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We use random sampling as a tool for solving undirected graph problems. We show that the sparse
graph, orskeleton, that arises when we randomly sample a graph’s edges will accurately approximate
the value of all cuts in the original graph with high probability. This makes sampling effective for
problems involving cuts in graphs.

We present fast randomized (Monte Carlo and Las Vegas) algorithms for approximating and
exactly finding minimum cuts and maximum flows in unweighted, undirected graphs. Our
cut-approximation algorithms extend unchanged to weighted graphs while our weighted-graph flow
algorithms are somewhat slower. Our approach gives a general paradigm with potential applications
to any packing problem. It has since been used in a near-linear time algorithm for finding minimum
cuts, as well as faster cut and flow algorithms.

Our sampling theorems also yield faster algorithms for several other cut-based problems, including
approximating the best balanced cut of a graph, finding ak-connected orientation of a 2k-connected
graph, and finding integral multicommodity flows in graphs with a great deal of excess capacity. Our
methods also improve the efficiency of some parallel cut and flow algorithms.

Our methods also apply to thenetwork designproblem, where we wish to build a network
satisfying certain connectivity requirements between vertices. We can purchase edges of various costs
and wish to satisfy the requirements at minimum total cost. Since our sampling theorems apply even
when the sampling probabilities are different for different edges, we can applyrandomized rounding
to solve network design problems. This gives approximation algorithms that guarantee much better
approximations than previous algorithms whenever the minimum connectivity requirement is large.
As a particular example, we improve the best approximation bound for the minimumk-connected
subgraph problem from 1.85 to 11 O(=log n)/k).

1. Introduction. The representative random sample is a central concept of statistics. It
is often possible to gather a great deal of information about a large population by examining
a small sample randomly drawn from it. This approach has obvious advantages in reducing
the investigator’s work, both in gathering and in analyzing the data.

We apply the concept of a representative sample to combinatorial optimization problems
on graphs. Given an optimization problem, it may be possible to generate a small
representative subproblem by random sampling. Intuitively, such a subproblem should form
a microcosm of the larger problem. We can examine the subproblem and use it to glean
information about the original problem. Since the subproblem is small, we can spend
proportionately more time analyzing it than we would spend examining the original problem.
Sometimes, an optimal solution to the subproblem will be a nearly optimal solution to the
problem as a whole. In some situations, such an approximation might be sufficient. In other
situations, it may be easy to refine this good solution into a truly optimal solution.

We show this approach to be effective for problems involving cuts in graphs. Acut in an
undirected graph is a partition of the graph’s vertices into two nonempty sets. Thevalueof
the cut is the number, or for a weighted graph the total weight, of edges with one endpoint
in each set. Cuts play an important role in determining the solutions to many graph problems.
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Most obviously, the connectivity of a graph is the minimum value of a cut in the graph.
Similarly, thes-t maximum flow is determined by the smallest of all cuts that separates and
t—that is, thes-t minimum cut. In the13-completenetwork design problem, the goal is to
build a graph that satisfies certain specified connectivity requirements by containing no small
cuts. A special case is to find a minimum size (number of edges)k-connected subgraph of a
k-connected graph. Other problems to which cuts are relevant include finding a minimum
balanced cut (in which both sides of the cut are “large”) and finding an orientation
(assignment of directions) of the edges of an undirected graph that makes itk-connected as
a directed graph. Cuts also play an important role in multicommodity flow problems, though
the connection is not as tight as for the standard max-flow problem (Leighton and Rao 1988;
Linial, London, and Rabinovich 1995; Aumann and Rabani 1998).

Random sampling helps us solve cut-dependent undirected graph problems. We define and
use agraph skeleton. Given a graph, a skeleton is constructed on the same set of vertices by
including a small random sample of the graph’s edges. Our main result is that (with high
probability) a skeleton accurately approximates all cut values in the original graph. This
means random subgraphs can often be used as substitutes for the original graphs in cut and
flow problems. Since the subgraphs are small, improved time bounds result.

In the most obvious application, by computing minimum cuts and maximum flows in the
skeleton, we get fast algorithms for approximating global minimum cuts,s-t minimum cuts
and maximum flows. For example, we give a near-linear-time algorithm for approximating
the global minimum cut of a graph to within any constant factor with high probability.
Furthermore, a randomized divide and conquer technique finds exact solutions more quickly
than before. For example, we improve the time to find a minimum cut of valuec in anm-edge
unweighted (that is, with all edges having the same, unit, capacity) graph fromÕ(mc)
(Gabow 1995) toÕ(m=c) (the notationÕ( f ) denotesO( f polylog f )). This in turn yields
faster algorithms for constructing the cactus representation of minimum cuts in a graph and
for optimally augmenting graph connectivity. We improve the time to find a maximum flow
of valuev from O(mv) to Õ(mv/=c). We improve the total work done by some parallel cut
and flow algorithms. We also give applications to balanced cuts and orientations and to
integral multicommodity flows.

While this work can stand independently, perhaps its greater value is in proving results on
sampling that have since found several applications. The major improvement has been to
eliminate the dependence on the minimum cutc appearing in this paper’s results. Benczu´r
and Karger (1996) extend the sampling construction to weighted graphs, showing how to
approximates-t minimum cuts with high probability inÕ(n2) time. This author used
sampling in an algorithm to find anexactminimum cut in any (weighted or unweighted)
undirected graph with high probability inÕ(m) time (Karger 1996). More recently, this
author gave a faster, sampling-based algorithm that finds a maximum flow of valuev in
Õ(=mnv) time with high probability (Karger 1998a). Karger and Levine (1998) gave an
even fasterÕ(nv 5/4)-time algorithm for simple graphs. All of these new results rely directly
on this paper’s sampling theorems and algorithms.

Our approach to maximum flows and minimum cuts exemplifies a natural random-
sampling approach topacking problemsin which the goal is to find a maximum collection
of feasible subsets of some input universe. In thes-t maximum flow problem the universe is
the graph’s edges and the feasible sets ares-t paths. A different (tree-) packing problem
corresponds to global minimum cuts. In a different paper (Karger 1998b), we show that the
paradigm also applies to the problem of packing bases in a matroid.

Our approach also applies to certaincoveringproblems. From random sampling, it is a
small step to show thatrandomized rounding(Raghavan and Thompson 1987) can be
effectively applied to graphs with fractional edge weights, yielding integrally weighted
graphs with roughly the same cut values. This makes randomized rounding a useful tool in
network designproblems. In these13-complete problems, the goal is to construct a
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minimum-cost network satisfying certain connectivity demands (for example, the Steiner tree
problem asks for the minimum cost subgraph connecting a certain set of vertices). For the
version where edges can be reused, we give a polynomial time approximation algorithm with
an approximation bound of 11 O(=(log n)/fmin), wherefmin is the connectivity (minimum
cut) of the optimum solution (and thus at least the minimum connectivity demand between
two vertices). Previous approximation algorithms had bounds depending on themaximum
connectivity demandsfmax, the best beingO(log fmax) for a large class of problems (Agrawal,
Klein, and Ravi 1995). We get a 11 Õ(1/=k) bound for theminimum k-connected
subgraph problem(where edges cannot be reused, all connectivity demands arek, and edge
costs are 1 or infinity). For sufficiently largek this improves on a previous approximation
ratio of 1.85 (Khuller and Raghavachari 1995). We also improve bounds for various other
single-edge-use problems.

All of our techniques apply only to undirected graphs, as cuts in directed graphs do not
appear to have the same predictable behavior under random sampling.

Preliminary versions of this work appeared in conference proceedings (Karger 1994a;
Karger 1994c). A more extensive treatment is provided in the author’s dissertation (Karger
1994b).

The remainder of this introduction includes a more detailed description of our results as
well as a comparison to previous and subsequent work, followed by some definitions. Section
2 then presents our main theorem on cuts in sampled graphs. The paper then splits into two
parts that can be read independently. In the first part, we show how to accelerate algorithms
for computings-t maximum flows and minimum cuts (§3) and global minimum cuts (§4) in
unweighted graphs, with extensions to weighted graphs (§5). Section 6 describes applications
to other cut problems. The second part of the paper discusses applications of the sampling
theorem and randomized rounding to network design problems. In §7, we lay the groundwork
and address the version where edges can be reused. In §8 we discuss the harder case in which
edges can only be used once.

1.1. Definitions. We make the following definitions. Consider a statement that refers to
a variablen. We say that the statement holdswith high probability(w.h.p.) in n if for any
constantd, there is a setting of constants in the statement (typically hidden byO-notation)
such that the probability the statement fails to hold isO(n2d).

Our work deals with randomized algorithms. Our typical model is that the algorithm has
a source of “random bits”—variables that are mutually independent and take on values 0 or
1 with probability 1

2 each. Extracting one random bit from the source is assumed to take
constant time. If our algorithms use more complex operations, such as flipping biased coins
or generating samples from more complex distributions, we take into account the time needed
to simulate these operations in our unbiased-bit model. Event probabilities are taken over the
sample space of random bit strings produced by the random bit generator. We say an event
regarding the algorithm occurswith high probability(w.h.p.) if it occurs with high probability
in the problem size (that is, with probability at least 12 n2d on problems of sizen) and with
low probability if the complementary event occurs with high probability.

The random choices that an algorithm makes can affect both its running time and its
correctness. An algorithm that has a fixed (deterministic) running time but has a small
probability of giving an incorrect answer is calledMonte Carlo(MC). If the running time of
the algorithm is a random variable but the correct answer is given with certainty, then the
algorithm is said to beLas Vegas(LV). Depending on the circumstances, one type of
algorithm may be better than the other. However, a Las Vegas algorithm is “stronger” in the
following sense.

A Las Vegas algorithm can be made Monte Carlo by having it terminate with an arbitrary
wrong answer if it exceeds its high probability time bound. Since the Las Vegas algorithm
is unlikely to exceed its time bound, the converted algorithm is unlikely to give the wrong
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answer. On the other hand, there is no universal method for making a Monte Carlo algorithm
into a Las Vegas one, and indeed some of the algorithms we present are Monte Carlo with
no Las Vegas version apparent. The fundamental problem is that sometimes it is impossible
to check whether an algorithm has given a correct answer. However, the failure probability
of a Monte Carlo optimization algorithm can be made arbitrarily small by repeating it several
times and taking the best answer; we shall see several examples of this below. In particular,
we can reduce the failure probability so far that other unavoidable events (such as a power
failure) are more likely than an incorrect answer.

Finally, we remark that all logarithms in the paper are base 2 and recall thatÕ( f ) denotes
O( f polylog n).

1.2. Cuts and flows. In the first part of this paper we present algorithms for
approximating and for exactly findings-t and global minimum cuts and maximum flows. To
this end, we make the following definition:

DEFINITION 1.1. An a-minimum cutis a cut whose value is at mosta times that of the
(global) minimum cut. Ana-minimum s-t cut is defined similarly. Ana-maximum s-t flow
is ans-t flow whose value is at leasta times the optimum.

We show that if we pick a small random sample of a graph’s edges, then we get a graph
whose minimum cuts correspond (under the same vertex partition) to (11 e)-minimum cuts
of the original graph. Therefore, we can approximate minimum cuts by computing minimum
cuts in a sampled graph. These cuts are found usingaugmenting pathalgorithms whose
running times increase with both the size of the graph and the value of the output cut. Both
of these quantities are smaller in the sampled graph, so we get a speedup for two different
reasons. We extend these ideas to find approximately maximum flows by randomly
partitioning the graph’s edges and finding flows separately in each resulting edge group.
Finally, we find exact flows by using augmenting path algorithms to “repair” the errors
introduced by the approximation algorithms. Since the error is small, the repair takes little
time.

