
An Investigation of the Enhanced Target Collision Resistance Property
for Hash Functions ?

Mohammad Reza Reyhanitabar, Willy Susilo, and Yi Mu

Centre for Computer and Information Security Research,
School of Computer Science and Software Engineering

University of Wollongong, Australia
{rezar, wsusilo, ymu}@uow.edu.au

Abstract. We revisit the enhanced target collision resistance (eTCR) property as a newly emerged notion of
security for dedicated-key hash functions, which has been put forth by Halevi and Krawczyk at CRYPTO’06, in
conjunction with the Randomized Hashing mode to achieve this property. Our contribution is twofold. Firstly, we
provide a full picture of the relationships between eTCR and each of the seven security properties for a dedicated-
key hash function, considered by Rogaway and Shrimpton at FSE’04; namely, collision resistance (CR), the three
variants of second-preimage resistance (Sec, aSec, eSec) and the three variants of preimage resistance (Pre, aPre,
ePre). The results show that, for an arbitrary dedicated-key hash function, eTCR is not implied by any of these
seven properties, and it can only imply three of the properties; namely, eSec (TCR), Sec, Pre. In the second part
of the paper, we analyze the eTCR preservation capabilities of several domain extension transforms (a.k.a. modes
of operation) for hash functions, including (Plain, Strengthened, and Prefix-free) Merkle-Damg̊ard, Randomized
Hashing, Shoup, Enveloped Shoup, XOR Linear Hash (XLH), and Linear Hash (LH). From this analysis it turns
out that, with the exception of a nested variant of LH, none of the investigated transforms can preserve the eTCR
property.
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1 Introduction

Cryptographic hash function are functions that can map variable length strings to fixed length strings while
providing some required security properties. They are used in a vast variety of cryptographic applications
and are indispensable part of digital signatures and message authentication codes (e.g. HMAC). Originally
designed to make digital signatures more efficient, the application of hash functions in schemes following the
hash-and-sign paradigm, such as DSA, requires them to provide the collision resistance (CR) property. Hash
functions are also asked to provide several different security properties depending on the specific security
requirements of the higher-level protocols utilizing them. Although CR is one of the most important and
well-known security properties for a hash function, they are often asked to provide many other security
properties that, depending on the requirements of the higher-level applications, may range from merely
being a one-way function (i.e. the preimage resistance property) to acting as a truly random function (i.e. a
random oracle). Hence, unlike many other cryptographic primitives which are only aimed to fulfill a specific
security notion, hash functions, as the workhorses of cryptography, are usually assumed to provide a wide
application-dependent spectrum of security properties.

Halevi and Krawczyk at CRYPTO’06 [12] introduced the eTCR property as a new “enhanced” variant
of the well-known target collision resistance (TCR) property for a dedicated-key hash function. (We note
that “TCR” [5] is an alternative name for the notion of universal one-way hash function (UOWHF) [17],
and it is also called everywhere second-preimage resistance (eSec) according to [24].) Halevi and Krawczyk
also introduced the Randomized Hashing mode (announced by NIST as SP 800-106 [19]) to realize an
? A preliminary version of this paper appeared at FSE 2009 [21], where we considered the relationship between eTCR and CR.

This article provides a full picture of the relationships between eTCR and each of the seven security properties (namely, CR,
Sec, aSec, eSec, Pre, aPre and ePre) in the dedicated-key hash function setting.
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eTCR hash function to be used in digital signatures. This is motivated by the fact that the CR property
is known to be a very demanding property from a theoretical viewpoint [26, 5, 20], and a practically
broken or endangered property for many in-use hash functions such as MD5 and SHA-1 [30, 29, 9]. In
response to the recent cryptanalytic results against the standard hash functions, NIST has created a design
competition for the next generation hash function standard which will be called SHA-3 [18]. It is “hoped”
that SHA-3 standard will resist against all known attacks, especially the powerful statistical methods, such
as differential and linear cryptanalysis, that have been used to attack MD5, SHA-1 and many other hash
functions [30, 29, 28]. Meanwhile, the Randomized Hashing mode aims at providing a “safety net” by
relaxing the current complete reliance on the CR property without having to change the internals of an
already implemented hash function such as SHA-1. In a nutshell, Randomized Hashing construction, as
shown in Fig. 1, converts a keyless hash function H (e.g. SHA-1) to a dedicated-key hash function H̃ defined
as H̃K(M) = H(K||(M1⊕K)|| · · · ||(ML⊕K)), where H is a Merkle-Damg̊ard iterated hash function based
on a compression function h. (M = M1|| · · · ||ML denotes the padded input message.)
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Fig. 1. Randomized Hashing construction

In [12], the eTCR security of this dedicated-key hash function H̃ is based on some new assumptions,
called c-SPR and e-SPR, on the underlying keyless compression function h. These new assumptions on h are
weaker security assumptions compared to the the CR assumption, and hence a keyless compression function
h may remain secure in the c-SPR or the e-SPR sense, despite being broken in the CR sense. We note
that, as a result of future cryptanalytical results, the eTCR security of this specific Randomized Hashing
construction H̃, may be threatened when implemented by a specific keyless hash functions (e.g. SHA-1),
but the notion of eTCR and the problem of designing new eTCR-secure hash functions will still remain
interesting independently from this specific construct. For instance, as noticed in [12], employing an eTCR
hash function in a hash-and-sign digital signature scheme removes the need to sign the key K used for the
hashing; it is only necessary to sign HK(M) and the key K can be sent in public to the verifier as part of
the signed message [12]. This can be considered as an improvement (from an efficiency viewpoint) compared
to using a TCR (UOWHF) hash function, where one has to sign HK(M)||K [5].

In pursuit of a clearer understanding of the notion of eTCR, in this paper we investigate and answer to
the following two essential questions: (1) what are the formal relationships between eTCR and the previously
known security notions (specially CR) for a dedicated-key hash function?, and (2) how can one convert an
eTCR-secure compression function to a full-fledged eTCR-secure hash function, i.e. how to construct an
eTCR-preserving domain extension transform?

Working out the formal relationships (implications and/or separations) between a new notion of security
and other well-studied security notions is essential in order to clarify the relative position of the new property
among the previously known ones. In regard to the security notions for hash functions, there are a few works
in this line of research, e.g. [16, 27, 23, 24]. Stinson [27] considered four security properties for a keyless hash
function H :M→ C, by defining the related problems; namely, zero-preimage, preimage, second-preimage,
and collision problems, and investigated their relationships using reductions among the problems. Rogaway
and Shrimpton in [23] provided the relationships among the seven variants of the basic security notions for
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a dedicated-key hash function H : K ×M→ C; namely, the CR (denoted by ‘Coll’ in [23]), Sec, aSec, eSec
(TCR), Pre, aPre, and ePre properties.

The possibility of designing a property-preserving “domain extension transform” (a.k.a. “mode of oper-
ation”), is another important issue to be considered with regard to a new security property. The problem
is whether given a fixed-input-length (FIL) hash function (i.e. a compression function) which has a security
property P, one can construct a full-fledged hash function, i.e. a variable-input-length (VIL) or arbitrary-
input-length (AIL) hash function, that achieves the “same” security property P. In the case of the CR
property, the seminal works of Merkle [15] and Damg̊ard [8] show that Merkle-Damg̊ard (MD) iteration
with strengthening padding is a CR-preserving domain extender. Analysis and design of (multi-)property-
preserving domain extenders for hash function has been recently attracted new attention in several works
considering different security properties, such as [5, 3, 2, 1].

Our Contributions. As our first contribution, we provide a full picture of the relationships, by working
out all implications and separations, between the eTCR property and each of the seven variants of the basic
security properties; namely, the CR, Sec, aSec, eSec, Pre, aPre and ePre properties. The summary of the
results is depicted in Fig. 2. Interestingly and somewhat surprisingly, the results show that, for an arbitrary
dedicated-key hash function, eTCR is not implied by any of the seven properties; in particular, we note
that even the strong CR property does not imply eTCR in general. We stress that all these properties are
formally defined for a dedicated-key hash function.

As our second contribution, we consider the problem of eTCR-preserving domain extension. We investi-
gate eight domain extension transforms for this purpose; namely Plain MD [15, 8], Strengthened MD [15, 8],
Prefix-free MD [7, 14], Randomized Hashing [12] (considered in dedicated-key hash setting), Shoup [25],
Enveloped Shoup [2], XOR Linear Hash (XLH) [5], and a variant of Linear Hash (LH) [5] methods. Inter-
estingly, we show that the only eTCR preserving method among these methods is a nested variant of LH
(defined based on a variant proposed in [5]) which has the drawback of having a linear key expansion factor.
From this analysis, design of a new and more efficient eTCR preserving domain extender can be considered
as an interesting open problem for future research. An overview of the constructions and the properties they
preserve are shown in Table 1.

Scheme CR TCR eTCR

Plain MD × [15, 8] × [5] ×
Strengthened MD X[15, 8] × [5] ×
Prefix-free MD × [2] × [2] ×
Randomized Hashing X[1] × [1] ×
Shoup X[25] X[25] ×
Enveloped Shoup X[2] X[2] ×
XOR Linear Hash (XLH) X[1] X[5] ×
Nested Linear Hash (LH) X[5] X[5] X

Table 1. Overview of the constructions and the properties they preserve. The symbol “X” means that the property is provably
preserved by the construction; “×” means that it is not preserved. Underlined entries related to eTCR property are shown in
this paper.

Organization of the Paper. In Section 2 we define the notations and conventions that we use through
the rest of the paper. In Section 3 we review definitions of the security notions for a dedicated-key hash
function, and the notions of implications and separations. In Section 4 we work out all relationships between
eTCR and each of the seven security properties. Section 5 contains our results on the eTCR preservation
analysis of the eight domain extension transforms. We conclude the paper and pose some open questions for
future research in Section 6.



4 M. R. Reyhanitabar, W. Susilo and Y. Mu

eTCR

Coll

eSec

ePre

Pre

aPre

aSec

Sec

Seven security properties for hash
functions and their relationships:
investigated by Rogaway and Shrimpton
at FSE 2004 and recently revised in [22].

Fig. 2. Relationships between eTCR and the seven security notions for hash functions: a directed edge shows an implication
(dashed edges represent “provisional implications” in which the strength of the reduction used to show the implication depends
on the amount of compression by the hash function), and the lack of any directed edge shows that there is a separation. New
implications and separations between eTCR and each of the seven properties are shown by formal proofs and counterexamples
in Sec. 4 of this paper. (Note that Coll and CR are different aliases for the collision resistance property (CR=Coll) and also
eSec=TCR=UOWHF.)

2 Preliminaries

2.1 Notations and Conventions

If X is a finite set, by x
$← X it is meant that x is chosen from X uniformly at random. For a binary string

M = M1||M2|| · · · ||Mm, let M1...n denote the first n bits of M (i.e. M1|| · · · ||Mn) and |M | denote its length
in bits (where n ≤ m = |M |). Let x||y denote the string obtained from concatenating string y to string x. Let
1m and 0m, respectively, denote a string of m consecutive 1 and 0 bits, and 1m0n denote the concatenation
of 0n to 1m. The set of all binary strings of length n bits (for some positive integer n) is denoted by {0, 1}n,
the set of all binary strings whose lengths are variable but upper-bounded by N is denoted by {0, 1}≤N and
the set of all finite binary strings is denoted by {0, 1}∗. If S is a finite set we denote size of S by |S|. The
symbol ∧ denotes logical ‘AND’ operation, and the symbol ∨ denotes logical ‘OR’ operation.

