MATHEMATICS OF OPERATIONS RESEARCH
Vol. 24, No. 2, May 1999
Printed in U.S.A.

RANDOM SAMPLING IN CUT, FLOW, AND
NETWORK DESIGN PROBLEMS

DAVID R. KARGER

We use random sampling as a tool for solving undirected graph problems. We show that the sparse
graph, orskeletonthat arises when we randomly sample a graph’s edges will accurately approximate
the value of all cuts in the original graph with high probability. This makes sampling effective for
problems involving cuts in graphs.

We present fast randomized (Monte Carlo and Las Vegas) algorithms for approximating and
exactly finding minimum cuts and maximum flows in unweighted, undirected graphs. Our
cut-approximation algorithms extend unchanged to weighted graphs while our weighted-graph flow
algorithms are somewhat slower. Our approach gives a general paradigm with potential applications
to any packing problem. It has since been used in a near-linear time algorithm for finding minimum
cuts, as well as faster cut and flow algorithms.

Our sampling theorems also yield faster algorithms for several other cut-based problems, including
approximating the best balanced cut of a graph, findikgcannected orientation of &konnected
graph, and finding integral multicommodity flows in graphs with a great deal of excess capacity. Our
methods also improve the efficiency of some parallel cut and flow algorithms.

Our methods also apply to theetwork designproblem, where we wish to build a network
satisfying certain connectivity requirements between vertices. We can purchase edges of various costs
and wish to satisfy the requirements at minimum total cost. Since our sampling theorems apply even
when the sampling probabilities are different for different edges, we can ampipmized rounding
to solve network design problems. This gives approximation algorithms that guarantee much better
approximations than previous algorithms whenever the minimum connectivity requirement is large.
As a particular example, we improve the best approximation bound for the minkaconnected
subgraph problem from 1.85 to + O(Vlog n)/k).

1. Introduction. The representative random sample is a central concept of statistics. It
is often possible to gather a great deal of information about a large population by examining
a small sample randomly drawn from it. This approach has obvious advantages in reducing
the investigator’'s work, both in gathering and in analyzing the data.

We apply the concept of a representative sample to combinatorial optimization problems
on graphs. Given an optimization problem, it may be possible to generate a small
representative subproblem by random sampling. Intuitively, such a subproblem should form
a microcosm of the larger problem. We can examine the subproblem and use it to glean
information about the original problem. Since the subproblem is small, we can spend
proportionately more time analyzing it than we would spend examining the original problem.
Sometimes, an optimal solution to the subproblem will be a nearly optimal solution to the
problem as a whole. In some situations, such an approximation might be sufficient. In other
situations, it may be easy to refine this good solution into a truly optimal solution.

We show this approach to be effective for problems involving cuts in graplesit /& an
undirected graph is a partition of the graph’s vertices into two nonempty sets/alineof
the cut is the number, or for a weighted graph the total weight, of edges with one endpoint
in each set. Cuts play an important role in determining the solutions to many graph problems.

Received August 15, 1995; revised July 22, 1997 and September 8, 1998.

AMS 1991 subject classificatioRrimary: 90C35; Secondary: 68Q30.

OR/MS subject classificatioRrimary: Networks/Flow algorithms, Networks/Network design; Secondary: Analysis
of algorithms/Randomized algorithms.

Key words.Networks, randomized algorithm.

383
0364-765X/99/2402/0383/$05.00

Copyright © 1999, Institute for Operations Research and the Management Sciences

384 D. KARGER

Most obviously, the connectivity of a graph is the minimum value of a cut in the graph.
Similarly, thes-t maximum flow is determined by the smallest of all cuts that separanel
t—that is, thes-t minimum cut. In theN'%-completenetwork design problenthe goal is to

build a graph that satisfies certain specified connectivity requirements by containing no small
cuts. A special case is to find a minimum size (number of edgesnhnected subgraph of a
k-connected graph. Other problems to which cuts are relevant include finding a minimum
balancedcut (in which both sides of the cut are “large”) and finding an orientation
(assignment of directions) of the edges of an undirected graph that makesrinected as

a directed graph. Cuts also play an important role in multicommodity flow problems, though
the connection is not as tight as for the standard max-flow problem (Leighton and Rao 1988;
Linial, London, and Rabinovich 1995; Aumann and Rabani 1998).

Random sampling helps us solve cut-dependent undirected graph problems. We define and
use agraph skeletonGiven a graph, a skeleton is constructed on the same set of vertices by
including a small random sample of the graph’s edges. Our main result is that (with high
probability) a skeleton accurately approximates all cut values in the original graph. This
means random subgraphs can often be used as substitutes for the original graphs in cut and
flow problems. Since the subgraphs are small, improved time bounds result.

In the most obvious application, by computing minimum cuts and maximum flows in the
skeleton, we get fast algorithms for approximating global minimum atsninimum cuts
and maximum flows. For example, we give a near-linear-time algorithm for approximating
the global minimum cut of a graph to within any constant factor with high probability.
Furthermore, a randomized divide and conquer technique finds exact solutions more quickly
than before. For example, we improve the time to find a minimum cut of @ilmanm-edge
unweighted (that is, with all edges having the same, unit, capacity) graph @ont)
(Gabow 1995) td(m\/c) (the notationd(f) denotesO(f polylog f)). This in turn yields
faster algorithms for constructing the cactus representation of minimum cuts in a graph and
for optimally augmenting graph connectivity. We improve the time to find a maximum flow
of value v from O(muv) to O(mw/\V/c). We improve the total work done by some parallel cut
and flow algorithms. We also give applications to balanced cuts and orientations and to
integral multicommodity flows.

While this work can stand independently, perhaps its greater value is in proving results on
sampling that have since found several applications. The major improvement has been to
eliminate the dependence on the minimum cw@ppearing in this paper’s results. Behczu
and Karger (1996) extend the sampling construction to weighted graphs, showing how to
approximates-t minimum cuts with high probability inO(n? time. This author used
sampling in an algorithm to find aexactminimum cut in any (weighted or unweighted)
undirected graph with high probability i®(m) time (Karger 1996). More recently, this
author gave a faster, sampling-based algorithm that finds a maximum flow of vaftue
O(Vmnv) time with high probability (Karger 1998a). Karger and Levine (1998) gave an
even faste®(nv**)-time algorithm for simple graphs. All of these new results rely directly
on this paper’'s sampling theorems and algorithms.

Our approach to maximum flows and minimum cuts exemplifies a natural random-
sampling approach tpacking problemsn which the goal is to find a maximum collection
of feasible subsets of some input universe. Inghtemaximum flow problem the universe is
the graph’s edges and the feasible setssarepaths. A different (tree-) packing problem
corresponds to global minimum cuts. In a different paper (Karger 1998b), we show that the
paradigm also applies to the problem of packing bases in a matroid.

Our approach also applies to cert@ioveringproblems. From random sampling, it is a
small step to show thatandomized roundingRaghavan and Thompson 1987) can be
effectively applied to graphs with fractional edge weights, yielding integrally weighted
graphs with roughly the same cut values. This makes randomized rounding a useful tool in
network designproblems. In theseN'%-complete problems, the goal is to construct a

NETWORK DESIGN PROBLEMS 385

minimum-cost network satisfying certain connectivity demands (for example, the Steiner tree
problem asks for the minimum cost subgraph connecting a certain set of vertices). For the
version where edges can be reused, we give a polynomial time approximation algorithm with
an approximation bound of + O(V (log n)/f,), wheref ., is the connectivity (minimum

cut) of the optimum solution (and thus at least the minimum connectivity demand between
two vertices). Previous approximation algorithms had bounds depending anakienum
connectivity demandg, ., the best bein@(log f,..,) for a large class of problems (Agrawal,
Klein, and Ravi 1995). We get a + O(1/Vk) bound for theminimum k-connected
subgraph problentwhere edges cannot be reused, all connectivity demands ared edge
costs are 1 or infinity). For sufficiently lardethis improves on a previous approximation
ratio of 1.85 (Khuller and Raghavachari 1995). We also improve bounds for various other
single-edge-use problems.

All of our techniques apply only to undirected graphs, as cuts in directed graphs do not
appear to have the same predictable behavior under random sampling.

Preliminary versions of this work appeared in conference proceedings (Karger 1994a;
Karger 1994c). A more extensive treatment is provided in the author’s dissertation (Karger
1994b).

The remainder of this introduction includes a more detailed description of our results as
well as a comparison to previous and subsequent work, followed by some definitions. Section
2 then presents our main theorem on cuts in sampled graphs. The paper then splits into two
parts that can be read independently. In the first part, we show how to accelerate algorithms
for computings-t maximum flows and minimum cuts (83) and global minimum cuts (84) in
unweighted graphs, with extensions to weighted graphs (85). Section 6 describes applications
to other cut problems. The second part of the paper discusses applications of the sampling
theorem and randomized rounding to network design problems. In §7, we lay the groundwork
and address the version where edges can be reused. In 88 we discuss the harder case in which
edges can only be used once.

1.1. Definitions. We make the following definitions. Consider a statement that refers to
a variablen. We say that the statement hold#th high probability(w.h.p.) in n if for any
constantd, there is a setting of constants in the statement (typically hidde@-bptation)
such that the probability the statement fails to hol®i@).

Our work deals with randomized algorithms. Our typical model is that the algorithm has
a source of “random bits"—variables that are mutually independent and take on values O or
1 with probability3 each. Extracting one random bit from the source is assumed to take
constant time. If our algorithms use more complex operations, such as flipping biased coins
or generating samples from more complex distributions, we take into account the time needed
to simulate these operations in our unbiased-bit model. Event probabilities are taken over the
sample space of random bit strings produced by the random bit generator. We say an event
regarding the algorithm occuvégth high probability(w.h.p.) if it occurs with high probability
in the problem size (that is, with probability at least-1n " on problems of size) and with
low probability if the complementary event occurs with high probability.

The random choices that an algorithm makes can affect both its running time and its
correctness. An algorithm that has a fixed (deterministic) running time but has a small
probability of giving an incorrect answer is callétbnte Carlo(MC). If the running time of
the algorithm is a random variable but the correct answer is given with certainty, then the
algorithm is said to bd.as Vegas(LV). Depending on the circumstances, one type of
algorithm may be better than the other. However, a Las Vegas algorithm is “stronger” in the
following sense.

A Las Vegas algorithm can be made Monte Carlo by having it terminate with an arbitrary
wrong answer if it exceeds its high probability time bound. Since the Las Vegas algorithm
is unlikely to exceed its time bound, the converted algorithm is unlikely to give the wrong

386 D. KARGER

answer. On the other hand, there is no universal method for making a Monte Carlo algorithm
into a Las Vegas one, and indeed some of the algorithms we present are Monte Carlo with
no Las Vegas version apparent. The fundamental problem is that sometimes it is impossible
to check whether an algorithm has given a correct answer. However, the failure probability
of a Monte Carlo optimization algorithm can be made arbitrarily small by repeating it several
times and taking the best answer; we shall see several examples of this below. In particular,
we can reduce the failure probability so far that other unavoidable events (such as a power
failure) are more likely than an incorrect answer.

Finally, we remark that all logarithms in the paper are base 2 and recad{tfatdenotes
O(f polylog n).

1.2. Cuts and flows. In the first part of this paper we present algorithms for
approximating and for exactly findirggt and global minimum cuts and maximum flows. To
this end, we make the following definition:

Derinmion 1.1, An a-minimum cutis a cut whose value is at mosttimes that of the
(global) minimum cut. Ane-minimum st cutis defined similarly. Ane-maximum st flow
is ans-t flow whose value is at least times the optimum.

We show that if we pick a small random sample of a graph’s edges, then we get a graph
whose minimum cuts correspond (under the same vertex partition)-toe)iminimum cuts
of the original graph. Therefore, we can approximate minimum cuts by computing minimum
cuts in a sampled graph. These cuts are found uaugmenting pathalgorithms whose
running times increase with both the size of the graph and the value of the output cut. Both
of these quantities are smaller in the sampled graph, so we get a speedup for two different
reasons. We extend these ideas to find approximately maximum flows by randomly
partitioning the graph’s edges and finding flows separately in each resulting edge group.
Finally, we find exact flows by using augmenting path algorithms to “repair” the errors
introduced by the approximation algorithms. Since the error is small, the repair takes little
time.

Throughout this paper, we focus attention omarertex,m edge graph with minimum cut
¢ ands-t minimum cutv. We give randomized Monte Carlo (MC) and Las Vegas (LV)
algorithms to find the following objects in unweighted, undirected graphs:

e A global minimum cut inO(mV/c) time (LV),

e A (1 + €)-minimum cut inO(m + n/€®) time (MC) or O(m/e) time (LV),

e An s-t maximum flow inO(mv/Vc) time (LV),

e A (1 + €)-minimum s-t cut in O(m + n(v/c)’€ ®) = O(mu/e’c?) time (MC) or
O(mulec) time (LV),

e A (1 — e)-maximums-t flow in O(muv/ec) time (LV).

