
Monadic State: Axiomatization and Type SafetyJohn Launchbury Amr SabryOregon Graduate Institute Department of Computer ScienceP.O. Box 91000 University of OregonPortland, OR 97291-1000 Eugene, OR 97403jl@cse.ogi.edu sabry@cs.uoregon.eduAbstractType safety of imperative programs is an area fraught withdi�culty and requiring great care. The SML solution to theproblem, originally involving imperative type variables, hasbeen recently simpli�ed to the syntactic-value restriction. InHaskell, the problem is addressed in a rather di�erent wayusing explicit monadic state. We present an operationalsemantics for state in Haskell and the �rst full proof of typesafety. We demonstrate that the semantic notion of valueprovided by the explicit monadic types is able to avoid anyproblems with generalization.1 IntroductionWhen Launchbury and Peyton Jones introduced encapsu-lated monadic state [11, 12], it came equipped with a de-notational semantics and a model-theoretic proof that dif-ferent state threads did not interact with each other. Theencapsulation operator runST had a type which staticallyguaranteed freedom of interaction, and the guarantee reliedon a parametricity proof. What the paper failed to providewas any formal reasoning principle at the syntactic level, orany proof of type safety. This paper makes up for thoseshortcomings. In particular we:� axiomatize the monadic-state operations: this allowsus to view the monad of state transformers as an ab-stract type and understand formally how it should be-have. Previously, the choice was between an informalunderstanding, or a rather heavy-weight denotationaldescription.� prove type safety: if I have a variable that claims tocontain a list of integers, say, will it truly do so? ormight the type system have become confused? By us-ing the axiomatization as a reduction relation we areable to use standard techniques to show type safety ofthis system.� prove syntactic non-interference: our proof shows thatif ever a state-read or -write is about to be attempted,then the type system guarantees that the reference islocal.To appear in: ACM SIGPLAN International Confer-ence on Functional Programming, 1997

Our formal investigation reveals two subtle points thatthe previous informal reasoning failed to uncover. First,arbitrary beta-reduction is unsound in a compiler whichencodes state-transformers as state-passing functions|anycompiler that implemented the denotational semantics di-rectly would have to take great care never to duplicate thestate parameter. Second, the recursive state operator fixSTcannot be interpreted na��vely in call-by-name, but reallyneeds call-by-need to make sense.2 Imperative TypesWe begin by reviewing the issue of type safety. The needfor a special care arises in SML because of examples like thefollowing:let val r = ref (fn x => x)in (fn _ => !r 4) (r := not)endThe variable r is given the type 8�:(�! �)ref , which sub-sequently uni�es with both the integer and the boolean uses.Intuitively, the problem is that the let has generalized overtype variables that actually occur free in the state.The solution adopted for many years is to have a classof \imperative type variables" [26] and only to generalizeover these if the expression being bound by let is syntac-tically a value. Due to Wright's observations [29] this hassince been simpli�ed [15] to treat all type variables as ifthey were imperative type variables, and so collapsing thetwo tier structure.Why do these problems not occur in Haskell when usingmonadic state? The precise answer comes from the prooflater in the paper, of course, but we can provide intuitionhere. When working within the state monad (or any otherexplicit monad, for that matter) the facilities provided bylet are given by the use of monadic extension (a bind op-erator in Wadler's terminology [28], thenST in the Statein Haskell papers, or >>= in Haskell 1.3 notation). Thistakes a computation|a term of type M A where M is themonadic type constructor|together with a function of typeA ! M B. Intuitively, the �rst term is executed, deliveringa value of type A which is then passed as an argument tothe function whose subsequent computation is also executed.The value is passed according to regular function applica-tion, so the type A in A ! M B is a regular type, not atype scheme. The intermediate values within a computationare lambda-bound, therefore, rather than being let-bound.



That's the intuition. The fact that it works relies onthe correct interplay of a number of di�erent aspects of thesystem (in what comes later, for example, if the typing judg-ment for runSTwere relaxed, then type safety would be lost).One way of viewing all this is that the Haskell type systemmakes a distinction between computations with no e�ects(which we call semantic values) and computations that mayhave e�ects (which we simply refer to as computations). Se-mantic values are bound with the let construct and theirtypes can be generalized; results of computations are boundwith the >>= construct and their types cannot be general-ized. Hence, like SML, Haskell's let only performs gener-alization over values, not over the results of computations.However, unlike SML, the Haskell notion of value is seman-tic and hence richer. For example, in Haskell the expression((�x:x) (�y:y)) is classi�ed as a semantic value whose typecan be generalized, but not in SML.3 State in HaskellOur source language is an extension of the call-by-name �-calculus with several constants and two language constructs:let and runST (later we will add a third).De�nition 1 (Syntax of Terms) Let x range over a setVars of variables fx; x1; x2; : : : ; y; z; : : :g. The set of terms� is inductively de�ned as follows:Simple Constants:k ::= () j 0 j 1 j � � � j + j � � �Primitive Store Operations:s ::= newVar e j readVar e j writeVar e e0Syntactic Values:v ::= k j �x:e j e >>= e0 j returnST e j sTerms:e ::= x j v j e e0 j runST e j let fxi = eigi in e0We let k range over an unspeci�ed set of simple constantslike numbers and addition. The constants newVar, readVar,and writeVar express the usual operations on reference cells.The constants returnST and >>= are the unit and bind oper-ations of the state monad respectively. Expressions built upfrom these state-transformer operations are treated as syn-tactic values. These syntactic values will be used to specifythe operational semantics of the language, but not to guidegeneralization of type variables. The expression (runST e)is an eliminator for state-transformer expressions e. Theoperational intuition behind runST is that it executes e ina newly created state thread, returning the �nal value pro-duced by e while discarding the �nal state. The state inthe thread is neither accessible nor visible from outside the(runST e) expression.In the examples, we sometimes use the Haskell 1.3 donotation [19]. This construct acts like a non-recursive letover computations and is de�nable in terms of >>=. Forexample, the following code:let omega = omegain runST (newVar (3+2) >>= \ p ->readVar p >>= \ v1 ->readVar p >>= \ v2 ->writeVar omega 6 >>= \_ ->returnST (v1+v2))

