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1 IntroductionIn array sorting we are given an array of n elements, each consisting of akey and some information associated with that key, and the task is to reorderthese in ascending order according to their keys. To carry out the sorting weassume that the only operations allowed for the elements are key comparisonsand element moves. Moreover, we want to perform the sorting in-place, i.e.,we assume that besides the input array there is a constant number of memorylocations available for storing elements and a constant number of machinewords, each consisting of O(logn) bits, for storing counters, pointers, andindices. Normal logical and arithmetical operations, including the unrestrictedshift to both directions, are assumed to be allowed when manipulating thesewords.1 Supported partially by the Danish Natural Science Research Council under con-tract 9701414 (Project \Experimental Algorithmics").Preprint submitted to Elsevier Preprint August 17, 1998



The performance of the algorithms is measured by counting the number of el-ement moves, key comparisons, and word-manipulation operations performedin the worst case. If x and y denote the respective number of trivial and non-trivial cycles in the permutation required to sort an array of n elements, thenn � x + y element moves are necessary to sort the array [8]. In the worstcase, x = 0 and y = bn=2c, implying that b3n=2c moves might be needed. Bythe standard information-theoretic argument, any comparison-based sortingalgorithm must carry out at least n log2 n� n log2 e+ (1=2) log2 n+O(1) keycomparisons [5, Section 5.3.1]. For every algorithm discussed in this paper thenumber of word-manipulation operations will always be bounded from aboveby O(M(n) + C(n)) if the number of moves and comparisons performed isM(n) and C(n), respectively. Therefore, the cost of the word manipulationwill be omitted in the subsequent analysis.Several in-place sorting algorithms are known that are e�cient with respectto the number of moves performed. When stating the performance of knownalgorithms, we let " denote a �xed positive constant not greater than 1. Munroand Raman [8] showed that the exact optimum number of moves, n� x + y,is obtainable by an algorithm that performs O(2(1=")(1=")!n2+") comparisons.Both the selection-sort [5, Section 5.2.3] and permutation-sort (see, e.g., [8])algorithms perform O(n) moves and O(n2) comparisons. This was improved toO(n=") moves and O(n1+"=") comparisons by Munro and Raman [7]. The vari-ants of the mergesort algorithm introduced by Reinhardt [10] and Katajainenet al. [4] require " n log2 n moves and n log2 n+O(n) comparisons.If an auxiliary array of n words is available, it is easy to modify any e�cientin-place sorting algorithm to perform O(n) element moves and n log2 n+O(n)key comparisons (cf., [5, p. 74]). It is even possible to reduce the amount ofextra memory to O(n"=") so that the number of moves is O(n=") and thatof comparisons O(n logn), as shown by Munro and Raman [7]. Furthermore,they proved that an array of n elements can be sorted in-place by performingO(n) moves and O(n logn) comparisons on an average; in the worst case thenumber of comparisons is of order n2.Munro and Raman [7] stated as an open problem whether there exists anin-place sorting algorithm that performs O(n) moves and O(n logn) com-parisons in the worst case. In this paper we describe an algorithm that isasymptotically superior to the earlier worst-case algorithms but it is still un-able to reach the above-mentioned ultimate goal. Our algorithm sorts an ar-ray of n elements using O(1) extra space, O(n logn= log logn) moves, andn log2 n + O(n log logn) comparisons. This result is proved in two stages: inSection 2 we recall a simpli�ed version of the in-place mergesort algorithm ofKatajainen et al. [4], on which our algorithm is based, and in Section 3 weshow how the key subroutine needed, the multiway mergesort algorithm witha work zone, can be implemented e�ciently.90