Throughout this paper, we focus attention on ann vertex,m edge graph with minimum cut
c and s-t minimum cutv. We give randomized Monte Carlo (MC) and Las Vegas (LV)
algorithms to find the following objects in unweighted, undirected graphs:

● A global minimum cut inÕ(m=c) time (LV),
● A (1 1 e)-minimum cut inÕ(m 1 n/e 3) time (MC) or Õ(m/e) time (LV),
● An s-t maximum flow inÕ(mv/=c) time (LV),
● A (1 1 e)-minimum s-t cut in O(m 1 n(v/c) 2e23) 5 O(mv/e 3c2) time (MC) or

Õ(mv/ec) time (LV),
● A (1 2 e)-maximums-t flow in Õ(mv/ec) time (LV).
Our cut approximation algorithms extend to weighted graphs with roughly the same time

bounds. The flow approximation algorithms and exact algorithms use a “scaling” technique
that, for a given maximum edge weightU, increases the time bounds of the flow algorithms
by a factor of=U rather than the naive factor ofU.

Our approximation algorithms are in fact meta-algorithms: for example, given any
algorithm to find ans-t minimum cut in timeT(m, n, v), we can approximate the cut in time
T(m/c, n, v/c). Previously, the best time bound for computing maximum flows in
unweighted graphs wasO(m z min(v, n2/3, =m)), achieved using blocking flows (cf. Tarjan
1983, Ahuja, Magnanti, and Orlin 1993). In theunit graphsthat arise in bipartite matching
problems, a running time ofO(m=n) is known. Our exact algorithm improves on these
bounds wheneverv/=c is small, and in particular whenc is large. We are aware of no
previous work on approximatings-t minimum cuts or maximum flows, although blocking
flows can be used to achieve a certain large absolute error bound.

This work relates to several previous algorithms for finding minimum cuts. The
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Contraction Algorithm (Karger and Stein 1993) runs inO(n2 log3 n) time on undirected
(weighted or unweighted) graphs. Gabow’s Round Robin Algorithm (Gabow 1995) runs in
O(mc log(n2/m)) time on unweighted (directed or undirected) graphs. Matula (1993) gave
a deterministic linear-time algorithm for finding a (21 e)-minimum cut in unweighted,
undirected graphs. It is easily extended to run in near-linear time on weighted graphs (Karger
1994b).

As mentioned above, since this work appeared, Benczu´r and Karger (1996) have given an
Õ(n2) time algorithm for approximatings-t minimum cuts, Karger (1996) has given anÕ(m)
time algorithm for finding an exact minimum cut, and Karger and Levine (1998) have given
an O(nv 5/4)-time algorithm for finding a flow of valuev, all regardless ofc.

1.3. Network design. In the second part of our paper we discuss thenetwork design
problem. We start with a set of vertices and “purchase” various edges in order to build a
graph satisfying certain connectivity demands between the vertices. Each edge has an
associated cost, and our goal is to meet the demands at minimum total cost. The minimum
spanning tree problem is a special case where the “demand” is that all vertices be connected.
Network design also covers many other classic problems, some13-complete, including
perfect matching, minimum cost flow, Steiner tree, and minimumT-join. It also captures the
minimum cost k-connected subgraph problem, where the goal is to build a minimum cost
graph with minimum cutk. The minimum cost 1-connected subgraph is just the minimum
spanning tree, but for larger values ofk the problem is13-complete even when all edge
costs are 1 or infinity (Eswaran and Tarjan 1976).

Agrawal, Klein, and Ravi (1995) studied a special case of network design called the
generalized Steiner problem, first formulated by Krarup (see Winter 1987). In this version,
the demands are specified by giving a minimum connectivitydij that the output graph must
satisfy between each pair of verticesi and j (setting alldij 5 k gives the minimum cost
k-connected subgraph problem). Assuming edges can be used repeatedly, they gave an
O(log fmax)-approximation algorithm, wherefmax is the maximum demand across any cut (i.e.
max dij ). This extended previous work (Goemans and Bertsimas 1993) on the special case
wheredij 5 min(di , dj) for given “connectivity types”di . Aggarwal and Garg (1994) gave
an algorithm with performance ratioO(log k), wherek is the number of sites with nonzero
connectivity demands.

A pair of papers (Williamson, Goemans, Mihail, and Vazirani 1993; Goemans, Goldberg,
Plotkin, Shmoys, Tardos, and Williamson 1994) extended theO(log fmax) bound of Agrawal,
Klein, and Ravi (1995) to the harder case where edges can be used only once, and extended
the approximation technique to a larger class of network design problems. They also noted
that for a wide range of problems (including all those just mentioned) afractional solution
can be found in polynomial time.

Our graph skeleton construction can sample edges with different probabilities. This lets us
apply Raghavan and Thompson’s (1987)randomized roundingtechnique to the fractional
solutions and get good approximation ratios, despite the fact that the rounding must
simultaneously satisfy exponentially many constraints. Rounding a fractional solution gives
an integral one whose cuts are all approximately equal to their fractional values (which were
constrained to exceed the corresponding demands). The only complication is in the
possibility that the rounded values might be slightly below the demands. When edges can be
reused, this is easy: we simply increase each fractional weight slightly before rounding. This
yields an approximation algorithm with a ratio of 11 O(=(log n)/fmin 1 (log n)/fmin) for
arbitrary edge costs, wherefmin is the minimum demand across a cut.

When edges cannot be reused, increasing the fractional weights may not be possible.
However, some more complicated techniques can often be applied instead. For the minimum
k-connected subgraph problem withk $ log n, we give an approximation algorithm with
performance ratio 11 O(=(log n)/k). For anyk @ log n, this improves on the previous
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best known approximation factor of 1.85 (Khuller and Raghavachari 1995). For general
network design problems, we extend the Williamson et al. bound ofO(log fmax) to
O(log( fmax(log n)/fmin)).

1.4. Related work. Random sampling is a powerful general tool in algorithm
design. It appears in a fast and elegant algorithm for finding the median of an ordered set
(Floyd and Rivest 1975). It has many applications in computational geometry (Clarkson
1987; Clarkson and Shor 1987) and in particular in fixed-dimension linear and integer
programming (Clarkson 1995). Random sampling drives the first linear-time minimum
spanning tree algorithm (Karger, Klein, and Tarjan 1995). This author (Karger 1998b)
shows how it can speed up algorithms for matroid optimization and for packing matroid
bases.

Skeletons are conceptually related tosparse graph certificates. Certificates apply to
any monotone increasing property of graphs— one that holds forG if it holds for some
subgraph ofG. Given such a property, a sparse certificate forG is a sparse subgraph that
has the property, proving thatG has it as well. The advantage is that since the certificate
is sparse, the property can be verified more quickly. For example, sparsification
techniques improve the running times of dynamic algorithms for numerous graph
problems such as connectivity, bipartitioning, and and minimum spanning trees (Epp-
stein, Galil, Italiano, and Nissenzweig 1992). The skeleton is a kind of sparse
approximatecertificate.

A sparse certificate of particular relevance to this paper is asparse k-connectivity
certificate. For any graph, a sparsek-connectivity certificate is akn-edge subgraph ofG such
that all cuts of value at mostk in G have the same value in the subgraph. This differs from
our skeleton in that cuts of value less thank have their values preserved exactly, but cuts of
greater value are not preserved at all. Nagamochi and Ibaraki (1992b) give an algorithm that
takes a graph and a parameterk and returns a sparsek-connectivity certificate. It runs in
O(m) time on unweighted graphs. In weighted graphs, where the resulting certificate has total
weight knand preserves cuts of value up tok, the running time increases toO(m 1 n log n)
(Nagamochi and Ibaraki 1992a).

If we are looking for cuts or flows of value less thank, we can find them in the
certificate, taking less time since the certificate has fewer edges. For example a sparse
certificate can be constructed before Gabow’s (1995) minimum cut algorithm is
executed; this improves the algorithm’s running time fromÕ(mc) to Õ(m 1 nc3/ 2). Like
Gabow’s, all of our cut and flow algorithms can use this preprocessing step. As a result,
m can be replaced bync in all the bounds for our min-cut algorithms and min-cut
approximation algorithms (since if we find a 2cn-connectivity certificate, it will have the
same minimum cuts and approximate minimum cuts as the original graph). Similarly,m
can be replaced bynv in all of our s-t cut and flow algorithms since av-certificate
preserves all flows of valuev. However, it clarifies the presentation to keepm in the time
bounds and leave the obvious substitution to the reader.

2. Randomly sampling graph edges. Our algorithms are all based upon the following
model of random sampling in graphs. We are given an unweighted graphG with a sampling
probability pe for each edgee, and we construct a random subgraph, orskeleton, on the same
vertices by placing each edgee in the skeleton independently with probabilitype. Let Ĝ
denote the weighted graph with the vertices and edges ofG and with edge weightpe assigned
to edgee, and letĉ be the minimum cut (by weight) ofĜ. Note thatĜ is not the skeleton
(a random object), but is rather an “expected value” of the skeleton, since the value of a cut
in Ĝ is the expected value of the corresponding cut in the skeleton. The quantityĉ is the
minimum expected value of any cut, though not necessarily the expected value of the
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minimum cut. Our main theorem says that so long asĉ is sufficiently large, every cut in the
skeleton takes on roughly its expected value.

THEOREM 2.1. Let e 5 =3(d 1 2)(ln n)/ĉ. If e # 1 then, with probability 1 2 O(1/nd),
every cut in the skeleton of G has value between1 2 e and 1 1 e times its expected value.

To see the tightness of this theorem, note that ife 5 =3d(ln n)/ĉ then the Chernoff bound
(below) only gives a 1/nd bound on the probability that one particular minimum cut diverges
by e from its expected value. By changingd to d 1 2, we extend from the minimum cut to
all cuts. To prove this theorem, we require two lemmas.

LEMMA 2.2 (KARGER AND STEIN 1996). In an undirected graph, the number ofa-minimum
cuts is less than n2a.

PROOF. A proof appears in the Appendix. It is a minor variant of one that appeared
previously (Karger and Stein 1996). A quite different proof has also been developed (Karger
1996). h

LEMMA 2.3 (CHERNOFF 1952, CF. MOTWANI AND RAGHAVAN 1995). Let X be a sum of
independent Bernoulli(that is, 0/1) random variables with success probabilities p1, . . . , pn

and expected valuem 5 ¥ pi. Then fore # 1,

Pr@|X 2 m| . em# # 2e2e 2m/3.

Lemma 2.2 applied toĜ states that the number of cuts with expected value less thanaĉ
increases exponentially witha. On the other hand, Lemma 2.3 says that the probability that
one such cut diverges too far from its expected value decreases exponentially witha.
Combining these two lemmas and balancing the exponential rates proves the theorem. There
is a simple generalization to the casee . 1 that we omit since it will not be used in the paper.

PROOF OF THEOREM 2.1. Let r 5 2n 2 2 be the number of cuts in the graph, and let
c1, . . . , cr be the expected values of ther cuts in the skeleton listed in nondecreasing order
so thatĉ 5 c1 # c2 # . . . # cr . Let pk be the probability that thekth cut diverges by more
thane from its expected value. Then the probability that some cut diverges by more thane
is at most¥ pk, which we proceed to bound from above.

Note that the (sampled) value of a cut is a sum of Bernoulli variables, so the Chernoff
bound says thatpk # e2e2ck /3. Note that we have arranged thate2e2 ĉ/3 5 n2(d12). We now
proceed in two steps. First, consider then2 smallest cuts. Each of them hasck $ ĉ and thus
pk # 2n2(d12), so that

O
k#n 2

pk # ~n2!~2n2~d12!! 5 2n2d.

Next, consider the remaining larger cuts. According to Lemma 2.2, there are less thann2a

cuts of expected value less thanaĉ. Since we have numbered the cuts in increasing order, this
means thatcn2a $ aĉ. In other words, writingk 5 n2a,

ck $
ln k

2 ln n
z ĉ,

and thus

pk # 2k2~d12!/2.
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It follows that

O
k.n 2

pk # O
k.n 2

2k2~d12!/2

# E
n 2

`

2k2~d12!/2

5
4

d
k2d/2U

n 2

`

5 O~n2d!.

2.1. Constructing p-skeletons. In the first part of this paper, we will generally fix
some valuep and setpe 5 p for all e. We call the resulting sample ap-skeletonof G and
denote itG( p). To avoid making exceptions for a special case let us defineG( p) 5 G for
p . 1. We have the following immediate corollary to our sampling theorem.

