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The aim of the research proposed in this document is the application of the methodol-
ogy and the techniques of distributed artificial intelligence research to the MATHWEB



software bus which has been developed in the AG Siekmann'. We intend to develop

a distributed network of mathematical software agents (MATHWEB agents) which use
agent communication languages to exchange information about their (virtual) knowl-
edge bases and to assign subtasks to specific problem solvers. Furthermore, we will
investigate the applicability of different agent coordination techniques to societies of
MATHWEB agents.

1.1 Automated Reasoning

The origin of automated reasoning dates back to the 17th century when LEIBN1Z had
the idea to formulate a universal formal language (lingua characteristica universalis)
in which to express all human thoughts. LEIBNIZ’s vision was that with the help of
this language and a formal calculus (calculus rationcinator) it would be possible to
verify human thought like it is possible to verify an arithmetic calculation. This idea
cumulated in the famous citation “Calculemus! - Let us compute.”.

In 1879, LEIBN1Z’ ideas were taken up again in by FREGE who defined the first
formal language [Fre79]. This language is today known as first order predicate calculus
(PL1) and builds the basis of many deduction systems.The first complete calculus for
PL1 was presented by HILBERT in 1927 [Hil27]. HILBERT wanted to prove that it
was possible to describe and verify all mathematical statements in his logical calculus.
HILBERT’s calculus was proved to be complete by GODEL in 1930, but it was also
GODEL who proved that it is impossible to formalize all of arithmetic in any correct
logical system [God31]. What remained was the semi-decidability of PL1 which was
shown by the work of HERBRAND and SKOLEM. This property of PL1 is the justification
for its use in modern deduction systems.

With the development of computer technology and its application to mathematics, it
was a consequent step to use computers not only for numeric or symbolic computation,
but also to automatically prove theorems with a logical calculus, i.e. to build deduction
systems. The first simple deduction systems tried to enumerate the Herbrand universe
in order to find a proof for a given theorem, but they where not very successful in
proving theorems. One reason for this were the exponentially large search spaces. The
development of unification and the resolution principle [Rob65] pushed the problem
solving horizon of deduction systems and some systems were even able to prove open
problems in combinatorics. Many of todays powerful automated theorem provers are
based on resolution and use various specialized heuristics to prune the search space.
But they also still fail to prove many theorems of medium complexity, like, e.g. most
of the limit theorems [Mel97].

This drawback of classical deduction systems and the insight that humans obviously
use special techniques to cope with the huge search spaces led to the fundamental idea
of BUNDY to first plan proofs at an abstract level before filling in the details of the
proof [Bun88]. The research area of proof planning was born and since then evolved to
a fruitful paradigm shift in automated deduction.

Proof planning also builds the basis of the mathematical assistance system (QOMEGA
[BCFT97, SKM99]. The QMEGA system is based on knowledge-based proof planning
[MS99] that is a variant of proof planning as it was introduced by BuNDY. Knowledge-
based proof planning makes extensive use of mathematical knowledge, which can be
encoded in proof planning methods, control rules, or proof strategies. Another impor-
tant source of mathematical knowledge are external reasoning systems which usually
encapsulate knowledge in a special domain of mathematics, e.g. deduction systems

"http://www.ags.uni-sb.de/\ ~omega



that are specialized in induction or equational theorem proving, or computer algebra
systems containing special computation algorithms. Throughout this document, we
will use the term reasoning system for both, deduction and computational systems.

The need for the integration of external reasoners into 2MEGA led to the develop-
ment of a first simple integration scheme [SHS98] based on the distribution features of
the Oz programming language. In recent years, this architecture has advanced to the
MATHWEB software bus (MATHWEB-SB) [FK99]. The MATHWEB-SB is now totally
independent of OMEGA and supports the connection of a wide-range of mathemati-
cal services by a common software bus. The development of the MATHWEB-SB was
not a coincidence. With computer networks becoming ubiquitous in every subfield of
computer science, the idea of concurrent, distributed problem solving also became in-
fluential in the automated reasoning community. The subfield of distributed automated
reasoning (DAR)? arose with its own methodology and research projects [Bon00], e.g.
PROSPER [DCNT00], TEAMWORK [Den93], and, last but not least, the Logic Broker
Architecture [AZ00] project. All these approaches have their individual strengths and
limitations. In section 2.1 we give a more detailed description of the architectures and
name new desiderata that are not met by any existing system.

1.2 Distributed Artificial Intelligence

Since its early days in the mid and late 1970s distributed artificial intelligence (DAT)
has evolved to an established research and application field. While classic Al research
is mainly interested in the development of single computer programs that show or
emulate some kind of “intelligent” behavior, distributed artificial intelligence is divided
into several subfields, the most important is the study, construction and application of
multi-agent systems (MAS) [G.W99]. According to RUSSEL and NoORviG [RN95], an
agent is a self-contained, autonomous computational structure which is sited in a certain
physical or virtual environment. Agents are supposed to perceive their environment
and act upon it through actions. As an interacting entity, an agent can be affected in
its activities by other agents and perhaps humans.

A key pattern of interaction in multi-agent systems is goal- or task-oriented coor-
dination [NLJ96], both in cooperative and in competitive situations. In the case of
cooperation several agents try to combine their efforts to achieve as a group what the
individuals alone cannot achieve. In case of competition several agents try to get what
only some of them can have.

The long term goals of DAI are to develop and implement mechanisms and methods
that enable agents to communicate as well as humans, and to understand the interaction
between intelligent entities such as software agents or humans.

Many existing and potential applications of DAI are described in the literature
[JSW98]. These range from industrial applications, such as, electronic commerce, and
real-time monitoring of communication networks, up to complex research questions,
like, for instance, information handling and information retrieval in the Internet, and
the investigation of social aspects of intelligence and the simulation of complex social
phenomena. These application areas of DAI have in common that they show up one or
more of the following characteristics [BG88]:

e Inherent Distribution: The data and information that is processed by the agents

2Some authors also use the terms distributed automated deduction or parallel theorem proving. In
this proposal we use the term DAR because we deal also with computation systems (e.g. computer
algebra systems).



— are stored at geographically different locations
— arise at different times

— can only be accessed if the agent is familiar with the specific ontologies and
languages

e Inherent Complexity: The application domain is too large to be solved by a single,
centralized systems because of the limitations of current hardware of software
technology.

Enlarging a centralized system for a inherently complex application domain is very
difficult, time-consuming, and costly. Such an enlargement usually leads to fragile
architectures that break down if the application requirements change only slightly.
The alternative way is to distribute the solution process across multiple computational
entities (the agents) that are capable of coordination, where the coordination of agents
is crucial for the success of the multi-agent system.

1.3 Proposed Research

The research proposed in this document aims at developing a distributed mathematical
problem solving system which is robust and scalable and which automatically chooses
suitable reasoners for a problem at hand. To reach this goal, we intend to apply the
agent-oriented programming paradigm [Sho91] to the MATHWEB-SB and build up a
world wide web of mathematical software agents, so called MATHWEB agents. MATH-
WEB agents are intended to use agent communication languages to exchange informa-
tion about their (virtual) knowledge bases and to assign subtasks to specific problem
solvers. Having the means of agent communication, we are going to develop a general
communication framework for MATHWEB agents which takes into account a formal
specification of mathematical services, the context of agent conversations, and the role
of mathematical knowledge bases in these conversations. Furthermore, we are going to
investigate the applicability of different agent coordination techniques to societies of
MATHWEB agents with regard to distributed, decentralized, and autonomous solving
of mathematical problems.

