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Abstract

Type safety of imperative programs is an area fraught with
difficulty and requiring great care. The SML solution to the
problem, originally involving imperative type variables, has
been recently simplified to the syntactic-value restriction. In
Haskell, the problem is addressed in a rather different way
using explicit monadic state. We present an operational
semantics for state in Haskell and the first full proof of type
safety. We demonstrate that the semantic notion of value
provided by the explicit monadic types is able to avoid any
problems with generalization.

1 Introduction

When Launchbury and Peyton Jones introduced encapsu-
lated monadic state [11, 12], it came equipped with a de-
notational semantics and a model-theoretic proof that dif-
ferent state threads did not interact with each other. The
encapsulation operator runST had a type which statically
guaranteed freedom of interaction, and the guarantee relied
on a parametricity proof. What the paper failed to provide
was any formal reasoning principle at the syntactic level, or
any proof of type safety. This paper makes up for those
shortcomings. In particular we:

e axiomatize the monadic-state operations: this allows
us to view the monad of state transformers as an ab-
stract type and understand formally how it should be-
have. Previously, the choice was between an informal
understanding, or a rather heavy-weight denotational
description.

e prove type safety: if I have a variable that claims to
contain a list of integers, say, will it truly do so? or
might the type system have become confused? By us-
ing the axiomatization as a reduction relation we are
able to use standard techniques to show type safety of
this system.

e prove syntactic non-interference: our proof shows that
if ever a state-read or -write is about to be attempted,
then the type system guarantees that the reference is
local.
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Our formal investigation reveals two subtle points that
the previous informal reasoning failed to uncover. First,
arbitrary beta-reduction is unsound in a compiler which
encodes state-transformers as state-passing functions—any
compiler that implemented the denotational semantics di-
rectly would have to take great care never to duplicate the
state parameter. Second, the recursive state operator £ixST
cannot be interpreted mnaively in call-by-name, but really
needs call-by-need to make sense.

2 Imperative Types

We begin by reviewing the issue of type safety. The need
for a special care arises in SML because of examples like the
following:

let val r = ref (fn x => x)
in (fn _ => 'r 4) (r := not)
end

The variable r is given the type Va.(a — a)ref, which sub-
sequently unifies with both the integer and the boolean uses.
Intuitively, the problem is that the let has generalized over
type variables that actually occur free in the state.

The solution adopted for many years is to have a class
of “imperative type variables” [26] and only to generalize
over these if the expression being bound by let is syntac-
tically a value. Due to Wright’s observations [29] this has
since been simplified [15] to treat all type variables as if
they were imperative type variables, and so collapsing the
two tier structure.

Why do these problems not occur in Haskell when using
monadic state? The precise answer comes from the proof
later in the paper, of course, but we can provide intuition
here. When working within the state monad (or any other
explicit monad, for that matter) the facilities provided by
let are given by the use of monadic extension (a bind op-
erator in Wadler’s terminology [28], thenST in the State
in Haskell papers, or >>= in Haskell 1.3 notation). This
takes a computation—a term of type M A where M is the
monadic type constructor—together with a function of type
A — M B. Intuitively, the first term is executed, delivering
a value of type A which is then passed as an argument to
the function whose subsequent computation is also executed.
The value is passed according to regular function applica-
tion, so the type A in A — M B is a regular type, not a
type scheme. The intermediate values within a computation
are lambda-bound, therefore, rather than being let-bound.



That’s the intuition. The fact that it works relies on
the correct interplay of a number of different aspects of the
system (in what comes later, for example, if the typing judg-
ment for runST were relaxed, then type safety would be lost).
One way of viewing all this is that the Haskell type system
makes a distinction between computations with no effects
(which we call semantic values) and computations that may
have effects (which we simply refer to as computations). Se-
mantic values are bound with the let construct and their
types can be generalized; results of computations are bound
with the >>= construct and their types cannot be general-
ized. Hence, like SML, Haskell’s 1et only performs gener-
alization over values, not over the results of computations.
However, unlike SML, the Haskell notion of value is seman-
tic and hence richer. For example, in Haskell the expression
((Az.z) (Ay.y)) is classified as a semantic value whose type
can be generalized, but not in SML.

3 State in Haskell

Our source language is an extension of the call-by-name A-
calculus with several constants and two language constructs:
let and runST (later we will add a third).

Definition 1 (Syntax of Terms) Let = range over a set
Vars of vartables {z,x1,%2,...,y,2,...}. The set of terms
A s inductively defined as follows:

Stmple Constants:

Boa= 0004 ]

Primitive Store Operations:
s = newVar e | readVar e | writeVar e €'

Syntactic Values:
v = k|Av.e|e>>=¢'|returnSTe |s

Terms: , ,
e u= z|v|ee |runSTe| let {z; =¢;}; ine

We let k range over an unspecified set of simple constants
like numbers and addition. The constants newVar, readVar,
and writeVar express the usual operations on reference cells.
The constants returnST and >>= are the unit and bind oper-
ations of the state monad respectively. Expressions built up
from these state-transformer operations are treated as syn-
tactic values. These syntactic values will be used to specify
the operational semantics of the language, but not to guide
generalization of type variables. The expression (runST €)
is an eliminator for state-transformer expressions e. The
operational intuition behind runST is that it executes e in
a newly created state thread, returning the final value pro-
duced by e while discarding the final state. The state in
the thread is neither accessible nor visible from outside the
(runST €) expression.