2 In-place mergesortAssume that the array being sorted is A[0 : : n�1] and n � 2. We call anysubarray occupying some consecutive positions of A a zone, and a collectionof elements stored in a zone a sequence. Let 2k be the largest power of 2smaller than n, i.e., 2k < n � 2k+1. We divide the array A into k+2 zones: A0is the zone A[0::0], i.e., it consists of the single element A[0], Ai is the zoneA[2i�1 : : 2i�1] for i 2 f1; 2; : : : ; kg, and Ak+1 is the zone A[2k : : n�1]. Welet si denote the size of Ai, i.e., s0 = 1, si = 2i�1 for i 2 f1; 2; : : : ; kg, andsk+1 = n�2k. Now the array A is sorted in two phases.In the sorting phase, for each i = k+1; k; : : : ; 2, the sequence in Ai is sortedby d-way mergesort which utilizes A[0 : : si�1] as a work zone. The parameterd is to be determined later. Each sorting is carried out by repeated d-waymerges by moving the elements back and forth between the two zones untilAi contains all its original elements in sorted order. In particular, each timean element is moved from one location to another some other element is putin the place of the element just moved so that no elements are lost.In themerging phase, the sorted sequences created are merged together. Thesequences in A0 and A1 are merged �rst and then, for each i = 2; 3; : : : ; k+1,the just merged sequence in A[0 : : 2i�1�1] is merged with the sequence in Ai.These 2-way merges are carried out in-place by using any e�cient in-placemerging algorithm, e.g., the fast algorithm given in [3].The in-place mergesort algorithms described in [4,10] are similar to the fore-going algorithm; they just required that the parameter d is a constant. Thed-way mergesort algorithm can be implemented such that it sorts a sequenceof size m, when a work zone of size m is available, using O(d) extra space,2m logdm + O(m) moves, and m log2m + O(m log d) comparisons [4]. SincePk+1i=2 si = n�2, the number of moves performed in the sorting phase is boundedby 2n logd n+O(n) and that of comparisons by n log2 n+O(n logd). The costof a single 2-way merge, even when carried out in-place, is linear in relationto the sum of the sizes of the sequences being merged (see, e.g., [3]). Hence, inthe worst case the number of moves and comparisons performed in the merg-ing phase is proportional to Pki=1 2si +Pk+1i=0 si, which is O(n). That is, thecomputational costs are dominated by those of the sorting phase.3 New in-place mergesort3.1 Algorithm and its analysisLet A[0 : : n�1] be the array being sorted, n � 216, and d a power of 2 suchthat log2 n= log2 log2 n � d < 2 log2 n= log2 log2 n. Before the actual sorting, wedivide the array A[0 : : n�1] into two zones: the encoding zone A[0 : : 2e�1]91



and the mergesort zone A[2e : : n�1], where e = ddlog2 ne. The encodingzone is used for storing d indices implicitly by means of the original elementsas described, for example, in [6]. These indices are needed for the implemen-tation of the d-way mergesort algorithm used as a subroutine in the algorithmdescribed in Section 2.The overall structure of our in-place sorting algorithm is the following. First,suitable elements are gathered into the encoding zone; Section 3.2 gives thedetails. Second, the remaining sequence in the mergesort zone is sorted bythe algorithm of Section 2 but now the d-way mergesort algorithm used in itssorting phase is implemented as described in Section 3.3. Third, the elements inthe encoding zone are sorted by using any e�cient in-place sorting algorithm.Fourth, the sorted sequences in the two zones are merged by using any e�cientin-place merging algorithm. This completes the sorting of the whole arrayA[0 : : n�1].In Section 3.2 we show that the creation of the encoding zone can be done in-place with O(n) moves and O(n) comparisons. In Section 3.3 we show that anysubsequence of size m can be sorted using O(1) extra space, 4m logdm+O(m)moves, and m log2m+O(m log d) comparisons when a work zone of sizem andan encoding zone of size 2e are available. This implies that the sorting phaseof the algorithm given in Section 2 requires at most 4n logd n + O(n) movesand n log2 n + O(n log d) comparisons. Recall that the merging phase of thealgorithm of Section 2 requires only O(n) moves and O(n) comparisons. Sincethe size of the encoding zone is only O((logn)2= log logn), its sorting takeso(n) moves and comparisons. The in-place merging of the sorted sequences inthe two zones requires O(n) moves and o(n) comparisons [3].To summarize, the number of moves performed is at most 4n logd n + O(n)and that of comparisons n log2 n + O(n log d). For log2 n= log2 log2 n � d <2 log2 n= log2 log2 n and n � 216, (1=2) log2 log2 n � log2 d < 2 log2 log2 n.Therefore, the number of moves performed is bounded by 8n log2 n= log2 log2 n+O(n) and that of comparisons by n log2 n +O(n log logn).3.2 Creation of the encoding zoneIn the encoding zone we want to store d indices, each being an integer drawnfrom the range f0; : : : ; n�1g. To present such an integer we need dlog2 ne bits.Two elements with distinct keys can encode one bit. For example, if the keyof x is smaller than that of y, by storing the elements in the order x y maydenote a 0-bit and the opposite order a 1-bit. Hence, e = ddlog2 ne pairs ofelements with distinct keys can encode e indices. Observe that to read thevalue of such an encoded index requires O(logn) comparisons and to updatethe value of an index requires O(logn) moves.The pairs of elements needed can be found as follows. First, the element with92



