
Under consideration for publication in J. Functional Programming 1

Persistent Triangulations∗
Guy Blelloch, Hal Burch†, Karl Crary, Robert Harper, Gary Miller, and Noel Walkington

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

Triangulations of a surface are of fundamental importance in computational geometry,
computer graphics, and engineering and scientific simulations. Triangulations are ordinar-
ily represented as mutable graph structures for which both adding and traversing edges
take constant time per operation. These representations of triangulations make it difficult
to support persistence, including “multiple futures”, the ability to use a data structure in
several unrelated ways in a given computation; “time travel”, the ability to move freely
among versions of a data structure; or parallel computation, the ability to operate con-
currently on a data structure without interference.

We present a purely functional interface and representation of triangulated surfaces,
and more generally of simplicial complexes in higher dimensions. In addition to being
persistent in the strongest sense, the interface more closely matches the mathematical
definition of triangulations (simplicial complexes) than do interfaces based on mutable
representations. The representation, however, comes at the cost of requiring O(lg n) time
for traversing or adding triangles (simplices), where n is the number of triangles in the
surface. We show both analytically and experimentally that for certain important cases,
this extra cost does not seriously affect end-to-end running time. Analytically, we present
a new randomized algorithm for 3-dimensional Convex Hull based on our representations
for which the running time matches the Ω(n lg n) lower-bound for the problem. This is
achieved by using only O(n) traversals of the surface. Experimentally, we present results
for both an implementation of the 3-dimensional Convex Hull and for a terrain modeling
algorithm, which demonstrate that, although there is some cost to persistence, it seems
to be a small constant factor.

Capsule Review

Capsule summary goes here.

1 Introduction

The PSciCo1 Project at Carnegie Mellon is investigating the use of functional pro-
gramming languages for scientific computing. Our working hypothesis is that, as
the scale and complexity of scientific computing problems increases, so the need
for more sophisticated languages also increases. A rich type structure that provides

∗ This research was supported in part by NSF Grant CCR-9706572.
† Research supported by an NSF graduate fellowship.
1 Parallel Scientific Computing

2 Blelloch et al.

not only conventional numeric and vector types but also function types, recursive
types, and user-defined abstract types seems especially important, as does a flexible
module system that supports libraries of interchangeable components. To achieve
acceptable performance, and to expand feasible problem sizes, it is also important to
exploit parallelism, which is increasingly available on stock platforms. To address
these requirements, we are investigating the use of functional programming as a
basis for advanced scientific computing, combining NESL (Blelloch, 1996), an ap-
plicative language that provides implicit data parallelism, and Standard ML (Milner
et al., 1997), a higher-order language with a rich module system. We are working on
a variety of problems, including n-body problems in physics, computational geom-
etry problems, such as Delaunay Triangulation and multi-dimensional convex hull
problems, and the solution of partial differential equations by the finite element
method.

This paper focuses on a particular problem, the representation and construc-
tion of triangulated surfaces. Triangulated surfaces (more generally, simplicial com-
plexes) are widely used in a number of fields such as computer graphics and scientific
computing. For example, the starting point for solving a boundary value problem by
the finite element method is the triangulation of the region over which the solution
is constructed. Standard representations of surfaces (Guibas & Stolfi, 1985; Berg
et al., 1997) are ephemeral in the sense that they are defined in terms of mutable
graph structures. Once a modification to the surface is made, the previous version
of the surface is destroyed. In some situations it is convenient to have a persis-
tent representation of the surface, one for which operations on the surface do not
destructively update it, but rather create an independent “version” while retain-
ing the original. For example, a persistent surface representation admits a simple
formulation of Ruppert’s algorithm (Ruppert, 1995) for triangulating regions with
boundaries in which we “undo” a partial triangulation on the fly in the rare case
that boundary constraints lead to undesirable acute triangles. Persistent represen-
tations of surfaces also permit interactive exploration and incremental modification
of a triangulation through the convenience of “time travel”, the ability to maintain
a complete history of the evolution of a data structure.

This paper is concerned with the use of persistent representations of triangu-
lated surfaces. A straightforward approach to achieving persistence is to replace
uses of arrays by a purely functional (immutable) dictionary using balanced search
trees (Myers, 1984). The disadvantage of this approach is that it imposes an addi-
tional O(lg n) cost per operation stemming from the logarithmic cost of dictionary
lookup compared to the constant cost of array access. Various attempts have been
made to reduce this overhead (Driscoll et al., 1989; Dietz, 1989; O’Neill & Burton,
1997; Okasaki, 1998). These methods tend to be quite complex, apply only to par-
ticular data structures, or employ imperative (mutable) data structures internally.
Reliance on underlying mutable data structures complicates parallelization, since
interlocks are required to avoid interference between processors. In contrast purely
functional implementations parallelize without special provision, precisely because
they avoid mutation entirely.

Rather than attempt to improve the local (per-operation) cost of operations on

Persistent Triangulations 3

the data structure, we instead emphasize the global, or end-to-end, efficiency of
algorithms that make use of the data structure. By being clever at the higher level
we can get away with a näıve purely functional representation, without sacrificing
the global efficiency of the algorithms of interest. In this paper we explore this
approach in the context of a persistent representation of triangulated surfaces. We
employ a simple surface representation with an elegant interface that follows very
closely the mathematical definition of a surface. Although we incur a logarithmic
cost overhead per operation, we nevertheless are able to use our data structure to
build efficient implementations of two higher-level algorithms, in both an asymptotic
and empirical sense.

The first example is the construction of the convex hull (Berg et al., 1997) (a
triangulated surface) of a set of n points in three-dimensional space. An Ω(n lg n)
lower bound for the problem is well-known (Berg et al., 1997), and matching upper
bounds are achieved by several algorithms in the ephemeral case. A näıve tran-
scription of these algorithms to the persistent case would result in a sub-optimal
O(n lg2 n). At first glance this may seem to be an inherent cost of a locally sub-
optimal representation of surfaces. We prove that this supposition is false by giving
a new, randomized convex hull algorithm, which we call the bulldozer algorithm,
that achieves the optimal O(n lg n) time bound in the expected case, despite the
reliance on the simple persistent representation of surfaces. The key observation
is that, whereas our algorithm requires O(n lg n) floating point operations (to de-
termine whether a point lies inside or outside of the partially-constructed hull), it
requires only O(n) surface operations. Since each surface operation takes O(lg n)
time, the running time of the algorithm is still bounded by O(n lg n). To assess the
practicality of this algorithm, we measure its performance on a variety of data sets.
Our second example is the implementation of a terrain modeling algorithm given
by Garland and Heckbert (Garland & Heckbert, 1995) using our persistent surface
representation. Here no analytic bounds are known, but we are able to demonstrate
practical efficiency on realistic data sets.

In Section 2 we describe our representation of triangulated surfaces as simplicial
complexes. In Section 3 we present a brief summary of the bulldozer algorithm,
which is described more fully in a companion report (Burch et al., 2000). In Section 4
we evaluate the performance of the bulldozer algorithm on a variety of data sets,
and compare it to the performance of the Minnesota Quickhull (Barber et al.,
1996) implementation. In Section 5 we evaluate an implementation of Garland and
Heckbert’s terrain modeling algorithm (Garland & Heckbert, 1995) based on our
representation of surfaces.

