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Preface

A number of variational problems recently under consideration involves integral functionals with

“free discontinuities” (according to a terminology introduced in [22]): the variable function u is

required to be smooth only outside a surface K, depending on u, and both u and K enter the

structure of the functional. Hence, a typical form is:

F (u,K) =

∫

Ω\K
φ(|∇u(x)|) dx +

∫

K∩Ω

f(|u+(x) − u−(x)|) dHn−1

where Ω is an open subset of R
n, K is a (n− 1)-dimensional compact set, |u+ − u−| is the jump

of u across K, while φ and f are given positive functions.

The natural weak formulation is obtained looking at K as the set of discontinuities of u,

thus working in spaces of functions allowing hypersurfaces of discontinuities, such as the space

BV (Ω) of functions of bounded variation.

The main difficulty in the actual minimization of F is the presence of the (n−1)-dimensional

integral: the need of suitable approximations (leading to the convergence of minimum points)

by means of more tractable functionals naturally arises. The method introduced in [10], when

φ(t) = t2 and f is constant, makes use of integral functionals whose density depends on the

average of the gradient on small balls. Here we apply this scheme to the case of φ with linear

growth at infinity.

The aforementioned weak formulation of F in BV (Ω) takes the form:

(1.1) F (u) =

∫

Ω

φ(|∇u(x)|) dx +

∫

Su

f(|u+(x) − u−(x)|) dHn−1 + c0|Dcu|(Ω)

where Du = ∇u dLn + |u+ − u−| dHn−1 +Dcu is the decomposition of the measure derivative

of u in its absolutely continuous, jump and Cantor part, respectively, and Su denotes the set of

discontinuity points of u. Assuming that φ is convex and f is concave, with

lim
t→+∞

φ(t)

t
= c0 = lim

t→0+

f(t)

t
,

it turns out that F is lower semicontinuous with respect to the L1-topology. Notice that if φ has

superlinear growth at infinity then c0 = +∞ and F (u) is finite only if Du has no Cantor part

(i.e. u belongs to the so called space of special functions with bounded variation). The well-known
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Mumford-Shah functional falls within this case:

∫

Ω

|∇u(x)|2 dx + Hn−1(Su) .

As pointed out in [10], it is not possible to obtain a variational approximation of F by usual

integral functionals of the form

Fε(u) =

∫

Ω

fε(∇u(x)) dx

on Sobolev spaces; indeed, passing to the lower semicontinuous envelopes, this would lead to a

convex limit, which contrasts with the non-convexity of F .

Heuristic arguments suggest that to get around the difficulty we have to prevent the con-

sideration or the optimality of approximation gradients which are “too high” (with respect to

1/ε), or to prevent that the effect of “high” gradients is concentrated on “small” regions. Several

approximation methods (which are briefly presented in Chapter II) fit this requirements: see,

e.g., the case where the functionals Fε are restricted to finite elements spaces on regular trian-

gulations of size ε ([7],[13],[26]); or the implicit constraint on the gradient through the addition

of a higher order penalization ([1],[3],[25]); or the study of non-local models, where the effect of

a “high” gradient is “spread” onto a set of size ε: this is the method which was first applied to

the Mumford-Shah functional in [10] (see also [9],[14],[15],[17],[18]).

In Chapter III we investigate, in the one-dimensional case, the application of the method of

the average of the gradient to the approximation of functionals with linear growth of the form

(1.1); the extension to n dimensions (when φ(t) = t) will be studied in Chapter IV.
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Chapter I

Preliminaries

Let n ≥ 1 be a fixed integer. The scalar product of x, y ∈ R
n is denoted by 〈x, y〉 and the

euclidean norm by |x|. The open ball with centre x and radius r is indicated by Br(x); the

boundary of the unit ball B1(0) is denoted by Sn−1. The Lebesgue measure and the (n − 1)

dimensional Hausdorff measure of a Borel set B ⊆ R
n are denoted by |B| (or Ln(B)) and

Hn−1(B), respectively. Given Ω open subset of R
n, A(Ω) denotes the family of all open subsets

of Ω; B(Ω) denotes the family of all Borel subsets of Ω. We use standard notations for Lebesgue

spaces Lp(Ω) and Sobolev spaces W 1,p(Ω).

1.1 Some basic tools in measure theory

The aim of this section is to recall some basic results of measure theory, as Radon-Nikodym’s The-

orem, Besicovitch’s differentation Theorem, and approximate continuity of L1-functions. Let’s

start with the well known Radon-Nikodym Theorem:

Theorem 1.1.1 (Radon-Nikodym) Let µ be a σ-finite positive measure and ν a real or vector

measure on a measure space (X, E). Then there is a unique pair of R
m-valued measures νa and νs

such that νa ≪ µ, νs ⊥ µ and ν = νa+νs. Moreover, there is a unique function f ∈ [L1(X,µ)]m

such that νa = fµ. The function f is called the density of ν with respect to µ and is denoted by

ν/µ.