where we have used the Haskell notation for lambda expres-sions (\x->e) instead of the mathematical notation (�x:e),could be rewritten as follows:let omega = omegain runST (do p <- newVar (3+2)v1 <- readVar pv2 <- readVar pwriteVar omega 6returnST (v1+v2))To get an informal feeling for the types and semantics ofthe expressions, we intuitively explain the evaluation of theabove fragment. First, we bind omega to some (semantic)value and then create a new state thread. In this thread, weallocate a reference cell p and initialize it to (3+2). The cellis then dereferenced twice and the results are added. Oncethe values of v1 and v2 are determined, no more state op-erations are performed as the �nal result is now de�ned. Inother words we have a lazy store semantics in which statethreads are executed on demand, and values may be re-turned before the computation has been completed. Hencethe assignment to the uncalculable location omega does nota�ect the �nal result which is 10.Why bother with lazy stores? The answer is that lazystores have a clean interaction with the lazy semantics of theunderlying language, and provide elegant ways to expressimperative functional programs, as the following exampleillustrates.The example is drawn from stream-based simulation, inparticular simulating a local data cache within a micro-processor (for our purposes here we will assume no cachemisses). The contents of the stream represent the values ofthe input and output wires over time. The input streamsto the cache will contain addresses, data, and a booleanread/write ag. The output stream will contain the mem-ory contents for a read, and 0 if a write was performed.As the cache will contain thousands of randomly acces-sible locations, a destructive array is the obvious choice formodeling the contents. We therefore use the store prim-itives readArr and writeArr, which are the the obviousgeneralizations to arrays of the operations on single loca-tions. Here's the code in Haskell, where the �rst parameterto cache is the size, the second parameter contains the threeinput streams, and the result is the output stream:cache :: Int -> ([Int],[Int],[Bool]) -> [Int]cache size ins =runST (do arr <- newArray (0, size-1) 0loop arr)loop arr ((a:as),(d:ds),(True:bs))= do x <- readArr arr axs <- loop arr (as,ds,bs)return (x:xs)loop arr ((a:as),(d:ds),(False:bs))= do x <- writeArr arr a dxs <- loop arr (as,ds,bs)return (0:xs)As the state is lazy, the result of each operation becomesavailable immediately after it is performed|there is no needto wait until all the state operations are performed. In-deed, if as we expect the list were in�nite, there would beno end to the state operations. Conceptually, as the (in�-nite) loop `loop' executes, it de�nes more and more of the2



� ` k : �k � [ fx : �g ` e : � 0� ` �x:e : � ! � 0 � ` e1 : ST �� � � ` e2 : � ! ST �� � 0� ` e1 >>= e2 : ST �� � 0� ` e : �� ` returnST e : ST �� � � ` e : �� ` newVar e : ST �� (MutVar �� �) � ` e : MutVar �� �� ` readVar e : ST �� �� ` e1 : MutVar �� � � ` e2 : �� ` writeVar e1 e2 : ST �� Unit � [ fx : 8�i:�g ` x : � [�i=�i]� ` e : � 0 ! � � ` e0 : � 0� ` e e0 : � � ` e : ST �� �� ` runST e : � �� 62 FV (�; �)8j:�[ fxi : �igi ` ej : �j � [ fxi : 8�ji:� igi ` e0 : � 0� ` let fxi = eigi in e0 : � 0 �ji 2 FV (�i)� FV (�)Figure 1. Typing Rulesoutput stream. Alternatively, as more and more of the out-put stream is demanded by the rest of the program, moreand more of the state operations execute. However, and thisis an important caveat, the state operations are linearly or-dered by the use of >>=, so the various reads and writes willall be performed in the correct order whatever the patternof demand.In summary, the cache component uses state internallypurely for e�ciency. Externally, however, it is simply a lazystream transformer, which is exactly what the overall struc-ture of the simulation requires. We have the best of bothworlds.3.1 TypesWe take ST � 0 � as the abstract type of state computations.Intuitively a computation of type ST � 0 � takes a state asan argument and delivers a value of type � together with anew state. Each state thread is indexed by a unique type.Uniqueness is given by universal quanti�cation, and this willbe seen to guarantee non-interference among di�erent statethreads. The type (MutVar � 0 �) is the type of referencesallocated from a state indexed by � 0 and containing valuesof type � .De�nition 2 (Syntax of Types) Let � range over a setof type variables f�;�1; �2; ��; : : :g. The set of types is in-ductively de�ned as follows:��; � ::= Unit j Int j : : : j (Types)� j � ! � 0 jST �� � 0 j MutVar �� � 0� ::= 8�:� j � (Type schemes)The typing rules for our language are in Figure 1 andthey use the conventions above, that variously decoratedinstances of �, � and � stand for type variable, type, andtype scheme respectively. In particular, �� is just a regulartype variable and �� a regular type. The decoration is usedto provide a reminder that this variable/type occurs in thestate-type position of an ST or MutVar type constructor.We let � scope over type environments (partial mappingsfrom term variables to type schemes). A type judgment� ` e : � means that under the assumptions in the typeenvironment �, expression e has type � . To these rules mustbe added the standard rules for the integer constants etc.