2 Surfaces

Both the convex hull algorithm and the terrain modeling algorithm presented in
later sections construct a two dimensional surface embedded in three dimensional
space. In the case of the convex hull, this is the surface of the smallest enclosing con-
vex polytope of a set of points, and in the case of the terrain modeling, the surface
represents an approximation to the topography of a geographical region. In both

4 Blelloch et al.

cases it is convenient to think of the surface as a connected set of triangles covering
the surface; if the surface is specified by polygonal faces they are subdivided into
triangles. Consequently, the surfaces of interest are sometimes called triangulated
surfaces, or simply triangulations.

Following Giblin (Giblin, 1977), we define a closed surface to consist of a set of
triangles satisfying the following three conditions:

1. Any two triangles have at most one vertex or one edge (and its two ver-
tices) in common; no other forms of overlap are permitted. This is called the
intersection condition.

2. The surface is connected in the sense that there is a path from any vertex to
any other vertex consisting of edges of the triangles of the surface.

3. For each vertex, the set of edges opposite that vertex in any triangle, called
the link of that vertex, forms a simple, closed polygon.

This definition relies on the familiar concept of a triangle. A triangle consists
of a set of three distinct vertices, specified in some order. This raises the question
of when two triangles are equivalent. Under an ordered interpretation, 4ABC is
distinct from both 4BCA and 4CAB, even though they enumerate the vertices
in the same sequence, and is also distinct from 4ACB, which reverses the order of
presentation. Two orderings that differ by an even permutation (i.e., that can be
obtained from one another by an even number of swaps) are said to determine the
same orientation. Thus 4ABC, 4BCA and 4CAB all have the same orientation,
whereas 4ACB, 4BCA and 4CAB have the opposite orientation. The orientation
may be thought of as determining two “sides” of a triangle; 4ABC is the “front”
of 4ABC, and, correspondingly, 4ACB is the “back” of 4ABC. Under an oriented
interpretation we identify triangles that have the same orientation, and distinguish
those that do not. This idea generalizes to higher dimensions in that two orderings
of vertices have the same orientation iff they differ by an even permutation.

Following Giblin, we maintain a careful distinction between the configuration of
the triangles on the surface (i.e., their adjacency relationships) and the embedding
of the triangles in three-dimensional space (i.e., the assignment of coordinates to
their vertices). When embedding a triangle 4ABC in three-dimensional space, we
require that the points assigned to the vertices be affinely independent, which is to
say that the vectors B − A and C − A are linearly independent, or, equivalently,
that the three points are not collinear. The convex hull algorithm will determine not
only the configuration of triangles, but also their embedding in three-dimensional
space.2

A closed surface is a special case of the more general concept of a simplicial com-
plex (Giblin, 1977; Alexandroff, 1961), which applies in an arbitrary dimension. Our
implementations of the three-dimensional convex hull and of the terrain modeling
algorithm are based on an abstract type of simplicial complexes. Not only does this

2 To avoid degeneracies and to simplify the presentation, we assume that the input set of points
to the hull algorithm has the property that no four points are coplanar.

Persistent Triangulations 5

support generalization to higher-dimensional spaces, but it also allows us to exper-
iment with various implementations of simplicial complexes without disturbing the
application code. Indeed, we experimented with several different implementations
before settling on the one we describe here.

Just as a closed surface is a set of triangles satisfying some conditions, a simplicial
complex is a set of simplices over a set of vertices satisfying some related conditions.
A zero-dimensional simplex is a “bare” vertex, a one-dimensional simplex is a line
segment, a two-dimensional simplex is a triangle, a three-dimensional simplex is a
tetrahedron, and so on. A complex is a configuration of simplices subject to some
simple conditions.

We assume we are given a totally ordered set V of vertices.3 An n-dimensional
ordered simplex, or n-simplex, is an (n + 1)-tuple of distinct vertices. An oriented
simplex is an equivalence class of ordered simplices with the same orientation. A
simplex s is a sub-simplex, or a face, of a simplex t, written s ≤ t, iff s is a sub-
sequence (not necessarily proper) of t. An n-dimensional, oriented, pure simplicial
complex, or just n-complex for short, consists of a set V of vertices and a set S of
oriented simplices satisfying the following conditions:

1. Every vertex determines a 0-simplex. We usually do not distinguish between
a vertex v and its associated 0-simplex (v).

2. Every sub-simplex of a simplex in S is also a simplex of S.
3. Every simplex s ∈ S is a sub-simplex of some n-simplex in S.

A closed surface is a 2-complex in which the link of every 0-simplex is a simple,
closed polygon having that 0-simplex as an interior point.

The signature (interface) of the simplicial complex abstract type is given in Fig-
ure 3. This abstraction relies on an abstract type of vertices, whose signature is
given in Figure 1, and an abstract type of simplices, whose signature is given in
Figure 2. Taken together, these signatures summarize the entire suite of operations
available to applications that build and manipulate complexes. We have omitted
some operations that are not required in this paper, such as a list of the exceptions.

The signature VERTEX specifies that vertices admit a total ordering, which is
required for the efficient implementation of simplicial complexes. We associate a
point with each vertex; this is used to embed a simplex in space, as described earlier.
The embedding is established by the new operation, which creates a “new” vertex
at the specified point. The state is used to generate new vertex “labels” purely
functionally. The location of a vertex in space is obtained using the loc operation,
which yields the point in space associated with vertex. The type of points is left
completely unspecified since the simplicial complex package need not be concerned
with its exact representation.

The signature SIMPLEX defines the abstract type of (ordered) simplices over a
given type of vertices. As with vertices, we require that simplices be totally ordered
by some unspecified order relation so that simplices may be used as keys in a

3 This total ordering is not ordinarily required in the mathematical setting, but is necessary for
implementation reasons.

6 Blelloch et al.

signature VERTEX =

sig

type vertex

val compare : vertex * vertex -> order

type state

type point

val new : state * point -> state*vertex

val loc : vertex -> point

end

Fig. 1. Signature of Vertices

signature SIMPLEX =

sig

structure Vertex : VERTEX

type simplex

val compare : simplex * simplex -> order

val dim : simplex -> int

val vertices : simplex -> Vertex.vertex seq

val simplex : Vertex.vertex seq -> simplex

val down : simplex -> Vertex.vertex * simplex

val join : Vertex.vertex * simplex -> simplex

val faces : simplex -> simplex seq

val flip : simplex -> simplex

end

Fig. 2. Signature of Simplices

dictionary. The operation dim yields the dimension of a simplex. The apex of the
simplex is the first vertex of the sequence of vertices defining the simplex. The
vertices operation yields the sequence of vertices of a simplex, apex first.4 The
simplex operation creates an n-simplex from a sequence of n+1 vertices. The faces
operation yields a sequence of (n−1)-dimensional sub-simplices of a given n-simplex
in arbitrary order. The flip operation inverts the orientation of a simplex (flips
to its reverse side). The down operation takes an n-simplex and returns its apex
and the (n−1)-simplex opposite the apex. The join operation builds an n-simplex
from a given vertex and (n− 1)-simplex, taking the vertex as apex and the (n− 1)
simplex as its opposite face.

