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Without collisions, could the Newtonian n-body problem of point masses eject
a particle to infinity in finite time? This intriguing century-old concern, which
has motivated several interesting and deep mathematical conclusions, was recently
resolved by Xia (one of us, [X1, 2]) in his PhD dissertation; he proved that three-
dimensional examples exist for all n ≥ 5. Later, Gerver [G] asserted that a similar
behavior occurs with the planar 3n body problem but with an unknown and very
large n value.

Even the suggestion that our familiar Newtonian inverse square force law might
allow such a counter-intuitive behavior is so surprising that it is reasonable to
wonder how such an esoteric sounding question was first raised. As we show in
this brief survey, Xia’s result resolves a natural, fundamental problem raised by
Poincaré and Painlevé about a century ago. The issue is to characterize the nature
of “singularities” of n-body systems. Here, a singularity is a “time” value t = t∗

where analytic continuation of the solution fails.
So, what constitutes a singularity? Let mj , rj be, respectively, the mass and

position vector of the jth particle, and let rij = ‖ri − rj‖. From the equations of
motion

(1) mjr′′
j =

∑
i6=j

mimj(ri − rj)
r3
ij

=
∂U

∂rj
, j = 1, . . . , n,

where the self-potential (the negative of the potential energy) is

(2) U =
∑
i<j

mimj

rij
,

it is clear that a singularity requires some rij(t) distance to become arbitrarily small
as t → t∗. Trivially, a collision is a singularity. But, are all singularities collisions?
A possible scenario, considered near the end of the nineteenth century, was whether
a singularity orbit could exhibit some sort of oscillatory behavior where the limit
infimum of rmin(t) = mini6=j(rij(t)) approaches zero while the limit superior of this
minimum spacing between particles remains positive. Namely, could the particles
flirt with colliding without ever doing so?

Both Don Saari and Jeff Xia are professors of mathematics at Northwestern University. Their
e-mail addresses are d saari@math.nwu.edu and xia@math.nwu.edu
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Re-expressing this possibility in terms of configuration space, if

∆ij = {r = (r1, . . . , rn) ∈ (R3)n | ri = rj},

then ∆ = ∪i<j∆ij identifies all (R3)n points where Eq. 1 is not defined. The
scenario, then, is equivalent to an orbit admitting a subsequence {ti}, ti → t∗

whereby r(tj) = (r1(tj), . . . , rn(tj)) approaches ∆ but r(t) does not. During his
1895 Swedish lectures [Pa], Painlevé proved the impossibility of this oscillatory
behavior.

Painlevé’s proof is a nice application of the standard existence theorem which
ensures that a solution for x′ = f(x) exists in a time interval of length determined
by an upper bound on ‖f(x)‖. To see where the bounds for Eq. 1 come from, observe
that a solution heading for a singularity and allowing limsupt→t∗(rmin(t)) > d >
0 admits a sequence {tk}, tk → t∗, where all distances satisfy rij(tk) ≥ d. By
bounding these distances away from zero, both the right hand side of Eq. 1 and U
are bounded above. Bounds on the vj velocity terms come from the U bound and
the energy integral

(3) T =
1
2

n∑
j=1

mjv2
j = U + h,

(where h is a constant of integration). Thus, for each tk value, the existence theorem
ensures that the solution exists beyond tk for an extended time that depends only
on d and h. By choosing tk so that t∗ − tk is less than half this guaranteed value,
we contradict the assumption that t∗ is a singularity.

Theorem (Painlevé). The n-body problem has a singularity at t = t∗ iff

(4) r(t) → ∆ as t → t∗.

Even though Painlevé tells us that a singularity requires r → ∆, it remains
unclear whether the particles must collide. After all, as indicated by Fig. 1, the
rmin(t) → 0 as t → t∗ condition might be satisfied without any distance approaching
zero. Instead, it still might be possible for a singularity to be generated by particles
flirting with collisions without committing to do so. By a collision, we mean

Definition. A singularity at time t∗ is a collision if there is q ∈ ∆ so that r(t) → q
as t → t∗. Otherwise, the singularity is called a non-collision singularity.
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Figure 1. Oscillatory motion where minimum spacing goes to zero.
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Using the triangle inequality, Painlevé proved that the three-body problem is
free from the pathology depicted in Fig. 1; i.e., for n = 3, all singularities are
collisions. To describe why, we need to relate the maximum and minimum spacing
between particles. Clearly, U−1 is a measure for rmin(t). With the center of mass
at the origin, the maximum spacing between particles is measured by I1/2 where
I = 1

2

∑n
j=1 mjr2

j . It turns out (by differentiating I(t) twice and using Eq. 3) that
these measures are connected through the Lagrange-Jacobi equation [P1]

(5) I ′′ = U + 2h.