COROLLARY 2.4. Let G be any graph with minimum cut c and let p5 3(d 1 2)(ln n)/e2c.
Then the probability that the value of some cut in G(p) has value more than(1 1 e) or less
than (1 2 e) times its expected value is O(n2d).

PROOF. Note that the minimum expected cut isĉ 5 pc and apply Theorem 2.1.h

LEMMA 2.5. A p-skeleton of an unweighted graph can be constructed in O(m) time.

PROOF. To generate a skeleton we can flip an appropriately biased coin for each edge. In
some models of computation, this is treated as a unit cost operation. If we want to be stricter,
we can use the weaker model in which only an unbiased random bit can be generated in unit
time. This would most obviously imply anO(m log 1/p) time bound for generating a
skeleton. However, even in this model, it is possible to perform them biased coin flips in
O(m) time with high probability (Knuth and Yao 1976, cf. Karger 1994b).h

2.2. Determining the right p. Our approximation algorithms are based upon con-
structingp-skeletons. In these algorithms, given a desired approximation bounde, we will
want to sample with the correspondingp 5 U((ln n)/e 2c) of Corollary 2.4 in order to ensure
that in the skeleton no cut diverges in value by more thane times its expectation. This would
appear to require knowledge ofc. However, it is sufficient to have a constant-factor
underestimatec9 for the minimum cut. If we use this underestimate to determine a
corresponding sampling probabilityp9 5 3(d 1 2)(ln n)/e 2c9, then we know thatp9 is
larger than the correctp, so thate remains an upper bound on the likely deviation in cut
values. At the same time, sincep9 exceeds the correctp by only a constant factor, the
expected number of edges in our sample will be of the same order as the number of edges
using the correctp. These two properties are sufficient to guarantee the correctness and time
bounds of our algorithms.

One way to get this constant factor approximation is to use Matula’s (1993) linear-time
min-cut approximation algorithm to find a 3-approximation to the minimum cut. Another
approach is to initially guess a known upper bound onc (sayc9 5 n in unweighted graphs)
and then repeatedly halve the value of the guess until we confirm that our approximation
algorithms have run correctly. Since our algorithm’s running times are proportional to the
sample size, and thus inversely proportional to our guessc9, this repeated halving will
increase the running time of our algorithms by only a constant factor.
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Thus, we will assume for the rest of this paper that the correctp for a givene is known
to us, so that givene we can construct a correspondingp-skeleton in linear time.

3. s-t min-cuts and max-flows. We now show how the skeleton approach can be
applied to minimum cuts and maximum flows. In unweighted graphs, thes-t maximum flow
problemis to find a maximum set, orpacking, of edge-disjoints-t paths. It is known (Ford
and Fulkerson 1962) that the value of this flow is equal to the value of the minimums-t cut.
In fact, the only known algorithms for finding ans-t minimum cut simply identify a cut that
is saturated by ans-t maximum flow.

In unweighted graphs, a classic algorithm for finding such a maximum flow is the
augmenting pathalgorithm (cf. Tarjan 1983, Ahuja, Magnanti, and Orlin 1993). Given a
graph and ans-t flow of value f, a linear-time search of the so-calledresidual graphwill
either show how to augment the flow to one of valuef 1 1 or prove thatf is the value of
the maximum flow. This algorithm can be used to find a maximum flow of valuev in O(mv)
time by findingv augmenting paths. We now show how random sampling can be used to
speed up such augmenting path algorithms. We have the following immediate extension of
Corollary 2.4:

THEOREM 3.1. Let G be any graph with minimum cut c and let p5 U((ln n)/e2c) as in
Corollary 2.4.Suppose the s-t minimum cut of G has valuev. Then with high probability, the
s-t minimum cut in G(p) has value between(1 2 e)pv and (1 1 e)pv, and the minimum cut
has value between(1 2 e)pc and(1 1 e)pc.

COROLLARY 3.2. Assuming e , 1
2, the s-t min-cut in G( p) corresponds to a

(1 1 4e)-minimum s-t cut in G with high probability.

PROOF. Assuming that Theorem 3.1 holds, the minimum cut inG is sampled to a cut of
value at most (11 e)c in G( p). So G( p) has minimum cut no larger. And (again by the
Theorem 3.1) this minimum cut corresponds to a cut of value at most (11 e)c/(1 2 e)
, (1 1 4e)c whene , 1

2. h

If we use augmenting paths to find maximum flows in a skeleton, we find them faster than
in the original graph for two reasons: the sampled graph has fewer edges, and the value of
the maximum flow is smaller. The maximum flow in the skeleton reveals ans-t minimum cut
in the skeleton, which corresponds to a near-minimums-t cut of the original graph. An
extension of this idea lets us find near-maximum flows: we randomly partition the graph’s
edges into many groups (each a skeleton), find maximum flows in each group, and then
merge the skeleton flows into a flow in the original graph. Furthermore, once we have an
approximately maximum flow, we can turn it into a maximum flow with a small number of
augmenting path computations. This leads to an algorithm called DAUG that finds a
maximum flow inO(mv=(log n)/c) time. We lead into DAUG with some more straight-
forward algorithms.

3.1. Approximate s-t minimum cuts. The most obvious application of Theorem 3.1
is to approximate minimum cuts. We can find an approximates-t minimum cut by finding
an s-t minimum cut in a skeleton.

LEMMA 3.3. In a graph with minimum cut c, a (1 1 e)-approximation to the s-t minimum
cut of valuev can be computed in O˜ (mv/e3c2) time (MC).

PROOF. Given e, determine the correspondingp 5 U((log n)/e 2c) from Theorem 3.1.
Assume for now thatp # 1. Construct ap-skeletonG( p) in O(m) time. Suppose we
compute ans-t maximum flow in G( p). By Theorem 3.1, 1/p times the value of the
computed maximum flow gives a (11 e)-approximation to thes-t min-cut value (with high
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probability). Furthermore, any flow-saturated (and thuss-t minimum) cut inG( p) will be a
(1 1 e)-minimum s-t cut in G.

By the Chernoff bound, the skeleton hasO( pm) edges with high probability. Also, by
Theorem 3.1, thes-t minimum cut in the skeleton has valueO( pv). Therefore, the standard
augmenting path algorithm can find a skeletals-t maximum flow in O(( pm)( pv))
5 O(mv log2 n/e 4c2) time. Our improved augmenting paths algorithm DAUG in §3.4 lets
us shave a factor ofU(=pc/log n) 5 U(1/e) from this running time, yielding the claimed
bound.

If p $ 1 becausec 5 O((log n)/e 2), thene 3c2 5 Õ(=c), so our theorem is proved if
we give a running time ofÕ(mv/=c). This is the time bound of algorithm DAUG in
§3.4. h

3.2. Approximate maximum flows. A slight variation on the previous algorithm will
compute approximate maximum flows.

LEMMA 3.4. In a graph with minimum cut c and s-t maximum flowv, a (1 2 e)-maximum
s-t flow can be found in O˜ (mv/ec) time (MC).

PROOF. Given p as determined bye, randomly partition the graph’s edges into 1/p
groups, creating 1/p graphs (this takesO(m log(1/p)) time). Each graph looks like (has the
distribution of) ap-skeleton, and thus with high probability has a maximum flow of value at
leastpv(1 2 e) that can be computed inO(( pm)( pv)) time as in the previous section (the
skeletons are not independent, but even the sum of the probabilities that any one of them
violates the sampling theorem is negligible). Adding the 1/p flows that result gives a flow of
valuev(1 2 e). The running time isO((1/p)( pm)( pv)) 5 O(mv(log n)/e 2c). If p $ 1 then
the argument still holds since this impliese 2c # log n. If we use our improved augmenting
path algorithm DAUG, we improve the running time by an additional factor ofU(1/e),
yielding the claimed bound. h

3.3. A Las Vegas algorithm. Our max-flow and min-cut approximation algorithms are
both Monte Carlo, since they are notguaranteedto give the correct output (though their error
probabilities can be made arbitrarily small). However, by combining the two approximation
algorithms, we can certify the correctness of our results and obtain aLas Vegasalgorithm for
both problems—one that is guaranteed to find the right answer, but has a small probability
of taking a long time to do so.

COROLLARY 3.5. In a graph with minimum cut c and s-t maximum flowv, a
(1 2 e)-maximum s-t flow and a(1 1 e)-minimum s-t cut can be found in O˜ (mv/ec) time(LV).

PROOF. Run both the approximate min-cut and approximate max-flow algorithms,
obtaining a (12 e/2)-maximum flow of valuev0 and a (11 e/2)-minimum cut of valuev1.
We know thatv0 # v # v1, so to verify the correctness of the results all we need do is check
that (11 e/2)v0 $ (1 2 e/2)v1, which happens with high probability. To make the algorithm
Las Vegas, we repeat both algorithms until each demonstrates the other’s correctness (or
switch to a deterministic algorithm if the first randomized attempt fails). Since the first
attempt succeeds with high probability, the expected running time is as claimed.h

3.4. Exact maximum flows. We now use the above sampling ideas to speed up the
familiar augmenting paths algorithm for maximum flows. This section is devoted to proving
the following theorem:

THEOREM 3.6. In a graph with minimum cut value c, a maximum flow of valuev can be
found in O(mv min(1, =(log n)/c)) time (LV).

We assume for now thatv $ log n. Our approach is a randomized divide-and-conquer
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algorithm that we analyze by treating each subproblem as a (nonindependent) random
sample. This technique suggests a general approach for solving packing problems with an
augmentation algorithm (including packing bases in a matroid (Karger 1998b)). The flow that
we are attempting to find can be seen as a packing of disjoints-t paths. We use the algorithm
in Figure 1, which we call DAUG (Divide-and-conquer AUGmentation).

Note that we cannot apply sampling in DAUG’s cleanup phase (Step 4) because the
residual graph we manipulate there is directed, while our sampling theorems apply only to
undirected graphs. Note also that unlike our approximation algorithms, this algorithm
requires no prior guess as to the value ofc. We have left out a condition for terminating the
recursion; when the graph is sufficiently small (say with one edge) we use the basic
augmenting path algorithm.

The outcome of Steps 1–3 is a flow. Regardless of its value, Step 4 will transform this flow
into a maximum flow. Thus, our algorithm is clearly correct; the only question is how fast
it runs. Suppose thes-t maximum flow isv. ConsiderG1. Since each edge ofG is in G1 with
probability 1

2, we expectG1 to havem/ 2 edges. Also, we can apply Theorem 3.1 to deduce
that with high probability thes-t maximum flow inG1 is (v/ 2)(1 2 Õ(=1/c)) and the
global minimum cut isU(c/ 2). The same holds forG2 (the two graphs are not independent,
but this is irrelevant). It follows that the flowf has valuev(1 2 Õ(1/=c)) 5 v 2 Õ(v/=c).
Therefore the number of augmentations that must be performed inG to makef a maximum
flow is Õ(v/=c). By deleting isolated vertices as they arise, we can ensure that every
problem instance has more edges than vertices. Thus each augmentation takesO(m9) time on
anm9-edge graph. Intuitively, this suggests the following sort of recurrence for the running
time of the algorithm in terms ofm, v, andc:

T~m, v, c! 5 2T~m/2, v/2, c/2! 1 Õ~mv/Îc!

(where we use the fact that each of the two subproblems expects to containm/ 2 edges). If
we solve this recurrence, it evaluates toT(m, v, c) 5 Õ(mv/=c).

