
Collapsing Partial Combinatory AlgebrasInge Bethke1;2 and Jan Willem Klop1;31 CWI, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands2 University of Utrecht, Department of Philosophy, P.O. Box 80126,3508 TC Utrecht, The Netherlands3 Vrije Universiteit, Department of Mathematics and Computer Science,de Boelelaan 1081a, 1081 HV Amsterdam, The NetherlandsAbstract. Partial combinatory algebras occur regularly in the literatureas a framework for an abstract formulation of computation theory or re-cursion theory. In this paper we develop some general theory concerninghomomorphic images (or collapses) of pca's, obtained by identi�cationof elements in a pca. We establish several facts concerning �nal collapses(maximal identi�cation of elements). `En passant' we �nd another exam-ple of a pca that cannot be extended to a total one.1 IntroductionA partial combinatory algebra (pca) is a structure A = hA; s; k; �i where A is aset, � is a partial binary operation (application) on A, and k; s are two elementsof A such that1. 8a; a0 2 A (k � a) � a0 = a,2. 8a; a0 2 A (s � a) � a0 #,3. 8a; a0; a00 2 A ((s � a) � a0) � a00 = � (a � a00) � (a0 � a00) if (a � a00) � (a0 � a00) #;unde�ned otherwise;4. k 6= s.Here M # means the expression M is de�ned, and M = N means both expres-sions are de�ned and equal. Another useful notation is to write M " if M isunde�ned. It is common to omit � and associate unparenthesized expressions tothe left. In working with expressions that may or may not be de�ned, it is usefulto writeM ' N to mean that if either M or N is de�ned, then both are de�nedand equal. These notational conventions allow us to replace clause 3 by8a; a0; a00 2 A saa0a00 ' aa00(a0a00) :Total pca's (ca's), where application is a total operation on the carrier set,are extensively studied in the context of models of �-calculus and CombinatoryLogic (CL) (cf. e.g. [Bar84], [HS86]); nontotal pca's (nca's), where applicationis not de�ned everywhere, are a little less well-o� in this respect. They �gure inthe semantics of programming languages (see the forthcoming book by Mitchell[Mit9?]) as well as in the formalization of constructive mathematics (see [Bee85],[TvD88]). In fact, they are the models of a `minimal axiomatic basis for theories



of operators', as stated in [TvD88]. An early approach to treat abstract computa-tion theory was given by the notion of Wagner [Wag69] and Strong [Str68], URS(Uniform Reexive Structure). More recently, the notion of E�ective ApplicativeStructure, EAS, has been introduced by Asperti and Ciabattoni [AC95]); theyshow that this notion is in fact equivalent to PCA.Let us briey indicate why a study of pca's falls in the scope of higher-orderalgebra, logic and term rewriting - the subject of the present conference. Theconnection with term rewriting, via CL and �-calculus, is obvious since pca'sadmit abstraction [x]M ; in fact they were `designed' just for that purpose. Theconnection with higher-order algebra is less clear, also due to the fact that thereis no sharp de�nition of this notion. Meinke [Mei95] bases his survey of higher-order algebra on type theories. Indeed, it is shown that the �nite type hierarchyHEO can be built over an arbitrary pca (Bethke [Bet91]); also Mitchell [Mit9?]generalizes the construction of HRO to arbitrary pca's. Furthermore, pca's play arole in the construction of per models for realizability. See also Streicher [Str91].While nca's thus have enjoyed quite some attention as a tool in abstractcomputation theory, amazingly little is known about their structural properties.Thus, it was even an open question in [Swan79] whether an nca can always beextended to a ca. A negative answer is given in [Klo82] and [Bet87]. Dually toextending pca's, one may ask what behaviour pca's exhibit under homomorphicimages. To be more precise, given a pca A = hA; s; k; �i and some elements a; a0of A, one may ask whether there exists a homomorphic image �(A) such that�(a) = �(a0).
