expansions, we introduce the notation Mm»”]\f which denotes n-steps of the

Gross-Knuth strategy applied to the external substitution redexes occurring in
M (i.e., all external substitution redexes are performed). If M does not contain

any external substitution redexes we will still write M Ry N.

Definition 33. Given M € Ao. The n* expansion of M, written as M7, is the

term strip(N) such that MWHN and strip(N) is the normal form of N

with respect to the rules:

(Cla] | 2 = M, D) — (C[2] | x = M, D)
(M | D) M it D— M

We build towards the main result with two lemmas. The first lemma re-
lates suitable fo and external substitution sequences on graphs to G-reduction
sequences on lambda calculus terms. The second lemma relates each piece of
information derivable from a cyclic term to information derivable from an ex-
pansion of that term.

Lemma 34. Given M, M, My € Ao. If Mleg»Mz such that My —» M

15 a complete development of all the external substitution rederes created by the
Bo-steps then strip(M)?strip(Mz).

Lemma35. Gwen M, N € Ao. If M——N then there exists an @ and P e A
such that Mi?P and N <pame P.

If we let Infy(M?) denote the Lévy-Longo tree (as described in [26]) associ-
ated with a lambda calculus term, we then have the following result:

Theorem 36. Given M € Ao. Infy, (M) = |J{Infr(M?) | i > 0}.

Since cyclic terms unwind to infinite trees, it is natural to relate the cyclic
calculus to the infinitary lambda calculus (A*°) of Kennaway et al. [21]. We have
soundness, z.¢., if M ——N then MOOAT»S“’NOO, where M is lim, oo M"™ and
)\T»Sw stands for a possibly infinite number of steps in A*°. A weak notion of
completeness also holds: 1f A/*°——>s then each finite prefix of s can be obtained
in Ao by reducing M. For this result to hold, the restricted calculus of Table 4
suffices. The semantics of Ao as provided by the infinitary calculus differs from
the Lévy-Longo tree model in that it distinguishes between £2M and 2.

We also point out that the axioms to distribute the substitution across a
term in a stepwise manner, which are present in the explicit substitution calculi

[1, 35], are derivable in our calculus and that they generate the same model.

8 The Cyclic Sharing Calculus Aogpare

A drawback of the cyclic lambda calculus is that it does not support sharing
adequately, since 1t allows reductions that duplicate work. For example, in the
reduction (z | z = (Ay.y)(Ayy)) 5 (Avy)Qvy) | = = (Ayy)(dyy)), the
fo-redex has been duplicated. Current implementations of functional languages,
such as Haskell [19] and Id [32], do not allow these kinds of reductions. Therefore,
we develop a variant of the cyclic calculus that takes sharing into consideration.

Table 5. The axioms of Aoghare
Bo: (Az.M)N =(M |z=N)

Substitution: (Clz] |z =V,D)y=(C[V]|z=V,D)
(M|z=Clz1],e: =V, D)={(M |2 =C[V],z1 =V, D)
Lift: (M| D)N = (MN | D)
M(N|D)y=(MN|D)
Az {M | D, VD) = (Az (M | D) | VD) D L VD and z not free in VD
Merge: (M |e={(N|D),Di)=(M|xz=N,D, D)
(M | DY | DYy = (M | D, D)
Garbage collection: (M | D, D"y = (M | D) D' L{M|D)
(M |)=M
Copying: M=N Jo:V—=V,N? =M and
Vo 2 1',0(z) = o(z) : o(z) bound to a value in M
Naming: M={(z|z=M) T a new variable

We emphasize that we are only interested in capturing the sharing present in
current implementations (lazy and lenient) of non-strict languages. We do not
study the sharing present in optimal (in the sense of Lévy [27]) implementa-
tions of lambda calculus. Since the emphasis is on sharing and not on a specific
reduction strategy, we call the calculus the sharing calculus (Aoghare), because
call-by-need normally implies lazy evaluation.