Let val(.) be a function that accepts any binary string M , considers it as an unsigned binary number with
the rightmost bit (i.e. M|M |) representing the least significant bit, and returns its decimal value as a non-
negative integer. Let 〈.〉b denote an operation that accepts a non-negative integer z such that dlog2(z)e ≤ b,
and returns the binary representation of z in a b-bit long string Z = Z1|| · · · ||Zb in which Zb is the least
significant bit.

By the time complexity of an algorithm A, we mean its worst case running time, relative to some fixed
model of computation (e.g. the TM or the RAM model), plus the size of the description of the algorithm
using some fixed encoding method. By the computation time of a function f , we mean the time complexity
of the most efficient algorithm that can compute f .

If A is a probabilistic algorithm, then by y = A(x1, · · · , xn;R) it is meant that y is the output of A
on inputs x1, · · · , xn when it is provided with the random tape (or coins) R. It is assumed that R is of
some length r(|x|) where r(.) is some known function, called the length of the random tape of A, and |x| is
the (total) length of the input(s). Whenever A needs to toss a coin, it simply reads the next bit on R. By

y
$← A(x1, · · · , xn) it is meant that R

$← {0, 1}r(|x|) and y = A(x1, · · · , xn;R). If A has running time t(|x|)
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then clearly it cannot read more than t(|x|) bits from its random tape; hence, r(|x|) ≤ t(|x|). To show that

an algorithm A is run without any input (i.e. when the input is an empty string) we use either y
$← A() or

y
$← A(∅).

2.2 Two Settings for Hash Functions

For a formal treatment of hash functions and their security notions, one should clarify whether a keyless hash
function or a dedicated-key hash function is to be considered. In the traditional keyless hash function setting,
a hash function refers to a single-argument function H :M→ {0, 1}n (e.g. SHA-1 : {0, 1}<264

→ {0, 1}160)
that maps a variable-length input string to a fixed-length output string. In the dedicated-key setting, a
hash function refers to a two-argument function H : K×M→ {0, 1}n which is also called a family of hash
functions considering the key as an index (a.k.a. salt) to select a instance function from the family.

The difference between the two settings is worth emphasizing, as some security properties such as TCR
and eTCR are defined and only make sense for a dedicated-key hash function [23, 12]. In this paper we
consider the dedicated-key hash function setting that is the setting in which the eTCR property is defined.

Syntax. A dedicated-key hash function is a function H : K×M→ C, where C = {0, 1}n for some positive
integer n, the key space K is some nonempty finite set and the message space M ⊆ {0, 1}∗; such that
{0, 1}m ⊆ M for at least a positive integer m, where m > n if one insists that a hash function must
compress.

For any M ∈M and K ∈ K, we use the notations HK(M) and H(K, M) interchangeably, to denote the
computed n-bit long hash value. We use TH, δ to denote the time complexity of the most efficient algorithm
that can compute H(K, M), for any M ∈ {0, 1}δ ⊆ M and K ∈ M, plus the time complexity of the most
efficient algorithm that can sample from the (finite) set K.

Depending on the structure of M, we can have: an FIL hash function (usually called a “compression
function”), where M = {0, 1}m; a VIL hash function, where M = {0, 1}<λ for some (huge) value λ (e.g.
λ = 264 as in SHA-1), or an AIL hash function, where M = {0, 1}∗. We note that almost all of the
iterated hash functions in practice are actually VIL and not AIL, but this difference becomes unimportant
for practical uses where the message sizes will be always much less than, say 264.

3 Definitions

3.1 Security Notions

We briefly recall the following conventions from the concert-security framework, which are simplified for
our purpose here. An adversary A is modeled as an algorithm that can be a probabilistic one (i.e. may use
some randomness). For multi-stage adversarial computations, an adversary A may be viewed as consisting
of several sub-algorithms, as A = (A1, A2, · · · , An), which are linked using a state variable to pass any infor-
mation through the stages. Let Advxxx

H (A) denote a probabilistic measure of A’s success, i.e. its advantage
in attacking the xxx property of H. Let the resource parameterized function Advxxx

H (t, `) denote the maximal
value of the adversarial advantage; i.e. Advxxx

H (t, `) = maxA {Advxxx
H (A)}, over all adversaries A attacking

the xxx property of H, with time complexity at most t and using messages of length at most ` bits. We say
that H is (t, `, ε)-xxx secure if Advxxx

H (t, `) < ε. The resource parameter ` may be omitted from the notations
if it is irrelevant in the context.

The advantage measures defining the security notions are shown in Fig. 3. Note that all the notions,
except Coll (or CR) and ePre, are parameterized by a parameter δ where {0, 1}δ ⊆M.

The Role of parameter δ. We notice that this parametrization (by δ) is firstly aimed to handle a technical
issue that the efficient sampling from a set according to the uniform distribution requires the set to be finite.
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AdvCR
H (A) = Pr

[
K

$← K; (M,M ′) $← A(K) : M 6= M ′ ∧ HK(M) = HK(M ′)
]

AdvSec[δ]
H (A) = Pr

[
K

$← K;M $← {0, 1}δ ;

M ′ $← A(K, M) : M 6= M ′ ∧ HK(M) = HK(M ′)

]

AdvaSec[δ]
H (A) = Pr

 (K, State) $← A1();

M
$← {0, 1}δ ;

M ′ $← A2(M,State) : M 6= M ′ ∧ HK(M) = HK(M ′)



AdveSec[δ]
H (A) = Pr

 (M,State) $← A1();

K
$← K;

M ′ $← A2(K, State) : M 6= M ′ ∧ HK(M) = HK(M ′)


AdvPre[δ]

H (A) = Pr

[
K

$← K;M $← {0, 1}δ ;Y ← HK(M);

M ′ $← A(K, Y ) : HK(M ′) = Y

]

AdvaPre[δ]
H (A) = Pr

 (K, State) $← A1();

M
$← {0, 1}δ ;Y ← HK(M);

M ′ $← A2(Y, State) : HK(M ′) = Y


AdvePre

H (A) = Pr
[
(Y, State) $← A1();K

$← K;M ′ $← A2(K, State) : HK(M ′) = Y
]

AdveTCR[δ]
H (A) = Pr

 (M,State) $← A1();

K
$← K;

K ′,M ′ $← A2(K, State) : (K, M) 6= (K ′,M ′) ∧ HK(M) = HK′(M ′)



Fig. 3. Definitions of the security notions for a dedicated-key hash function H : K ×M → {0, 1}n. In the case of the eSec
(=TCR) and eTCR notions, the parameter δ is assumed to be the length of the first (i.e. the target) message M output by A1

in the first stage of the attack.

Therefore, if an AIL hash function is to be considered, i.e. M = {0, 1}∗, then the message space is infinite
and cannot be sampled uniformly at random. Secondly, it is motivated by the following observation. The
ideal security level for (variants of) the second-preimage resistance and preimage resistance properties of
a hash function with n-bit output is 2n, due to a simple generic (random search) attack. Clearly, if the
length of the target message is known to be shorter than the hash size n, then one will be able to search the
input message space in less than 2n steps. On the other hand, for practical iterated hash functions if the
length of the target message is too long; e.g. 2l blocks for some large l, then there are generic long message
second-preimage attacks, put forth by Kelsey and Schneier [13], with complexity of about l2n/2+1 + 2n−l+1

which becomes much less than the ideal 2n level if the target message is too long, e.g. l = n/2. Therefore,
explicitly parameterizing the security notions by the length of the target messages, i.e. δ, can help clarify
these dependencies of the advantage functions on the target message length.

CR for a Keyless Hash Function. It is well-known that collision resistance as a security property cannot
be formally defined for a keyless hash function H : M → {0, 1}n. Informally, one would say that it is
“infeasible” to find two distinct messages M and M ′ such that H(M) = H(M ′). But it is easy to see that
if the hash function is compressing then there are many colliding pairs and hence, trivially there exists an
efficient program that can always output a colliding pair M and M ′, namely a simple one with M and
M ′ included in its code. That is, infeasibility cannot be formalized by an statement like “there exists no
efficient adversary with non-negligible advantage” as clearly there are many such adversaries as mentioned
before. The point is that no human being knows such a program [22], but the latter concept cannot be
formalized mathematically. Therefore, in the context of keyless hash functions, CR can only be treated as
a strong assumption to be used in a constructive security reduction following human-ignorance framework
of [22]. We will call such a CR assumption about a keyless hash function as keyless-CR assumption to
distinguish it from the formally definable CR (=Coll) notion for a dedicated-key hash function. We note
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that the recent collision finding attacks show that the keyless-CR assumption is completely invalid for MD5
[30] and theoretically endangered assumption for SHA-1 [29].

3.2 Notions of Implication and Separation

We will use the following notions of implication and separation among the security properties in this paper.

Definition 1 (Implication). Let xxx and yyy be two security notions defined for an arbitrary hash function
H : K × M → {0, 1}n, and fix δ such that {0, 1}δ ⊆ M. We say that xxx implies yyy if Advyyy

H (t′) ≤
cAdvxxx

H (t) + µ; where t′ = t − c′TH,δ, c and c′ are some non-negative constants, and µ is a function of the
hash function parameters (i.e. input, output, and/or key sizes). The exact strength of the implication will
depend on µ as well as the constants c and c′, and we may have:

– Security-Preserving Implications. If µ = 0 then we have a security-preserving implication which is denoted
by xxx→ yyy.

– Provisional Implications. If µ 6= 0 then we have a provisional implication, denoted by xxx 99K yyy, whose
strength is provisioned on µ and hence may vanish if µ becomes “large”. For example, for µ = 2n−δ, the
strength of such a provisional implication will depend on the amount of compression done by the hash
function.

Definition 2 (Separation). Let xxx and yyy be two security notions defined for an arbitrary hash function
H : K ×M → {0, 1}n, and fix δ such that {0, 1}δ ⊆ M. We use xxx 9 yyy to show that the notion xxx
does not imply the notion yyy, and this is proved by providing counterexamples. Namely, assuming that
there exists a dedicated-key hash function H : {0, 1}k × {0, 1}m → {0, 1}n, which is (t, ε) − xxx secure, we
construct (as a counterexample) a dedicated-key hash function G : {0, 1}k ×{0, 1}m → {0, 1}n which is also
(t′, ε′) − xxx secure, but completely insecure in yyy sense; i.e. Advyyy

G (c′′) = 1, where c′′ is a small constant.
The concrete relations between adversarial advantages (i.e. ε = Advxxx

H (t) and ε′ = Advxxx
G (t′)) will be given

in one of the following two forms:

1. Advxxx
G (t′) ≤ cAdvxxx

H (t) + µ(n, k, δ)
2. Advxxx

G (t′) ≤ cAdvxxx
H (t) + c′

√
Advxxx

H (t) + µ(n, k, δ)

, where t′ = t − c′′TH,δ; c, c′ and c′′ are some non-negative constants, and µ(n, k, δ) depends on the hash
function parameters n, k and δ.

Remark 1. The first-type bound above for establishing a separation, is the (strong) conventional form that
used in the context of comparing the seven security properties in [24]. But, while investigating the rela-
tionships between eTCR and the seven properties, in some cases it appears a non-trivial task for us (if
possible at all) to provide counterexamples yielding to such a strong bound, and hence we demonstrate
some of the separations by counterexamples supporting the second-type bound (i.e. with a quadratic se-
curity degradation). For this purpose, we utilize a probabilistic analysis inspired from that of the Reset
Lemma, introduced by Bellare and Palacio in their proofs of security for the GQ and Schnorr Identification
Schemes [4]. To the best of our knowledge, this is the first time in the literature that the Reset Lemma is
applied for the establishment of new relationships among hash function properties.