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We shall call such a homomorphic image a collapse. There exist several investi-gations into collapses of ca's (cf. e.g. [Jac75], [JZ85], [BI93]). Here the leadingquestion is whether, given �-terms M and N , the equation M = N can beadded consistently to the �-calculus. Considerations of collapses of nca's seemto be rare. In fact, we do not know of any. In the present note, we address thislast theme.Instead of considering collapses, one can also study certain well-behaved con-gruence relations. As it turns out, there exists a natural 1-1 correspondence be-tween these relations and collapses: every such congruence induces a collapseand vice versa. We establish this fact in Sect. 2.We use the correspondence between well-behaved congruence relations andcollapses in Sect. 3 to show that there is at least one major di�erence betweennca's and ca's with respect to their class of collapses: nca's always have a �nalcollapse ��n(A) which combines all possible identi�cations.
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��n(A)For ca's, such a �nal collapse does not need to exist. We provide a counterex-ample.Not every pca allows for additional identi�cations. In Sect. 4, we give twoexamples of these irreducible pca's: the well-known total graph models as well asthe nontotal pca of natural numbers with partial recursive function applicationcannot be collapsed any further.In Sect. 5, we concentrate on extensional collapses, i.e. collapses that identifyelements displaying identical applicative behaviour. We provide a condition onnca's that guarantees the existence of extensional collapses. In fact, if an ncameets this condition, then its �nal collapse is extensional. As an applicationwhich may be of independent interest, we show that the paradigmatic nca ofstrongly normalizing CL-terms has an extensional �nal collapse.2 Collapses of PCA'sA homomorphism is a structure-preserving map from one algebra to another.For partial algebras, there is one basic notion for a homomorphism which si-multaneously generalizes the notions of homomorphisms between total algebrasand relational structures respectively. However, since its de�ning property is rel-atively weak, we select a proper subclass of homomorphisms throughout thispaper. An extensive survey of the model theory of partial algebras can be foundin [Bur82].De�nition 1. Let A = hA; s; k; �i and B = hB; s0; k0; �0i be pca's.1. A closed homomorphism of A = hA; s; k; �i intoB = hB; s0; k0; �0i is a mapping� : A! B such that(a) �(s) = s0, �(k) = k0, and(b) �(a � a0) ' �(a) �0 �(a0) for all a; a0 2 A.If � is surjective, then � is a closed epimorphism, and if � is bijective, then� is an isomorphism.2. � is a collapse of A if � is a closed epimorphism of A onto some pca B.



We write Col(A) for the class of collapses of A.A trivial example of a collapse is the identity map from A to A. Instead ofconsidering collapses of A, one can also study congruence relations on A, i.e.equivalence relations with the added property that application relates relatedelements.De�nition 2. Let A = hA; s; k; �i be a pca. The set of contexts over A, CA, isde�ned as follows.1. 2 2 CA, and2. if C 2 CA and a 2 A, then aC 2 CA and Ca 2 CA.If C is a context, then C[a] denotes the expression obtained from C by replacing2 by a.De�nition 3. Let A = hA; s; k; �i be a pca and E be an equivalence relation onA.1. E is called proper if hs; ki 62 E.2. E is said to be a congruence if for all ha; a0i 2 E and C 2 CA, if either C[a]or C[a0] is de�ned, then both are de�ned and hC[a]; C[a0]i 2 E.We write Con(A) for the set of proper congruence relations on A.A trivial example of a proper congruence on A is the diagonal fha; ai j a 2Ag. However, there may be more complex ones. In particular, every collapsecorresponds to a congruence relation, namely the one that relates identi�edelements.De�nition 4. Let A = hA; s; k; �i be a pca and � 2 Col(A). PutE� = fha; a0i 2 A�A j �(a) = �(a0)g :Proposition5. Let A = hA; s; k; �i be a pca and � 2 Col(A). Then E� 2Con(A).Proof. E� is clearly an equivalence relation on A and is proper, since �(s) =s0 6= k0 = �(k). To prove that E� is a congruence, let ha; a0i 2 E� and C 2 CA.Then �(C[a]) ' C 0[�(a)] ' C 0[�(a0)] ' �(C[a0])for some context C 0. Hence C[a] is de�ned if and only if C[a0] is de�ned, and ifthey are both de�ned, then hC[a]; C[a0]i 2 E�. utGiven any congruence relation E on A, we may construct a pca A=E of A calledthe quotient of A modulo E. The intuitive idea behind A=E is that we identifyrelated elements of A.