The signature SIMPCOMP specifies the abstract type of oriented simplicial com-
plexes. There are no mutation operations on complexes. Instead we supply opera-
tions to create new complexes from old, as discussed in the introduction. The type
’a complex of n-dimensional simplicial complexes is parameterized by a type ’a

of data values associated with the n-simplices of the complex. The new operation
creates an empty complex of specified dimension n. The sequence of vertices of a

4 We make use of an abstract type of sequences (’a seq), a form of immutable array whose
primitive operations are designed to support implicit parallelism (Blelloch, 1996).

Persistent Triangulations 7

signature SIMPCOMP =

sig

structure Simplex : SIMPLEX

type ’a complex

val dim : ’a complex -> int

val new : int -> ’a complex

val isEmpty : ’a complex -> bool

val vertices : ’a complex -> Simplex.Vertex.vertex seq

val simplices : ’a complex -> int -> Simplex.simplex seq

val data : ’a complex * Simplex.simplex -> ’a option

val grep : ’a complex -> int * Simplex.simplex -> Simplex.simplex seq

val find : ’a complex * Simplex.simplex -> Simplex.simplex seq

val add : ’a complex * Simplex.simplex * ’a -> ’a complex

val rem : ’a complex * Simplex.simplex -> ’a complex

val update : ’a complex * Simplex.simplex * (’a -> ’a) -> ’a complex

end

Fig. 3. Signature of Simplicial Complexes

complex are returned by the vertices operation, in an arbitrary order. The sim-
plices of a given dimension are returned by the simplices operation. The grep

operation finds all the simplices of maximal dimension having a given simplex as
a face. More precisely, given a dimension d ≤ n and a d-simplex s, grep returns
a sequence containing (in unspecified order) the simplices of dimension d having s

as a face. The find operation is a specialization of grep for dimension n− 1. The
operation add adds a simplex to a complex, with specified data value; to ensure
that the condition 3 in the definition of simplices is preserved, we may only add an
n-simplex to an n-complex. The operation rem removes a simplex from a complex,
yielding the reduced complex. The update operation applies a specified function to
the data associated with the given simplex. We note that for all operations on a
simplicial complex the simplices are viewed as oriented but not ordered (all orders
of the same orientation are considered equivalent). For example if a simplex with
a particular order is added to the complex, later searches on other orders with the
same orientation will find that simplex. Similarly the simplices and grep functions
will only return a single order for each oriented simplex.

In our implementation, an n-simplex is represented by a sequence of vertices of
length n+1, with the apex being the lead vertex of the sequence. The down operation
strips off the apex and returns the remaining (n− 1)-simplex, as described above.
We implement complexes using the Map signature taken from the SML/NJ library.
An n > 1 complex is represented by a mapping from each vertex to the (n − 1)-
complex consisting of the faces opposite it. A 1-complex is implemented specially
to avoid the overhead of maintaining the map.

We may build an n-complex by a sequence of n− 1 applications of a “bootstrap-
ping functor” that builds an n-complex from an (n − 1)-complex, starting with
the direct implementation of the 1-complex. However, for reasons of efficiency, we

8 Blelloch et al.

choose to implement the 2-complexes directly, rather than by bootstrapping. In
this optimized implementation we use the first vertex of a simplex as a key into a
red-black tree (Bayer, 1972; Okasaki, 1998). Each node of the red-black tree then
stores as its value an association list that maps the second vertex to the third vertex
and the data. Using an association list is adequate in practice since the number of
entries is small (the average number is 6). To make the implementation optimal in
theory one could convert to a balanced tree if the size of the list becomes too long.

In our direct implementation searching for a simplex involves searching the red-
black tree and then the association list. Adding a simplex involves searching the
red-black tree to see if the vertex is already there. If it is, the simplex is added to the
existing association list, otherwise a new association list is created. When a simplex
is added, it is added to the tree in all three orders with the same orientation. This
is important so that searching (i.e. grep and find) can be implemented efficiently.
Deleting a simplex involves searching the tree and deleting the simplex from the
corresponding association list. If the association list becomes empty, then the tree
node is also deleted. As with addition, the deletion needs to be executed in all three
orders.

3 Convex Hull: The Bulldozer Algorithm

It is well known that the problem of constructing the convex hull of a set of points in
three dimensions requires Ω(n lg n) time (Berg et al., 1997). Asymptotically optimal
algorithms for the problem are also known (Clarkson & Shor, 1989; Chazelle, 1991)
for the ephemeral case. In this section we will give an optimal randomized algorithm
for the persistent case. The algorithm represents the surface of the convex hull as
a two-dimensional simplicial complex.

We will be concerned with incremental methods that expand the convex hull of
a set of points to include a new point. Many algorithms, including our own, are
based on a tent construction. Given a point p exterior to the hull of a set of points,
we may extend the hull to include this point as follows. View the exterior point p

as a light source illuminating a subset of the faces of the hull (note that a face is
either fully light or fully dark). These lit faces are removed by the construction.
The boundary of the lit faces is a set of edges called the horizon. The construction
then creates a pyramidal tent whose apex is the exterior point and whose base is
the horizon. This construction extends the convex hull to include the point p as a
new vertex (see Figure 4). Any points that become interior to the hull when a tent
is added are discarded. A complete hull is constructed by going through the points
and adding them to the hull one at a time.

Several incremental algorithms based on the tent construction are known; they
differ in how the exterior point is chosen, and how the set of exterior points is
maintained during the construction. During construction most of these algorithms
maintain, for each exterior point, one face that is visible to that point. Clarkson and
Shor’s algorithm (Clarkson & Shor, 1989), the Minnesota Quickhull algorithm (Bar-
ber et al., 1996), the Motwani and Raghavan algorithm (Motwani & Raghavan,
1995), and the Bulldozer algorithm described here, all maintain such information.

Persistent Triangulations 9

p

Fig. 4. Example of a tent with exterior point p. The lit faces belonging to the old hull
are marked with dashed borders and the horizon is shown in bold.

The motivation for keeping this association is that, since the set of faces that are
visible to any one point is connected, knowing one visible face allows the algorithm
to walk through the visible faces to find them all. When a tent is added to the hull
the lit faces are removed from the hull. To maintain the association of points to
faces, each point that is associated with one of these lit faces needs to be associated
with a new visible face, or determine that it is now interior and can be dropped.

One reason that previous algorithms are inefficient in the persistent case is that
the process of finding a new visible face can require the traversal of “too many”
faces. Since in the persistent case each traversal step requires O(lg n) steps, we must
bound the overall number of traversals to O(n) to ensure that the construction may
be completed in O(n lg n) time. To do this the algorithm is careful about how it
associates a face with each point and how it reassigns the points. The algorithm
begins by selecting a point that will always be interior to the hull—the center point
of the hull. Consider the rays from the center point to each exterior point. If such
a ray penetrates the surface at a face, we associate the point to that face.5 We
associate exterior points with their appropriate faces by storing on each face a list
of the associated points.