The proposed research will combine the ideas, methodologies, and techniques of two
more or less independent subfields of Al, automated deduction and distributed artificial
intelligence. The research will be supervised by Prof. Dr. Jorg Siekmann.

1.4 General Framework

The “Arbeitsgruppe Siekmann” (AGS) of Prof. Siekmann offers a excellent scientific
environment for the proposed research. It has many years of experience in automated
and semi-automated theorem proving and in proof planning. Developing the QMEGA
[BCFT97] system the AGS could already gain much experience with knowledge-based
proof planning, multi-strategy proof planning, and the integration of various external
reasoning systems. With the MATHWEB-SB the AGS developed a robust platform for
this integration and for the inter-operation of a wide range of mathematical services
in general. Therefore, the group has already gained significant experience with the
inter-operation of heterogeneous reasoning systems. The MATHWEB-SB also builds
the basis of the DORIS project [BBK99] of the computational linguistics department
of the Universitat des Saarlandes (USAAR) and in the ActiveMath project [Mel00] of
the DFKI.



Also the OMDoCc format for open mathematical documents has been developed by
members of the AGS. It is an extension of the OPENMATH standard and is especially
suited for communicating mathematical objects, such as axioms, definitions, theorems,
and whole theories, between mathematical software systems and mathematical agents.

First work towards agent-based theorem proving and the combination of interactive
and automated theorem proving has been done with the 2-ANTS command suggestion
mechanism [BS98] and the Q-ANTS theorem prover [BS00]. The Q-ANTS approach
also make extensive use of external reasoners integrated via the MATHWEB-SB.

The AGS is a member of the international research network CALCULEMUS which
brings together researchers from the fields of computer algebra systems and automated
theorem provers. The goal of CALCULEMUS is the development of a new generation
of mathematical assistance systems based on the integration of the deduction power
of deduction systems and the computational power of computer algebra systems. The
AGS and several other research groups of the CALCULEMUS network are supported by
an THP network grant of the European Union which allows the exchange of researchers
and cooperations, for instance, with the research groups of Prof. Bundy in Edinburgh,
Prof. Buchberger in Linz, Prof. Giunchiglia in Trento, and with the Mechanized
Reasoning Group (MRG) in Genoa.

In the surroundings of the USA AR, there is also the Multi-Agent Systems Group of
the German Institute for Artifical Intelligence (DFKI) at the University of the Saarland
which has an internationally respected expertise in the theory and practice of multi-
agent systems and the application of multi-agent programming to different domains.

1.5 Structure of this Document

This proposal is organized as follows. In section 2 we first describe requirements of
modern applications of automated reasoning in general and give an introduction to
current research projects in the field of distributed automated reasoning. Section 2.2 is
dedicated to the MATHWEB-SB because it builds the basis for this research. We then
name some desiderata that are not met by any of the currently available architectures
for distributed automated reasoning. In section 3 we shortly depict the ideas of DAI
and focus on the agent communication language KQML and on coordination techniques
for multi-agent systems. Section 4 describes the concrete goals of this research. We
close this document with a short summary and a work plan in section 5.

2 Automated Reasoning

Modern applications of automated reasoning and theorem proving, for instance in the
mathematical assistance system QMEGA or in program verification [HLS'96], call for
open, distributed architectures which allow the integration of specialized reasoning sys-
tems. A widely accepted approach to build such architectures is to upgrade classical
reasoning or computation systems to so-called mathematical services [HC96] by pro-
viding it with an interface to a common mathematical software bus [CH97]. Many
research projects in the field of distributed automated reasoning followed this approach
and developed different architectures for distributed automated reasoning. FRANKE ET
AL. [FHJ"99] name four major requirements for distributed systems of mathematical
services:

Modularization: Deduction systems are very complex and specialized Al programs
which are typically developed by more than one individual. Usually the develop-
ers of deduction systems are less interested in developing a modularized system



with standardized interfaces but in constructing an efficient standalone reasoning
system which can be used as a black-box. For building a distributed system of
reasoning components, it is important that the components offer a standardized
interface which encapsulates related functionality into re-usable modules.

Inter-Operability: Inter-operability is the central presumption for the construction of
a working distributed system out of heterogeneous components. Inter-operability
depends on a common platform which supports the exchange of mathematical
services, such as, for instance, the CORBA middle-ware [Sie96]. In a system
of inter-operable services, each service provides additional functionality to the
system as a whole and, in turn, can use all existing services to use for its own
reasoning.

Robustness: Software systems with a fixed inflexible architecture often have problems
with handling failures. A classical proof system with a static topology will not
work if one of its parts does not work. To build a robust system a dynamic,
decentralized architecture is needed which can permanently provide mathematical
services, even if some parts, e.g. a particular service, are temporarily shut down.

Scalability: Computer networks, whether they are local (LAN) or global (WAN, In-
ternet) typically show a dynamic allocation of computational resources. Thus,
for distributed systems to perform in an optimal manner, it is important that the
system adapts its topology and the distribution of tasks to the number of tasks
to be solved and to the currently available resources, i.e. to find an optimal load-
balancing. Consequently, also a distributed reasoning architecture should show a
flexible, dynamic topology which adapts to changing computational resources.

The central claim in [FHJ*99] was that the Agent-Oriented Programming paradigm
meets all these requirements. The authors of [FHIJT99] therefore propose to apply this
paradigm to the MATHWEB software bus. They mainly focus on the communication
between logical reasoning systems using the agent communication KQML. In section 2
we will argue that sole communication with an agent communication language is not
sufficient to build a multi-agent system, in which autonomous agents act in a coherent
way and perform decentralized mathematical problem solving. But first, we present a
short survey of research projects in the field of distributed automated reasoning in the
following sections. We briefly describe the goals and the results of the projects and
which of the above-mentioned requirements they meet. In section 2.2 we give a more
detailed description of the MATHWEB software bus, because it builds the basis for the
ideas presented in section 4.

2.1 Architectures for Distributed Automated Reasoning Systems

The PROSPER project [DCNT00] aims at developing the technology needed to deliver
the benefits of formal specification and verification to system designers in industry. The
central idea of the PROSPER project is that of a proof engine (a custom built verification
engine) which can be accessed by applications via an application programming interface
(API). This API is supposed to support the construction of CASE-tools® incorporating
user-friendly access to formal techniques. Much work of the PROSPER project went
into the definition and implementation of the API, the development of the PROSPER-
toolkit, and into intensive case studies. The PROSPER-toolkit currently integrates the
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higher order theorem prover HOL, and the verification system ACL2. With respect
to the requirements mentioned in the last section, the API of PROSPER mainly allows
the modularization of CASE software systems and the inter-operation of these modules
with proof engines. However, the components of PROSPER toolkit still use a proprietary
protocol for communication.