This relationship specifies, for instance, that whenever particles come close to each
other (so U has a large value), this excites the acceleration of our measure for
the radius of the universe (i.e., I ′′ becomes positive). An extreme example is a
singularity where rmin(t) → 0, or U → ∞. All we need from I ′′ → ∞ (Eq. 5)
is that I ′′(t) eventually is positive because this requires I → A, A ∈ [0, ∞], as
t → t∗. The A = 0 possibility, where I → 0, clearly represents a collision as all
particles collide at the center of mass. Otherwise I → A > 0, which means that
two legs of the triangle defined by the three particles are bounded away from zero.
The accompanying rmin(t) → 0 condition requires the last triangle leg to shrink to
zero. But, once rmin becomes and remains sufficiently small, the triangle inequality
prohibits different pairs of particles from trading the role of defining rmin. As rmin(t)
eventually is defined by a single pair of particles, the Fig. 1 scenario cannot occur.
It now is easy to show that all particles approach a limiting position.

After proving his results, Painlevé wondered whether non-collision singularities
could exist for n ≥ 4; namely, could r(t) approach ∆ without approaching any point
on this set? This is the question Xia resolved by showing that such solutions exist
for n ≥ 5.

2. Behavior and likelihood of non-collision singularities

After Painlevé, the next major contribution occurred in 1908 when von Zeipel
[VZ] discovered a stunning consequence of a non-collision singularity. His argument
is based on the observation that the inverse square law imposes a negligible accel-
eration on particles when they are far apart. Consequently, over short time spans,
distant particles essentially move along a straight line with only minuscule velocity
changes. Thus von Zeipel separated the analysis into how nearby particles interact
and how clusters of neighboring particles separate from one another. By showing
that this cluster argument contradicts the I → A < ∞ condition, he1 proved the
surprising conclusion that

Theorem (von Zeipel). A non-collision singularity occurs at time t∗ iff I → ∞
as t → t∗.

Namely, von Zeipel escalated the stakes by showing that if non-collision singular-
ities exist, then Newton’s law of motion would allow particles to separate infinitely
far apart in finite time! How could this be? This bizarre requirement probably
caused Painlevé’s concern to become somewhat dormant for a half century.

1Chazy [Ch], Sperling [Sp], and Saari [S3] have proofs that clean up and extend portions of
von Zeipel’s presentation. Also see McGehee’s expository paper [MG1].
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The singularity problem was resurrected in the late 1960’s when Saari [S1] char-
acterized the behavior of all collisions as part of his study with Pollard about
the asymptotic behavior of the Newtonian n-body problem. These results were
sharpened [PS1, 2] to assert that all colliding particles tend toward each other like
(t∗ − t)2/3. (This was previously known only for binary collisions (Sundman [Su])
and complete collapse orbits where I → 0 (Wintner [W]).)

Why the 2
3 exponent? Actually, the value reflects the choice of a force law because

the exponent is 2
p+1 for the inverse p force law, p > 1. (Newton’s law is p = 2.)

This is easily seen from the collinear equations x′′ = −(p − 1)x−p. By multiplying
both sides by x′ and integrating we obtain the energy integral 1

2 (x′)2 = x1−p + h,
or 1

2 (x′)2xp−1 = 1+hxp−1. Thus the x → 0 collision condition converts the energy
integral to x′x

p−1
2 ∼ −√

2 as t → t∗. The conclusion (for the simple collinear
problem) follows from integration.

Substituting this necessary and sufficient condition [PS1] for a collision,

(6) U ∼ A(t − t∗)− 2
3 as t → t∗,

into Eq. 5 shows, after integration, that not only is I bounded, but so is I ′. Clearly,
to create a non-collision singularity, I ′′ needs to be more actively excited by having
rmin(t) approach zero much more rapidly [PS2]. But, how fast could such a universe
explode? By experimenting with Eq. 5 and U(t) rates that allow I → ∞, it is
reasonable to wonder whether, say, I ∼ ln((t∗ − t)−1) as t → t∗? The growth is
faster; as shown in [S3], I goes to infinity more rapidly than a large class of similar
functions.
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Figure 2. Two choices for shuttling particles.