Of these rules, the only one to excite interest is the typeof runST. If we were not restricted to Milner-style polymor-phism [14], we might make runST a constant with the type:runST :: 8� : (8��:ST �� �)! �To �t the Hindley-Milner context, we make runST a languageconstruct with a typing judgment whose side condition sim-ulates the nested polymorphism.The reasoning behind the type of runST is as follows.Every operation which manipulates a state thread is infectedwith the type of that state thread: when >>= is used tocombine operations, the types of the state-thread have to bethe same (i.e., they become uni�ed); every location returnedby newVar has the same state thread type as the threadthat created it; and every time a readVar or writeVar isperformed its MutVar argument belongs to the same statethread in which the read or write is actually performed.Then when a state thread is encapsulated by runST thetype system will only accept the encapsulation if:1. the type of the state is still a variable; and2. that variable is universally quanti�able.If these two conditions hold then the state thread shouldmake no demands on its environment to provide, say, alocation to be read or written. If it did, the type of thestate thread would have been uni�ed with the state type ofthe location in the environment, and universal quanti�cationcould not take place.Launchbury and Peyton Jones [12] showed that the in-tuition pans out by using a parametricity proof over thedenotational semantics presented in the next section. Inparticular, they proved that the result of running a statethread is independent of an arbitrary encryption of the lo-cations generated by all other state threads.The result we present in this paper is stronger, in thatwe show syntactic non-interference (which certainly impliesthe earlier behavioral non-interference), and in addition weshow type safety.3.2 Denotational SemanticsThe denotational semantics of the language is standard [12].We present the semantics of reference cells and the state3



Domains: � 2 Env = �� (Vars� ! D� )� 2 Store = (N ! (S� D� ))?Meaning function: E : � ! S� D�E[[runST e]]� = v where (v; �) = E[[e]]� (lift ;)E[[returnST]]� v � = (v; �)E[[>>=]]� v v0 � = v0 v00 �0 where (v00; �0) = v �E[[newVar]]� v � = n (?;?) if � = ?(`; �[` 7! v]) where ` = new(�); otherwiseE[[readVar]]� ` � = n (?;?) if ` 62 dom(�)(�`; �) otherwiseE[[writeVar]]� ` v � = n (?;?) if ` 62 dom(�)((); �[` 7! v]) otherwiseFigure 2. Denotational Semanticsmonad combinators in Figure 2. We use this semantics asthe model against which our axioms are veri�ed.Another way to express the denotations of the state com-binators is to give them Haskell de�nitions and apply thestandard mapping to these de�nitions. For example, the de-notation of (e >>= e0) could be derived from the followingHaskell de�nition:\s -> let (x,s') = e s in e' x s'In fact this is how the Glasgow Haskell compiler implementsthe state combinators. (See Section 8 for more details.)4 Axiomatic SemanticsThe goal is to specify the semantics of our language viaa set of local axioms that can be used anywhere inside aterm (perhaps as optimizations). The interesting axiomsare clearly the ones related to reference cells and the store.The axiomatization of references and stores is generally well-understood for many languages [3, 5, 7, 8, 9, 13, 23, 24], butis fairly subtle for our language.The elegance of lazy stores has a price: it complicates thesemantics of the language. Indeed, some expected axiomsare unsound due to the laziness of the store. In many lan-guages it is reasonable to expect that writing an expressione to a location x and then immediately reading the locationx returns e [3, 16, 17, 23]. In our syntax, the potential axiomis: newVar e >>= �x:readVar x >>= e0= newVar e >>= �x:e0eUnfortunately the axiom is unsound|using the axiom wewould be able to transform:let omega = omegain do d <- writeVar omega 6x <- newVar 0a <- readVar xreturnST ainto the rather di�erent:let omega = omegain do d <- writeVar omega 6x <- newVar 0returnST 0

Why are they di�erent? The second makes less demand onthe store than does the �rst. The evaluation of the �rstterm needs access to the store in order to read the contentsof location x. But the store cannot be computed since the�rst state transformer in the thread diverges (it cannot tellwhich physical location should be updated by the writeVar).In contrast the evaluation of the second term does not needthe store at all, and immediately returns 0. Had the locationin the writeVar subexpression been a known location, theevaluation of both terms would have been equivalent. Thisinformal analysis suggests a way to �x the problem: only usethe axiom in special contexts where the store is guaranteedto be well-de�ned.Unfortunately there appears to be no easy syntactic wayto represent well-de�ned stores without resorting to a se-quence of newVars followed by a sequence of writeVars asthe store can contain cyclic references. To avoid messy syn-tactic patterns, we introduce a special construct:sto f(p1; e1); : : : ; (pn; en)g ethat represents a well-de�ned initialization for the store. Inthis store, location pi contains ei; the expressions ei arenaturally allowed to refer to the other pj so we can representcyclic structures in the store. This term form is similar instructure to the ��:e term form of Wright and Felleisen [8,13, 29] though the axiomatization is rather di�erent to takeaccount of encapsulation.De�nition 3 (Syntax of Terms) Let p range over a setof locations fp; p1; p2; : : :g. We extend the syntax of De�ni-tion 1 as follows:v ::= : : : j pe ::= : : : j sto � e� ::= f(pi; ei)gi (Store Bindings)The typing rule and denotational meaning for the newconstructs are in Figure 3. We view locations as a particu-lar brand of term variable, with sto acting as a binding site.Thus type environments can contain assumptions about thetype of locations, just as they do for the original brand ofvariables, but unlike for term variables, locations can onlybe bound to types and not type schemes [26]. It is straight-forward to check that both the type and denotation of stogeneralize those of runST in the sense that:sto ; e = runST e4