the median key in the input array A[0 : : n�1] is searched for by using anye�cient in-place selection algorithm (see, e.g., [6]). Second, a 3-way partition-ing of the array around the element with the median key is performed (see,e.g., [2]). Let A<, A=, and A> denote the three sequences created. If the sizeof both A< and A> is less than e, we sort both of them by using any e�cientin-place sorting algorithm and we are done. Hence, assume that either thesize of A< or the size of A> is larger than or equal to e. Since A= containsthe elements whose key is equal to the median key and n is so large com-pared to e, the keys of the �rst e elements and those of the last e elements inA[0 : : n�1] must be pairwise distinct. The elements in the zones A[0 : : e�1]and A[n�e : : n�1] are moved interleaved into the zone A[0 : : 2e�1], startingfrom the rear, after which the creation of the encoding zone is �nished.The computational costs of this procedure are dominated by those of themedian �nding and partitioning. Both of these routines require O(n) movesand O(n) comparisons, which means that the creation of the encoding zone isdone within the same resource bounds.3.3 Multiway mergesort with a work zone and an encoding zoneIn this section we show how a sequence of size m can be sorted e�ciently bythe d-way mergesort algorithm when a work zone of size m and an encodingzone of size 2ddlog2 ne are available. Here n is an integer such that n � 2mand d = �(logn= log logn). For the sake of clarity, we assume that B[0 : : m�1]is the array to be sorted, W [0 : : m�1] the work zone, and A[0 : : 2ddlog2 ne�1]the encoding zone. In reality, all these zones are parts of the original arrayA[0 : : n�1] which is being sorted by the algorithm of Section 3.1. The sortingof the array B is now carried out as follows.Initially, each element in B[0 : : m�1] is considered to form a sorted sequenceof length one. In one pass, the collection of sorted sequences is divided intothe groups of d consecutive sequences, except the last group that can containfewer than d sequences; the sequences of each group are merged by movingthe elements in sorted order from the original zone to the work zone. Theroles of the two zones are interchanged and the process is repeated until onlyone sorted sequence remains. In the last pass, the elements are moved to theoriginal zone if they are not there already. As pointed out in the previoussection, the work zone contains also some elements but it is trivial to organizethe moves so that these elements are not lost, even though their order maychange (i.e., the sorting algorithm is not stable).We make one substantial change to this fairly standard procedure. When thesize of the sorted sequences becomes larger than ` = d(log2 n)2e, these aredivided into blocks of size `, except the last block that can be smaller thanthe others. If the size of a sorted sequence is not larger than `, it is seen as93



a single block. We call the elements that are still to be merged active. Ineach sequence the �rst block that still contains active elements is called theleading block . In the algorithm we maintain an invariant that the locationof the leading block is �xed; the leading block is kept in the zone originallyoccupied by the �rst block of the sequence. Hence, the position of the leadingblock of the ith sequence can be calculated by using d, e, i, the pass number,and the index of the group being merged.To carry out a merge of d sequences, the active element with the smallest keyfrom each of the d sequences under consideration is kept in a selection treeas proposed in [5, Sections 5.2.3 and 5.4.1]. This tree is used when seeking forthe element with the minimum key among the active elements. After �ndingthis element, it is moved to the work zone. The tree must also be updated byremoving a reference to the element just moved and adding a new referenceto the next element, if any, in the same sequence since this element becomesa candidate as the new overall minimum.We number the nodes of the selection tree from 1 to 2d � 1. Like in a heap,node 1 is the root of the tree, node bi=2c is the parent of node i, if i > 1,and nodes 2i and 2i+1 are the children of node i, if