The Logic Broker Architecture (LBA) [AZ00] has been developed within the MRG*.
It is based on the communication functionality provided by the Common Object Re-
quest Broker Architecture (CORBA) [Sie96, Groa] and the OPENMATH standard [CC98].
CoORBA is a widely used standard for the development robust, platform and lan-
guage independent client-server applications. The LBA provides the infrastructure
needed for making mechanized reasoning systems inter-operate by a simple registra-
tion/subscription mechanism. Additionally, it offers location transparency and a trans-
lation mechanism which ensures the transparent and provably sound exchange of logical
services. Logical services in the LBA (e.g. factorize for the factorization of polynomi-
als) are abstract, i.e. they are independent of a concrete implementation in a reasoning
system (e.g. a concrete algorithm which performs the polynomial factorization). It is
planned to insure the logical correctness of the interaction of services by using a logic
service matcher which tries to find a morphism between the logic of a client reasoning
system and the logic of a service server (see [AZ00] for details).

The TEAMWORK method [Den93, AD93] has been developed to distribute equa-
tional theorem proving by completion. A team in TEAMWORK consists of several experts
which are the actual problem solvers (e.g. equational theorem provers with different
heuristics) and of referees who evaluate the achievements of the different experts and
determine their best results. A central supervisor composes the group of agents work-
ing on a given problem and composes the initial search state for these agents. One
of the main motivations for the TEAMWORK method was the fact, that communica-
tion overhead can easily diminish the merits of distributed problem solving. In the
TEAMWORK method the amount communication is reduced by introducing phases of
the overall problem solving process, so-called team meetings, in which the reasoning
agents send their best results to the central supervisor. Between two team meetings,
in the working phases, the agents compute new local results (sets of clauses) and no
communication takes place at all. The TEAMWORK method led to synergetic effects
which allowed the system to perform better that every single theorem prover alone.
However, TEAMWORK was based on a network of homogeneous theorem provers which
differed only in their search heuristic.

The TECHS system [DD98] builds on TEAMWORK technology and combines het-
erogeneous state-of-the-art theorem provers while minimizing the changes that have
to be done to these provers. TECHS combines the ATPs Spass and DISCOUNT
and the tableau-based prover SETHEO that communicate by exchanging clauses. The
provers perform two kinds of cooperation. They send requests for needed information
(demand-driven) and autonomously send information they found useful to all other
agents (success-driven). In order to reduce the communication overhead several heuris-
tics are used to select the clauses that sent to other agents and clauses from other agents
that seem to be useful. TECHS has also been combined with the ILF environment to
allow interactive cooperation of a human user with the prover network.

The Q-ANTS theorem proving approach [BS00] is based on the homonymous com-
mand suggestion mechanism within the QMEGA system. The core of Q2-ANTS suggestion
mechanism is a central hierarchy of a suggestion-blackboard and several command-
blackboards. Command argument agents write information about a central proof data

*MRG: Mechanized Reasoning Group, DIST, Universitd di Genova, Italy.



structure on the latter. Other argument agents are triggered by this information and
in turn write their suggestions to the command-blackboard. The suggestion agents
read from the argument-blackboards and finally write command suggestions on the
suggestion-blackboard. A human user can then select one of the commands suggested
in the current proof state. BENZMULLER and SORGE automated this process to a full
automated theorem proving procedure by adding an agent which automatically selects a
command and stores all other selections for possible backtracking. With special agents,
external reasoning systems are also integrated into the proof search. For this, Q-ANTS
relies on the facilities of MATHWEB-SB. 2-ANTS provides an any-time algorithm for
command suggestion and has proved to be quite flexible. Agents can be defined in a
declarative way and can be added, deleted and modified during run-time.

Summary. The TEAMWORK method, the TECHS system, and the Q-ANTS approach
are closest to the research proposed in this document. But these approaches have some
drawbacks. While the TEAMWORK method and the TECHS system are still restricted
to resolution-based theorem provers, the 2-ANTS theorem prover relies on a central
proof object and on communication via blackboards and therefore suffers from the
typical problems of centralized architectures like restricted parallelism and bottlenecks.
Furthermore, the agents in both approaches do not communicate via a standardized
communication language but via some proprietary protocol.

This research goes one step further in that it aims at the development of fully au-
tonomous, heterogeneous mathematical reasoning agents that communicate via stan-
dardized languages and encapsulate both, deduction systems and computation systems.
We will also apply higher order coordination protocols (like the contract net, cf. sec-
tion 3) to our societies of agents which has not been done in previous approaches. Our
reasoning agents will be capable to perform distributed mathematical problem solving
with decentralized control and a decentralized construction of a proof object.

2.2 The MATHWEB Software Bus

Also the MATHWEB Software Bus (MATHWEB-SB or short MATHWEB) is a platform
for distributed automated theorem proving that supports the connection of a wide
range of mathematical services by a common software bus [FK99]. The MATHWEB-SB
provides the functionality to turn existing theorem proving systems, computer algebra
systems, and tools into mathematical services that are homogeneously integrated into
a networked proof development environment. The environment thus gains the services
from these particular modules, but each module in turn gains from using the features of
other, plugged-in components. The MATHWEB-SB is implemented in the concurrent
constraint programming language MOZART [Smo95, grob].

The development of the MATHW EB-SB originates in the effort to integrate external
reasoning systems into the mathematical proof assistance system QMEGA. The first
version of MATHWEB-SB mainly enabled the user of )MEGA to run several ATPs in
parallel on a problem in order to maximize the likelihood of success and to minimize
the time the user has to wait for a response.

In the last three years we further developed the MATHWEB system which is based on
the MATHWEB-SB technology and created a stable network of mathematical services
which is in every day use. The services of the current MATHWEB system are used
permanently by many projects, e.g. the QMEGA project, the DORIS [BBK99] system,
and the ActiveMath project [Mel00]. MATHWEB currently integrates many different
reasoning and computation systems:



Automated Theorem Provers (ATP). MATHWEB currently features the first-
order theorem provers Bliksem, EQP, OTTER, PROTEIN, SPASS, Waldmeister and the
higher-order theorem prover TPS (see [ABIT96] for reference). Furthermore, there
is a service competitive-atp that calls concurrently a given set of ATPs on a set of
first order problems. This service uses the round robin method to distribute unsolved
problems to ATPs that are not busy.

Computer Algebra Systems (CAS). There are services wrapping the CASs
MAPLE, MAGMA, CoCoA, and GAP (see [KKS98]). These CASs are successfully
used to perform computations for the proof planner of the Q2MEGA system. Their
computational power is essential for planning proofs of limit theorems [Mel97, Zim00]
and for theorems on properties of residue classes [MS00].

Mediators. Mediators are mathematical services that transform mathematical
knowledge from one format to another. MATHWEB integrates translation services
which translate mathematical formulas from one language to another. However, the
current translation services translate formulas from one proprietary language to another
(e.g. from POST, the logic underlying the QMEGA system, to MAPLE syntax) and do
not use standardized content languages like OPENMATH [CC98] or OMDoc [Koh,
Koh00].

Mathematical Knowledge Base. MATHWEB currently includes the MBASE
service, a simple web-based mathematical knowledge base system that stores math-
ematical facts like theorems, definitions and proofs and can perform type checking,
definition expansion and semantic search. MBASE is still under development but a
preliminary version already serves mathematical documents to the ActiveMath system.

