
Cyclic Lambda CalculiZena M. Ariola1 and Stefan Blom21 Department of Computer & Information SciencesUniversity of Oregon. Eugene, OR 97401, USAemail: ariola@cs.uoregon.edu2 Department of Mathematics and Computer ScienceVrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdamemail: sccblom@cs.vu.nlAbstract. We precisely characterize a class of cyclic lambda-graphs,and then give a sound and complete axiomatization of the terms thatrepresent a given graph. The equational axiom system is an extension oflambda calculus with the letrec construct. In contrast to current theo-ries, which impose restrictions on where the rewriting can take place, ourtheory is very liberal, e.g., it allows rewriting under lambda-abstractionsand on cycles. As shown previously, the reduction theory is non-conuent.We thus introduce an approximate notion of conuence. Using this no-tion we de�ne the in�nite normal form or L�evy-Longo tree of a cyclicterm. We show that the in�nite normal form de�nes a congruence onthe set of terms. We relate our cyclic lambda calculus to the traditionallambda calculus and to the in�nitary lambda calculus.Since most implementations of non-strict functional languages rely onsharing to avoid repeating computations, we develop a variant of our cal-culus that enforces the sharing of computations and show that the twocalculi are observationally equivalent. For reasoning about strict lan-guages we develop a call-by-value variant of the sharing calculus. Westate the di�erence between strict and non-strict computations in termsof di�erent garbage collection rules. We relate the call-by-value calculusto Moggi's computational lambda calculus and to Hasegawa's calculus.1 IntroductionCyclic lambda-graphs are ubiquitous in a program development system [33].However, previous work falls short of capturing them in an adequate way. Thislack of explicit treatment of cycles results in the loss of important intensionalinformation and in weak theories that cannot express many transformations onrecursive functions. For example, consider the following term:M � letrec even = �x:if x = 0 then true else odd(x-1)odd = �x:if x = 0 then false else even(x-1)in even y :(A note on syntax: the construct letrec � � �in � � � stands for a collection ofunordered equations and a main expression written after the keyword in.) At

compile time it mightmake sense to unfold or inline odd in the de�nition of even,triggering the constant folding and unused lambda expression transformationsobtaining the term below:N � letrec even = �x:if x = 0 then trueelse if x = 1 then false else even(x-2)in even y :We can express terms M and N in the lambda calculus extended with pairs(denoted by h ; i with destructors Fst and Snd) and the �-operator (renderedby the �-rule �x:M �!M [x := �x:M]) as follows (we denote the translation by[[�]]�):[[M]]� � let even odd = �z:h�x:if x = 0 then true else Snd z (x-1);�x:if x = 0 then false else Fst z (x-1)iin Fst even odd y[[N]]� � let even = �y:�x:if x = 0 then trueelse if x = 1 then false else y(x-2)in even y :However, note that [[M]]� does not rewrite to [[N]]� in ��. The two terms are noteven provably equal. This means that these simple inlining optimizations are notexpressible as source-to-source transformations in ��; thus, one cannot use thecalculus to reason about their correctness or to study the e�ciency of di�erentapplication strategies.Cycles are also important for reasoning about run-time issues. For example,the execution of M will involve a substitution of even in the main expression,followed by a �-reduction, obtaining:letrec even = �x:if x = 0 then true else odd(x-1)odd = �x:if x = 0 then false else even(x-1)in if y = 0 then true else odd(y-1) :Let us consider [[M]]�. We �rst apply the �-rule to expose the lambda-abstraction,and then, as before, perform one substitution followed by a �-reduction, obtain-ing the following term in which we have denoted the �-expression occurring in[[M]]� by P :let even odd = h�x:if x = 0 then true else Snd P (x-1);�x:if x = 0 then false else Fst P (x-1)iin if y = 0 then true else Snd P (y-1) :The unsuitability of a calculus such as �� for reasoning about execution nowcomes to the surface. While the execution ofM has made only one copy of even,the execution of [[M]]� has created four copies of even and three copies of odd.Interestingly enough, a theory of cycles turns out to be useful also for de�ninga parser. As described by Tomita [38] and Billot et al. [16], a compact represen-tation of all possible parse trees (that could be an in�nite number) associated

with a string is a cyclic graph, called a parse forest. The lack of a theory re-garding cyclic objects has forced some research projects investigating automaticprogramming environment generators, such as the ASF+SDF developed by Klint[22], to apply a disambiguation process to remove the cycles [23] and so retriev-ing a tree object. Familiar rewriting can then be applied on that object. Thisdisambiguation process would not be required if cycles were part of the rewritingtechnology.We conclude that a theory of cycles is necessary if one wants to reason aboutcompilation, optimization and execution of programs. Presentation of such atheory is the goal of this paper.What makes a theory of cycles di�cult to develop is that conuence is lostonce lambda-abstraction and cycles are admitted, unless the theory is powerfulenough to represent irregular structures as shown in [6, 7]. To regain conuence,current formulations of cycles either impose restrictions, such as disallowingreduction under a lambda-abstraction or on a cycle [6, 7, 15, 31, 35], or adopt aframework based on interaction nets [24]. As discussed in [28] and [12], cycles donot destroy conuence in the context of interaction nets, but only at the expenseof greater complexity.In this paper, we limit our attention to cyclic lambda-graphs that occur incurrent implementations of strict and non-strict functional languages (we arenot interested in optimality); thus, we will only consider cyclic lambda-graphsthat naturally unwind to regular trees. In contrast to current approaches, we donot restrict the selection of redexes but introduce an alternative way of guaran-teeing the consistency of the calculus. This consists of an approximate notionof conuence - conuence up to information content. This new notion is some-what reminiscent of another `approximate' notion of rewriting and conuence,namely, rewriting modulo an equivalence relation and conuence modulo equiv-alence [20]. However, unlike these notions, we do not combine rewriting with anequivalence relation, but with an equally fundamental notion, namely a quasiorder, expressing a comparison between the `information content' of the objectsin question. Explicit studies of such a combination of a rewrite relation with aquasi order are not abundant; the only study that we are aware of is [37]. Inthe context of process algebra, Sangiorgi and Milner [36] consider equivalencesof processes up to an asymmetric relation, such as a quasi order, as a techniqueto prove bisimulation.The paper is organized as follows: We start in Sect. 2 by introducing cycliclambda-graphs. As in Wadsworth [39], we do not deal with all possible lambda-graphs, but restrict our focus to the set of well-formed lambda-graphs. To de�nethis class we introduce in Sect. 2.1 the notion of a scoped lambda-graph.The well-formed lambda-graphs are those that have associated scoped lambda-graphs. InSect. 2.2, we introduce the syntactic formalismused to represent scoped lambda-graphs. Throughout this paper these syntactic objects are referred to as cycliclambda terms. In Sect. 2.3, we present a mapping from cyclic lambda termsto scoped lambda-graphs. Since di�erent cyclic terms can represent the samescoped lambda-graph, we introduce in Sect. 2.4 the representational calculus

R0. R0 equates all distinct representations of a scoped lambda-graph. Sincewe would also like to equate di�erent representations of the same well-formedgraph, we extend R0 with two other axioms in Sect. 2.5. We call the resultingsystem R1. In Sect. 2.6, we further extend R1 to make terms that unwind tothe same tree provably equal. We call the calculus R2. R2 combined with anotion of �-reduction constitutes our cyclic extension of lambda calculus, whichis presented in Sect. 3. In Sect. 4, we introduce the notions of conuence up toa quasi order, completeness up to a quasi order and in�nite normal form. Wepresent some su�cient conditions that guarantee soundness of the in�nite normalform with respect to reduction. In Sect. 5, we show conuence up to informationcontent of the cyclic lambda calculus. In Sect. 6, we prove that the in�nitenormal form de�nes a congruence with respect to the term formation rules,guaranteeing observational equivalence. In Sect. 7, we relate our cyclic lambdacalculus to the traditional lambda calculus and to the in�nitary lambda calculusof Kennaway et al. [21]. In Sect. 8, we add the notion of sharing to our cycliccalculus for reasoning about current implementations of non-strict functionallanguages. In the call-by-name calculus every term is substitutable, while in thesharing calculus substitution is restricted to values, thus avoiding duplication ofwork. We show that this restriction does not change the in�nite normal formof a cyclic term. For reasoning about strict languages, in Sect. 9, we introducethe cyclic call-by-value calculus, which is obtained by restricting the garbagecollection axiom of the sharing calculus to collect values only. This expresses thefact that strict and non-strict computations capture the same amount of sharing.The call-by-value calculus is then equipped with a termmodel, which allows us torelate our calculus to the commutative version of Moggi's computational lambdacalculus [30] and to the recently developed calculus of Hasegawa [18]. The readercan refer to [3] for a detailed exposition and the proofs.2 Graphs as Terms and Terms as GraphsIn this section we establish an isomorphism between cyclic lambda-graphs andtheir syntactic representations. We start by introducing a basic formalism forcyclic lambda-graphs in a format similar to the one used for �rst-order termgraphs in [14].2.1 Cyclic Lambda-graphs and Scoped Lambda-graphsFollowing an idea used by Bourbaki in El�ements de Th�eorie des Ensembles todeal with quanti�ers, an occurrence of a bound variable in a lambda-graph isrepresented by a back-pointer to the corresponding binding lambda-node. Thisimplies we will not be able to represent the lambda-graph of Fig. 1, whichWadsworth [39] calls a non-admissible lambda-graph. Each argument of a nodeis either a normal pointer to some node, a back-pointer to a lambda-node, oris a free variable from the set of variables V. A normal pointer is denoted byv; w, a back-pointer by v; w and a variable by x; y; z. We let A(v)i denote the