De�nition 6. Let A = hA; s; k; �i be a pca and E 2 Con(A). We form thequotient A=E = hA=E; [s]E ; [k]E ; �Eiby taking the collection A=E = f[a]E j a 2 Ag of equivalence classes [a]E = fa0 jha; a0i 2 Eg equipped with the application operation[a]E �E [a0]E = � [aa0]E if aa0 #unde�ned otherwise :Proposition 7. Let A = hA; s; k; �i be a pca. For E 2 Con(A), �a 2 A:[a]E 2Col(A).Proof. We �rst show that �E is well-de�ned. To this end, let [a]E = [a0]E and[b]E = [b0]E . Then ha; a0i; hb; b0i 2 E. Let C � 2b, C 0 � a02. As E is a congru-ence, it follows that C[a] # i� C[a0] #, and C 0[b] # i� C 0[b0] #. Thusab #$ a0b #$ a0b0 # :Hence [a]E [b]E # i� [a0]E [b0]E #. Now assume [a]E [b]E #. Then hab; a0bi; ha0b; a0b0i 2E. So hab; a0b0i 2 E, i.e. [ab]E = [a0b0]E . Thus [a]E [b]E = [a0]E [b0]E .A=E meets the �rst three conditions on pca's, since A is a pca; it meets the lastcondition, since E is proper. Hence A=E is a pca. Clearly, �a 2 A:[a]E is a closedepimorphism of A onto A=E. utIf we, as is standard, identify isomorphic pca's, we can in fact pass in this wayfrom collapses to proper congruence relations and back, and end up were we havestarted. This is a special case of the well-known First Homomorphism Theoremof universal algebra (see e.g. [Gr�a79]). Thus, given collapses �; �0 of A, let uswrite � �= �0 if the homomorphic images of A under � and �0 are isomorphic.Theorem8. Let A = hA; s; k; �i be a pca. Then1. �a 2 A:[a]E� �= � for all � 2 Col(A), and2. E�a2A:[a]E = E for all E 2 Con(A).Proof. To prove 1., de�ne the surjection  : A=E� ! �(A) by  ([a]E�) = �(a).As [a]E� = [a0]E� $ ha; a0i 2 E� $ �(a) = �(a0);it follows that  is well-de�ned and bijective, and since � is a closed homomor-phism,  is a closed homomorphism too. So  is an isomorphism. For 2., notethat E�a2A:[a]E = fha; a0i 2 A�A j [a]E = [a0]Eg = E : ut



3 Final Collapses of PCA'sA pca A has always an initial collapse, i.e. a collapse � such that for any collapse�0 there is a unique homomorphism  with  � � = �0. This initial collapse isjust the identity on A that does not identify any elements. Nca's, however, alsohave a �nal collapse, i.e. a collapse � such that for any collapse �0 there is aunique homomorphism  with  � �0 = �. Such a �nal collapse then identi�esall elements that can be identi�ed. The crucial observation is the following.Proposition9. Let A = hA; s; k; �i be an nca and E be an equivalence relationon A. Then E is proper provided E is a congruence relation.Proof. Assume E is a congruence and suppose that hs; ki 2 E. Pick a; a0 2 Asuch that aa0 " and let C � 2kaa0. Then skaa0 # i� kkaa0 #. As kkaa0 = ka0, itfollows that skaa0 = ka0(aa0). Hence aa0 #. Contradiction. utIn dealing with nca's, we can therefore forget about properness and concentrateon congruence only. As it turns out, the union of all congruences is again acongruence.De�nition 10. Let A = hA; s; k; �i be an nca. PutE�n = fha; a0i 2 A�A j 8C 2 CA C[a] # if and only if C[a0] #g :Lemma11. Let A = hA; s; k; �i be an nca. Then1. E�n 2 Con(A),2. E�n = SCon(A).Proof. 1. E�n is clearly a congruence relation. Hence E�n 2 Con(A) by Proposi-tion 9.2. From 1. it follows that E�n � SCon(A). For the other inclusion, let ha; a0i 2SCon(A). Then ha; a0i 2 E for some E 2 Con(A). Thus, since E is a congru-ence, ha; a0i 2 E�n. utTheorem12. Every nca A = hA; s; k; �i has a �nal collapse.Proof. We shall prove that �a 2 A:[a]Efin is �nal. To this end, let � be anycollapse of A onto some pca B = hB; s0; k0; �0i and put  (b) = [a]Efin where�(a) = b. Observe that  is well-de�ned. For, if �(a) = b = �(a0), then ha; a0i 2E� � E�n and hence [a]Efin = [a0]Efin . Clearly  is a homomorphism. And as (�(a)) = [a]Efin for all a 2 A, it follows that  � � = �a 2 A:[a]Efin . Now let 0 be such that  0 � � = �a 2 A:[a]Efin . Then  (�(a)) =  0(�(a)) for all a 2 A.Hence  (b) =  0(b) for all b 2 B. So  =  0. utFor ca's, such a �nal collapse does not need to exist. To see this, we recalla well-known result from [Jac75]. Extensional combinatory logic, ECL, is anequational theory consisting of expressions of the form M = N whereM and N