4 Relationships among the Security Notions

4.1 eTCR vs. CR

In this section, we investigate the relationship between the eTCR and CR properties. We provide mutual
separations between the two properties in the conventional sense. The separations between eTCR and CR
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are of special theoretical and practical interest, considering the fact that collision resistance property has
been known, for a long time, as one of the most challenged and demanding properties for a hash function,
both theoretically [26, 5, 20] and practically [30, 29]. Our separation results show that, “in general”, the
new eTCR property neither implies nor is implied by the CR property when both notions are considered for
an “arbitrary” dedicated-key hash function H : K ×M→ {0, 1}n. We note that, although such separation
results do not rule out the possibility of designing a “specific” dedicated-key hash function in which eTCR
might be easier to achieve compared to CR (or vice versa), they emphasize the point that any such a specific
construction should explicitly and clearly shows that this is indeed the case.

We emphasize that these mutual separation (incomparability) results are demonstrated from dedicated-
key hash function setting viewpoint, and not from the existential viewpoint in the complexity-theoretic sense.
Indeed in the complexity-theoretic sense, existence of an eTCR function is implied by that of a one-way
function [31], but there is a strong evidence that this is not true for the case of a collision resistance function
[26]. That is, eTCR assumption is existentially no stronger than CR in the complexity-theoretic sense.

Theorem 1. eTCR and CR are two incomparable security properties in the dedicated-key hash function
setting; in the sense that, for an arbitrary hash function H : K ×M → {0, 1}n neither of the properties
implies the other.

The proof is obtained by combining the separations in Lemma 1 and Lemma 2.

Lemma 1 (CR 9 eTCR). Assume that there exists a dedicated-key hash function H : {0, 1}k×{0, 1}m →
{0, 1}n (where m ≥ n) which is (t, ε) − CR. Select (and fix) an arbitrary message M∗ ∈ {0, 1}m and an
arbitrary key K∗ ∈ {0, 1}k (e.g. M∗ = 1m and K∗ = 1k). The dedicated-key hash function G : {0, 1}k ×
{0, 1}m → {0, 1}n shown in this lemma is (t′, ε′) − CR, where t′ = t − cTH,m and ε′ = ε + 2−k, but it
is completely insecure in eTCR sense. TH,m denotes the time for one computation of H, and c is a small
constant.

GK(M) =


M∗

1···n if M = M∗ ∨ K = K∗ (1)

HK(M∗) if M 6= M∗ ∧ K 6= K∗ ∧ HK(M) = M∗
1···n (2)

HK(M) otherwise (3)

The proof is valid for any arbitrary selection of parameters M∗ ∈ {0, 1}m and K∗ ∈ {0, 1}k, and hence,
this construction actually shows 2m+k such counterexample functions, which are CR but not eTCR.

Proof. Let’s first demonstrate that G as a dedicated-key hash function is completely insecure in eTCR sense.
This can be shown by the following simple adversary A = (A1, A2) playing eTCR game against G. In the
first stage of eTCR attack, A1 outputs the target message as M = M∗. In the second stage of the attack,
A2, after receiving the first randomly selected key K (where K

$← {0, 1}k), outputs a different message
M ′ 6= M∗ and selects the second key as K ′ = K∗. It can be seen easily that the adversary A = (A1, A2)
always wins the eTCR game, as M ′ 6= M∗ implies that (M∗,K) 6= (M ′,K∗) and by the construction of G
we have GK(M∗) = GK∗(M ′) = M∗

1···n.
To complete the proof, we need to show that G inherits the CR property of H. Let A be an adversary

that can win CR game against G with probability ε′ using time complexity t′. We construct an adversary
B against CR property of H with success probability of at least ε = ε′ − 2−k, and time t = t′ + cTH,m as
stated in the lemma.

The construction of B is as follows:
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Algorithm B(K)

10: (M,M ′) $← A(K);
20: if [M = M∗ ∧HK(M ′) = M∗

1···n] then return (M,M ′);
30: if [M ′ = M∗ ∧HK(M) = M∗

1···n] then return (M,M ′);
40: if [M 6= M∗ ∧HK(M) = M∗

1···n ∧M ′ 6= M∗ ∧HK(M ′) 6= M∗
1···n] then return (M∗,M ′);

50: if [M ′ 6= M∗ ∧HK(M ′) = M∗
1···n ∧M 6= M∗ ∧HK(M) 6= M∗

1···n] then return (M,M∗);
60: return (M,M ′);

We claim that if K 6= K∗ then B will return a valid collision for H whenever A returns a valid collision
(M,M ′) for G. Referring to the definition of G, if A returns a valid collision (M,M ′) under GK , we can
analyze all possible cases that this can happen and show that in each case the algorithm B also returns a
collision for HK . Let (i)-(j) Collision mean that the colliding messages M and M ′ output by A for GK ,
respectively, satisfy conditions in line (i) and line (j) in definition of the function G. Then we have the
following cases (assuming that K 6= K∗):

1. (1)-(1) Collision, (1)-(3) Collision and (3)-(1) Collision are not possible. A (1)-(1) Collision
implies that M = M ′ which is not possible as it is assumed that (M,M ′) is a valid collision for GK .
Now, note that the condition in line (3) of the definition of G (implicitly denoted as “otherwise”) can
be explicitly shown as: [if M 6= M∗ ∧ K 6= K∗ ∧ HK(M) 6= M∗

1···n]; that is, the hash value computed
in line (3) of G, is always different from M∗

1···n and therefore (1)-(3) Collision and (3)-(1) Collision
are impossible.

2. (1)-(2) Collision: When A outputs a valid (1)-(2) Collision for G (i.e. M ′ 6= M ∧ GK(M ′) =
GK(M)), referring to the definition of G and remembering the assumption that K 6= K∗, it can be seen
that M = M∗ and HK(M ′) = M∗

1···n because this is a (1)-(2) Collision and from GK(M ′) = GK(M)
we have HK(M∗) = M∗

1···n. In this case, the adversary B returns (M,M ′) in line 20 of its code as a
collision for HK and wins because HK(M) = HK(M∗) = M∗

1···n = HK(M ′).
3. (2)-(1) Collision: The proof of this case is symmetric to the case of (1)-(2) Collision; in this case, B

returns (M,M ′) in line 30 of its code as collision for HK .
4. (2)-(3) Collision: We show that in this case, B returns (M∗,M ′) as a collision for HK in line 40 of its

code and wins. Whenever A outputs a valid (2)-(3) Collision for G then (by referring to the definition
of G, remembering the assumption K 6= K∗ and considering the condition in line (3) of G explicitly)
it can be seen that M 6= M∗, HK(M) = M∗

1···n, M ′ 6= M∗ and HK(M ′) 6= M∗
1···n. Hence, as (M,M ′)

output by A is a valid collision for G, i.e. GK(M ′) = GK(M), we have that HK(M ′) = HK(M∗) and
therefor (M∗,M ′) returned by B in line 40, is a valid collision for HK .

5. (3)-(2) Collision: The proof of this case is symmetric to the case of (2)-(3) Collision; in this case, B
returns (M,M∗) in line 50 of its code as a collision for HK .

6. (2)-(2) Collision and (3)-(3) Collision: It can be seen that in these two cases, the adversary B
returns (M,M ′) as a collision for HK in line 60 of its code. Referring to the definition of G, whenever
A outputs a valid collision (M,M ′) for GK as either a (2)-(2) Collision or (3)-(3) Collision (that
is, M 6= M ′ ∧ GK(M) = GK(M ′) and both M and M ′ belong to the same sub-domain of G) then
(M,M ′) will also be a valid collision for HK . Note that GK(M) = GK(M ′) implies that in the (2)-(2)
Collision case we have HK(M) = HK(M ′) = HK(M∗) and in the (3)-(3) Collision case we have
HK(M) = HK(M ′).

The above case analysis shows that if K 6= K∗ then B will be successful in finding a valid collision for HK

whenever A can find a valid collision for GK . If K = K∗ then the returned pair of messages by B will not
necessarily be a valid collision for H. Therefore, we have ε = Pr[B succeeds] = Pr[A succeeds ∧K 6= K∗] ≥
Pr[A succeeds]− Pr[K = K∗] = ε′ − 2−k. ut
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Lemma 2 (eTCR 9 CR). Assume that there exists a dedicated-key hash function H : {0, 1}k×{0, 1}m →
{0, 1}n, where m > k ≥ n, which is (t, ε)− eTCR. The dedicated-key hash function G : {0, 1}k × {0, 1}m →
{0, 1}n shown in this lemma is (t′, ε′)− eTCR, where t′ = t− c, ε′ = ε + 2−k+1, but it is completely insecure
in CR sense. (c is a small constant.)

GK(M) =
{

HK(0m−k||K) if M = 1m−k||K
HK(M) otherwise

Note that the structural assumption about H : {0, 1}k×{0, 1}m → {0, 1}n, namely that we have m > k ≥ n
is quite reasonable even for practical scenarios. For instance, in Randomized Hashing which should provide
a dedicated-key hash function with eTCR property, the key length k is fixed and equal to the block length
of the underlying keyless hash function (e.g using SHA-1 we have k = 512, n = 160) while message length
m can be very large (just less than 264).

Proof. We firstly demonstrate that G is completely insecure in CR sense, by the following simple adversary A.
On receiving the key K, the adversary A outputs two different messages as M = 1m−k||K and M ′ = 0m−k||K
and wins the CR game as we have GK(1m−k||K) = HK(0m−k||K) = GK(0m−k||K).

It remains to show that that G is an eTCR-secure hash function. Let A = (A1, A2) be an adversary which
wins the eTCR game against G with probability ε′ and using time complexity t′. We construct an adversary
B = (B1, B2) which uses A as a subroutine and wins eTCR game against H with success probability at
least ε = ε′ − 2−k+1(≈ ε′, for large k) and spending time complexity t = t′ + c where small constant c can
be determined from the description of algorithm B.

To make the proof easier to follow, we use a boolean variable “bad” as a flag whose initial value is as-
sumed to be ‘false’. This flag is set by B when an undesirable event happens that could make B unsuccessful
even if A was successful. We note that, the conditional statement checking the occurrence of the bad event
(in line 30) and setting the flag bad to true is dummy and can be omitted from the code of B. Algorithm B
is as follows:

Algorithm B1() Algorithm B2(K, M, State)

10: (M,State) $← A1(); 30: if
[
M = 1m−k||K ∨M = 0m−k||K

]
then bad← true;

20: return (M,State); 40: (K ′,M ′) $← A2(K, M, State);
50: if M ′ = 1m−k||K ′ then return (K ′, 0m−k||K ′);
60: return (K ′,M ′);

As it can be seen from B’s description, in the first stage of eTCR attack B1 just merely runs A1 and returns
whatever it returns as the first message(M) and any possible state information to be passed on to the second
stage algorithm. In the second stage of the attack, let Bad be the event that [M = 1m−k||K ∨M = 0m−k||K];
that is, the flag bad is set to true. Let Bad denote the complement event for Bad, i.e. [M 6= 1m−k||K ∧ M 6=
0m−k||K].