Our cut approximation algorithms extend to weighted graphs with roughly the same time
bounds. The flow approximation algorithms and exact algorithms use a “scaling” technique
that, for a given maximum edge weight increases the time bounds of the flow algorithms
by a factor of\/U rather than the naive factor &f.

Our approximation algorithms are in fact meta-algorithms: for example, given any
algorithm to find ars-t minimum cut in timeT(m, n, v), we can approximate the cut in time
T(m/c, n, v/c). Previously, the best time bound for computing maximum flows in
unweighted graphs wad(m - min(v, n?%, VVmy)), achieved using blocking flows (cf. Tarjan
1983, Ahuja, Magnanti, and Orlin 1993). In thait graphsthat arise in bipartite matching
problems, a running time dd(m\/n) is known. Our exact algorithm improves on these
bounds whenever/\V/c is small, and in particular whea is large. We are aware of no
previous work on approximating-t minimum cuts or maximum flows, although blocking
flows can be used to achieve a certain large absolute error bound.

This work relates to several previous algorithms for finding minimum cuts. The

NETWORK DESIGN PROBLEMS 387

Contraction Algorithm (Karger and Stein 1993) runs@n’ log® n) time on undirected
(weighted or unweighted) graphs. Gabow’s Round Robin Algorithm (Gabow 1995) runs in
O(mc log(n®/m)) time on unweighted (directed or undirected) graphs. Matula (1993) gave
a deterministic linear-time algorithm for finding a (2 €)-minimum cut in unweighted,
undirected graphs. It is easily extended to run in near-linear time on weighted graphs (Karger
1994b).

As mentioned above, since this work appeared, Benaad Karger (1996) have given an
O(n?) time algorithm for approximating-t minimum cuts, Karger (1996) has given @gm)
time algorithm for finding an exact minimum cut, and Karger and Levine (1998) have given
an O(nv**)-time algorithm for finding a flow of value, all regardless o€.

1.3. Network design. In the second part of our paper we discussrbbvork design
problem We start with a set of vertices and “purchase” various edges in order to build a
graph satisfying certain connectivity demands between the vertices. Each edge has an
associated cost, and our goal is to meet the demands at minimum total cost. The minimum
spanning tree problem is a special case where the “demand” is that all vertices be connected.
Network design also covers many other classic problems, sgfheomplete, including
perfect matching, minimum cost flow, Steiner tree, and mininfujain. It also captures the
minimum cost k-connected subgraph problevhere the goal is to build a minimum cost
graph with minimum cuk. The minimum cost 1-connected subgraph is just the minimum
spanning tree, but for larger values lothe problem isN?-complete even when all edge
costs are 1 or infinity (Eswaran and Tarjan 1976).

Agrawal, Klein, and Ravi (1995) studied a special case of network design called the
generalized Steiner problerfirst formulated by Krarup (see Winter 1987). In this version,
the demands are specified by giving a minimum connectijtyhat the output graph must
satisfy between each pair of verticesindj (setting alld; = k gives the minimum cost
k-connected subgraph problem). Assuming edges can be used repeatedly, they gave an
O(log f) -approximation algorithm, wherig,,, is the maximum demand across any cut (i.e.
maxd;). This extended previous work (Goemans and Bertsimas 1993) on the special case
whered; = min(d;, d;) for given “connectivity typest;. Aggarwal and Garg (1994) gave
an algorithm with performance rati@(log k), wherek is the number of sites with nonzero
connectivity demands.

A pair of papers (Williamson, Goemans, Mihail, and Vazirani 1993; Goemans, Goldberg,
Plotkin, Shmoys, Tardos, and Williamson 1994) extendedXleg f...,) bound of Agrawal,

Klein, and Ravi (1995) to the harder case where edges can be used only once, and extended
the approximation technique to a larger class of network design problems. They also noted
that for a wide range of problems (including all those just mentionéiddctional solution

can be found in polynomial time.

Our graph skeleton construction can sample edges with different probabilities. This lets us
apply Raghavan and Thompson’s (198@hdomized roundingechnique to the fractional
solutions and get good approximation ratios, despite the fact that the rounding must
simultaneously satisfy exponentially many constraints. Rounding a fractional solution gives
an integral one whose cuts are all approximately equal to their fractional values (which were
constrained to exceed the corresponding demands). The only complication is in the
possibility that the rounded values might be slightly below the demands. When edges can be
reused, this is easy: we simply increase each fractional weight slightly before rounding. This
yields an approximation algorithm with a ratio ofd O(V (log n)/f;, + (log n)/f ;) for
arbitrary edge costs, whefg,, is the minimum demand across a cut.

When edges cannot be reused, increasing the fractional weights may not be possible.
However, some more complicated techniques can often be applied instead. For the minimum
k-connected subgraph problem with= log n, we give an approximation algorithm with
performance ratio # O(V (log n)/k). For anyk > log n, this improves on the previous

388 D. KARGER

best known approximation factor of 1.85 (Khuller and Raghavachari 1995). For general
network design problems, we extend the Williamson et al. boundO@bg f.) to

O(Iog(fmax(l()g n)/fmin))'

1.4. Related work. Random sampling is a powerful general tool in algorithm
design. It appears in a fast and elegant algorithm for finding the median of an ordered set
(Floyd and Rivest 1975). It has many applications in computational geometry (Clarkson
1987; Clarkson and Shor 1987) and in particular in fixed-dimension linear and integer
programming (Clarkson 1995). Random sampling drives the first linear-time minimum
spanning tree algorithm (Karger, Klein, and Tarjan 1995). This author (Karger 1998b)
shows how it can speed up algorithms for matroid optimization and for packing matroid
bases.

Skeletons are conceptually relateddparse graph certificateertificates apply to
any monotone increasing property of graphs—one that hold&fdrit holds for some
subgraph ofG. Given such a property, a sparse certificateGas a sparse subgraph that
has the property, proving th& has it as well. The advantage is that since the certificate
is sparse, the property can be verified more quickly. For example, sparsification
techniques improve the running times of dynamic algorithms for numerous graph
problems such as connectivity, bipartitioning, and and minimum spanning trees (Epp-
stein, Galil, Italiano, and Nissenzweig 1992). The skeleton is a kind of sparse
approximatecertificate.

A sparse certificate of particular relevance to this paper isparse k-connectivity
certificate For any graph, a spar&econnectivity certificate is kn-edge subgraph @ such
that all cuts of value at mostin G have the same value in the subgraph. This differs from
our skeleton in that cuts of value less tHahave their values preserved exactly, but cuts of
greater value are not preserved at all. Nagamochi and Ibaraki (1992b) give an algorithm that
takes a graph and a paramekeand returns a spardeconnectivity certificate. It runs in
O(m) time on unweighted graphs. In weighted graphs, where the resulting certificate has total
weight knand preserves cuts of value upkiothe running time increases @m + n log n)
(Nagamochi and Ibaraki 1992a).

If we are looking for cuts or flows of value less th&n we can find them in the
certificate, taking less time since the certificate has fewer edges. For example a sparse
certificate can be constructed before Gabow’s (1995) minimum cut algorithm is
executed; this improves the algorithm’s running time frémc) to O(m + nc*?). Like
Gabow'’s, all of our cut and flow algorithms can use this preprocessing step. As a result,
m can be replaced byc in all the bounds for our min-cut algorithms and min-cut
approximation algorithms (since if we find @ 2-connectivity certificate, it will have the
same minimum cuts and approximate minimum cuts as the original graph). Simitarly,
can be replaced bywv in all of our s-t cut and flow algorithms since a-certificate
preserves all flows of value However, it clarifies the presentation to kempn the time
bounds and leave the obvious substitution to the reader.

2. Randomly sampling graph edges. Our algorithms are all based upon the following
model of random sampling in graphs. We are given an unweighted @apith a sampling
probability p, for each edge, and we construct a random subgraphskeletonon the same
vertices by placing each edgein the skeleton independently with probabilipy. Let G
denote the weighted graph with the vertices and edg€sasfd with edge weight. assigned
to edgee, and lett be the minimum cut (by weight) d&. Note thatG is not the skeleton
(a random object), but is rather an “expected value” of the skeleton, since the value of a cut
in G is the expected value of the corresponding cut in the skeleton. The quénisitthe
minimum expected value of any cut, though not necessarily the expected value of the

NETWORK DESIGN PROBLEMS 389

minimum cut. Our main theorem says that so long &s sufficiently large, every cut in the
skeleton takes on roughly its expected value.

THeorem 2.1. Lete = V3(d + 2)(Inn)/E. If € = 1 then with probability 1 — O(1/n°),
every cut in the skeleton of G has value betwgen e and1 + e times its expected value

To see the tightness of this theorem, note thatsf Vv 3d(In n)/€ then the Chernoff bound
(below) only gives a 1" bound on the probability that one particular minimum cut diverges
by e from its expected value. By changimgto d + 2, we extend from the minimum cut to
all cuts. To prove this theorem, we require two lemmas.

Lemma 2.2 (KarceR AND STEIN 1996). In an undirected grapithe number of--minimum
cuts is less than .

Proor. A proof appears in the Appendix. It is a minor variant of one that appeared
previously (Karger and Stein 1996). A quite different proof has also been developed (Karger
1996). o

LemmA 2.3 (GHERNOFF 1952, cF. MoTwANI AND RaGgHAvVAN 1995). Let X be a sum of
independent Bernoullithat is 0/1) random variables with success probabilities p. . , p,
and expected valug = 2 p;. Then fore = 1,

PIIX — u| > en] = 28 <#53,

Lemma 2.2 applied t6 states that the number of cuts with expected value lessdBan
increases exponentially witla. On the other hand, Lemma 2.3 says that the probability that
one such cut diverges too far from its expected value decreases exponentially.with
Combining these two lemmas and balancing the exponential rates proves the theorem. There
is a simple generalization to the case 1 that we omit since it will not be used in the paper.

Proor oF THEOREM 2.1. Letr = 2" — 2 be the number of cuts in the graph, and let
c., ..., C, be the expected values of theuts in the skeleton listed in nondecreasing order
sothatt = ¢, = ¢, = - - - = c,. Let p, be the probability that thkth cut diverges by more
thane from its expected value. Then the probability that some cut diverges by more than
is at mostX p,, which we proceed to bound from above.

Note that the (sampled) value of a cut is a sum of Bernoulli variables, so the Chernoff
bound says thap, = e <°. Note that we have arranged that"®* = n"“*?. We now
proceed in two steps. First, consider tifesmallest cuts. Each of them has= ¢ and thus
P = 2n "2 so that

> Pe= (n?)(2n"@*2) = 2n~¢,

k=n2

Next, consider the remaining larger cuts. According to Lemma 2.2, there are less’than
cuts of expected value less thad. Since we have numbered the cuts in increasing order, this
means that,.. = «€. In other words, writingk = n*,

In k
2Inn

Ck = c,

and thus

Pk <= 2k7(d+2)/2.

390 D. KARGER

It follows that

E ka E 2kf(d+2)/2

k>n2 k>n?2

= J 2k7(d+2)/2
n2

_ f K92)

d

=0(n9.

2.1. Constructing p-skeletons. In the first part of this paper, we will generally fix
some valug and setp, = p for all e. We call the resulting samplemskeletorof G and
denote itG(p). To avoid making exceptions for a special case let us d&ifjg®) = G for
p > 1. We have the following immediate corollary to our sampling theorem.

CoroLLARY 2.4. Let G be any graph with minimum cut ¢ and letp3(d + 2)(In n)/e*c.
Then the probability that the value of some cut i(pishas value more thafil + €) or less
than (1 — €) times its expected value i(©?).

Proor. Note that the minimum expected cutGs= pc and apply Theorem 2.1.0
Lemma 2.5. A p-skeleton of an unweighted graph can be constructed(m) @me.

Proor. To generate a skeleton we can flip an appropriately biased coin for each edge. In
some models of computation, this is treated as a unit cost operation. If we want to be stricter,
we can use the weaker model in which only an unbiased random bit can be generated in unit
time. This would most obviously imply a®@(m log 1/p) time bound for generating a
skeleton. However, even in this model, it is possible to performnth@ased coin flips in
O(m) time with high probability (Knuth and Yao 1976, cf. Karger 1994bin

2.2. Determining the right p. Our approximation algorithms are based upon con-
structingp-skeletons. In these algorithms, given a desired approximation bgumd will
want to sample with the correspondipg= O((In n)/€’c) of Corollary 2.4 in order to ensure
that in the skeleton no cut diverges in value by more thimes its expectation. This would
appear to require knowledge a@f However, it is sufficient to have a constant-factor
underestimatec’ for the minimum cut. If we use this underestimate to determine a
corresponding sampling probabilify = 3(d + 2)(In n)/e’*c’, then we know thap’ is
larger than the correqt, so thate remains an upper bound on the likely deviation in cut
values. At the same time, singg exceeds the correq by only a constant factor, the
expected number of edges in our sample will be of the same order as the number of edges
using the corregd. These two properties are sufficient to guarantee the correctness and time
bounds of our algorithms.