The representation of the function f of the previous Theorem is given by the derivation Theorem:

Theorem 1.1.2 (Besicovitch) Let µ be a positive Radon measure in an open set Ω ⊆ R
n, and

ν an R
m-valued Radon measure. Then, for µ-a.e. x in the support of µ the limit

f(x) := lim
̺→0+

ν(B̺(x))

µ(B̺(x))

exists in R
m and moreover the Radon-Nikodym decomposition of ν is given by ν = fµ+νs, where

νs = ν E and E is the µ-negligible set

E = (Ω \ supp(µ)) ∪
{

x ∈ supp(µ) : lim
̺→0+

|ν|(B̺(x))
µ(B̺(x))

= +∞
}

.
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10 CHAPTER I. PRELIMINARIES

A consequence of the derivation Theorem is the theory of approximate discontinuity points and

approximate jump points of an L1-function. If ν is a unit vector in R
n, we split any ball B̺(x)

into the two halves B+
̺ (x, ν) = {y ∈ B̺(x) : 〈y − x, ν〉 > 0} and B−

̺ (x, ν) = {y ∈ B̺(x) :

〈y − x, ν〉 < 0}.
Let Ω be an open subset of R

n.

Definition 1.1.3 Let u ∈ L1
loc(Ω) and x ∈ Ω.

We say that u has approximate limit at x if there exists z ∈ R such that:

lim
̺→0+

∫

B̺(x)

|u(y) − z| dy = 0.

The set Su where this property fails is called approximate discontinuity set of u. We say that x

is an approximate jump point of u if there exist a, b ∈ R and ν ∈ R
n with |ν| = 1, such that

a 6= b and

(1.1) lim
̺→0+

∫

B+
̺ (x,ν)

|u(y) − a| dy = 0, lim
̺→0+

∫

B−
̺ (x,ν)

|u(y) − b| dy = 0.

The set of approximate jump points of u is denoted by Ju.

The vector z is uniquely determined for any point x ∈ Ω \Su and is called the approximate limit

of u at x and denoted by ũ(x). The triplet (a, b, ν), which turns out to be uniquely determined

up to a permutation of a and b and a change of sign of ν, is denoted by (u+(x), u−(x), νu(x)).

On Ω \ Su we set u+ = u− = ũ.

Proposition 1.1.4 Let u ∈ L1
loc(Ω); then Su is a Ln-negligible Borel set, Ju is a Borel subset

of Su and there exist Borel functions

u+(x), u−(x), νu(x) : Ju → R × R × Sn−1

such that (1.1) holds for every x ∈ Ju.

Before concluding this section, we show a very useful tool, which, in the sequel, we shall apply

several times. This is known as the Lemma of “sup of measures” (see, e.g., [2]).

Lemma 1.1.5 (sup of measures) Let λ be a positive σ-finite Borel measure in Ω; let µ : A(Ω) →
R be a superadditive set function and let (ψi)i∈I be a family of positive Borel functions. Suppose

µ(A) ≥
∫

A

ψi(x)dλ

for every A ∈ A(Ω) and i ∈ I; then

µ(A) ≥
∫

A

sup
i
ψi(x)dλ

for every A ∈ A(Ω).
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Proof. We have, by the regularity of the measures ψiλ,

∫

A

ψdλ = sup

{

k
∑

i=1

∫

Bi

ψidλ : (Bi) Borel partition of A, k ∈ N

}

=

sup

{

k
∑

i=1

∫

Ki

ψidλ : (Ki) disjoint compact subsets of A, k ∈ N

}

=

sup

{

k
∑

i=1

∫

Ai

ψidλ : (Ai) disjoint open subsets of A, k ∈ N

}

≤ µ(A),

that is the thesis.

1.2 Functions of bounded variation

For a thorough treatment of BV functions we refer to [5].

Let Ω be an open subset of R
n. We recall that the space BV (Ω) of real functions of bounded

variation is the space of the functions u ∈ L1(Ω) whose distributional derivative is representable

by a measure in Ω, i.e.,
∫

Ω

u(x)
∂ϕ

∂xi
(x) dx = −

∫

Ω

ϕ(x) dDiu, for every ϕ ∈ C∞
c (Ω) and i = 1, . . . , n

for some Du = (D1u, . . . , Dnu) Radon measure on Ω. The Sobolev space W 1,1(Ω) is contained

in BV (Ω); indeed for any u ∈ W 1,1(Ω), the distributional derivative is given by the measure

∇uLn. This inclusion is strict; for example the Heaviside’s function χ(0,+∞) is a BV -function,

with Du singular with respect to Ln. The general structure of derivative of BV -functions is

given by the Federer-Vol’pert Theorem:

Theorem 1.2.1 (Federer-Vol’pert) For any u ∈ BV (Ω) the set Su is countably (n − 1)-

rectifiable and Hn−1(Su \ Ju) = 0. Moreover, Du Ju = (u+ − u−)νuHn−1 Ju, and νu(x)

gives the approximate normal direction to Ju for Hn−1-a.e. x ∈ Ju.