are terms constructed as usual from variables, the two constants S and K, anda binary application operator � which we do not write. The axioms and rules ofinference of ECL are those of equational logic together with the axiomsKxy = x Sxyz = xz(yz)and the rule Mx = NxM = Nwhere the variable x occurs in neither M nor N . Closed terms modulo provableequality form a ca in the following way: We letAECL = hT 0=ECL; [S]ECL; [K]ECL; �iwhere T 0 is the set of closed terms (i.e. the set of terms without any variable),T 0=ECL = f[M ]ECL jM 2 T 0g;[M ]ECL = fN 2 T 0 j ECL `M = Ngand [M ]ECL � [N ]ECL = [MN ]ECL :In [Jac75], Jacopini - using a slightly di�erent terminology - proved that [
]ECL,where 
 � S(SKK)(SKK)(S(SKK)(SKK));can be identi�ed with any other element in this ca. This means in particular thatAECL has collapses � and �0 such that �([
]ECL) = �([S]ECL) and �0([
]ECL) =�0([K]ECL). It follows that AECL lacks a �nal collapse. For, suppose AECL has a�nal collapse onto some pca B = hB; s0; k0; �0i. Then there are homomorphisms and  0 such that  � � =  0 � �0. Sos0 =  (�([S]ECL)) =  (�([
]ECL)) = 
0 =  0(�0([
]ECL)) =  0(�0([K]ECL)) = k0where 
0 � s0(s0k0k0)(s0k0k0)(s0(s0k0k0)(s0k0k0)). This constitutes a contradictionwith the fact that the homomorphic image of AECL under the �nal collapse meetsthe last condition on pca's.Theorem13. Not every ca has a �nal collapse.



4 Irreducible PCA'sNot every pca allows for further identi�cations. For example, the codomain ofevery �nal collapse has reached its maximal degree of identi�cations. We shallcall such a pca, where the only collapse is the trivial initial one, irreducible.De�nition 14. Let A = hA; s; k; �i be a pca. A is irreducible if E� � fha; ai ja 2 Ag for every collapse � of A.There are prominent pca's which share this property. We give two examples.Example 1. The �rst example uses only elementary properties of sets, and isdirectly taken from Engeler [Eng81]. It is in fact a notational variant of one ofseveral ca's �rst described in Plotkin [Plo72] which in turn are nearly the sameas the better known P! construction of Scott [Sco76].Let A be any nonempty set, and let B be the least set containing A and allordered pairs consisting of a �nite subset � � B and an element b 2 B. Assumethat elements of A are distinguishable from ordered pairs. Let DA be the powerset of B, and de�ne the total application operation on DA byxy = fb 2 B j (�; b) 2 x for some � � yg :Choose s = f(�; (�; (; b))) j b 2 �(�)g;and k = f(�; (�; b)) j b 2 �g :Then D = hDA; s; k; �i is a ca.To prove thatD is irreducible, let E� be any collapse ofD and let hx; yi 2 E�.Assume x 6= y. Say, b 2 x and b 62 y for some b 2 B. De�nez = f(fbg; b0) j b0 2 kg :Then z 2 DA. Now let C be the context z2. Since E� is a congruence, hzx; zyi 2E�. Observe that zx = k and zy = ;. Hence hk; ;i 2 E�, and thereforehkss; ;ssi 2 E�. That is, also hs; ;i 2 E�. It follows that hs; ki 2 E�. Thus E� isimproper. This is a contradiction. So x = y; whence hx; yi 2 fhx; xi j x 2 DAg.Remark. The argument given above extends to the family of P!-models whichconsists of coded versions of D. At �rst sight, this may seem to contradict the re-markable result of Baeten and Boerboom in their 1979 paper
 can be anything itshouldn't be (cf. [BB79]). The authors, however, do not consider collapses. Ratherthey show that, given an arbitrary closed �-term M , there exists a member ofthe P!-family which identi�es M and 
.