Using the following simple case analysis, we can show that if Bad does not happen then B will succeed
in eTCR attack against H whenever A succeeds in eTCR attack against G:

1. Case 1: M ′ = 1m−k||K ′. In this case, we have (K, M) 6= (K ′, 1m−k||K ′) and GK(M) = GK′(1m−k||K ′)
(because we assume A succeeds in eTCR attack against G), and this in turn implies that (K, M) 6=
(K ′, 0m−k||K ′) and HK(M) = HK′(0m−k||K ′) (according to the description of G and the assumption
that Bad does not happen). Hence, in this case B becomes successful by returning (K ′, 0m−k||K ′) in
line 50 of its code. (It might seem non-trivial why in this case (K, M) 6= (K ′, 1m−k||K ′) implies that
(K, M) 6= (K ′, 0m−k||K ′). To verify this, note that if K 6= K ′ this becomes obvious, and if K = K ′ then
from the assumption that Bad has not happened we know that M 6= 0m−k||K.)
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2. Case 2: M ′ 6= 1m−k||K. In this case, B succeeds by just returning (K ′,M ′) in (line 60 of its code in)
the second stage, i.e. the same message and key pair as A returns in its second stage. This is easy to
verify as in this case from the description of G we have GK(M) = HK(M) and GK′(M ′) = HK′(M ′),
and so B wins against H if A wins against G.

Now note that Pr[Bad] = Pr[M = 1m−k||K] + Pr[M = 0m−k||K] = 2−k + 2−k = 2−k+1, as K is
selected uniformly at random just after the message M is fixed in the eTCR game. Hence, we have
ε = Pr[B succeeds] = Pr[A succeeds ∧Bad] ≥ Pr[A succeeds]− Pr[Bad] = ε′ − 2−k+1. ut

The Case for the Randomized Hashing. Randomized Hashing method as shown in Fig. 1 is a simple
method to obtain a dedicated-key hash function H̃ : K × M → {0, 1}n from an iterated (keyless) hash
function H as H̃(K, M) , H

(
K||(M1 ⊕K)|| · · · ||(ML ⊕K)

)
, where K = {0, 1}b and H itself is constructed

by iterating a keyless compression function h : {0, 1}n+b → {0, 1}n and using a fixed initial chaining value
IV. The analysis in [12] reduces the security of H̃ in eTCR sense to some assumptions, called c-SPR and
e-SPR, on the keyless compression function h which are weaker than the keyless-CR assumption on h.

Here, we are interested in a somewhat different question, namely whether (formally definable) CR for
this specific design of dedicated-key hash function H̃ implies that it is eTCR or not. Interestingly, we can
gather a strong evidence that CR for H̃ implies that it is also eTCR, by the following argument. First,
from the construction of H̃ it can be seen that CR for H̃ implies keyless-CR for a hash function H∗ which
is identical to the H except that its initial chaining value is a random and known value IV ∗ = h(IV ||K)
instead of the prefixed IV (Note that K is selected at random and is provided to the adversary at the
start of CR game). This is easily proved, as any adversary that can find collisions for H∗ (i.e. breaks it in
keyless-CR sense) can be used to construct an adversary that can break H̃ in CR sense. Second, from recent
cryptanalysis methods which use differential attacks to find collisions [30, 29], we have a strong evidence that
finding collisions for H∗ under known IV ∗ would not be harder than finding collisions for H under IV , for a
practical hash function like MD5 or SHA-1. That is, we argue that if H∗ is keyless-CR then H is also keyless-
CR. Finally, we note that keyless-CR assumption on H in turn implies that H̃ is eTCR as follows. Consider
a successful eTCR attack against H̃ where on finishing the attack we will have (K, M) 6= (K ′,M ′) and
H̃(K, M) = H̃(K ′,M ′); where, M = M1|| · · · ||ML and M ′ = M ′

1|| · · · ||M ′
L′ . Referring to the construction of

H̃ this is translated to H
(
K||(M1 ⊕K)|| · · · ||(ML ⊕K)

)
= H

(
K ′||(M ′

1 ⊕K ′)|| · · · ||(M ′
L′ ⊕K ′)

)
and from

(K, M) 6= (K ′,M ′) we have that K||(M1 ⊕K)|| · · · ||(ML ⊕K) 6= K ′||(M ′
1 ⊕K ′)|| · · · ||(M ′

L′ ⊕K ′). Hence,
we have found a collision for H and this contradicts the assumption that H is keyless-CR. Therefore, for
the case of the specific dedicated-key hash function H̃ obtained via Randomized Hashing mode, it can be
argued that CR implies eTCR.

4.2 Other Relationships

In the previous subsection, we investigated the relationship between eTCR and CR. Now, we continue to
complete all the remaining new relationships between eTCR and each of the other six properties; namely,
Sec, aSec, eSec (TCR), Pre, aPre, ePre.

Theorem 2 (Implications). For any dedicated-key hash function H : K×M→ {0, 1}n and for any fixed
value of δ such that {0, 1}δ ⊆M, we have:

1. eTCR → eSec: AdveSec[δ]
H (t) ≤ AdveTCR[δ]

H (t)
2. eTCR → Sec: AdvSec[δ]

H (t) ≤ AdveTCR[δ]
H (t)

3. eTCR 99K Pre: AdvPre[δ]
H (t′) ≤ 2AdveTCR[δ]

H (t) + 2n−δ
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Proof. The security preserving implications (cases 1 and 2 above) are quite straightforward to show by
simply looking at the definitions of these properties in Fig. 3. The provisional implication ‘eTCR 99K Pre
is also easily deduced combining ‘eTCR → Sec’ with the known fact from [24] that ‘Sec 99K Pre; namely,
AdvPre[δ]

H (t′) ≤ 2AdvSec[δ]
H (t) + 2n−δ, where t′ = t− cTH,δ, for a constant c. ut

Interestingly, except the three (simple) implications stated in Theorem 2, all the remaining eleven rela-
tionships are of the separation type. We have already proved the two separations between eTCR and CR as
they seem to be the most interesting ones from practical viewpoint. In Theorem 3, we complete the picture
of the relationships by providing the remaining nine separations.

Theorem 3. Let eTCR, Sec, aSec, eSec, Pre, aPre and ePre be the security notions as defined in Fig. 3
for some fixed value of the parameter δ. The following separations hold:

1. eTCR 9 aSec
2. eTCR 9 aPre
3. eTCR 9 ePre
4. Sec 9 eTCR
5. aSec 9 eTCR
6. eSec 9 eTCR
7. Pre 9 eTCR
8. aPre 9 eTCR
9. ePre 9 eTCR

We note that the first three separations above are new and cannot be deduced from any previously known
results. In the following, we provide complete proofs of these three separations in Lemma 3 and Lemma 4.
The remaining separations, i.e. cases 4-9 above, can be easily deduced combining the fact that eTCR →
TCR (=eSec) and the known separations shown by Rogaway and Shrimpton in [24] (for example, from ‘Sec
9 TCR’ [24] and ‘eTCR → TCR’ we get that Sec 9 eTCR, and so on).

Lemma 3 (eTCR 9 aSec and eTCR 9 aPre). Assume that there exists a dedicated-key hash function
H : {0, 1}k × {0, 1}m → {0, 1}n which is (t, ε) − eTCR. Select (and fix) an arbitrary key K∗ ∈ {0, 1}k
and an arbitrary hash value C∗ ∈ {0, 1}n (e.g. K∗ = 0k and C∗ = 0n). The dedicated-key hash function
G1 : {0, 1}k × {0, 1}m → {0, 1}n shown in this lemma is (t′, ε′) − eTCR, where t′ = t − c (where c is a
constant) and ε′ ≤ ε +

√
ε + 2−k+1, but it is completely insecure in both aSec and aPre senses.

G1K(M) =


C∗ if K = K∗ (1)

HK(M) otherwise (2)

Proof. Let’s first demonstrate that G1 is completely insecure in both aSec and aPre senses.

– AdvaSec
G1 (c′) = 1: Consider the following simple adversary A = (A1, A2) playing aSec game against

G1. A1 chooses the key as K = K∗, and A2 after receiving the first randomly selected message M ,
outputs any different message M ′ 6= M . It can be easily seen that this adversary, spending a small
constant c′, always wins the aSec game because M ′ 6= M , and by the construction of G1 we have
G1K∗(M ′) = G1K∗(M) = C∗.

– AdvaPre
G1 (c′) = 1: Consider the following simple adversary A = (A1, A2) playing aPre game against G1.

A1 chooses the key as K = K∗, and A2 after receiving the hash value Y = G1K∗(M) = C∗, outputs any
arbitrary message M ′ ∈ {0, 1}m. Adversary A = (A1, A2) always wins the aPre game because, according
to the construction of G1, we have G1K∗(M ′) = C∗ for any M∗ ∈ {0, 1}m.
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To complete the proof, we show that G1 inherits the eTCR property of H by demonstrating that
ε′ ≤ ε +

√
ε + 2−k+1.

Let A = (A1, A2) be any adversary that can win eTCR game against G1 with success probability ε′ and
having time complexity at most t′. Consider the following adversary B = (B1, B2) against eTCR property
of H which uses A as a subroutine (and forwards whatever it outputs):

Algorithm B1() Algorithm B2(K, M, State)

10: (M,State) $← A1(); 30: if K = K∗ ∨HK(M) = C∗ then bad← true;

20: return (M,State); 40: (K ′,M ′) $← A2(K, M, State);
50: return (K ′,M ′);

We remind that the boolean variable “bad” (with an initial value assumed to be ‘false’) is just used as
a flag to clarify an undesirable event that if happens can make B unsuccessful even if A was successful.
This is just to make the proof easier to follow; otherwise the line 30 is dummy and can be omitted from the
description of B without affecting its output.

Let Bad be the event that in the eTCR game K = K∗ ∨ HK(M) = C∗; i.e. in line 30 the flag bad
is set to true. We show that if Bad does not happen then B will succeed in eTCR attack against H
whenever A succeeds in eTCR attack against G1. Note that A succeeds in eTCR attack against G whenever
(K, M) 6= (K ′,M ′) and GK(M) = GK′(M ′). Assuming that the event Bad does not happen; that is,
K 6= K∗ ∧ HK(M) 6= C∗, and referring to the construction of G1, it can be seen that in this case from
G1K(M) = G1K′(M ′) we get that HK(M) = HK′(M ′); that is, B also succeeds in eTCR attack against H.
Hence, we have: ε ≥ Pr[B succeeds] = Pr[A succeeds ∧Bad] ≥ Pr[A succeeds] − Pr[Bad] = ε′ − Pr[Bad].
Rearranging the terms we have:

ε′ ≤ ε + Pr[Bad] (1)

Now we need to upperbound Pr[Bad] = Pr[K = K∗ ∨HK(M) = C∗]. Using the union bound we have:

Pr[Bad] ≤ Pr[K = K∗] + Pr[HK(M) = C∗] = 2−k + Pr[HK(M) = C∗] (2)

It remains to upperbound p = Pr[HK(M) = C∗]. We claim that:

Claim. p = Pr[HK(M) = C∗] ≤ 2−k +
√

ε.

Before continuing to prove this claim, note that the inequalities (1), (2) and the above claim gives the
target upper-bound as ε′ ≤ ε +

√
ε + 2−k+1. Clearly, (ignoring the time for the dummy operation in line 30

of B) the time complexity of B is that of A plus a small constant time c, i.e. t = t′ + c.

Proof of the Claim: The first and main step is to express our problem in a format which can be considered
as an special case of the Reset Lemma of [4], and then we can apply the probabilistic analysis of the Reset
Lemma.