In general, the singular part of Du with respect to Ln is not concentrated on Ju. Let’s denote by

Dcu the part of Du, singular with respect to Ln, and concentrated on Ω\Su; Dcu is the cantorian

part of Du. It turns out that Du vanishes on Hn−1-negligible sets; then, from Federer-Vol’pert

Theorem

Du = ∇uLn + (u+ − u−)νuHn−1 Ju +Dcu.

The space SBV (Ω) of special functions of bounded variation can be defined as the space of the

functions u ∈ BV (Ω) such that the singular part of their derivative with respect to the Lebesgue

measure Ln is given by (u+ − u−)νuHn−1 Ju. For such u, denoting by ∇u the density of the

absolutely continuous part of Du, we have:

(2.1) Du = ∇uLn + (u+ − u−)νuHn−1 Ju.
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BV -functions are limits of bounded sequences of W 1,1-functions. Then it is natural to have the

following compactness Theorem in BV -space:

Theorem 1.2.2 Every sequence (uh) ⊂ BV (Ω) satisfying

sup
h∈N

{∫

A

|uh(x)|dx + |Duh|(A)

}

< +∞

for every A ⊂⊂ Ω, admits a subsequence converging in L1(Ω).

A very useful tool in the treatment of variational convergence of integral functionals, is the

following slicing result by Ambrosio (see [4]). The basic idea is another way to look at derivatives

of BV -functions, based on one-dimensional sections. We introduce, first, some notation. Let

ξ ∈ Sn−1, and let
∏

ξ := {y ∈ R
n : 〈y, ξ〉 = 0} be the linear hyperplane orthogonal to ξ. If

y ∈ ∏ξ and Ω ⊆ R
n, we define Ωξ,y = {t ∈ R : y + tξ ∈ Ω} and Ωξ,y = {x ∈ Ω : x = y + tξ}.

Moreover, if u : Ω → R we set uξ,y : Ωξ,y → R by uξ,y(t) = u(y + tξ).

Ω
y + tξ

Ωξ,y
∏

ξ

y

ξ

O

Theorem 1.2.3 Let u ∈ BV (Ω). Then, for all ξ ∈ Sn−1 the function uξ,y belongs to BV (Ωξ,y)

for Hn−1-a.e. y ∈∏ξ. For such y we have

u′ξ,y(t) = 〈∇u(y + tξ), ξ〉, for a.e. t ∈ Ωξ,y

Suξ,y
= {t ∈ R : y + tξ ∈ Su}.

Moreover we have
∫

Q

ξ

|Dcuξ,y|(Aξ,y)dHn−1(y) = |〈Dcu, ξ〉|(A)

for all A ∈ A(Ω), and for all Borel functions g

∫

Q

ξ

∑

t∈Suξ,y

g(t)dHn−1(y) =

∫

Su

g(x)|〈νu, ξ〉|dHn−1.
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Conversely, if u ∈ L1(Ω) and for all ξ ∈ (e1, . . . , en) and for a.e. y ∈ ∏ξ, uξ,y ∈ BV (Ωξ,y) and

∫

Q

ξ

|Duξ,y|(Ωξ,y)dHn−1(y) < +∞,

then u ∈ BV (Ω).

The slicing Theorem is a basic tool for the proof of the lower bound of the Γ-limit in the n-

dimensional case, if it is known the lower bound in the one-dimensional case.

As to the proof of the upper bound, by definition of Γ-convergence (see section 1.4 below) it

sufficies to compute the limit of the approximating functionals on a particular choice of appro-

ximating functions. Then it is necessary to have some density results. Here, we recall this useful

density result, which can be found in [16].

Let Ω a bounded open set in R
n; denote with W(Ω) the space of all functions w ∈ SBV (Ω)

satisfying the following properties:

(i) Hn−1(S̄w \ Sw) = 0

(ii)S̄w is the intersection of Ω with the union of a finite member of pairwise disjoint (n − 1)

dimensional simplexes;

(iii) w ∈ W k,∞(Ω \ S̄w) for every k ∈ N.

Theorem 1.2.4 Let u ∈ SBV 2(Ω)∩L∞(Ω). Then there exists a sequence wj ∈ W(Ω) such that

wj → u strongly in L1(Ω), ∇wj → ∇u strongly in L2(Ω,Rn), lim suph ||wj ||∞ ≤ ||u||∞ and

lim sup
j→+∞

∫

Swj

φ(w+
j , w

−
j , νwj )dHn−1 ≤

∫

Su

φ(u+, u−, νu)dHn−1

for every upper semicontinuous function φ such that φ(a, b, ν) = φ(b, a,−ν) for every a, b ∈ R

and for every ν ∈ Sn−1.

Finally, we recall the fundamental properties of the space GBV (Ω) of generalized functions

of bounded variation. This is the space of all functions u ∈ L1(Ω) whose truncations uT :=

(u ∧ T ) ∨ (−T ) are in BV (Ω), for every T > 0. For such function we can define

Su :=
⋃

T>0

SuT ,

and the approximate gradient and the traces u± as the limits of the corresponding quantities

defined for uT . Moreover, we define the measure

|Dcu|(B) := sup
T>0

|DcuT |(B) = lim
T→+∞

|DcuT |(B)

for every B Borel subset of Ω. It turns out that, even for GBV -functions, Hn−1(Su \ Ju) = 0.
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1.3 Functionals defined on BV

In this section we recall some results about a class of isotropic and translation invariant integral

functionals defined on BV (Ω), of the form

F (u) =

∫

Ω

φ(|∇u(x)|)dx +

∫

Su

f(|u+(x) − u−(x)|)dHn−1 + c0|Dcu|(Ω)

Let us recall a lower semicontinuity result for F in the L1-topology.