In the examples, we sometimes use the Haskell 1.3 do
notation [19]. This construct acts like a non-recursive let
over computations and is definable in terms of >>=. For
example; the following code:

let omega = omega

in runST (newVar (3+2) >>= \ p ->
readVar p >>= \ v1 ->
readVar p >>= \ v2 ->
writeVar omega 6 >>= \_ ->
returnST (v1+v2))

where we have used the Haskell notation for lambda expres-
sions (\x->e) instead of the mathematical notation (Az.e),
could be rewritten as follows:

let omega = omega

in runST (do p <- newVar (3+2)
vl <- readVar p
v2 <- readVar p
writeVar omega 6
returnST (v1+v2))

To get an informal feeling for the types and semantics of
the expressions, we intuitively explain the evaluation of the
above fragment. First, we bind omega to some (semantic)
value and then create a new state thread. In this thread, we
allocate a reference cell p and initialize it to (3+2). The cell
is then dereferenced twice and the results are added. Once
the values of v1 and v2 are determined, no more state op-
erations are performed as the final result is now defined. In
other words we have a lazy store semantics in which state
threads are executed on demand, and values may be re-
turned before the computation has been completed. Hence
the assignment to the uncalculable location omega does not
affect the final result which is 10.

Why bother with lazy stores? The answer is that lazy
stores have a clean interaction with the lazy semantics of the
underlying language, and provide elegant ways to express
imperative functional programs, as the following example
illustrates.

The example is drawn from stream-based simulation, in
particular simulating a local data cache within a micro-
processor (for our purposes here we will assume no cache
misses). The contents of the stream represent the values of
the input and output wires over time. The input streams
to the cache will contain addresses, data, and a boolean
read /write flag. The output stream will contain the mem-
ory contents for a read, and 0 if a write was performed.

As the cache will contain thousands of randomly acces-
sible locations, a destructive array is the obvious choice for
modeling the contents. We therefore use the store prim-
itives readArr and writeArr, which are the the obvious
generalizations to arrays of the operations on single loca-
tions. Here’s the code in Haskell, where the first parameter
to cache is the size, the second parameter contains the three
input streams, and the result is the output stream:

cache :: Int -> ([Int],[Int],[Booll) -> [Int]
cache size ins =
runST (do arr <- newArray (0, size-1) 0
loop arr)

loop arr ((a:as),(d:ds),(True:bs))
= do x <- readArr arr a
xs <- loop arr (as,ds,bs)
return (x:xs)

loop arr ((a:as),(d:ds),(False:bs))
= do x <- writeArr arr a d
xs <- loop arr (as,ds,bs)
return (0:xs)

As the state is lazy, the result of each operation becomes
available immediately after it is performed—there is no need
to wait until all the state operations are performed. In-
deed, if as we expect the list were infinite, there would be
no end to the state operations. Conceptually, as the (infi-
nite) loop ‘loop’ executes, it defines more and more of the
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Figure 1. Typing Rules

output stream. Alternatively, as more and more of the out-
put stream i1s demanded by the rest of the program, more
and more of the state operations execute. However, and this
is an important caveat, the state operations are linearly or-
dered by the use of >>=, so the various reads and writes will
all be performed in the correct order whatever the pattern
of demand.

In summary, the cache component uses state internally
purely for efficiency. Externally, however, it is simply a lazy
stream transformer, which is exactly what the overall struc-
ture of the simulation requires. We have the best of both
worlds.

3.1 Types

We take ST 7' 7 as the abstract type of state computations.
Intuitively a computation of type ST 7’ 7 takes a state as
an argument and delivers a value of type 7 together with a
new state. Each state thread is indexed by a unique type.
Uniqueness is given by universal quantification, and this will
be seen to guarantee non-interference among different state
threads. The type (MutVar r' ) is the type of references
allocated from a state indexed by 7' and containing values
of type 7.

Definition 2 (Syntax of Types) Let o range over a set
of type variables {a, a1, a2,a°,...}. The set of types is in-
ductively defined as follows:

7° 7 u= Unit|Int] ... | (Types)
alr—1"|
ST r° 7' | MutVar 7° 7'
o = Yao|T (Type schemes)

The typing rules for our language are in Figure 1 and
they use the conventions above, that variously decorated
instances of «, 7 and o stand for type variable, type, and
type scheme respectively. In particular, «° is just a regular
type variable and 7° a regular type. The decoration is used
to provide a reminder that this variable/type occurs in the
state-type position of an ST or MutVar type constructor.

We let ? scope over type environments (partial mappings
from term variables to type schemes). A type judgment
? + e : 7 means that under the assumptions in the type
environment 7, expression e has type 7. To these rules must
be added the standard rules for the integer constants etc.

Of these rules, the only one to excite interest is the type
of runST. If we were not restricted to Milner-style polymor-
phism [14], we might make runST a constant with the type:

runST :: Vo . (Va°.8T o° o) — «

To fit the Hindley-Milner context, we make runST a language
construct with a typing judgment whose side condition sim-
ulates the nested polymorphism.

The reasoning behind the type of runST is as follows.
Every operation which manipulates a state thread is infected
with the type of that state thread: when >>= is used to
combine operations, the types of the state-thread have to be
the same (i.e., they become unified); every location returned
by newVar has the same state thread type as the thread
that created it; and every time a readVar or writeVar is
performed its MutVar argument belongs to the same state
thread in which the read or write 1s actually performed.

Then when a state thread is encapsulated by runST the
type system will only accept the encapsulation if:

1. the type of the state is still a variable; and
2. that variable is universally quantifiable.