@�x �xxFig. 1. Wadsworth's non-admissible lambda-graphith argument of node v. A graph has a root r, which can be anything that anargument can be. If the label of a node is � then that node is called a black hole.The black hole denotes provable non-termination. It was already introduced inthe �rst-order case to be able to reduce a cyclic graph in the presence of col-lapsing rules, i.e., rules of the form Ix! x. A more thorough discussion of theblack hole is given in [9].Notational conventions: given sets S and T , P(S) stands for the powerset ofS, S nT stands for set di�erence, �� stands for strings over the alphabet �, jwjstands for the length of string w, and V �W stands for the disjoint union of setsV andW . From now on, we will sometimes write graph for cyclic lambda-graph.De�nition1. A lambda-graph is a tuple (V; L;A; r) where- V is a set (possibly in�nite) of nodes.- L : V ! f�;@; �g is a labeling function.- A : V ! (V �fv j v 2 V; L(v) = �g�V)� is a successor function such that ifL(v) = � then jA(v)j = 0, if L(v) = � then jA(v)j = 1 and if L(v) = @ thenjA(v)j = 2.- r 2 (V � fv j v 2 V; L(v) = �g � V).In addition to the usual conventions on how to give a graphical representationof a cyclic lambda-graph, we adopt the convention that if an arrow enters alambda-node from above it represents a normal pointer and when it enters frombelow it represents a back-pointer. Thus, for example, we distinguish betweenthe two lambda-graphs of Fig. 2. We draw a free variable as a labeled line and notas a node labeled x. For simplicity, we draw the label of the line at the end of theline. We picture the root as a pointer or a labeled line that has no starting node.Fig. 3 shows some examples of lambda-graphs. The lambda-graph on the leftcorresponds to a free variable x with a lambda-subgraph not accessible from theroot. Note the di�erence between an arrow and a labeled line. In the following,when we talk about a path in a lambda-graph, we mean a directed path usingonly the arrows representing normal pointers. We refer to a graph in which all� �Fig. 2. Pointers versus back-pointers

�@ xx @ � @ @ �@z �@ @z z �@ @ @z z�Fig. 3. Examples of lambda-graphsnodes are reachable by a path starting at the root as a garbage free graph. Weassume that equality between graphs stands for graph isomorphism.In this paper, we will only deal with a subset of all possible lambda-graphs.For example, we will not consider the third lambda-graph of Fig. 3. To charac-terize this subset, referred to as the subset of the well-formed lambda-graphs, weintroduce the notion of scope, which associates a set of nodes to a lambda-node.Intuitively, as it will be discussed in Sect. 3, the scope of a lambda-node v corre-sponds to that part of the graph that is copied when a �-reduction is performedwith v denoting the function part of the application. This notion points out themain di�erence between our approach and that based on interaction nets [24]:interaction nets come equipped with certain operators that allow partial copy-ing, that is, the copying can occur on a node-to-node basis whereas for us itoccurs all at once.De�nition2. A scoped lambda-graph is a tuple (V; L;A; S; r), where- (V; L;A; r) is a lambda-graph- S : fv 2 V jL(v) = �g ! P(V) is a function such that for every lambda-nodev the following axioms apply.- auto: v 2 S(v)- bind: 8w : v is an argument of w then w 2 S(v)- upward-closure: If w1 62 S(v), w2 2 S(v) and w2 is an argument of w1then w2 � v- nesting: 8 lambda-nodes w : S(w) \ S(v) = fg or S(w) � S(v)nfvg orS(v) � S(w)nfwg- root condition: r 2 V or r 2 V such that 8v : r 62 S(v)nfvg.We depict the scope of v by drawing a line starting at one side of the lambda-node around all other nodes that are a member of the scope ending at the otherside of the lambda-node.Example 1. The graphs of Fig. 4 and 5 are examples of scoped and ill-formedscoped graphs, respectively. Since the scope of a lambda-node involves nodes andnot edges, we can take the liberty to draw the label of an edge either inside oroutside the scope. See the second graph of Fig. 4 in which the left label is outsidethe scope and the right one is inside. However, we will follow the convention thatlabels are drawn inside the scope.

�@ @z z �@ @ @z z� �@ @ @z z��@ @z zFig. 4. Examples of scoped graphsThe �rst graph of Fig. 5 violates the bind scope axiom because the �rstapplication node has a back-pointer to the lambda-node v and is not a memberof the scope of v. The second graph violates the upward-closure scope axiombecause the scope of the upper lambda-node v is entered from a node di�erentthan v. The third graph violates the nesting scope axiom because the intersectionof the two scopes is non-empty without one being a proper subset of the other.The fourth graph violates the root condition because the root points to a nodeinside a scope.By de�nition, we get a lambda-graph when we drop the scope function fromthe tuple. However, not every lambda-graph is obtained by stripping the scopefunction from the tuple.De�nition3. A lambda-graph (V; L;A; r) is well-formed if there exists a scopefunction S such that (V; L;A; S; r) is a scoped graph.From now on we will assume that a graph consists of a �nite set of nodesunless stated otherwise.For garbage free graphs there is a necessary and su�cient condition to ensurethat they are well-formed.Proposition4. Given a garbage free graph g. Then g is well-formed i� for everynode v with a back-pointer to w, w is on each path from the root to v.��@ @x x�@ @z z �@ @ @z z� �@ @z zFig. 5. Examples of ill-formed scoped graphs

Note that the third graph in Fig. 3 is not well-formed since it does not meetthe condition stated in the proposition above.2.2 Cyclic Lambda Terms: a Syntactic Representation of ScopedLambda-graphsWe now introduce the syntactic formalism used to represent scoped graphs.The same formalism was already introduced in [8] for the �rst-order case, andextended with lambda-abstraction in [6, 7]. However, in that work a preciseconnection between terms and lambda-graphs was not established.De�nition5. The following clauses de�ne the syntax of cyclic lambda terms:Terms (��) M ::= x j �x:M j M N j hM j DiDeclarations D ::= x1 =M1; : : : ; xn =Mnwhere the recursion variables xi; 1�i�n, are distinct from each other.In other words, the set of cyclic lambda terms consists of the lambda calculusterms (i.e., variables, abstractions and applications) and the letrec construct:hM j x1 = M1; � � � ; xn = Mni. We sometimes refer to D and M as the internaland external part of hM j Di. Terms that di�er in the order of the equations areidenti�ed. We adopt the following notation: A context C is a term with a hole,2, in the place of one subterm. The operation of �lling the context C with atermM yields the term C[M], possibly capturing some free variables ofM in theprocess. By convention, bound and free variables are distinct from each other.M [x := N] stands for the substitution of N for each free occurrence of x in M ,without capturing any free variables in N . � stands for syntactic equivalence upto �-renaming, applied to both lambda-bound variables and recursion variables.If D1 and D2 are the lists of declarations x1 = M1; � � � ; xm = Mm and y1 =N1; � � � ; yn = Nn, respectively, such that 8i; j : xi 6� yj then we denote the list ofdeclarations x1 =M1; � � � ; xm =Mm; y1 = N1; � � � ; yn = Nn by D1; D2. When itis convenient to do so we sometimes denote a list of declarations as a set, e.g.,D1 = fx1 =M1; � � � ; xm =Mmg.2.3 Mapping Cyclic Lambda Terms to Scoped Lambda-graphsWe de�ne a mapping from cyclic terms to scoped graphs to give graph-semanticsto cyclic terms. To simplify the de�nition of this mappingwe introduce the notionof a (scoped) pre-graph, in which the condition on the arity of a black hole isrelaxed.De�nition6. A (scoped) pre-graph is a (scoped) graph where a node labeledwith � may have 0 or 1 argument(s). If such a node has arity 0 we still call it ablack hole but if it has arity 1 we call it an indirection node.