Definition 1.3.1 We say that a sequence (uh) ∈ BV (Ω) weakly∗ to u ∈ BV (Ω), if uh → u in

L1(Ω), and Duh → Du weakly∗, i.e.

lim
h→+∞

∫

Ω

φ(x)dDuh =

∫

Ω

φ(x)dDu, ∀φ ∈ Cc(Ω).

Notice that uh weakly∗ converge to u if and only if uh converge to u in L1(Ω) and uh is bounded

in BV (Ω) (see [5] Proposition 3.13).

Theorem 1.3.2 Let φ : [0,+∞) → [0,+∞] be an increasing, lower semicontinuous and con-

vex function, let f : (0,+∞) → [0,+∞] be an increasing, lower semicontinuous and subadditive

function and c0 ∈ [0,+∞]. If

lim
t→+∞

φ(t)

t
= c0 = lim

t→0+

f(t)

t

then the functional F is sequentially weakly∗-lower semicontinuous in BV (Ω).

Remark 1.3.3 In case f is concave, it is easy to deduce a lower semicontinuity result with

respect to the L1-topology. Indeed, if uh → u in L1(Ω) and uTh = (uh ∧ T ) ∨ (−T ), then (uTh ) is

bounded in BV (Ω) if (F (uh)) is a bounded sequence (just notice that f(t) ≥ cM t on [0,M ] for

a suitable cM > 0).

Let us now quote an important relaxation result for functionals F as above, which can be easily

obtained from result contained in [6] (see also [2]). Here F̄ denote the largest l.s.c. functional

smaller than F .

Theorem 1.3.4 Let φ : R → [0,+∞) be a convex lower semicontinuous function with φ(0) = 0;

let f : R → [0,+∞) be a subadditive and locally bounded function such that

lim
t→+∞

φ(t)

t
= lim

t→0

f(t)

t
= c0.

Consider the functional F : BV (Ω) → [0,+∞] defined by

F (u) =















∫

Ω

φ(|∇u(x)|)dx +

∫

Su

f(|u+(x) − u−(x)|)dHn−1

u ∈ SBV 2(Ω) ∩ L∞(Ω),Hn−1(Su) < +∞
+∞ otherwise.

Then the relaxed functional F̄ of F on BV (Ω) with respect to the L1-topology is given by

F̄ (u) =

∫

Ω

φ(|∇u(x)|)dx +

∫

Su

f(|u+(x) − u−(x)|)dHn−1 + c0|Dcu|(Ω).
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1.4 Γ-convergence

For the general theory see [19]. Let (X, d) be a metric space. Let (Fj)j∈N be a sequence of

functions X → R. We say that (Fj) Γ-converges, as j → +∞, to F : X → R if for all u ∈ X we

have:

i) (lower semicontinuity inequality) for every sequence (uj) converging to u

F (u) ≤ lim inf
j→+∞

Fj(uj);

ii) (existence of a recovery sequence) there exists a sequence (uj) converging to u such that:

F (u) ≥ lim sup
j→+∞

Fj(uj);

The lower and upper Γ-limits of (Fj) are defined as

F ′(u) = inf
{

lim inf
j→+∞

Fj(uj) : uj → u
}

,(4.1)

F ′′(u) = inf
{

lim sup
j→+∞

Fj(uj) : uj → u
}

,(4.2)

respectively.

We extend this definition of convergence to families depending on a real parameter. Given

a family (Fε)ε>0 of functions X → R, we say that it Γ-converges, as ε → 0, to F : X → R if for

every positive infinitesimal sequence (εj) the sequence (Fεj ) Γ-converges to F .

If we define the lower and upper Γ-limits of (Fε) as

F ′(u) = inf
{

lim inf
ε→0

Fε(uε) : uε → u
}

,(4.3)

F ′′(u) = inf
{

lim sup
ε→0

Fε(uε) : uε → u
}

,(4.4)

respectively, then (Fε) Γ-converges to F if and only if

F ′(u) = F ′′(u) = F (u) for every u ∈ X .

Both F ′ and F ′′ are lower semicontinuous on X . In the estimate of F ′ we shall use the following

immediate consequence of the definition:

F ′(u) = inf
{

lim inf
j→+∞

Fεj (uj) : εj → 0+, uj → u
}

.(4.5)

It turns out that the infimum is attained.

The most important consequence of definition of Γ-convergence is represented by the The-

orem of convergence of minima (see [19] Corollary 7.20):

Theorem 1.4.1 Let Fj : X → R̄ be a sequence of functions which Γ-converge to some F : X →
R̄; let infy∈X Fj(y) > −∞ for every j ∈ N. Let xj ∈ X and let εj be a positive infinitesimal

sequence, such that

Fj(xj) ≤ inf
y∈X

Fj(y) + εj;
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(xj is called an εj-minimizer for Fj). Assume that xj → x for some x ∈ X. Then x is a

minimum point of F , and

F (x) = lim
j→+∞

Fj(xj).