If these two conditions hold then the state thread should
make no demands on its environment to provide, say, a
location to be read or written. If it did, the type of the
state thread would have been unified with the state type of
the location in the environment, and universal quantification
could not take place.

Launchbury and Peyton Jones [12] showed that the in-
tuition pans out by using a parametricity proof over the
denotational semantics presented in the next section. In
particular, they proved that the result of running a state
thread is independent of an arbitrary encryption of the lo-
cations generated by all other state threads.

The result we present in this paper is stronger, in that
we show syntactic non-interference (which certainly implies
the earlier behavioral non-interference), and in addition we
show type safety.

3.2 Denotational Semantics

The denotational semantics of the language is standard [12].
We present the semantics of reference cells and the state
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Figure 2. Denotational Semantics

monad combinators in Figure 2. We use this semantics as
the model against which our axioms are verified.

Another way to express the denotations of the state com-
binators i1s to give them Haskell definitions and apply the
standard mapping to these definitions. For example, the de-
notation of (e >>= e’) could be derived from the following

Haskell definition:
\s -> let (x,8’) = e s in e’ x 8’

In fact this is how the Glasgow Haskell compiler implements
the state combinators. (See Section 8 for more details.)

4 Axiomatic Semantics

The goal is to specify the semantics of our language via
a set of local axioms that can be used anywhere inside a
term (perhaps as optimizations). The interesting axioms
are clearly the ones related to reference cells and the store.
The axiomatization of references and stores is generally well-
understood for many languages [3, 5, 7, 8, 9, 13, 23, 24], but
is fairly subtle for our language.

The elegance of lazy stores has a price: it complicates the
semantics of the language. Indeed, some expected axioms
are unsound due to the laziness of the store. In many lan-
guages it is reasonable to expect that writing an expression
e to a location # and then immediately reading the location
z returns e [3, 16, 17, 23]. In our syntax, the potential axiom
is:

newVar e >>= Az.readVar z >>= ¢’
= newVar e >>= Az.c’e

Unfortunately the axiom is unsound—using the axiom we
would be able to transform:

let omega = omega

in do d <- writeVar omega 6
x <- newVar 0
a <- readVar x
returnST a

into the rather different:

let omega = omega

in do d <- writeVar omega 6
x <- newVar 0
returnST 0

Why are they different? The second makes less demand on
the store than does the first. The evaluation of the first
term needs access to the store in order to read the contents
of location x. But the store cannot be computed since the
first state transformer in the thread diverges (it cannot tell
which physical location should be updated by the writeVar).
In contrast the evaluation of the second term does not need
the store at all, and immediately returns 0. Had the location
in the writeVar subexpression been a known location, the
evaluation of both terms would have been equivalent. This
informal analysis suggests a way to fix the problem: only use
the axiom in special contexts where the store is guaranteed
to be well-defined.

Unfortunately there appears to be no easy syntactic way
to represent well-defined stores without resorting to a se-
quence of newVars followed by a sequence of writeVars as
the store can contain cyclic references. To avoid messy syn-
tactic patterns, we introduce a special construct:

sto {(p1,e1),...,(Pn,en)} €

that represents a well-defined initialization for the store. In
this store, location p; contains e;; the expressions e; are
naturally allowed to refer to the other p; so we can represent
cyclic structures in the store. This term form is similar in
structure to the pf.e term form of Wright and Felleisen [8,
13, 29] though the axiomatization is rather different to take
account of encapsulation.

Definition 3 (Syntax of Terms) Let p range over a set
of locations {p,p1,p2,...}. We extend the syntax of Defini-
tion 1 as follows:

v = ... |p
e = .| stofe

§ = {@meﬂh

The typing rule and denotational meaning for the new
constructs are in Figure 3. We view locations as a particu-
lar brand of term variable, with sto acting as a binding site.
Thus type environments can contain assumptions about the
type of locations, just as they do for the original brand of
variables, but unlike for term variables, locations can only
be bound to types and not type schemes [26]. It is straight-
forward to check that both the type and denotation of sto
generalize those of runST in the sense that:

(Store Bindings)

sto @ e = runST e
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In order to typecheck the sto expression, e has to typecheck
(the Vj is vacuous). The side condition on the type judgment
follows from the corresponding side condition on the type
judgment for runST. We therefore do not consider runST
independently in the remainder of the paper.

Before giving the axioms, we need to formalize one last
aspect of the lazy stores; we must define the position within
a state thread from which it is possible to immediately re-
turn without performing the rest of the stateful computa-
tion.

Definition 4 (Return Contexts R) The contexts are in-
ductively defined as:

R == []|e>»=Az.R

In other words, we can ignore all the computations to the
left of >>=; these will not performed unless they are somehow
explicitly demanded. In terms of the do notation, it means
that we should skip over the list of commands and attempt
to execute the last one first.

Figure 4 presents the correct axiomatization of the se-
mantics. The correctness of the axioms is easily established
by checking that the two sides of each equation are denota-
tionally equivalent.

The first three axioms are as expected in an applied
lambda-calculus. The next three axioms use the new sto
construct as motivated above; each primitive store opera-
tion performs its intended operation on the properly initial-
ized store fragment. The structural axioms correspond to
the three monad laws. Finally the return axioms show how
to compute the result of a state thread; there is an axiom
for each kind of syntactic value.