Typing Rules: � [ fp : �g ` p : � 8j : � [ fpi : MutVar �� �igi ` ej : �j� [ fpi : MutVar �� �igi ` e : ST �� �� ` sto fpi 7! eigi e : � �� 62 FV (�;�)Semantics: E[[p]]� = �(p)E[[sto � e]]� = sto f(`i;E[[ei]]�0) j (pi; ei) �g E[[e]]�0where: �0 = � [ f(pi; `i)gsto s v = �1 (v (lift s))Figure 3. Additional Typing Rules and DenotationsIn order to typecheck the sto expression, e has to typecheck(the 8j is vacuous). The side condition on the type judgmentfollows from the corresponding side condition on the typejudgment for runST. We therefore do not consider runSTindependently in the remainder of the paper.Before giving the axioms, we need to formalize one lastaspect of the lazy stores; we must de�ne the position withina state thread from which it is possible to immediately re-turn without performing the rest of the stateful computa-tion.De�nition 4 (Return Contexts R) The contexts are in-ductively de�ned as:R ::= [ ] j e >>= �x:RIn other words, we can ignore all the computations to theleft of >>=; these will not performed unless they are somehowexplicitly demanded. In terms of the do notation, it meansthat we should skip over the list of commands and attemptto execute the last one �rst.Figure 4 presents the correct axiomatization of the se-mantics. The correctness of the axioms is easily establishedby checking that the two sides of each equation are denota-tionally equivalent.The �rst three axioms are as expected in an appliedlambda-calculus. The next three axioms use the new stoconstruct as motivated above; each primitive store opera-tion performs its intended operation on the properly initial-ized store fragment. The structural axioms correspond tothe three monad laws. Finally the return axioms show howto compute the result of a state thread; there is an axiomfor each kind of syntactic value.5 Operational SemanticsHaving de�ned the axioms, we need evaluation contexts thatguide the use of the rules in a standard reduction sequenceleading to the answer. Because of the lazy nature of ourstore, the de�nitions of the reductions is actually intertwinedwith the de�nition of evaluation contexts [1, 2]. Intuitively,\needed" variables within subterms correspond to those vari-ables that occur in evaluation context positions. Therefore,we de�ne evaluation contexts �rst.5.1 Evaluation ContextsDe�ning evaluation contexts already requires much under-standing about the semantics of our language. In our casethe de�nition is rather involved and we proceed slowly.

The de�nition of return contexts (De�nition 4) showsthat we should skip over the list of commands and attemptto execute the last one. If this last command requires a vari-able that results from an earlier computation, then we mustattempt to perform that computation. Also if a commandattempts to perform an operation that is strict in the storelike newVar, readVar, or writeVar, then we must also stepback and perform all the earlier computations. Formally wecan express these chains of dependencies as follows. Thede�nition uses the yet-to-be-de�ned evaluation contexts E.At this point the reader may pretend that all evaluationcontexts are the empty context to get the intuition behindthe concept of dependencies.De�nition 5 (Dependencies D) The �rst three clausesexpress that variable x is needed by a state transformer. Thelast two clauses express that variable x is needed because an-other sequence of variables was recursively needed.D ::= �x:R[E[x]]j �x:R[returnST E[x]]j �x:R[e >>= E[x]]j �x:R[E[x] >>= D]j �x:R[s >>= D]The de�nitions of dependencies and evaluation contextsare mutually recursive.De�nition 6 (Evaluation Contexts E) The set of con-texts is inductively de�ned as:E ::= [ ] j E e j k Ej sto � R[E]j sto � R[returnST E]j sto � R[e >>= E]j sto � R[E >>= D]j sto � (readVar E >>= D)j sto � (writeVar E e >>= D)The �rst three clauses in the de�nition of evaluation contextsde�ne the usual contexts for call-by-name languages. Theremaining contexts are used when evaluated a state thread.The next three contexts combined keep demanding the rightargument of >>= until they reach the last state transformerin an R sequence. If that state transformer is a returnSTthen we demand the value of its subexpression. If on theother hand, the last state transformer demands a variable,then we backtrack following the previously de�ned chainsof dependencies demanding state transformers on the leftof >>=. Finally the operations readVar and writeVar arestrict in their �rst argument which is the location to read orwrite.5



Computational Axioms: (�x:e)e0 = e[e0=x]let fxi = eigi in e = e[(let fxi = eigi in ej)=xj]jk v = �(k; v) if de�nedsto � (newVar e >>= e0) = sto � [ f(p; e)g (e0 p)sto � [ f(p;e)g (readVar p >>= e0) = sto � [ f(p; e)g (e0 e)sto � [ f(p;e)g (writeVar p e0 >>= e00) = sto � [ f(p; e0)g (e00 ())Structural Axioms: returnST e >>= e0 = e0 e(e1 >>= e2) >>= e = e1 >>= �x:(e2 x >>= e)e >>= �x:returnST x = eReturn Axioms: sto � R[returnST k] = ksto � R[returnST (�y:e)] = �y:sto � R[returnST e]sto � R[returnST (e >>= e0)] = (sto � R[returnST e]) >>= (sto � R[returnST e0])sto � R[returnST (returnST e)] = returnST (sto � R[returnST e])sto � R[returnST (newVar e)] = newVar (sto � R[returnST e])sto � R[returnST (readVar e)] = readVar (sto � R[returnST e])sto � R[returnST (writeVar e e0)] = writeVar (sto � R[returnST e]) (sto � R[returnST e0])sto � R[returnST p] = p if p 62 dom(�)Figure 4. AxiomsFor example, using evaluation contexts and dependen-cies, we could rewrite the following term:sto {} (newVar (3+2) >>= \x ->readVar x >>= \a ->readVar x >>= \b ->writeVar x (let y=y in y) >>= \_ ->returnST (a+b))as:sto {} (newVar (3+2) >>= D)The reasoning is that the last state transformer demandsthe variable a:sto {} (newVar (3+2) >>= \x ->readVar x >>= \a -> R[returnST E[a]])where E is ([ ] + b). Then, using the de�nition of D, thedemand for a propagates to a demand for readVar x whichdemands the result of the newVar.In contrast the term:sto {} (writeVar (let y=y in y) 6 >>= \_ ->newVar 0 >>= \x ->readVar x >>= \a ->returnST a)would be decomposed as follows:E[(let y=y in y)]This formalizes the observation in the previous section thatthe evaluation of the �rst term terminates but the evaluationof the second term diverges.5.2 Faulty ExpressionsIf typechecking guarantees anything, it is that certain badexpressions never occur. Apart from the usual errors (forexample, adding a boolean to a character) we are interestedin avoiding a whole group of bad expressions that have to do