The sharing calculus is obtained by restricting the operations that cause
duplication, such as substitution and copying, so that only values are duplicated,
where a value is either a variable or a lambda-abstraction. Also, the lambda lift
axiom has to be restricted to lift values only, since lifting unevaluated expressions
out of a lambda-abstraction has an impact on the amount of sharing captured.

We add the following syntactic clauses of values and value declarations

Vi=a| e M
VDZZIleVl,...,l‘n:Vn

to the ones of Definition 5.

Definition37. The axioms of the cyclic sharing calculus (Aogpare) are given in
Table 5. ——— denotes the rewrite relation obtained by reading all the axioms,

AOshare

except naming, left to right, and by imposing the restrictions VD # {} and
D' # {} to the lambda lift rule and to the garbage collection rule. The naming
axiom 1s introduced in the reduction theory in the following form:

Csate[M N] — Coate[{(x | © = M N)] x a new variable
where Clqate 18 given by:

Cuate 2= O | CA2.C"] | C[C" M] | C[M 7]
¢’ w=0|(C"| D) .

The sharing calculus adds naming, since it is no longer derivable. Aogpqare
extends the cyclic calculus (Apeea) presented in [4, 5], since reductions may occur
when they are not needed. For example, Apeeq disallows the reduction {(x | # =
Aywr,w = Az.z)—{x | # = Ay.(Az.2)x)—{x | * = Ay.z). Moreover, in [4, 5], the
soundness and completeness of Apeeq Wwith respect to traditional lambda calculus
were limited to the acyclic case.

8.1 Soundness and Completeness of Aogpare With respect to Aojpame

Soundness of Aogpare follows from the fact that the sharing theory is a subset
of the call-by-name theory. In [4, 5], we proved the completeness of (acyclic)
Aneed With respect to lambda calculus using a simple invariant: if M————-=N
then 3P, N', M ———P, N———— N’ and N’ < P. The ordering < was a syntac-
tic ordering capturing the amount of sharing in a term. To show completeness
of Aogpare, this invariant is too strong. We need to compare information con-
tent. Intuitively, we want to say that if M reduces to N in Aopame, then the
information contained in NV can be obtained by reducing M in Aogyape. However,

this does not hold. Consider the reduction (z | * = yy)5——yy. Since yy is

stable information, we would expect to get that information in Aogpape. But this
information is not reachable in Aoghare since yy is not a value. This show that if
we want to compare Ao and Aoghare, We need a new notion of information con-
tent for the sharing calculus which we call printable information. This notion, as
opposed to the call-by-name information content, can be infinite. Consider the
term {(x | £ = Ay.yx). Tts information content is {2, whereas its printing value is
the sequence Ay.yf2,Ay.y(Ay.y82), Ay.y(Ay.y(Ay.yL2)),---. Both the information
content and the printable information of (x | x = x(Ay.y)) are £2. Let M —>M,
stand for a sequence of external substitution steps.

Definition 38. Given M ¢ Ao.
- The printable information of M, print(M), is | {w(My) | M —»M:}, where
the downward closure is with respect to w(Ao) and <p.
- M =share N if print(M) C print(N).
- The infinite normal form of M, Infenare(M), is defined as J{print(M;) |
M}\O—»Ml}
share
Our invariant becomes: each finite information obtained by reducing a term
M in Aopame can be obtained by reducing M in Aogpae and then printing the
result.

Lemma39. Giwen M € Ao. If M————N then there exists a term P such

name

that Mm»P and w(N) € print(P).

Theorem 40. Given M € Ao. Infyo (M) = Infenare(M).

Aoghare captures the essence of lazy languages, such as Haskell [19], and of the
functional core of lenient languages, such as Id [32, 11] and Parallel Haskell [10].