Of importance to our tale is the highly oscillatory nature of a non-collision mo-
tion that was established for the argument of [S3]. It turns out that particles must
approach other distant particles infinitely often and arbitrarily closely. The intu-
ition is that a particle flying off to infinity by itself has nearly zero acceleration,
so the velocity remains essentially constant. As a constant velocity precludes any
possibility of reaching infinity in finite time, the acceleration needs to be boosted,
and this requires a close visit by another particle. For instance, consider the four
body problem as depicted in Fig. 2. The I(t) → ∞ condition forces some parti-
cle, say m1, to satisfy limsupt→t∗(rj(t)) = ∞. If for a time period before t∗ no
particle comes within distance, say, 10−20 of m1, then r′′

1 is bounded. But, by in-
tegration, this contradicts the limsup(r1(t)) = ∞ assertion. Thus, for mj to enjoy
the limsup(rj(t)) = ∞ property, it must be that in any time interval (t, t∗), mj is
approached arbitrarily closely by another particle. With a little extra work and ap-
plying this argument to the equations of motion for the center of mass of a binary,
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it turns out that if no particle visits this binary, then the binary and its center of
mass remain bounded. Thus we obtain that if mj has the limsupt→t∗(rj(t)) = ∞
property, then in any (t, t∗) interval mj is visited by another particle. Similarly, a
binary repeatedly satisfying the rmin → 0 condition must also be visited arbitrarily
often and closely by another particle.

Of course, because the center of mass is fixed, whenever a particle is far from
the origin, so is another particle in an opposing direction. Consequently, at least
two distant particles must be involved with other bodies. To keep I → ∞, there
always are two distant particles so other particles have to commute to them. With
n = 4 where at least two particles are needed to define rmin(t), the only way to
realize these “visiting” conditions is with some combination of the scenarios where
either two particles separate and a binary shuttles between them (top diagram of
Fig. 2), or a binary and a particle separate while the last particle shuttles between
them (bottom diagram of Fig. 2). Then, as each particle needs to be visited in any
time interval before t∗, all of this has to happen infinitely often.

Recall that during the traversing process, the commuting particle(s) move, essen-
tially, on a straight line which is carefully aimed to meet the target. As one might
suspect, this action quickly forces the system to approach a fixed line in physical
space. Similarly, the direction of most velocity terms also are dictated by this line.
So, because a n = 4 non-collision singularity squeezes the motion down to approach
a fixed line in phase space, we might expect the measure preserving properties of
the system to render n = 4 non-collision singularities as unlikely. This is the case;
using this intuition and the method he developed [S2] earlier to prove Littlewood’s
conjecture [L] that collisions of any kind and for all n are unlikely, Saari showed
[S4] that four-body non-collision singularities constitute a set of Lebesgue measure
zero.

Combining the [S2] and [S4] results, we have, then, that singularities are unlikely
for n ≤ 4; most orbits exist for all time. It is reasonable to expect the same
conclusion to hold for all n ≥ 5. To prove such an assertion, because collisions
are unlikely [S2], it remains to show that non-collision singularities are in a set of
Lebesgue measure zero. Modifications of the proof of [S4] show that this is true
for those non-collision orbits where the particles eventually line up along a line (as
in Xia’s construction). In fact, it appears (but has yet to be shown) that the [S4]
approach and conclusion extend to all non-collision singularities. This is because
the required “visiting” behavior of such an orbit forces the particles to rapidly
approach a lower dimensional hyperplane in phase space.

3. The Mather-McGehee construction

Any sense of skepticism concerning the existence of non-collision singularities
vanished with a surprising 1975 paper by Mather and McGehee [MM]. They showed
for the collinear four-body problem that binary collisions could accumulate in a way
to eject particles to infinity in finite time. This did not resolve the Painlevé problem
(because a non-collision singularity must be the first singularity of the system), but
it strongly hinted that such motion exists. Indeed, Anosov [An] suggested that a
four-body example of a non-collision singularity might exist in a neighborhood of
the Mather-McGehee example; this approach has yet to be made successful. The
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Mather-McGehee construction was based on McGehee’s earlier work concerning the
behavior of near-triple collision orbits for the collinear three-body problem. These
notions are outlined next.