Constraint Solvers. MATHWEB currently offers two constraint solving systems.
CoSZE [Zim00, MMZO00] is a constraint solver for non-linear arithmetic constraints over
the real numbers. Chorus [KN0O] is a special constraint solver developed in computa-
tional linguistics which handles dominance constraints to resolve ambiguities in natural
language sentences.

The current structure of the MATHWEB system is depicted in Figure 1. The software
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Figure 1: Current state of the MATHWEB system

bus functionality of MATHWEB is realized by a model quite similar to CORBA® in

SHowever, it is important to note, that the current implementation of MATHWEB is not not based



which local brokers provide routing and authentication information to the mathemat-
ical services (see [FK99, SHS98] for details). So called meta-services (MS), offer the
mathematical services (e.g. an ATP, CAS or a model checker) to their local broker.
MATHWEB brokers register and unregister each other and, therfore, build a dynamic
web of brokers. A MATHWEB broker forwards service requests, if the requested service
is not offered locally by one of the broker’s meta-services.

Client applications, like, for instance, the QMEGA system, I (a GUI for OMEGA),
or a CGl-script, connect to one of the MATHWEB brokers and request services. If the
requested service is not offered by a local meta-service, the broker forwards the request
to all other brokers until the service is found (accept) or it isn’t found anywhere in the
MATHWEB (deny). If the requested service is found, the client application receives a
reference to a newly created service object and can directly send messages to the object.
Service objects, like e.g. the QMEGA system, can again act as MATHWEB clients and
request other services.

2.3 Additional Desiderata

The MATHWEB-SB already meets some of the desiderata mentioned in section 2. It
allows modularization and inter-operability of mathematical services. The dynamic
(un-)registering of MATHWEB brokers and meta-services allows to build a robust system
with a flexible topology. However, the current version of the MATHWEB-SB does not
allow to build a scalable system which adapts its topology to changing computational
resources, i.e. MATHWEB-SB is not resource adaptive. In the following sections, we
propose some additional desiderata that are also not met by the current version of the
MATHWEB-SB. These desiderate originate in the experience we made in recent years
with the integration of different reasoning and computation systems.

2.3.1 Abstract Mathematical Services

A mathematical service in MATHWEB mainly consists of the reasoning system itself
which is encapsulated into a MOZART wrapper that handles the communication. To
access the reasoning system, a MATHWEB client application has to send the right
commands to the system, i.e. the client has to know the system’s internal structure,
commands and input syntax.

Example 2.1: The CAS MAPLE is integrated as a mathematical service into M ATH-
WEB and is used to solve computational problems in proof planning such as simplifi-
cation of terms and polynomial devision. To perform these computations, the specific
commands of MAPLE have to be called (simplify or quo respectively) in the MAPLE
specific input syntax. Naturally, the commands and the input syntax differ from CAS
to CAS. For instance, in the Computeralgebra-System CoCoA the command for poly-
nomial devision is called DivAlg and the input syntax is different from the syntax of
MAPLE.

Abstract mathematical services would free the designer of reasoning systems from
the burden to learn the internals of all integrated reasoners. Abstract services should
be independent of concrete implementations (e.g. of polynomial devision in MAPLE
and CoCoA) and should provide a system independent interface with a standard 1/0O
language, e.g. the OPENMATH standard. First experiments with abstract mathematical
services have already been done in the context of the LBA (c.f. section 2.1).

on CORBA middle-ware, since their is no CORBA implementation for MOZART available at the moment.
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2.3.2 Autonomy and Decentralization

Classical integration of reasoning systems (e.g. the integration of ATPs and CASs in
QMEGA) follow a master-slave model, i.e. one master system sends subtasks to the
slave systems which act more or less as a black-box. The master system has full control
over the slaves which cannot communicate with each other. Very often, they even
don’t know of the existence of other reasoning systems. We say, the reasoning process
is centralized. Mostly, the master-slave communication is also synchronous, i.e. the
master waits for the results of its slaves and is blocked until the results of the slave
systems arrive.

The following example will show that a decentralization of problem solving process
and an asynchronous communication between autonomous systems can help to reduce
communication, can lead to more parallelism in problem solving, and can release the
reasoning systems from waiting for the results of external reasoners.

Example 2.2: The higher-order theorem prover TPS [AINP90] is currently integrated
in a master-slave manner into QMEGA. TPS has a flexible mechanism for the expansion
of definitions, i.e. during the search for a proof, definitions for symbols can be expanded
by-need. When (QMEGA wants an open subgoal to be solved by TPS it first retrieves
the definitions of all symbols in the subgoal from its local knowledge base and sends
these definitions to TPS, even if they are not (all) needed for the proof attempt of TPS.
Finally, QMEGA sends the actual subgoal and waits for TPS’ result. It turned out that
a great portion of the total problem solving time is needed for sending all definitions
to TPS. The amount of communication could be drastically reduced, if the symbol
definitions could be delivered by a separated mathematical knowledge base MBASE.
Then an autonomous version of TPS could request the definition of a symbol only if
it is actually needed. This communication between TPS and MBASE would not affect
the OMEGA system anymore. If, additionally, the communication between Q2MEGA and
TPS was asynchronous, OMEGA would only have to send the actual subgoal to TPS
and go on trying to solve other subgoals until the result of TPS arrives.

MATHWEB agents should therefore exhibit some autonomy, i.e. they should be
able to act on their own, without the intervention of other systems. For instance, in
Example 2.2 TPS should be able to dynamically request the needed definitions from a
mathematical knowledge base. Reasoners should also be able to decide whether they
can carry out a given reasoning task and whether they accept a task or not. A reason-
ing system could, for instance, deny a task if it does not have enough computational
resources left to spend.

2.3.3 Coordination

In all architectures mentioned in section 2.1 and also in the MATHWEB-SB, the designer
of a reasoning systems has to coordinate the use of external reasoning systems, i.e. he
has to decide which external reasoning systems to call on which subproblem, and which
of the various functionalities of the external reasoner to use (e.g. the CAS MAPLE 6
offers more than 3000 computational functions). In most cases, it is not obvious whether
a reasoning system can perform a given task or not, or which reasoner will perform best
on this task.

With an accurate formal specification of reasoning tasks and the capabilities of
reasoning systems it is possible to — at least partially — automate the coordination of
different reasoners. This automation could lead to a system of reasoners which is much
more flexible and whose components would dynamically coordinate their behavior for a
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given problem at hand and not according to a previously fixed integration scheme. The
dynamic coordination of MATHWEB agents could also take into account the previous
performance of an agent on certain classes of problems in order to choose the best agent
for a given task. AI learning techniques could be used to learn an optimal assignment
of tasks to MATHWEB agents.

The problems of resource-adaptivity, autonomy, decentralization, and coordination
are central research topics in the field of distributed artificial intelligence (DAI). In the
following section we give a short overview over DAI research. In section 4 we describe
how we intend to apply DAI techniques to distributed automated reasoning and name
the central research questions that follow from this application.