Referring to the description of B, it can be seen that p equals to the probability that the following
experiment returns 1; where, the probability is taken over the randomness used by A1 and the random
selection of the first key K:

Experiment I

(M,State) $← A1();

K
$← {0, 1}k

If HK(M) = C∗ then return 1 else return 0;
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Let R ∈ {0, 1}r denote the random tape used by the (randomized) algorithm A1. Let Verify(M,K, C)
be a predicate which is defined as follows:

Verify(M,K, C) =
{

1 if HK(M) = C
0 otherwise

Now, we can rewrite Experiment I as below, where ∅ denotes an ‘empty string’:

Experiment I

R
$← {0, 1}r ; (M,State) = A1(∅;R);

K
$← {0, 1}k ; d = Verify(M,K, C∗);

Return d

Let q be the probability that the following (reset) experiment returns 1:

Experiment II (Reset Experiment)

R
$← {0, 1}r ; (M,State) = A1(∅;R);

K1
$← {0, 1}k ; d1 = Verify(M,K1, C

∗);

K2
$← {0, 1}k ; d2 = Verify(M,K2, C

∗);
If (d1 = 1 ∧ d2 = 1 ∧ K1 6= K2) then return 1 else return 0

Proposition 1. p ≤ √q + 2−k.

The proof of this proposition can be deduced as a special case of that of the Reset Lemma in [4]. We
provide the proof here for completeness. For any R ∈ {0, 1}r, let MR denote the target message output by
A using the random tape R; that is, (MR, StateR) = A(∅;R). Define two functions X : {0, 1}r → [0, 1] and
Y : {0, 1}r → [0, 1] as follows:

X(R) , Pr[Verify(MR,K,C∗) = 1] (3)

where the probability is taken over random selection of K from the key space {0, 1}k, and

Y (R) , Pr[Verify(MR,K1, C
∗) = 1 ∧ Verify(MR,K2, C

∗) = 1 ∧ K1 6= K2] (4)

where the probability is taken over random and independent selection of K1 and K2 from the key space
{0, 1}k. By a simple argument, noting that K1 and K2 are chosen independently and using the fact that
Pr(E ∧ F ) ≥ Pr(E)− Pr(F ) for any two events E and F , we have:

Y (R) = Pr[Verify(MR,K1, C
∗) = 1] . Pr[Verify(MR,K2, C

∗) = 1 ∧ K1 6= K2] ≥ X(R)[X(R)− 2−k] (5)

We can view functions X and Y as random variables over sample space {0, 1}r of random tape (coins) used
by probabilistic algorithm A. Now, note that the probabilities that Experiment I and Experiment II return
1 are, respectively, the expected values of the random variables X and Y with respect to R, i.e. p = E[X]
and q = E[Y ]. Using the inequality (5) and letting c = 2−k we have:

q = E[Y ] ≥ E[X(X − c)] = E[X2]− cE[X] ≥ E[X]2 − cE[X] = p2 − cp

Using the above relation we have:

(p− c

2
)2 = p2 − cp +

c2

4
≤ q +

c2

4
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and using the fact that
√

a + b ≤
√

a +
√

b for a, b ≥ 0 we have:

p− c

2
≤ √q +

c

2

Remembering that c = 2−k, we get the final result as p ≤ √q + 2−k.
To complete the proof of the Claim, we show that q ≤ ε. We construct an adversary C = (C1, C2)

against eTCR property of H; such that AdveTCR
H (C) = q as follows: C1 runs A1 (by providing its random

tape R as shown in Experiment II) and forwards M as its output in the first stage of the eTCR attack
against H. C2, on receiving the random key K1, simply chooses another random key K2 and returns
(K2,M) to finish the eTCR attack. Clearly the advantage of C in the eTCR game will be the same as
the probability that Experiment II returns 1. Note that Experiment II returns 1 if Verify(M,K1, C

∗) =
1 ∧ Verify(M,K2, C

∗) = 1 ∧ K1 6= K2, and from the definition of the predicate Verify(., ., .) this implies
that H(K1,M) = H(K2,M) = C∗ ∧ K1 6= K2. Hence, whenever Experiment II returns 1 we have
(K1,M) 6= (K2,M) and H(K1,M) = H(K2,M), i.e. A succeeds in the eTCR attack game against H. ut

Lemma 4 (eTCR 9 ePre). Assume that there exists a dedicated-key hash function H : {0, 1}k×{0, 1}m →
{0, 1}n, where m ≥ k, which is (t, ε) − eTCR. Select (and fix) an arbitrary hash value C∗ ∈ {0, 1}n (e.g.
C∗ = 0n). The dedicated-key hash function G2 : {0, 1}k × {0, 1}m → {0, 1}n shown in this lemma is
(t′, ε′)−eTCR, where t′ = t− c (where c is a constant) and ε′ ≤ ε+

√
ε+2−k+1, but it is completely insecure

in ePre sense.

G2K(M) =


C∗ if val(K) = val(M)

HK(M) otherwise

Proof. First we show that G2 is completely insecure in ePre sense, by using the following simple adversary
A = (A1, A2). A1 puts the target hash value as Y = C∗. A2, after receiving the random key K, outputs a
message M ∈ {0, 1}m whose decimal value equals to that of K, i.e. M = 〈val(K)〉m . Clearly, the adversary
A = (A1, A2) always wins the ePre game against G2, as we have G2K(M) = C∗ = Y for such a message M
and K which satisfy the condition val(K) = val(M). To complete the proof, we show that G2 inherits the
eTCR property of H by demonstrating that ε′ ≤ ε +

√
ε + 2−k+1.

The proof for this part is quite similar to that of Lemma 3 and is briefly provided below for completeness.
Let A = (A1, A2) be any adversary that can win eTCR game against G2 with success probability ε′ and

having time complexity at most t′. Consider the following adversary B = (B1, B2) against eTCR property
of H which uses A as its subroutine (and simply forwards whatever it outputs):

Algorithm B1() Algorithm B2(K, M, State)

10: (M,State) $← A1(); 30: if val(K) = val(M) ∨HK(M) = C∗ then bad← true;

20: return (M,State); 40: (M ′,K ′) $← A2(K, M, State);
50: return (M ′,K ′);

Let Bad be the event that in the eTCR game val(K) = val(M) ∨ HK(M) = C∗; i.e. in line 30, the
flag bad is set to true.

We show that if Bad does not happen then B will succeed in eTCR attack against H whenever A
succeeds in eTCR attack against G2. Note that A succeeds in the eTCR attack against G2 whenever
(M,K) 6= (M ′,K ′) and G2K(M) = G2K′(M ′). Assuming that the event Bad does not happen; i.e. val(K) 6=
val(M) ∧ HK(M) 6= C∗, and referring to the construction of G2, it can be seen that in this case from
G2K(M) = G2K′(M ′) we get that HK(M) = HK′(M ′); that is, B also succeeds in its eTCR attack against
H. Hence, we have: ε ≥ Pr[B succeeds] = Pr[A succeeds∧Bad] ≥ Pr[A succeeds]−Pr[Bad] = ε′−Pr[Bad].
Rearranging the terms we have:
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ε′ ≤ ε + Pr[Bad] (6)

Now we need to upper bound Pr[Bad] = Pr[val(K) = val(M) ∨HK(M) = C∗]. Using the union bound we
have:

Pr[Bad] ≤ Pr[val(K) = val(M)] + Pr[HK(M) = C∗] ≤ 2−k + Pr[HK(M) = C∗] (7)

By the same probabilistic argument as detailed in Lemma 3, we get the bound Pr[HK(M) = C∗] ≤ 2−k+
√

ε,
and using the inequalities (6) and (7) we get the targte upper bound as ε′ ≤ ε +

√
ε + 2−k+1. ut

5 Domain Extension and eTCR Property Preservation

In this section we investigate the eTCR preserving capability of eight domain extension transforms, namely
Plain MD [15, 8], Strengthened MD [15, 8], Prefix-free MD [7, 14], Randomized Hashing [12], Shoup [25],
Enveloped Shoup [2], XOR Linear Hash (XLH)[5], and Linear Hash (LH) [5] methods.

Assume that we have a compression function h : {0, 1}k × {0, 1}n+b → {0, 1}n that can only hash
messages of fixed length (n + b) bits. A domain extension transform can use this compression function (as
a black-box) to construct a hash function H : K×M→ {0, 1}n, where the message spaceM can be either
{0, 1}∗ or {0, 1}<2m

, for some positive integer m (e.g. m = 64). The key space K is determined by the
construction of a domain extender. Clearly log2(|K|) ≥ k, as H involves at least one invocation of h. The
difference between log2(|K|) (i.e. the key length of H) and k (i.e. the key length of h) is called the ‘key
expansion’ of domain extension transform and is a measure of its efficiency: the less key expansion is, the
more efficient the domain extension transform will be.

A domain extension transform comprises of two functions: an injective padding function Pad and an
iteration function fI . First, the padding function Pad :M→ DI is applied to an input message M ∈M to
convert it to the padded message Pad(M) in a domain DI . Then, the iteration function fI : K×DI → {0, 1}n
uses the compression function h as many times as required, and outputs the final hash value. The full-fledged
hash function H is obtained by combining the two functions. It is known that the property preserving
capability of a domain extension transform depends on both the padding function and iteration function,
for example ‘Plain MD’ (i.e. plain padding and MD iteration) is not CR preserving domain extender,
but ‘Strengthened MD’ (i.e. strengthening padding and MD iteration) does preserve CR [15, 8, 2]. Hence,
precisely speaking, we can have several domain extenders using the same iteration function but with different
padding function, e.g. Plain MD, Strengthened MD, Prefix-free MD, which are considered as three different
domain extenders that have different capabilities from property preserving viewpoint [2].

The padding functions used in the eight domain extension transforms that we consider in this paper are
defined as follows:

– Plain: pad : {0, 1}∗ →
⋃

L≥1 {0, 1}Lb, where pad(M) = M ||10p and p is the minimum number of 0’s
required to make the length of pad(M) a multiple of the block length b.

– Strengthening: pads : {0, 1}<2m

→
⋃

L≥1 {0, 1}Lb, where pads(M) = M ||10p|| 〈|M |〉m and p is the
minimum number of 0’s required to make the length of pads(M) a multiple of the block length b.

– Prefix-free: padPF : {0, 1}∗ →
⋃

L≥1 {0, 1}Lb, where padPF transforms the input message space {0, 1}∗
to a prefix-free message space, i.e. padPF(M) is not a prefix of padPF(M ′) for any two distinct messages
M and M ′. An example of a Prefix-free padding function, which we consider in this paper, is as follows.
Append 10p to the message where p is the minimum number of 0’s required to make the length of the
resulted message a multiple of b−1 bits. Parse the resulted message into blocks of b−1 bits and prepend
a ‘0’ to all blocks but the final block where a ‘1’ must be prepended.
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– Strengthened Chain Shift: padCSs : {0, 1}<2m

→
⋃

L≥1 {0, 1}Lb+b−n, where padCSs(M) = M ||10r||
〈|M |〉m ||0p, and parameters p and r are defined in two ways depending on the block length b. If b ≥ n+m
then p = 0, otherwise p = b − n. Then r is the minimum number of 0’s required to make the padded
message a member of {0, 1}Lb+b−n, for some positive integer L.

The iteration functions for MD, Randomized Hashing, Shoup, Enveloped Shoup, XLH and LH are shown
in Fig. 4.

5.1 Merkle-Damg̊ard Variants

Theorem 4 (Negative Results). Plain MD, Strengthened MD, and Prefix-free MD do not preserve eTCR.