Chapter II

Free discontinuity functionals and

their variational approximation

2.1 Free discontinuity problems: some examples

Many variational problems can be formulated and studied in spaces of functions of bounded

variation. The space BV appears as the natural setting to study variational models where

both volume and surface energy densities have to be taken into account. The terminology “free

discontinuity problems” was introduced by E. De Giorgi in [22] to indicate the class of variational

problems that consist in the minimization of a functional, involving both a volume and a surface

energy, depending on a closed set K and a function u usually smooth outside K. Notice that K

is not fixed a priori. Here are some examples of free discontinuity problems.

Example 2.1.1 Sets with prescribed mean curvature.

Consider the problem

min
E⊆Rn

{∫

E

g(x)dx + Hn−1(∂E)

}

where g ∈ L1(Rn) is given. Let’s compute the first variation; if g is continuous at a regular point

x ∈ ∂E, and E minimizes the functional, then the equation

H(x) = g(x)νE(x)

holds, where H is the mean curvature vector of ∂E and νE is the outer normal to E. This

problem has been dealt with in the classical framework of sets of finite perimeter.

Example 2.1.2 The Mumford-Shah image segmentation problem.

The most famous example of free discontinuity problem is the minimization of the Mumford-Shah

functional

MS(u,K) = α

∫

Ω\K
|∇u(x)|2dx + βHn−1(K ∩ Ω) + γ

∫

Ω\K
|u(x) − g(x)|2dx

17
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where K ⊆ Ω closed, u ∈ C1(Ω \K); here Ω is a bounded open set in R
n, α, β, γ > 0 are fixed

parameters, and g ∈ L∞(Ω). This problem involves two classical objects: the Dirichlet integral

and the area functional. Minimizing MS by the direct methods of the Calculus of Variations is

not easy, because there is no topology on the closed sets which ensures compactness of minimizing

sequences and lower semicontinuity of the Hausdorff measure. It is possible to give a meaningful

weak formulation of the functional MS in SBV , setting, for u ∈ SBV (Ω):

F (u) =

∫

Ω\Su

(

|∇u(x)|2 + α|u(x) − g(x)|2
)

dx+ βHn−1(Su).

The existence of minimizers of F in SBV does not lead immediately to a minimizing pair for

MS, because in generale Su is not closed, and its closure may be even the whole of Ω. Some

work is needed to show that the closure of Su for minimizers is not much larger than Su. The

key point of the theory developed in [20] is then to prove that if u is a minimizer, for any x ∈ Su

and any ball B̺(x) ⊆ Ω with ̺ small enough, the following density lower bound holds:

(1.1) Hn−1(Su ∩B̺(x)) ≥ ϑ0̺
n−1

where ϑ0 = ϑ0(n) is a strictly positive dimensional constant. This estimate has a number

of interesting consequences, but the information which can be deduced immediately is that if

u ∈ SBV (Ω) and (1.1) holds, then

Hn−1(Ω ∩ S̄u \ Su) = 0.

At this point, it is not hard to show that u has a representative ũ ∈ C1(Ω \ S̄u) and that the

pair (ũ, S̄u) is minimizing for the functional MS.

Example 2.1.3 Connections with plasticity theory.

Let φ : R → [0,+∞) be a convex function, and f : (0,+∞) → (0,+∞) be a strictly subadditive

function. The functional

F (u) =

∫ l

0

φ(u′(t))dt +
∑

t∈Su

f(u+(t) − u−(y)),

for u ∈ SBV (0, l), has recently been studied in [11] in connexion with the elastic properties of a

bar.

Example 2.1.4 Brittle fracture.

Let Ω ⊆ R
3 be the reference configuration of an elastic body possibly subject to fracture, and

u : Ω → R
3 be the deformation. In fracture mechanics, one has to take into account both the bulk

energy densities relative to the elastic deformation outside the fracture, and the energy necessary

to produce the crack. If the material is hyperelastic and brittle, i.e. the elastic deformation

outside the fracture can be modelled by an elastic energy density independent of the crack, it
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is possible to study the existence of equilibria by minimizing a suitable functional subject to

boundary conditions. Different models have been proposed; for example, in the isotropic case,

F (u,K) =

∫

Ω\K
W (∇u(x))dx +

∫

K

f(|u+(x) − u−(x)|)dHn−1(x)

with c1|z|p ≤W (z) ≤ c2(1 + |z|p) for any 3× 3 matrix z, for some p > 1, and f(t) → 0 as t→ 0.

F can be extended to SBV functions, giving rise to a functional of the form

∫

Ω

φ(x, u(x),∇u(x))dx +

∫

Ju

f(u+(x), u−(x), ν(x))dHn−1(x)

for u ∈ SBV (Ω).