From Sundman [Su], we know that a binary collision is an algebraic branch point
where the dynamics mimic an elastic collision. Siegel showed [Se], however, that
triple collisions generally define a logarithmic singularity which prohibits the solu-
tion from being continued. An alternative goal, then, is to analyze what happens
near a triple collision. To do so, McGehee [McG2] developed a form of “spherical
coordinates” where the radius is defined by rmax(t) = I1/2; with this scaling, the
“angular coordinates” represent the 1

rmax
(r1, . . . , rn) configuration formed by the

particles. Important for this construction is that the force law is homogeneous.
This allows the “radius” term to factor out of key equations and to be incorporated
into the independent variable to rescale “time.” The resulting system of “angular
coordinates” describes changes in the configuration.

Mathematically, the new rescaled system is defined even for rmax(t) = 0; this
is the zero point in ∆. This “blow-up” of the complete collapse singularity cre-
ates an invariant boundary manifold C called the “collision manifold.” Because
the augmented dynamical system smoothly extends to the boundary, the behavior
of near triple-collisions can be analyzed by using the simpler “gradient-like” flow
that results on C. In this manner, deep conclusions about the behavior of near
triple-collision motion are forthcoming.

To describe these consequences, recall the high-school physics experiment where
a ball is dropped from a building. The more elastic the collision, the higher the
ball rebounds. Near the ground, of course, the rebounding ball is moving rapidly
upwards. To harness this speed, quickly drop a second, much smaller ball so it hits
the first one immediately after it starts its upward journey. Rather than hitting the
static ground, the small ball is rebounding off of the rapidly moving first ball. Thus,
the elastic collision converts the bigger, first ball into behaving like a baseball bat.
With the second ball’s extra momentum, picked up from the enhanced collision, the
second ball bounces higher than it would have without the benefit of the collision.

A similar effect describes a near triple collision for the Newtonian collinear three
body problem. If an initial condition leading to a complete collapse is slightly al-
tered, one particle, m3, arrives a little late for the triple collision. The first colliding
pair, m1, m2, forms an elastic collision where, from Eqs. 3, 6, the rebounding ve-
locity is arbitrarily large when measured sufficiently close to the collision. Thus, a
rebounding particle approaches a collision with the tardy m3 with arbitrarily large
momentum. Just as with the physics experiment, the new elastic collision should
cause the late arriving m3 to leave its collision with an arbitrarily high velocity –
much larger than its entering speed. While the actual situation is more complicated
(e.g., just as with the balls, we need to worry about the mass values; depending
on these values, there could be a series of binary collisions before one particle is
expelled, the choice of the expelled particle depends upon the required number of
binary collisions and the timing relative to a triple collision, etc.) this description
captures the spirit of near triple collisions.

This description of motion near a triple collision (for the collinear problem)
suggests that m3 (in the bottom part) of Fig. 2 is ejected from the m1, m2 binary
with an arbitrarily high velocity. To keep m3 from being expelled to infinity, we
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need an obstacle – a fourth body. So, if m3’s velocity is sufficiently large, it catches
up and has an elastic collision with m4. Should the mass of m3 be sufficiently
small, this collision forces m3 to rebound back to m1, m2, where, if it arrives in
time to nearly form another triple collision, m3 gets batted back again. With a
correct timing argument (that is, with an appropriate symbolic dynamic proof),
this scenario repeats itself infinity often within a finite period of time. In this
manner, Mather and McGehee showed there exists a Cantor set of initial conditions
defining this behavior.