�M�x:M :x x@M NM N : hM0 j x1 =M1; � � � ; xn =Mni :x1 xn x1 xn x1 xn� � �� � � � � �� � �M0 M1 Mnx�x : Fig. 6. Pictorial de�nition of �preWe have chosen the same symbol for indirection nodes and black holes be-cause a black hole can be seen as a special case of an indirection node: anindirection node that refers to itself and therefore cannot be removed.We map cyclic terms to scoped graphs via the mappings �pre and Sim:�pre : �� ! scoped pre-graphsSim : scoped pre-graphs ! scoped graphs :The mapping �pre transforms every lambda, every application and every oc-currence of a variable that is not on the left-hand side of an =-sign into a nodeof the appropriate type (lambda, application and indirection, respectively). Fora term �x:M the scope of the lambda contains the lambda-node itself and ev-ery node corresponding to the subterm M . The de�nition is given pictoriallyin Fig. 6, in which for simplicity we denote �pre(M) by M . Note that in thecase for a lambda-abstraction, each labeled line x is transformed into a back-pointer. Instead, in the case for a letrec expression, the labeled lines x1 � � �xnare transformed into pointers.The mapping Sim transforms a scoped pre-graph into a scoped graph byremoving all indirection nodes or transforming them into black holes. This isaccomplished by the three rewriting rules described in Fig. 7. The �rst ruletransforms an indirection node that has itself as argument into a black holesimply by forgetting the argument. The second rule removes the indirection nodev that points to a di�erent node w (by normal or back-pointer) and redirectsevery pointer to v to w. The last rule removes an indirection node v that has afree variable x as an argument and changes every pointer to v to a line labeled x.The result of the normal form of these operations is well de�ned because we havelocal conuence and termination. We will refer to Sim(g) as the simpli�cationof the scoped pre-graph g. The mapping � from cyclic terms to scoped graphs isthen obtained by composing �pre and Sim.
.� �??� . . .

. . .x� xxFig. 7. Simpli�cation of scoped pre-graphs

�@� �x y �z �@� �z �@ zFig. 8. Construction of �(h�x:x y j y = zi)De�nition7. Given M 2 ��. The scoped graph �(M) is Sim(�pre(M)).Example 2. In Fig. 8 from left to right we have �pre(h�x:x y j y = zi), theresult of contracting one simpli�cation redex and the result of contracting theremaining two simpli�cation redexes. Note how the node labeled � with z as anargument is erased by giving its single argument to the application node.De�nition8. Given M 2 �� and a scoped graph g. Then M represents g if�(M) = g.Di�erent cyclic terms are mapped to the same scoped graph by �, e.g.,�(hx y j x = z; y = zi) = �(zz). Thus, our next step is to characterize whichcyclic lambda terms are mapped to the same scoped graph with a sound andcomplete set of axioms: the representational calculus.2.4 Sound and Complete Axiomatization of Scoped Lambda-graphsFor all calculi developed in the paper, we assume the presence of the reexivityaxiom and the inference rules that make provable equality a congruence relation.In giving the axiomswe assume that no variable capture occurs, e.g., xhx j x = ziis not equated to hxx j x = zi. Table 1 gives the axioms of the representationalcalculus R0.Theorem9. The representational calculus is sound: If R0 ` M = N then�(M) = �(N).To show that the representational calculus is su�cient to equate all distinctrepresentations of the same scoped graph, we introduce a mapping that asso-ciates a cyclic term to a scoped (pre)-graph: pre : scoped pre-graphs ! �� :This mapping is based on the scheme of translating every node to an equation(x = x for a black hole, x = y for an indirection node, x = y z for an applicationnode and x = �y:hz j Di for a lambda-node) and placing these equations in sucha way that every equation gets placed in a subterm of a lambda-abstraction

Table 1. The axioms of R0Lift: hM j Di N = hM N j DiM hN j Di = hM N j DiEmpty box garbage collection: hM ji = MMerge: hhM j D1i j D2i = hM j D1;D2ihM j x = hN j D1i;D2i = hM j x = N;D1;D2iVariable substitution: hM j x = y;Di = hM [x := y] j D[x := y]i x 6� yNaming: M = hx j x =Mi x a new variablecorresponding to node v i� the equation came from a node in the scope of vexcept v itself.The mappings �pre and pre do not satisfy either g = �pre(pre(g)) orM � pre(�pre(M)). For example, given M � xx, pre(�pre(M)) is hx1 j x1 =x2 x3; x2 = x; x3 = xi. We do, however, have that �pre(pre(g)) simpli�esto g. This means that for a scoped graph g there is a term M such that�(M) = g. Moreover, R0 ` M = pre(�(M)) and if g simpli�es to h thenR0 ` pre(g) = pre(h). This implies that the representational calculus is com-plete.Theorem10. Given M;N 2 ��. If �(M) = �(N) then R0 `M = N .2.5 Complete Axiomatization of Well-formed GraphsWe have now established how scoped graphs are represented by cyclic terms.Since a well-formed cyclic graph can have di�erent scoped graphs associatedwith it, our next goal is to �nd axioms that equate the representations of thesealternatively scoped graphs.De�nition11. A scoped graph h is an alternatively scoped version of a graphg � (V; L;A; S; r) (written as h � g) if h � (V; L;A; S0; r).For example, the �rst two graphs of Fig. 4 are alternatively scoped ver-sions of the same graph (i.e., the fourth graph of Fig. 3). These two graphsare represented by the terms hx j x = �y:hw j w = w1yi; w1 = zzi andhx j x = �y:hw j w = w1y; w1 = zzii, respectively. It is then clear that ifwe want to equate the above two terms we need to extend the representationalcalculus with the following lambda lift axiom:�x:hM j Di = h�x:M j Di x not free in D :However, on graphs with garbage, the lambda lift axiom is not necessarily pow-erful enough. Consider Fig. 9, in which we have drawn two graphs that arealternatively scoped versions of the same graph. They are represented by theterms hz j x0 = �y0:hx j x1 = �y1:hy j x2 = y0 y1iii and hz j x1 = �y1:hy j x0 =�y0:hx j x2 = y0 y1iii. Therefore, we introduce the garbage collection axiom:hM j Di =M D ?M ;

�x �y@ �x @ �yz zFig. 9. Two scoped versions of the same graphwhere D ? M means that the set of variables that occur as the left-hand sideof an equation in D does not intersect with the set of free variables of M . Wewill also adopt the notation D ? D0, where D0 is x1 =M1; � � � ; xn =Mn, whichstands for D ?Mi; 1 � i � n. We call R1 the representational calculus extendedwith the lambda lift and garbage collection axioms.Theorem12. Given M;N 2 ��. If �(M) � �(N) then R1 `M = N .2.6 Sound and Complete Axiomatization of Tree UnwindingWe now want to prove equal every two representations of graphs with the sametree unwinding. The R1 representational calculus is sound with respect to treeunwinding. To guarantee completeness we need another axiom, as was alreadypointed out in [7] for the �rst-order case. This axiom is the copy axiom, de�nedas: M = N 9� : V ! V; N� �M ;where � is a function from recursion variables to recursion variables, and N� isthe term obtained by replacing all occurrences of recursion variables x by �(x)(leaving the free variables of N unchanged), followed by a reduction to normalform with the uni�cation rule:x =M;x =M ! x =M :For example, hy j y = �z:w;w = �x:yi = hy j y = �z:w0; w0 = �x:y0; y0 = �z:w0i,where the mapping � is: w0 7! w, y 7! y and y0 7! y. This extension is calledR2. We then have the following completeness result:Theorem13. Given scoped graphs g and h with the same tree unwinding. If Mand N represent g and h, respectively, then R2 `M = N .We summarize the representational calculi in Table 2.3 The Cyclic Lambda Calculus ��nameThe representational calculus R2 makes terms and graphs isomorphic. We nowadd computational power to our graphs and terms. This is done by �rst intro-ducing �-reduction on scoped graphs. We will then give an axiomatic view ofthis reduction.