5 Operational Semantics

Having defined the axioms, we need evaluation contexts that
guide the use of the rules in a standard reduction sequence
leading to the answer. Because of the lazy nature of our
store, the definitions of the reductions is actually intertwined
with the definition of evaluation contexts [1, 2]. Intuitively,
“needed” variables within subterms correspond to those vari-
ables that occur in evaluation context positions. Therefore,
we define evaluation contexts first.

5.1 Evaluation Contexts

Defining evaluation contexts already requires much under-
standing about the semantics of our language. In our case
the definition is rather involved and we proceed slowly.

The definition of return contexts (Definition 4) shows
that we should skip over the list of commands and attempt
to execute the last one. If this last command requires a vari-
able that results from an earlier computation, then we must
attempt to perform that computation. Also if a command
attempts to perform an operation that is strict in the store
like newVar, readVar, or writeVar, then we must also step
back and perform all the earlier computations. Formally we
can express these chains of dependencies as follows. The
definition uses the yet-to-be-defined evaluation contexts E.
At this point the reader may pretend that all evaluation
contexts are the empty context to get the intuition behind
the concept of dependencies.

Definition 5 (Dependencies D) The first three clauses
express that variable x is needed by a state transformer. The
last two clauses express that variable x is needed because an-
other sequence of variables was recursively needed.

D = Az. R

>>= Elz]]

— e

The definitions of dependencies and evaluation contexts
are mutually recursive.

Definition 6 (Evaluation Contexts E) The set of con-
texts is inductively defined as:

E = [1/Fel|k P
| sto 6 R[E]
| sto  R[returnST F]
| sto 8 R[e >>= E]
| sto 8 R[E >>= D]
| sto 8 (readVar E >>= D)

S —

| sto 8 (writeVar E e >>= D)

The first three clauses in the definition of evaluation contexts
define the usual contexts for call-by-name languages. The
remaining contexts are used when evaluated a state thread.
The next three contexts combined keep demanding the right
argument of >>= until they reach the last state transformer
in an R sequence. If that state transformer is a returnST
then we demand the value of its subexpression. If on the
other hand, the last state transformer demands a variable,
then we backtrack following the previously defined chains
of dependencies demanding state transformers on the left
of >>=. Finally the operations readVar and writeVar are
strict in their first argument which is the location to read or
write.
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Figure 4. Axioms

For example, using evaluation contexts and dependen-
cies, we could rewrite the following term:

sto {} (newVar (3+2) >>= \x ->
readVar x >>= \a ->
readVar x >>= \b ->
writeVar x (let y=y in y) >>= \_ ->
returnST (a+b))

as:
sto {} (mewVar (3+2) >>= D)

The reasoning is that the last state transformer demands
the variable a:

sto {} (newVar (3+2) >>= \x ->
readVar x >>= \a -> RlreturnST E[all)

where E is ([ ] 4+ b). Then, using the definition of D, the
demand for a propagates to a demand for readVar = which
demands the result of the newVar.

In contrast the term:

sto {} (writeVar (let y=y in y) 6 >>= \_ ->
newVar 0 >>= \x ->
readVar x >>= \a ->
returnST a)

would be decomposed as follows:
E[(let y=y in y)]

This formalizes the observation in the previous section that
the evaluation of the first term terminates but the evaluation
of the second term diverges.

5.2 Faulty Expressions

If typechecking guarantees anything, it is that certain bad
expressions never occur. Apart from the usual errors (for
example, adding a boolean to a character) we are interested
in avoiding a whole group of bad expressions that have to do

with the state. These are expressions that attempt to read
or write to a state location which is not part of the local
thread, or which return a state location as the result of an
encapsulated thread. The fact that the type system catches
these is perhaps the noteworthy aspect of this formulation
of state.

Definition 7 (Faulty Terms) Let p range over locations,
v range over syntactic values, and w range over the following
syntactic values: k, p, or (Az.e). An expression e is faulty
of it is one of the following:

v e, and v is neither a lambda expression nor a con-
stant k (a non-function in function position),

o k v, and 6(k,v) is undefined (undefined basic opera-
tion),
o sto 6 (readVar v >>= D), sto 0 (writeVarve' >>= D),

and v is not a location (a non-location in location po-
sition).

sto 8 (readVar p >>= D), sto § (writeVarp e’ >>= D),
and p is not in the domain of 8 (interference between
separate state threads).

sto § R[returnST p], and p is in the domain of 8 (ex-
porting private locations),

sto 8 R[w], sto § R[w >>= D] (a non-state-operation
where one was expected),

sto § (R[e' >>=v]), and v is not a lambda expression
(a non-function in function position),

5.3 Reductions

We now use evaluation contexts to restrict the axioms in two
ways. First, the patterns of some of the axioms are restricted
to avoid infinite reduction sequences that perform no useful
work, and to avoid interference between the axioms. For
example, we certainly would not want to repeatedly rewrite



Computational Reductions:

(Az.e)e’
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kv
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sto § R[returnSTe >>= D] ——
sto § R[(e1 >>=ey) >>=D] ——
sto § R[s] ——

Return Reductions: (Orient Return Axioms from left to right.)
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sto § R[s >>= Az.returnST z]

Figure 5. Standard Reductions

an expression e to (e >>= Az.returnST z). Second, during
evaluation, we only perform reductions that are demanded
by an evaluation context.

Figure 5 presents the reductions of the language. The
main restrictions with respect to the axioms are that the use
of the structural axioms has been restricted to cases where
it is actually useful to make progress in a computation. Also
the primitive store operations are not performed unless their
results are demanded via a chain of dependencies D.