3 Distributed Artificial Intelligence

While the classic AT endeavor is mainly interested in the development of single com-
puter programs which show or emulate some kind of “intelligent” behavior, distributed
artificial intelligence (DAI) is concerned with the study, design and application of dis-
tributed problem solving [G.W99]. There have been many proposal and, at least, as
many discussions on what an agent actually is. Following RUSSEL and NORVIG[RN95],
an agent is a self-contained, autonomous computational structure situated in a physical
or virtual environment. An agent can perceive it’s environment through sensors and
act on it with effectors. WOOLDRIDGE and JENNINGS [WJ95] proposed the following
key properties for the characterization of agents:

Autonomy: Agents should to some extent have control over their behavior and should
act without the intervention of humans or other software systems.

Reactivity: Agents should react to some changes in their environment. In the case
of software agents that live in a virtual environment this means that the agents
should be able to modify their behavior according to changing environmental and
computational constraints (e.g. resources, like time and memory).

Pro-activeness: Agents are able to exhibit goal-directed behavior by taking the initia-
tive in order to satisfy their design objectives.

Social Ability: Agents are capable of interacting with other agents (and possibly
humans) to satisfy their design objectives and reach their goals. This requires
that agents have the means to communicate with other agents and that they
have some kind of social model, i.e. knowledge about neighboring agents and
their capabilities.

In the following sections, we solely talk about software agents which live in a (virtual)
software environment. The development of software agents was strongly influenced by
the paradigm of Agent-Oriented Programming.

3.1 Agent-Oriented Programming

The term Agent-Oriented Programming (AOP) was coined by Shoham in 1991 [Sho91].
He described it as a “new programming paradigm, based on a societal view of computa-
tion”. The key idea is to directly program software agents which encapsulate arbitrary,
traditional software applications. These agent-shells are able to interface and control
the operation of the embedded services. The agents introduce a social model referring
to other service agents with which they build a society of agents. The basic means
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for the interaction between social agents is a common Agent Communication Language
(ACL) which enable the agents to coordinate their behavior, i.e. steer the embed-
ded applications by exchanging beliefs, goals, and intentions. There have been many
proposals for agent communication languages. Two of the most widely used are the
FIPA industrial standard [Ste97, fIPA] for physical agents and the KQML standard
for software agents. These two ACLs are equally expressive but differ in syntax and
application domains. While FIPA is supposed to be applied in industrial domains, such
as telecommunication, KQML is widely used in research projects. Since we intend to
build software agents, we think, that KQML is the ACL of choice for our application
domain. Last but not least, KQML and FIPA have a similar expressiveness and offer
a similar set of performatives. Since the functionality that has to be implemented for
KQML is very similar to that of FIPA, we think that it will not be much effort to offer
both communication languages in the future.

3.2 The Knowledge Query and Manipulation Language

The Knowledge Query and Manipulation Language (KQML) [FMF92, Lab96] is a com-
munication language for software agents which supports the exchange of information
about the (virtual) knowledge bases of the agents. KQML is both a message format
and a message-handling protocol to support shared knowledge in a multi-agent system.
KQML is based on the speech act theory [Sea69]. Its primitives are so called perfor-
matives which define the permissible “speech acts” that actions are allowed to perform
in communication with each other. Thus, KQML messages do not solely communicate
sentences in some language, but rather communicate an attitude about the content of
the message.

KQML performatives can be modeled as actions which change the cognitive states
of agents. According to [Lab96], cognitive states can be specified using the predicates
know, want, intend, and bel which describe the knowledge, goals, intentions, and beliefs
of agents. With these predicates, the semantics of KQML performatives can be for-
mally specified in terms of preconditions and postconditions describing the applicability
conditions and the effect of the performatives respectively (cf. [Lab96]).

A society of KQML speaking agents can be enriched with special agents, called
facilitators. Facilitators typically provide functionalities such as: association of physical
addresses with symbolic names of agents, registration of agents, and forwarding and
brokering of messages.

3.3 Coordination in Multi-Agent Systems

In most multi-agent systems sole communication via an ACL is not sufficient to ensure
that the agent community acts in a coherent way, where coherence refers to how well a
system of agents behaves as a unit [Syc89]. A serious problem in MAS is to maintain
global coherence without explicit global control. In this case, the agents must be able
on their own to determine goals they share with other agents, determine common tasks,
avoid unnecessary conflicts, and pool knowledge and evidence. Coordination can take
place in societies of antagonistic agents (negotiation) and of non-antagonistic agents
(cooperation) as shown in Figure 2. Typically, to cooperate successfully, each agent
must maintain a list with the capabilities of the other agents, and also develop a model
of future interactions. This presupposes sociability of agents [HL99].

One means for achieving coherence are higher-level interaction protocols. These
interaction protocols govern the exchange of a series of messages among agents — a
conversation — and help the agents to coordinate their behavior. Several coordination
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Figure 2: Different kinds of coordination

techniques and protocols have been devised for multi-agent systems so far. NWANA,
LEE, and JENNINGS give an overview in [NLJ96]. For a system of competitive agents
several forms of negotiation have been proposed. They are mostly based on game theory
[LR57], local planning [KvM91], or on theories of human negotiation [BM92].

Organizational Structuring. This is one of the simplest coordination scenarios
which exploits an a priori organizational structure. The organization implicitly defines
the agent’s responsibilities, capabilities, connectivity and control flow. One of the most
widely used forms of organizational structuring is the blackboard coordination where
agents post to and read from a central blackboard [HR85]. Using a blackboard the
agents’ behavior is triggered by information written on the blackboard by other agents.
Blackboard coordination, in its extremes, mitigates against all the benefits of DAI:
parallelism, reliability, robustness, minimal bottlenecks, etc. Additionally, as stated
in [NLJ96], all agents in a blackboard architecture “[...]must have a common domain
understanding (i.e. semantics). For this latter reason, most blackboard systems tend to
have homogeneous and rather small-grained agents.”.

Multi-agent Planning. In multi-agent planning, the agents of a society locally plan
their future actions and try to coordinate their behavior by combining the local plans
to a consistent global plan. In centralized multi-agent planning [CMS83] the agents
first compute local plans and send them to a central coordinating agent. On receipt
of all (partial) local plans, the coordinating agent analyzes them in order to identify
potential inconsistencies and conflicting interactions. The coordinating agent then tries
to modify the partial plans and to combine them into one multi-agent plan without
conflicting interactions. In distributed multi-agent planning [CL81] the resolution of
conflicts is performed by all planning agents who communicate during planning to
build and update their individual plans. Both variants of multi-agent planning have two
major drawbacks: 1) The agents must share and process huge amounts of information,
i.e. the planning process is very communication intensive. 2) In many domains, the
combination of local plans to one consistent global plan is a very complex and time-
consuming task.

Contracting. A now-classic and intensively studied coordination technique is the
Contract Net Protocol (CNP) introduced by SMITH [Smi80, DS83]. The CNP is based
on a decentralized market structure. Agents can assume two roles: They can act as
managers who break problems into subproblems and search for contractors to perform
the subtasks. Or they act as contractors who perform tasks. Contractors may recur-
sively become managers and further decompose their subtask and contract the tasks
resulting from this decomposition to other agents. The core of the CNP is a task
announcement and bidding process which consists of five steps:
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1. A manager announces a task
2. Contractors evaluate the task w.r.t. their abilities and commitments
3. Contractors send bids to the manager

4. The manager evaluates the bids and chooses one or several contractors and awards
the contract for the announced task to them.