Each step of the algorithm selects an exterior point p uniformly at random for
addition to the hull. Since the points are associated with faces, rather than faces
with points, to do so the algorithm first selects at random a face that has points
associated with it, where the probability of selecting a face is proportional to the
number of associated points. It then selects a random point associated with this face
to serve as a “light source”. Once the light source p is selected, the algorithm finds
and then removes all faces visible to p by searching the surface in a particular order
starting with the associated face of p. The search defines a directed acyclic graph
whose nodes are the visible faces and the horizon edges, and whose arcs connect
adjacent faces or a face with one of its horizon edges; we call this graph the walking
graph of the hull with respect to the light source. Figure 5 gives one example of a
walking graph.

Walking graphs have several important properties:

1. The associated face of the light source has in-degree zero.
2. The graph is acyclic.
3. All nodes of the graph are reachable from the associated face of the light

source.

5 We make the assumption that no four points are co-planar.

10 Blelloch et al.

Fig. 5. An example of a walking graph. The black dot represents the light source.

The algorithm visits each node in the graph in topological order. When visiting
a face, every point assigned to the face is either discarded, because it is interior to
the hull, or pushed out along one of the face’s out-edges to another face or horizon
edge in the walking graph (which we call “bulldozing”). This process for a single
face requires at most two plane-side tests per point, and is based on the location of
the center point as well as the light source. When the search is complete, each point
associated with any of the visible faces has either been discarded or associated with
a horizon edge. One additional test can determine whether a point is interior to
the hull or visible to the tent panel formed by this edge and the light source. The
bulldozing is done so that the tent panel associated with the horizon edge to which
a point is pushed is the associated face of that point. Thus, if the point cannot
see that face, it cannot see any face and can therefore be discarded. The precise
details of the construction of the walking graph are given in the Appendix, where
Theorem 10 states that this construction is correct in the sense that it does extend
the convex hull to include the new point p.

The runtime of the algorithm can be separated into the cost of plane-side tests,
required to walk points out to the horizon, and the cost of manipulating the simpli-
cial complex. Theorem 11 of the Appendix uses a backwards analysis and Euler’s
formula to show that that the average number of faces inserted at each stage is at
most six, so that the expected number of faces created during the construction of
the convex hull is of O(n). This immediately leads to a linear bound on the number
of traversals of the simplicial complex. Clearly the simplicial complex is traversed
whenever a face is added (during the tent construction) or deleted (during a search
for light triangles). The only other time the simplicial complex is traversed occurs
when a triangle is detected on the dark side of the horizon. Since each horizon edge
gives rise to exactly one new tent face, the number of such traversals is bounded
by the total number of faces. Since the cost of each traversal is O(lg(n)) it follows
that the total expected cost of maintaining the simplicial complex to describe the
surface is O(n lg(n)).

We next consider the cost of “bulldozing” points not yet in the hull. If Hk denotes
the convex hull of the first k points, consider the addition of the point p = pk+1

to the hull. Since points get “bulldozed” along faces of Hk that they can see, the
number of edges a point q ∈ Pn−k−1 = {pk+2, . . . , pn} traverses in the walking graph
is bounded by the number of faces F ∈ Hk visible to both p and q. Theorem 12 of

Persistent Triangulations 11

the Appendix shows that the expected total number of such point-face pairs,

{(q, F) ∈ Pn−k−1 ×Hk |F visible to both p and q}
(and hence the number of plane side tests) is bounded by O(n/k). It follows that
the expected cost of bulldozing the points is

∑n
k=1 O(n/k) = O(n lg(n)).

4 Convex Hull: Experimental Evaluation

Although our theory shows using a purely persistent dictionary for storing a sim-
plicial complex is asymptotically optimal, we are interested in the actual overhead.
In particular we were worried that the constant factors could make the ideas im-
practical. For this reason we ran several experiments to study the overhead. These
experiments involved measurements on the bulldozer three-dimensional hull algo-
rithm, and on a terrain triangulation algorithm, described in the next section. The
goal in the experiments is to compare the work needed to maintain the simplicial
complex to the other work in the algorithm. This other work mostly consists of the
numerical aspects and is dominated by floating-point operations.

In our experiments we used the following five distributions of points in three
dimensions:

1. OnSphere: Random uniformly distributed points on the unit 2-sphere (i.e.,
the surface of the unit ball in three dimensions).

2. EqHeavy: Random points on the sphere that are weighted to be mostly on
the equator. These are generated by producing random points on the sphere,
stretching the equator (x and y coordinates) by a factor of 100 so that the
distribution is on a disk-like surface, and then projecting the points back down
onto a sphere by scaling their length to one.

3. PolHeavy: Random points on the sphere that are weighted to be mostly at
the poles. These are generated by producing random points on the sphere,
stretching the poles (z coordinate) by a factor of 100 so that the distribution
is on a stretched ellipsoid surface, and then scaling the points back down onto
a sphere as in the EqHeavy distribution.

4. InBall: Random uniformly distributed points in the unit ball.
5. BordHeavy: Generated by producing points randomly in a unit ball and

then mapping each point (x, y, z) to the point (x, y, x2 +y2 +z2). This creates
a distribution for which most of the points are near or on the surface of the
hull.

We selected these since we wanted data sets both where all the points are in the final
result (the expensive case) and where some are inside. We also wanted nonuniform
distributions, which are what EqHeavy, PolHeavy, and BordHeavy give us.

To get a machine- and language-independent measurement of the costs we first
measured various operation counts. For the manipulation of the simplicial complex
(the topological part of the algorithm) we count both the number of dictionary op-
erations and the total number of key-comparisons made by the dictionary code. For

12 Blelloch et al.

100

200

300

400

500

128K 256K 512K

N
um

be
r

of
 O

pe
ra

tio
ns

 (
M

ill
io

ns
)

Problem size (points)

key-comparisons (OnSphere)
floating-point ops (OnSphere)

key-comparisons (BordHeavy)
floating-point ops (BordHeavy)

Fig. 6. Operation counts as a function of input size for two of the distributions using the
Bulldozer algorithm. The two sets of counts for OnSphere are almost identical.

the numerical (geometric) part of the algorithm we count the number of plane-side
tests, from which we can easily determine the number of floating-point operations.

As mentioned in Section 2, the simplicial complex is implemented using red-black
trees with vertex identifiers used as keys. For a tree of size n, each insertion, deletion
or search will traverse O(lg n) nodes. At each node, the key being searched (an
integer identifier for the vertex) is compared to the key at the node. In addition to
the key-comparisons made in the red-black tree, which are based on the first vertex
of the simplex being searched, key-comparisons are also required when searching for
the second vertex of the simplex in the association-list of the node that is found (see
Section 2). Our key-comparison counts include these association-list comparisons.
The key-comparisons is therefore a measure of the total number of red-black-tree
nodes visited, plus the total number of association-list elements visited. Our theory
states that the expected total number of dictionary operations is O(n) and since
the red-black tree operations visit O(lg n) nodes, the total number of expected
key-comparisons is O(n lg n).