2.2 Variational approximation

Even though a general existence theory is by now available, exact computation of solutions of free

discontinuity problems can be very rarely performed. Hence, the computation of approximate

solutions of free discontinuity problems is a crucial issue in the applications. Let us review both

the approximation problem for free discontinuity functionals and one of the settings where linear

functionals arise.

2.2.1 Approximation of the Mumford-Shah functional

The classical weak formulation of this functional is in a space of functions u allowing (n − 1)-

dimensional sets Su of discontinuity (the free set K of discontinuity):

MS(u) = α

∫

Ω

|∇u(x)|2dx+ βHn−1(Su) + γ

∫

Ω

|u(x) − g(x)|2dx

for u ∈ SBV (Ω). What makes the minimization of the Mumford-Shah functional very difficult

is the presence of the surface term; thus, the need of a suitable approximation (leading to the

convergence of minimum points) naturally arise. A first heuristic consideration suggests to use,

as approximating functionals, energies of the form:

Fε(u) =

∫

Ω

fε(|∇u(x)|)dx +

∫

Ω

|u(x) − g(x)|2dx

in Sobolev spaces, where fε(t) → t2 and εfε(t/ε) → β (the energy of a linear function and the

energy of a jump of unit length, respectively) as ε→ 0. One possible choice is

fε(t) =
1

ε
f(εt2),

where f satisfy the conditions

lim
t→0

f(t)

t
= 1 and lim

t→+∞
f(t) = β.

Take, for instance, f(t) = t ∧ β:
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1

f(t) = t ∧ β

t

For the sequel, take, moreover, β = 1. In the one dimensional setting, the approximation of a

linear function uξ(x) = ξx can be done by piecewise functions uε with gradient 0 or tε, with

tε → +∞.

grad= tε

uε
uξ

0

∼ ε
∼ γεε

1 1

1

1/ε

1/ε
εf(εt2)

f(t) = t ∧ 1

ξ tε = 1/γε

Hence, setting γε = 1/tε, we obtain (in the assumption ξ = 1)

∫ 1

0

fε(|u′ε(x)|)dx = (1 − γε)
1

ε
f(0) + γε

1

ε
f(εt2ε) = γε

1

ε
f

(

ε

γ2
ε

)

→ 0

whenever γε = o(ε). Thus this type of approximation does not work, because the energy of linear

function would be 0 (this, as the figure above suggests, is the value at ξ of the convex envelope

of the integrand function). In fact it is not possible to obtain a variational approximation of

MS, leading to the convergence of minimum points, by means of local integral functionals of the

form:
∫

Ω

fε(|∇u(x)|)dx +

∫

Ω

|(u(x) − g(x)|2dx

defined on the Sobolev space W 1,2(Ω). Indeed, if such an approximation existed, the functional

MS would also be the variational limit of the convex functionals obtained by considering the

convex envelope of fε, in contrast with the lack of convexity of MS.

Suitable modifications of the above setting (in order to obtain an approximation of the

Mumford-Shah functional) aim to prevent the consideration or the optimality of gradients which

are “too large” with respect to 1/ε or to prevent that the effect of “large” gradients is concentrated

on “small” regions. The latter is the fundamental idea of the method of the average of the
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gradients, applied by A.Braides and G.Dal Maso in [10]. They consider approximations of the

form

Eε(u) =
1

ε

∫

Ω

f

(

ε

∫

Bε(x)∩Ω

|∇u(y)|2dy
)

dx

defined for u ∈ W 1,2(Ω), where f is a suitable continuous, non-decreasing and bounded function.

These functionals are non-local in the sense that their energy density at a point x ∈ Ω depends

on the behaviour of u in the whole set Bε(x) ∩ Ω. In this case, the phenomenon previously

considered of the convex envelope of the integrand function does not appear; indeed, the effect

of high gradients is spread onto a region of size ε. If u is a linear function of gradient ξ, then

1

ε

∫ 1

0

f

(

ε

∫

(x−ε,x+ε)∩(0,1)

|u′(y)|2dy
)

dx→ f ′(0)|ξ|2.

Otherwise if we approximate a jump s with a piecewise affine function uε with gradient 0 or

tε = s/o(ε) around the jump point, then we obtain

1

ε

∫ 1

0

f

(

ε

∫

(x−ε,x+ε)∩(0,1)

|u′ε(y)|2dy
)

dx→ 2f∞

where

f∞ = lim
t→+∞

f(t).

This suggests that the Γ-limit must be of the Mumford-Shah type (the proof is given in [10]).

Following a technique which is frequently used in Γ-convergence, they localize the problem and

considering, for every open set A ⊆ Ω, the functionals

Fε(u,A) :=
1

ε

∫

A

f

(

ε

∫

Bε(x)∩Ω

|∇u(y)|2dy
)

dx.

A crucial point is to prove that if νu is the unit normal to Su, then, if F denote the Γ-limit,

F (u,A) ≥
∫

A

|∇u(x)|2dx,

F (u,A) ≥
∫

Su∩A
|〈νu(x), ξ〉|dHn−1.

for every u ∈ SBV (Ω) ∩ L∞(Ω), for every open set A ⊆ Ω, and for every ξ ∈ R
n with |ξ| = 1.