5. The contractors send the result of the task performance to the manager

In most applications of the CNP the manager announces an abstract specification of a
task in the first step. This specification is highly domain-dependent and contains all
information relevant for the contractors to determine their bid for the task.

The CNP has been used in many applications, e.g. [Par87]. It turned out that it is
best suited for domains where

e the application task has a well-defined hierarchical nature;
e the tasks have a coarse-grained decomposition;
e there is minimal coupling between subtasks.

Since there is no formal model for task announcing, bidding and awarding in the original
work, the CNP was also further developed and extended by SANDHOLM [San93] and
others. HUHNS and SINGH have show that the CNP is a high-level coordination strategy
which also provides the means for the distribution of tasks and for self-organization
within a group of agents [HS94].

4 Agent Technology for Distributed Mathematical Rea-
soning

The long-term goal behind this proposal is to apply the techniques of Distributed
AT (e.g. AOP and coordination) to distributed automated reasoning in order to de-
velop a network of heterogeneous mathematical agents. These MATHWEB agents shall
have a social model of their environment and communicate with an agent communica-
tion language and several more or less standardized or specialized content languages.
The MATHWEB agents should perform autonomous distributed problem solving with
a decentralized control, handle shared proof objects, and dynamically coordinate their
behavior given a problem at hand. The problem solving process should be resource-
adaptive in an optimal manner, i.e. it should take into account all computational
resources (e.g. CPU-time, free memory, network bandwidth) that are available to the
different MATHWEB agents. A net of MATHWEB agents would offer the means for new
research projects, such as distributed proof planning. Last but not least, agent-oriented
programming has shown to be a perfect paradigm for human computer interaction
(HCI) [BW94]: Since agent communication languages like KQML are based on models
of human communication a human user can simply be modeled as another agent in the
multi-agent system.

This ultimate goal is very ambitious and beyond the scope of a single PhD thesis. In
the following, we therefore restrict the aim of the proposed research to a list of feasible
goals that are basic for the development of working MATHWEB agent societies. The
idea is to apply the AOP paradigm to the MATHWEB-SB. Following [FHJ"99], we
will to encapsulate MATHWEB’s mathematical reasoning systems into an agent shell
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in order to build mathematical reasoning agents, the MathWeb agents. With reasoning
systems extended to MATHWEB agents the interaction between these systems can be
modeled as a KQML conversation between corresponding MATHWEB agents. We think
that proposed extensions of the MATHWEB-SB can meet the desiderata described in
section 2.3. Having MATHWEB agents, we will investigate the applicability and the
effectiveness of several coordination techniques to decentralized automated reasoning
in a society of heterogeneous deduction and computation agents. We will apply multi-
agent planning to the multi-strategy proof planner MULTT to build a distributed multi-
agent proof planning environment. We will also investigate how the mathematical
knowledge base MBASE can support abstraction in agent communication in general
and in multi-agent planning in special.

The proposed research is a first significant step towards our long-term goal and
we shall see how far we can go in one piece of work. In the following sections we
describe in more detail the central research problems that have to be solved to develop
an efficient society of MATHWEB agents and we present some first ideas for a solution
of these problems. Of course, the ideas presented here sketch only a starting point for
the proposed research.

4.1 MathWeb Agents

The central entities in our research will be MATHWEB agents which are reasoning
specialists with certain properties. According to section 3 MATHWEB agents should
have at least the key characteristics:

Autonomy: MATHWEB agents should act without the intervention of humans or other
agents. On the other hand, agents should not simply act like slaves in the master-
slave integration model but should decide for themselves if they are capable and
willing to work on a reasoning problem that is sent to them (e.g. an open con-
jecture to prove).

Social Ability: MATHWEB agents should be capable of communicating their goals
and needs to other MATHWEB agents interacting with other agents by an agent
communication language. Additionally, MATHWEB agents should be able to un-
derstand multiple content languages. They should also have a social model of the
reasoning capabilities of other agents (e.g., induction proving specialists, special
CAS algorithms).

Pro-activeness: Next to all their social activity, MATHWEB agents should, of course,
not forget to act goal oriented, e.g. in the attempt to prove a theorem or to
perform a computation.

Reactivity: Since MATHWEB agents are software agents, a change in the environment
means, for instance, changing computational resources like available memory and
CPU-time. Agents should react to some changes in their environment. A para-
graph in section 4.2.1 is dedicated to resource adaptivity.

Figure 3 shows a first proposal for the structure of MATHWEB agents. This pre-
liminary structure addresses the first two of the characteristics mentioned above. Of
course, the final version of MATHWEB agents should address all four characteristics.
Essentially, each agent should consist of the classical reasoning or computation service
which is extended by an agent shell. The agent shell is responsible for all commu-
nication issues of the agent, i.e. for composing and sending correct KQML messages
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and translating incoming messages into concrete actions for the reasoning system. We
suppose that each MATHWEB agent has its own little database which contains specifi-
cations of theoretically existing mathematical services which allows the agent to build
reasonable messages.% The conversation module of an agent handles all ongoing conver-
sations the agent is involved in. A central control unit accesses the database of service
specs to create the actual KQML messages, asks the conversation module to start new
conversations, and handles incoming messages.

Agent Shell
Reasoning
System

Figure 3: Structure of a MATHWEB agent

KQML (OM/OMDoc)

Control  (conversation \————

service
specs

MATHWEB agents are supposed to communicate via KQML with OPENM ATH, OM-
Doc, or KQML itself as a content language. OPENMATH is a standard for the purely
semantic representation of mathematical formulas. Mainly, it is a restricted first-order
language and offers variables, constants, applications, bindings, etc. OMDOC aims
at the representation of full mathematical documents, including, e.g. plain text, def-
initions, theorems, and proofs. Both languages commit to a global ontology because
every symbol belongs to a OPENMATH content dictionary (CD) which provides a for-
mal or informal description of the semantics of the symbol. Thus, OPENMATH and
OMDoc are based on a fixed ontology accepted by most members of the automated
reasoning and of the computer algebra community. Therfore, we think that OPEN-
MATH and OMDoC are more suitable as content languages for the communication
between MATHWEB agents than, for instance, the very general Knowledge Interchange
Format (KIF) [Gea92], which has been used in many other DAI applications, or the
MATHML standard [IM98], which is mainly concerned with IATEX-like presentation
mark-up of mathematical formulas. But, however, in some applications it might be
necessary to develop new content languages in the future. Since the standard language
for the encoding of OPENMATH and OMDOC is the the eXtensible Markup Language
(XML [BPSM97]), it is a consequent step to chose XML also for the encoding of KQML
messages to allow a uniform handling of both, the messages and their content. How-
ever, XML encoding of information tends to be about 10 times bigger than an equivalent
binary encoding. Therefore, it might be reasonable to additionally allow more efficient
content languages for groups of reasoning agents that can communicate with these
languages. For instance, a local society of first-order ATPs that all rely on PL1 with
equality could easily communicate with an efficient encoding of first-order clauses as a
message content.