This 1s substantiated by the fact that both the lazy and lenient strategies are
complete with respect to different observations. The lazy strategy, as described
by Launchbury [25], only allows one to reach the top stable information. The
lenient strategy allows reduction of any redex, as long as it does not occur under
a lambda. Thus, it allows one to reach more information. For example, given
2(I(Az.82)), the lazy strategy produces z§2 and the lenient strategy produces
z(Az.92).

Remark. Note that even though {(Ao, ———— <gpare), print, (print(Ao), C)) is

7 AOshare ' —
an ARS with ordered information content, Yy 1s not confluent up to <share.
Let M ={z | 2= Azzyy = A2 (z z)). We then have MT»(/\zz v |
y=A2" (' y)) = My and Mm»(x | 2 = Az.z (A'.2 (x 2"))) = My. How-

ever, there cannot exist M3 such that M, T»Mg and print(M;) C print(Ms)

because print(M;) is infinite while the print of any reduct of M is finite. The
problem is that in the unwinding of M we have an infinite number of F-redexes.
When we rewrite M into My we do all of those redexes and when we rewrite M
into M5 we destroy the opportunity to do them in one step. Note this does not
contradict Proposition 23, since the sharing infinite normal form is not defined
as in Definition 21.

9 The Cyclic Call-by-Value Calculus Aoy.ue

Both the call-by-name cyclic calculus and the sharing calculus can be used to
reason about non-strict functional languages. However, they are unsuitable to
reason about strict functional languages such as SML [17]. Therefore, we develop
another variant of the cyclic calculus, namely a cyclic call-by-value calculus. This
calculus is derived from the sharing calculus by restricting the notion of value
declaration to the set VDy C VD, such that VDy # {o1 = 9, -2, = 21, VD}.
The garbage collection and the lambda lift axioms are then restricted to work
with VDy instead of VD.

Definition41. The axioms of the cyclic call-by-value calculus (Aoyaue) are
given in Table 6. The rewrite relation ———— associated to the calculus is derived

AOvalue

in the same way as in Definition 37.

With respect to the sharing of computations, the sharing and call-by-value
calculi are the same. This points out that call-by-value, call-by-need and lenient
implementations support the same amount of sharing, i.e., the argument of a
function is not copied before it is reduced to a value. The difference between the
two calculi is that in call-by-value the equations D of a term (M | D} do not only
represent sharing, they also tell us that if one of the terms in D does not produce
a value, the complete term should not either. Consider the term (Az.z | y = £2).
Its answer according to the sharing calculus 1s Az.z. According to the call-by-
value calculus, it must be {2. This means that in call-by-value we have to be
careful in eliminating inaccessible equations. In the acyclic case, a similar point

Table 6. The axioms of Aoyalue

Bo: (Az.M)N =(M|z=N)
Substitution: (Cl=]|x_VD> (CV]|z=V,D)
(M | & = Clas), o = V, D) = (M | 2 = C[V), 23 = V, D)
Lift: (M | D) =(MN | D)
M(N | D) = (MN | D)
Ae.(M | VDY) = (e (M | D) | VD)
D 1 VDyv and z not free in VDv
Merge: (M|z={(N|D),D;)=(M|z=N,D, D)
(M| Dy|D")=(M|D,D)
Garbage collection: (M | D,VDv) = (M | D) VDv L (M | D)
(M])=M
Copying: M=N Jo:V—=V,N? =M and

Vo Z1',0(z) = o(z') : o(z) bound to a value in M
Naming: M={(z|z=M) T a new variable

was made by Maraist et al. [29]. In (Azx.z | y = z) and (Az.z | y = Az.z) it is safe
to eliminate the binding for y, and instead in (Az.x | y = y) and (# | y = wz)
it 1s not. The proviso on the garbage collection axiom guarantees that these
equations are not removed. A similar restriction is imposed on the lambda lift
axiom. This is to guarantee that (y | y = Az.(z |x = 2)) Z{y |y = Az.z,x = x),
since the first term evaluates to Az.{2 while the second one evaluates to {2.