From these estimates the inequality

F (u,A) ≥
∫

Ω

|∇u(x)|2dx + Hn−1(Su)

follows exploiting the superadditivity of the set function F (u, ·). The converse inequality is

proved using a standard density argument based on the density in SBV (Ω) of the functions

u ∈ SBV (Ω) ∩ L∞(Ω) with

Hn−1(Su) = lim
ε→0

1

2ε
| {x ∈ R

n|d(x, Su) < ε} |.
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More generally in [14] the author considers approximating functionals of the form

Gε(u,A) =
1

ε

∫

A

fε (εgε(y,∇u(y))ψε(x− y)dy) dx,

where fε are non decreasing concave functions with equibounded derivatives at 0, and gε satisfy

standard growth conditions; while ψε is a family of convolution kernels. The main result of

this work is an integral representation theorem for a L1-lower semicontinuous functional which

are local measures and satisfies some growth conditions. This Theorem is then applied on the

Γ-limit of the sequence Fε, and furnishes an integral representation of the Γ-limit. Next, the

author prove that the bulk energy density appearing in the expression of the represented Γ-limit

can indeed be characterized under slightly stronger assumption; it turns out that this density

depends, in some sense, on the behaviour of the sequence gε. The surface density of the limit

depends, in general, not only on gε, but also on fε and ψε. Non trivial examples which show

the dependence of the surface density on ψε can be deduced from the results in [18], where an

explicit formula for the density is given under the assumption that the family (fε) contains one

function only. For this general approach, other details can be found in [15] and [17].

Another type of approximation is given by a finite difference scheme. The idea is the same

of the method of the average of the gradients previously considered, i.e. to prevent the effect of

high gradients. But in this case, the average of the gradient is replaced by a finite difference;

more precisely, in [24], the authors consider approximations of the form

Fε(u) =

∫

Ω

ϕε

( |u(x+ ε) − u(x)|
ε

)

dx.

These are again non-local functionals. The convergence is first proved in the one-dimensional

case, and is then extended, by a standard slicing argument, to the n-dimensional case. The main

step is to show that

lim inf
n→+∞

Fεn(un) ≥ F̄ϕ,ψ(u)

for every u ∈ L1
loc(R), every εn → 0, and every sequence un → u in L1

loc(R), where

Fϕ,ψ(u) =

∫

Ω

ϕ(|∇u(x)|)dx +

∫

Su

ψ(|u+(x) − u−(x)|)dHn−1,

ϕ is the lower Γ-limit of ϕε, and ψ is the lower Γ-limit of ϕε(·/ε). The result is very strong:

indeed, in such way we obtain an approximation result for functionals with linear or superlinear

growth in the gradient. For this type of approximation, see moreover [12] [21] [23] [24].

The methods of average of the gradients or finite difference are not the only methods to

approximate the Mumford-Shah functional; as mentioned above methods were proposed to pre-

vent the consideration or the optimality of approximation gradients which are “too high”. For

instance, a suitable penalization of the second derivative can produce the desired effect; in [1]

the authors consider, in the one dimensional setting, functionals of the form

Fε(u) =







1

ε

∫

I

f(ε|u′(t)|2)dt+ ε3
∫

I

|u′′(t)|2dt u ∈W 2,2(I)

+∞ otherwise
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where I is a bounded interval in R and f is a lower semicontinuous increasing function with finite

derivative at 0 and bounded at +∞.

The main result is given by the computation of the Γ-limit of the family Fε. It turns out

that (Fε) Γ-converge to F in the L1-topology, where

F (u) =







α

∫

I

|u′(t)|2dt+m(β)
∑

t∈Su

√

|u+(t) − u−(t)| u ∈ SBV (I)

+∞ otherwise

with α, β and m(β) positive constant depends on f . The main step in the proof of this conver-

gence result is to show that if uε is a bounded family in L1 satisfying supε Fε(uε) < +∞, then

there exists a family (vε) in SBV (I) which is near to uε in L1, and such that

a

∫

I

|v′ε(t)|2dt =
1

ε

∫

I

f(ε|u′ε(t)|2)dt

and
∑

t∈Svε

√

|v+
ε (t) − v−ε (t)| ≤ sup

ε
Fε(uε)/m(β).

The second one is the fundamental estimate which allows to obtain a lower bound for the lower

Γ-limit, and it follows from an optimal profile problem, which has a non trivial solution 0 thanks

to the term

ε3
∫

I

|u′′ε (t)|2dt.

By using a slight variation of this main result, the authors show that it is possible to approximate

the Mumford-Shah functional, too.

In the paper [3], the authors generalize the previous result to the n-dimensional case, by using

standard slicing technique to obtain the lower bound for the Γ-limit; a non trivial computation

and classical density results furnish the upper bound and conclude the proof. A more general

treatment of this arguments can be found in [25], where the author investigate the extension of

the previous results for functional of the form

1

ε

∫

Ω

f(
√
ε|∇u(x)|)dx + r(ε)

∫

Ω

||∇2u(x)||2dx

where r(ε) is a function which vanishes as ε→ 0+.