Given the complexity of our evaluation contexts, reduc-
tions, and faulty expressions, how do we know, for example,
that we didn’t forget one kind of faulty expression. The fol-
lowing proposition which is used to prove type soundness
later, verifies that the above definitions are consistent and
complete.

Proposition 1 Every term e is either a syntactic value or
can be uniquely partitioned into the form E[T]| where T is
either:

o a variable not bound in F,
o a faulty term (see Definition 7), or
o a redex (see Figure 4).

Proof. The proof is by induction on the structure of e and
proceeds by cases. All cases are straightforward except the
case e = (sto 8 e') which requires an additional induction
as follows:

(i) First we show by induction on the number of occur-
rences of >>=in e’ (and using the main inductive hy-
pothesis too) that e’ must be in one of the following
forms:

— R[E[T]] or R[e >>= F[T]] or R[E[T] >>= D] where
T is faulty, a redex, or a variable bound in neither

R nor F,
— R[v], where v is not of the form >>=,
— R[e >>=v] or R[v >>= D]
(i)

Second we show that the main claim applies to the
expression (sto 6 ¢') where €’ is given by one of the
forms in (i).

Having split the proof as above, both subproofs are now
straightforward.

Corollary 1 FEvery closed term e s either a syntactic value,
or the form E[T] where T is either faulty or a redez.

6 Type Soundness

The type soundness proof closely follows the subject reduc-
tion proofs by Wright and Felleisen [29], providing extra
evidence that their techniques are widely applicable. There
are two cases where the proofs make clear the réle of the
typings we provide, and in particular, the way in which the
type rule for runST provides safe encapsulation. These cases
will be done in some detail.

Once the operational semantics and type system have
been defined, the general form of the syntactic type sound-
ness proof is as follows:

(i) Show that reduction in the operational semantics pre-
serves well-typing. This is called subject reduction.

(ii) Show that faulty expressions are not typable.

If programs are closed and well-typed, then we can put
together the previous results as follows: By (i), evaluation of
the program will only produce well-typed terms. By Corol-
lary 1, every such term is either faulty, or a syntactic value,
or contains a standard redex. The first case is impossible
by (ii). Thus either the program reduces to a value of the
correct type, or it diverges. We prove the above points (i)
and (ii) in the remainder of the section.

6.1 Subject Reduction

The subject-reduction lemma states that a well-typed term
remains well typed under reduction. Hence, if ever a readVar
or writeVar is performed, for example, the expression ex-
tracted from the state will not introduce a type error when
it is substituted into the receiving term. In other words,
if a variable claims to hold an Int — Int function, then
indeed it does (and not a Bool — Bool function as in the
introduction).

The reason that this works out correctly is that no lo-
cations can ever be assigned a type scheme such as {ps :
Va.MutVar o° a}. If such a typing were possible, then we
could easily duplicate the counterexample in the introduc-
tion.

As usual, the proof of subject reduction relies on other
standard lemmas, most notably the substitution lemma.

Lemma 1 (Substitution) If ?[¢ — Va,.7'| F e : 7 and
z & dom(?) and ? ke’ 7' and {o;}i N FV(?) = 0 then
?hele/z]:T



In our context this lemma is a generalization of Wright
and Felleisen’s Lemma 4.4 in two ways: we require substitu-
tion of arbitrary expressions rather than of syntactic values
only; and we need to show the sto form causes no problems.
The first of these generalizations is handled by a trivial ex-
tension of the proof of Lemma 4.4, and the second similarly
from the proof of the corresponding lemma dealing with the
pf.e form (Lemma 5.3).

Once the substitution lemma is shown, subject reduction
follows fairly easily.

Lemma 2 (Subject Reduction) If? Fe:7 ande — ¢’
then? Fe' 7

Proof. The proof proceeds by case analysis on the reduc-
tions e — e’. Most of the cases are standard, and are
a minor generalization of the proof found in Wright and
Felleisen, so we will not rehearse them here. The only in-
teresting cases are for the various instances of sto. We will
exhibit two instances to show the general form.

Case:
sto {p: — ei}; (readVar p >>= D) —
sto {pi — ei}i (D ex) where there exists an i such that
Pi = Pk.
By assumption we know that:

? Fsto {pi — ei}; (readVar p; >>= D) : 7,

but in order to be able to deduce this we must have been
able to show all of the following:

e forall j, 7 U{p; : MutVar «®° =s}; F e, : 75,
o ? U{p; : MutVar o°® r;}; F pj : MutVar o°® 7/,
o 2 U{pi :MutVar o® s}, F D: 7' — ST a1

where a® ¢ FV(r,7) (the latter two judgments follow after
an application of the rule for >>= and for readVar). It is
clear from the second of these that ' and 7 are equal.

In order to typecheck the right hand side we need to be
able to show that:

e forall j, 7 U{p; : MutVar «® =s}; F e, : 75,
o ? U{p; : MutVar o® 7y }; Fep: 7',
o 7 U{p :MutVara® s }i b D7 = 8T a1

where, again, a® € FV(r,7). Given that 7’ is equal to 7%,
all these follow from the above.

Case:
sto {pi — ei}; (returnST (Ay.e)) —
Ay.sto {pi — €;}; (returnSTe)

Again, by assumption we know that:

? F sto {pi — ei}: (returnST (Ay.e)) : 7 — 7

(here we have jumped to the conclusion that the result type
must be a function type—it just simplifies the presentation).
In order to be able to deduce this judgment we must have
been able to show:

e forall j, 7 U{p; : MutVar «® =s}; F e, : 75,

o " U{y:r}U{pi:MutVar o®° rs}i b e: 7

where a® € FV(r — 7/,7).
In order to typecheck:

? F Ay.sto {pi — €;}; (returnSTe) : 7 — 7

we must show that:

!