Proof. We borrow the construction of the following counterexample from [5] where it was used in the context
of TCR property. Assume that there is a dedicated-key compression function g : {0, 1}k×{0, 1}n+b → {0, 1}n
with b > k which is (t, ε)-eTCR secure. Set b = k + b′ where b′ > 0 by the assumption that b > k. Consider
the following dedicated-key compression function h : {0, 1}k × {0, 1}(n+k)+b′ → {0, 1}n+k:

h(K, X||Y ||Z) = hK(X||Y ||Z) =
{

gK(X||Y ||Z)||K if K 6= Y
1n+k if K = Y

where K ∈ {0, 1}k , X ∈ {0, 1}n , Y ∈ {0, 1}k , Z ∈ {0, 1}b
′
(n + k is chaining variable length and b′ is block

length for h).
To complete the proof, we first show in Lemma 5 that hK inherits the eTCR property from gK . Note

that this cannot be directly inferred from the proof in [5] that hK inherits the weaker notion TCR from gK .
Then, we show a simple attack in each case to show that the hash function obtained by using any of the
(Plain, Strengthened, Prefix-free, HAIFA) MD variants, to extend the domain of hK , is completely insecure
in the eTCR sense.

Lemma 5. The dedicated-key compression function h is (t′, ε′)-eTCR secure, where ε′ = ε + 2−k+1 and
t′ = t− c, for a small constant c.

Proof. Let A = (A1, A2) be an adversary that wins the eTCR game against hK with probability ε′ and
using time complexity t′. We construct an adversary B = (B1, B2) which uses A as a subroutine and wins
eTCR game against gK with success probability of at least ε = ε′ − 2−k+1(≈ ε′, for large k) and spending
time complexity t = t′ + c, where the small constant c can be easily determined from the description of B.
Algorithm B acts as follows:

Algorithm B1() Algorithm B2(K1,M1, State)

(M1, State) $← A1(); X1||Y1||Z1 ←M1 where |X1| = n, |Y1| = k, |Z1| = b′

return (M1, State); if K1 = Y1 ∨K1 = 1k then bad← true;

(M2,K2)
$← A2(K1,M1, State);

return (M2,K2);

At the first stage of eTCR attack, B1 just merely runs A1 and returns whatever it returns as the first
message (i.e. M1 = X1||Y1||Z1) and any possible state information to be passed to the second stage algo-
rithm. At the second stage of the attack, let Bad be the event that K1 = Y1 ∨K1 = 1k; that is the boolean
flag bad (whose initial value is assumed to be ’false’) is set to true by B2.

We claim that if Bad does not happen; that is, if K1 6= Y1∧K1 6= 1k, then B will succeed in eTCR attack
against g whenever A succeeds in eTCR attack against h. Referring to the construction of the (counterex-
ample) function h in this lemma, it can be seen that if A succeeds, i.e. if (M1,K1) 6= (M2,K2)∧hK1(M1) =
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MDh
IV : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}k

Algorithm MDh
IV (K, M):

C0 = IV
for i = 1 to L do

Ci = hK(Ci−1||Mi)
return CL

IV hh h

M3 MLM1 M2

C2 C3 CL−1 CLC1 h

K KK K

IV hh h

M3 MLM1 M2

CLh

K3 KLK1 K2

IV hh h

M2 MLM1

CL+1h

K KK K

K′
K′K′

K′

LHh
IV : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}Lk

Algorithm LHh
IV (K1||K2|| · · · ||KL,M):

C0 = IV
for i = 1 to L do

Ci = hKi
(Ci−1||Mi)

return CL

XLHh
IV : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}k+Ln

Algorithm XLHh
IV (K||K0||K1|| · · · ||KL−1,M):

C0 = IV
for i = 1 to L do

Ci = hK((Ci−1 ⊕Ki−1)||Mi)
return CL

Shh
IV : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}k+tn

t = dlog2(L)e , ν(i) = max {x : 2x|i}

Algorithm Shh
IV (K||K0||K1|| · · · ||Kt−1,M):

C0 = IV
for i = 1 to L do

Ci = hK((Ci−1 ⊕Kν(i))||Mi)
return CL

RHh
IV : K × {0, 1}Lb → {0, 1}n, where K = {0, 1}k+b

Algorithm RHh
IV (K||K ′,M):

C0 = IV
C1 = hK(C0||K ′)
for i = 2 to L + 1 do

Ci = hK(Ci−1||(Mi−1 ⊕K ′))
return CL+1

EShh
IV1,IV2

: K × {0, 1}(L−1)b+b−n → {0, 1}n, where K = {0, 1}k+tn

t = dlog2(L− 1)e+ 1, ν(i) = max {x : 2x|i}

Algorithm EShh
IV1,IV2

(K||K0||K1|| · · · ||Kt−1,M):
C0 = IV1; Kµ = Kt−1

for i = 1 to L− 1 do
Ci = hK((Ci−1 ⊕Kν(i))||Mi)

return hK((IV2 ⊕K0)||(CL−1 ⊕Kµ)||ML)

IV hh h

M3 MLM1 M2

CLh

K K2K K K0K1K0 KKv(L)

IV1 h h

M1 M2

K KK1K0

h

ML−1

K KµKν(L−1)

b− n

ML

CLh

KK0

IV2

IV hh h

M3 MLM1 M2

CLh

K K3K K K2K1K0 KKL−1

Fig. 4. Iteration functions used in domain extension transforms: Merkle-Damg̊ard (MD), Randomized Hashing (RH), Shoup
(Sh), Enveloped Shoup (ESh), XLH and LH. The iteration functions are ordered top-down based on their efficiency in terms
of key expansion, MD iteration does not expand the key length of underlying compression function and is the most efficient
transform and LH is the least efficient transform.
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hK2(M2), then it must be the case that gK1(M1)||K1 = gK2(M2)||K2 which implies that gK1(M1) = gK2(M2)
(and also K1 = K2). That is, (M1,K1) and (M2,K2) are also valid a colliding pair in the eTCR attack against
g. (Remember that M1 = X1||Y1||Z1 and M2 = X2||Y2||Z2.)

Now note that Pr[Bad] ≤ Pr[K1 = Y1] + Pr[K1 = 1k] = 2−k + 2−k = 2−k+1, as K1 is selected uniformly
at random just after the message M1 is fixed in the eTCR game. Therefore, we have ε = Pr[B succeeds] =
Pr[A succeeds ∧Bad] ≥ Pr[A succeeds]− Pr[Bad] ≥ ε′ − 2−k+1. This ends the proof of Lemma 5. ut

To complete the proof of Theorem 4, we need to show that MD transforms cannot preserve eTCR while
extending the domain of this specific compression function h. For this part, the same attacks that used in
[5, 2] against TCR property also work for our purpose here as clearly breaking TCR implies breaking its
strengthened variant eTCR. The eTCR attacks are as follows:

The Case of Plain MD (pMD) and Strengthened MD (sMD). The following adversary A = (A1, A2)
can break the eTCR property of the VIL hash function H : {0, 1}k × {0, 1}<2λ

→ {0, 1}n+k obtained by
applying the Plain MD or Strengthened MD transforms on the (counterexample) compression function
h : {0, 1}k × {0, 1}(n+k)+b′ → {0, 1}n+k. A1 outputs M1 = 0b′ ||0b′ and A2, on receiving the first key K,
outputs a different message as M2 = 1b′ ||0b′ together with the same key K as the second key. Considering
that the initial value IV = IV1||IV2 ∈ {0, 1}n+k is fixed before adversary starts the attack game and K is
chosen at random afterward in the second stage of the game, we have Pr [K = IV2] = 2−k. If K 6= IV2 which
is the case with probability 1− 2−k then adversary becomes successful as we have:

MDh
IV (K, 0b′ ||0b′) = hK(hK(IV1||IV2||0b′)||0b′) = hK(gK(IV1||IV2||0b′)||K||0b′) = 1n+k

MDh
IV (K, 1b′ ||0b′) = hK(hK(IV1||IV2||1b′)||0b′) = hK(gK(IV1||IV2||1b′)||K||0b′) = 1n+k

pMD :
{

H(K, 0b′ ||0b′) = MDh
IV (K, pad(0b′ ||0b′)) = hK(MDh

IV (K, 0b′ ||0b′)||10b′−1) = hK(1n+k||10b′−1)
H(K, 1b′ ||0b′) = MDh

IV (K, pad(1b′ ||0b′)) = hK(MDh
IV (K, 1b′ ||0b′)||10b′−1) = hK(1n+k||10b′−1)

sMD :


MDh

IV (K, pads(0b′ ||0b′)) = hK(MDh
IV (K, 0b′ ||0b′)||10b′−m−1|| 〈2b′〉m)

= hK(1n+k||10b′−m−1|| 〈2b′〉m)

MDh
IV (K, pads(1b′ ||0b′)) = hK(MDh

IV (K, 1b′ ||0b′)||10b′−m−1|| 〈2b′〉m)
= hK(1n+k||10b′−m−1|| 〈2b′〉m)

The Case of Prefix-free MD: The following adversary A = (A1, A2) which is used for TCR attack against
Prefix-free MD in [2], can also break H in eTCR sense, as clearly any TCR attacker against H is an eTCR
attacker as well. Here, we provide the description of the attack for eTCR, for completeness. A1 outputs
M1 = 0b′−1||0b′−2 and A2 on receiving the first key K outputs a different message as M2 = 1b′−1||0b′−2

together with the same key K as the second key. Considering that the initial value IV = IV1||IV2 ∈
{0, 1}n+k is fixed before the adversary starts the attack game and K is chosen at random afterward, we
have Pr [K = IV2] = 2−k. If K 6= IV2 which is the case with probability 1−2−k then the adversary becomes
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successful as we have:

H(K, 0b′−1||0b′−2) = MDh
IV (K, padPF(0b′−1||0b′−2))

= MDh
IV (K, 0b′ ||10b′−21)

= hK(hK(IV1||IV2||0b′)||10b′−21)
= hK(gK(IV1||IV2||0b′)||K||10b′−21)
= 1n+k

H(K, 1b′−1||0b′−2) = MDh
IV (K, padPF(1b′−1||0b′−2))

= MDh
IV (K, 01b′−1||10b′−21)

= hK(hK(IV1||IV2||01b′−1)||10b′−21)
= hK(gK(IV1||IV2||01b′−1)||K||10b′−21)
= 1n+k

ut

5.2 Randomized Hashing Variant

Our aim in this section is to show that the dedicated-key variant of Randomized Hashing (RH) transform,
i.e. if it is considered as a domain extender for a dedicated-key compression function, does not preserve the
eTCR property. Note that this dedicated-key variant of RH, as shown in Fig. 4, expands the key length of
the underlying compression function only by a constant additive factor of b bits (i.e. log2(|K|) = k + b),
and hence the key length of the resulted VIL hash function is constant (k + b bits) and does not increase
as a function of the input message length. That is, after the MD variants which do not expand the key
length, RH is the most efficient method from key expansion point of view. The latter characteristic, i.e.
a small and message-length-independent key expansion could have been considered a stunning advantage
from efficiency viewpoint, if RH had been able to preserve eTCR. Nevertheless, unfortunately we shall show
that randomized hashing in the ‘dedicated-key setting’ does not preserve eTCR.

Remark 2. The original RH construction [12] shown in Fig. 1 is a hybrid domain extension transform;
i.e. it transforms a ‘keyless’ compression function h to a ‘dedicated-key ’ hash function H̃. Clearly, eTCR
cannot be defined for the keyless function h; hence, one cannot formally consider eTCR preservation for the
(original) RH transform unless the compression function h is also defined as a dedicated-key function. (This
is implicitly done also in some previous works on the property-preservation analysis of the transforms, e.g.
see [1].)