The proposed MATHWEB reasoning agents do not store any knowledge about the
capabilities of other agents. We suppose that this knowledge is managed by the KQML
facilitators. However, MATHWEB agents store knowledge about mathematical services
available in principle but they do not know in advance which agents offer these services.

SIn the future, the service specifications could also be stored in a central MBASE which is accessible
to all agents.
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4.2 Communication between MathWeb agents

We first focus on the problems that are related to the communication between M ATH-
WEB agents. In the following we treat technical problems, the problem of mathematical
service specification, and the handling of context in agent communication.

4.2.1 Technical Issues

Communication Overhead. As already mentioned in section 2.1, one of the main
problems in distributed equational theorem proving is the communication overhead.
Whenever distributed problem solving agents spend most of their computational re-
sources into communication, the benefits of parallelism can be drastically diminished.

The TEAMWORK approach (cf. section 2.1) proved to be successful in the case of
distributed equational theorem proving. In this special domains, homogeneous ATPs
can work independently on a problem and deliver uniform results (derived clauses)
which can be combined w.r.t. some heuristics.

Since we are interested in the integration of heterogeneous systems (e.g. ATPs,
CASs, model checkers, or proof planners) the TEAMWORK approach is not appropriate.
So, other mechanisms must be used which enable synergetic distributed problem solving
and reduce communication to a minimum.

Resource Adaptivity. Adaptivity to changing computational resources is crucial if
one wants to build a scalable system of distributed reasoning systems and to ensure the
optimal performance of such a system. This is due to the fact that the performance
of a reasoning system is not merely dependent on powerful algorithms or sophisticated
search techniques but also on the available resources. However, an optimal coordina-
tion of a society of MATHWEB agents according to the available resources is a very
complex — if not infeasible — task. As a first approach to tackle this task we are going
to extend MATHWEB agents with a resource module which permanently keeps track
of the currently available CPU time and free memory on the local machine. Combined
with coordination techniques such as the CNP MATHWEB agents can then use resource
information to decide whether they accept a given task or not. This allows for a decen-
tralized and flexible resource handling with a minimum of additional communication.

4.2.2 Characterization of Reasoning Capabilities

As stated in section 2.3.1, it is necessary to define abstract mathematical services in
order to free the designer of reasoning systems from the task of learning the internal
structure of other reasoners. Up to now, no standard specification language for mathe-
matical services has been developed. For our first experiments with MATHWEB agents
and KQML communication, we used special OPENMATH symbols for the specification.
This choice was done in analogy to already existing symbols in OPENMATH content
dictionaries, e.g. the symbol factor in the CD polyd that stands for the factorization
of polynomials. One advantage of using OPENMATH symbols is the commonly accepted
(informal) semantics that is defined in the publicly available content dictionaries.

At the moment, it is not clear, whether the approach of using OPENMATH sym-
bols is appropriate for all mathematical services developed in the future or if we have
to develop a new specification language. One problem with OPENMATH symbols is
the informality of their semantics. Usually, the developers of content dictionaries only
describe the semantics of symbols with at most a handful of sentences in natural lan-
guage. There is strong evidence that in the future we need a higher-order specification
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of reasoning services. However, a specification language for services could, for instance,
use OPENMATH symbols as a basis to build more complex service descriptions.

Another open problem is the storage and retrieval of the knowledge about mathe-
matical services. As a first answer, we suggest that this knowledge should be located
at the KQML facilitators. One could also think of storing this knowledge in a mathe-
matical knowledge base like MBASE.

4.2.3 Context in Mathematical Communication

Very often conversations between reasoning systems do not only consist of a single
query with a single answer. As we have seen in Example 2.2, in some cases a context
of a conversation has to be built up because some facts (e.g. definitions, lemmas,
or proof assumptions) have to be known by the conversation partner. Also in the
communication with Computer Algebra Systems, a context can be built. The CAS
MAPLE, for instance, offers the assume facility to define certain preconditions for its
computations 7. However, building a general model for the contexts of MATHWEB
agent conversations is not easy. Especially, the following questions must be answered:

e Which mathematical knowledge is typically stored in a context?

e Where is this knowledge stored?

¢ How can we use references to objects in a mathematical knowledge base?
¢ How do MATHWEB agents specify a valid context?

An answer to the last question could be the formal specification of valid KQML con-
versations between MATHWEB agents. LABROU has already specified basic KQML
conversations in [Lab96] in PROLOG. He suggested that these simple conversations
should serve as a basis for more complex ones. The specification of valid conversations
requires a common language which is understood by all MATHWEB agents. KQML
itself could build a basis for such a language, since conversations can be more or less
described by an ordered list of schematic KQML messages.

Example 4.1: In the following, we suppose that an ATP agent offers an abstract
mathematical service called prove which tries to find a proof for a given problem. As
described in the last section, we define prove as a new OPENMATH symbol in the CD
reasys. The service prove can be given some proof assumptions. A specification of
valid conversations for prove could look like the following:
prove-conv( [tell(Sender, Receiver, Openmath, Formula)|*
ask-one(Sender, Receiver, Openmath, prove(Formula , Result))
[tell(Receiver, Sender, Openmath, prove(Formula, Proof)) |
untell(Sender, Receiver, Openmath, prove(Formula , Result)) |
sorry(Sender, Receiver, _, _)])
Which means that every MATHWEB agent Sender who wants to use the prove service
can first send an arbitrary nonnegative number of facts to the Receiver agent, where a
fact can be any OPENMATH formula. Then Sender agent should send exactly one ’ask-
one’ request with the OPENMATH formula to prove and with an OPENMATH variable
Result. Finally, the Receiver sends either a tell message containing in which the variable
Result is replaced by the proof Proof or an untell message, if no proof could be found.

"These preconditions strongly influence future computations, i.e. the term v/z2 can be simplified to
x, if it is assumed that z > 0.
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Every abstract mathematical service should provide at least one specification of
valid conversations for the service. Each MATHWEB agent who offers an abstract
service commits to these conversations, i.e. he must accept every valid conversation for
that service. This does not imply the acceptance of a concrete reasoning task, since
the agent can still reply with a sorry message.

Abstraction in Mathematical Communication. Talking about mathematics can
be a very complex task. One means to reduce complexity in general is abstraction. Hu-
mans perform very well in abstraction and use it very often in their communication.
Also in the communication between mathematicians, abstraction can be found. For
instance, typical statements of a mathematics professor sound like “Using the funda-
mental theorem of algebra, we can infer that ...”, and not like “Using the fundamental
theorem of algebra, which states that in the field € of complex numbers... we can infer
that ...”. This is due to the fact, that the speaker assumes that details of the funda-
mental theorem are known to its students. If a student does not know these details,
she has to ask her neighbor or look it up in a book.

The main question is, whether we can adopt this human behavior and how we
can use some form for abstraction in mathematical communications between MATH-
WEB agents. In other words: how we can build up contexts of conversations and
refer to knowledge in this contexts? What can agents do, if they don’t understand a
“mathematical statement”, because they do not have the expected knowledge? One
answer to this question could be to query a mathematical knowledge base, such as
MBASE. Thus, the problem of reference also affects mathematical knowledge bases.
Mathematical knowledge units (e.g. definitions or theorems) are typically stored in
MBASE. So it must provide the references to these knowledge units. Additionally, the
content language we use for MATHWEB agents must provide the means to handle these
references.