We measured the number of key-comparisons and floating-point operations for
all the distributions and for a range of input sizes up to 512K points. A graph
showing the operation counts as a function of size is given in Figure 6 for two of the
distributions. A bar graph showing the operation counts for the five distributions
on 512K points is given in Figure 7. The graphs show that the number of key-
comparisons is approximately the same as the number of floating-point operations
for the first three distributions in which all the points are on the sphere. For the
other two distributions in which some points are inside the ball, the number of
key-comparisons is significantly less than the number of floating-point operations
(by a factor of 30 for the InBall distribution and a factor of 10 for the BordHeavy
distribution). This is to be expected since the resulting hull is significantly smaller

Persistent Triangulations 13

 Dictionary-Comparisons Floating-Point-Ops

 0

 200

 400

 600

 800

 OnSphere EqHeavy PolHeavy InBall BordHeavy

Fig. 7. Operation counts (in millions) for all five data distributions using the Bulldozer
algorithm. The input size is 512K points.

than the size of the input, and the simplicial-complex operations are only used on
the simplices that are created, while plane-side tests are required on all the input
points.

We were also interested in actual running times of the simplicial complex code
since one might imagine that traversing a node of a tree is more expensive than a
floating-point operation. To be fair on this measure we wanted to compare times
to a well tuned existing implementation of three-dimensional Convex Hull. We
therefore selected the Minnesota Quickhull code (Barber et al., 1996). Since our
code is written in ML and the Minnesota code is written in C, we could not compare
the times directly. We also did not want to completely rewrite our code in C, or the
Minnesota code in ML. Instead we instrumented our code to dump out traces of all
the operations on the simplicial complex. We then wrote C code that simulates the
complex operations using balanced trees and linked lists. The idea is to get an sense
of how much time relative to the Quickhull code the persistent implementation of
the simplicial complex requires. The results are shown in Figure 8. As can be seen,
the cost of the simplicial-complex operations is at most half the total cost of the
Minnesota code, and this is for a distribution, OnSphere, where the number of
operations on the complex is high. Since some of the cost of the Minnesota code is
dedicated to manipulating its representation of the simplicial complex (it would be
hard to separate this out) it is reasonably safe to conclude that using a persistent
dictionary in their code to manipulate the surface would incur less than a 50%
overhead, and for many distributions very much less.

5 Terrain Modeling: Experimental Evaluation

One interesting real-world application of the convex hull algorithm is terrain mod-
eling (Garland & Heckbert, 1995). Terrain data is important to many real-world
applications, such as flight simulators. However, rendering a terrain at full resolu-
tion is impractical for terrains of any significant size. Therefore, applications that

14 Blelloch et al.

0

1

2

3

4

5

6

16K 32K 64K

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Problem size (points)

Minnesota Quickhull Time
Additional time for Simplicial Complex Ops

Fig. 8. Running time as a function of the input size for both Minnesota Quickhull and for
the C implementation of the dictionary operations. The distribution uses is OnSphere.

rely on terrain data require terrain models that approximate full terrains using
substantially fewer polygons.

Given a two-dimensional array of evenly spaced height samples from the full ter-
rain, a terrain modeling procedure computes a triangulation of the terrain that
minimizes the error between the actual sample values and the values given by the
triangulation. Moreover, the triangulation so determined, when projected onto the
plane, is required to have the Delaunay property6 (Berg et al., 1997), as such tri-
angulations have several desirable properties. However, since it is prohibitively ex-
pensive to compute a triangulation that is actually optimal, heuristics are typically
employed that perform well in practice.

One such heuristic is the greedy insertion heuristic. The greedy insertion heuristic
starts by dividing the rectangle into two triangles, and initializes a priority queue
with one point from each triangle, the point having the greatest error between
the sample value and the value given by the triangle. The heuristic then builds the
triangulation incrementally, at each step obtaining the sample point with maximum
error from the priority queue and updating the Delaunay triangulation to include
that point.7 The priority queue is then updated to include the points of maximum
error for each new triangle. Typically only a few triangles are created in each step,
resulting in only moderate rescanning of the terrain samples. This process is then
repeated until an acceptable maximum error is achieved.

We implemented this heuristic using our persistent triangulation package. Delau-

6 The Delaunay property specifies that no point lies within the circumcircle of any triangle of
which it is not a vertex, except in certain degenerate circumstances.

7 An alternative greedy heuristic, designed to avoid narrow triangles, is to add the circumcenter
of the triangle containing the point of maximum error, rather than the point of maximum error
itself.

Persistent Triangulations 15

0
50

100
150

200
250

300
350

0

100

200

300

400

350

400

Fig. 9. 1000-point triangulation of Ozark

0

50

100

150

200

250

300

0

100

200

300

400

1600

1800

2000

2200

2400

Fig. 10. 1000-point triangulation of Crater Lake

nay triangulations can be computed using a three-dimensional convex hull proce-
dure by projecting the points from the plane onto a paraboloid (the surface speci-
fied by the equation z = x2 + y2) and computing the convex hull of the projected
points (Berg et al., 1997), so the implementation was straightforward. To measure
its performance, we ran it on two sets of terrain sample data, one from the vicin-
ity of Ozark, Missouri, and the other from the west end of Crater Lake, Oregon.
1000-point triangulations of these two data sets are given in Figures 9 and 10. As
in the previous section, we counted key-comparisons and floating-point operations
for each run. The results appear in Figure 11 and show that the number of key
comparisons is significantly smaller than the number of floating-point operations,
especially for the smaller sizes.

16 Blelloch et al.

2

4

6

8

10

12

14

16

1600 3200 6400 12800

N
um

be
r

of
 O

pe
ra

tio
ns

 (
m

ill
io

ns
)

Problem size (points)

key-comparisons (Ozark)
floating-point ops (Ozark)

key-comparisons (Crater Lake)
floating-point ops (Crater Lake)

Fig. 11. Operation counts as a function of input size.

Acknowledgements

We thank Chris Okasaki for his red-black tree library, which we used in our imple-
mentation of simplices.

References

Alexandroff, Paul. (1961). Elementary concepts of topology. New York: Dover Publications,
Inc.

Barber, C. B., Dobkin, D. P., & Huhdanpaa, H. T. (1996). The quickhull algorithm for
convex hulls. Acm trans. on mathematical software, Dec.

Bayer, R. (1972). Symmetric binary B-trees: Data structure and maintenance algorithms.
Acta informatica, 1, 290–306.

Berg, M. De, Kreveld, M. Van, Overmars, M., & Schwartskopf, O. (1997). Computational
geometry : Algorithms and applications. Springer Verlag.

Blelloch, Guy E. (1996). Programming parallel algorithms. Communications of the acm,
39(3), 85–97.

Burch, Hal, Miller, Gary, & Walkington, Noel. 2000 (March). Computing the convex hull
in a functional language. Tech. rept. CMU–CS–00–115. Carnegie Mellon University
Computer Science Department.

Chazelle, Bernard. (1991). An optimal convex hull algorithm and new results on cuttings.
Pages 29–38 of: Focs.

Clarkson, K. L., & Shor, P. W. (1989). Applications of random sampling in computational
geometry. Discrete and computational geometry, 4, 387–421.

Dietz, Paul F. (1989). Fully persistent arrays. Pages 67–74 of: Workshop on algorithms
and data structures. Lecture Notes in Computer Science, vol. 382. Springer-Verlag.

Driscoll, James R., Sarnak, Neil, Sleator, Daniel D., & Tarjan, Robert E. (1989). Making
data structures persistent. Journal of computer and system sciences, 38(1), 86–124.

Garland, Michael, & Heckbert, Paul. 1995 (Sept.). Fast polygonal approximation of terrains
and height fields. Tech. rept. CMU-CS-95-181. CS Dept, Carnegie Mellon U.