One way to get this constant factor approximation is to use Matula’s (1993) linear-time
min-cut approximation algorithm to find a 3-approximation to the minimum cut. Another
approach is to initially guess a known upper boundccgsayc’ = n in unweighted graphs)
and then repeatedly halve the value of the guess until we confirm that our approximation
algorithms have run correctly. Since our algorithm’s running times are proportional to the
sample size, and thus inversely proportional to our gugsgshis repeated halving will
increase the running time of our algorithms by only a constant factor.

NETWORK DESIGN PROBLEMS 391

Thus, we will assume for the rest of this paper that the copéor a givene is known
to us, so that giver we can construct a correspondipeskeleton in linear time.

3. st min-cuts and max-flows. We now show how the skeleton approach can be
applied to minimum cuts and maximum flows. In unweighted graphss-th@aximum flow
problemis to find a maximum set, quacking of edge-disjoints-t paths. It is known (Ford
and Fulkerson 1962) that the value of this flow is equal to the value of the minsaucat.

In fact, the only known algorithms for finding @at minimum cut simply identify a cut that
is saturated by as-t maximum flow.

In unweighted graphs, a classic algorithm for finding such a maximum flow is the
augmenting pathalgorithm (cf. Tarjan 1983, Ahuja, Magnanti, and Orlin 1993). Given a
graph and ars-t flow of valuef, a linear-time search of the so-callegsidual graphwill
either show how to augment the flow to one of vafu¢ 1 or prove thaf is the value of
the maximum flow. This algorithm can be used to find a maximum flow of vained(mv)
time by findingv augmenting paths. We now show how random sampling can be used to
speed up such augmenting path algorithms. We have the following immediate extension of
Corollary 2.4:

Tueorem 3.1. Let G be any graph with minimum cut ¢ and let=pO((In n)/e°c) as in
Corollary 2.4. Suppose the-sminimum cut of G has value Then with high probabilitythe
st minimum cut in @p) has value betweefi — €)pv and (1 + €)pv, and the minimum cut
has value betwee(l — €)pc and(1 + €)pc.

CoroLLARY 3.2. Assuminge < 3 the st min-cut in @p) corresponds to a
(1 + 4e)-minimum st cut in G with high probability

Proor. Assuming that Theorem 3.1 holds, the minimum cuGitis sampled to a cut of
value at most (1+ €)c in G(p). SoG(p) has minimum cut no larger. And (again by the
Theorem 3.1) this minimum cut corresponds to a cut of value at most €c/(1 — €)
< (1 + 4e)c whene <3 O

If we use augmenting paths to find maximum flows in a skeleton, we find them faster than
in the original graph for two reasons: the sampled graph has fewer edges, and the value of
the maximum flow is smaller. The maximum flow in the skeleton reveatstaminimum cut
in the skeleton, which corresponds to a near-minimattncut of the original graph. An
extension of this idea lets us find near-maximum flows: we randomly partition the graph’s
edges into many groups (each a skeleton), find maximum flows in each group, and then
merge the skeleton flows into a flow in the original graph. Furthermore, once we have an
approximately maximum flow, we can turn it into a maximum flow with a small number of
augmenting path computations. This leads to an algorithm called DAUG that finds a
maximum flow inO(mwvV (log n)/c) time. We lead into DAUG with some more straight-
forward algorithms.

3.1. Approximate s-t minimum cuts. The most obvious application of Theorem 3.1
is to approximate minimum cuts. We can find an approxinsataninimum cut by finding
ans-t minimum cut in a skeleton.

Lemma 3.3. In a graph with minimum cut,@ (1 + e)-approximation to the-$ minimum
cut of valuev can be computed in @w/e’c?) time (MC).

Proor. Given e, determine the correspondimg= O((log n)/e’c) from Theorem 3.1.
Assume for now thap = 1. Construct ap-skeletonG(p) in O(m) time. Suppose we
compute ans-t maximum flow in G(p). By Theorem 3.1, X times the value of the
computed maximum flow gives a (& €)-approximation to the-t min-cut value (with high

392 D. KARGER

probability). Furthermore, any flow-saturated (and tedsminimum) cut inG(p) will be a
(1 + €)-minimums-t cut in G.

By the Chernoff bound, the skeleton h@gpm) edges with high probability. Also, by
Theorem 3.1, the-t minimum cut in the skeleton has val@¥ pv). Therefore, the standard
augmenting path algorithm can find a skelegat maximum flow in O((pm)(pv))
= O(mv log® n/e*c?) time. Our improved augmenting paths algorithm DAUG in §3.4 lets
us shave a factor dd(Vpc/log n) = O(1/e) from this running time, yielding the claimed
bound.

If p= 1 because = O((log n)/€?), thene’c? = O(V/c), so our theorem is proved if
we give a running time of)(mv/\/c). This is the time bound of algorithm DAUG in
83.4. O

3.2. Approximate maximum flows. A slight variation on the previous algorithm will
compute approximate maximum flows.

Lemma 3.4. In a graph with minimum cut ¢ andtsmaximum flow, a (1 — €)-maximum
st flow can be found in @nuv/ec) time (MC).

Proor. Given p as determined by, randomly partition the graph’s edges intopl/
groups, creating X/ graphs (this take®(m log(1/p)) time). Each graph looks like (has the
distribution of) ap-skeleton, and thus with high probability has a maximum flow of value at
leastpu(1 — €) that can be computed @((pm)(pwv)) time as in the previous section (the
skeletons are not independent, but even the sum of the probabilities that any one of them
violates the sampling theorem is negligible). Adding the fléws that result gives a flow of
valueu(1 — €). The running time i©((1/p)(pm)(pv)) = O(mu(log n)/e*c). If p = 1 then
the argument still holds since this implie& =< log n. If we use our improved augmenting
path algorithm DAUG, we improve the running time by an additional facto©¢t/e),
yielding the claimed bound.o

3.3. Alas Vegas algorithm. Our max-flow and min-cut approximation algorithms are
both Monte Carlo, since they are rjpiaranteedo give the correct output (though their error
probabilities can be made arbitrarily small). However, by combining the two approximation
algorithms, we can certify the correctness of our results and obtaas ¥ egaslgorithm for
both problems—one that is guaranteed to find the right answer, but has a small probability
of taking a long time to do so.

CoroLLary 3.5. In a graph with minimum cut ¢ and-ts maximum flowv, a
(1 — €)-maximum g flow and a(1 + €)-minimum st cut can be found in @nv/ec) time(LV).

Proor. Run both the approximate min-cut and approximate max-flow algorithms,
obtaining a (1- €/2)-maximum flow of valuey, and a (1+ €/2)-minimum cut of valuey,.
We know thatv, = v = v,, S0 to verify the correctness of the results all we need do is check
that (1+ €/2)v, = (1 — €/2)v,, which happens with high probability. To make the algorithm
Las Vegas, we repeat both algorithms until each demonstrates the other’s correctness (or
switch to a deterministic algorithm if the first randomized attempt fails). Since the first
attempt succeeds with high probability, the expected running time is as claimed.

3.4. Exact maximum flows. We now use the above sampling ideas to speed up the
familiar augmenting paths algorithm for maximum flows. This section is devoted to proving
the following theorem:

Theorem 3.6. In a graph with minimum cut valug @ maximum flow of value can be
found in Qmv min(1, V/(log n)/c)) time (LV).

We assume for now that = log n. Our approach is a randomized divide-and-conquer

NETWORK DESIGN PROBLEMS 393

1. Randomly split the edges &f into two groups (each edge goes to one or the other group independently with
probability 3), yielding graphsG; andG..

2. Recursively compute-t maximum flows inG; andG,.

. Add the two flows, yielding as-t flow f in G.

4. Use augmenting paths (or blocking flows) to increfate a maximum flow.

w

Ficure 1. Algorithm DAUG.

algorithm that we analyze by treating each subproblem as a (nonindependent) random
sample. This technique suggests a general approach for solving packing problems with an
augmentation algorithm (including packing bases in a matroid (Karger 1998b)). The flow that
we are attempting to find can be seen as a packing of digdipiaths. We use the algorithm

in Figure 1, which we call DAUG (Divide-and-conquer AUGmentation).

Note that we cannot apply sampling in DAUG's cleanup phase (Step 4) because the
residual graph we manipulate there is directed, while our sampling theorems apply only to
undirected graphs. Note also that unlike our approximation algorithms, this algorithm
requires no prior guess as to the valueeoWe have left out a condition for terminating the
recursion; when the graph is sufficiently small (say with one edge) we use the basic
augmenting path algorithm.

The outcome of Steps 1-3 is a flow. Regardless of its value, Step 4 will transform this flow
into a maximum flow. Thus, our algorithm is clearly correct; the only question is how fast
it runs. Suppose th&t maximum flow isv. ConsideiG,. Since each edge @& is in G, with
probability 1, we expeciG, to havem/2 edges. Also, we can apply Theorem 3.1 to deduce
that with high probability thes-t maximum flow inG, is (v/2)(1 — O(V1/c)) and the
global minimum cut i€9(c/2). The same holds fdg, (the two graphs are not independent,
but this is irrelevant). It follows that the floivhas valuev(1 — O(1/Vc)) = v — O(v/Vc).
Therefore the number of augmentations that must be perform@&dtinmakef a maximum
flow is O(v/Vc). By deleting isolated vertices as they arise, we can ensure that every
problem instance has more edges than vertices. Thus each augmentatid(taketme on
anm’-edge graph. Intuitively, this suggests the following sort of recurrence for the running
time of the algorithm in terms af, v, andc:

T(m, v, ¢) = 2T(M/2, /2, ¢/2) + O(mulc)

(where we use the fact that each of the two subproblems expects to cortaiedges). If
we solve this recurrence, it evaluatesTm, v, c) = O(muv/\Vc).

Unfortunately, this argument does not constitute a proof because the actual running time
recurrence is in fact grobabilistic recurrence the values of cuts in and sizes of the
subproblems are random variables not guaranteed to equal their expectations. Actually
proving the result requires some additional work.

We consider the tree of recursive calls made by our algorithm. Bade of this tree
corresponds to an invocation of the recursive algorithm. We can then bound the total running
time by summing the work performed at all the nodes in the recursion tree. We first show that
it is never worse than the standard augmenting paths algorithm, and then show that it is better
whenc is large.

Lemma 3.7. The depth of the computation tree igl&y m) (w.h.p.).

Proor. The number of computation nodes at degtis 2°. Each edge of the graph ends
up in exactly one of these nodes chosen uniformly and independently at random from among
them all. Thus, the probability that two different edges both end up in the same node at depth
3 log mis (summing over pairs of edges) at mo$}/(m*, which is negligible. But if there
is only one edge, the base case applies with no further recursion.

394 D. KARGER

Lemma 3.8. DAUG runs in @mlog m + muy) time (LV).

Proor. First we bound the non-augmenting-path work (i.e. the work of building and
reassembling the subproblems) in Steps 1-3. Note that at each node in the computation tree,
the amount of such work performed, not including recursive calls, is linear in the size
(number of edges) of the node (since we delete isolated vertices as they arise, there are always
fewer vertices than edges). At each level of the recursion tree, each edge of the original graph
is located in at most one node. Therefore, the total size of nodes at a given |&(gh)s
Since there ar©(log m) levels in the recursion, the total work @&(m log m).

Next we bound the work of the augmenting path computations. Note first that the
algorithm performs one “useless” augmenting path computation at each node in order to
discover that it has found a maximum flow for that node. Since the work of this augmentation
is linear in the size of the node, it can be absorbed inQlm log m) time bound of the
previous paragraph.

It remains to bound the time spent on “successful” augmentations that increase the flow at
their node by one. We claim that the number of successful augmentations, taken over the
entire tree, isv. To see this, telescope the argument that the number of successful
augmentations at a node in the computation tree is equal to the value of the maximum flow
at that node minus the sum of the maximum flows at the two children of that node. Since each
successful augmentation takegm) time, the total time spent on successful augmentations
is O(mv). O

Lemma 3.9. When c= log n, DAUG runs in @m log m + mvVlog n/c) time (LV).

Proor. We improve the previous lemma’s bound on the work of the successful
augmentations that add a unit of flow at a node. The number of such augmentations is equal
to the difference between the maximum flow at the node and the sum of the children’s
maximum flows. Consider a nod¢ at depthd. Each edge of the original graph ends up at
N independently with probability 1/2 Thus, the graph &l is a (2 ¢)-skeleton.

First consider nodes at depths exceeding digfy n). Each of these nodes has
O(m(log n)/c) edges w.h.p. By the same argument as the previous lemma, there are only
successful augmentations performed at these nodes, for a total w@knaf(log n)/c),
which is less than the claimed boundcif= log n.