with the state. These are expressions that attempt to reador write to a state location which is not part of the localthread, or which return a state location as the result of anencapsulated thread. The fact that the type system catchesthese is perhaps the noteworthy aspect of this formulationof state.De�nition 7 (Faulty Terms) Let p range over locations,v range over syntactic values, and w range over the followingsyntactic values: k, p, or (�x:e). An expression e is faultyif it is one of the following:� v e0, and v is neither a lambda expression nor a con-stant k (a non-function in function position),� k v, and �(k; v) is unde�ned (unde�ned basic opera-tion),� sto � (readVar v >>=D), sto � (writeVar v e0 >>=D),and v is not a location (a non-location in location po-sition).� sto � (readVar p >>=D), sto � (writeVar p e0 >>=D),and p is not in the domain of � (interference betweenseparate state threads).� sto � R[returnST p], and p is in the domain of � (ex-porting private locations),� sto � R[w], sto � R[w >>= D] (a non-state-operationwhere one was expected),� sto � (R[e0 >>= v]), and v is not a lambda expression(a non-function in function position),5.3 ReductionsWe now use evaluation contexts to restrict the axioms in twoways. First, the patterns of some of the axioms are restrictedto avoid in�nite reduction sequences that perform no usefulwork, and to avoid interference between the axioms. Forexample, we certainly would not want to repeatedly rewrite6



Computational Reductions: (�x:e)e0 �! e[e0=x]let fxi = eigi in e �! e[(let fxi = eigi in ej)=xj]jk v �! �(k; v) if de�nedsto � (newVar e >>= D) �! sto � [ f(p; e)g (D p)sto � [ f(p; e)g (readVar p >>= D) �! sto � [ f(p; e)g (D e)sto � [ f(p; e)g (writeVar p e0 >>= D) �! sto � [ f(p; e0)g (D ())Structural Reductions: sto � R[returnST e >>= D] �! sto � R[D e]sto � R[(e1 >>= e2) >>= D] �! sto � R[e1 >>= �x:((e2 x) >>= D)]sto � R[s] �! sto � R[s >>= �x:returnST x]Return Reductions: (Orient Return Axioms from left to right.)Figure 5. Standard Reductionsan expression e to (e >>= �x:returnST x). Second, duringevaluation, we only perform reductions that are demandedby an evaluation context.Figure 5 presents the reductions of the language. Themain restrictions with respect to the axioms are that the useof the structural axioms has been restricted to cases whereit is actually useful to make progress in a computation. Alsothe primitive store operations are not performed unless theirresults are demanded via a chain of dependencies D.Given the complexity of our evaluation contexts, reduc-tions, and faulty expressions, how do we know, for example,that we didn't forget one kind of faulty expression. The fol-lowing proposition which is used to prove type soundnesslater, veri�es that the above de�nitions are consistent andcomplete.Proposition 1 Every term e is either a syntactic value orcan be uniquely partitioned into the form E[T ] where T iseither:� a variable not bound in E,� a faulty term (see De�nition 7), or� a redex (see Figure 4).Proof. The proof is by induction on the structure of e andproceeds by cases. All cases are straightforward except thecase e = (sto � e0) which requires an additional inductionas follows:(i) First we show by induction on the number of occur-rences of >>= in e0 (and using the main inductive hy-pothesis too) that e0 must be in one of the followingforms:{ R[E[T ]] or R[e >>= E[T ]] or R[E[T ] >>=D] whereT is faulty, a redex, or a variable bound in neitherR nor E,{ R[v], where v is not of the form >>=,{ R[e >>= v] or R[v >>= D](ii) Second we show that the main claim applies to theexpression (sto � e0) where e0 is given by one of theforms in (i).Having split the proof as above, both subproofs are nowstraightforward.Corollary 1 Every closed term e is either a syntactic value,or the form E[T ] where T is either faulty or a redex.

6 Type SoundnessThe type soundness proof closely follows the subject reduc-tion proofs by Wright and Felleisen [29], providing extraevidence that their techniques are widely applicable. Thereare two cases where the proofs make clear the rôle of thetypings we provide, and in particular, the way in which thetype rule for runST provides safe encapsulation. These caseswill be done in some detail.Once the operational semantics and type system havebeen de�ned, the general form of the syntactic type sound-ness proof is as follows:(i) Show that reduction in the operational semantics pre-serves well-typing. This is called subject reduction.(ii) Show that faulty expressions are not typable.If programs are closed and well-typed, then we can puttogether the previous results as follows: By (i), evaluation ofthe program will only produce well-typed terms. By Corol-lary 1, every such term is either faulty, or a syntactic value,or contains a standard redex. The �rst case is impossibleby (ii). Thus either the program reduces to a value of thecorrect type, or it diverges. We prove the above points (i)and (ii) in the remainder of the section.6.1 Subject ReductionThe subject-reduction lemma states that a well-typed termremains well typed under reduction. Hence, if ever a readVaror writeVar is performed, for example, the expression ex-tracted from the state will not introduce a type error whenit is substituted into the receiving term. In other words,if a variable claims to hold an Int ! Int function, thenindeed it does (and not a Bool ! Bool function as in theintroduction).The reason that this works out correctly is that no lo-cations can ever be assigned a type scheme such as fp3 :8�:MutVar �� �g. If such a typing were possible, then wecould easily duplicate the counterexample in the introduc-tion.As usual, the proof of subject reduction relies on otherstandard lemmas, most notably the substitution lemma.Lemma 1 (Substitution) If �[x 7! 8�i:� 0] ` e : � andx 62 dom(�) and � ` e0 : � 0 and f�igi \ FV (�) = ; then� ` e[e0=x] : �7