Persistent Triangulations 17

Giblin, P. J. (1977). Graphs, surfaces, and homology. London: Chapman and Hall.

Guibas, L., & Stolfi, J. (1985). Primitives for the manipulation of general subdivisions
and the computation of Voronoi diagrams. Acm transactions on graphics, 4(2), 74–123.

Milner, Robin, Tofte, Mads, Harper, Robert, & MacQueen, David. (1997). The definition
of Standard ML (revised). MIT Press.

Motwani, Rajeev, & Raghavan, P. (1995). Randomized algorithms. Cambridge University
Press.

Myers, Eugene W. 1984 (January). Efficient applicative data structures. Pages 66–75 of:
Proceedings of the 11th acm symposium on principles of programming languages.

Okasaki, Chris. (1998). Purely functional data structures. Cambridge: Cambridge Univer-
sity Press.

O’Neill, Melissa E., & Burton, F. Warren. (1997). A new method for functional arrays.
Journal of functional programming, 1(1), 1–14.

Ruppert, Jim. (1995). A Delaunay refinement algorithm for quality 2-dimensional mesh
generation. Journal of algorithms, 18(3), 548–585.

A Analysis of the Bulldozer Algorithm

We give a detailed description and an analysis of the algorithms outlined in Sec-
tion 3.

Define the Convex Closure of a set S, denoted CC(S), to be the smallest convex
set containing S, and the Convex Hull of S, denoted CH(S), to be the surface of
CC(S). Thus the convex closure of a finite set of points in three dimensions is a
three-dimensional polytope and its hull is a surface of two-dimensional polytopes.
If no four points are coplanar then the hull will consist of two-dimensional simplices
(triangles). If S is a set of points or points and an edge, let S(X) be the simplex
formed by the elements of the set X. For example, if p, q and r are points and e is
an edge, then S(pqr) is a triangle, while S(pqe) is a tetrahedron.

A.1 Algorithm

The bulldozer algorithm takes a set of points P = {p1, . . . , pn}, with the points
assigned in a random order. We assume that no four points are coplanar.

In three dimensions a point p is said to see a face F ∈ H, where H is a convex
figure, if and only if there exists a ray that begins at p and that enters H through
the interior of the face F . Note that if F is coplanar with p, p is not said to be able
to see F . If p can see F ∈ H, then F is said to be visible to p with respect to H.
An edge e adjacent to faces A and B is said to be a horizon edge of p iff exactly
one of A and B is visible to p. It is interesting to note that if e is an horizon edge
of p in H, then S(pe) is a face in CH(H ∪ {p}). (This will be proved later.) The
definitions for two dimensions are analogous.

For a given convex hull H = CH(P ′), where P ′ ⊂ P and a fixed interior point
c, define the associated face of a point p ∈ P as the face of H penetrated by the
ray ~cp. If c is not coplanar with any three points of P, each point has a unique
associated face. It is clear that if a point p cannot see its associated face, then it is
interior to the hull.

18 Blelloch et al.

The first step in the algorithm is to let H = CH({p1, p2, p3, p4}), where for each
1 ≤ i ≤ 4, pi ∈ P. Let c be a fixed point interior to H. For every other point pi

(4 < i ≤ n), let Fi be the associated face of pi with respect to H and c. For each
face, maintain a list of the points associated with that face. In addition, keep track
of the face associated with each point pi (4 < i ≤ n) with respect to H.

The inductive hypotheses are:

1. H is the convex hull of {p1, p2, . . . , pk−1},
2. the associated face, if any, for each point pj (k ≤ j ≤ n) exterior to H is

known, and
3. for each point pj (k ≤ j ≤ n), either pj is interior to H or pj is in the list of

its associated face.

The incremental update associated with adding pk is composed of three logical
operations:

1. Remove the faces that pk can see.
2. For each horizon edge e of pk in H, add S(epk) to H.
3. For all points previously assigned to removed faces, determine in which list

they belong, if any. Update the points appropriately.

The algorithm performs all three operations simultaneously. The idea is to remove
a face once it is determined to be visible. The points that were associated with that
face are then “bulldozed” across one of the edges of the face, creating new faces if
some of the edges of the current face are horizon edges.

A.1.1 The Walking Graph

In order to facilitate explaining the algorithm, we will first define the notion of a
walking graph.

Definition 1
The walking graph of a hull H, with a fixed interior point c, and an exterior point
p is a directed graph on the faces of H that are visible to p and the horizon edges
of p in H. Consider two visible faces A and B that share an edge e. There is an arc
from A to B in the walking graph if and only if the face S(ec) is visible to p with
respect to S(Bc). There is an arc from a visible face A to a horizon edge e if and
only if e is an edge of A.

This graph represents all the possible “bulldozing” which may occur. Each point
currently associated with a visible face is pushed along the arcs of the walking
graph until either the point is determined to be interior to the new hull or the
point arrives at a horizon edge. The methodology for this bulldozing is described
more precisely below.

Theorem 2
If there is an arc between two adjacent faces, from face A to face B of a hull H,
and they are both visible to p with respect to H, then the intersection of the planar
extension of A and ~cp is closer to c than the intersection of the planar extension of
B and ~cp.

Persistent Triangulations 19

c

p

B
A

Fig. A 1. Example of Theorem 2

b

a
y

c

p

x q

Fig. A 2. Illustration of proof of Theorem 2

Proof
Assume that there is an arc from A to B in the walking graph. Let e be the edge
in both A and B, and let q be the midpoint of e. Consider the plane P formed
by c, p, and q, and look at the intersections of the planar extensions of A and B

with this plane. Since q is on both planar extensions and on P , we know that these
intersections must be non-empty, so they must be lines; let a and b denote these
intersections. The intersections of A and B with P are segments along a and b

respectively, with q as an end point of both segments. Let x and y denote the other
end point of the intersections of A and B with P respectively. This arrangement is
illustrated in Figure A 2.

Let H ′ denote the intersection of H and P . Since the intersection of two convex
figures is convex, H ′ must be convex. Moreover, a and b are bounding lines for H ′,
since A and B are bounding planes for H.

Since the edge c̄q is visible to p with respect to S(cqy), p is on the opposite side
of ~cq as y. This means that p and x must be on the same side of ~cq. However, since

20 Blelloch et al.

Fig. A 3. Example of face projection definition

c

q

e

p F
E

G

Fig. A 4. Figure for Theorem 3 projected to the plane containing p and c and
perpendicular to e.

b is a bounding line for H ′ and p is not within H ′, p and x must lie on opposite
sides of b. Therefore, the intersection of a and ~cp must also be on the same side of
b as c. Thus, the intersection of b with ~cp is closer to c than the intersection of a

with ~cp.

It follows from Theorem 2 that the walking graph is acyclic. Moreover, for any
two adjacent visible faces A and B, there exists exactly one arc between them.

Theorem 3
Given a convex hull H, an interior point c, and an exterior point p, let P be a plane
perpendicular to ~cp. There is an arc from a visible face A to an adjacent visible
face B if and only if the shared edge e projected onto P is visible to the projection
of p with respect to the projection of B.