Table 2. Complete axiomatization of cyclic lambda-graphs and of tree unwinding.R0 hM j Di N = hM N j DiM hN j Di = hM N j DihM ji = MhhM j D1i j D2i = hM j D1;D2ihM j x = hN j D1i;D2i = hM j x = N;D1; D2iM = hx j x =Mi x a new variablehM j x = y;Di = hM [x := y] j D[x := y]i x 6� yR1 hM j Di = M D ?M�x:hM j Di = h�x:M j Di x not free in DR2 M = N 9� : V ! V;N� �M�-reduction on lambda-graphsA �-redex in a lambda-graph is an application node whose �rst argument isa lambda-node. The contraction of a �-redex is a two-step process (see Fig.10). In the �rst step we check if the reference to the lambda-node from theapplication node is unique and if the application node is outside the scope ofthe lambda-node. If one of these tests fails we copy the lambda-node and itsscope in such a way that the test succeeds on the result (see the left step of Fig.10). We then place the lambda-node (or the copy, if one has been made) and itsscope in the same scope as the application node (the original if a copy has beenmade). The second step is a redirection of pointers consisting of: 1) replacingthe application node by an indirection node whose argument is the argument ofthe lambda-node, 2) replacing the lambda-node by an indirection node whoseargument is the former right argument of the application node. Note that allpointers to the indirection node replacing the lambda-node need to be changedfrom back-pointers to normal pointers. This second step is drawn on the right ofFig. 11. On the left of the same �gure we have drawn the �-reduction principleused by interaction nets [24]. There the use of indirection nodes is superuousbecause there is exactly one reference to the application node and exactly oneback-pointer to the lambda-node.Axiomatization of �-reductionWe now proceed by giving axioms on cyclic terms that describe �-reduction.The �rst step is described by the axioms introduced so far. For the second step@�M N �M @ N�M �M MNFig. 10. �-reduction on scoped lambda-graphs

@� !

. . .
. . .

@� ! ��Fig. 11. Beta-reduction principles for interaction nets and lambda-graphswe need to introduce the following ��-axiom:(�x:M) N = hM j x = N i :Example 3. The �-reduction of hx j x = �y:x yi (see Fig. 12) is described below.hx j x = �y:x yi = hx j x = �y:x0 y; x0 = �y0:xy0i copy= hx j x = h�y:x0 y j x0 = �y0:xy0ii merge= hx j x = �y:hx0 j x0 = �y0:xy0iyi lift= hx j x = �y:(�y0:xy0)yi naming= hx j x = �y:hxy0 j y0 = yii ��.In [6] we have called the subterm xy of hx j x = �y:xyi an implicit �-redexwhich needs to be made explicit, i.e., of the form (�x:P)Q, in order to be reduced.In our cyclic calculus, an implicit �-redex can be made explicit by the use ofthe R2 representational axioms. However, we would also like to make a redexexplicit by applying a representational rewriting system. In that respect the rulesobtained by orienting the R2 axioms from left to right are not su�cient. We thusintroduce the following two axioms:hC[y] j y =M;Di = hC[M] j y =M;DihN j x = C[y]; y =M;Di = hN j x = C[M]; y =M;Di ;called external and internal substitution, respectively. These axioms capture theinlining transformations described in the introduction, and they are derivable inR2. The rules obtained by orienting these axioms from left to right are enoughto expose implicit redexes. Referring to Example 3 we have: hx j x = �y:xyi !hx j x = �y:(�y0:xy0)yi ! hx j x = �y:hxy0 j y0 = yii.De�nition14. The axioms of the call-by-name cyclic calculus (��name) aregiven in Table 3. ������!��name denotes the reduction relation obtained by orient-ing all axioms from left to right and by imposing the restriction D0 6= fg to thegarbage collection rule and to the lambda lift rule. �@�@�@ �@Fig. 12. �-reducing hx j x = �y:x yi.

Table 3. The axioms of ��name��: (�x:M)N = hM j x = NiSubstitution: hC[x] j x =M;Di = hC[M] j x =M;DihN j x = C[x1]; x1 =M;Di = hN j x = C[M]; x1 =M;DiLift: hM j DiN = hMN j DiMhN j Di = hMN j Di�x:hM j D;D0i = hh�x:M j Di j D0i D ? D0 and x not free in D0Merge: hM j x = hN j Di;D1i = hM j x = N;D;D1ihhM j Di j D0i = hM j D;D0iGarbage collection: hM j D;D0i = hM j Di D0 ? hM j DihM j i =MCopying: M = N 9� : V ! V;N� �MIn general, we denote by ��!R! the reexive and transitive closure of a reductionrelation ��!R . From now on, we will omit the subscript name when no confusionarises. We have omitted naming and the variable substitution axioms since theyare derivable. We have also adopted a more general form of the lambda liftaxiom, i.e., we move subsets of equations out of a letrec. This is because wewant to have a common reduct for the two reducts h�x:hy j y = z xi j z = ziand �x:hy j y = z x; z = zi of �x:hhy j y = z xi j z = zi. By a similar argument,we have introduced a more general form of the garbage collection axiom whichallows us to remove subsets of equations.The main di�erence between ��name and the ��-calculi [6, 7] involves thesubstitution and merge operations. Here, these operations may occur in anycontext, whereas in [6, 7] they cannot occur on a cycle. For example, the ��-calculi disallow the step hx j x = �z:y(Sz); y = �w:x(Sw)i ! hx j x =�z:(�w:x(Sw))(Sz); y = �w:x(Sw)i. This is an example of a cyclic substitu-tion, since x and y lie on the same cyclic plane. Cyclic substitution is the causeof non-conuence, as shown by the following example:M � hx j x = �z:y(Sz); y = �w:x(Sw)i�! hx j x = �z:(�w:x(Sw))(Sz); y = �w:x(Sw)i�!! hx j x = �z:x(S(Sz)); y = �w:x(Sw)i (�)M �! hx j x = �z:y(Sz); y = �w:(�z:y(Sz))(Sw)i�!! hx j x = �z:y(Sz); y = �w:y(S(Sw)) (��)Now, the terms (*) and (**) have no common reduct, since in the term (*) aneven number of S0s is reachable from the root x , while the term (**) will containan odd number. This `out-of-synch' phenomenon is also observed by reducing(in at most ! steps) the in�nite terms that arise by unwinding the cyclic graphs.By disallowing the substitutions for x and y the counterexample disappears.Moreover, in the ��-calculi the merge rules had the proviso that only acyclicletrec's could be merged. For example, the following step is illegal: hx j x =h�z:y(Sz) j y = �w:x(Sw)ii ! hx j x = �z:y(Sz); y = �w:x(Sw)i. If theabove step were allowed then conuence would have been lost, since the acylic

substitution for y is turned into a cyclic substitution once the internal letrec isremoved.In summary, in [6, 7], the focus was on �nding a conuent calculus that couldexpress cyclic lambda graph rewriting. Instead, we do not take conuence as theguiding factor in designing the calculus. Thus, we do not restrict the calculus, butintroduce a new way of proving the consistency of the calculus. More speci�cally,we introduce an approximate notion of conuence - conuence up to informationcontent. This notion allows us to abstract away syntactic details.4 Approximate Notion of ConuenceOnce cycles are admitted it seems natural to consider in�nite normal formsinstead of normal forms. We thus introduce a new property, conuence up to aquasi order, which guarantees unicity of in�nite normal forms. In the rest of thissection we work with abstract rewriting systems, since we do not need the extrastructure terms have to de�ne the necessary notions.Conuence up to a quasi orderWe start by introducing a few notions about abstract rewriting system wherethe set of objects also has a quasi order de�ned on it.De�nition15. An ordered abstract rewriting system is a structure (A;!;�),where (A;!) is an ARS (abstract rewriting system) and (A;�) is a quasi order.Given an ordered ARS (A;!;�). Then- ! is monotonic with respect to � if 8a; b 2 A : a! b implies a � b.- ! is conuent up to� if 8a; b; c 2 A : a�!!b; a�!!c implies 9d 2 A : b�!!d; c � d.- We denote by ���! the reexive transitive closure of ((�� [�!)\ �).Next, we give an analysis of conuence up to in terms of some simpler prop-erties. We begin with some de�nitions.De�nition16. Given an ordered ARS (A;!;�), and another reduction rela-tion 7!�!. Then- 7! is complete for! up to � if 8a; b 2 A : a�!!b implies 9c 2 A : a 7�!! c; b � c.- 7! commutes with ! up to � if 8a; b; c 2 A : a�!!b; a 7�!! c implies 9d 2 A :b 7�!! d; c � d.- We denote by ��! the reduction relation �! n 7!.Lemma17. Given an ordered ARS (A;!;�). Let 7!�! such that 7! is com-plete for ! up to � and 7! commutes with ! up to �. Then ! is conuent upto �.To prove that the conditions stated in the lemma above hold for our cycliccalculi we will use the following lemma.