In our context this lemma is a generalization of Wrightand Felleisen's Lemma 4.4 in two ways: we require substitu-tion of arbitrary expressions rather than of syntactic valuesonly; and we need to show the sto form causes no problems.The �rst of these generalizations is handled by a trivial ex-tension of the proof of Lemma 4.4, and the second similarlyfrom the proof of the corresponding lemma dealing with the��:e form (Lemma 5.3).Once the substitution lemma is shown, subject reductionfollows fairly easily.Lemma 2 (Subject Reduction) If � ` e : � and e �! e0then � ` e0 : �Proof. The proof proceeds by case analysis on the reduc-tions e �! e0. Most of the cases are standard, and area minor generalization of the proof found in Wright andFelleisen, so we will not rehearse them here. The only in-teresting cases are for the various instances of sto. We willexhibit two instances to show the general form.Case:sto fpi 7! eigi (readVar pk >>= D) �!sto fpi 7! eigi (D ek) where there exists an i such thatpi = pk.By assumption we know that:� ` sto fpi 7! eigi (readVar pk >>= D) : �;but in order to be able to deduce this we must have beenable to show all of the following:� for all j, � [ fpi : MutVar �� �igi ` ej : �j,� � [ fpi : MutVar �� �igi ` pk : MutVar �� � 0,� � [ fpi : MutVar �� �igi ` D : � 0 ! ST �� �where �� 62 FV (�;�) (the latter two judgments follow afteran application of the rule for >>= and for readVar). It isclear from the second of these that � 0 and �k are equal.In order to typecheck the right hand side we need to beable to show that:� for all j, � [ fpi : MutVar �� �igi ` ej : �j,� � [ fpi : MutVar �� �igi ` ek : � 0,� � [ fpi : MutVar �� �igi ` D : � 0 ! ST �� �where, again, �� 62 FV (�;�). Given that � 0 is equal to �k,all these follow from the above.Case:sto fpi 7! eigi (returnST (�y:e)) �!�y:sto fpi 7! eigi (returnST e)Again, by assumption we know that:� ` sto fpi 7! eigi (returnST (�y:e)) : � ! � 0(here we have jumped to the conclusion that the result typemust be a function type|it just simpli�es the presentation).In order to be able to deduce this judgment we must havebeen able to show:� for all j, � [ fpi : MutVar �� �igi ` ej : �j,� � [ fy : �g [ fpi : MutVar �� �igi ` e : � 0

where �� 62 FV (� ! � 0;�).In order to typecheck:� ` �y:sto fpi 7! eigi (returnST e) : � ! � 0we must show that:� [ fy : �g ` sto fpi 7! eigi (returnST e) : � 0which, in turn, requires all of the following:� for all j, � [ fy : �g [ fpi : MutVar �� �igi ` ej : �j,� � [ fy : �g [ fpi : MutVar �� �igi ` e : � 0where, this time, �� 62 FV (� 0;� [ fy : �g). In fact, theside condition is the only thing that requires any thought,and that follows immediately from the fact that FV (� !� 0;�) = FV (� 0;� [ fy : �g) since y does not occur in �.This �nal case is one place which motivates the choice ofthe side condition on �� in the type rule for sto. It clearlywould not be enough simply to restrict �� from appearingin the free type variables of � without mentioning the resulttype � .The other cases all follow the same form, so concludingthe proof.6.2 Faulty ExpressionsLemma 3 If an expression e is faulty, then it is not typable.Proof. Each case in the De�nition of faulty expressions(De�nition 7) is treated separately. We show how expres-sions with interfering state threads are not typable:Case: sto fpi 7! eigi (readVar p >>= D) where p 62 fpigi.To typecheck the expression in a context �, we must showthe following:� for all j, � [ fpi : MutVar �� �igi ` ej : �j , and� � [ fpi : MutVar �� �igi ` readVar p >>= D : ST �� �where �� 62 FV (�;�). To satisfy the second requirement,we must show that there exists a � 0 such that:� [ fpi : MutVar �� �igi ` readVar p : ST �� � 0which in turn requires that:� [ fpi : MutVar �� �igi ` p : MutVar �� � 0By assumption, p 62 fpigi, hence we require:� ` p : MutVar �� � 0which implies that � must contain an entry p : MutVar �� � 0.But the side condition on sto states that �� is not a freetype variable in �: a contradiction. In other words, type-checking fails if there is any possibility of a \segmentationfault" across state threads.8



7 Other State OperationsThe State in Haskell paper [12] presented two other oper-ations on the state. The �rst eqVar tests for equality oflocations; it has the type:eqVar :: MutVar �� � ! MutVar �� � ! BoolIt introduces no di�culties to the foregoing material. Thesecond, fixST, does.The purpose of fixST is to allow recursive bindings withinthe state monad. The usual recursion gained from let al-lows us to de�ne recursive state transformers (while-loopsand the like), but fixST provides and entirely new facility.Using the do-notation we might like to write:data IntNVar s = Pair Int (MutVar s IntNVar)makeLoop = do v <- newVar (Pair 7 w)w <- newVar (Pair 2 v)returnST win which the v and w are both in scope for each of thenewVar operations. Upon executing these operations, thestore would construct a cycle, and the location w would bereturned. Note that even though the de�nition is recursive,the two store operations are each performed once only.For recursive de�nitions like this, one would expect touse a �xed point operator, and this case is no exception.We want an operator:fixST : (�! ST �� �)! ST �� �From a denotational perspective this is �ne. We could de�nethe meaning of fixST as:E[[fixST]]� f � = Fi�0 gi(?;?)where g(p) = f (�1 p) �or more loosely, as the expansion:fixST e = \s -> let (x,s') = e x sin (x,s')Using fixST and the usual do-notation, we could de�ne ourrecursive store above by:makeLoop = fixST(\w -> do v <- newVar (Pair 7 w)w' <- newVar (Pair 2 v)returnST w')There are however two problems with all this. First, theinclusion of fixST breaks some axioms that would otherwisebe sound. However, that is a price we have to pay if we desirethe functionality of fixST. Second, and more seriously, thecall-by-name axiomatization of fixST is problematic. Wewill describe each of these in more detail.7.1 Sequencing AxiomsIn the absence of fixST, it is reasonable to expect that a readand a write that refer to di�erent variables can be performedin any order as they will not a�ect each other. Because ofaliasing this is often di�cult to determine, but we mightexpect the following to hold:newVar e >>= �x:writeVar y e0 >> e00= writeVar y e0 >> newVar e >>= �x:e00 (x 6= y)