McGehee’s coordinates have become standard to analyze dynamical behavior for
orbits near total collapse for the three-body collinear problem (e.g., see [McG2]),
the isosceles three-body problem where the three particle form an isosceles triangle
for all time (e.g., see Devaney [1, 2], Moekel [M1, 2], Simó [Si]), and the anisotropic
Kepler problem [D2]. In this manner, a wide selection of surprising “chaotic” be-
havior for three-body problems has emerged. In a related, but slightly different
direction, we [SX] used these coordinates to establish the existence of new kinds
of orbits where the more surprising one is the “super-hyperbolic motion” discussed
earlier by Pollard [P2] and then by Marchal and Saari [MS] as part of their de-
scription of how all n-body systems evolve. The concern was whether there is an
upper bound for the expansion of n-body universes. Namely, is there a f(t) so that
all solutions eventually satisfy rmax(t) ≤ f(t) as t → ∞? With special relativity,
for instance, all velocities are bounded by the speed of light, so f(t) = ct. But
Newton’s universe fails to respect Einstein’s formulation; once n ≥ 4, no such f(t)
exists for Newtonian n-body systems! Instead, we showed that for any f(t), there
exists initial conditions for the four-body problem whereby rmax(t)/f(t) → ∞ as
t → ∞. By choosing, for instance, f(t) = exp(exp(exp(. . . (exp(t) . . . )))) it becomes
clear that n-body systems can expand in ways that are distinctly counter-intuitive.

Our proof required “slowing down” the Mather-McGehee motion so that, instead
of being quickly over, it lasts forever. Intuition how this is done comes from the
two-ball experiment; if that second ball is not dropped quickly enough, it hits the
first one only after the rebounding momentum has decreased. Similarly, we needed
to introduce a technique to capture the dynamical consequences where, rather than
the particles interacting arbitrarily close to a triple collision, it happens “sufficiently
late” so that the battered m3 isn’t kicked out too harshly. Our technical argument
creating this delay exploits the complicated manifold structure of the set of initial
conditions leading to a triple collision.

4. Xia’s construction

This brief history of Painlevé’s problem introduces what is needed to design a
non-collision singularity. First, the particles must rapidly shuttle among each other
infinitely often causing arbitrarily close approaches. The velocity needed to allow
these infinitely frequent visits comes from near multiple collisions. Herein lies part
of the mathematical difficulty; to be a non-collision singularity, this “near multiple
collision” analysis must be done without the benefit of actual collisions. But, by
precluding collisions, we leave the comfortable setting of the collinear problem be-
cause it always requires bodies to bang into others. Once the directional constraints
built into the collinear setting are dropped, we need to “aim” the commuting parti-
cle to direct it almost exactly where the target particles will arrive. (This is because
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the velocity of the visiting particle is essentially fixed until it gets arbitrarily close
to the new host.) The complexity of the problem, then, involves extending all of
the earlier theories to a higher dimensional setting, and then to connect them so
that the required behavior arises. This is what Xia did.

To understand Xia’s construction, start with a symmetry solution of the three-
body problem where the motion of two equal masses, m1, m2, always is parallel to
the x-y plane and m3 is restricted to the z axis. (See Fig. 3a. It is easy to show that
such motion exists.) Now, should m1, m2 have circular orbits, the force of attraction
they impose on m3 (determined by the r13 = r23 distance) is based on how far m3
is from their plane. However, should the m1, m2 motion be highly elliptical, then
their force on m3 depends not only on how far m3 is from the plane of motion, but
also on how close m1, m2 are to each other. Consider, for instance, an extreme case
where the binary is so highly elliptic that it approximates a straight line motion
where the binaries approach arbitrarily close to one another, but then they separate
to a comfortable distance apart. Suppose, coming from below, m3 passes through
and is just slightly above the plane when the binary has its closest approach. If the
particles are close enough to one another (and with the right choice of masses), the
binary imposes an extremely powerful downward pull on m3. In fact, this attracting
force can be made as strong as desired by adjusting the separating distances among
the particles. Consequently, m3 can be propelled downwards with an arbitrarily
high velocity just when m1, m2 start separating. With this propitious timing, the
separating binary loses any braking effect on m3 allowing m3 to be launched rapidly
downwards along the z axis.
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Figure 3. The five-body construction.

To prevent m3 from being expelled to infinity, we need an obstacle, but it can’t
be a fourth particle along the z-axis as this would cause a collision. So, replicate
the above scenario by placing a second highly eccentric binary orbit of m4, m5
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further down and orthogonal to the z-axis. (See Fig. 3b.) With almost perfect
timing – where the m4, m5 binary reaches a sufficiently close approach just after
the commuting m3 passes through their plane – the resulting high force they impose
on the commuting m3 breaks m3’s downward motion and thrusts it back upwards
with an arbitrarily high velocity. Notice, by exploiting symmetry, the m3 “aiming”
problem is solved.