9.1 Basic Properties of the Cyclic Call-by-Value Lambda Calculus

To compute the call-by-value information content we send fGo-redexes to 2.
However, unlike the call-by-name calculus we do not send to {2 the substitution
redexes and then remove all the inaccessible equations. This would introduce
a non-confluence problem. That is, if we let N be (Az.y | y = 2,2 = Aw.w),
we then have the w-reductions: N — {(Az.y |y = 2) — 2 and N — (Az.02 |
z = Aw.w) — Ax.£2. Instead, if a variable is bound to a variable y or to a
lambda-abstraction Ay.P, then each occurrence of x is replaced with y or Ay.{2,
respectively, and then the binding gets removed. The information content of N
thus becomes Az.Aw.f2. Bindings of the form ¢, = x5 My, 2, = 21 M, are
treated in the same way as bindings of the form z = =z, that is, they cause the
entire term to be sent to 2. In addition, we must be able to handle terms such as
(Ar.x |z = Az.z) yand (z | # = (Ax.x | z = Az.z)), which contain an obstructed
Bo and value substitution redex, respectively. Thus, we need to add the left lift
and internal merge rules. Moreover, we want to equate terms such as # ¢ and
(y | y = « x) because they represent the same graph. The solution is to first
normalize a term with respect to a suitable subset of oo We call this subset

the kernelizing system (K). K is given in Table 7. We let IC() be the normal
form of M with respect to K. The call-by-value w-rules are given in Table 8.

Definition42. Given M € Ao. The call-by-value information content of M is
given by the function wyapye, which given M returns the normal form of M with

Table 7. The kernelizing system K
(M| D)N & (MN | D)

M(N'| D) & (MN | D)
(M |z=(N|D),D) & (M|z=N,D,Dy)
(M| D) D (MIDD>

)+
)+
(M) %

Csate[M N] £ Cbafe[<$ | =M N)] ¢ a new variable

respect to the call-by-value w-rules and system K. We define M =<iaue N if
anlue(M) SQ anlue(N)~

We can then show that {(Ao, Y =value), Wyalue, (Wyalue(A40), <)) is an
ARS with ordered information content. We do not prove confluence up to <yajue
directly, but instead we introduce a kernelized reduction (= Ve) and prove con-

fluence up to =<yaue for that reduction relation. Vol 1s defined for K-normal

forms as: M —= N if M o P and K(P) = N. Confluence up to of

Aoyalue then follows from the facts: (i) WC Nowam and (ii) if M Ovalue N

then K(M)—+K(N). The infinite normal form mduced by this notlon of infor-
mation, denoted by Infyaue, also leads to a model.

9.2 The Cyclic Call-by-Value Calculus, Moggi’s Computational
Lambda Calculus and Hasegawa’s Calculus

We use the infinite call-by-value normal form to relate our calculus to the commu-
tative version of the computational lambda calculus of Moggi (A.) [30]. However,
since Moggi’s calculus 1s acyclic, we first need to relate a cyclic term to the acyclic
terms approximating it, as we did for the call-by-name calculus. However, this
relation only works for a subset of the set of terms. For example, the answer of
(z | = yx) is the term itself. Instead, the answer of any of its approximations is
£2. If we consider only internal merge normal forms then the restriction is that if
several declarations are mutually recursive then all those declarations must only
involve values. For example, (y |y = z,2 = Az.y) and {y | y = Az.z, 2 = Az.y)
are good terms, but (z | # = Ay.z,z = x x) is not. An arbitrary term is good
if its internal merge normal form is good. We denote the set of good terms by
onalue~