Lemma18. Given an ordered ARS (A;!;�) and a relation 7!�!. If the fol-lowing two diagrams hold _���� //_��������oo � //____ _���� oo �_��������oo � //____then ! commutes with 7! up to � and 7�! is complete up to �.In�nite normal formWe de�ne the in�nite normal form of a term as the maximum information thatcan be obtained by reducing that term. We model the information content ofa term as a function from the set of objects of an ARS to a partial order.This function and the partial order induce a quasi order on the elements of theARS. The intuition of information content demands that the rewrite relation ismonotonic with respect to the induced order. Formally:De�nition19. The structure h(A;!;�); !; (B;�)i is called an ARS with or-dered information content if:- (A;!;�) is an ordered ARS- ! is monotonic with respect to �- (B;�) is a partially order set- ! is a function A! B- a � b i� !(a) � !(b).We often refer to !(a) as the information content of a.De�nition20. Given a partial order (B;�). We de�ne the downward closureof a set C � B, denoted by # C, as fb 2 B j b � a 2 Cg.De�nition21. Given an ARS A with ordered information content h(A;!;�); !; (B;�)i.- The in�nite normal form of an a 2 A, Inf(a), is de�ned as # f!(b) j a�!!bg.- A has unique in�nite normal forms if a! b implies Inf(a) = Inf(b).Next, we show that conuence up to guarantees that the in�nite normal formis an ideal. Given a partial order (B;�), a subset I of B is an ideal i� (i) I isnon-empty, (ii) 8a; b 2 I; 9c 2 I; a � c and b � c, (iii) 8c 2 I, if 9d 2 B; d � cthen d 2 I.Proposition22. Given an ARS with ordered information content h(A;!;�); !; (B;�)i. If ! is conuent up to � then Inf(a) is an ideal.Conuence up to is a su�cient and necessary condition for the unicity ofin�nite normal forms to hold.Proposition23. Given an ARS A with ordered information content h(A;!;�); !; (B;�)i. ! is conuent up to � i� A has the unique in�nite normal formproperty.

Table 4. Evaluation calculus: ��eval��: (�x:M)N �! hM j x = NiExternal substitution: hC[x] j x =M;Di �! hC[M] j x =M;DiLift: hM j DiN �! hMN j Di5 Basic Properties of the Cyclic Lambda CalculusWe start by showing that �� is an abstract reduction system with ordered in-formation content that is conuent up to information content. The informationcontent corresponds to the approximate normal form of Wadsworth [39], alsocalled direct approximation by L�evy [27]. In contrast to [27], we do not send allredexes and compatible redexes to
. Only �� and the occurrences of variablesthat correspond to external substitution redexes are sent to
. As in lambdacalculus,
M is also sent to
, since it could become a ��-redex by replacing
 with a lambda-abstraction. The inaccessible equations are then removed.De�nition24. GivenM;N 2 ��. The information content ofM is given by thefunction !, which given M returns the normal form of M with respect to thefollowing rules (also called !-rules):(�x:M)N ��!!
hC[x] j x =M;Di ��!! hC[
] j x =M;Di
M ��!!
hM j Di ��!! M D ?MWe de�ne M �name N if !(M) �
 !(N), where the order �
 is generated bythe axiom
 �
 M , for every termM . If M �name N and N �name M then welet M 'name N .The !-function is well de�ned due to the termination and conuence of the !-rules (due to Newman's lemma). Termination of the !-rules follows from count-ing the number of non-
 symbols in every term. Examples: !(h�x:yz j y =�w:wi) = �x:
, !(hx j x = xi) =
, !(hxy j y = �w:wix) = (x
)x, and!(hxx j x = �w:wi) =
. Note that even though hxy j y = �w:wix is a liftredex, its information content is not
.Since ��!�� is monotonic with respect to �name we have the following:Proposition25. h(��;��!�� ;�name); !; (!(��);�
)i is an ARS with ordered in-formation content.Next, we present a standard reduction strategy that is complete up to infor-mation content. The idea behind standard reduction is that we take a simplesubset of the rewriting system, such that only standard steps can increase in-formation. We �rst restrict the system to the evaluation system of Table 4. We

need �� and external substitution because those two rules potentially increaseinformation content. We need lift to expose ��-redexes that are implicit. Wethen restrict the standard redex so that it cannot occur in the internal part D ofa construct hM j Di. We also disallow reduction of redexes that could be movedinto an environment by contracting a ��-redex. This guarantees conuence ofthe standard reduction.We illustrate the basic idea behind the formal de�nition of standard reductionthrough an example. Let us consider the term �x:(hx j y = yi(h�w:w j y = yiz)).We start by looking for a standard redex at the outermost position. Since we �nda lambda, we look inside it and �nd a lift redex which we could neglect, since theredex is not obstructing a ��-redex. Assuming we do neglect it, we next look atthe left argument of the application. Since variable x is a lambda bound variable,it can never become a redex, so we start looking in the right-hand side of theapplication. We again �nd a lift redex. This time we must reduce it because itis obstructing a ��-redex. This informal discussion points out how we split liftredexes into two categories: those redexes that (will in the future) obstruct a��-redex (e.g., h�x:M j DiN and hhy j DiN j y = �x:M i), and those that neverwill (e.g., hy j DiM). The redexes in the �rst category must be reduced and theother ones can be delayed.De�nition26. Given M;N 2 ��. M standard rewrites to N (M 7��!�� N) ifM � E[R] ��!�� E[R0] � N , where R and R0 stand for a ��eval-redex and itscontractum, and E is de�ned as follows:E ::= �x:E j hE j Di j App[2;M1; � � � ;Mn] j App[y;M1; � � �E � � � ;Mn]App ::= 2 j App2 j hApp j Diwhere the y must be bound by a lambda or free in the �nal expression.Example 4. �x:(hx j y = yi(h�w:w j y = yiz)) is partitioned as E1[(hx j y =yi(h�w:w j y = yiz))], where E1 is �x:2, or as E2[h�w:w j y = yiz], where E2 is�x:hx j y = yi2. hx j x = yiy is partitioned as E3[x], where E3 is h2 j x = yiy.The redex (�z:z)(�z:z) in hx j x = yi(�z:z)(�z:z) is not a standard redex, sincehx j x = yi2 6= E[2]. To make it standard, an external substitution step must�rst take place.Proposition27. Given M;N 2 ��. If M���!�� N then M 'name N .Lemma28. We have the following two diagrams:�� //_�� ���� _�� ��������oo �name�� //____ oo �� �_�� ���� _�� ��������oo �name�� //____From the above lemma, Lemmas 17 and 18 we then have:Theorem29. Given h(��;��!�� ;�name); !; (!(��);�
)i. ��!�� is conuent up to�name.

6 Semantics of the Cyclic Lambda CalculusSince ��!�� is conuent up to information content, by Proposition 23 the in�nitenormal form of any cyclic term M , written as Inf��(M), is well de�ned andunique. Next, we want to show that the in�nite normal formde�nes a congruence,i.e., if Inf��(M) = Inf��(N) then Inf��(C[M]) = Inf��(C[N]), for all contextsC. To that end, let us �rst show that the in�nite normal forms of a cyclic termcomputed with respect to ��!�� , 7��!�� (written as Infstd) and �����!��eval (written asInfeval) are the same. By the in�nite normal form of a cyclic term computedwith respect to ��!R , we mean the in�nite normal form computed with respect toh(��;��!R ;�name); !; (!(��);�
)i.Proposition30. Given a term M 2 ��. Infstd(M) = Infeval(M) = Inf��(M).This result allows us to prove that the in�nite normal form computed withrespect to��!�� is a congruence, by showing congruence of the in�nite normal formcomputed with respect to the evaluation calculus. Congruence with respect tothe evaluation calculus is easier to prove, since that calculus is conuent by usingthe complete development method.As in [27], we prove some properties of reduction and of !-reduction. How-ever, we formulate these properties in terms of information content.Proposition31. Given a term M 2 �� and a context C.- If C[M]����!eval!N then there exists an M1 such that M����!eval!M1, C[M1]����!eval!Pwithout reducing any redex inside M1 (����!M%1!) and N����!eval!P .- If C[M] eval����!M%! N then C[!(M)]����!eval!N1 with N 'name N1.- Infeval(C[!(M)]) � Infeval(C[M]).Theorem32. Given M;N 2 ��. If Inf��(M) = Inf��(N) then Inf��(C[M]) =Inf��(C[N]).7 The Cyclic Lambda Calculus, the Traditional LambdaCalculus and the In�nitary Lambda CalculusAs it was done in [2] for the �rst-order case, we can use the model to relate�� to the traditional lambda calculus. We show that cycles can be explainedin terms of their expansions, which are �nite lambda calculus terms. To de�neexpansions, we introduce the notationM������!GK(es)!nN which denotes n-steps of theGross-Knuth strategy applied to the external substitution redexes occurring inM (i.e., all external substitution redexes are performed). IfM does not containany external substitution redexes we will still write M ������!GK(es) N .