?U{y:7}Fsto{pi— e}i (returnSTe): 7
which, in turn, requires all of the following:
e forall j, 7 U{y:7}U{pi: MutVar a® ri}; Fe; : 75,

!

e TU{y:7}U{p; : MutVar a®° ri};i b e: 7
where, this time, «® € FV(r',? U{y : 7}). In fact, the
side condition is the only thing that requires any thought,
and that follows immediately from the fact that FV(r —
7)) = FV(r',? U{y : 7}) since y does not occur in ?.
This final case is one place which motivates the choice of
the side condition on «° in the type rule for sto. It clearly

would not be enough simply to restrict «° from appearing
in the free type variables of 7 without mentioning the result

type 7.
The other cases all follow the same form, so concluding
the proof.

6.2 Faulty Expressions

Lemma 3 If an expressione is faulty, then it is not typable.

Proof. Each case in the Definition of faulty expressions
(Definition 7) is treated separately. We show how expres-
sions with interfering state threads are not typable:
Case: sto {p; — e;}; (readVar p >>= D) where p & {p:}:.
To typecheck the expression in a context 7, we must show
the following:

e forall j, 7 U{p; : MutVar «® =s}; F e; : 75, and

e 7 U{p; : MutVar a® 1;}; F readVar p >>= D : 8T a° 7

where a° ¢ FV(r,7). To satisfy the second requirement,
we must show that there exists a 7' such that:

? U {p; : MutVar o° r;}; F readVar p : ST a° !
which in turn requires that:
? U {p; : MutVar o° = }; F p : MutVar o° !
By assumption, p & {p;}:, hence we require:
? F p:MutVar o° 7

which implies that ? must contain an entry p : MutVar o° 7'.
But the side condition on sto states that a° is not a free
type variable in 7: a contradiction. In other words, type-

checking fails if there is any possibility of a “segmentation
fault” across state threads.



7 Other State Operations

The State in Haskell paper [12] presented two other oper-
ations on the state. The first eqVar tests for equality of
locations; it has the type:

eqVar :: MutVar o® 7 — MutVar o° 7 — Bool

It introduces no difficulties to the foregoing material. The
second, £ixST, does.

The purpose of £ixSTis to allow recursive bindings within
the state monad. The usual recursion gained from let al-
lows us to define recursive state transformers (while-loops
and the like), but £ixST provides and entirely new facility.
Using the do-notation we might like to write:

data IntNVar s = Pair Int (MutVar s IntNVar)

makeLoop = do v <- newVar (Pair 7 w)
w <- newVar (Pair 2 v)
returnST w

in which the v and w are both in scope for each of the
newVar operations. Upon executing these operations, the
store would construct a cycle, and the location w would be
returned. Note that even though the definition is recursive,
the two store operations are each performed once only.

For recursive definitions like this, one would expect to
use a fixed point operator, and this case is no exception.
We want an operator:

£ixST: (o = ST a’ a) = ST’ «

From a denotational perspective this is fine. We could define
the meaning of £ixST as:

E[£ixSTp f 6
where g(p)

I_liZO gi(_’_)
f(mip) o

or more loosely, as the expansion:

fixST e = \s -> let (x,8’) = e x s
in (x,s8’)

Using £ixST and the usual do-notation, we could define our
recursive store above by:

makeLoop = fixST
(\w -> do v <- newVar (Pair 7 w)
w’ <- newVar (Pair 2 v)
returnST w’)

There are however two problems with all this. First, the
inclusion of £ixST breaks some axioms that would otherwise
be sound. However, that is a price we have to pay if we desire
the functionality of £ixST. Second, and more seriously, the
call-by-name axiomatization of £ixST is problematic. We
will describe each of these in more detail.

7.1 Sequencing Axioms

In the absence of £ixST, it is reasonable to expect that a read
and a write that refer to different variables can be performed
in any order as they will not affect each other. Because of
aliasing this is often difficult to determine, but we might
expect the following to hold:

newVar e >>= Ax.writeVary e’ >> ¢
= writeVarye' >> newVar e >>=Az.e’ (2 #y)

as ¢ and y “clearly” refer to different variables. Unfortu-
nately such an axiom is unsound in the presence of £ixST
as it equates the following two terms:

£ixST (\y->newVar 0 >>= \x->
writeVar y 1 >>
returnST x)

£ixST (\y->writeVar y 1 >>
newVar 0 >>= \x->
returnST x)

According to the semantics, the denotation of the first term
is non-bottom and the denotation of the second term is bot-
tom. To understand the problem, we expand and inline the
state combinators:

\s0->let (y,sl) let (x,82) = newVar 0 s0
(_,s3) = writeVar y 1 s2
in (x,s3)

in (y,s1)

\s0->let (y,sl) let (_,s82) = writeVar y 1 s0
(x,s3) = newVar 0 s2
in (x,s3)

in (y,s1)

When applied to a store, the evaluation of the first term de-
mands (x,s3) which demands (x,s2). Thus the first com-
putational step is to create a location x with initial value
0. This binds y to the new location which makes the write
operation well-behaved. In contrast the evaluation of the
second term demands (x,s3) which demands s2 (remember
that newVar is strict in its store argument) which demands
y which demands x which demands s2. In other words the
evaluation of the second term diverges.