To define call-by-value expansions, we introduce the notation Mm»”]\f

which denotes n-steps of the Gross-Knuth strategy applied to acyclic value sub-
stitution redexes occurring in M. The notion of acyclic substitution redex is
taken from [6]. An acyclic value substitution redex is any value substitution
redex that is not of the form (M | © = C[yl,y = V, D), where # and y are
mutually recursive. In {(z | = Az.y,y = Az.w, w = Az.y), the underlined z and
y are acyclic value substitution redexes, and the underlined w is not. Since a

Table 8. The call-by-value w-rules

(Az.M)N L 2
(M|e=y,D)& (Mlz:=y]| Dlz:=y])z Zy, D # {}
(M|z=y)+ Mz :=y] TZy

(M|z=2,D)+ 2

<M|$1:$2 M1,~~~,$n:$1 Mn,D>:l:>Q
(M |z =Xy.N,D) & (M | D)z := Ay.02] D#£{}

(M |z =Xy.N) £ M[z := Ay.02]

M L 02

M2 L 0

(2|D) L 2

(M|z=0,D)+ 2

value substitution redex can be obstructed by an environment, we first compute
the internal merge normal form of a term M denoted by nfiy, (M).

Definition43. Given M € Aoyaue. The n't call-by-value expansion of M,

written as M7}, is the term stripy (M) such that nfim(M)W(as)»nMrY and

stripyv(NV) is the normal form of N with respect to the rules:
(M |x1 =29, an=21,D) = (M |21 =92, 2, =£2,D)

bl

(M| 2=AyN,Dy — (M |z=2y.02,D) NZQ
Theorem44. Given M € Aoyapye. Infyane(M) = U{Infvalue(M‘i/) |i>0}.

Let [M] denote a translation of term M into a single-equation term, i.e.,
each (N | D) in [M] is of the form (N | #; = Ny). Let A \nv denote A, without
the py-axiom (i.e., Az.Vae = V if # does not occur free in V).

Theorem 45.
- Given M,N e A,. If A\\\nv = M = N then Aoyaue F M = N.
- Given acyclic terms M, N € Aoyaue. If Aoyaie & M = N then A \npv +
[M] = [N].

Recently, Hasegawa [18] proposed a cyclic extension of Moggi’s calculus.
There are three major differences between Hasegawa’s calculus and our own:
(i) Hasegawa uses simply typed terms and treats values differently depending
on them being cyclic or acyclic, (ii) he does not have lifting of values out of a
lambda as an axiom 3, and (iii) he restricts garbage collection to acyclic values
only. There is one minor difference and that is that environments are always
non-empty. Unfortunately, Hasegawa does not study the rewriting aspects of the
calculus. But in a sense, his calculus is complete with respect to our calculus:

? For acyclic values the axiom is derivable from substitution and garbage collection.
The case for cyclic values is not derivable.

Theorem 46. Given M € Ao, such that there is no subterm of the form (N |).
Then Infoare(M) =] {wyale(N) | Hasegawa \ ng F M = N }.

Remark. The n-axioms present in Moggi’s and Hasegawa’s calculi are not sound
in our model, e.g., Az.y x and y, (M | & = &) and (M | # = Az.x z) do not have
the same infinite normal forms.

10 Conclusions

We have developed a precise connection between the class of well-formed cyclic
lambda-graphs and the terms of the lambda calculus extended with letrec. On
the set of cyclic terms we have developed three cyclic lambda calculi. These
calculi correspond to the parameter-passing techniques of call-by-name, call-by-
need and call-by-value. The ability to define mutually recursive objects makes
these calculi more suitable then lambda calculus [13], Apeea [, 4] and Av [34]
to express the operational semantics, compilation and optimization of current
functional languages. The sharing calculus is the kernel language of Haskell and
the functional core of Id and Parallel Haskell. The call-by-value calculus is the
functional kernel of languages such as SML. In [3] we have also shown how to
extend our calculi with data-structures.