At depths less than log(log n), the minimum expected cut at a nobleis large enough
to apply the sampling theorem. This proves that the maximum flow as 2 (1
+ O(V(2%logn)/c)) w.h.p. Now consider the two children of nodé¢ By the same
argument, each has a maximum flow of value"2’»(1 = O(V/(2*"* log n)/c)) (w.h.p.).

It follows that the total number of augmentations that must be performddist

ool) g1) o 2]

By the Chernoff bound, each node at degthasO(m/2%) edges with high probability. Thus
the total amount of augmentation work done at the nod®(is/ 2%) times the above bound.
Summing over the 2nodes at deptil gives an overall bound for the work at lewelof

logn

We now sum this bound over all depttiso get an overall bound @@(mvV (log n)/c). ©
Combining this result with the previous one gives a boun®¢i log m + mv min(1,
V/(log n)/c)). This time bound is still not quite satisfactory, because the é3fra log m)

NETWORK DESIGN PROBLEMS 395

term means the algorithm is slower than standard augmenting pathsagiess than logn.

This is easy to fix. Before running DAUG, perfor@(log m) augmenting path computations

on the original graph, stopping if a maximum flow is found. This guarantees that when
v = O(log m), the running time iD(Mwv). This completes the proof of the section’s main
theorem.

4. Global minimum cuts. We now show how sampling can be used for global
minimum cuts. We improve an algorithm of Gabow (1995) that finds minimum cuts in
O(mc log(n®/m)) time. This section is devoted to proving the following theorem. Some
additional ramifications are discussed at the end.

THeorem 4.1. A grapHs minimum cut ¢ can be found in(i@\/c) time (LV). It can be
approximated to withi{1 + €) in O(m) time (LV).

We therefore improve Gabow’s algorithm’s running time by a factor of roughtyin the
exact case and give a roughly linear-time algorithm for the approximate case. We have
recently developed a near-linear time exact algorithm (Karger 1996), but it is Monte Carlo.
These are the fastest known Las Vegas algorithms.

Our proof of Theorem 4.1 is the same as the one presented previously for finding
maximum flows. The change is that instead of using the standard augmenting paths technique
to pack paths, we use a matroid augmentation technique developed by Gabow (1995) to pack
arborescences—that is, directed spanning trees. We must revise the analysis slightly because
the time for a single “augmenting path” computation is not linear.

Gabow’s algorithm is designed for directed graphs and is based on earlier work of
Edmonds (1965). In a directed graph, a minimum cut is a vertex partinr) that
minimizes the number of edges directed fr&to T. Given a particular verteg, aminimum
S-cutis a partition of the vertices into nonempty s8tandT such thas € Sand the number
of directed edges crossing frogito T is minimized. Since the minimum cut in a graph is a
minimum s-cut in eitherG or G with all edges reversed, finding a global minimum cut in a
directed graph reduces to two iterations of finding a mininsient. Gabow's algorithm does
so by packings-arborescence#\n s-arborescence i@ is a spanning tree of directed edges
that induce indegree exactly one at every vertex other sh&émother words, it is a spanning
tree with all edges directed away frosn Edmonds (1965) gave the following characteriza-
tion of minimum cuts:

The minimums-cut of a graph is equal to the number of disjasrdrborescences that can be packed

in it.
It is obvious that every tree in the packing must use at least one edge sfanythe other
direction of the inequality is harder. This characterization corresponds closely to that for
maximum flows. Just as the minimusat cut is equal to the maximum number of disjoint
paths directed frons to t, the minimums-cut is equal to the maximum number of disjoint
spanning trees directed away fr@nEach arborescence can be thought of as directing a unit
of flow from s to all other vertices simultaneously. Intuitively, the bottleneck in this flow is
the vertex to whichs can send the least flow—namely, one on the opposite side of the
minimum s-cut.

Gabow’s min-cut algorithm uses a subroutine that he callsRbend Robin Algorithm
(Round-Robin). This algorithm takes as input a gr&plwith an arborescence packing of
valuek. In O(m log(n®/m)) time it either returns an arborescence packing of vakue (1)
or proves that the minimum cut ksby returning a cut of valuk. Round-Robin can therefore
be seen as a cousin of the standard augmenting-path algorithm for maximum flows: instead
of augmenting by a path, it augments by a spanning tree that sends an extra unit of flow to
everyvertex. Like many flow algorithms, Gabow's algorithm does not explicitly partition his
current flow into arborescences (“paths”). Rather, it maintains an edge set (called a complete

396 D. KARGER

intersection) that can be so partitioned. Actually carrying out the partition seems to be
somewhat harder than finding the edge set.

Gabow’s algorithm for finding a minimum cut is to repeatedly call Round-Robin until it
fails. The number of calls needed is just the vatuef the minimum cut; thus the total
running time of his algorithm i©(cmlog(n?/m)). Gabow’s algorithm can clearly be applied
(with the same time bounds) to undirected graphs as well: simply replace each undirected
edge with two directed edges: one in each direction.

We can improve this algorithm as we did the max-flow algorithm. Use DAUG, but replace
the augmenting path steps with calls to Round-Robin.

Lemma 4.2. DAUG finds a global minimum cut in (@ min(c, V¢ log n) log n) time.

Proor. Reuse the proof for the maximum flow analysis as if we were looking for a flow
of valuec. The only change is that a single application of Round-Robin on a graphwith
edges take®©(m’ log(n®/m’)) = O(m'’ log n) time. Since each augmentation anywhere in
the analysis i©(log n) times slower than for flows, the overall time boundifog n) times
greater. O

We can improve the last logarithmic factor with a more careful algorithm and analysis.
Before running DAUG, approximate the minimum cut to within some constant factor (using
Matula’s 1993 algorithm or the skeleton approach). Then, at depttc/log(n) in the
recursion, when the incoming graph has minimum @tog n), run Gabow’s original
algorithm instead of recursing. This immediately proves Theorem 4.4 foiO(log n). We
now prove the other case to finish the proof of the theorem.

Lemma 4.3. For ¢ = log m, the modified DAUG algorithm runs in @\ clogm
X log(n’/m)) time.

Proor. Since the computation stops recursing when the depth reachedldag(), the
recursion tree has depth laglog n). As with the flow analysis, the overhead in setting up
the subproblems at all levels is th&{m log(c/log n)), which is negligible. Since the time
per augmentation is no longer linear, we must change the analysis of work performed during
augmentations.

Consider first the “unsuccessful” augmentations that identify maximum arborescence
packings. The algorithm performs one at each node in the recursion tree. The total work over
all 2¢ nodes at each depthis thus

log(c/log n)
ol > 29m/29% log(2%n?%m) | = O(>, md+ >, mlog(n%m))

d=1
= O(m log%(c/log n) + mlog(c/log n) log(n?/m)),

which is less than the specified bound since’(otiog n) = o(Vc log n).

Now consider the “successful” Round-Robin calls that actually augment a packing. We
analyze these calls as in the maximum flow case. Comparing the minimum cuts of a parent
node and its children, we see that at deghtteach of the 2 nodes ha®©(m/2°) edges and
requiresO(Vc(log n)/ 2% Round-Robin calls for total o®(m\/c(log n)/2° log(2°n?/m))
work at depthd. Summing over all depths gives a total work bound@fmV'c log n
X log(n®/m)).

Finally, consider the work in the calls to Gabow’s algorithm at the leaves of the recursion.
At depthd = log(c/log n), there will be 2 such calls on graphs with minimum o@{log n),
each takingd((m/ 2% (log n)(log(n*c/m log n))) time. Since by assumptian> log n, this
is dominated by the time bound for successful augmentations.

NETWORK DESIGN PROBLEMS 397

Remark. An alternative to running a separate approximation algorithm for the minimum
cut is to modify DAUG so that before it recurses, it makgdog n) calls to Round-Robin
and halts if it finds a maximum packing. This causes the recursion to terminate at the same
point as before while increasing the work at each recursion-tree node by at most a constant
factor.

The improved time for packing arborescences has other ramifications in Gabow’s (1991)
work. He gives other algorithms for which computing an arborescence packing is the
computational bottleneck. He gives an algorithm for computing a commpéaceerepresen-
tation of all minimum cuts, and shows how this representation can be converted to the older
O(n)-space cactus representation (Dinitz, Karzanov, and Lomonosov 1976) in linear time.
He also gives an algorithm for finding a minimum set of edges to add to augment the
connectivity of a graph front to ¢ + 8. In both of these algorithms, computing an
arborescence packing forms the bottleneck in the running time.

CoroLLary 4.4. The cactus and m-tree representations of all minimum cuts in an
undirected graph can be constructed ifr®/c) time (LV).

CoroLLARY 4.5. A minimum set of edges augmenting the connectivity of a graph from ¢
to ¢ + & can be computed in @ + n(c¥? + &c + &%) time (LV).

4.1. Approximating the minimum cut. Just as with maximum flows, we can combine
a minimum cut algorithm with random sampling to develop Monte Carlo and Las Vegas
algorithms for findingapproximate minimum cuts. Previously, Matula (1993) gave a
linear-time deterministic (2+ e)-approximation algorithm; we use randomization to get
better approximations with the same time bound.

CoroLLARY 4.6. A (1 + €)-minimum cut can be found in(@ + n((log n)/e)®) time (MC).

Proor. Given anm edge graph, build p-skeleton using the determined by, and use
the previous min-cut algorithm to find a minimum cut in it. Assume 1. Then the running
time is O(m(log® n)/(ec)). Now note that before we run the approximation algorithm, we
can use Nagamochi and Ibaraki’s sparse certificate algorithm (discussed in §1.4) to construct
(in O(m) time) anO(nc)-edge graph with the same approximately minimum cuts as our
starting graph. This reduces the running time of the sampling algorithm to the stated bound.
If p> 1, meaning that®> = O(1/c), then the claimed running time &(nc*?), which
is achieved by running DAUG on thec-edge sparse certificaten

CoroLLARY 4.7. A (1 + €)-minimum cut andl — €)-maximum arborescence packing can
be found in @m(log®n)/e) time (LV).

Proor. Recall from above that an arborescence-packing of vklwertifies that the
minimum cut is at leask. Givene and its corresponding, divide the graph in 1o pieces,
find a maximum arborescence packing in each of the pieces independently, and union the
packings. The analysis proceeds exactly as in the approximate max-flow algorithm of §3.2.
As in Corollary 3.5, the combination of a cut of value {1e/2)c and a (1— €/ 2)c-packing
brackets the minimum cut between these two bounds.

5. Weighted graphs. We now describe the changes that occur when we apply our cut
and flow algorithms to weighted graphs. We model an edge of weighs a collection of
w unweighted edges. This creates problems in applying the undirected graph algorithms. For
the approximation algorithms, the time to construct a skeleton becomes proportional to the
total edge weight. For the divide and conquer algorithms, the time for augmentations
becomes large for the same reason.

Improved methods for weighted graphs have recently been developed for both cuts
(BencZu and Karger 1996) and flows (Karger 1998a, Karger and Levine 1998).

398 D. KARGER

5.1. Constructing skeletons. The first problem we face is constructing a skeleton. The
number of edges implicitly represented by edge weights can be too large to let us take time
to sample each individually. To speed our skeleton construction, we use the following
alternative approach.

Lemma 5.1. Let G be any unweighted graph with minimum cut ¢ and let®(d + 2)(In
n)/e’c. Let H be constructed from G by choosifgmedges from G at randonThen the
probability that some cut of valugin G has value more tha(l + €)pv or less than(1 —

€)pv in H is O(n"*Vpm).

Proor. We could prove this corollary from first principles by reapplying the cut-counting
theorem, but we take an easier approach.ERRdenote the event that some cut diverges
by more thane from its expected value. We know that if we sample each edge with
probability p, then PrERR is O(1/n%). Let S denote the number of edges actually chosen
in such a sample. Note th&thas the binomial distribution and that its so-caltexhtral term
Pr[S = pm] = Q(1/Vpm) (cf. Feller 1968). We can evaluaEER R conditioning on the
value of S;

1/n?= P{ERR]

= > P{S=k]:-P{ERR]| S= k]

k

= PS= [pm{]- P{ERR| S = [pm(]

= Q(;) -P{ERR| S= [pn].
ypm

In other words, PERRS = [pm[] = O(Vpm/nY. 0O

This corollary tells us that so long as the expected nurpbeof edges in the skeleton is
polynomial, we can construct the skeleton by taking a fixed-size sample and get roughly the
same result as in the original construction: all cut values will be wigtghtheir expectations
with high probability. We can construct such a modifiggkeleton by makinggm random
selections from among the edges of the graph. In a weighted graph this corresponds to using
biased selection: choose the edge with probability proportional to the weight of the edge. In
a graph with total edge weigh, each such selection tak@log W) time since we generate
log W random bits in order to identify a particular edge. Thus, the total tindd W log W).
In fact, this algorithm can be made strongly polynomial: we can arrange for each selection
to takeO(log m) amortized time, but the digression into the details would take us too far
afield. A discussion can be found elsewhere (Knuth and Yao 1976; Karger and Stein 1996).