De�nition33. Given M 2 ��. The nth expansion of M , written as Mn, is theterm strip(N) such that M������!GK(es)!nN and strip(N) is the normal form of Nwith respect to the rules:hC[x] j x =M;Di �! hC[
] j x =M;DihM j Di �!M if D ?MWe build towards the main result with two lemmas. The �rst lemma re-lates suitable �� and external substitution sequences on graphs to �-reductionsequences on lambda calculus terms. The second lemma relates each piece ofinformation derivable from a cyclic term to information derivable from an ex-pansion of that term.Lemma34. Given M;M1;M2 2 ��. If M���!��!M1��!es!M2 such that M1��!es!M2is a complete development of all the external substitution redexes created by the��-steps then strip(M)��!�!strip(M2).Lemma35. Given M;N 2 ��. If M��!��!N then there exists an i and P 2 �such that M i��!�!P and N �name P .If we let Inf�(M i) denote the L�evy-Longo tree (as described in [26]) associ-ated with a lambda calculus term, we then have the following result:Theorem36. Given M 2 ��. Inf��(M) = SfInf�(M i) j i � 0g.Since cyclic terms unwind to in�nite trees, it is natural to relate the cycliccalculus to the in�nitary lambda calculus (�1) of Kennaway et al. [21]. We havesoundness, i.e., ifM��!��!N thenM1���!�1!�!N1, where M1 is limn!1Mn and���!�1!�! stands for a possibly in�nite number of steps in �1. A weak notion ofcompleteness also holds: ifM1���!�1!s then each �nite pre�x of s can be obtainedin �� by reducing M . For this result to hold, the restricted calculus of Table 4su�ces. The semantics of �� as provided by the in�nitary calculus di�ers fromthe L�evy-Longo tree model in that it distinguishes between
M and
.We also point out that the axioms to distribute the substitution across aterm in a stepwise manner, which are present in the explicit substitution calculi[1, 35], are derivable in our calculus and that they generate the same model.8 The Cyclic Sharing Calculus ��shareA drawback of the cyclic lambda calculus is that it does not support sharingadequately, since it allows reductions that duplicate work. For example, in thereduction hx j x = (�y:y)(�y:y)i ��!�� h(�y:y)(�y:y) j x = (�y:y)(�y:y)i, the��-redex has been duplicated. Current implementations of functional languages,such as Haskell [19] and Id [32], do not allow these kinds of reductions. Therefore,we develop a variant of the cyclic calculus that takes sharing into consideration.

Table 5. The axioms of ��share��: (�x:M)N = hM j x = NiSubstitution: hC[x] j x = V;Di = hC[V] j x = V;DihM j x = C[x1]; x1 = V;Di = hM j x = C[V]; x1 = V;DiLift: hM j DiN = hMN j DiMhN j Di = hMN j Di�x:hM j D;VDi = h�x:hM j Di j VDi D ? VD and x not free in VDMerge: hM j x = hN j Di;D1i = hM j x = N;D;D1ihhM j Di j D0i = hM j D;D0iGarbage collection: hM j D;D0i = hM j Di D0 ? hM j DihM j i =MCopying: M = N 9� : V ! V;N� �M and8x 6� x0; �(x) � �(x0) : �(x) bound to a value in MNaming: M = hx j x =Mi x a new variableWe emphasize that we are only interested in capturing the sharing present incurrent implementations (lazy and lenient) of non-strict languages. We do notstudy the sharing present in optimal (in the sense of L�evy [27]) implementa-tions of lambda calculus. Since the emphasis is on sharing and not on a speci�creduction strategy, we call the calculus the sharing calculus (��share), becausecall-by-need normally implies lazy evaluation.The sharing calculus is obtained by restricting the operations that causeduplication, such as substitution and copying, so that only values are duplicated,where a value is either a variable or a lambda-abstraction. Also, the lambda liftaxiom has to be restricted to lift values only, since lifting unevaluated expressionsout of a lambda-abstraction has an impact on the amount of sharing captured.We add the following syntactic clauses of values and value declarationsV ::= x j �x:MVD ::= x1 = V1; : : : ; xn = Vnto the ones of De�nition 5.De�nition37. The axioms of the cyclic sharing calculus (��share) are given inTable 5. ������!��share denotes the rewrite relation obtained by reading all the axioms,except naming, left to right, and by imposing the restrictions VD 6= fg andD0 6= fg to the lambda lift rule and to the garbage collection rule. The namingaxiom is introduced in the reduction theory in the following form:Csafe[M N] �! Csafe[hx j x =M N i] x a new variablewhere Csafe is given by:Csafe ::= C 0 j C[�x:C 0] j C[C 0 M] j C[M C 0]C 0 ::= 2 j hC 0 j Di :

The sharing calculus adds naming, since it is no longer derivable. ��shareextends the cyclic calculus (�need) presented in [4, 5], since reductions may occurwhen they are not needed. For example, �need disallows the reduction hx j x =�y:wx;w = �z:zi�!!hx j x = �y:(�z:z)xi�!!hx j x = �y:xi. Moreover, in [4, 5], thesoundness and completeness of �need with respect to traditional lambda calculuswere limited to the acyclic case.8.1 Soundness and Completeness of ��share with respect to ��nameSoundness of ��share follows from the fact that the sharing theory is a subsetof the call-by-name theory. In [4, 5], we proved the completeness of (acyclic)�need with respect to lambda calculus using a simple invariant: if M�����!name!Nthen 9P;N 0;M����!need!P;N�����!name!N 0 and N 0 � P . The ordering � was a syntac-tic ordering capturing the amount of sharing in a term. To show completenessof ��share, this invariant is too strong. We need to compare information con-tent. Intuitively, we want to say that if M reduces to N in ��name, then theinformation contained in N can be obtained by reducing M in ��share. However,this does not hold. Consider the reduction hx j x = yyi������!��name!yy. Since yy isstable information, we would expect to get that information in ��share. But thisinformation is not reachable in ��share since yy is not a value. This show that ifwe want to compare �� and ��share, we need a new notion of information con-tent for the sharing calculus which we call printable information. This notion, asopposed to the call-by-name information content, can be in�nite. Consider theterm hx j x = �y:yxi. Its information content is
, whereas its printing value isthe sequence �y:y
,�y:y(�y:y
), �y:y(�y:y(�y:y
)); � � �. Both the informationcontent and the printable information of hx j x = x(�y:y)i are
. Let M��!es!M1stand for a sequence of external substitution steps.De�nition38. Given M 2 ��.- The printable information of M , print(M), is # f!(M1) jM��!es!M1g, wherethe downward closure is with respect to !(��) and �
 .- M �share N if print(M) � print(N).- The in�nite normal form of M , Infshare(M), is de�ned as Sfprint(M1) jM������!��share!M1g.Our invariant becomes: each �nite information obtained by reducing a termM in ��name can be obtained by reducing M in ��share and then printing theresult.Lemma39. Given M 2 ��. If M������!��name!N then there exists a term P suchthat M������!��share!P and !(N) 2 print(P).Theorem40. Given M 2 ��. Inf��(M) = Infshare(M).��share captures the essence of lazy languages, such as Haskell [19], and of thefunctional core of lenient languages, such as Id [32, 11] and Parallel Haskell [10].

This is substantiated by the fact that both the lazy and lenient strategies arecomplete with respect to di�erent observations. The lazy strategy, as describedby Launchbury [25], only allows one to reach the top stable information. Thelenient strategy allows reduction of any redex, as long as it does not occur undera lambda. Thus, it allows one to reach more information. For example, givenx(I(�z:
)), the lazy strategy produces x
 and the lenient strategy producesx(�z:
).Remark. Note that even though h(��;������!��share ;�share); print; (print(��);�)i isan ARS with ordered information content, ������!��share is not conuent up to �share.Let M � hx j x = �z:z y; y = �z0:z0 (x z0)i. We then have M������!��share!h�z:z y jy = �z0:z0 (z0 y)i �M1 andM������!��share!hx j x = �z:z (�z0:z0 (x z0))i �M2. How-ever, there cannot existM3 such thatM2������!��share!M3 and print(M1) � print(M3)because print(M1) is in�nite while the print of any reduct of M2 is �nite. Theproblem is that in the unwinding ofM we have an in�nite number of �-redexes.When we rewrite M intoM1 we do all of those redexes and when we rewrite Minto M2 we destroy the opportunity to do them in one step. Note this does notcontradict Proposition 23, since the sharing in�nite normal form is not de�nedas in De�nition 21.9 The Cyclic Call-by-Value Calculus ��valueBoth the call-by-name cyclic calculus and the sharing calculus can be used toreason about non-strict functional languages. However, they are unsuitable toreason about strict functional languages such as SML [17]. Therefore, we developanother variant of the cyclic calculus, namely a cyclic call-by-value calculus. Thiscalculus is derived from the sharing calculus by restricting the notion of valuedeclaration to the set VDV � VD, such that VDV 6= fx1 = x2; � � �xn = x1; VDg.The garbage collection and the lambda lift axioms are then restricted to workwith VDV instead of VD.De�nition41. The axioms of the cyclic call-by-value calculus (��value) aregiven in Table 6. The rewrite relation������!��value associated to the calculus is derivedin the same way as in De�nition 37.With respect to the sharing of computations, the sharing and call-by-valuecalculi are the same. This points out that call-by-value, call-by-need and lenientimplementations support the same amount of sharing, i.e., the argument of afunction is not copied before it is reduced to a value. The di�erence between thetwo calculi is that in call-by-value the equations D of a term hM j Di do not onlyrepresent sharing, they also tell us that if one of the terms in D does not producea value, the complete term should not either. Consider the term h�x:x j y =
i.Its answer according to the sharing calculus is �x:x. According to the call-by-value calculus, it must be
. This means that in call-by-value we have to becareful in eliminating inaccessible equations. In the acyclic case, a similar point