Example 2. As second example we consider the nca of natural numbers withpartial recursive function application. More speci�cally, we de�ne a nontotalapplication operation on the natural numbers IN bynm = fng(m)where fng is the partial recursive function with G�odel number n. We may let kbe any G�odel number of the recursive function which, given some argument x,returns a G�odel number of the constant function returning x. The natural num-ber s is slightly more complicated: we let s be a G�odel number of the recursivefunction f(x) = nxwhere nx is a G�odel number of the recursive functiong(y) = mx;ywith mx;y a G�odel number of the partial recursive functionh(z) ' ffxg(z)g(fyg(z)) :The existence of this function is easiest to explain using Turing machines, orsome other model of computation. Then N = hIN; s; k; �i is an nca.To prove that N is irreducible, let E� be any collapse of N and let hx; yi 2 E�.Assume x 6= y. It is now not hard to imagine a partial recursive function g withG�odel number z, say, such that g(x) " and g(y) #. Then C � z2 is a contextwith C[x] " and C[y] #. Thus E� is not a congruence. This is a contradiction.So x = y; whence hx; yi 2 fhx; xi j x 2 INg.5 Extensional Collapses of PCA'sIn this �nal section, we shall consider collapses that identify elements whichdisplay identical applicative behaviour.De�nition 15. Let A = hA; s; k; �i be a pca.1. A is extensional if for all a; a0 2 A,(8a00 2 A aa00 ' a0a00)! a = a0 :2. A has an extensional collapse if A has a collapse onto some extensional pca.Proposition 16. Let A = hA; s; k; �i be a pca and let � be an extensional collapseof A. Then fha; a0i 2 A�A j 8a00 2 A aa00 ' a0a00g � E� :



Proof. Suppose � is a collapse onto the extensional pca B = hB; s0; k0; �0i. Leta; a0 2 A be such that aa00 ' a0a00 for all a00 2 A and let b 2 B. Say, b = �(a00).Then �(a)b ' �(a)�(a00) ' �(aa00) ' �(a0a00) ' �(a0)�(a00) ' �(a0)b :Hence �(a) = �(a0), since B is extensional. Therefore ha; a0i 2 E�. utNot every pca has an extensional collapse. Observe, for example, that the twopca's considered in Example 1 and 2 are not extensional. As they are bothirreducible, it follows that they do not have an extensional collapse.Theorem17. Not every pca has an extensional collapse.For nca's, there exists a simple condition such that the �nal collapse is exten-sional.Theorem18. Let A = hA; s; k; �i be an nca. Its �nal collapse is extensional ifand only if(y) 8a; a0 2 A (8C 2 CA 8a00 2 A (C[aa00] #$ C[a0a00] #)! ha; a0i 2 E�n) :Proof. Suppose (y) holds. To prove that A=E�n is extensional, let [a]Efin ; [a0]Efin 2A=E�n be such that [a]Efin [a00]Efin ' [a0]Efin [a00]Efinfor every [a00]Efin 2 A=E�n. Now let a00 2 A, C be any context and assume one ofC[aa00] and C[a0a00] is de�ned, say C[aa00] #. Then aa00 # and hence [aa00]Efin =[a0a00]Efin . So haa00; a0a00i 2 E�n and therefore C[a0a00] #. Thus ha; a0i 2 E�n by(y), i.e. [a]Efin = [a0]Efin :For the other direction, assume A=E�n is extensional and let a; a0 2 A be suchthat C[aa00] # if and only if C[a0a00] # for all contexts C and all a00 2 A. Then,in particular, [a]Efin [a00]Efin ' [a0]Efin [a00]Efinfor every [a00]Efin 2 A=E�n. Hence [a]Efin = [a0]Efin , since A=E�n is extensional.So ha; a0i 2 E�n. utWe shall apply this result in the next and �nal example of this paper where weprove that the �nal collapse of the nca of closed, strongly normalizing CL-termsis extensional. In the example, we employ fundamental de�nitions and notionsof term rewrite systems. Extensive surveys of term rewriting can be found in[Klo92] and [DJ90].Example 3. Reduction in CL is generated by the rules1. SLMN ! LN(MN)