To address this problem we are simply careful not to
include axioms that change the order of state operations,
even when such changes are apparently safe. These axioms
are not needed for evaluation anyway.

7.2 Call-by-Name and fixST

In general the axiomatic semantics of fixed point computa-
tions is expressed by unwinding the recursion. For example,
the usual semantics for the fixed point combinator on values
fix is:

fixe=e (fix €)

Using this idea, it is a simple exercise to derive the following
semantic equivalence for £ixST:

sto § (£ixST e’ >>=¢)
= stod (¢ (stof (£fixSTe')) >>=¢) (%)

To understand the intuition, remember that (sto 6 €) evalu-
ates the computation e in the state thread 6. If this evalua-
tion terminates, it yields a final value and a final state. The
final state i1s ignored and only the final value is returned.
Thus the equivalence illustrates that only values (but not
stores) are propagated across the unwindings.

So what’s the problem? The problem is that the right
hand of the equivalence does not typecheck! Consider a
location in e’; both the outer and inner state threads may
attempt to access that location. This is exactly the kind of
situation that the typing of runST is designed to avoid!



The discussion points to a fundamental problem with
£ixST. The construct £ixST expresses the computation of a
recursive value that takes one input store and returns one
final store. Any unwinding of the recursive computation
must do some non-standard manipulation of the store, e.g.,
duplicating a store, or ignoring a store. As we have seen
duplication of the input store is likely to produce untypable
terms and it is impossible to ignore a store using our com-
binators. In other words, it appears that in a call-by-name
world the combinator £ixST needs to be restricted in or-
der to make sense. Here we restrict its type to prevent any
recursive values that use the store:

The:T—8Ta’ T
?FHfixSTe: ST a® T

a® g FV(r)

With this restriction our axiom (%) is sound and typable.

In versions of Haskell incorporating £ixST, there is no
such type restriction. We believe that the full rule will only
make sense in an explicit call-by-need setting in which re-
ductions do not duplicate state threads.

8 Implementing Monadic State in GHC

The Glasgow Haskell compiler (GHC) implements monadic
state by expanding the monadic combinators to pure Haskell.
This is fine so long as either we refrain from performing arbi-
trary call-by-name transformations on the code, or we give
up on destructive update. Part of the motivation for this
current work was the desire to be able to retain both.

In more detail, the common implementation strategy [12]
for Haskell’s extension with built-in monads is to:

1. translate the source programs by expressing and in-
lining returnST, >>=, and runST in the intermediate
language of the compiler,

2. apply full compiler optimizations to the resulting in-
termediate programs, and

3. instruct the code generator not to generate any code to
pass the state around and to generate destructive ver-
sions of newVar, readVar, and writeVar that operate
on a global store.

Following this strategy, consider the following source pro-
gram:

newVar 0 >>= Ap.

writeVar p 5 >>

readVar p >>= Av.

returnST v)

runST (

whose evaluation according to the denotational semantics
produces 5. After inlining the monadic combinators (runST,
>>=, and returnST), and doing some simplifications, we get
a program in the compiler’s intermediate language:

fst (let (p,sl) = newVar 0 s0

(_,s2) = writeVar p 5 sl
(v,83) = readVar p s2
in (v,s3))

where g0 is the initial store. If the compiler only per-
forms call-by-need optimizations that only duplicates syn-
tactic values, the evaluation of this intermediate program
produces the correct answer 5 even if the operations newVar,
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writeVar, and readVar ignore the store argument and per-
form side-effects on a global store. However, using the call-
by-name reasoning principles that are valid in Haskell, we
can transform this program as follows:

fst (let d1 = newVar 0 s0
d2 = writeVar (fst d1) 5 (snd di1)
(v,s3) = readVar (fst d1) (snd 42)
in (v,s3))
fst (let d1 = newVar 0 s0
(v,s3) = readVar (fst di1)
(snd (writeVar (fst di1)
5
(snd d1)))
in (v,s3))

fst (let (v,s3) = read (fst (newVar 0 s0))
(snd (writeVar
(fst (newVar 0 s0))
5
(snd (newVar 0 s0))))

in (v,s3))

If newVar were a pure function, then all the occurrences
of (newVar 0 s0) would evaluate to the same location, and
the program would evaluate to the expected answer 5. How-
ever, an implementation of the operations newVar, writeVar,
and readVar that ignores the store argument and performs
side-effects on a global store will not produce the answer 5.
To understand why, note that the expression (newVar 0 s0)
has been duplicated several times; each evaluation of this
expression will create a fresh location. It follows that the
location in which 5 is written is not the same location from
which we attempt to read.

The counterexample reveals that call-by-name and call-
by-need evaluations of the intermediate program do not co-
incide. In other words, the compiler’s intermediate language
is not purely functional and hence must be optimized with
care. Not only can § steps in the compiler cause severe
performance problems; for example by duplicating expen-
sive computations [2], but more drastically, they are un-
sound. Fortunately, even before the monadic extensions,
most Haskell compilers were careful not to duplicate work
and hence refrained from using f steps for performance rea-
sons. Consequently, the addition of assignments to the back
end did not cause any problems for such compilers.