Unfortunately, this argument does not constitute a proof because the actual running time
recurrence is in fact aprobabilistic recurrence: the values of cuts in and sizes of the
subproblems are random variables not guaranteed to equal their expectations. Actually
proving the result requires some additional work.

We consider the tree of recursive calls made by our algorithm. Eachnodeof this tree
corresponds to an invocation of the recursive algorithm. We can then bound the total running
time by summing the work performed at all the nodes in the recursion tree. We first show that
it is never worse than the standard augmenting paths algorithm, and then show that it is better
whenc is large.

LEMMA 3.7. The depth of the computation tree is O(log m) (w.h.p.).

PROOF. The number of computation nodes at depthd is 2d. Each edge of the graph ends
up in exactly one of these nodes chosen uniformly and independently at random from among
them all. Thus, the probability that two different edges both end up in the same node at depth
3 log m is (summing over pairs of edges) at most (2

m)/m3, which is negligible. But if there
is only one edge, the base case applies with no further recursion.h

1. Randomly split the edges ofG into two groups (each edge goes to one or the other group independently with
probability 1

2), yielding graphsG1 andG2.
2. Recursively computes-t maximum flows inG1 andG2.
3. Add the two flows, yielding ans-t flow f in G.
4. Use augmenting paths (or blocking flows) to increasef to a maximum flow.

FIGURE 1. Algorithm DAUG.
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LEMMA 3.8. DAUG runs in O(m log m 1 mv) time (LV).

PROOF. First we bound the non-augmenting-path work (i.e. the work of building and
reassembling the subproblems) in Steps 1–3. Note that at each node in the computation tree,
the amount of such work performed, not including recursive calls, is linear in the size
(number of edges) of the node (since we delete isolated vertices as they arise, there are always
fewer vertices than edges). At each level of the recursion tree, each edge of the original graph
is located in at most one node. Therefore, the total size of nodes at a given level isO(m).
Since there areO(log m) levels in the recursion, the total work isO(m log m).

Next we bound the work of the augmenting path computations. Note first that the
algorithm performs one “useless” augmenting path computation at each node in order to
discover that it has found a maximum flow for that node. Since the work of this augmentation
is linear in the size of the node, it can be absorbed in theO(m log m) time bound of the
previous paragraph.

It remains to bound the time spent on “successful” augmentations that increase the flow at
their node by one. We claim that the number of successful augmentations, taken over the
entire tree, isv. To see this, telescope the argument that the number of successful
augmentations at a node in the computation tree is equal to the value of the maximum flow
at that node minus the sum of the maximum flows at the two children of that node. Since each
successful augmentation takesO(m) time, the total time spent on successful augmentations
is O(mv). h

LEMMA 3.9. When c$ log n, DAUG runs in O(m log m 1 mv=log n/c) time (LV).

PROOF. We improve the previous lemma’s bound on the work of the successful
augmentations that add a unit of flow at a node. The number of such augmentations is equal
to the difference between the maximum flow at the node and the sum of the children’s
maximum flows. Consider a nodeN at depthd. Each edge of the original graph ends up at
N independently with probability 1/ 2d. Thus, the graph atN is a (22d)-skeleton.

First consider nodes at depths exceeding log(c/log n). Each of these nodes has
O(m(log n)/c) edges w.h.p. By the same argument as the previous lemma, there are onlyv
successful augmentations performed at these nodes, for a total work ofO(mv(log n)/c),
which is less than the claimed bound ifc $ log n.

At depths less than log(c/log n), the minimum expected cut at a nodeN is large enough
to apply the sampling theorem. This proves that the maximum flow atN is 22dv(1
6 O(=(2d log n)/c)) w.h.p. Now consider the two children of nodeN. By the same
argument, each has a maximum flow of value 22(d11)v(1 6 O(=(2d11 log n)/c)) (w.h.p.).
It follows that the total number of augmentations that must be performed atN is

v
2d S1 6 OS Î2d log n

c DD 2 2 z
v

2d11 S1 6 OS Î2d11 log n

c DD 5 OSv Îlog n

2dc D .

By the Chernoff bound, each node at depthd hasO(m/ 2d) edges with high probability. Thus
the total amount of augmentation work done at the node isO(m/ 2d) times the above bound.
Summing over the 2d nodes at depthd gives an overall bound for the work at leveld of

OSmv Îlog n

2dc D .

We now sum this bound over all depthsd to get an overall bound ofO(mv=(log n)/c). h

Combining this result with the previous one gives a bound ofO(m log m 1 mv min(1,
=(log n)/c)). This time bound is still not quite satisfactory, because the extraO(m log m)
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term means the algorithm is slower than standard augmenting paths whenv is less than logm.
This is easy to fix. Before running DAUG, performO(log m) augmenting path computations
on the original graph, stopping if a maximum flow is found. This guarantees that when
v 5 O(log m), the running time isO(mv). This completes the proof of the section’s main
theorem.

4. Global minimum cuts. We now show how sampling can be used for global
minimum cuts. We improve an algorithm of Gabow (1995) that finds minimum cuts in
O(mc log(n2/m)) time. This section is devoted to proving the following theorem. Some
additional ramifications are discussed at the end.

THEOREM 4.1. A graph’s minimum cut c can be found in O˜ (m=c) time (LV). It can be
approximated to within(1 1 e) in Õ(m) time (LV).

We therefore improve Gabow’s algorithm’s running time by a factor of roughly=c in the
exact case and give a roughly linear-time algorithm for the approximate case. We have
recently developed a near-linear time exact algorithm (Karger 1996), but it is Monte Carlo.
These are the fastest known Las Vegas algorithms.

Our proof of Theorem 4.1 is the same as the one presented previously for finding
maximum flows. The change is that instead of using the standard augmenting paths technique
to pack paths, we use a matroid augmentation technique developed by Gabow (1995) to pack
arborescences—that is, directed spanning trees. We must revise the analysis slightly because
the time for a single “augmenting path” computation is not linear.

Gabow’s algorithm is designed for directed graphs and is based on earlier work of
Edmonds (1965). In a directed graph, a minimum cut is a vertex partition (S, T) that
minimizes the number of edges directed fromS to T. Given a particular vertexs, aminimum
s-cutis a partition of the vertices into nonempty setsSandT such thats [ Sand the number
of directed edges crossing fromS to T is minimized. Since the minimum cut in a graph is a
minimums-cut in eitherG or G with all edges reversed, finding a global minimum cut in a
directed graph reduces to two iterations of finding a minimums-cut. Gabow’s algorithm does
so by packings-arborescences. An s-arborescence inG is a spanning tree of directed edges
that induce indegree exactly one at every vertex other thans. In other words, it is a spanning
tree with all edges directed away froms. Edmonds (1965) gave the following characteriza-
tion of minimum cuts:

The minimums-cut of a graph is equal to the number of disjoints-arborescences that can be packed
in it.

It is obvious that every tree in the packing must use at least one edge of anys-cut; the other
direction of the inequality is harder. This characterization corresponds closely to that for
maximum flows. Just as the minimums-t cut is equal to the maximum number of disjoint
paths directed froms to t, the minimums-cut is equal to the maximum number of disjoint
spanning trees directed away froms. Each arborescence can be thought of as directing a unit
of flow from s to all other vertices simultaneously. Intuitively, the bottleneck in this flow is
the vertex to whichs can send the least flow—namely, one on the opposite side of the
minimum s-cut.

Gabow’s min-cut algorithm uses a subroutine that he calls theRound Robin Algorithm
(Round-Robin). This algorithm takes as input a graphG with an arborescence packing of
valuek. In O(m log(n2/m)) time it either returns an arborescence packing of value (k 1 1)
or proves that the minimum cut isk by returning a cut of valuek. Round-Robin can therefore
be seen as a cousin of the standard augmenting-path algorithm for maximum flows: instead
of augmenting by a path, it augments by a spanning tree that sends an extra unit of flow to
everyvertex. Like many flow algorithms, Gabow’s algorithm does not explicitly partition his
current flow into arborescences (“paths”). Rather, it maintains an edge set (called a complete
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intersection) that can be so partitioned. Actually carrying out the partition seems to be
somewhat harder than finding the edge set.

Gabow’s algorithm for finding a minimum cut is to repeatedly call Round-Robin until it
fails. The number of calls needed is just the valuec of the minimum cut; thus the total
running time of his algorithm isO(cm log(n2/m)). Gabow’s algorithm can clearly be applied
(with the same time bounds) to undirected graphs as well: simply replace each undirected
edge with two directed edges: one in each direction.

We can improve this algorithm as we did the max-flow algorithm. Use DAUG, but replace
the augmenting path steps with calls to Round-Robin.

LEMMA 4.2. DAUG finds a global minimum cut in O(m min(c, =c log n) log n) time.

PROOF. Reuse the proof for the maximum flow analysis as if we were looking for a flow
of valuec. The only change is that a single application of Round-Robin on a graph withm9
edges takesO(m9 log(n2/m9)) 5 O(m9 log n) time. Since each augmentation anywhere in
the analysis isO(log n) times slower than for flows, the overall time bound isO(log n) times
greater. h

We can improve the last logarithmic factor with a more careful algorithm and analysis.
Before running DAUG, approximate the minimum cut to within some constant factor (using
Matula’s 1993 algorithm or the skeleton approach). Then, at depth log(c/log n) in the
recursion, when the incoming graph has minimum cutO(log n), run Gabow’s original
algorithm instead of recursing. This immediately proves Theorem 4.1 forc 5 O(log n). We
now prove the other case to finish the proof of the theorem.

LEMMA 4.3. For c $ log m, the modified DAUG algorithm runs in O(m=c log m
3 log(n2/m)) time.

PROOF. Since the computation stops recursing when the depth reaches log(c/log n), the
recursion tree has depth log(c/log n). As with the flow analysis, the overhead in setting up
the subproblems at all levels is thenO(m log(c/log n)), which is negligible. Since the time
per augmentation is no longer linear, we must change the analysis of work performed during
augmentations.

Consider first the “unsuccessful” augmentations that identify maximum arborescence
packings. The algorithm performs one at each node in the recursion tree. The total work over
all 2d nodes at each depthd is thus

OS O
d51

log~c/log n!

2d~m/2d! log~2dn2/m!D 5 O~O md1 O m log~n2/m!!

5 O~m log2~c/log n! 1 m log~c/log n! log~n2/m!!,

which is less than the specified bound since log2(c/log n) 5 o(=c log n).
Now consider the “successful” Round-Robin calls that actually augment a packing. We

analyze these calls as in the maximum flow case. Comparing the minimum cuts of a parent
node and its children, we see that at depthd, each of the 2d nodes hasO(m/ 2d) edges and
requiresO(=c(log n)/ 2d) Round-Robin calls for total ofO(m=c(log n)/ 2d log(2dn2/m))
work at depthd. Summing over all depths gives a total work bound ofO(m=c log n
3 log(n2/m)).

Finally, consider the work in the calls to Gabow’s algorithm at the leaves of the recursion.
At depthd 5 log(c/log n), there will be 2d such calls on graphs with minimum cutO(log n),
each takingO((m/ 2d)(log n)(log(n2c/m log n))) time. Since by assumptionc . log n, this
is dominated by the time bound for successful augmentations.h
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REMARK. An alternative to running a separate approximation algorithm for the minimum
cut is to modify DAUG so that before it recurses, it makesO(log n) calls to Round-Robin
and halts if it finds a maximum packing. This causes the recursion to terminate at the same
point as before while increasing the work at each recursion-tree node by at most a constant
factor.

The improved time for packing arborescences has other ramifications in Gabow’s (1991)
work. He gives other algorithms for which computing an arborescence packing is the
computational bottleneck. He gives an algorithm for computing a compactm-treerepresen-
tation of all minimum cuts, and shows how this representation can be converted to the older
O(n)-space cactus representation (Dinitz, Karzanov, and Lomonosov 1976) in linear time.
He also gives an algorithm for finding a minimum set of edges to add to augment the
connectivity of a graph fromc to c 1 d. In both of these algorithms, computing an
arborescence packing forms the bottleneck in the running time.