those exists. Nodesfrom d to 2d � 1 will be called leaves and the other nodes branches. Fori 2 fd; : : : ; 2d� 1g, node i is said to be the jth leaf if j = i�d+1. Each nodeof the tree stores an O(log logn)-bit integer. Since d is O(logn= log logn), thewhole selection tree can be stored in a few words of O(logn) bits each. Observethat the position of the parent or the children of a node can be calculated byusing a constant number of shifts and other arithmetical operations.In our data structure, illustrated in Fig. 1, we maintain three kinds of indices:implicit indices, small indices, and large indices. Every index indicatesa position in the array B (A) or a node in the selection tree. Therefore, theindices are visualized as pointers in Fig. 1. The parent and children of a nodein the selection tree are indicated by implicit indices. The ith leaf of theselection tree has an implicit index to the beginning of the leading block ofthe ith sequence being merged. Moreover, the ith leaf stores explicitly an o�setto the �rst active element inside the leading block; an o�set is a small indexwhose presentation uses O(log logn) bits. Each branch of the selection treestores a small index to the leaf containing the active element with the smallestkey in the leaves of the subtree rooted by this particular branch. Finally, theencoding zone stores d large indices, i.e., indices whose representation requiresO(logn) bits; the ith of these indices indicates the next full block inside theith sequence that still contains active elements. If no such full block exists,the index has the value zero.In the beginning of each d-way merge, the implicit indices from the selectiontree to the sequences under consideration are initialized simply by updating94
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Fig. 1. The overall data structure when d = 4 and each sequence consists of 4blocks. The implicit indices are visualized with dashed arrows, small indices withsold arrows, and large indices with bold arrows. The darkened zones in the arraycontain still elements to be merged.the group index. The o�sets at the leaves of the selection tree are initialized tozero indicating that the �rst element in each leading block is the active elementwith the smallest key in the corresponding sequence. The large indices for eachsequence are initialized to point to the beginning of the second block, if thereis any. Since the location of the leading block is �xed, the implicit indices fromthe selection tree to the sequences are valid all the time.The initialization of the small indices in the branches of the selection tree isdone in a bottom-up manner. For each branch at every level, the elements withthe smallest key within the subtrees rooted by the children of that particularbranch are accessed and the small index is assigned to point to the leaf thatcontained an element with the smaller key. Clearly, at most d comparisonsare necessary during this initialization. In all passes this initialization is doneO(m=d) times so the overall cost caused by these is linear.After the construction of the selection tree, it is used to �nd the active elementwith the smallest key. By using the small index stored at the root, the implicitindex of the leaf pointed to by the root, and the o�set stored at the leaf, theactive element to be moved to the work zone is easily located. After the ele-ment is moved to the work zone (and an element from there to the locationoccupied by the element just moved), the o�set at the leaf is incremented byone and the small indices in each branch on the path to the root are updated ifnecessary. This updating requires log2 d comparisons. The number of compar-isons performed in one pass is at most m log2 d and that over all logdm+O(1)passes m log2 d logdm+O(m log d), which is m log2m +O(m logd).Let us now calculate the number of moves performed. In one pass there maybe two reasons why an element in the array B is moved: 1) a leading block95