Lemma 5.2. In a weighted graph with m edges of total weight &p-skeleton can be
constructed in @pW log m) time

The only other issue that needs to be addressed is the estimation of the correct sampling
ratesp for a given approximation boune As with the unweighted case, we actually only
need a constant factor estimate of the minimum cut. One way to get it is to generalize
Matula’s (2+ e)-approximation algorithm to weighted graphs (see Karger 1994b for details).
An alternative is to generalize the repeated doubling approach of §2.1. Unweighted graphs
had minimum cuts bounded by so only logn repeated doubling trials were needed to get
the estimate. For weighted graphs, we need a slightly more complex algorithm. We use the
following scheme to estimate the minimum cut to within a factongfand then repeatedly
double the estimate (halving the estimated sampling probability) until (wi(log n)

NETWORK DESIGN PROBLEMS 399

attempts) the estimate is correct to within a factor of 2. Compute a maximum spanning tree
of the weighted graph, and then Mtbe the weight of the minimum weight edge of this
maximum spanning tree. Removing this edge partitions the maximum spanning tree into two
sets of vertices such that no edgeGfconnecting them has weight greater thargelse it

would be in the maximum spanning tree). Therefore, the minimum cut is at mastOn

the other hand, the maximum spanning tree has only edges of weight at/Jessbne such

edge crosses every cut. Thus the minimum cut is at least

5.2. Cuts. Our cut approximation algorithms have roughly the same running time as in
the unweighted case: the only change is that we us©{@\ log n)-time weighted-graph
skeleton construction.

CoroLLARY 5.3. In a weighted grapha (1 + €)-minimum cut can be found in
O(m + n((log n)/€)®) time (MC).

Proor. We have already discussed finding a rough approximatioe tgsing, e.g.,
Matula’s algorithm. Construct a sparse-8onnectivity certificate of total weighd(nc) and
proceed as in the unweighted graph algorithm. Regardless of the original graph weights, the
skeleton will haveO(n(log n)/e*) edges and minimum c@®((log n)/€?). O

CoroLLARY 5.4. In a weighted grapha (1 + €)-minimum st cut can be found in @n
+ n(v/c)’e®) time (MC).

Proor. Suppose first that we knew. Use Nagamochi and Ibaraki’'s (1992a) sparse
certificate algorithm to construct a sparsec®nnectivity certificate of total weigh®(nv).
Assuminge < 1, approximate cuts in the certificate are the same as those in the original
graph. Construct p-skeleton of the certificate using weighted selection from the certificate
in O(pnv log m) time. Now proceed as in the unweighted graph case.

To make up for our ignorance af, begin by estimating to within a factor ofn® as
follows. Find (using an obvious variant of Dijkstra’s shortest path algorithm) the path from
sto t whose smallest edge weightis maximized. It follows that everg-t cut has weight
at leastw, since some edge on the found path is cut. However, if we remove all edges of
weightw or less (a total oh’w weight) then we disconnestandt since everys-t path
contains an edge of weight at mast Therefore,v is betweerw andn®w. Start by guessing
v = w, and double iO(log n) times until the guess exceedsat which point the approach
of the previous paragraph will yield the desired cuti

The O(mu/e*c?) bound of the unweighted case no longer follows, since it need no longer
be the case that skeleton has oply edges.

5.3. Flows. We can also adapt the max-flow algorithms. If we directly simulated the
unweighted graph algorithm DAUG, we would partition the edges into two groups by
generating a binomial distribution for each weighted edge in order to determine how much
of its weight went to each of the two subgraphs. To avoid having to generate such
complicated distributions, we return to Theorem 2.1 and use the following approaclis If
even, assign weighw/ 2 to each group. Ifv is odd, assign weighiw/ 2[0to each group and
flip a coin to decide which group gets the remaining single unit of weight. Since the minimum
expected cut® of Theorem 2.1) that results in each half is atilR, we can deduce as in the
unweighted case that little augmentation need be done after the recursive calls.

We have described the change in implementation, and correctness is clear, but we have to
change the time bound analysis. It is no longer true that each new graph has half the edges
of the old. Indeed, if all edge weights are large, then each new graph will have just as many
edges as the old. We therefore add a new parameter and analyze the algorithm in terms of the
number of edgem, the minimum cut, the desired flow value, and thetotal weight Wof
edges in the graph. Note the two subgraphs that we recurse on have total weight roughly

400 D. KARGER

W/ 2. In order to contrast with bit-scaling techniques, we also usavtkeage edge weight

U = W/m which is no more than the maximum edge weight. The unweighted analysis
suggests a time bound for minimum cuts@fW\/c) = O(mUV/c), but we can show a
better one:

Lemva 5.5. A global minimum cut of value ¢ can be found iin®/cU) time (LV).

Proor. We divide the recursion tree into two parts. At depdhs log(W/m), we bound
the number of edges in a node by As in the unweighted analysis, we know each node at
depthd has to perfornO(Vc/2°%) augmentations, each takifg(m) time, so the total work
at depthd is O(2'mVc/ 2% = O(mV/2%). Summing oved = log(W/m) gives a total work
bound of O(mVWdm) = O(mV/cU). At depth logiV/m), we haveW/m computation
nodes, each with minimum c@(mdW) (by the sampling theorem) and at mestedges.
Our unweighted graph analysis shows that the time taken by each such node together with
its children is O(mVmdW). Thus the total work below depth log{m) is O((W/
m)(mVmdWw)) = O(mVcU). o

A similar result can be derived if we use the same algorithm to find flows, replacing
Gabow’s Round Robin Algorithm with standard augmenting paths.

CoroLLARY 5.6. A maximum flow of value can be found in @mv\V/Urc) time (LV).

More recently (Karger 1998a) we introducedsmaoothingtechnique that lets us avoid
splitting large edges in two for the two recursive calls. Instead, after some preliminary
splitting, we show that it is possible to assign the full weight of an edge randomly to one
subproblem or the other, and still get the same accurate approximation of cut values. This lets
us extend our unweighted-graph time bounds to weighted graphs as well.

6. Other cut problems. In this section, we discuss several other cut problems and
algorithms and show how our sampling techniques can be applied to them.

6.1. Parallel flow algorithms. In the s-t min-cut problem the need for the final
“cleanup” augmentations interferes with the development of efficieNté DAUG-type
algorithms for the problem, because there are no good parallel reachability algorithms for
finding augmenting paths in directed graphs. However, we can still take advantage of the
divide and conquer technique in a partially parallel algorithm for the problem. Khuller and
Schieber (1991) give an algorithm for finding disjofat paths in undirected graphs. It uses
a subroutine that augments a sekafisjoint s-t paths tok + 1 if possible, usingd(k) time
andkn processors. This lets them find a flow of valu@ O(»?) time usingvn processors.

We can speed up this algorithm by applying the DAUG technique we used for maximum
flows. Finding the final augmentations after merging the results of the recursive calls is the
dominant step in the computation. It requir®§v/\/c) iterations of their augmentation
algorithm, each takin@(v) time, for a total of©(v*/\/c) time usingvn processors. Thus

we decrease the running time of their algorithm by&n/c) factor, without changing the
processor cost.

6.2. Separators and sparsest cuts. The edge separatoproblem is to find a cut with
a minimum number of edges that partitions a graph into two roughly equal-sized vertex sets.
The sparsest cuproblem is to find a cut A, B) of value v minimizing the value of the
quotient/(||AllIBl]). These problems ar&%-complete and the best known approximation
ratio is O(log n) (for separators, one has to accept a less balanced solution to achieve this
bound). One algorithm that achieves this approximation for sparsest cuts is due to Leighton
and Rao (1988).

Klein, Plotkin, Stein, and Tardos (1994) give a fast concurrent flow algorithm which they
use to improve the running time of Leighton and Rao’s algorithm. Their algorithm runs in

NETWORK DESIGN PROBLEMS 401

O(m’ log m) time, and finds a cut with quotient within @log n) factor of the optimum.
Consider a skeleton of the graph that approximates cuts to withintad)lfactor. Since the
denominator of a cut’s quotient is unchanged in the skeleton, the quotients in the skeleton
also approximate their original values to within a£le) factor. It follows that we can take

p = O(log n/c) and introduce a negligible additional error in the approximation. By the same
argument, it suffices to look for balanced cuts in a skeleton rather than the original graph.

_ Treorem 6.1. An ((log n)-approximation to the sparsest cut can be computed in
O((m/c)?) time (MC). N
BencZu and Karger (1996) have improved this time bound@?).

6.3. Orienting a graph. Given an undirected graph, tlygaph orientation problenis
to find an assignment of directions to the edges such that the resulting directed graph has the
largest possible (directed) connectivity. Gabow (1993) cites a theorem of Nash-Williams
(1969) showing that a solution of (directed) connectikigxists if and only if the input graph
is 2k-connected, and also gives a submodular flow based algorithm for finding the orientation
in O(kn*(Vkn + k? log(n/k))) time. We have the following result:

Lemma 6.2. A (k — O(Vklog n))-connected orientation of 2k-connected graph can be
found in linear time

Proor. Orient each edge randomly with probabilifyin each direction. A minor
adaptation of Theorem 2.1 shows that with high probability, for each cut, there will be at least
k — O(Vk log n) edges oriented in each direction. In other words, every directed cut will
have a value exceeding the claimed one.

Using this randomly oriented graph as a starting point in Gabow’s algorithm allows us to
speed up that algorithm by a factor 6{V/k).

6.4. Integral multicommodity flows. Suppose we are given an unweighted gr&h
and a multicommodity flow problem witk source-sink pairss, t;) and demandsd,. Letc;
be the value of thg;-t; minimum cut and suppose thatd;/c; = 1. Then it is obvious that
there is a fractional solution to the problem: divide the graph kntew graph<G;, giving
ad;/c; fraction of the capacity of each edge to graph Then thes;-t; minimum cut ofG;
has value exceedind;, so commaodityi can be routed in grap;. There has been some
interest in the question of when artegral multicommodity flow can be found (the problem
is discussed in Ford and Fulkerson 1962; more recent discussions incliidet@tpLovaz,
and Schrijver 1988, §8.6 and Frank 1990). Our sampling theorem gives new results on the
existence of integral flows and fast algorithms for finding them. Rather than assigning a
fraction of each edge to each graph, assign each edge to a Graphth probability
proportional tad;/c;. We now argue as for the flow algorithms that, given the right conditions
onc, each graplG; will be able to integrally satisfy the demands for commodlityrhusk
max-flow computations will suffice to route all the commaodities. In fact, in an unweighted
graph, ifm; is the number of edges i@;, we know thatX m; = m, so that the max-flow
computations will takéd(2 m;n) = O(mn) time. Various results follow; we give one as an
example:

Lemma 6.3. Suppose that each & log n, and that¥ d; = ¢/2 (where c is the minimum
cut). Then an integral multicommodity flow satisfying the demands exists and can be found
in O(mn) time,

Proor. Assign each edge to groupwith probability proportional tad;/c. SinceX d;/c
= 1, this means the probability an edge goesi tis at least 2,/c. Thus the minimum
expected cut irG; is at least @;, so the minimum cut exceedks with high probability and
that graph can satisfy thi¢h demand. o

402 D. KARGER

7. Network design. We now turn to thenetwork design problenHere, rather than
sampling as a preprocessing step to reduce the problem size, we sample as a postprocessing
step to round a fractional solution to an integral one.

7.1. Problem definition. The most general form of the network design problem is as
a covering integer program with exponentially many constraints. We are given a set of
vertices, and for each pair of verticesindj, acost g of establishing a unit capacity link
betweeni andj. For each cutC in the graph, we are given demand ¢ denoting the
minimum number of edges that must cross that cut in the output graph. Since there are
exponentially many cuts (in the number of vertiogs the demands must be specified
implicitly if the problem description is to be of size polynomialnn Our goal is to build a
graph of minimum cost that obeys all of the cut demands, i.e. to solve the following integer
program:

minimize) ¢;X;,

> X;=dc (V cutsC),

(i,j) crossingC

X; = 0.

There are two variants of this problem: in tsiagle edge useersion, eachx; must be 0 or
1. In therepeated edge useersion, thex; can be arbitrary nonnegative integers.

There are several specializations of the network design problem (further details can be
found in the paper by Agrawal, Klein, and Ravi 1995):

The generalized Steiner problemspecifies a connectivity demant] for each pair of
verticesi andj, and the demand across a @iis just the maximum ofl; over all pairs
(i, j) separated byC. An early formulation is due to Krarup (see Winter 1987).

The survivable network problem hasd; = min(d;, d;) for certain “connectivity types”

i andj. It was studied by Goemans and Bertsimas (1993).