COROLLARY 4.4. The cactus and m-tree representations of all minimum cuts in an
undirected graph can be constructed in O˜ (m=c) time (LV).

COROLLARY 4.5. A minimum set of edges augmenting the connectivity of a graph from c
to c 1 d can be computed in O(m 1 n(c3/2 1 dc 1 d2)) time (LV).

4.1. Approximating the minimum cut. Just as with maximum flows, we can combine
a minimum cut algorithm with random sampling to develop Monte Carlo and Las Vegas
algorithms for findingapproximateminimum cuts. Previously, Matula (1993) gave a
linear-time deterministic (21 e)-approximation algorithm; we use randomization to get
better approximations with the same time bound.

COROLLARY 4.6. A (1 1 e)-minimum cut can be found in O(m 1 n((log n)/e)3) time (MC).

PROOF. Given anm edge graph, build ap-skeleton using thep determined bye, and use
the previous min-cut algorithm to find a minimum cut in it. Assumep , 1. Then the running
time is O(m(log3 n)/(e 3c)). Now note that before we run the approximation algorithm, we
can use Nagamochi and Ibaraki’s sparse certificate algorithm (discussed in §1.4) to construct
(in O(m) time) anO(nc)-edge graph with the same approximately minimum cuts as our
starting graph. This reduces the running time of the sampling algorithm to the stated bound.

If p . 1, meaning thate 2 5 Õ(1/c), then the claimed running time isÕ(nc3/ 2), which
is achieved by running DAUG on thenc-edge sparse certificate.h

COROLLARY 4.7. A (1 1 e)-minimum cut and(1 2 e)-maximum arborescence packing can
be found in O(m(log2n)/e) time (LV).

PROOF. Recall from above that an arborescence-packing of valuek certifies that the
minimum cut is at leastk. Givene and its correspondingp, divide the graph in 1/p pieces,
find a maximum arborescence packing in each of the pieces independently, and union the
packings. The analysis proceeds exactly as in the approximate max-flow algorithm of §3.2.
As in Corollary 3.5, the combination of a cut of value (11 e/ 2)c and a (12 e/ 2)c-packing
brackets the minimum cut between these two bounds.h

5. Weighted graphs. We now describe the changes that occur when we apply our cut
and flow algorithms to weighted graphs. We model an edge of weightw as a collection of
w unweighted edges. This creates problems in applying the undirected graph algorithms. For
the approximation algorithms, the time to construct a skeleton becomes proportional to the
total edge weight. For the divide and conquer algorithms, the time for augmentations
becomes large for the same reason.

Improved methods for weighted graphs have recently been developed for both cuts
(Benczúr and Karger 1996) and flows (Karger 1998a, Karger and Levine 1998).
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5.1. Constructing skeletons. The first problem we face is constructing a skeleton. The
number of edges implicitly represented by edge weights can be too large to let us take time
to sample each individually. To speed our skeleton construction, we use the following
alternative approach.

LEMMA 5.1. Let G be any unweighted graph with minimum cut c and let p5 3(d 1 2)(ln
n)/e2c. Let H be constructed from G by choosingpm edges from G at random. Then the
probability that some cut of valuev in G has value more than(1 1 e)pv or less than(1 2
e)pv in H is O(n2d=pm).

PROOF. We could prove this corollary from first principles by reapplying the cut-counting
theorem, but we take an easier approach. LetERRdenote the event that some cut diverges
by more thane from its expected value. We know that if we sample each edge with
probability p, then Pr[ERR] is O(1/nd). Let S denote the number of edges actually chosen
in such a sample. Note thatS has the binomial distribution and that its so-calledcentral term
Pr[S 5 pm] 5 V(1/=pm) (cf. Feller 1968). We can evaluateERRconditioning on the
value ofS:

1/nd $ Pr@ERR#

5 O
k

Pr@S5 k# z Pr@ERR | S5 k#

$ Pr@S5 pm# z Pr@ERR | S5 pm#

5 VS 1

ÎpmD z Pr@ERR | S5 pm#.

In other words, Pr[ERR|S 5 pm] 5 O(=pm/nd). h

This corollary tells us that so long as the expected numberpm of edges in the skeleton is
polynomial, we can construct the skeleton by taking a fixed-size sample and get roughly the
same result as in the original construction: all cut values will be withine of their expectations
with high probability. We can construct such a modifiedp-skeleton by makingpm random
selections from among the edges of the graph. In a weighted graph this corresponds to using
biased selection: choose the edge with probability proportional to the weight of the edge. In
a graph with total edge weightW, each such selection takesO(log W) time since we generate
log W random bits in order to identify a particular edge. Thus, the total time isO( pW log W).
In fact, this algorithm can be made strongly polynomial: we can arrange for each selection
to takeO(log m) amortized time, but the digression into the details would take us too far
afield. A discussion can be found elsewhere (Knuth and Yao 1976; Karger and Stein 1996).

LEMMA 5.2. In a weighted graph with m edges of total weight W, a p-skeleton can be
constructed in O(pW log m) time.

The only other issue that needs to be addressed is the estimation of the correct sampling
ratesp for a given approximation bounde. As with the unweighted case, we actually only
need a constant factor estimate of the minimum cut. One way to get it is to generalize
Matula’s (21 e)-approximation algorithm to weighted graphs (see Karger 1994b for details).
An alternative is to generalize the repeated doubling approach of §2.1. Unweighted graphs
had minimum cuts bounded byn, so only logn repeated doubling trials were needed to get
the estimate. For weighted graphs, we need a slightly more complex algorithm. We use the
following scheme to estimate the minimum cut to within a factor ofn2, and then repeatedly
double the estimate (halving the estimated sampling probability) until (withinO(log n)
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attempts) the estimate is correct to within a factor of 2. Compute a maximum spanning tree
of the weighted graph, and then letw be the weight of the minimum weight edge of this
maximum spanning tree. Removing this edge partitions the maximum spanning tree into two
sets of vertices such that no edge ofG connecting them has weight greater thanw (else it
would be in the maximum spanning tree). Therefore, the minimum cut is at mostn2w. On
the other hand, the maximum spanning tree has only edges of weight at leastw, so one such
edge crosses every cut. Thus the minimum cut is at leastw.

5.2. Cuts. Our cut approximation algorithms have roughly the same running time as in
the unweighted case: the only change is that we use theO( pW log n)-time weighted-graph
skeleton construction.

COROLLARY 5.3. In a weighted graph, a (1 1 e)-minimum cut can be found in
O(m 1 n((log n)/e)3) time (MC).

PROOF. We have already discussed finding a rough approximation toc using, e.g.,
Matula’s algorithm. Construct a sparse 3c-connectivity certificate of total weightO(nc) and
proceed as in the unweighted graph algorithm. Regardless of the original graph weights, the
skeleton will haveO(n(log n)/e 2) edges and minimum cutO((log n)/e 2). h

COROLLARY 5.4. In a weighted graph, a (1 1 e)-minimum s-t cut can be found in O˜ (m
1 n(v/c)2e23) time (MC).

PROOF. Suppose first that we knewv. Use Nagamochi and Ibaraki’s (1992a) sparse
certificate algorithm to construct a sparse 3v-connectivity certificate of total weightO(nv).
Assuminge , 1, approximate cuts in the certificate are the same as those in the original
graph. Construct ap-skeleton of the certificate using weighted selection from the certificate
in O( pnv log m) time. Now proceed as in the unweighted graph case.

To make up for our ignorance ofv, begin by estimatingv to within a factor ofn2 as
follows. Find (using an obvious variant of Dijkstra’s shortest path algorithm) the path from
s to t whose smallest edge weightw is maximized. It follows that everys-t cut has weight
at leastw, since some edge on the found path is cut. However, if we remove all edges of
weight w or less (a total ofn2w weight) then we disconnects and t since everys-t path
contains an edge of weight at mostw. Therefore,v is betweenw andn2w. Start by guessing
v 5 w, and double itO(log n) times until the guess exceedsv, at which point the approach
of the previous paragraph will yield the desired cut.h

TheÕ(mv/e 3c2) bound of the unweighted case no longer follows, since it need no longer
be the case that skeleton has onlypm edges.

5.3. Flows. We can also adapt the max-flow algorithms. If we directly simulated the
unweighted graph algorithm DAUG, we would partition the edges into two groups by
generating a binomial distribution for each weighted edge in order to determine how much
of its weight went to each of the two subgraphs. To avoid having to generate such
complicated distributions, we return to Theorem 2.1 and use the following approach. Ifw is
even, assign weightw/ 2 to each group. Ifw is odd, assign weightw/ 2 to each group and
flip a coin to decide which group gets the remaining single unit of weight. Since the minimum
expected cut (ĉ of Theorem 2.1) that results in each half is stillc/ 2, we can deduce as in the
unweighted case that little augmentation need be done after the recursive calls.

We have described the change in implementation, and correctness is clear, but we have to
change the time bound analysis. It is no longer true that each new graph has half the edges
of the old. Indeed, if all edge weights are large, then each new graph will have just as many
edges as the old. We therefore add a new parameter and analyze the algorithm in terms of the
number of edgesm, the minimum cutc, the desired flow valuev, and thetotal weight Wof
edges in the graph. Note the two subgraphs that we recurse on have total weight roughly
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W/ 2. In order to contrast with bit-scaling techniques, we also use theaverage edge weight
U 5 W/m which is no more than the maximum edge weight. The unweighted analysis
suggests a time bound for minimum cuts ofÕ(W=c) 5 Õ(mU=c), but we can show a
better one:

LEMMA 5.5. A global minimum cut of value c can be found in O˜ (m=cU) time (LV).

PROOF. We divide the recursion tree into two parts. At depthsd # log(W/m), we bound
the number of edges in a node bym. As in the unweighted analysis, we know each node at
depthd has to performÕ(=c/ 2d) augmentations, each takingÕ(m) time, so the total work
at depthd is Õ(2dm=c/ 2d) 5 Õ(m=2dc). Summing overd # log(W/m) gives a total work
bound of Õ(m=Wc/m) 5 Õ(m=cU). At depth log(W/m), we haveW/m computation
nodes, each with minimum cutÕ(mc/W) (by the sampling theorem) and at mostm edges.
Our unweighted graph analysis shows that the time taken by each such node together with
its children is Õ(m=mc/W). Thus the total work below depth log(W/m) is Õ((W/
m)(m=mc/W)) 5 Õ(m=cU). h

A similar result can be derived if we use the same algorithm to find flows, replacing
Gabow’s Round Robin Algorithm with standard augmenting paths.

COROLLARY 5.6. A maximum flow of valuev can be found in O˜ (mv=U/c) time (LV).
More recently (Karger 1998a) we introduced asmoothingtechnique that lets us avoid

splitting large edges in two for the two recursive calls. Instead, after some preliminary
splitting, we show that it is possible to assign the full weight of an edge randomly to one
subproblem or the other, and still get the same accurate approximation of cut values. This lets
us extend our unweighted-graph time bounds to weighted graphs as well.

6. Other cut problems. In this section, we discuss several other cut problems and
algorithms and show how our sampling techniques can be applied to them.

6.1. Parallel flow algorithms. In the s-t min-cut problem the need for the final
“cleanup” augmentations interferes with the development of efficient51# DAUG-type
algorithms for the problem, because there are no good parallel reachability algorithms for
finding augmenting paths in directed graphs. However, we can still take advantage of the
divide and conquer technique in a partially parallel algorithm for the problem. Khuller and
Schieber (1991) give an algorithm for finding disjoints-t paths in undirected graphs. It uses
a subroutine that augments a set ofk disjoint s-t paths tok 1 1 if possible, usingÕ(k) time
andkn processors. This lets them find a flow of valuev in Õ(v 2) time usingvn processors.
We can speed up this algorithm by applying the DAUG technique we used for maximum
flows. Finding the final augmentations after merging the results of the recursive calls is the
dominant step in the computation. It requiresÕ(v/=c) iterations of their augmentation
algorithm, each takingÕ(v) time, for a total ofÕ(v 2/=c) time usingvn processors. Thus
we decrease the running time of their algorithm by anÕ(=c) factor, without changing the
processor cost.