Proof
Let B ∈ H be a face visible to p, and let e be an edge of B. Let q be the vertex
of B such that q 6∈ e. Define P as above. Let E be the plane that contains e and
c. Let F the plane that contains e and is perpendicular to P . Let G be the plane
that contains e and p. Note that p and c are in the same half space bounded by F .

Persistent Triangulations 21

Assume there is an arc into B across the edge e. Then, by definition, p is in the
opposite half space as q with respect to E. Since p can see B, we know that q and c

are on the opposite sides of G. Examine Figure A 4, a projection of the set of points
to the plane contain p̄c and perpendicular to e. These constraints imply that p and
q are on opposite sides of F , since c and q are on the same side of F . Thus, p can
see e of B when projected to P .

Assume that p is in the opposite half space of F as q. This is equivalent to saying
e is visible to p with respect to B, when all are projected to P . Since p can see B,
we know that q is on the opposite side of G as c. This gives us, as demonstrated in
Figure A 4, that q is on the opposite side of E as G, so p can see the face S(e, c)
with respect to S(B, c). Clearly, the face A that shares e is visible, so there is an
arc from A to B across e.

Note that if a face A which is visible to p with respect to H has an edge e such
that e is not visible to p when all are projected as described in Theorem 3, and if
there is no arc across e, then Theorem 3 shows that the face B sharing e is not
visible, so e is a horizon edge.

Let q denote a point that is exterior to H, and whose associated face in H is
visible to p.

Lemma 4
Given a hull H, a fixed interior point c, an exterior point p, and an exterior point
q, the associated face of q in H intersects the ray ~pq when both are projected to a
plane perpendicular to ~cp.

Proof
The ray ~cq projects to the same ray as ~pq in the plane. Since the intersection of ~cq

and the associated face must also lie on the ray’s projection, this means that this
point lies on the projection of ~cq.

Definition 5
Given an exterior point q, draw a ray from p to q and project it to the P described
in Theorem 3. The walking path of q is defined as follows: start at the projection
of the associated face (which is on the projection of ~cp by Lemma 4) and proceed
to the next face out along the ray (which is along an arc by Theorem 3). Continue
until there is no next face, at which point a horizon edge has been reached. The
path generated is the walking path of q in the walking graph of H.

The fact that the planar extension of S(pcq) intersects all faces traversed by the
walking path of q in H follows directly from the definition.

Theorem 6
The face created by p and the horizon edge of the walking path of q is the associated
face of q in H ′ = CH(H ∪ {p}).
Proof
If the associated face of q in H ′ is a face from H, then its associated face in H must
be that same face, which contradicts the given. Thus, the associated face of q in H ′

22 Blelloch et al.

must contain the point p. Project all of the faces of H ′ that contain p to a plane P

that is perpendicular to ~cp. The rays ~cq and ~pq coincide in P . Any ray that starts at
p can intersect only one face that contains p (at any point other than p), so this ray,
by definition, intersects the horizon edge of that face. Also, the projection of the
intersection of ~cq with H ′ must lie along the projection of ~pq, that only intersects
that same face. Thus, ~cq intersects H ′ in the face created by p and the horizon edge
of its walking path.

Theorem 7
If a point q cannot see a face F in its walking path, then it cannot see its associated
face in H ′.

Proof
Let G be the walking graph for p in H, and let W be the walking path of q in G.
Let A be a face in W that q cannot see, and B be the next face. If no such face
exists, then the theorem trivially holds. Let P be the plane defined by p, q and c,
and examine the intersection of H and P . Since A and B are in the walking graph,
they must have a non-zero intersection with this plane. Since A and B are in the
walking graph, q must be on the same side of the intersection of the plane S(c, e)
and P as p is. By Theorem 2, however, the intersection of A is closer to c than B

is. Thus, a point may be above A but not above B, but not the reverse (see Figure
A 2). Thus, q must be able to see the intersection of B and P , and thus B itself.
Thus, if a point cannot see a face F in its walking path, then it cannot see any
face past that face in the walking path. A similar argument shows that if a point
cannot see the last face in its walking graph then it cannot see its associated face,
since the associated face’s intersection with ~cp is at p, which must be above the
ray’s intersection with the last face in the walking path.

A.1.2 Iterative Algorithm

Adding an interior point is simple, as it does not affect the hull, so the inductive
hypotheses are maintained. To add an exterior point pk and maintain the inductive
hypotheses, start with the associated face F in H of pk. For each point q 6= pk

associated with F , project it to a plane P perpendicular to c, and determine which
of the edges is penetrated by ~pq. Delete F from the complex. For each adjacent face
G, recur into G, passing the set of points whose rays penetrated the shared edge
along with the shared edge e.

The recursive call includes a set of points S, a face F and an edge e. For each
recursive step, determine if F is visible to p. If it is not, then add the face created
from e and p to the complex. Test each of the points from S, and associate them
with the new face if they can see it. If they cannot see it, discard them as interior
to the hull.

If F is visible to p with respect to H, first throw away any points from the
recursive call which cannot see F . For each edge e ∈ F , determine if p can see
S(c, e) with respect to S(F, e). If any other edges are, and the face across that edge
is still a member of the complex, add the set S to the set of points associated with F

Persistent Triangulations 23

and return. Otherwise, for each point q, determine which of the edges is penetrated
by the ray ~pq, projecting the entire system to the plane P . For each non-empty set,
make recursive calls with the appropriate set of points, the edge, and the other face
from the simplex which contains that edge.

A.2 Analysis

We will first show that the algorithm is correct, and then look at its asymptotic
behavior.

A.2.1 Correctness

The proof of correctness hinges on maintaining of the induction hypotheses:

1. Hk is the convex hull of {p1, p2, . . . , pk}.
2. Every point pi (k < i ≤ n) is associated with the appropriate face if it is

exterior to Hk, and marked as interior otherwise.

Lemma 8
CH(S∪{p}) = CH(S)∪T \V , where V is the set of faces that p can see in CH(S),
and T is the set of faces constructed from horizon edges of CH(S) and p.

Proof
Let F ∈ V ⊂ CH(S). Let HF be the half space bounded by F that contains S.
Since p 6∈ HF , by the definition of visible, F 6∈ CH(S ∪ {p}).

Suppose F 6∈ V and F ∈ CH(S). Since p ∈ HF and S ∪ {p} ∈ HF , so F ∈
CH(S ∪ {p}).

Otherwise, F ∈ T and F 6∈ CH(S). Let A and B be the faces whose intersection
is the horizon edge F contains. As S ∈ HA and S ∈ HB , S ∈ HA ∩ HB ⊂ HF .
Thus, F ∈ CH(S ∪ {p}).

Let F ∈ CH(S ∪ {p}) but F 6∈ T and F 6∈ CH(S). Clearly, p ∈ F , so let e be
the edge from F that does not contain p. Let a and b be the vertex of A and B

respectively that is not an endpoint of e. a ∈ CH(S), since otherwise a 6∈ CH(S ∪
{p}), because a 6= p. Similarly, b ∈ CH(S). If āb 6∈ CH(S), then āb intersects the
interior of CH(S), and thus the interior of CH(S ∪ {p}), so āb ∈ CH(S). If āb is
not visible to p in CH(S), then p̄a penetrates the interior of CH(S), and thus the
interior of CH(S ∪ {a, b}) Thus, e = āb is visible, so one of the faces that share
e is visible to p. If only one face is visible, then e is a horizon edge, and F ∈ T ,
thus both must be visible. Let A and B be the faces that share e, and a and b the
points of A and B respectively that are not endpoints of e. Since both A and B are
visible, a and b must be on opposite sides of F , which means that F 6∈ CH(S).