Xia’s proof shows that this scenario can be repeated infinitely often in a finite
time. Much like in a standard Cantor set construction, where at each stage a new
“middle third” is removed, he develops a winnowing process. In other words, a set
of initial conditions, which roughly assumes the shape of a wedge, is determined
where the solutions perform as desired for at least one pass of the three particles.
Some solutions from initial conditions in this wedge allow m3 to interact in the
indicated manner with the other binary, and some do not. Those that don’t behave
in the desired manner are dropped. (In particular, all orbits where m3 fails to
satisfy the careful timing requirement with the next binary are eliminated.) This
process is continued. What remains in the limit, then, is a Cantor set of the initial
conditions allowing this behavior to occur infinitely often.

To develop a flavor for how the “wedges” of initial conditions are found, notice
that, in the limit, m3 has to move infinitely fast from m1, m2 to m4, m5; this
happens only when m3 starts arbitrarily close to m1 and m2 while m4, m5 already
are close together. Consequently, the limiting configuration is a m1, m2, m3 triple
collision with a simultaneous binary collision of m4, m5. The idea is to exploit the
stable and unstable manifold structure of this multiple collision in a way to choose
sets of initial conditions with the correct behavior, at least for awhile, while avoiding
collisions. One way to prevent collisions is to endow each binary with a non-zero
angular momentum c where the sign of c indicates whether the binary rotates in a
clockwise, or a counter-clockwise manner. As the magnitude of c determines how
close the particles can approach, to allow the necessary arbitrarily close approaches
each c must tend to zero as t → t∗. To analyze these rotating interactions, the earlier
collision manifold C (which is two-dimensional and does not involve rotation) needs
to be extended a dimension to incorporate the c value. A true three-body problem
has c as a constant of motion, so the analysis requires introducing a related variable,
u, to capture the direction and speed of rotation for the binary.

As a way to introduce the next step, start with the simple system x′ = −x, y′ = y
where a solution on the x-axis – the stable manifold – gets sucked into the origin,
while one on the y-axis – the unstable manifold – rapidly moves off on either the
positive or negative y-axis. (See Fig. 4.) Other solutions combine this behavior;
e.g., a solution starting near the x-axis stays near this axis as it moves toward the
origin until it is sufficiently close to 0. Here the repelling effect in the y direction
begins to dominate, so the solution begins to mimic and approach the motion on the
y-axis. Notice that we can control which behavior occurs; to ensure, for instance,
that the solutions eventually move near the positive (rather than negative) y axis,
just select an appropriate set of initial conditions where y > 0. (This is the block
in Fig. 4.) The near collision analysis is a higher dimensional, more complicated
version of this phenomenon, where the “wedges” correspond to the y > 0 selection
of initial conditions.



10 DONALD G. SAARI AND ZHIHONG (JEFF) XIA

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......

......................................................................................................................................................................................................................................................................................................................................

...................................................................................................
....................

..............
...........
.........
.........
........
........
........
.......
.......
.......
........
........
........
........
.........
.........
........

...................................................................................................
....................

..............
...........

.........
.........
........
........
........
.......
.......
.......
........
........
........
........
.........
.........
........

.........................................................................................................................................................................................................................................................................

.........................................................................................................................................................................................................................................................................

.................................................
.....................

.................
..............
............
...........
..........
..........
.........
.........
........
........
........
.......
.......
......

.................................................
.....................

.................
..............

............
...........
..........
..........
.........
.........
........
........
........
.......
.......
......

..............................................................................................................................................................................................................

..............................................................................................................................................................................................................

........

........

........

........

........

........

........................

.................

...............................................................
.........
........
.........

................................................................................................................................................................. .................
....................... ................. ........................................

............................................................... .................

.......................

.................
.......................
.................

..............
.........
........
.......................

.........
........
.........

....................... ................. ........................................

............................................................... .................

.......................

.................
.......................
.................

..............
........
.
.........
.......................

........
........
........
.

Figure 4. Behavior of the simple system.