6.2. Separators and sparsest cuts.The edge separatorproblem is to find a cut with
a minimum number of edges that partitions a graph into two roughly equal-sized vertex sets.
The sparsest cutproblem is to find a cut (A, B) of value v minimizing the value of the
quotientv/(\A\\B\). These problems are13-complete and the best known approximation
ratio is O(log n) (for separators, one has to accept a less balanced solution to achieve this
bound). One algorithm that achieves this approximation for sparsest cuts is due to Leighton
and Rao (1988).

Klein, Plotkin, Stein, and Tardos (1994) give a fast concurrent flow algorithm which they
use to improve the running time of Leighton and Rao’s algorithm. Their algorithm runs in
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O(m2 log m) time, and finds a cut with quotient within anO(log n) factor of the optimum.
Consider a skeleton of the graph that approximates cuts to within a (16 e) factor. Since the
denominator of a cut’s quotient is unchanged in the skeleton, the quotients in the skeleton
also approximate their original values to within a (16 e) factor. It follows that we can take
p 5 O(log n/c) and introduce a negligible additional error in the approximation. By the same
argument, it suffices to look for balanced cuts in a skeleton rather than the original graph.

THEOREM 6.1. An O(log n)-approximation to the sparsest cut can be computed in
Õ((m/c)2) time (MC).

Benczúr and Karger (1996) have improved this time bound toÕ(n2).

6.3. Orienting a graph. Given an undirected graph, thegraph orientation problemis
to find an assignment of directions to the edges such that the resulting directed graph has the
largest possible (directed) connectivity. Gabow (1993) cites a theorem of Nash-Williams
(1969) showing that a solution of (directed) connectivityk exists if and only if the input graph
is 2k-connected, and also gives a submodular flow based algorithm for finding the orientation
in O(kn2(=kn 1 k2 log(n/k))) time. We have the following result:

LEMMA 6.2. A (k 2 O(=k log n))-connected orientation of a2k-connected graph can be
found in linear time.

PROOF. Orient each edge randomly with probability12 in each direction. A minor
adaptation of Theorem 2.1 shows that with high probability, for each cut, there will be at least
k 2 O(=k log n) edges oriented in each direction. In other words, every directed cut will
have a value exceeding the claimed one.h

Using this randomly oriented graph as a starting point in Gabow’s algorithm allows us to
speed up that algorithm by a factor ofÕ(=k).

6.4. Integral multicommodity flows. Suppose we are given an unweighted graphG
and a multicommodity flow problem withk source-sink pairs (si , t i) and demandsdi . Let ci

be the value of thesi-t i minimum cut and suppose that¥ di /ci # 1. Then it is obvious that
there is a fractional solution to the problem: divide the graph intok new graphsGi , giving
a di /ci fraction of the capacity of each edge to graphGi . Then thesi-t i minimum cut ofGi

has value exceedingdi , so commodityi can be routed in graphGi . There has been some
interest in the question of when anintegral multicommodity flow can be found (the problem
is discussed in Ford and Fulkerson 1962; more recent discussions include Gro¨tschel, Lova´sz,
and Schrijver 1988, §8.6 and Frank 1990). Our sampling theorem gives new results on the
existence of integral flows and fast algorithms for finding them. Rather than assigning a
fraction of each edge to each graph, assign each edge to a graphGi with probability
proportional todi /ci . We now argue as for the flow algorithms that, given the right conditions
on c, each graphGi will be able to integrally satisfy the demands for commodityi . Thusk
max-flow computations will suffice to route all the commodities. In fact, in an unweighted
graph, if mi is the number of edges inGi , we know that¥ mi 5 m, so that the max-flow
computations will takeO(¥ min) 5 O(mn) time. Various results follow; we give one as an
example:

LEMMA 6.3. Suppose that each di $ log n, and that¥ di # c/2 (where c is the minimum
cut). Then an integral multicommodity flow satisfying the demands exists and can be found
in O(mn) time.

PROOF. Assign each edge to groupi with probability proportional todi /c. Since¥ di /c
# 1

2, this means the probability an edge goes toi is at least 2di /c. Thus the minimum
expected cut inGi is at least 2di , so the minimum cut exceedsdi with high probability and
that graph can satisfy thei th demand. h
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7. Network design. We now turn to thenetwork design problem. Here, rather than
sampling as a preprocessing step to reduce the problem size, we sample as a postprocessing
step to round a fractional solution to an integral one.

7.1. Problem definition. The most general form of the network design problem is as
a covering integer program with exponentially many constraints. We are given a set of
vertices, and for each pair of verticesi and j , a cost cij of establishing a unit capacity link
betweeni and j . For each cutC in the graph, we are given ademand dC denoting the
minimum number of edges that must cross that cut in the output graph. Since there are
exponentially many cuts (in the number of verticesn), the demands must be specified
implicitly if the problem description is to be of size polynomial inn. Our goal is to build a
graph of minimum cost that obeys all of the cut demands, i.e. to solve the following integer
program:

minimize O cijxij ,

O
~i ,j ! crossingC

xij $ dC ~ ; cutsC!,

xij $ 0.

There are two variants of this problem: in thesingle edge useversion, eachxij must be 0 or
1. In therepeated edge useversion, thexij can be arbitrary nonnegative integers.

There are several specializations of the network design problem (further details can be
found in the paper by Agrawal, Klein, and Ravi 1995):

The generalized Steiner problemspecifies a connectivity demanddij for each pair of
verticesi and j , and the demand across a cutC is just the maximum ofdij over all pairs
(i , j ) separated byC. An early formulation is due to Krarup (see Winter 1987).

The survivable network problem hasdij 5 min(di , dj) for certain “connectivity types”
i and j . It was studied by Goemans and Bertsimas (1993).

The minimum k-connected subgraph problemis to find a smallest (fewest edges)
2-connected subgraph of an input graphG. This is a network design problem in which all
demands arek and all edges have cost 1 (present inG) or ` (not present).

Even the minimumk-connected subgraph problem is13-complete, even fork 5 2
(Eswaran and Tarjan 1976).

7.2. Past work. Khuller and Vishkin (1994) gave a 2-approximation algorithm for the
minimum costk-connected graph problem and a3

2-approximation for the minimum (unit cost)
k-connected subgraph problem. Khuller and Raghavachari (1995) gave a 1.85-approximation
for the minimumk-connected subgraph problem for anyk.

Agrawal, Klein, and Ravi (1995) studied the repeated-edge-use generalized Steiner
problem (with costs) and gave anO(log fmax) approximation algorithm, wherefmax is the
maximum demand across a cut, namely maxdij .

Goemans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson (1994), extending work of
Williamson, Goemans, Mihail, and Vazirani (1993), have recently given powerful algorithms
for a large class of network design problems, namely those defined by so-calledproper
demand functions (this category includes all generalized Steiner problems). Their approxi-
mation algorithm, which we shall refer to as theForest Algorithm, finds a graph satisfying
the demands of cost at mostO(log fmax) times the optimum. It applies to both single and
repeated edge-use problems. It can also be used toaugmenta given graph, adding edges so
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as to meet some proper demand function; the approximation ratio becomes the logarithm of
the maximumdeficit, i.e. difference between the demand across a cut and its starting capacity.
The authors also note that afractional solution, in which each edge is to be assigned a
real-valued weight such that the resulting weighted graph satisfies the demands with a
minimum total (weighted) cost, can be found in polynomial time by using the ellipsoid
algorithm even though the number of constraints is exponential (Gabow, Goemans, and
Williamson 1993). For example, given a generalized Steiner problem, a separation oracle can
be implemented by computing all-pairsi -j minimum cuts in a candidate solution to see if
some connectivity demanddij is not satisfied. If it is not, ani -j minimum cut gives a violated
constraint.

7.3. Present work. We use the fractional solution produced by the ellipsoid algorithm
as the starting point in arandomized roundingbased solution to network design problems.
Randomized rounding (Raghavan and Thompson 1987) is a general technique developed to
solve integral packing and covering problems.

Using randomized rounding, we give approximation algorithms whose bounds depend on
fmin, the minimum connectivity requirement between any pair of vertices. We begin by
considering the version in which edges can be used repeatedly. Iffmin # log n, randomized
rounding leads to an approximation bound ofO((log n)/fmin). If fmin $ log n, our
approximation bound is 11 O(=(log n)/fmin). This bound contrasts with a previous best
bound ofO(log fmax) (Agrawal, Klein, and Ravi 1995), providing significant improvements
when the minimum connectivity demand is large.

We also give results for the single-edge-use case. For thek-connected subgraph prob-
lem, we give an approximation algorithm with performance ratio 11 O(=(log n)/k
1 (log n)/k). For anyk @ log n, this improves on the previous best known approximation
factor of 1.85 (Khuller and Raghavachari 1995). For more general problems, we give
an approximation algorithm with ratio log(fmax(log n)/fmin), compared to the previous
O(log fmax) bound (Goemans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson 1994).

7.4. Randomized rounding. The network design problem is a variant of theset cover
problem. In this problem, we are given a collection of sets drawn from a universe, with each
element of the universe possibly assigned a cost. We are required to find a minimum (number
or total cost) collection of elements that intersects every set. The Steiner tree problem is an
instance of set cover involving exponentially many sets. The universe is the set of edges, and
each cut that separates two terminals corresponds to a set (the edges of the cut) that must be
covered. An extension of this problem corresponding more closely to general network design
is the set multicover problem, in which a demanddS is specified for each setS and the
covering set is required to containdS elements ofS. The network design problem is an
instance of set multicover in which the universe is the set of edges and each cut induces a set
consisting of the edges crossing it.

The set cover problem is easily formulated as an integer linear program, and its linear
programming dual is what is known as a packing problem: find a maximum collection of sets
that do not intersect. Raghavan and Thompson (1987) developed a technique called
randomized roundingthat can be used to solve such packing problems. The method is to
solve the linear programming relaxation of the packing problem and then use the fractional
values as probabilities that yield an integer solution by randomly setting variables to 0 or 1.

In the Raghavan-Thompson rounding analysis, the error introduced by rounding increases
as the logarithm of the number of constraints. Thus, their approach typically works well only
for covering problems with polynomially many constraints, while the network design
problem has exponentially many. However, using Theorem 2.1, we prove that the special
structure of graphs allows us to surmount this problem. This gives a simple approach to
solving the multiple-edge-use versions of network design problems. A more complicated
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approach described in §8.2 gives us some weaker results for the single-edge-use version of
the problem. We now describe the randomized rounding technique.

Consider a fractional solution to a network design problem (which has been found, for
example, with the ellipsoid algorithm (Gabow, Goemans, and Williamson 1993)). Without
loss of generality, we can assume every edge has fractional weight at most 1, since we can
replace an edge of weightw by w parallel edges of weight 1 and a single edge of weight
w 2 w without changing the solution value. Therefore, the weights on the edges can be
thought of as sampling probabilities.

Suppose that we build a random graph by sampling each edge with the given probability.
As a weighted graph, our fractional solution has minimum cutfmin and each cutC has weight
at least equal to the demanddC across it. Therefore, by Theorem 2.1, each cutC in the
random graph has value at leastdC(1 2 =(12 ln n)/fmin) with probability 1 2 1/n2. Now
consider the cost of the random graph. Its expected value is just the costb of the fractional
solution, which is clearly a lower bound on the cost of the optimum integral solution.
Therefore, by the Markov inequality, the probability that the random graph cost exceeds
(1 1 1/n)b is at most 12 1/n. Therefore, if we perform the rounding experimentO(n log n)
times, we have a high probability of getting one graph that satisfies the demands to within
(1 2 =(12 lnn)/fmin) at cost (11 1/n)b. To get our results, we need only explain how to
deal with the slight under-satisfaction of the demands.