9 Related Work

The Ayar system [17] is very similar in spirit to state in
Haskell, and hence to the work presented here. A pure
construct was introduced that played the role of runST in
that it encapsulated imperative computations, guarantee-
ing their external purely functional behavior. Two methods
were presented by which this can be achieved. The first was
to demand an explicit expansion of the whole of the spine
of the monadic computation so that a run-time check could
ensure that the variables referenced were indeed local. Of
course this would be prohibitively expensive in practice, and
it seems impossible to generalize to lazy state.

As an alternative, a type system was proposed which
statically ensured that the state threads were pure [4]. Like
early versions of ML, the type system had two sorts of type



variables (applicative and imperative). In addition, the typ-
ing judgment for pure demanded that only applicative types
appeared in the type environment and in the result type—
much more restrictive than the Haskell solution. Unfortu-
nately, the type system is now known to be incorrect. Re-
ductions may change the set of free variables in a term, so
the purity condition, which only restricts the types of free
variables, can be circumvented. As a consequence, subject
reduction fails. The problem was corrected by adapting the
Haskell solution [20].

The work on region inference is also remarkably simi-
lar [27]. Our sto construct is essentially creating a new
region and initializing it. However, in contrast to the re-
gion language, an expression in our language cannot access
variables in several regions.

The type-based encapsulation works well in Haskell be-
cause the explicit use of the state monad (and others) pro-
vided a ready home for the extra type variable. Could such
a thing be done in ML? One method might be through
something like effects annotations [25] or, indeed, through
a region inference system, but there are many details to be
worked out.

Finally, the parametric models of local variables have
strong semantic similarities to the work here [18]. A deno-
tational semantics has to generate new local variables every
time a new block is entered. By using parametricity, these
variables can be hidden from the outside world. In our set-
ting, where variables are first class values, we need to have a
similar feature within the language, hence the type of runST.

10 Conclusion and Future Work

In terms of its relation to future developments in under-
standing and controlling effects, the most exciting aspect of
this paper is the clarification of the mechanism for encap-
sulation. This mechanism is so powerful that it permits the
type system to guarantee that references (and hence effects)
cannot be perceived outside of the encapsulation barrier.
This means that a computation could use state internally
to achieve efficiency, yet show a guaranteed pure face to the
outside world, without having to do any expensive run-time

checks.

10.1 Typechecked Segmentation

Given the spread of run-time mechanisms used for checking
locality of references, from operating system segmentation
checks to mechanisms for encapsulating effects in functional
languages [10, 21, 22] it is perhaps surprising to discover that
the type system is quite strong enough to do it statically.
Of course, the fact that type systems can figure out the
lifetimes of references has been known for some time [6].
What distinguishes our solution based on runST is that it
requires such minor changes to the language.

To give some ideas of the accuracy achieved by this mech-
anism it is worth noting that it is quite feasible to have one
state thread manipulate locations belonging to another quite
separate thread. As long as no attempt is made to derefer-
ence these other locations, the type system does not unify
the state-type parameters of the locations with the state-
type of the thread. Under these conditions, the host thread
could build and traverse a graph containing the foreign lo-
cations, perhaps duplicate or discard the locations, or build
them into data structures, eventually to be returned, pre-
sumably, to the owning thread for it to dereference at will.
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Through all this the type system is able to track that the
threads do not interfere with each other, and that they are
indeed separate state threads.

10.2 Nested Scopes

The principle behind runST can be generalized to provide
nested scope. We could introduce two constants:

blockST
importVar

(V88T (a,8) 7) = ST a T
MutVar o 7 — MutVar (o, ) 7

(actually, like runST, we would introduce blockST as a lan-
guage construct with a typing judgment that simulated the
nested polymorphism in its type). Using importVar we can
explicitly allow variables from an enclosing scope to be ma-
nipulated by the inner scope. For example,

f = do a <- newVar 0
b <- newVar True
blockST (g (importVar a))
v <- readVar a
returnST v

g x = do ¢ <- newVar "hello"
writeVar x 1
returnST ()

The type for blockST guarantees that the variable c is only
used in the inner scope. It is not exported to the outer scope
in any way. This provides a firm notion of local pointer, one
that cannot be accessed outside the block.

In practice, we might like even finer control than this.
Extending the system to provide only read access in inner
scopes (and not write access) is easy to achieve (MutVars
need to take two state variables: one to say which thread
can do reads, the other to say which can do writes), but
the more challenging control of, say, dividing an array into
two distinct parts to be worked on concurrently seems much
harder to achieve.

10.3 Type-encapsulated Exceptions

State is a natural first application for this technique, but it
is bound to be applicable to others like exceptions and con-
tinuations. The trick to success here is finding a formulation
of the basic operations which is both natural and convenient
while succumbing to the extra type variable technique.

As an example, we present a formulation of exceptions
which allows us to use the same type-encapsulation tech-
nique. We need two new abstract type constructors: the
monad of exception-raising computations ET « 7, and the
type Exn o of exceptions raised in thread o; together with
the following operations:

runET 7— (VaETar)— 1
newExn ET o (Exn a)
raiseExn Exna —ETarT
handleExn ETar— (Exna,ETa 7) = ETa 7

The first argument to runET is a default value used to replace
any uncaught exception. The operation newExn dynamically
creates a new exception, which can be handled by any han-
dler that is executed within the same monadic thread.



10.4 Call-by-need Semantics

Within the narrower scope of state in Haskell, this paper
suggests that there is something significant to be gained
in moving to an explicit call-by-need semantics of monadic
state, in that £ixST would lose its side condition. It would
be in this setting also that we should expect to be able to use
an axiomatic semantics to establish formally the correctness
of destructive implementations of monadic state.
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