Start with the fact that a triple collision defines an equilibrium point x∗ ∈ C with
an hyperbolic structure. (So, x∗ replaces the origin of the simple system.) If we let
Σ denote the set of initial conditions terminating in a triple collision, then Σ defines
a stable manifold for x∗ ∈ C. (Σ represents the x-axis in the model problem.) Using
the fact x∗ is hyperbolic and the inclination lemma (e.g., see Robinson [R, p. 200]),
we have that an orbit starting close to Σ will remain close until the orbit approaches
C; then it starts following the unstable manifold of x∗. (So, the unstable manifold
is a higher dimensional version of the y axis.) Namely, after barely missing a triple
collision, the motion starts mimicking a C orbit. The subsequent behavior, then, is
governed by the orbit structure on C near x∗.

The interesting part of this structure comes from the unstable manifold of x∗.
One unstable dimension in C determines whether m3 is propelled upwards or down-
wards after the three-body interaction, while a new one comes from the u variable;
it represents the direction of rotation of the binary after the close interaction. By
choosing the desired behavior in these unstable directions in C and using the result-
ing wedge as a target, near Σ a wedge of initial conditions can be determined where
the solutions will be governed by the desired C behavior for this pass of the three
particles. (In the model system, this wedge choice is similar to choosing the block
in Fig.4 so that these solutions follow the positive, rather than the negative y-axis.)
Those solutions which pass through this near triple collision and allow m3 to reach
the next binary just when all of the necessary ingredients to repeat this story are
available defines subwedges. What arises is the indicated winnowing effect.

The resulting Cantor set of initial conditions allows rmax(t) to approach infin-
ity in finite time without prior collisions. In this manner, the question raised by
Painlevé a century ago finally is solved. Moreover, the construction makes full use of
the several different contributions made by the many researchers in this fascinating
area of mathematics.

While we now know that non-collision singularities exist, several mysteries re-
main. Any partial listing has to include whether n = 5 is the cut-off for this
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surprising behavior, or whether the four-body problem can propel particles to in-
finity in a finite time. Can, for instance, Anosov’s suggestion be carried out? Are
there planar examples with small n values? As indicated, the mass values play
an important role in the proof (for reasons similar to why the size of the balls in
the physics experiment are important). Are there mass choices where non-collision
singularities cannot occur? Initial conditions leading to a Xia type example are in
a set of Lebesgue measure zero; are all non-collision singularities unlikely? As de-
scribed, constructing examples of unbounded motion involves carefully cultivating
near-collision behavior. This suggests that if CO represents the set of initial condi-
tions leading to a collision of any kind, then the closure of CO agrees with the set of
initial conditions causing any kind of singularity (including the motion described in
[SX]). Is this true? (One direction in the obvious set containment argument is triv-
ial.) More specifically, mimicking Painlevé’s concern, what is the nature of orbits
generated by initial conditions in the closure of CO? In other words, as always, the
Newtonian n-body problem serves as a source of intriguing mathematical problems.
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1897.
[P1] Pollard, H, A Mathematical Introduction to Celestial Mechanics, Carus Monograph #

18, MAA, 1976.
[P2] Pollard, H, Gravitational systems, J. Math. Mech. 17 (1967), 601-612.
[PS1] Pollard, H. and D. G. Saari, Singularities of the n-body problem, 1, Arch Rat Mech and

Math 30 (1968), 263-269.
[PS2] Pollard, H. and D. G. Saari,, Singularities of the n-body problem, 2, Inequalities-II,

Academic Press, 1970, pp. 255-259.
[R] Robinson, C., Dynamical Systems, CRC Press, Inc., 1995.
[S1] Saari, D. G., Singularities of the Newtonian N-body problem, PhD Dissertation, Purdue

University, 1967.



12 DONALD G. SAARI AND ZHIHONG (JEFF) XIA

[S2] Saari, D. G., Improbability of collisions in Newtonian gravitational systems, II, TAMS
181 (1973), 351-368.

[S3] Saari, D. G., Singularities and collisions of Newtonian gravitational systems, Arch Rat
Mech and Math 49 (1973), 311 - 320.

[S4] Saari, D. G., A global existence theorem for the four-body problem of Newtonian me-
chanics, JDE 26 (1977), 80-111.

[SX] Saari, D. G. and Z. Xia, Oscillatory and superhyperbolic solutions in Newtonian systems,
JDE 82 (1989), 342-355.

[Se] Siegel, C. L., Der Dreierstoss, Annals of Math. 42 (1941), 127-168.
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