7.5. Repeated edge use.We first consider the repeated edge-use version of the
network design problem. To handle the under-satisfaction of demands, we simply increase
the weight of each edge slightly before we perform the randomized rounding.

THEOREM 7.1. The network design problem for proper demand functions with repeated
edge use can be solved in polynomial time to within1 1 O(=(log n)/fmin 1 (log n)/fmin) times
optimum(LV).

PROOF. Assume first thatfmin . 12 ln n. Before rounding the fractional solution, multiply
each edge weight by (11 O(=(log n)/fmin)). This increases the overall cost by the same
factor. Now when we round, we get a graph with cut values 12 =(12 lnn)/fmin times the
new values (w.h.p.). Thus by suitable choice of constants we can ensure that the rounded
values exceed the original fractional values w.h.p.

Now consider the casefmin , 12 ln n. The previous argument does not apply because
(1 2 =(12 lnn)/fmin) , 0 and we thus get no approximation guarantee from Theorem 2.1.
However, if we multiply each edge weight byO((log n)/fmin), we get a graph with minimum
cut V(log n). If we round this graph, each cut gets value at least half its expected value,
which is in turnV((log n)/fmin) $ 1 times its original value. h

REMARK. Note how the use of repeated edges is needed. We can constrain the fractional
solution to assign weight at most 1 to each edge in an attempt to solve the single-edge-use
version of the problem, but scaling up the fractional values in the solution could yield some
fractional values greater than 1 that could round to an illegal value of 2. However, whenfmin

$ log n, we will use every edge at most twice.

8. Single edge-use. The simple scaling up and rounding procedure that we applied for
multiple-edge-use problems breaks down when we are restricted to use each edge at most
once. We cannot freely scale up the weights of edges because some of them may take on
values greater than one. Instead, we round the graph based on the original fractional weights
and then “repair” the resulting graph. To characterize the necessary repairs, we make the
following definition:

DEFINITION 8.1. Given a network design problem and a candidate solutionH, thedeficit

404 D. KARGER



of a cutC in H is the difference between the demand acrossC and the value ofC in H. The
deficit of graphH is the maximum deficit of a cut inH.

8.1. Minimum k-connected subgraph. A particularly easy case to handle is the
minimumk-connected subgraph problem, where the best previous approximation value was
1.85 (Khuller and Raghavachari 1995).

THEOREM 8.2. For k . log n, a (1 1 O(=(log n)/k))-approximation to the minimum
k-connected subgraph can be found in polynomial time(LV).

PROOF. We exploit tight bounds on the optimum solution value. Consider anyk-
connected graph. It must have minimum degreek. and thus at leastkn/ 2 edges. On the other
hand, as discussed in §1.4, any sparsek-certificate ofG will be k-connected ifG is and will
contain at mostkn edges. Thus, the optimum solution has betweenkn/ 2 andkn edges (so a
2-approximation is trivial).

To get a better approximation, take the input graphG and find a fractional solutionF using
the ellipsoid algorithm (Gabow, Goemans, and Williamson 1993). By construction,F has
(weighted) minimum cutk. Suppose the solution has total weightW. As discussed above, we
know kn/ 2 # W # kn. ClearlyW is a lower bound on the number of edges in the integral
solution. Use randomized rounding to define a subgraphH. By the Chernoff bound, the
number of edges inH is W 1 O(=W log n) with high probability. SinceF has minimum
cut k, Theorem 2.1 says thatH has minimum cutk 2 O(=k log n) with high probability.
That is, the deficit ofH is O(=k log n).

We now show how to remove this deficit. Consider the following procedure for reducing
the deficit ofH by one. Find a spanning forest ofG 2 H, and add its edges toH. To see that
this reduces the deficit ofH, consider any cut ofH that is in deficit. By definition less than
k edges cross it. However, we know that at leastk edges cross the corresponding cut inG
(since by assumptionG is k connected). It follows that one spanning-forest edge crosses this
cut, and thus its deficit is decreased by one.

It follows that if we perform the deficit-reduction stepO(=k log n) times, thenH will at
the end have no deficit, and will therefore bek-connected. Now note that each deficit-
reduction step adds one forest with at mostn edges toH, so the total number of additions
is O(n=k log n). Since the optimum number of edges exceedsW $ kn/ 2, we have that
n=k log n 5 O(W=( log n)/k) and =W log n 5 O(W=(log n)/kn). Thus the total
number of edges in our solution isW 1 O(=W log n) 1 O(n=k log n), which isO(W(1
1 =(log n)/k)). h

REMARK. It is not in fact necessary to perform the repeated deficit reduction steps. A more
efficient approach is to use Nagamochi and Ibaraki’s sparse certificate algorithm (discussed
in §1.4). After deleting all the edges inH, build a sparseO(=k log n)-connectivity
certificateC in the remaining graph. A modification of the above argument shows thatC
ø H is k-connected whileC hasO(n=k log n) edges.

COROLLARY 8.3. There is a(1 1 O( fmax=log n/fmin
3/2))-approximation algorithm for finding

a smallest subgraph satisfying given connectivity demands.

PROOF. The minimum solution has at leastnfmin/2 edges. After rounding the fractional
solution the maximum deficit isO( fmax=(log n)/fmin) and can therefore be repaired withn
times that many edges.h

8.2. General single-edge problems.We now consider more general single edge-use
problems in which the demands can be arbitrary and the edges have arbitrary costs. As
before, we solve the problem by first rounding a fractional solution and then repairing the
deficits that arise. We can no longer use the deficit reduction procedure of thek-connected
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subgraph case, because there is no immediate bound relating the cost of a single forest to the
cost of the entire solution. Instead, we use the Forest Algorithm of Goemans, Goldberg,
Plotkin, Shmoys, Tardos, and Williamson (1994).

The Forest Algorithm can be used to solveaugmentation problemsthat generalize network
design problems. Namely, it attempts to find the minimum cost way to augment a graphH
so as to satisfy a set of demands across cuts. If the maximum deficit in the augmentation
problem is d, then the Forest algorithm finds a solution with costO(log d) times the
optimum.

8.2.1. Oversampling. Since the approximation factor of the Forest Algorithm worsens
with the deficit, we first show how to modify the rounding step so as to keep the deficit small.
We begin with a variant of the Chernoff bound that we can use when we are not allowed to
scale weights above 1.

DEFINITION 8.4. Consider a random sumS 5 ¥ i51
n Xi in which Xi 5 1 with probability

pi and 0 otherwise. Define theoversampling of S bya asS(a) 5 ¥ i51
n Yi , whereYi 5 1 with

probability min(1,api) and 0 otherwise.
Note thatS(1) 5 S.

LEMMA 8.5. Let E[S] 5 m. ThenPr[S(1 1 d) , (1 2 e)m] , e2edm/2.

PROOF. SupposeS 5 ¥ Xi . Write S 5 S1 1 S2, whereS1 is the sum ofXi with pi

$ 1/(1 1 d) andS2 is the sum of the remainingXi . Let m 1 5 E[S1] andm 2 5 E[S2]. Then
m 5 m1 1 m2, andS(1 1 d) 5 S1(1 1 d) 1 S2(1 1 d).

Since the variables inS1 havepi $ 1/(1 1 d), S1(1 1 d) is not random: it is simply the
number of variables inS1, since each is 1 with probability one. In particular,S1(1 1 d) is
certainly at leastm1. It follows that S(1 1 d) , (1 2 e)m only if S2 , (1 2 e)m 2 m 1

5 m 2 2 em.
The variables inS2 havepi , 1/(1 1 d) so that the corresponding oversamplings have

probabilities (11 d) pi . It follows that E[S2(1 1 d)] 5 (1 1 d)m 2. By the standard
Chernoff bound, the probability thatS2 , m 2 2 em is at most

expS2
~~1 1 d!m2 2 ~u2 2 em!! 2

2~1 1 d!m2
D 5 expS2

~dm2 1 em! 2

2~1 1 d!m2
D

Our weakest bound arises when the above quantity is maximized with respect tom2. It is
straightforward to show that the quantity is a concave function ofm2 with its global maximum
at m2 5 em/d. However,m2 is constrained to be at leastem (since otherwisem1 $ (1 2 e)m,
immediately givingS(1 1 d) $ m 1). We thus have two cases to consider. Ifd , 1, thenem/d
is a valid value form2, and the corresponding bound is exp(2edm/(1 1 d)). If d . 1, then the
bound is maximized at the smallest possiblem2, namelym2 5 em, in which case the bound
is em(1 1 d)/2. Over the given ranges ofd, each of these bounds is less than the bound given
in the theorem. h

REMARK. The lemma easily extends to the case where theXi take on arbitrary values
between 0 andw. In this case,e2edm bounds the probability that the deviation exceedsewm
rather thanem.

8.2.2. Application. A combination of the above oversampling lemma with the proof of
Theorem 2.1 yields the following:

COROLLARY 8.6. Given a fractional solution f to a network design problem, if each edge
weight we is increased tomin(1, (11 d)we) and randomized rounding is performed, then with
high probability no cut in the rounded graph will have value less than(1 2 e) times its value
in the original weighted graph, wheree 5 O(log n/(dfmin)).
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We now combine Corollary 8.6 with the Forest Algorithm. Suppose we have fractionally
solved a network design problem. Setd 5 2 and apply Corollary 8.6, so that at cost twice the
optimum we get a graph in which the maximum deficit isO( fmax(log n)/fmin). Then use the
Forest Algorithm (Goemans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson 1994) to
augment it to optimum. This yields the following:

LEMMA 8.7. There is an O(log(( fmax log n)/fmin))) approximation algorithm for the single
edge-use network design problem.

This compares favorably with the Forest Algorithm’sO(log fmax) bound wheneverfmin

. log n.

8.3. Fixed charge networks. Our algorithms also apply to thefixed chargeproblem in
which each edge has a capacity of which all or none must be purchased. In this problem, the
best currently known approximation ratio is a factor offmax (Goemans, Goldberg, Plotkin,
Shmoys, Tardos, and Williamson 1994). The introduction of large capacities increases the
variances in our random sampling theorems. In particular, if we letU denote the maximum
edge capacity, we have the following result based on a modification of Theorem 7.1:

COROLLARY 8.8. There is a(1 1 O((U log n)/fmin 1 =(U log n)/fmin))-approximation
algorithm for the fixed-charge network design problem with repeated edges.

PROOF. The Chernoff bound that we use for the randomized rounding proof applies if all
random variables have maximum value at most 1. Take the fixed charge problem, and divide
each demand and edge capacity byU. Now the original theorems apply, but new minimum
demand isfmin/U. h

Note that we can upper boundU by fmax, since any edge with capacity exceedingfmax can
have its capacity reduced tofmax without affecting the optimum solution.

COROLLARY 8.9. There is a(1 1 O((( fmax log n)/fmin)))-approximation algorithm for the
fixed charge network design problem with repeated edges.

We also extend Theorem 2.1 as follows:

COROLLARY 8.10. Given a fractional solution to f, if each edge weight we is increased to
min(1, (11 d)we) and randomized rounding is performed, then with high probability no cut
in the rounded graph will have value less than its value in the original fractionally weighted
graph, wheree 5 O(U log n/(dfmin)).

COROLLARY 8.11. There is an O(=(Ufmax log n)/( fmin))-approximation algorithm for the
fixed-charge single-use network design problem.

PROOF. Apply oversampling withd 5 =(Ufmax log n)/fmin. h

COROLLARY 8.12. There is an O( fmax=(log n)/fmin)-approximation algorithms for the fixed
charge single-use network design problem when fmin $ log n.

COROLLARY 8.13. There is an O(=k log n)-approximation algorithm for the fixed-charge
k-connected subgraph problem.