The minimum k-connected subgraph problemis to find a smallest (fewest edges)
2-connected subgraph of an input graphThis is a network design problem in which all
demands ar& and all edges have cost 1 (presenGhor « (not present).

Even the minimumk-connected subgraph problem &?-complete, even fok = 2
(Eswaran and Tarjan 1976).

7.2. Pastwork. Khuller and Vishkin (1994) gave a 2-approximation algorithm for the
minimum cosk-connected graph problem ané-approximation for the minimum (unit cost)
k-connected subgraph problem. Khuller and Raghavachari (1995) gave a 1.85-approximation
for the minimumk-connected subgraph problem for aky

Agrawal, Klein, and Ravi (1995) studied the repeated-edge-use generalized Steiner
problem (with costs) and gave a@(log f..) approximation algorithm, wherg,., is the
maximum demand across a cut, namely rdax

Goemans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson (1994), extending work of
Williamson, Goemans, Mihail, and Vazirani (1993), have recently given powerful algorithms
for a large class of network design problems, namely those defined by so-patiper
demand functions (this category includes all generalized Steiner problems). Their approxi-
mation algorithm, which we shall refer to as tRerest Algorithm finds a graph satisfying
the demands of cost at modilog f,..,) times the optimum. It applies to both single and
repeated edge-use problems. It can also be usadgmenta given graph, adding edges so

NETWORK DESIGN PROBLEMS 403

as to meet some proper demand function; the approximation ratio becomes the logarithm of
the maximundeficit i.e. difference between the demand across a cut and its starting capacity.
The authors also note thatfeactional solution, in which each edge is to be assigned a
real-valued weight such that the resulting weighted graph satisfies the demands with a
minimum total (weighted) cost, can be found in polynomial time by using the ellipsoid
algorithm even though the number of constraints is exponential (Gabow, Goemans, and
Williamson 1993). For example, given a generalized Steiner problem, a separation oracle can
be implemented by computing all-pair§ minimum cuts in a candidate solution to see if
some connectivity demartj is not satisfied. If it is not, aitj minimum cut gives a violated
constraint.

7.3. Present work. We use the fractional solution produced by the ellipsoid algorithm
as the starting point in eandomized roundindpased solution to network design problems.
Randomized rounding (Raghavan and Thompson 1987) is a general technique developed to
solve integral packing and covering problems.

Using randomized rounding, we give approximation algorithms whose bounds depend on
fan the minimum connectivity requirement between any pair of vertices. We begin by
considering the version in which edges can be used repeatedly, # log n, randomized
rounding leads to an approximation bound ©f(log n)/f..). If f,., = log n, our
approximation bound is & O(V (log n)/f,). This bound contrasts with a previous best
bound ofO(log f,..,) (Agrawal, Klein, and Ravi 1995), providing significant improvements
when the minimum connectivity demand is large.

We also give results for the single-edge-use case. Fokitennected subgraph prob-
lem, we give an approximation algorithm with performance ratio+10(V/ (log n)/k
+ (log n)/k). For anyk > log n, this improves on the previous best known approximation
factor of 1.85 (Khuller and Raghavachari 1995). For more general problems, we give
an approximation algorithm with ratio lo@(.(log n)/f..), compared to the previous
O(log fa) bound (Goemans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson 1994).

7.4. Randomized rounding. The network design problem is a variant of #et cover
problem In this problem, we are given a collection of sets drawn from a universe, with each
element of the universe possibly assigned a cost. We are required to find a minimum (number
or total cost) collection of elements that intersects every set. The Steiner tree problem is an
instance of set cover involving exponentially many sets. The universe is the set of edges, and
each cut that separates two terminals corresponds to a set (the edges of the cut) that must be
covered. An extension of this problem corresponding more closely to general network design
is the set multicover problemin which a demandls is specified for each s& and the
covering set is required to contady elements ofS. The network design problem is an
instance of set multicover in which the universe is the set of edges and each cut induces a set
consisting of the edges crossing it.

The set cover problem is easily formulated as an integer linear program, and its linear
programming dual is what is known as a packing problem: find a maximum collection of sets
that do not intersect. Raghavan and Thompson (1987) developed a technique called
randomized roundinghat can be used to solve such packing problems. The method is to
solve the linear programming relaxation of the packing problem and then use the fractional
values as probabilities that yield an integer solution by randomly setting variables to 0 or 1.

In the Raghavan-Thompson rounding analysis, the error introduced by rounding increases
as the logarithm of the number of constraints. Thus, their approach typically works well only
for covering problems with polynomially many constraints, while the network design
problem has exponentially many. However, using Theorem 2.1, we prove that the special
structure of graphs allows us to surmount this problem. This gives a simple approach to
solving the multiple-edge-use versions of network design problems. A more complicated

404 D. KARGER

approach described in 88.2 gives us some weaker results for the single-edge-use version of
the problem. We now describe the randomized rounding technique.

Consider a fractional solution to a network design problem (which has been found, for
example, with the ellipsoid algorithm (Gabow, Goemans, and Williamson 1993)). Without
loss of generality, we can assume every edge has fractional weight at most 1, since we can
replace an edge of weight by [wlparallel edges of weight 1 and a single edge of weight
w — [WOwithout changing the solution value. Therefore, the weights on the edges can be
thought of as sampling probabilities.

Suppose that we build a random graph by sampling each edge with the given probability.
As a weighted graph, our fractional solution has minimumfggtand each cu€ has weight
at least equal to the demamld across it. Therefore, by Theorem 2.1, each Cuin the
random graph has value at leasf{1 — /(12 In n)/f;,) with probability 1 — 1/n*. Now
consider the cost of the random graph. Its expected value is just thé obshe fractional
solution, which is clearly a lower bound on the cost of the optimum integral solution.
Therefore, by the Markov inequality, the probability that the random graph cost exceeds
(1 + 1/n)bis at most 1— 1/n. Therefore, if we perform the rounding experimé&iin log n)
times, we have a high probability of getting one graph that satisfies the demands to within
(1 - V(12 Inn)/f,,) at cost (1+ 1/n)b. To get our results, we need only explain how to
deal with the slight under-satisfaction of the demands.

7.5. Repeated edge use.We first consider the repeated edge-use version of the
network design problem. To handle the under-satisfaction of demands, we simply increase
the weight of each edge slightly before we perform the randomized rounding.

Theorem 7.1. The network design problem for proper demand functions with repeated
edge use can be solved in polynomial time to within O(\V (log n)/f., + (log n)/f;,) times
optimum(LV).

Proor. Assume first that,,, > 12 Inn. Before rounding the fractional solution, multiply
each edge weight by (+ O(V(log n)/f..)). This increases the overall cost by the same
factor. Now when we round, we get a graph with cut values V(12 Inn)/f;, times the
newvalues (w.h.p.). Thus by suitable choice of constants we can ensure that the rounded
values exceed the original fractional values w.h.p.

Now consider the cask,, < 12 In n. The previous argument does not apply because
(1 - V(12 Inn)/f;,) < 0 and we thus get no approximation guarantee from Theorem 2.1.
However, if we multiply each edge weight I®((log n)/f..;.), we get a graph with minimum
cut Q(log n). If we round this graph, each cut gets value at least half its expected value,
which is in turnQ((log n)/f.;,) = 1 times its original value. O

Remark. Note how the use of repeated edges is needed. We can constrain the fractional
solution to assign weight at most 1 to each edge in an attempt to solve the single-edge-use
version of the problem, but scaling up the fractional values in the solution could yield some
fractional values greater than 1 that could round to an illegal value of 2. However,fyhen
= log n, we will use every edge at most twice.

8. Single edge-use. The simple scaling up and rounding procedure that we applied for
multiple-edge-use problems breaks down when we are restricted to use each edge at most
once. We cannot freely scale up the weights of edges because some of them may take on
values greater than one. Instead, we round the graph based on the original fractional weights
and then “repair” the resulting graph. To characterize the necessary repairs, we make the
following definition:

DeriniTion 8.1. Given a network design problem and a candidate solttiotihe deficit

NETWORK DESIGN PROBLEMS 405

of a cutC in H is the difference between the demand ac@ssd the value o€ in H. The
deficitof graphH is the maximum deficit of a cut iRl.

8.1. Minimum k-connected subgraph. A particularly easy case to handle is the
minimumk-connected subgraph problem, where the best previous approximation value was
1.85 (Khuller and Raghavachari 1995).

THeorRem 8.2. For k > log n, a (1 + O(V (log n)/k))-approximation to the minimum
k-connected subgraph can be found in polynomial t{ix\).

Proor. We exploit tight bounds on the optimum solution value. Consider kny
connected graph. It must have minimum dedeeand thus at leastn/ 2 edges. On the other
hand, as discussed in §1.4, any sp&sertificate ofG will be k-connected ifG is and will
contain at moskn edges. Thus, the optimum solution has betwle?2 andkn edges (so a
2-approximation is trivial).

To get a better approximation, take the input gr&éand find a fractional solutioR using
the ellipsoid algorithm (Gabow, Goemans, and Williamson 1993). By constructidas
(weighted) minimum cuk. Suppose the solution has total weigifit As discussed above, we
know kn/2 = W = kn. ClearlyW is a lower bound on the number of edges in the integral
solution. Use randomized rounding to define a subgrdpBy the Chernoff bound, the
number of edges il is W + O(VW log n) with high probability. Sincé= has minimum
cutk, Theorem 2.1 says tha&t has minimum cuk — O("Vk log n) with high probability.
That is, the deficit oH is O('\Vk log n).

We now show how to remove this deficit. Consider the following procedure for reducing
the deficit ofH by one. Find a spanning forest 6f — H, and add its edges td. To see that
this reduces the deficit df, consider any cut off that is in deficit. By definition less than
k edges cross it. However, we know that at ldastdges cross the corresponding cuGn
(since by assumptio@ is k connected). It follows that one spanning-forest edge crosses this
cut, and thus its deficit is decreased by one.

It follows that if we perform the deficit-reduction st€{V'k log n) times, therH will at
the end have no deficit, and will therefore keconnected. Now note that each deficit-
reduction step adds one forest with at mostdges taH, so the total number of additions
is O(nVklogn). Since the optimum number of edges excedls kn/2, we have that
nVklogn = O(WV(logn)/k) and VWIlogn = O(WV(logn)/kn). Thus the total
number of edges in our solutionW§ + O(VW log n) + O(nVk log n), which isO(W(1
+ V(log n)/k)). O

Remark. Itis notin fact necessary to perform the repeated deficit reduction steps. A more
efficient approach is to use Nagamochi and Ibaraki’'s sparse certificate algorithm (discussed
in 81.4). After deleting all the edges iH, build a sparseO(Vk log n)-connectivity
certificateC in the remaining graph. A modification of the above argument showsGhat
U H is k-connected whileC hasO(n'Vk log n) edges.

CoroLLARY 8.3. There is a(1 + O(f,.cVlog n/fiz))-approximation algorithm for finding
a smallest subgraph satisfying given connectivity demands

Proor. The minimum solution has at leasft,,;,/2 edges. After rounding the fractional
solution the maximum deficit I®(f ..V (log n)/f..,) and can therefore be repaired with
times that many edges.o

8.2. General single-edge problems.We now consider more general single edge-use
problems in which the demands can be arbitrary and the edges have arbitrary costs. As
before, we solve the problem by first rounding a fractional solution and then repairing the
deficits that arise. We can no longer use the deficit reduction procedure kicthenected

406 D. KARGER

subgraph case, because there is no immediate bound relating the cost of a single forest to the
cost of the entire solution. Instead, we use the Forest Algorithm of Goemans, Goldberg,
Plotkin, Shmoys, Tardos, and Williamson (1994).

The Forest Algorithm can be used to soluggmentation problenthat generalize network
design problems. Namely, it attempts to find the minimum cost way to augment algraph
S0 as to satisfy a set of demands across cuts. If the maximum deficit in the augmentation
problem isd, then the Forest algorithm finds a solution with c&@flog d) times the
optimum.

8.2.1. Oversampling. Since the approximation factor of the Forest Algorithm worsens
with the deficit, we first show how to modify the rounding step so as to keep the deficit small.
We begin with a variant of the Chernoff bound that we can use when we are not allowed to
scale weights above 1.

DeriniTioN 8.4. Consider a random sug= 21, X; in which X; = 1 with probability
p: and 0 otherwise. Define tt@versampling of S by asS(«) = X, Y;, whereY; = 1 with
probability min(1,ap;) and 0 otherwise.

Note thatS(1) = S.

Lemma 8.5. Let HS = w. ThenPr[S(1 + 8) < (1 — e)u] < e 2

Proor. SupposeS = X X;. Write S = S, + S,, whereS, is the sum ofX; with p,
= 1/(1 + 8) andS; is the sum of the remaininyg;. Let u, = E[S;] andu, = E[S;]. Then
=t e andS(1 + 8) = S(1 + 8) + S(1 + 9).