as x and y \clearly" refer to di�erent variables. Unfortu-nately such an axiom is unsound in the presence of fixSTas it equates the following two terms:fixST (\y->newVar 0 >>= \x->writeVar y 1 >>returnST x)fixST (\y->writeVar y 1 >>newVar 0 >>= \x->returnST x)According to the semantics, the denotation of the �rst termis non-bottom and the denotation of the second term is bot-tom. To understand the problem, we expand and inline thestate combinators:\s0->let (y,s1) = let (x,s2) = newVar 0 s0(_,s3) = writeVar y 1 s2in (x,s3)in (y,s1)\s0->let (y,s1) = let (_,s2) = writeVar y 1 s0(x,s3) = newVar 0 s2in (x,s3)in (y,s1)When applied to a store, the evaluation of the �rst term de-mands (x,s3) which demands (x,s2). Thus the �rst com-putational step is to create a location x with initial value0. This binds y to the new location which makes the writeoperation well-behaved. In contrast the evaluation of thesecond term demands (x,s3) which demands s2 (rememberthat newVar is strict in its store argument) which demandsy which demands x which demands s2. In other words theevaluation of the second term diverges.To address this problem we are simply careful not toinclude axioms that change the order of state operations,even when such changes are apparently safe. These axiomsare not needed for evaluation anyway.7.2 Call-by-Name and fixSTIn general the axiomatic semantics of �xed point computa-tions is expressed by unwinding the recursion. For example,the usual semantics for the �xed point combinator on valuesfix is: fix e = e (fix e)Using this idea, it is a simple exercise to derive the followingsemantic equivalence for fixST:sto � (fixST e0 >>= e)= sto � (e0 (sto � (fixST e0)) >>= e) (�)To understand the intuition, remember that (sto � e) evalu-ates the computation e in the state thread �. If this evalua-tion terminates, it yields a �nal value and a �nal state. The�nal state is ignored and only the �nal value is returned.Thus the equivalence illustrates that only values (but notstores) are propagated across the unwindings.So what's the problem? The problem is that the righthand of the equivalence does not typecheck! Consider alocation in e0; both the outer and inner state threads mayattempt to access that location. This is exactly the kind ofsituation that the typing of runST is designed to avoid!9



The discussion points to a fundamental problem withfixST. The construct fixST expresses the computation of arecursive value that takes one input store and returns one�nal store. Any unwinding of the recursive computationmust do some non-standard manipulation of the store, e.g.,duplicating a store, or ignoring a store. As we have seenduplication of the input store is likely to produce untypableterms and it is impossible to ignore a store using our com-binators. In other words, it appears that in a call-by-nameworld the combinator fixST needs to be restricted in or-der to make sense. Here we restrict its type to prevent anyrecursive values that use the store:� ` e : � ! ST �� �� ` fixST e : ST �� � �� 62 FV (�)With this restriction our axiom (�) is sound and typable.In versions of Haskell incorporating fixST, there is nosuch type restriction. We believe that the full rule will onlymake sense in an explicit call-by-need setting in which re-ductions do not duplicate state threads.8 Implementing Monadic State in GHCThe Glasgow Haskell compiler (GHC) implements monadicstate by expanding the monadic combinators to pure Haskell.This is �ne so long as either we refrain from performing arbi-trary call-by-name transformations on the code, or we giveup on destructive update. Part of the motivation for thiscurrent work was the desire to be able to retain both.In more detail, the common implementation strategy [12]for Haskell's extension with built-in monads is to:1. translate the source programs by expressing and in-lining returnST, >>=, and runST in the intermediatelanguage of the compiler,2. apply full compiler optimizations to the resulting in-termediate programs, and3. instruct the code generator not to generate any code topass the state around and to generate destructive ver-sions of newVar, readVar, and writeVar that operateon a global store.Following this strategy, consider the following source pro-gram: runST ( newVar 0 >>= �p:writeVar p 5 >>readVar p >>= �v:returnST v)whose evaluation according to the denotational semanticsproduces 5. After inlining the monadic combinators (runST,>>=, and returnST), and doing some simpli�cations, we geta program in the compiler's intermediate language:fst (let (p,s1) = newVar 0 s0(_,s2) = writeVar p 5 s1(v,s3) = readVar p s2in (v,s3))where s0 is the initial store. If the compiler only per-forms call-by-need optimizations that only duplicates syn-tactic values, the evaluation of this intermediate programproduces the correct answer 5 even if the operations newVar,