becomes empty and the next block containing active elements, if there is any,should be moved to the zone occupied by the previous leading block; 2) anelement from a leading block is moved to the work zone. Since the order ofthe elements in the work zone can be changed, by using the hole techniqueas described in [3], the elements in two blocks of size ` can be swapped with2` + O(1) moves. There are at most dm=`e blocks so the number of movescaused by these block swaps is 2m + O(m=`) per a pass. By maintaining ahole at the current output position in the work zone, the active element withthe minimum key can be moved into this hole and the element next to thishole into the location occupied by the element just moved, which creates anew hole at the next output position. This organization guarantees that thenumber of moves caused by outputting is 2m+O(1) per a pass. Therefore, atmost 4m + O(m=`) moves are carried out in each pass, the total number ofmoves over all logdm+O(1) passes being at most 4m logdm+O(m).Some moves are also necessary in the encoding zone due to the updates ofthe large indices. When the block size is not larger than `, the large indicesare not needed at all. When the block size is larger than `, the large indicesare in use. However, in one pass each of the at most dm=`e blocks is movedonly once. Hence, the number of updates of the large indices is bounded byO(m=(logn)2). The cost of each update is O(logn) which means that theoverall cost caused by these index updates over all passes is sublinear becausen � 2m.This completes the description and the analysis of the d-way mergesort al-gorithm used as a subroutine in our in-place sorting algorithm. To sum up,the number of moves performed is bounded by 4m logdm+O(m) and that ofcomparisons by m log2m +O(m log d).4 Final remarksWe have showed that an array of n elements can be sorted using O(1) extraspace, O(n logn= log logn) element moves, and n log2 n + O(n log logn) keycomparisons. This performance is guaranteed in the worst case. The main ideain our algorithm was to utilize the word parallelism and store the selection treein a few machine words. It seems di�cult to develop this idea any further sincea larger merging factor will automatically mean a larger selection tree, whichcannot be stored in a constant number of words any more. On the other hand,the encoding technique could be used to store the selection tree implicitly, butthe updates of the indices would force us to use more moves as well.For two reasons our algorithm is primarily of theoretical interest: 1) the indexmanipulation needed is complicated and 2) in practice, log2 log2 n is seldomlarger than 5 or 6 so the constant factor in the leading term in the number ofmoves makes the algorithm impractical. This suggests that in-place algorithms96



should not only be designed with asymptotic analysis in mind. The earlierpapers [4,10] and the present paper all give a di�erent implementation for themerging phase of the algorithm described in Section 2. It would be interestingto know which of the proposals leads to the fastest practical implementation.Recently, some interesting non-comparison-based algorithms for sorting inte-gers have been developed (for a survey, see [1]). All these algorithms requirelinear, or even more, extra space. The classical time-space trade-o� results(see, e.g., [9]) assume a read-only memory whereas we allowed reordering ofthe input through element moves. It is natural to ask what is the fastest in-place algorithm for sorting (small) integers under our model of computation.References[1] A. Andersson, Sorting and searching revisited, in Proceedings of the 5thScandinavian Workshop on Algorithm Theory, Lecture Notes in ComputerScience 1097, Springer-Verlag, Berlin/Heidelberg, Germany (1996), 185{197.[2] J. L. Bentley and M.D. McIlroy, Engineering a sort function, Software|Practice and Experience 23 (1993), 1249{1265.[3] V. Geffert, J. Katajainen, and T. Pasanen, Asymptotically e�cient in-place merging, Theoretical Computer Science, to appear.[4] J. Katajainen, T. Pasanen, and J. Teuhola, Practical in-place mergesort,Nordic Journal of Computing 3 (1996), 27{40.[5] D. E. Knuth, The Art of Computer Programming, Volume 3/Sorting andSearching, Addison-Wesley Publishing Company, Reading, Massachusetts(1973).[6] T.W. Lai and D. Wood, Implicit selection, in Proceedings of the 1stScandinavian Workshop on Algorithm Theory, Lecture Notes in ComputerScience 318, Springer-Verlag, Berlin/Heidelberg, Germany (1988), 14{23.[7] J. I. Munro and V. Raman, Sorting with minimum data movement, Journalof Algorithms 13 (1992), 374{393.[8] J. I. Munro and V. Raman, Selection from read-only memory and sortingwith minimum data movement, Theoretical Computer Science 165 (1996), 311{323.[9] J. Pagter and T. Rauhe, Optimal time-space trade-o�s for sorting,unpublished manuscript.[10] K. Reinhardt, Sorting in-place with a worst case complexity of n logn�1:3n+O(log n) comparisons and " n log n+O(1) transports, in Proceedings of the 3rdInternational Symposium on Algorithms and Computation, Lecture Notes inComputer Science 650, Springer-Verlag, Berlin/Heidelberg, Germany (1992),489{498. 97