Lemma 9
For any hull H, interior point c, and exterior point p, all faces visible to p are
reachable from the associated face of p in the walking graph of H.

Proof

24 Blelloch et al.

As all faces for the associated face of p have positive in-degree and the graph is
acyclic, it is sufficient to prove that the graph is weakly connected. As the convex
hull is a simple closed polygon, the set of adjacent nodes to any given node is a
simple cycle. Thus, the set of boundary edges forms a simple cycle, so the set of
faces must be connected.

Theorem 10
If Hk is the convex hull of {p1, p2, . . . , pk} and the associated face for pk is known,
then the bulldozing algorithm produces Hk+1, the convex hull of {p1, p2, . . . , pk+1}.
Proof
Lemma 8 implies that the insert/delete process produces the correct convex hull.
Lemma 9 implies that the walking methodology visits the entire walking graph, so
the insert/delete process is finished.

This shows that the convex hull is maintained, and Theorems 6 and 7 demonstrate
that the associations are kept correctly. It follows that the induction hypotheses are
maintained by the iterative steps, which establishes correctness of the algorithm.

A.2.2 Asymptotics

The initialization can be done in O(n) operations by enumerating all the faces and
determining which face ~cpi intersects for 4 < i ≤ n. When adding pk to the hull Hk,
each light face is visited exactly once. Determining the in-degree and out-degree of
that face in the walking graph takes O(1) time. Each point q associated with a
deleted face of Hk requires the associated face in Hk+1 to be computed. q may be
associated with every face of Hk that both it and pk can see in the course of the
update step, but it will never be associated with the same one twice. The cost of
ensuring that the point q can see its associated face is subsumed by the cost of
walking it out. Determining if a point can see a face on its walking path take O(1)
time, and determining which edge is penetrated by the projection of ~pq also takes
O(1) time. Thus, for each face F ∈ Hk and point q such that F is visible to both
pk and q, and q’s associated face is visible to p, the algorithm takes O(1) time.

For a given convex hull H, a point p dominates a point q ∈ H if p̄q ∩H = {q}.
A point p strongly dominates q if q 6∈ CH(H ∪ {p}). A point p weakly dominates q

if it dominates q but does not strongly dominate it.

Theorem 11
The expected number of faces inserted by the inclusion of pk+1 is at most six.

Proof
Instead of counting the number of visible faces, consider the number of visible
points. Let y be the number of points pk+1 weakly dominates in Hk. This is equal
to the number of faces inserted by pk+1’s inclusion.

In order to determine the expected values of x and y, define G to be a digraph
such that:

1. The vertices of the digraph are points of P.

Persistent Triangulations 25

2. All arcs are labeled with a set S ⊂ P such that ‖S‖ = k.
3. There is one arc from p to q with label S if and only if p ∈ S and p̄q ∈

CH(S ∪ {p}).
The expected number of faces inserted is equal to the the expected number of

out-arcs that a point p 6∈ S has with label S.
Relabel the graph as follows: If there is an arc from p to q with label S, relabel

that arc with S ∪ {p}. Thus, there is one arc from p to q if and only if p, q ∈ S,
and p̄q ∈ CH(S). For any q, if q 6∈ S, then its degree is 0. If q ∈ S, then either
q ∈ CH(S) or q 6∈ CH(S). The average degree of q ∈ S is 6 by Euclid’s formula
(since all faces have exactly three edges). If q 6∈ CH(S), then q has degree 0.
Therefore, the maximum in-degree of such a q is 6. Thus, the average in-degree of
any q ∈ S is less than 6.

Since the number of labels is
(

n
k+1

)
, and the number of arcs per label is less than

6(k + 1), the number of arcs is less than 6(k + 1)
(

n
k+1

)
= 6(n− k)

(
n
k

)
. Then, for a

random labeling S (‖S‖ = k) and point p, the expected out-degree of p with label
S is less than 6(n−k)

n ≤ 6. It follows that the expected number of faces inserted at
each step is less than 6.

A pair of points p, q is said to weakly dominate a point x ∈ H if p and q both
dominate x and at least one of them weakly dominates x. The pair p, q strongly
dominates x if both p and q strongly dominate x.

Theorem 12
The expected number of pairs of faces F and points q such that (1) q is associated
with a face of Hk that p can see, and (2) both q and p can see F , is O(n

k).

Proof
Instead of counting the number of faces that an arbitrary point p and q can see,
examine the number of points that p and q can see. By Euler’s formula, the number
of faces is linear in the number of points, so proving that this expectation is O(n

k)
is sufficient. Instead of computing the expectation, count the total number of sets
S and points p, q and x such that S ⊂ P, ‖S‖ = k, x ∈ S, p, q 6∈ S, both p and q

can see x in CH(S), and q’s associated face in CH(S) is visible to p. By a simple
relabeling, this is the same as the number of sets S and points p, q, x such that
S ⊂ P, ‖S‖ = k + 2, x, p, q ∈ S, both p and q can see x in CH(S \ {p, q}), and q’s
associated face in CH(S \ {p, q}) is visible to p.

If p and q can both see any face of CH(S \ {p, q}), and p, q ∈ CH(S), then
p̄q ∈ CH(S), then both p and q lie entirely in the half space bounded by the face
both can see, which is convex, so p̄q lies entirely outside CC(S \ {p, q}).

Assume p ∈ CH(S). This may result in an undercount that is off by at most a
factor of 2. There are thus the following cases:

1. q̄x 6∈ CH(S)
Let A = CH(S \ {p}) \CH(S). By Euler’s formula, ‖A‖ = O(dp + ep), where
dp is the degree of p in CH(S) and ep is the number of points CH(S \ {p}),
but not in CH(S). Since q̄x 6∈ CH(S \ {p}), q̄x ∈ A. The sum of the degrees

26 Blelloch et al.

in CH(S) is O(k), again by Euler. For any point y 6∈ CH(S), there are at
most 3 points whose deletion may expose y. Thus, the sum of ep is O(k).
Therefore, the total number of triplets p, q, x of this form is O(k).

2. q̄x ∈ CH(S)

(a) p̄x ∈ CH(S)
This means that S(pqx) ∈ CH(S). There are O(k) such triangles in
CH(S), so there are O(k) such triplets.

(b) p̄x 6∈ CH(S)
Swapping p and q around yields a triple p′, q′, x such that p′ ∈ CH(S) and
¯q′x 6∈ CH(S). It has already been shown that there are O(k) such triples

for any S.

Thus, the total for each case is O(k). This means the total number of triplet/set
pairs is O(

(
n
k

) (n−k)2

k), as
(

n
k+2

)
= (n−k−1)(n−k−2)

(k+1)(k+2)

(
n
k

)
. Thus, the expected number of

pairs q, x for a random S and a random p 6∈ S is O

((
n
k

) (n−k)2

k
1

(n−k)(n
k)

)
= O(n

k).