Theorem 5 (Negative Result). The dedicated-key variant of Randomized Hashing does not preserve
eTCR.

Proof. We need to show as a counterexample, a dedicated-key compression function h which is eTCR but for
which the dedicated-key hash function H obtained by the Randomized Hashing construction is completely
insecure in the eTCR sense. The same counterexample used in Theorem 4 can also be employed for this
purpose.

As we have previously shown in Lemma 5 that h inherits the eTCR property of g, it just remains to
show that RHh

IV cannot extend the domain of h while preserving its eTCR property. Consider an adversary
A = (A1, A2), against eTCR property of H, that works as follows. A1 outputs a one-block long target
message M1 = 0b′ (note that for the counterexample compression function hK , b′ is the block length and
n + k is the chaining variable length). A2 on getting the first key K||K ′ for H (in the second stage of
eTCR attack), outputs the second message as M2 = 1b′ and puts the second key the same as the first
key. As M2 6= M1, we just need to show that these two messages collide under the same key, i.e. K||K ′.
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Considering that the initial value IV = IV1||IV2 ∈ {0, 1}n+k for RHh
IV is (selected and) fixed before the

adversary starts the attack game and K||K ′ is chosen at random latter in the second stage of the game,
we have Pr [K = IV2] = 2−k. If K 6= IV2 (which is the case with probability 1 − 2−k) then the adversary
A = (A1, A2) becomes successful as we have:

H
(
K||K ′, 0b′

)
= RHh

IV

(
K||K ′,pads(0b′)

)
= RHh

IV (K||K ′, 0b′ ||10b′−1−m 〈b′〉m)
= hK

(
hK

(
hK(IV1||IV2||K ′)||(K ′ ⊕ 0b′)

)
||(K ′ ⊕ 10b′−1−m 〈b′〉m)

)
= hK

(
hK

(
gK(IV1||IV2||K ′)||K||(K ′ ⊕ 0b′)

)
||(K ′ ⊕ 10b′−1−m 〈b′〉m)

)
= hK(1n+k||(K ′ ⊕ 10b′−1−m 〈b′〉m))

H
(
K||K ′, 1b′

)
= RHh

IV (K||K ′,pads(1b′))
= RHh

IV (K||K ′, 1b′ ||10b′−1−m 〈b′〉m)
= hK

(
hK

(
hK(IV1||IV2||K ′)||(K ′ ⊕ 1b′)

)
||(K ′ ⊕ 10b′−1−m 〈b′〉m)

)
= hK

(
hK

(
gK(IV1||IV2||K ′)||K||(K ′ ⊕ 1b′)

)
||(K ′ ⊕ 10b′−1−m 〈b′〉m)

)
= hK(1n+k||(K ′ ⊕ 10b′−1−m 〈b′〉m))

ut

5.3 Shoup, Enveloped Shoup, and XOR Linear Hash

In the previous subsections, we have shown that neither the MD variants nor the RH variant can preserve
eTCR. The next three most efficient candidates from key expansion viewpoint are: Shoup (Sh), which is
known to be the best for TCR preserving transfrom; Enveloped Shoup (ESh), which is (to the best of
our knowledge) the most powerful and efficient multi-property-preserving transform (without any random-
oracle); and the XOR Linear Hash (XLH) which actually was the base for Sh. In the Sh and ESh transforms,
the key length increases logarithmically in the input message length, and in the case of XLH, the key length
increases linearly in the input message length (see Fig. 4).

The following theorem shows that none of Sh, ESh and XLH transforms can preserve eTCR. That is, we
also lose the best TCR preserving transform, i.e. Sh, as well as the multi-property preserving ESh transform
when it comes to eTCR preservation.

Theorem 6 (Negative Results). Sh, ESh, and XLH do not preserve eTCR.

Proof. The proof is quite simple but the results are stronger than the previous counterexample based proofs
in the previous subsections, as now the negative results hold for any arbitrary compression function (ir-
respective of how secure the compression function h is), and not only for some specific counterexamples.
That is these XOR masking based domain extension transforms are structurally insecure in the eTCR sense.
Intuitively, the inability if these domain extenders to preserve eTCR is due to the fact that they use XOR
operation to add the key to the internal state (i.e. chaining variable), and hence an eTCR adversary will be
able to cancel internal differences by taking advantage of its ability to select the value of the second key in
the second stage of the eTCR attack. For the formal proof, we provide the following simple attacks.

The Case of Shoup. The following adversary A = (A1, A2) can break the eTCR property of the hash
function H, which is obtained by using the Sh domain extension transform. At the first stage of the eTCR
attack, A1 outputs a two-block message M = M1||M2 as the target message which after applying pads will
become a three-block message M1||M2||(10b−1−m 〈2b〉m) to be input to the three-round Shh

IV iteration. In the
second stage of eTCR game, A2, after receiving the first key as K||K0||K1||K0 from the challenger, chooses
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the second two-block message as M ′ = M ′
1||M2 which after padding becomes M ′

1||M2||(10b−1−m 〈2b〉m). A2

also puts the second key as K||K0||K ′
1||K0, where the value of K ′

1 is computed as K ′
1 = K1 ⊕ hK

(
(IV ⊕

K0)||M1

)
⊕ hK

(
(IV ⊕ K0)||M ′

1

)
. It is easy to see (referring to Fig. 4) that this value for K ′ cancel the

introduced difference in chaining variable which was created due to the different message blocks M1 and
M ′

1. So, (K||K0||K1,M) and (K||K0||K ′
1,M

′) constitute a colliding pair for H in eTCR sense. (Note that
the key sequence used for iteration function Shh

IV is K||K0||K1||K0 because padded message pads(M) has
an extra third block containing the length information.)

The Case of Enveloped Shoup. In this case, A1 outputs two different (L − 1)-block messages M =
M1|| · · · ||ML−1 and M ′ = M ′

1|| · · · ||M ′
L−1 which after applying padCSs padding function will become

M1|| · · · ||ML−1||(10b−1−m−n|| 〈(L− 1)b〉m) and M ′
1|| · · · ||M ′

L−1||(10b−1−m−n|| 〈(L− 1)b〉m), respectively. That
is, the inputs to ESh iteration function will have the same last block as ML = M ′

L = 10b−1−m−n 〈|M |〉m,
but their first (L − 1) blocks are different (note that in ESh the length of the last block which is used in
the final envelop is b − n bits). In the second stage of eTCR attack, A2, on receiving the first key, puts all
blocks of the second key the same as the first given key except the last key block Kµ. A2 simply adjusts the
value of this last key block to a new key block K ′

µ = Kµ ⊕CL−1 ⊕C ′
L−1 to cancel the introduced difference

in the chaining variables CL−1 and C ′
L−1 (related to the computation for M and M ′, respectively). We

stress that this adjustment of the value of Kµ to K ′
µ to cancel the difference that appears in final chain-

ing value is possible because “Kµ is only used for the chaining variable fed into the envelope ” as stated in [2].

The Case of XLH. In this case, A1 outputs a two-block message M = M1||M2 as the target message
which after applying pads will become a three-block message M1||M2||(10b−1−m 〈2b〉m) to be the input to
the three-round XLHh

IV iteration. In the second stage of eTCR game, A2, on receiving the first key as
K||K0||K1||K2 from the challenger, chooses the second two-block message as M ′ = M ′

1||M2 which after
padding becomes M ′

1||M2||(10b−1−m 〈2b〉m). A2 then puts the second key as K||K0||K ′
1||K2, where the value

of K ′
1 is computed as K ′

1 = K1⊕hK

(
(IV ⊕K0)||M1

)
⊕hK

(
(IV ⊕K0)||M ′

1

)
. It is easy to see (referring to Fig.

4) that this value for K ′ cancel the introduced difference in the chaining variable, which was created due to
the different message blocks M1 and M ′

1. Hence, (K||K0||K1||K2,M) and (K||K0||K ′
1||K2,M

′) constitute a
colliding pair for H in the eTCR sense. ut

Remark 3. The eTCR adversaries used in the above proofs take advantage of XOR masking based structure
of the XLH, Sh and ESh transforms to cancel the effect of all accumulated differences in the internal state
that may have been introduced by previous different message blocks, by simply adjusting the value of a
last free key variable. This implies that any class of such XOR masking based transforms, allowing this
cancellation, will not be suitable for designing an eTCR preserving domain extender. It can be seen that
this is the case for the XOR Tree Hash (XTH) transfrom of [5] as well.

5.4 Linear Hash and its Nested Variant

Up to know we have shown that neither of MD, RH, Sh, or XLH transforms can preserve eTCR property.
Henceforth, we have lost all efficient methods from key expansion viewpoint and now we have reached to the
same starting point for TCR preserving scenario as in [5], where it was shown that the LH method can be
used to preserve TCR only with respect to equal-length-collision finding adversaries and its nested variant
can be used to archive TCR for any variable-length-collision finding adversaries. We should mention that
it was pointed out in [5] and latter shown by an explicit counterexample in [1] that LH iteration cannot
preserve TCR with respect to variable length collisions.

After the previous series of negative results about inability of several efficient transforms to preserve
eTCR, we now consider whether at least (but hopefully not the last) this most non-efficient LH transform
or its variants can be used for eTCR preserving domain extension or not. Fortunately, we gather a positive
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answer for this. The proof for this positive result is a straightforward extension of the methodology used in
[5] for the case of TCR, but with some necessary adaptations required for considering eTCR attack scenario
where adversary has more power in second stage by getting to choose a different key as well as a different
message. Firstly, in Theorem 7 we show that if the compression function h is eTCR secure then a variant of
LH construction will be secure against a restricted class of eTCR adversaries which only find equal-length
colliding pairs. Let’s denote this equal-length eTCR notion by eTCR∗. Secondly, it is shown in Theorem 8
that a nested variant of LH can be made eTCR secure, i.e. against any arbitrary adversary.

Assume that the length of the input messages is a multiple of the block length (for the underlying
compression function) and the maximum length in blocks is some positive integer N , i.e. |M | ≤ Nb where b
is the length of one block in bits. We note that this restriction of the message space to a domain with messages
of variable but multiple-block length can easily be removed by using any length consistent injective padding
function as mentioned in [5]. LHh

IV iteration function can be used to define a function H : {0, 1}Nk ×
({0, 1}b)<N → {0, 1}n as H(K1|| · · · ||KN ,M) , LHh

IV (K1|| · · · ||Km,M), where m is the length of M in
blocks.

Theorem 7 (Positive Result). Assume that the compression function h : {0, 1}k × {0, 1}n+b → {0, 1}n
is (t, ε)-eTCR. Then the hash function H : {0, 1}Nk × ({0, 1}b)<N → {0, 1}n obtained using LHh

IV iteration
of h, will be (t′, ε′)-eTCR∗, where ε′ = Nε, t′ = t − Θ(N)

(
Th + n + b + k

)
, where Th is the time for one

computation of the compression function h.