What distinguishes our calculi from current theories is that we do not impose
any restrictions on where the rewriting takes place. This makes our theories
useful for reasoning about not only run-time issues but also about compilation
issues. The development of these calculi is non-trivial due to the loss of the
confluence property. Our calculi satisfy an approximate notion of confluence,
which guarantees uniqueness of infinite normal forms. For each calculus, the
infinite normal form provides a term model which allows us to relate our calculi
to existing ones.

Acknowledgements

The research of the first author has been supported by NSF grants CCR-9410237
and CCR-9624711. The research of the second author has been supported by NSF
grant CCR-9624711 and by SIR-grants from NWO. The second author thanks
the University of Oregon to make his visits possible.

We thank Femke van Raamsdonk, Vincent van Qostrom, Jan Willem Klop,
Amr Sabry, Miley Semmelroth, Mariangiola Dezani-Ciancaglini and Arvind for
stimulating discussions about a draft of this paper.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal
of Functional Programming, 4(1):375-416, 1991.

2. 7. M. Ariola. Relating graph and term rewriting via Bohm models. Applicable
Algebra in Engineering, Communication and Computing, 7(5), 1996.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

7. M. Ariola and S. Blom. Lambda calculi plus letrec. Technical Report CIS-TR-
97-05, Department of computer and information science, University of Oregon.
ftp:/ /ftp.cs.uoregon.edu/pub/ariola/cyclic-calculi.ps.

. Z. M. Ariola and M. Felleisen. The call-by-need lambda calculus. Journal of Func-

tional Programming, 7(3), 1997.

. Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. The call-by-

need lambda calculus. In Proc. ACM Conference on Principles of Programming
Languages, pages 233-246, 1995.

. Z. M. Ariola and J. W. Klop. Lambda calculus with explicit recursion. Technical

Report CIS-TR-96-04, Department of computer and information science, Univer-
sity of Oregon. To appear in Information and computation.

. Z. M. Ariola and J. W. Klop. Cyclic lambda graph rewriting. In Proc. Ninth

Symposium on Logic in Computer Science (LICS’94), Paris, France, pages 416
425, 1994.

. Z. M. Ariola and J. W. Klop. Equational term graph rewriting. Fundamentae

Informaticae, 26(3,4):207-240, 1996. Extended version: CWI Report CS-R9552.

. Z. M. Ariola, J. W. Klop, J. R. Kennaway, F. J. de Vries, and M. R. Sleep. Syntac-

tic definitions of undefined: On defining the undefined. In Proc. TACS 94, Sendai,
Japan, 1994.

Arvind, L. Augusston, J. Hicks, R.S. Nikhil, S. Peyton-Jones, J. Stoy, and
W. Williams. pH: A Parallel Haskell. Technical report, MIT Laboratory for Com-
puter Science, September 1993.

Arvind, J-W. Maessen, R.S. Nikhil, and J. E. Stoy. As: an implicitly parallel A-
calculus with letrec, synchronization and side-effects. Technical Report 393, MIT
Laboratory for Computer Science, 1997.

A. Asperti and C. Laneve. Interaction systems I: The theory of optimal reductions.
Mathematical structures for computer science, 4:457-504, 1994.

H. P. Barendregt. The Lambda Calculus: Its Syntar and Semantics. North-
Holland, Amsterdam, 1984.

H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, J. R. Kennaway,
M. J. Plasmeijer, and M. R. Sleep. Term graph rewriting. In J. W. de Bakker,
A. J. Nijman, and P. C. Treleaven, editors, Proc. Conference on Parallel Architec-
ture and Languages Europe (PARLE ’87), Eindhoven, The Netherlands, Springer-
Verlag LNCS 259, pages 141-158, 1987.

7. Benaissa, P. Lescanne, and K.H. Rose. Modeling sharing and recursion for weak
reduction strategies using explicit substitution. In PLIP’96, 1996.

S. Billot and B. Lang. The structure of shared forests in ambiguous parsing. In
Proceedings of the Twenty-Seventh Annual Meeting of the Association for Compu-
tational Linguistics, 1989. Association for Computational Linguistics.