2. KLM ! Lfor all CL-terms L;M;N . Here `generated' means:3. if L!M then C[L]! C[M ]for every context C. Contexts are de�ned as in De�nition 2 with element achanged into CL-term L.We write L � M if L and M are identical terms. The transitive-reexiveclosure of the rewrite relation ! is denoted by !!. If L !! M , we say that Lreduces to M . The equivalence relation generated by ! is called convertibilityand written as =.A term of the form SLMN or KLM is a redex; its contractum is LN(MN)or L, respectively. A term not containing such redexes is a normal form (nf) andhas a nf if it reduces to one. A reduction of L is a sequence of terms L � L1 !L2 ! L3 ! � � �. Reductions may be in�nite. If every reduction of L terminateseventually (in a normal form), then L is said to be strongly normalizing. Welet SN be the set of all strongly normalizing CL-terms, and SN0 be the set ofall closed, strongly normalizing CL-terms. Observe that ! � S(SKK)(SKK) 2SN0; however, 
 � !! 62 SN.The rewrite system CL is orthogonal and has therefore nice properties suchas conuence. Another pleasantness is:(�) Let L 62 SN and L ! M be such that M 2 SN. Then the redex contractedin the reduction step must contain a proper subterm N with N 62 SN thatis erased in the step L!M(cf. Exercise 3.1.13 of [Klo92]). From this we obtain the following proposition.Proposition 19. Let C be a context and L;M 2 SN.1. If L!M , then C[L] 2 SN if and only if C[M ] 2 SN.2. If L!!M , then C[L] 2 SN if and only if C[M ] 2 SN.3. If L =M , then C[L] 2 SN if and only if C[M ] 2 SN.Proof. 1. If L ! M , then C[L] ! C[M ]. Hence C[M ] 2 SN if C[L] 2 SN. Forthe other direction, assume C[M ] 2 SN and suppose C[L] 62 SN. By (�) theremust be a subterm N of L with N 62 SN. This is of course impossible, sinceL 2 SN.2. Follows from 1.3. If L = M , then by conuence, L !! N   M for some term N . Moreover,N 2 SN, since L;M 2 SN. Therefore C[L] 2 SN i� C[N ] 2 SN i� C[M ] 2 SNby 2. utClosed, strongly normalizing terms modulo convertibility form an nca in thefollowing way: We letASN = hf[M ]SN jM 2 SN0g; [S]SN; [K]SN; �i



where [M ]SN = fN 2 SN0 jM = Ngand [M ]SN � [N ]SN = � [MN ]SN if MN 2 SN;unde�ned otherwise :Observe that application is well-de�ned. For, if M = M 0 and N = N 0, thenMN 2 SN i� M 0N 2 SN i� M 0N 0 2 SN by Proposition 19.3. By a similarargument, ASN satis�es conditions 1. and 3. on pca's. Moreover, SLM 2 SN ifL;M 2 SN. Hence also condition 2. is met. Finally, [S]SN 6= [K]SN, since S 6� K.So ASN is an nca.To prove that the �nal collapse of ASN is extensional, we invoke Theorem 18.That is, we shall prove that for all L;M 2 SN0, if8C 2 CASN 8N 2 SN0 (C[[L]SN[N ]SN] #$ C[[M ]SN[N ]SN] #);then h[L]SN; [M ]SNi 2 E�n. If we denote the set of contexts built from the hole2 and closed, strongly normalizing terms by CSN, the requirement for Theorem18 boils down to the following: for all L;M 2 SN0, if(z) 8C 2 CSN 8N 2 SN0 (C[LN ] 2 SN$ C[MN ] 2 SN);then C[L] 2 SN i� C[M ] 2 SN for all C 2 CSN. We start with an intuitivedescription of the proof.We �rst recall the notion of