writeVar, and readVar ignore the store argument and per-form side-e�ects on a global store. However, using the call-by-name reasoning principles that are valid in Haskell, wecan transform this program as follows:fst (let d1 = newVar 0 s0d2 = writeVar (fst d1) 5 (snd d1)(v,s3) = readVar (fst d1) (snd d2)in (v,s3))=fst (let d1 = newVar 0 s0(v,s3) = readVar (fst d1)(snd (writeVar (fst d1)5(snd d1)))in (v,s3))=fst (let (v,s3) = read (fst (newVar 0 s0))(snd (writeVar(fst (newVar 0 s0))5(snd (newVar 0 s0))))in (v,s3))If newVar were a pure function, then all the occurrencesof (newVar 0 s0) would evaluate to the same location, andthe program would evaluate to the expected answer 5. How-ever, an implementation of the operations newVar, writeVar,and readVar that ignores the store argument and performsside-e�ects on a global store will not produce the answer 5.To understand why, note that the expression (newVar 0 s0)has been duplicated several times; each evaluation of thisexpression will create a fresh location. It follows that thelocation in which 5 is written is not the same location fromwhich we attempt to read.The counterexample reveals that call-by-name and call-by-need evaluations of the intermediate program do not co-incide. In other words, the compiler's intermediate languageis not purely functional and hence must be optimized withcare. Not only can � steps in the compiler cause severeperformance problems, for example by duplicating expen-sive computations [2], but more drastically, they are un-sound. Fortunately, even before the monadic extensions,most Haskell compilers were careful not to duplicate workand hence refrained from using � steps for performance rea-sons. Consequently, the addition of assignments to the backend did not cause any problems for such compilers.9 Related WorkThe �var system [17] is very similar in spirit to state inHaskell, and hence to the work presented here. A pureconstruct was introduced that played the role of runST inthat it encapsulated imperative computations, guarantee-ing their external purely functional behavior. Two methodswere presented by which this can be achieved. The �rst wasto demand an explicit expansion of the whole of the spineof the monadic computation so that a run-time check couldensure that the variables referenced were indeed local. Ofcourse this would be prohibitively expensive in practice, andit seems impossible to generalize to lazy state.As an alternative, a type system was proposed whichstatically ensured that the state threads were pure [4]. Likeearly versions of ML, the type system had two sorts of type10



variables (applicative and imperative). In addition, the typ-ing judgment for pure demanded that only applicative typesappeared in the type environment and in the result type|much more restrictive than the Haskell solution. Unfortu-nately, the type system is now known to be incorrect. Re-ductions may change the set of free variables in a term, sothe purity condition, which only restricts the types of freevariables, can be circumvented. As a consequence, subjectreduction fails. The problem was corrected by adapting theHaskell solution [20].The work on region inference is also remarkably simi-lar [27]. Our sto construct is essentially creating a newregion and initializing it. However, in contrast to the re-gion language, an expression in our language cannot accessvariables in several regions.The type-based encapsulation works well in Haskell be-cause the explicit use of the state monad (and others) pro-vided a ready home for the extra type variable. Could sucha thing be done in ML? One method might be throughsomething like e�ects annotations [25] or, indeed, througha region inference system, but there are many details to beworked out.Finally, the parametric models of local variables havestrong semantic similarities to the work here [18]. A deno-tational semantics has to generate new local variables everytime a new block is entered. By using parametricity, thesevariables can be hidden from the outside world. In our set-ting, where variables are �rst class values, we need to have asimilar feature within the language, hence the type of runST.10 Conclusion and Future WorkIn terms of its relation to future developments in under-standing and controlling e�ects, the most exciting aspect ofthis paper is the clari�cation of the mechanism for encap-sulation. This mechanism is so powerful that it permits thetype system to guarantee that references (and hence e�ects)cannot be perceived outside of the encapsulation barrier.This means that a computation could use state internallyto achieve e�ciency, yet show a guaranteed pure face to theoutside world, without having to do any expensive run-timechecks.10.1 Typechecked SegmentationGiven the spread of run-time mechanisms used for checkinglocality of references, from operating system segmentationchecks to mechanisms for encapsulating e�ects in functionallanguages [10, 21, 22] it is perhaps surprising to discover thatthe type system is quite strong enough to do it statically.Of course, the fact that type systems can �gure out thelifetimes of references has been known for some time [6].What distinguishes our solution based on runST is that itrequires such minor changes to the language.To give some ideas of the accuracy achieved by this mech-anism it is worth noting that it is quite feasible to have onestate thread manipulate locations belonging to another quiteseparate thread. As long as no attempt is made to derefer-ence these other locations, the type system does not unifythe state-type parameters of the locations with the state-type of the thread. Under these conditions, the host threadcould build and traverse a graph containing the foreign lo-cations, perhaps duplicate or discard the locations, or buildthem into data structures, eventually to be returned, pre-sumably, to the owning thread for it to dereference at will.

Through all this the type system is able to track that thethreads do not interfere with each other, and that they areindeed separate state threads.10.2 Nested ScopesThe principle behind runST can be generalized to providenested scope. We could introduce two constants:blockST :: (8�:ST (�;�) �) ! ST � �importVar :: MutVar � � ! MutVar (�;�) �(actually, like runST, we would introduce blockST as a lan-guage construct with a typing judgment that simulated thenested polymorphism in its type). Using importVar we canexplicitly allow variables from an enclosing scope to be ma-nipulated by the inner scope. For example,f = do a <- newVar 0b <- newVar TrueblockST (g (importVar a))v <- readVar areturnST vg x = do c <- newVar "hello"writeVar x 1returnST ()The type for blockST guarantees that the variable c is onlyused in the inner scope. It is not exported to the outer scopein any way. This provides a �rm notion of local pointer, onethat cannot be accessed outside the block.In practice, we might like even �ner control than this.Extending the system to provide only read access in innerscopes (and not write access) is easy to achieve (MutVarsneed to take two state variables: one to say which threadcan do reads, the other to say which can do writes), butthe more challenging control of, say, dividing an array intotwo distinct parts to be worked on concurrently seems muchharder to achieve.10.3 Type-encapsulated ExceptionsState is a natural �rst application for this technique, but itis bound to be applicable to others like exceptions and con-tinuations. The trick to success here is �nding a formulationof the basic operations which is both natural and convenientwhile succumbing to the extra type variable technique.As an example, we present a formulation of exceptionswhich allows us to use the same type-encapsulation tech-nique. We need two new abstract type constructors: themonad of exception-raising computations ET � � , and thetype Exn � of exceptions raised in thread �; together withthe following operations:runET :: � ! (8�:ET � �) ! �newExn :: ET � (Exn �)raiseExn :: Exn �! ET � �handleExn :: ET � � ! (Exn �;ET � �) ! ET � �The �rst argument to runET is a default value used to replaceany uncaught exception. The operation newExn dynamicallycreates a new exception, which can be handled by any han-dler that is executed within the same monadic thread.11
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