Since the variables i6, havep, = 1/(1 + 8), S;(1 + 8) is not random: it is simply the
number of variables ir5;, since each is 1 with probability one. In particul&(1 + 8) is
certainly at leasju;. It follows that§(1 + 8) < (1 — e)p only if S, < (1 — e)p — p,
= My — EM.

The variables irS, havep; < 1/(1 + &) so that the corresponding oversamplings have
probabilities (1+ 8)p;. It follows that E[S,(1 + 6)] = (1 + 6&)w,. By the standard
Chernoff bound, the probability th&, < w, — ew is at most

. p(_ (1 + &), — (U, — em)z) . p(_ (Spz + em2>
X 2(1+ d) s “R T 20 1 o,

Our weakest bound arises when the above quantity is maximized with respegt Itois
straightforward to show that the quantity is a concave functiqu,afith its global maximum

at w, = eu/d. However,u, is constrained to be at leagt (since otherwisg., = (1 — €)u,
immediately givingS(1 + 8) = u,). We thus have two cases to consides ¥ 1, theneu/s

is a valid value foru,, and the corresponding bound is exg§2/(1 + 8)). If 6 > 1, then the
bound is maximized at the smallest possiplg namelyw, = eu, in which case the bound

is ew(1 + 8)/2. Over the given ranges 6f each of these bounds is less than the bound given
in the theorem. o

Remark. The lemma easily extends to the case whereXheake on arbitrary values
between 0 andav. In this caseg™ > bounds the probability that the deviation exceedsgt
rather thaneu.

8.2.2. Application. A combination of the above oversampling lemma with the proof of
Theorem 2.1 yields the following:

CoroLLARY 8.6. Given a fractional solution f to a network design probldéfreach edge
weight w. is increased tanin(1, (1+ 6)w,) and randomized rounding is performetden with
high probability no cut in the rounded graph will have value less ttlar €) times its value
in the original weighted graphwheree = O(log n/(8f).

NETWORK DESIGN PROBLEMS 407

We now combine Corollary 8.6 with the Forest Algorithm. Suppose we have fractionally
solved a network design problem. $et 2 and apply Corollary 8.6, so that at cost twice the
optimum we get a graph in which the maximum deficiOéf,..,(log n)/f..,). Then use the
Forest Algorithm (Goemans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson 1994) to
augment it to optimum. This yields the following:

Lemma 8.7. There is an Q@og((f.. l0g n)/f.in)) approximation algorithm for the single
edge-use network design problem

This compares favorably with the Forest Algorithn€Xlog f,.) bound whenevef ,,
> log n.

8.3. Fixed charge networks. Our algorithms also apply to tHixed chargeproblem in
which each edge has a capacity of which all or none must be purchased. In this problem, the
best currently known approximation ratio is a factorfpf, (Goemans, Goldberg, Plotkin,
Shmoys, Tardos, and Williamson 1994). The introduction of large capacities increases the
variances in our random sampling theorems. In particular, if wéJldenote the maximum
edge capacity, we have the following result based on a modification of Theorem 7.1:

CoroLLARY 8.8. There is a(1 + O((U log n)/f,, + V(U log n)/f...))-approximation
algorithm for the fixed-charge network design problem with repeated edges

Proor. The Chernoff bound that we use for the randomized rounding proof applies if all
random variables have maximum value at most 1. Take the fixed charge problem, and divide
each demand and edge capacitythyNow the original theorems apply, but new minimum
demand if,;//U. O

Note that we can upper bourdlby f .., Ssince any edge with capacity exceedfng can
have its capacity reduced fq,, without affecting the optimum solution.

CoroLLARY 8.9. There is a(1 + O(((f.ax l0g N)/fin)))-approximation algorithm for the
fixed charge network design problem with repeated edges
We also extend Theorem 2.1 as follows:

CoroLLARY 8.10. Given a fractional solution to, fif each edge weight wis increased to
min(1, (1+ &)w,) and randomized rounding is performetien with high probability no cut
in the rounded graph will have value less than its value in the original fractionally weighted
graph wheree = O(U log n/(8f in))-

CoroLLARY 8.11. There is an @V (Uf,.log n)/(f...))-approximation algorithm for the
fixed-charge single-use network design problem

Proor. Apply oversampling withd = V/(Uf o log N)/fn. O

CoroLLARY 8.12. There is an Qf .,V (log n)/f..)-approximation algorithms for the fixed
charge single-use network design problem whegn= log n.

CoroLLARY 8.13. There is an @V klog n)-approximation algorithm for the fixed-charge
k-connected subgraph problem

9. Conclusion. This work has demonstrated the effectiveness of a sampling for solving
problems involving cuts. We have shown how random sampling tends to “preserve” all cut
information in a graph. This suggests that we might want to try to reformulate other problems
in terms of cuts so that the random sampling methods can be applied to them.

One result of this approach has been to reduce large max-flow and min-cut problems on
undirected graphs to small max-flow and min-cut problems on directed graphs. Our
technigues are in a sense “meta-algorithms” in that improved cut or flow algorithms that are
subsequently developed may well be accelerated by application of our technique. In

408 D. KARGER

particular, our exact algorithms’ running times are dominated by the time needed to perform
“cleaning up” augmenting path computations; any improvement in the time to compute a
sequence of augmenting paths would translate immediately into an improvement in our
algorithm’s running time. We have achieved this objective for simple graphs (unweighted
graphs without parallel edges) (Karger and Levine 1998). One way to get such an
improvement on general graphs might be to generalize our sampling theorems to the case of
directed graphs. Unfortunately, directed graphs do not have good cut-counting bounds like
the ones we used here.

Our approach to cuts and flows, combining sampling with an augmentation algorithm, is
a natural one for any problem of packing disjoint feasible sets over some universe. All that
is needed for the approach to work is

1. a sampling theorem, showing that a sample from half the universe has a packing of

about half the size, and

2. an augmentation algorithm that increases the size of the packing by one.

One additional domain where we have shown these two features apply is thatrofds
In particular, we show that the problem of packing matroid bases is susceptible to this
approach (Karger 1998b).

Our work studies sampling from arbitrary graphs. A huge amount of work has gone into
the study of sampling frorsompletegraphs, yielding what are generally known as random
graphs. Indeed, one of the very first results on random graphs was that their minimum cut was
close to its expected value (Esland Rayi 1961). Our results can be seen as generalizing
those results, but (perhaps because of their generality) are not as tight. Perhaps our results can
be tightened by considering special cases, and perhaps other results from random graphs can
be extended to the study of sampling from arbitrary graphs.

Our randomized constructions show thristenceof sparse subgraphs that accurately
approximate cut values. A natural question is whether these subgraphs can be constructed
deterministically in polynomial time. In the case of complete graphs, this has been
accomplished through the deterministic constructioexgandergGabber and Galil 1981).
Indeed, just as the expander of Gabber and Galil (1981) has constant degree, it may be
possible to deterministically construct a {le)-accurate skeleton with a constant minimum
cut, rather than the siz&(log n) minimum cut produced by the randomized construction.

A related question is whether we can derandomize the randomized rounding approach to
network design problems. Raghavan (1988) uses the method of conditional expectations to
derandomize the randomized-rounding algorithm for explicitly specified packing problems.
However, this approach requires a computation for each constraint. This is not feasible for
our problem with its exponentially many constraints.

A very general goal would be to reformulate other network problems in terms of cuts so
that the sampling theorems could be applied.

A. Counting cuts. This section is devoted to proving a single theorem bounding the
number of small cuts in a graph. This theorem is a slightly tightened version of one that
appeared earlier (Karger and Stein 1996).

Treorem A.1. (CuT counTing). In a graph with minimum cut,chere are less than™
cuts of value at mostc.

We prove this theorem only for unweighted multigraphs, since clearly to every weighted
graph there corresponds an unweighted multigraph with the same cut values: simply replace
an edge of weightv with w parallel edges. To prove the theorem, we present an algorithm
that selects a single cut from the graph, and show that the probability that a particular cut of
value ac is selected is more tham **. It follows that there are less thari* such cuts.

A.1. The contraction algorithm. The algorithm we use is théontraction Algorithm

NETWORK DESIGN PROBLEMS 409

Algorithm Contract G)

repeat until G has 2 vertices
choosean edge ¢,w) uniformly at random fron'G
let GG/ (v,w)

return G

Ficure 2. The Contraction Algorithm.

(Karger and Stein 1996). This algorithm is based on the idea of contracting edges. An
efficientimplementations given by Karger and Stein (1996), but here we care only about the
abstract algorithm.

To contract two vertices, andv, we replace them by a vertax and let the set of edges
incident onv be the union of the sets of edges incidentiandv,. We do not merge edges
from v, and v, that have the same other endpoint; instead, we allow multiple instances of
those edges. However, we remove self loops formed by edges originally conngaiing.
Formally, we delete all edgesy(v,), and replace each edge,(w) or (v,, w) with an edge
(v, w). The rest of the graph remains unchanged. We willG&eg/;, v,) to denote graple
with edge ¢,, v,) contracted (bycontracting an edgewe will mean contracting the two
endpoints of the edge). Extending this definition, for an edgé-see will let G/F denote
the graph produced by contracting all edges-ifthe order of contractions is irrelevant up
to isomorphism).

Note that a contraction reduces the number of graph vertices by one. We can imagine
repeatedly selecting and contracting edges until every vertex has been merged into one of two
remaining “metavertices.” These metavertices define a cut of the original graph: each side
corresponds to the vertices contained in one of the metavertices. More formally, at any point
in the algorithm, we can defir&a) to be the set of original vertices contracted to a current
metavertexa. Initially s(v) = v for eachv € V, and whenever we contract,(w) to create
vertex x we let s(x) = s(v) U s(w). We say a cut A, B) in the contracted graph
corresponds t@ cut (A, B') in G, whereA' = U ,.,S(a) andB’ = U,czS(b). Note that
a cut and its corresponding cut will have the same value. When the series of contractions
terminates, yielding a graph with two metavertieemndb, we have a corresponding cuh(

B) in the original graph, wher& = s(a) andB = s(b).

Lemma A.2. A cut (A, B) is output by a contraction algorithm if and only if no edge
crossing(A, B) is contracted by the algorithm

Proor. The only if direction is obvious. For the other direction, consider two vertices on
opposite sides of the cuty, B). If they end up in the same metavertex, then there must be
a path between them consisting of edges that were contracted. However, any path between
them crossesA, B), so an edge crossing cuf\(B) would have had to be contracted. This
contradicts our hypothesis.o

We now give a particular contraction-based algorithm, and analyze it to determine the
probability that a particular cut is selected. Assume initially that we are given a multigraph
G(V, E) with n vertices andm edges. The Contraction Algorithm, which is described in
Figure 2, repeatedly chooses an edge at random and contracts it.

Lemma A.3. A particular minimum cut in G is returned by the Contraction Algorithm
with probability at least(3) .

Proor. Fix attention on some specific minimum cu,(B) with ¢ crossing edges. We
will use the ternminimum cut edgwo refer only to edges crossind\(B). From Lemma A.2,
we know that if we never select a minimum cut edge during the Contraction Algorithm, then
the two vertices we end up with must define the minimum cut.

Observe that after each contraction, the minimum cut value in the new graph must still be

410 D. KARGER

at leastc. This is because every cut in the contracted graph corresponds to a cut of the same
value in the original graph, and thus has value at leaBurthermore, if we contract an edge

(v, w) that does not crossA| B), then the cut A, B) corresponds to a cut of valuein

G/(wv, w); this corresponding cut is a minimum cut (of valcein the contracted graph.

Each time we contract an edge, we reduce the number of vertices in the graph by one.
Consider the stage in which the graph hasertices. Since the contracted graph has a
minimum cut of at least, it must have minimum degreg and thus at leastc/2 edges.
However, onlyc of these edges are in the minimum cut. Thus, a randomly chosen edge is in
the minimum cut with probability at most 2/ The probability that we never contract a
minimum cut edge through afl — 2 contractions is thus at least

(=20l - ()= (B)(S)
-(3)" s

A.2. Proof of theorem. We now extend our analysis to prove the section’s main
theorem. To begin with, we have the following:

CoroLLARY A.4. The number of minimum cuts in a graph is at m@t

Proor. In analyzing the contraction algorithm, we showed that the probability a
minimum cut survives contraction to 2 vertices is at ledpt'(Since only one cut survives
these contractions, the survivals of the different minimum cuts are disjoint events. Therefore,
the probability that some minimum cut survives is equal to the sum of the probabilities that
each survives. But this probability is at most one. Thus, if ther& aneimum cuts, we have
k) '=1. o

This corollary has been proven in the past (Dinitz, Karzanov, and Lomonosov 1976;
Lomonosov and Polesskii 1971). The bound is tight. In a cycle eertices, there are))
minimum cuts, one for each pair of edges in the graph. Each of these minimum cuts is
produced by the Contraction Algorithm with equal probability, namgly . We now extend
the analysis t@pproximatelyminimum cuts.