descendants of a speci�c occurrence of a subtermL ofM under a reductionM !! N : we underline the given occurrence of L inM(and nothing else) and perform the reductionM !! N . Then we look for the setof all underlined subterms of N . These subterms (actually subterm occurrences)are the descendants of L. We moreover say that L is activated in this reductionif N � C[L�P ] for some context C and some term P where L� is a descendantof L.Now suppose (z) holds and C[L] 62 SN, i.e. C[L] has an in�nite reduction.Observe that by Proposition 19.2 we may assume that L is a normal form. Thismeans that the in�nite reduction is sustained by just one source: the `materi-al' present in the context C. In the course of the in�nite reduction, L will bemultiplied in several descendants and the only contribution of L to sustainingthe in�nite reduction is that a descendant of L, L�, is activated such that L�Peventually will develop into a redex and will be contracted.Indeed, if no descendant of L ever would be activated, all activity would bedue to the context. In that case we also have an in�nite reduction after replacingL by M .Given the fact that C[L] has an in�nite reduction, we want to construct anin�nite reduction of C[M ]. This is done by gradually replacing all descendants ofL by M , in the following manner: as soon as a descendant of L is activated, wereplace it by M . Because of (z), this replacement does not loose the possibilityof an in�nite reduction. Performing this in�nite reduction in the so obtainednew context, we again wait until the �rst of the remaining descendants of L is



activated and replace it again byM . This procedure is repeated ad in�nitum. Ineach step of the procedure, we gain some �nite piece of the reduction of C[M ]; ifthe procedure stops because no more descendants of L exist, or will be activated,then we gain an in�nite reduction of C[M ].In the following, we make this intuitive description more precise. We de-viate from the practice up to now and allow for contexts with several holes.If C is a context with n holes, we write C[L1; : : : ; Ln] for the term obtainedfrom C by replacing the holes by L1; : : : ; Ln in that order. Moreover, we writeC[L; : : : ; L]!! C 0[L; : : : ; L] if the occurrences of L displayed in C 0[L; : : : ; L] areprecisely the descendants of the occurrences of L displayed in C[L; : : : ; L].Proposition 20. Let L be a normal form.1. Let C[L; : : : ; L]! � � � ! C 0[L; : : : ; L�P [L; : : : ; L]; : : : ; L]be a reduction until for the �rst time a descendant (displayed as L�) of oneof the L's shown in C[L; : : : ; L] is activated. Then for every M ,C[M; : : : ;M ]! � � � ! C 0[M; : : : ;MP [M; : : : ;M ]; : : : ;M ]is a reduction obtained by replacing every descendant of the L's by M .2. Let C[L; : : : ; L]!! � � � be an in�nite reduction in which no descendant of thedisplayed L's ever is activated. Then for every M , C[M; : : : ;M ]!! � � � is anin�nite reduction obtained by replacing every descendant of the L's by M .Proof. Routine. utTheorem21. The �nal collapse of ASN is extensional.Proof. Let L, M be normal forms such that(z) 8C 2 CSN 8N 2 SN0 (C[LN ] 2 SN$ C[MN ] 2 SN) :We shall prove that C[L] 2 SN i� C[M ] 2 SN for all C 2 CSN. Suppose this isnot the case, say C[L] 62 SN and C[M ] 2 SN for some C 2 CSN. We shall derivea contradiction by constructing an