4.3 Coordination of MathWeb Agents

We have already mentioned in section 3.3 that sole communication with an agent com-
munication language does usually not lead to a coherent behavior of a multi-agent
system. The actions of agents must be coordinated dynamically given a problem by
hand. We suppose that MATHWEB agents are benevolent reasoning entities and thus
focus on cooperation techniques. One of the central questions is which of the numerous
cooperation techniques developed in DAI research are appropriate for MATHWEB agent
systems. We try to give a first answer to this question:

Organizational Structuring. MATHWEB agents build a web of heterogeneous rea-
soning and computation services provided by ATPS, CASs, constraint solver, proof
planners, and many other systems. Additionally, MATHWEB agents should perform
decentralized distributed mathematical reasoning. This is why cooperation techniques
which rely on a fixed organizational structure, e.g. a blackboard architecture, might
not be appropriate as a general coordination technique for MATHWEB agents.
However, the blackboard approach can be suitable for some special areas of auto-
mated reasoning. In fact, blackboard coordination has recently been applied success-
fully in the Q-ANTS approach which provides a command suggestion mechanism for
QMEGA (see [BS00]). 2-ANTS’ agents are homogeneous and small grained since every
agent represents an inference rule or a tactic of QMEGA. All 2-ANTS agents work on
a central proof data structure (PDS) which builds the common domain understanding
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of the agents. Therefore, the command suggestion mechanism is a perfect application
domain for a blackboard architecture (cf. section 3.3).

Multi-agent Planning. In recent years, the QMEGA group has made significant
progress in proof planning, for instance, in the Limit-domain [Mel97] and in group
theory. The latest development is MULTI [MMOO], a multi-strategy planner. Up to
now, proof planning in OMEGA is totally serialized, i.e. at every time the proof planner
only plans one specific subgoal. Also in MULTT different planning strategies can only
be applied in sequential order. A consequent step for a further improvement of proof
planning is the introduction of distribution and parallelism. In a distributed proof
planning environment, different local planners could concurrently plan with different
strategies on the same or different subgoals in order to increase the likelihood of success
and to minimize the total planning time.

Sometimes, subgoals in proof planning strongly interact. Typically, certain con-
straints must be fulfilled by the partial plans for the subgoals®. In distributed proof
planning these constraints would be spread over the local plans. Therfore a mechanism
to insure global consistency of local plans must be developed. Multi-agent planning
[F198] offers the right means for this task and for the coordination of MATHWEB plan-
ning agents. But, as mentioned in section 3.3, multi-agent planning requires huge
amounts of communication in order to combine the local plans to a single global plan.
Thus, the application of this technique should be restricted to subtasks who strongly
interact and therfore need the check of global consistency of partial solutions. When
the subtasks do not interact, other coordination techniques, such as the contract net
protocol should be more appropriate.

Also F1sHER and IRELAND proposed the CNP as a coordination technique for proof
planning. In [FI98] they presented first ideas on how to bring parallelism into inductive
proof planning with CIAM [BvHHS90]. They suggested to assign the different proof
steps of a typical inductive proof in CIAM (base-case, rippling, and fertilize) to different
planning agents. Having the right communication languages multi-agent proof planning
can also include other proof planners like CIAM that are specialized on certain domains
(e.g. induction).

Contracting. The contract net protocol is one of the most promising candidates for
the coordination of MATHWEB agents in order to perform tasks that do not interact
very much. For instance, the CNP could be applied to computation tasks, e.g. the sim-
plification of terms and formulas, or to proving tasks, e.g. proof planning for subgoals
without meta-variables or first order problems which can be sent to ATPs.

The bidding process in the CNP allows the contractors to evaluate their local re-
sources available in order to give an according bid. Thus, the CNP can help to realize
decentralized load-balancing in a very natural way. But, more often than not, the
amount of computational resources available to an agent is not decisive for its success
in solving a task. In fact, MATHWEB agents can be seen as specialists in a specific
domain, e.g. some reasoners perform well for inductive proofs, others for equational
reasoning. Therefore, the performance of an agents is highly dependent on the task to
solve. Consequently, the announcement of a task should provide the contractors with
a task specification that goes far beyond the specification of abstract mathematical

8While planning existential proofs, for instance, meta-variables are introduced as place holders for
existentially quantified variables all over the proof plan. These meta-variables must be instantiated by
values that must fulfill certain constraints.
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services described in section 4.2.2. Additional to the mathematical service requested,
the concrete instance of the service must be analyzed.

Example 4.2: We suppose that a CNP manager wants to announce a task prove(Vn.n €
IN = P(n)), where P(n) is some property over the natural numbers. The analysis of
the problem instance, namely the formula Vn.n € IN = P(n), would be a valuable
source of information for a MATHWEB agent specialized on inductive proofs.

However, these are only first ideas, and at the moment it is not clear, whether
the contractors or the manager should perform the analysis of the task. The latter
would be in the tradition of the classical CNP where the manager only announces an
abstract specification of the task rather than the task itself. This is reasonable because,
typically, a complete description of a task is very big (cf. Example 2.2).

5 Summary and Work Plan

We argue that some essential features of distributed automated reasoning, such as
abstract mathematical services, a decentralization of the problem solving process, and
the automatic coordination of reasoning systems, are not met by any of the existing
architectures. We propose to apply the agent-oriented programming paradigm to the
MATHWEB-SB in order to meet these demands. The proposed research can be divided
in three main phases:

1. In a first phase we will build the infrastructural foundation for the research.
First, we develop and implement the agent shell described in section 4.1. Then, we
will encapsulate the reasoning systems integrated in the MATHWEB-SB into this agent
shell and enable the resulting MATHWEB agents to communicate via KQML. This
requires the implementation at least of a large part of the KQML specification given
by LABROU (cf. section 3.2). MATHWEB brokers will be extended in order to perform
the functionality of KQML facilitators. The work of this phase will allow us to gain
some first experience with MATHWEB agents and with KQML conversations.

2. In the second phase, we are going to extend our agent-shell to full MATH-
WEB agents that keep track of the available computational resources and adapt their
behavior respectively. Building on this we will develop a distributed version of the
QOMEGA system and its multi-strategy proof planner. We also plan to integrate other
proof planning systems, such as the CIAM system into our distributed proof planning
architecture.

3. In a third phase we are going to investigate the applicability of the coordination
protocols described above and will implement promising protocols. We are going to
evaluate the performance of societies of MATHWEB agents w.r.t. the different coordi-
nation techniques.

5.1 Work Plan

The research is supposed to be done within a period of 3 1/2 years (42 months).
For the implementation of the infrastructure in the first phase we estimate 9 months.
Since the second phase involves much implementation effort and the development of
a reasonable resource management mechanism, we rate 12 months for it. Also phase
is very implementation intensive and requires intensive case studies and evaluation
processes, so we rate also 12 months for this phase. For writing down the PhD thesis
we estimate 9 months.
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