Table 6. The axioms of ��value��: (�x:M)N = hM j x = NiSubstitution: hC[x] j x = V;Di = hC[V] j x = V;DihM j x = C[x1]; x1 = V;Di = hM j x = C[V]; x1 = V;DiLift: hM j DiN = hMN j DiMhN j Di = hMN j Di�x:hM j D;VDV i = hh�x:hM j Di j VDV iD ? VDV and x not free in VDVMerge: hM j x = hN j Di;D1i = hM j x = N;D;D1ihhM j Di j D0i = hM j D;D0iGarbage collection: hM j D;VDV i = hM j Di VDV ? hM j DihM j i =MCopying: M = N 9� : V ! V;N� �M and8x 6� x0; �(x) � �(x0) : �(x) bound to a value in MNaming: M = hx j x =Mi x a new variablewas made by Maraist et al. [29]. In h�x:x j y = zi and h�x:x j y = �z:zi it is safeto eliminate the binding for y, and instead in h�x:x j y = yi and hx j y = wziit is not. The proviso on the garbage collection axiom guarantees that theseequations are not removed. A similar restriction is imposed on the lambda liftaxiom. This is to guarantee that hy j y = �z:hz j x = xii 6= hy j y = �z:z; x = xi,since the �rst term evaluates to �z:
 while the second one evaluates to
.9.1 Basic Properties of the Cyclic Call-by-Value Lambda CalculusTo compute the call-by-value information content we send ��-redexes to
.However, unlike the call-by-name calculus we do not send to
 the substitutionredexes and then remove all the inaccessible equations. This would introducea non-conuence problem. That is, if we let N be h�x:y j y = z; z = �w:wi,we then have the !-reductions: N ! h�x:y j y =
i !
 and N ! h�x:
 jz = �w:wi ! �x:
. Instead, if a variable x is bound to a variable y or to alambda-abstraction �y:P , then each occurrence of x is replaced with y or �y:
,respectively, and then the binding gets removed. The information content of Nthus becomes �x:�w:
. Bindings of the form x1 = x2 M1; � � �xn = x1 Mn aretreated in the same way as bindings of the form x = x, that is, they cause theentire term to be sent to
. In addition, we must be able to handle terms such ash�x:x j z = �x:xi y and hx j x = h�x:x j z = �x:xii, which contain an obstructed�� and value substitution redex, respectively. Thus, we need to add the left liftand internal merge rules. Moreover, we want to equate terms such as x x x andhy x j y = x xi because they represent the same graph. The solution is to �rstnormalize a term with respect to a suitable subset of ������!��value . We call this subsetthe kernelizing system (K). K is given in Table 7. We let K(M) be the normalform of M with respect to K. The call-by-value !-rules are given in Table 8.De�nition42. Given M 2 ��. The call-by-value information content of M isgiven by the function !value, which givenM returns the normal form ofM with

Table 7. The kernelizing system KhM j DiN �! hMN j DiMhN j Di �! hMN j DihM j x = hN j Di;D1i �! hM j x = N;D;D1ihhM j Di j D0i �! hM j D;D0ihM j i �! MCsafe[M N] �! Csafe[hx j x =M Ni] x a new variablerespect to the call-by-value !-rules and system K. We de�ne M �value N if!value(M) �
 !value(N).We can then show that h(��;������!��value ;�value); !value; (!value(��);�
)i is anARS with ordered information content. We do not prove conuence up to �valuedirectly, but instead we introduce a kernelized reduction (���!�K) and prove con-uence up to �value for that reduction relation. ���!�K is de�ned for K-normalforms as: M ���!�K N if M ������!��value P and K(P) � N . Conuence up to of��value then follows from the facts: (i) ���!�K � ������!��value! and (ii) if M������!��value!Nthen K(M)���!�K!K(N). The in�nite normal form induced by this notion of infor-mation, denoted by Infvalue, also leads to a model.9.2 The Cyclic Call-by-Value Calculus, Moggi's ComputationalLambda Calculus and Hasegawa's CalculusWe use the in�nite call-by-value normal form to relate our calculus to the commu-tative version of the computational lambda calculus of Moggi (�c) [30]. However,since Moggi's calculus is acyclic, we �rst need to relate a cyclic term to the acyclicterms approximating it, as we did for the call-by-name calculus. However, thisrelation only works for a subset of the set of terms. For example, the answer ofhx j x = yxi is the term itself. Instead, the answer of any of its approximations is
. If we consider only internal merge normal forms then the restriction is that ifseveral declarations are mutually recursive then all those declarations must onlyinvolve values. For example, hy j y = x; x = �z:yi and hy j y = �z:x; x = �z:yiare good terms, but hx j x = �y:z; z = x xi is not. An arbitrary term is goodif its internal merge normal form is good. We denote the set of good terms by��value.To de�ne call-by-value expansions, we introduce the notation M������!GK(as)!nNwhich denotes n-steps of the Gross-Knuth strategy applied to acyclic value sub-stitution redexes occurring in M . The notion of acyclic substitution redex istaken from [6]. An acyclic value substitution redex is any value substitutionredex that is not of the form hM j x = C[y]; y = V;Di, where x and y aremutually recursive. In hx j x = �z:y; y = �z:w;w = �z:yi, the underlined x andy are acyclic value substitution redexes, and the underlined w is not. Since a

Table 8. The call-by-value !-rules(�x:M)N �!
hM j x = y;Di �! hM [x := y] j D[x := y]i x 6� y;D 6= fghM j x = yi �! M [x := y] x 6� yhM j x = x;Di �!
hM j x1 = x2 M1; � � � ; xn = x1 Mn;Di �!
hM j x = �y:N;Di �! hM j Di[x := �y:
] D 6= fghM j x = �y:Ni �! M [x := �y:
]
M �!
M
 �!
h
 j Di �!
hM j x =
;Di �!
value substitution redex can be obstructed by an environment, we �rst computethe internal merge normal form of a term M denoted by nfim(M).De�nition43. Given M 2 ��value. The nth call-by-value expansion of M ,written as MnV , is the term stripV(MVn) such that nfim(M)������!GK(as)!nMVn andstripV(N) is the normal form of N with respect to the rules:hM j x1 = x2; � � � ; xn = x1; Di �! hM j x1 =
; � � � ; xn =
;DihM j x = �y:N;Di �! hM j x = �y:
;Di N 6�
Theorem44. Given M 2 ��value. Infvalue(M) = SfInfvalue(M iV) j i � 0g.Let [[M]] denote a translation of term M into a single-equation term, i.e.,each hN j Di in [[M]] is of the form hN j x1 = N1i. Let �cn�V denote �c withoutthe �V -axiom (i.e., �x:V x = V if x does not occur free in V).Theorem45.- Given M;N 2 �c. If �cn�V `M = N then ��value `M = N .- Given acyclic terms M;N 2 ��value. If ��value ` M = N then �c n�V `[[M]] = [[N]].Recently, Hasegawa [18] proposed a cyclic extension of Moggi's calculus.There are three major di�erences between Hasegawa's calculus and our own:(i) Hasegawa uses simply typed terms and treats values di�erently dependingon them being cyclic or acyclic, (ii) he does not have lifting of values out of alambda as an axiom 3, and (iii) he restricts garbage collection to acyclic valuesonly. There is one minor di�erence and that is that environments are alwaysnon-empty. Unfortunately, Hasegawa does not study the rewriting aspects of thecalculus. But in a sense, his calculus is complete with respect to our calculus:3 For acyclic values the axiom is derivable from substitution and garbage collection.The case for cyclic values is not derivable.