B. Harper. Introduction to Standard ML. Technical report, ECS-LFCS-86-14,
Laboratory for the Foundation of Computer Science, Edinburgh University, 1986.
M. Hasegawa. Recursion from cyclic sharing: traced monoidal categories and mod-
els of cyclic lambda calculi. In Proc. Conference on Typed Lambda Calculi and
Applications, April 1997.

P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel,
K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Partain, and
J. Peterson. Report on the programming language Haskell. ACM SIGPLAN No-
tices, 27(5):1-64, 1992.

G. Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. JACM, 27(4), 1980.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

J. R. Kennaway, J. W. Klop, M. R. Sleep, and F. J. de Vries. Infinitary lambda
calculus. In Proc. Rewriting Techniques and Applications, Kaiserslautern, 1995.
P. Klint. A meta-environment for generating programming environments. In Al-
gebraic Methods II: Theory, Tools and Applications. Springer-Verlag LNCS 490,
pages 105-124, 1991.

P. Klint and E. Visser. Using filters for the disambiguation of context-free gram-
mars. In G. Pighizzini and P. San Pietro, editors, Proc. ASMICS Workshop on
Parsing Theory, pages 1-20, Milano, Italy, October 1994. Tech. Rep. 126-1994,
Dipartimento di Scienze dell’Informazione, Universita di Milano.

Y. Lafont. Interaction nets. In Proc. ACM Conference on Principles of Program-
ming Languages, San Francisco, 1990.

J. Launchbury. A natural semantics for lazy evaluation. In Proc. ACM Conference
on Principles of Programming Languages, pages 144-154, 1993.

J.-J. Lévy. An algebraic interpretation of the AfFk-calculus and an application of
a labelled A-calculus. Theoretical Computer Science, 2(1):97-114, 1976.

J.-J. Lévy. Réductions Correctes et Optimales dans le Lambda-Calcul. PhD thesis,
Universite Paris VII, October 1978.

1.C. Mackie. The geometry of implementation. PhD thesis, University of London,
1994.

J. Maraist, M. Odersky, D. Turner, and P. Wadler. Call-by-name, call-by-value,
call-by-need, and the linear lambda calculus. In Proc. of Mathematical Foundations
of Programming Semantics (MFPS), 1995.

E. Moggi. Computational lambda calculus and monads. Technical Report ECS-
LFCS-88-86, Edinburgh University, 1988.

J. Niehren. Functional computation as concurrent computation. In Proc. ACM
Conference on Principles of Programming Languages, pages 333-343, 1996.

R. S. Nikhil. Id (version 90.1) reference manual. Technical Report 284-2, MIT
Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139,
1991.

S. L. Peyton Jones. The implementation of Functional Programming Languages.
Prentice-Hall International, Englewood Cliffs, N.J., 1987.

G. D. Plotkin. Call-by-name, call-by-value and the lambda calculus. Theoretical
Computer Science, 1:125-159, 1975.

K. H. Rose. Explicit cyclic substitutions. In M. Rusinowitch and J. L. Rémy,
editors, Proc. 3rd International Workshop on Conditional Term Rewriting Systems
(CTRS-92), Pont-a-Mousson, France, Springer-Verlag LNCS 656, pages 3650,
1992.

D. Sangiorgi and R. Milner. Techniques of “weak bisimulation up to”. Technical
report, 1993.

P. Selinger. Order-incompleteness and finite lambda models. In Proc. Symposium
on Logic in Computer Science (LICS’96), 1996.

M. Tomita. Efficient Parsing for Natural Languages. A Fast Algorithm for Prac-
tical Systems. Kluwer Academic Publishers, 1985.

C. Wadsworth. Semantics and Pragmatics of the Lambda-Calculus. 1971. PhD
thesis, University of Oxford.

This article was processed using the ETEX macro package with LLNCS style