in�nite reduction of C[M ] as follows: LetR : C[L]!! � � � be an in�nite reduction. If no descendant of L ever is activated,then R0 : C[M ] !! � � � obtained by replacing every descendant of L by M is anin�nite reduction by Proposition 20.2. Otherwise we consider the initial part ofR up to the �rst moment in which some descendant of L is activated:C[L]! � � � ! C�[L; : : : ; L�P [L; : : : ; L]; : : : ; L] :This is the A0B1-edge in the diagram below. Now replace the activated de-scendant of L by M . Observe that this term stays in�nite (i.e. is not stronglynormalizing). For, either(i) C�[L; : : : ;2; : : : ; L] 2 CSN and P [L; : : : ; L] 2 SN: then we can apply (z), or



(ii) C�[L; : : : ;2; : : : ; L] 62 CSN: then C�[L; : : : ;2; : : : ; L] contains a subterm thatis not strongly normalizing and hence C�[L; : : : ;MP [L; : : : ; L]; : : : ; L] 62 SN,or(iii) P [L; : : : ; L] 62 SN: then also C�[L; : : : ;MP [L; : : : ; L]; : : : ; L] 62 SN.In case of a �nal S-redex contraction, there may be another activated descendantof L. That is,C�[L; : : : ;MP [L; : : : ; L]; : : : ; L] � Cz[L; : : : ; LzQ[L; : : : ; L]; : : : ; L] :In this case we replace also Lz by M . Applying (i)-(iii) a second time, we �ndthat this new term stays also in�nite. By Proposition 20.1, we have a reductionC[M ]! � � � ! C�[M; : : : ;MP [M; : : : ;M ]; : : : ;M ]which we depict by the D0D1-edge in the diagram. Observe thatC�[M; : : : ;MP [M; : : : ;M ]; : : : ;M ] � Cz[M; : : : ;MQ[M; : : : ;M ]; : : : ;M ] :We now reiterate this procedure, using instead of R an in�nite reductionR� : C�[L; : : : ;MP [L; : : : ; L]; : : : ; L]!! � � �or Rz : Cz[L; : : : ;MQ[L; : : : ; L]; : : : ; L]!! � � �which corresponds to the horizontal edge starting in point A1. Note that L� andLz changed into M is now part of the context. If there are no descendants of Lleft, thenC�[L; : : : ;MP [L; : : : ; L]; : : : ; L] � C�[MP ] � C�[M; : : : ;MP [M; : : : ;M ]; : : : ;M ]and we are done: C[M ]! � � � ! C�[MP ]!! � � �is the wanted in�nite reduction. Likewise for Cz. We are also done, if no descen-dant of L ever is activated in R� or Rz. For, in that case we obtain an in�nitereduction C[M ]! � � � ! C�[M; : : : ;MP [M; : : : ;M ]; : : : ;M ]!! � � �by Proposition 19.2; likewise for Cz. In the remaining case, we consider theinitial part of R� (Rz) up to the �rst moment in which a descendant of theremaining descendants of L is activated. This is the A1B2-edge in the diagram.Employing Proposition 19.1, we gain the edge D1D2. In this way, we proceed adin�nitum.
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utRemark. Let A = hA; s; k; �i be a pca. We call ker(A), the kernel of A, the subsetof A containing all elements generated by k and s. So ker(A) is de�ned by:1. k; s 2 ker(A), and2. if a; a0 2 ker(A) and aa0 #, then aa0 2 ker(A).In case ker(A) = A, we call A a minimal pca. Note that the nca ASN=E�n is infact minimal.As observed in [Bet87], extensional nca's cannot be completed to a ca byadding some elements and completing the application operation. For, supposeA = hA; s; k; �i is an extensional nca and A0 is some completion of A. Choosea; a0 2 A such that aa0 " and put ?� s(ka)(ka0). Observe that ? a00 " for everya00 2 A, and hence s(k(kk)) ? a00 " and s(k(ks)) ? a00 " for every a00 2 A. By
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