Theorem46. Given M 2 ��, such that there is no subterm of the form hN ji.Then Infvalue(M) =# f!value(N) j Hasegawa n �0 `M = Ng.Remark. The �-axioms present in Moggi's and Hasegawa's calculi are not soundin our model, e.g., �x:y x and y, hM j x = xi and hM j x = �z:x zi do not havethe same in�nite normal forms.10 ConclusionsWe have developed a precise connection between the class of well-formed cycliclambda-graphs and the terms of the lambda calculus extended with letrec. Onthe set of cyclic terms we have developed three cyclic lambda calculi. Thesecalculi correspond to the parameter-passing techniques of call-by-name, call-by-need and call-by-value. The ability to de�ne mutually recursive objects makesthese calculi more suitable then lambda calculus [13], �need [5, 4] and �V [34]to express the operational semantics, compilation and optimization of currentfunctional languages. The sharing calculus is the kernel language of Haskell andthe functional core of Id and Parallel Haskell. The call-by-value calculus is thefunctional kernel of languages such as SML. In [3] we have also shown how toextend our calculi with data-structures.What distinguishes our calculi from current theories is that we do not imposeany restrictions on where the rewriting takes place. This makes our theoriesuseful for reasoning about not only run-time issues but also about compilationissues. The development of these calculi is non-trivial due to the loss of theconuence property. Our calculi satisfy an approximate notion of conuence,which guarantees uniqueness of in�nite normal forms. For each calculus, thein�nite normal form provides a term model which allows us to relate our calculito existing ones.AcknowledgementsThe research of the �rst author has been supported by NSF grants CCR-9410237and CCR-9624711.The research of the second author has been supported by NSFgrant CCR-9624711 and by SIR-grants from NWO. The second author thanksthe University of Oregon to make his visits possible.We thank Femke van Raamsdonk, Vincent van Oostrom, Jan Willem Klop,Amr Sabry, Miley Semmelroth, Mariangiola Dezani-Ciancaglini and Arvind forstimulating discussions about a draft of this paper.References1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. L�evy. Explicit substitutions. Journalof Functional Programming, 4(1):375{416, 1991.2. Z. M. Ariola. Relating graph and term rewriting via B�ohm models. ApplicableAlgebra in Engineering, Communication and Computing, 7(5), 1996.

3. Z. M. Ariola and S. Blom. Lambda calculi plus letrec. Technical Report CIS-TR-97-05, Department of computer and information science, University of Oregon.ftp://ftp.cs.uoregon.edu/pub/ariola/cyclic-calculi.ps.4. Z. M. Ariola and M. Felleisen. The call-by-need lambda calculus. Journal of Func-tional Programming, 7(3), 1997.5. Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, and P. Wadler. The call-by-need lambda calculus. In Proc. ACM Conference on Principles of ProgrammingLanguages, pages 233{246, 1995.6. Z. M. Ariola and J. W. Klop. Lambda calculus with explicit recursion. TechnicalReport CIS-TR-96-04, Department of computer and information science, Univer-sity of Oregon. To appear in Information and computation.7. Z. M. Ariola and J. W. Klop. Cyclic lambda graph rewriting. In Proc. NinthSymposium on Logic in Computer Science (LICS'94), Paris, France, pages 416{425, 1994.8. Z. M. Ariola and J. W. Klop. Equational term graph rewriting. FundamentaeInformaticae, 26(3,4):207{240, 1996. Extended version: CWI Report CS-R9552.9. Z. M. Ariola, J. W. Klop, J. R. Kennaway, F. J. de Vries, and M. R. Sleep. Syntac-tic de�nitions of unde�ned: On de�ning the unde�ned. In Proc. TACS 94, Sendai,Japan, 1994.10. Arvind, L. Augusston, J. Hicks, R. S. Nikhil, S. Peyton-Jones, J. Stoy, andW. Williams. pH: A Parallel Haskell. Technical report, MIT Laboratory for Com-puter Science, September 1993.11. Arvind, J-W. Maessen, R.S. Nikhil, and J. E. Stoy. �s: an implicitly parallel �-calculus with letrec, synchronization and side-e�ects. Technical Report 393, MITLaboratory for Computer Science, 1997.12. A. Asperti and C. Laneve. Interaction systems I: The theory of optimal reductions.Mathematical structures for computer science, 4:457{504, 1994.13. H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, Amsterdam, 1984.14. H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, J. R. Kennaway,M. J. Plasmeijer, and M. R. Sleep. Term graph rewriting. In J. W. de Bakker,A. J. Nijman, and P. C. Treleaven, editors, Proc. Conference on Parallel Architec-ture and Languages Europe (PARLE '87), Eindhoven, The Netherlands, Springer-Verlag LNCS 259, pages 141{158, 1987.15. Z. Benaissa, P. Lescanne, and K.H. Rose. Modeling sharing and recursion for weakreduction strategies using explicit substitution. In PLIP'96, 1996.16. S. Billot and B. Lang. The structure of shared forests in ambiguous parsing. InProceedings of the Twenty-Seventh Annual Meeting of the Association for Compu-tational Linguistics, 1989. Association for Computational Linguistics.17. B. Harper. Introduction to Standard ML. Technical report, ECS-LFCS-86-14,Laboratory for the Foundation of Computer Science, Edinburgh University, 1986.18. M. Hasegawa. Recursion from cyclic sharing: traced monoidal categories and mod-els of cyclic lambda calculi. In Proc. Conference on Typed Lambda Calculi andApplications, April 1997.19. P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel,K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Partain, andJ. Peterson. Report on the programming language Haskell. ACM SIGPLAN No-tices, 27(5):1{64, 1992.20. G. Huet. Conuent reductions: Abstract properties and applications to termrewriting systems. JACM, 27(4), 1980.

21. J. R. Kennaway, J. W. Klop, M. R. Sleep, and F. J. de Vries. In�nitary lambdacalculus. In Proc. Rewriting Techniques and Applications, Kaiserslautern, 1995.22. P. Klint. A meta-environment for generating programming environments. In Al-gebraic Methods II: Theory, Tools and Applications. Springer-Verlag LNCS 490,pages 105{124, 1991.23. P. Klint and E. Visser. Using �lters for the disambiguation of context-free gram-mars. In G. Pighizzini and P. San Pietro, editors, Proc. ASMICS Workshop onParsing Theory, pages 1{20, Milano, Italy, October 1994. Tech. Rep. 126{1994,Dipartimento di Scienze dell'Informazione, Universit�a di Milano.24. Y. Lafont. Interaction nets. In Proc. ACM Conference on Principles of Program-ming Languages, San Francisco, 1990.25. J. Launchbury. A natural semantics for lazy evaluation. In Proc. ACM Conferenceon Principles of Programming Languages, pages 144{154, 1993.26. J.-J. L�evy. An algebraic interpretation of the ���-calculus and an application ofa labelled �-calculus. Theoretical Computer Science, 2(1):97{114, 1976.27. J.-J. L�evy. R�eductions Correctes et Optimales dans le Lambda-Calcul. PhD thesis,Universite Paris VII, October 1978.28. I.C. Mackie. The geometry of implementation. PhD thesis, University of London,1994.29. J. Maraist, M. Odersky, D. Turner, and P. Wadler. Call-by-name, call-by-value,call-by-need, and the linear lambda calculus. In Proc. of Mathematical Foundationsof Programming Semantics (MFPS), 1995.30. E. Moggi. Computational lambda calculus and monads. Technical Report ECS-LFCS-88-86, Edinburgh University, 1988.31. J. Niehren. Functional computation as concurrent computation. In Proc. ACMConference on Principles of Programming Languages, pages 333{343, 1996.32. R. S. Nikhil. Id (version 90.1) reference manual. Technical Report 284-2, MITLaboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139,1991.33. S. L. Peyton Jones. The implementation of Functional Programming Languages.Prentice-Hall International, Englewood Cli�s, N.J., 1987.34. G. D. Plotkin. Call-by-name, call-by-value and the lambda calculus. TheoreticalComputer Science, 1:125{159, 1975.35. K. H. Rose. Explicit cyclic substitutions. In M. Rusinowitch and J. L. R�emy,editors, Proc. 3rd International Workshop on Conditional Term Rewriting Systems(CTRS-92), Pont-�a-Mousson, France, Springer-Verlag LNCS 656, pages 36{50,1992.36. D. Sangiorgi and R. Milner. Techniques of \weak bisimulation up to". Technicalreport, 1993.37. P. Selinger. Order-incompleteness and �nite lambda models. In Proc. Symposiumon Logic in Computer Science (LICS'96), 1996.38. M. Tomita. E�cient Parsing for Natural Languages. A Fast Algorithm for Prac-tical Systems. Kluwer Academic Publishers, 1985.39. C. Wadsworth. Semantics and Pragmatics of the Lambda-Calculus. 1971. PhDthesis, University of Oxford.This article was processed using the LATEX macro package with LLNCS style