9. Conclusion. This work has demonstrated the effectiveness of a sampling for solving
problems involving cuts. We have shown how random sampling tends to “preserve” all cut
information in a graph. This suggests that we might want to try to reformulate other problems
in terms of cuts so that the random sampling methods can be applied to them.

One result of this approach has been to reduce large max-flow and min-cut problems on
undirected graphs to small max-flow and min-cut problems on directed graphs. Our
techniques are in a sense “meta-algorithms” in that improved cut or flow algorithms that are
subsequently developed may well be accelerated by application of our technique. In
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particular, our exact algorithms’ running times are dominated by the time needed to perform
“cleaning up” augmenting path computations; any improvement in the time to compute a
sequence of augmenting paths would translate immediately into an improvement in our
algorithm’s running time. We have achieved this objective for simple graphs (unweighted
graphs without parallel edges) (Karger and Levine 1998). One way to get such an
improvement on general graphs might be to generalize our sampling theorems to the case of
directed graphs. Unfortunately, directed graphs do not have good cut-counting bounds like
the ones we used here.

Our approach to cuts and flows, combining sampling with an augmentation algorithm, is
a natural one for any problem of packing disjoint feasible sets over some universe. All that
is needed for the approach to work is

1. a sampling theorem, showing that a sample from half the universe has a packing of
about half the size, and

2. an augmentation algorithm that increases the size of the packing by one.
One additional domain where we have shown these two features apply is that ofmatroids.

In particular, we show that the problem of packing matroid bases is susceptible to this
approach (Karger 1998b).

Our work studies sampling from arbitrary graphs. A huge amount of work has gone into
the study of sampling fromcompletegraphs, yielding what are generally known as random
graphs. Indeed, one of the very first results on random graphs was that their minimum cut was
close to its expected value (Erdo¨s and Re´nyi 1961). Our results can be seen as generalizing
those results, but (perhaps because of their generality) are not as tight. Perhaps our results can
be tightened by considering special cases, and perhaps other results from random graphs can
be extended to the study of sampling from arbitrary graphs.

Our randomized constructions show theexistenceof sparse subgraphs that accurately
approximate cut values. A natural question is whether these subgraphs can be constructed
deterministically in polynomial time. In the case of complete graphs, this has been
accomplished through the deterministic construction ofexpanders(Gabber and Galil 1981).
Indeed, just as the expander of Gabber and Galil (1981) has constant degree, it may be
possible to deterministically construct a (11 e)-accurate skeleton with a constant minimum
cut, rather than the sizeV(log n) minimum cut produced by the randomized construction.

A related question is whether we can derandomize the randomized rounding approach to
network design problems. Raghavan (1988) uses the method of conditional expectations to
derandomize the randomized-rounding algorithm for explicitly specified packing problems.
However, this approach requires a computation for each constraint. This is not feasible for
our problem with its exponentially many constraints.

A very general goal would be to reformulate other network problems in terms of cuts so
that the sampling theorems could be applied.

A. Counting cuts. This section is devoted to proving a single theorem bounding the
number of small cuts in a graph. This theorem is a slightly tightened version of one that
appeared earlier (Karger and Stein 1996).

THEOREM A.1. (CUT COUNTING). In a graph with minimum cut c, there are less than n2a

cuts of value at mostac.
We prove this theorem only for unweighted multigraphs, since clearly to every weighted

graph there corresponds an unweighted multigraph with the same cut values: simply replace
an edge of weightw with w parallel edges. To prove the theorem, we present an algorithm
that selects a single cut from the graph, and show that the probability that a particular cut of
valueac is selected is more thann22a. It follows that there are less thann2a such cuts.

A.1. The contraction algorithm. The algorithm we use is theContraction Algorithm
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(Karger and Stein 1996). This algorithm is based on the idea of contracting edges. An
efficient implementationis given by Karger and Stein (1996), but here we care only about the
abstract algorithm.

To contract two verticesv1 andv2 we replace them by a vertexv, and let the set of edges
incident onv be the union of the sets of edges incident onv1 andv2. We do not merge edges
from v1 andv2 that have the same other endpoint; instead, we allow multiple instances of
those edges. However, we remove self loops formed by edges originally connectingv1 to v2.
Formally, we delete all edges (v1, v2), and replace each edge (v 1, w) or (v 2, w) with an edge
(v, w). The rest of the graph remains unchanged. We will useG/(v 1, v 2) to denote graphG
with edge (v1, v2) contracted (bycontracting an edge, we will mean contracting the two
endpoints of the edge). Extending this definition, for an edge setF we will let G/F denote
the graph produced by contracting all edges inF (the order of contractions is irrelevant up
to isomorphism).

Note that a contraction reduces the number of graph vertices by one. We can imagine
repeatedly selecting and contracting edges until every vertex has been merged into one of two
remaining “metavertices.” These metavertices define a cut of the original graph: each side
corresponds to the vertices contained in one of the metavertices. More formally, at any point
in the algorithm, we can defines(a) to be the set of original vertices contracted to a current
metavertexa. Initially s(v) 5 v for eachv [ V, and whenever we contract (v, w) to create
vertex x we let s( x) 5 s(v) ø s(w). We say a cut (A, B) in the contracted graph
corresponds toa cut (A9, B9) in G, whereA9 5 ø a[As(a) andB9 5 ø b[Bs(b). Note that
a cut and its corresponding cut will have the same value. When the series of contractions
terminates, yielding a graph with two metaverticesa andb, we have a corresponding cut (A,
B) in the original graph, whereA 5 s(a) andB 5 s(b).

LEMMA A.2. A cut (A, B) is output by a contraction algorithm if and only if no edge
crossing(A, B) is contracted by the algorithm.

PROOF. The only if direction is obvious. For the other direction, consider two vertices on
opposite sides of the cut (A, B). If they end up in the same metavertex, then there must be
a path between them consisting of edges that were contracted. However, any path between
them crosses (A, B), so an edge crossing cut (A, B) would have had to be contracted. This
contradicts our hypothesis.h

We now give a particular contraction-based algorithm, and analyze it to determine the
probability that a particular cut is selected. Assume initially that we are given a multigraph
G(V, E) with n vertices andm edges. The Contraction Algorithm, which is described in
Figure 2, repeatedly chooses an edge at random and contracts it.

LEMMA A.3. A particular minimum cut in G is returned by the Contraction Algorithm
with probability at least(2

n)21.

PROOF. Fix attention on some specific minimum cut (A, B) with c crossing edges. We
will use the termminimum cut edgeto refer only to edges crossing (A, B). From Lemma A.2,
we know that if we never select a minimum cut edge during the Contraction Algorithm, then
the two vertices we end up with must define the minimum cut.

Observe that after each contraction, the minimum cut value in the new graph must still be

Algorithm Contract (G)
repeat until G has 2 vertices

choosean edge (v,w) uniformly at random fromG
let G4G/(v,w)

return G

FIGURE 2. The Contraction Algorithm.
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at leastc. This is because every cut in the contracted graph corresponds to a cut of the same
value in the original graph, and thus has value at leastc. Furthermore, if we contract an edge
(v, w) that does not cross (A, B), then the cut (A, B) corresponds to a cut of valuec in
G/(v, w); this corresponding cut is a minimum cut (of valuec) in the contracted graph.

Each time we contract an edge, we reduce the number of vertices in the graph by one.
Consider the stage in which the graph hasr vertices. Since the contracted graph has a
minimum cut of at leastc, it must have minimum degreec, and thus at leastrc/ 2 edges.
However, onlyc of these edges are in the minimum cut. Thus, a randomly chosen edge is in
the minimum cut with probability at most 2/r . The probability that we never contract a
minimum cut edge through alln 2 2 contractions is thus at least

S1 2
2

nDS1 2
2

n 2 1DS1 2
2

3D 5 Sn 2 2

n DSn 2 3

n 2 1D · · ·S2

4DS1

3D
5 S n

2 D 21

. h

A.2. Proof of theorem. We now extend our analysis to prove the section’s main
theorem. To begin with, we have the following:

COROLLARY A.4. The number of minimum cuts in a graph is at most(2
n).

PROOF. In analyzing the contraction algorithm, we showed that the probability a
minimum cut survives contraction to 2 vertices is at least (2

n)21. Since only one cut survives
these contractions, the survivals of the different minimum cuts are disjoint events. Therefore,
the probability that some minimum cut survives is equal to the sum of the probabilities that
each survives. But this probability is at most one. Thus, if there arek minimum cuts, we have
k( 2

n)21 # 1. h

This corollary has been proven in the past (Dinitz, Karzanov, and Lomonosov 1976;
Lomonosov and Polesskii 1971). The bound is tight. In a cycle onn vertices, there are (2

n)
minimum cuts, one for each pair of edges in the graph. Each of these minimum cuts is
produced by the Contraction Algorithm with equal probability, namely (2

n)21. We now extend
the analysis toapproximatelyminimum cuts.

LEMMA A.5. For a a half-integer, the probability that a particulara-minimum cut
survives contraction to2a vertices exceeds(2a

n )21.

PROOF. We consider the unweighted case; the extension to the weighted case goes as
before. The goal is to reapply Lemma A.2. Leta be a half-integer, andc the minimum cut,
and consider some cut of weight at mostac. Suppose we run the Contraction Algorithm. If
with r vertices remaining we choose a random edge, then since the number of edges is at least
cr/ 2, we take an edge from a cut of weightac with probability at most 2a/r . If we
repeatedly select and contract edges untilr 5 2a, then the probability that the cut survives
is

S1 2
2a
n DS1 2

2a

~n 2 1!D · · ·S1 2
2a

~2a 1 1!D 5 S n
2a D 21

. h

REMARK. A cycle onn vertices again shows that this result is tight, since each set of 2a
edges forms ana-minimum cut.

COROLLARY A.6. For a a half-integer, the number ofa-minimum cuts is at most22a21(2a
n )

, n2a.

PROOF. We generalize Corollary A.4. Suppose we randomly contract a graph to 2a
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vertices. The previous lemma lower bounds the survival probability of ana-minimum cut,
but we cannot yet apply the proof of Corollary A.4 because with more than one cut still
remaining the cut-survival events are not disjoint. However, suppose we now take a random
partition of the 2a remaining vertices. This partition gives us a corresponding unique cut in
the original graph. There are only 22a21 partitions of the 2a vertices (consider assigning a 0
or 1 to each vertex; doing this all possible ways counts each partition twice). Thus, we pick
a particular partition with probability 2122a. Combined with the previous lemma, this shows
that we select a particular uniquea-minimum cut with probability exceeding 2122a( 2a

n )21.
Now continue as in Corollary A.4.

The n2a bound follows from the fact that 22a21 # (2a)!. h

We can also extend our results to the case where 2a is not an integer. We usegeneralized
binomial coefficientsin which the upper and lower terms need not be integers. These are
discussed in Knuth (1973, §§1.2.5–6) (cf. Exercise 1.2.6.45). There, the Gamma function is
introduced to extend factorials to real numbers such thata! 5 a(a 2 1)! for all reala . 0.
Many standard binomial identities extend to generalized binomial coefficients, including the
facts that (2a

n ) , n2a/(2a)! and 22a21 # (2a)! for a $ 1.

COROLLARY A.7. For arbitrary real valuesa . 1, there are less than n2a a-minimum cuts.

PROOF. Let r 5 2a. Suppose we contract the graph until there are onlyr vertices
remaining, and then pick one of the 2r21 cuts of the resulting graph uniformly at random. The
probability that a particulara-minimum cut survives contraction tor vertices is

S1 2
2a

n DS1 2
2a

~n 2 1!D · · ·S1 2
2a

r 1 1D 5
~n 2 2a!!

~r 2 2a!!

r !

n!

5
S r

2a D
S n

2a D .

It follows that the probability our cut gets picked is 212r( 2a
r )( 2a

n )21. Thus the number of
a-minimum cuts is at most 2r21( 2a

n )( 2a
r )21 , ( 2a

n ). h
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