Lemma A.5. For o a half-integer the probability that a particulara-minimum cut
survives contraction t@a vertices exceedg,) .

Proor. We consider the unweighted case; the extension to the weighted case goes as
before. The goal is to reapply Lemma A.2. Lebe a half-integer, and the minimum cut,
and consider some cut of weight at mest Suppose we run the Contraction Algorithm. If
with r vertices remaining we choose a random edge, then since the number of edges is at least
cr/2, we take an edge from a cut of weight with probability at most &/r. If we
repeatedly select and contract edges until 2«, then the probability that the cut survives

IS
- 5)a-) o) - ()

Remark. A cycle onn vertices again shows that this result is tight, since each set of 2
edges forms am-minimum cut.

CoroLLARY A.6. For « a half-integer the number ofe-minimum cuts is at mo&*(5,)
< n*.

Proor. We generalize Corollary A.4. Suppose we randomly contract a graphlxto 2

NETWORK DESIGN PROBLEMS 411

vertices. The previous lemma lower bounds the survival probability af-aminimum cut,
but we cannot yet apply the proof of Corollary A.4 because with more than one cut still
remaining the cut-survival events are not disjoint. However, suppose we now take a random
partition of the 2 remaining vertices. This partition gives us a corresponding unique cut in
the original graph. There are only*2' partitions of the & vertices (consider assigning a 0
or 1 to each vertex; doing this all possible ways counts each partition twice). Thus, we pick
a particular partition with probability 2. Combined with the previous lemma, this shows
that we select a particular uniqueminimum cut with probability exceeding*2**(5,) *.
Now continue as in Corollary A.4.

The n* bound follows from the fact that’2* < (2a)!. O

We can also extend our results to the case wharis 2ot an integer. We usgeneralized
binomial coefficientsn which the upper and lower terms need not be integers. These are
discussed in Knuth (1973, 881.2.5-6) (cf. Exercise 1.2.6.45). There, the Gamma function is
introduced to extend factorials to real numbers suchdhat a(a — 1)! for all reala > 0.
Many standard binomial identities extend to generalized binomial coefficients, including the
facts that f,) < n**/(2a)! and Z2** < (2a)! for a = 1.

CoroLLARY A.7. For arbitrary real valuesa > 1, there are less than a-minimum cuts

Proor. Letr = [RPall Suppose we contract the graph until there are oniertices
remaining, and then pick one of th& 2 cuts of the resulting graph uniformly at random. The
probability that a particulas-minimum cut survives contraction tovertices is

-2 o)
(4]
(2)

It follows that the probability our cut gets picked is X5.)(5.) *. Thus the number of
a-minimum cuts is at most2'(5.)(5) * < (3.). ©

References

Aggarwal, A. (Ed.). 1993Proceedings of the 25th ACM Symposium on Theory of Computidlyl Press.

, N. Garg. 1994. A scaling technique for better network desRynceedings of the 5th Annual ACM-SIAM

Symposium on Discrete Algorithpz33-240.

Agrawal, A., P. Klein, R. Ravi. 1995. When trees collide: An approximation algorithm for the generalized Steiner
problem on networksSIAM J Comput 24(3) 440—-456.

Ahuja, R. K., T. L. Magnanti, J. B. Orlin. 1998letwork FlowsTheory Algorithms and ApplicationsPrentice Hall,
Englewood Cliffs, New Jersey.

Aumann, Y., Y. Rabani. 1998. A®(log k) approximate min-cut max-flow theorem and approximation algorithm.
SIAM J Comput 27(1) 291-301.

BencZu, A. A., D. R. Karger. 1996. Approximate-t min-cuts in O(n? time. Proceedings of the 28th ACM
Symposium on Theory of ComputifCM Press, 47-55.

Chernoff, H. 1952. A measure of the asymptotic efficiency for tests of a hypothesis based on the sum of observations.
Ann Math. Statist 23 493-509.

Clarkson, K. L. 1987. New applications of random sampling in computational geonbésgrete ComputGeom

2195-222.

. 1995. Las Vegas algorithms for linear and integer programming when the dimension islsi@aN 42(2)

488-499.

, P.W. Shor. 1987. Applications of random sampling in computational geometBjistirete ComputGeom

4(5) 387-421.

412 D. KARGER

Dinitz, E. A., A. V. Karzanov, M. V. Lomonosov. 1976. On the structure of a family of minimum weighted cuts in
a graph.Studies in Discrete Optimizatio. A. Fridman, ed. Nauka Publishers, 290-306.

Edmonds, J. 1965. Minimum partition of a matroid into independents subsBtss Nat Bur. Standard$9 67—-72.

Eppstein, D., Z. Galil, G. F. Italiano, A. Nissenzweig. 1992. Sparsification—A technique for speeding up dynamic
graph algorithmsProceedings of the 33rd Annual Symposium on the Foundations of Computer Science
IEEE Computer Society Press, 60—69.

Erdts, P., A. Rayi. 1961. On the strength of connectedness of a random glapéa.Math Acad Sci Hungar. 12
261-267.

Eswaran, K. P., R. E. Tarjan. 1976. Augmentation problestd M 1 Comput 5 653-665.

Feller, W. 1968 An Introduction to Probability Theory and Its Applicatignigolume 1. 3rd ed. John Wiley and
Sons, New York.

Floyd, R. W., R. L. Rivest. 1975. Expected time bounds for selecttmmm ACM 18(3) 165-172.

Ford, Jr., L. R., D. R. Fulkerson. 196Blows in NetworksPrinceton University Press. Princeton, New Jersey.

Frank, A. 1990. Packing paths, circuits, and cuts—A surf&aths Flows, and VLSI LayoytB. Korte, L. Lovaz,
H. J. Pianel, A. Schrijver, eds. Volume 9 dilgorithms and CombinatoricsChapter 4. Springer-Verlag.
Heidelberg.

Gabber, O., Z. Galil. 1981. Explicit construction of linear-sized superconcentrato®omput System Sci22
407-420.

Gabow, H. N. 1991. Applications of a poset representation to edge connectivity and graph rijiddgedings of

the 32nd Annual Symposium on the Foundations of Computer Scl&ifide IEEE Computer Society Press,

812-821.

. 1993. A framework for cost-scaling algorithms for submodular flow probldPnsceedings of the 34th

Annual Symposium on the Foundations of Computer Sci¢B&&E Computer Society Press, 449—-458.

Gabow, H. N. 1995. A matroid approach to finding edge connectivity and packing arboresdeaeaput System

Sci 50(2) 259-273.

, M. X. Goemans, D. P. Williamson. 1993. An efficient approximation algorithm for the survivable network

design problemProceedings of the Third MPS Conference on Integer Programming and Combinatorial

Optimization 57-74.

Goemans, M. X., D. J. Bertsimas. 1993. Survivable networks, linear programming relaxations and the parsimonious

property.Math. Programming60 145-166.

. A. Goldberg, S. Plotkin, D. Shmoys, Eardos, D. Williamson. 1994. Improved approximation algorithms

for network design problem®roceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms
ACM-SIAM. 223-232.

Grotschel, M., L. Lovaz, A. Schrijver. 1988Geometric Algorithms and Combinatorial Optimizatidfolume 2 of
Algorithms and CombinatoricsSpringer-Verlag, Berlin, Germany.

Guibas, L. (Ed.) 1993Proceedings of the 34th Annual Symposium on the Foundations of Computer Stigiiee
Computer Society Press.

Karger, D. R. 1994a. Random sampling in cut, flow, and network design probRnmseedings of the 26th ACM

Symposium on Theory of ComputifgCM Press, 648—-657.

. 1994b.Random Sampling in Graph Optimization Probleik.D. thesis, Stanford University, Stanford, CA

94305. Contact at karger@lcs.mit.edu. Available from http://theory.lcs.mit.edu/~ karger.

. 1994c, January. Using randomized sparsification to approximate minimumPeoteedings of the 5th

Annual ACM-SIAM Symposium on Discrete Algorithadia4 —432.

. 1996, May. Minimum cuts in near-linear timEroceedings of the 28th ACM Symposium on Theory of

Computing ACM Press, 56—-63.

. 1998a, January. Better random sampling algorithms for flows in undirected gRaplesedings of the 9th

Annual ACM-SIAM Symposium on Discrete Algorithids Karloff, ed., 490—499.

. 1998b, June. Random sampling and greedy sparsification in matroid optimization probeths.

Programming B82(1-2) 41-81.

, P. N. Klein, R. E. Tarjan. 1995. A randomized linear-time algorithm to find minimum spanning drees.

ACM 42(2) 321-328.

, M. Levine. 1998, May. Finding maximum flows in simple undirected graphs seems faster than bipartite

matching.Proceedings of the 29th ACM Symposium on Theory of Computialyl Press, 69—-78.

, C. Stein. 1993, May. A®(n?) algorithm for minimum cutsProceedings of the 25th ACM Symposium on

Theory of ComputingACM Press, 757-765.

, . 1996, July. A new approach to the minimum cut probldmACM 43(4) 601-640.

Khuller, S., B. Raghavachari. 1995, May. Improved approximation algorithms for uniform connectivity problems.

Proceedings of the 27th ACM Symposium on Theory of Compwi@ly! Press, 1-10.

, B. Schieber. 1991, April. Efficient parallel algorithms for testing connectivity and finding digeipiaths

in graphs.SIAM J Comput 20(2) 352-375.

, U. Vishkin. 1994, March. Biconnectivity approximations and graph carvidgdCM 41(2) 214-235.

NETWORK DESIGN PROBLEMS 413

Klein, P., S. A. Plotkin, C. Stein, ETardos. 1994. Faster approximation algorithms for the unit capacity concurrent
flow problem with applications to routing and finding sparse c8t&M J Comput 23(3) 466—-487.

Knuth, D. E. 1973.Fundamental Algorithmg2nd ed.), Volume 1 ofThe Art of Computer Programming
Addison-Wesley Publishing Company, Reading, MA.

Knuth, D. E., A. C. Yao. 1976. The complexity of nonuniform random number generadigorithms and
Complexity New Directions and Recent Resulis F. Traub (ed.), Academic Press, New York 357—428.

Leighton, T., S. Rao. 1988, October. An approximate max-flow min-cut theorem for uniform multicommodity flow
problems with applications to approximation algorithiAsoceedings of the 29th Annual Symposium on the
Foundations of Computer Sciend&EE Computer Society Press, 422—431.

Linial, N., E. London, Y. Rabinovich. 1995. The geometry of graphs and some of its algorithmic applications.
Combinatorical(2) 215-246.

Lomonosov, M. V., V. P. Polesskii. 1971. Lower bound of network reliabiliBroblems of Information
Transmissior7 118-123.

Matula, D. W. 1993, January. A linear time+2 e approximation algorithm for edge connectivif§roceedings of
the 4th Annual ACM-SIAM Symposium on Discrete AlgoritHs08 -504. ACM-SIAM.

Miller, G. (Ed.) 1996, May Proceedings of the 28th ACM Symposium on Theory of Compwiaityl Press.

, P. Raghavan. 199Randomized Algorithm&ambridge University Press, New York.

Nagamochi, H., T. Ibaraki. 1992a, February. Computing edge connectivity in multigraphs and capacitated graphs.

SIAM J Discrete Math 5(1) 54—66.

, . 1992Dh. Linear time algorithms for finding-edge connected anktnode connected spanning

subgraphsAlgorithmica7 583-596.

Nash-Williams, C. S. J. A. 1969. Well-balanced orientations of finite graphs and unobtrusive odd-vertex-pairings.
Recent Progress in Combinatorjcd/. T. Tutte (ed.), Academic Press, New York 133-149.

Raghavan, P. 1988, October. Probabilistic construction of deterministic algorithms: Approximate packing integer

programs.J. Comput System Sci37(2) 130—-43.

, C. D. Thompson. 1987. Randomized rounding: a technique for provably good algorithms and algorithmic

proofs. Combinatorica7(4) 365-374.

Sleator, D. D. (Ed.) 1994, Januafroceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms
ACM-SIAM.

Tarjan, R. E. 1983Data Structures and Network Algorithm#olume 44 ofCBMS-NSF Regional Conference Series
in Applied MathematicsSIAM.

Williamson, D., M. X. Goemans, M. Mihail, V. V. Vazirani. 1993, May. A primal-dual approximation algorithm for
generalized Steiner problem&CM Symposium on Theory of ComputiddCM Press, 708—-717.

Winter, P. 1987. Generalized Steiner problem in outerplanar netwilidtsvorks17 129-167.

D. R. Karger: MIT Laboratory for Computer Science, Cambridge, Massachusetts 02139; e-mail:
karger@Ics.mit.edu; URL: http://theory.lcs.mit.egikarger