Proof. Assume that A = (A1, A2) is an adversary which can break H in the eTCR∗ sense (i.e. equal-length
eTCR sense) with success probability ε′ and using time complexity t′. We construct an adversary B that uses
A to break the compression function h in the eTCR sense. First we make the observation that if the adversary
A is successful in finding two equal-length colliding messages M = M1 · · ·Mm and M ′ = M ′

1 · · ·M ′
m under

the keys K = K1|| · · · ||Km and K ′ = K ′
1|| · · ·K ′

m, then there must be an i ∈ {1, · · · ,m} which the following
two conditions hold:

(1): LHh
IV (K1 · · ·Ki,M1 · · ·Mi) = LHh

IV (K ′
1 · · ·K ′

i,M
′
1 · · ·M ′

i)

(2): LHh
IV (K1 · · ·Ki−1,M1 · · ·Mi−1)||Mi 6= LHh

IV (K ′
1 · · ·K ′

i−1,M
′
1 · · ·M ′

i−1)||M ′
i

∨
Ki 6= K ′

i

This can be seen by noting that |M | = |M ′| and tracing back the computation in LHh
IV iteration which

may have made the final collision happen, that is LHh
IV (K1 · · ·Km,M1 · · ·Mm) = LHh

IV (K ′
1 · · ·K ′

m,M ′
1 · · ·M ′

m)
where (K, M) 6= (K ′,M ′) by winning condition for eTCR game.

Using the aforementioned observation we can build an adversary B = (B1, B2) which can break eTCR
property of h as follows:

Algorithm B1() Algorithm B2(Key,X, St)

(M,State) $← A1(); m = |M |b; (j, M,K1, · · · ,Kj−1, State)← St; Kj = Key;

j
$← {1, · · · ,m}; Kj+1, · · · ,KN

$← {0, 1}k;
K1, · · · ,Kj−1

$← {0, 1}k; (K ′,M ′) $← A2(K1, · · · ,KN ,M, State);
X = LHh

IV (K1 · · ·Kj−1,M1 · · ·Mj−1)||Mj ; X ′ = LHh
IV (K ′

1 · · ·K ′
j−1,M

′
1 · · ·M ′

j−1)||M ′
j ;

St = (j, M,K1, · · · ,Kj−1, State); Key′ = K ′
j ;

return (X, St); return (Key′, X ′);

At the first stage of the eTCR game, B1 outputs X as the target message together with the state
information St to be passed to B2 in the second stage of eTCR attack game. B2 gets the first key for the
compression function h denoted by Key which is selected uniformly at random by the challenger according to
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eTCR game. It outputs (Key′, X ′) as the second key and message to finish eTCR game. It can be seen from
the description of B that the distribution on key K = K1, · · · ,KN given to A2 is also uniform as expected
in eTCR game against LHh

IV . Now note that if A succeeds, there must be at least one index i ∈ {1, · · · ,m}
satisfying the two conditions (aforementioned conditions (1) and (2)) and as index j is selected at random
by B1 and independently from K, the probability that i matches to such an index is at least 1

n ≥
1
N . To

complete the proof note that in this case, B also succeeds, that is, we have (Key,X) 6= (Key′, X ′) and
h(Key,X) = h(Key′, X ′). This is seen from the way that messages X and X ′ are computed by algorithms
B1 and B2, noting that Kj = Key and K ′

j = Key′ and referring to the two aforementioned conditions.
Hence, if A succeeds with probability ε′ then B also succeeds with probability ε ≥ ε′

N . The time complexity
of B (denote by t) is that of A (denote by t′) plus the overhead Θ(N).

(
Th+n+b+k

)
by the above reduction,

where Th is the time for one computation of the compression function h. ut

The following theorem shows that the composition of a variable input length hash function which is
secure only in the equal-length eTCR sense with a compression function which is eTCR secure will yield a
variable input length hash function that is secure in eTCR sense.

Theorem 8 (From eTCR∗ to eTCR). Assume that H1 : {0, 1}k1 ×M→ {0, 1}n is (t1, ε1)-eTCR∗ hash
function and h : {0, 1}k2×{0, 1}n+b → {0, 1}n is (t2, ε2)-eTCR compression function, where b ≥ dlog2(|M |)e,
for any M ∈M. Then the composition function H : {0, 1}k1+k2×M→ {0, 1}n, defined as H(K1||K2,M) =
h(K2,H1(K1,M)|| 〈|M |〉b), will be (t, ε)-eTCR; where ε = ε1+2ε2, and t = min {t1 − k2, t2 − k1 − 2TH1 − 2b}.

Proof. Let A = (A1, A2) be a (t, ε)-breaking adversary against H, i.e. having time complexity t and
AdveTCR

H (A) = ε. The experiment defining the eTCR attack by A against H is as follows:

(M,State) $← A1();K1 $← {0, 1}k1 ;K2 $← {0, 1}k2 ; (M ′,K1′||K2′) $← A2(K1||K2,M, State) (8)

AdveTCR
H (A) is defined as the probability that, after running the above experiment in (8), the following

success event happens: H(K1||K2,M) = H(K1′||K2′,M ′) ∧ (K1||K2,M) 6= (K1′||K2′,M ′). Let x =
H1(K1,M) and x′ = H1(K1′,M ′). Let E1, E2, E3 be three events as follows:

– E1: A is successful AND |M | = |M ′| AND x = x′ AND K2 = K2′

– E2: A is successful AND |M | = |M ′| AND x = x′ AND K2 6= K2′

– E3: A is successful AND (|M | 6= |M ′| OR x 6= x′)

Clearly E1, E2, and E3 are three disjoint events, and their union is the event that A succeeds in the
eTCR attack against H. Let p1 = Pr[E1], p2 = Pr[E2], p3 = Pr[E3], where probabilities are under the
eTCR experiment as defined in (8). That is, we have AdveTCR

H (A) = p1 + p2 + p3. Therefore, we need to
bound p1, p2, and p3. To achieve this goal, using A as a subroutine, we show three adversaries B = (B1, B2),
C = (C1, C2), and D = (D1, D2): B can break H1 in equal-length eTCR sense (whenever E1 happens) and
has AdveTCR∗

H1
(B) = p1, C can break h in eTCR sense (whenever E2) happens and has AdveTCR

h (C) = p2,
and D can break h in eTCR sense (whenever E3 happens) and has AdveTCR

h (D) = p3. From our assumption
in the statement of the Theorem 8 hat H1 is (t1, ε1)-eTCR∗ and h is (t2, ε2)-eTCR, it must be the case
that AdveTCR

h (B) = p1 ≤ ε1, AdveTCR
h (C) = p2 ≤ ε2, AdveTCR

h (D) = p3 ≤ ε2, and hence, we have
AdveTCR

H (A) = p1 + p2 + p3 ≤ ε1 + 2ε2 as stated in the Theorem.
Now, we just need to show the algorithms for B = (B1, B2), C = (C1, C2) and D = (D1, D2). The

algorithms are as follows:
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Algorithm B1() Algorithm B2(K1,M, State)

(M,State) $← A1() K2 $← {0, 1}k2

return (M,State) (K1′||K2′,M ′) $← A2(K1||K2,M, State)
return (K1′,M ′)

Algorithm C1() Algorithm C2(K2, y, (M,State, K1))

(M,State) $← A1() (K1′||K2′,M ′) $← A2(K1||K2,M, State)

K1 $← {0, 1}k1 return (K2′, y)
x = H1(K1,M)
y = x|| 〈|M |〉b
return (y, (M,State, K1))

Algorithm D1() Algorithm D2(K2, y, (M,State, K1))

(M,State) $← A1() (K1′||K2′,M ′) $← A2(K1||K2,M, State)

K1 $← {0, 1}k1 x′ = H1(K1′,M ′)
x = H1(K1,M) y′ = x′|| 〈|M ′|〉b
y = x|| 〈|M |〉b return (K2′, y′)
return (y, (M,State, K1))

The analysis is straightforward. Consider the eTCR attack experiment as shown in (8) and the definition of
the events E1, E2, E3. We claim that whenever E1 happens, the adversary B = (B1, B2) becomes successful
in attacking H1. Note that when E1 happens |M | = |M ′| and hence B is an equal length eTCR attacker
against H1. To prove this claim, consider the definition of E1. Note that when A becomes successful in
eTCR attack against H = h◦H1, we have (K1||K2,M) 6= (K1′||K2′,M ′) and h(K2,H1(K1,M)|| 〈|M |〉b) =
h(K2′,H1(K1′,M ′)|| 〈|M ′|〉b). By definition of E1 we know that x = H1(K1,M) = H1(K1′,M ′) = x′ and
K2 = K2′, so the collision found by A must be an internal collision, i.e. a collision for H1 and so adversary
B = (B1, B2) which attacks H1 will be successful. That is, we have AdveTCR∗

H1
(B) = Pr[E1] = p1. The time

complexity of B is tB = t + k2 and this is at most t1 due to the assumption that H1 is (t1, ε1)-eTCR∗, that
is, t ≤ t1 − k2.

The analysis of success probability for the adversaries C and D which attack the eTCR property of the
outer function h in H = h◦H1 can be provided similarly, just by noting the definitions for E2 and E3 events
and the description of these adversaries.

Note that when E2 happens, we have h(K2, x|| 〈|M |〉b) = h(K2′, x|| 〈|M |〉b) (because A is successful)
and K2 6= K2′, hence adversary C becomes successful in eTCR attack against h as it outputs y = x|| 〈|M |〉b
in the first stage and (K2′, y) in the second stage. Hence (K2, y) 6= (K2′, y) and h(K2, y) = h(K2′, y) as
required for winning eTCR game against h. Therefore, we have AdveTCR

h (C) = Pr[E2] = p2. The time
complexity of C is tC = t+k1 +TH1 + b and this is at most t2 due to the assumption that h is (t2, ε2)-eTCR,
that is, t ≤ t2 − k1 − TH1 − b.

When E3 happens, we have h(K2, x|| 〈|M |〉b) = h(K2′, x′|| 〈|M ′|〉b) (because A is successful) and either
|M | 6= |M |′ or x 6= x′. Hence, adversary D becomes successful in eTCR attack against h as it outputs
y = x|| 〈|M |〉b in the first stage and (K2′, y′ = x′|| 〈|M ′|〉b) in the second stage. Hence (K2, y) 6= (K2′, y′)
(because y 6= y′) and h(K2, y) = h(K2′, y′) as required for winning eTCR game against h. Therefore, we
have AdveTCR

h (D) = Pr[E3] = p3. Therefore, we have AdveTCR
h (C) = Pr[E2] = p2. The time complexity of
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D is tD = t + k1 + 2TH1 + 2b and this is at most t2 due to the assumption that h is (t2, ε2)-eTCR, that is,
t ≤ t2 − k1 − 2TH1 − 2b.

Note that the bound t = min {t1 − k2, t2 − k1 − 2TH1 − 2b} in the statement of the Theorem satisfies all
the three bounds for t as required. ut

6 Conclusion

The invention of the Enhanced Target Collision Resistance (eTCR) property by Halevi and Krawczyk [12]
has been proven to be very useful to enrich the notions of hash functions, in particular with its application
to construct the Randomized Hashing mode which has been announced by NIST as Draft SP 800-106.
Nonetheless, the relationships between eTCR with the existing properties of hash functions need to be
further studied. In this paper, we compared the eTCR property with all of the seven security properties
for a hash function, formalized by Rogaway and Shrimpton in FSE 2004, and provided a full picture of
relationships between eTCR and each of the properties, namely CR, Sec, aSec, eSec, Pre, aPre and ePre,
where all these properties are considered formally for a dedicated-key hash function. Furthermore, when
considering the problem of eTCR property preserving domain extension, we found that the only eTCR
preserving method is a nested variant of LH which has a drawback of having high key expansion factor.
Therefore, it is interesting to design a new eTCR preserving domain extension in standard model, which is
efficient. We left this as an open problem in this paper.
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