Another method for approximation is based on a restriction of the space of the possible

approximating functions uε; an example is the use of finite elements. Consider the functional

1

ε

∫

Ω

f(ε|∇u(x)|2)dx +

∫

Ω

|u(x) − g(x)|2dx

only on the space Vε(Ω) which is the union of all the finite element spaces of continuous and

piecewise affine functions on triangulations with the following property (for simplicity, in the

case n = 2): for each element T the length of the edges is of order ε and the amplitude of the

internal angles is not less than a fixed value ϑ:
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∼ ε

∼ ε

∼ ε

> ϑ

> ϑ

> ϑ

In this conditions we have Γ-convergence to the Mumford-Shah functional. Results in this order

of ideas are contained in [7] [13] [26] [27] [28].

2.2.2 Functionals with linear growth

Let us recall the well know Ambrosio-Tortorelli elliptic approximation for Mumford-Shah Func-

tional:

AT (u, v) = α

∫

Ω

(

(1 − v(x))2|∇u(x)|2 +
β

2

(

ε|∇v(x)|2 +
v(x)2

ε

)

+ γ|u(x) − g(x)|2
)

dx.

Then the term H1(K ∩ Ω) in the Mumford-Shah functional is here replaced by a continuous

variable v.

The key idea is that if K is a fixed curve in Ω and vε minimizes

Gε(v) =
1

2

∫

Ω\K

(

ε|∇v(x)|2 +
v(x)2

ε

)

dx

with v = 1 on K, then

Gε(vε) → H1(K).

Values of vε range from 0 to 1. In the framework of image segmentation vε may be viewed as a

blurring of K with ε as “blurring radius”.

A drawback of this method is the difficulty of recovering the actual boundaries from the

edge-strength function v (indeed, global thresholding of v does not produce a satisfactory repre-

sentation). The alternative method of shape recovery by curve evolution is based on the following

idea: let Γ be a simple closed curve; in order to move Γ to where the image intensity gradient

and hence v are high, we look for the stationary points of the functional
∫

Γ

(1 − v)2ds

where s denotes the arc length along Γ. In order to implement the evolution of Γ, assume that Γ is

embedded in a surface f0 : Ω → R as a level curve. Let f(t, x, y) denote the evolving surface such

that f(0, x, y) = f0(x, y). Then, in order to let all the level curves of f0 evolve simultaneously,

consider the functional
∫ +∞

−∞

∫

Γc

(1 − v)2dsdc
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where Γc = {(x, y) : f(t, x, y) = c}; by the coarea formula

∫ +∞

−∞

∫

Γc

(1 − v)2dsdc =

∫

Ω

(1 − v)2|∇f(x, y)|dxdy.

Hence we arrive at the functional

Eε(u, v) =

∫

Ω

(

(1 − v(x))2|∇u(x)| + ε|∇v(x)|2 +
v(x)2

ε
+ γ|u(x) − g(x)|2

)

dx

proposed by J.Shah as a segmentation model (J. Shah, IEEE Conf. Comp. vision and Pattern

Rec., 1996).

It can be proved ([2]) that Eε converges to:

F (u) + β

∫

Ω

|u(x) − g(x)|dx

where

F (u) =

∫

Ω

|∇u(x)|dx +

∫

Su

|u+(x) − u−(x)|
1 + |u+(x) − u−(x)|dH

1 + |Dcu|(Ω).

Then functionals with linear growth arise as segmentation models; the natural question is if,

even in this case, there exists approximations by functionals defined in Sobolev spaces, of the

same type than for Mumford-Shah.



Chapter III

The one-dimensional case

3.1 Setting of the problem and main results

Let (a, b) be an open interval of R and consider the functional F : L1(a, b) → [0,+∞] defined as

follows:

F (u) =



























∫ b

a

φ(|u′(x)|)dx +
∑

x∈Su

f
(

|u+(x) − u−(x)|
)

+ c0|Dcu|(a, b)

if u ∈ GBV (a, b),

+∞ otherwise,

where φ, f : [0,+∞) → [0,+∞) satisfy the following conditions:

(A0) φ is convex and f is concave, with φ(0) = f(0) = 0 and there exists c0 ∈ R, with c0 > 0,

such that

lim
t→+∞

φ(t)

t
= lim

t→0

f(t)

t
= c0.

For example, as a choice for the applications:

yy

f

y = c0t

tt

φ

1

y = c0t− γ

By Theorem 5.4 in [5] (see also, e.g., [8] §2.4), F is sequentially lower semicontinuous in the

L1-topology.

We will prove an approximation result for F by means of a family (Fε)ε>0 of functionals

L1(a, b) → [0,+∞] of the form:

(1.1) Fε(u) =



















1

ε

∫ b

a

fε

(

ε

∫

(x−ε,x+ε)∩(a,b)

|u′(y)|dy
)

dx if u ∈W 1,1(a, b) ,

+∞ otherwise,

26
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where fε is requested to satisfy the conditions (A1)–(A3) below.

(A1) For every ε > 0, fε : [0,+∞) → [0,+∞) is a non-decreasing continuous function with

fε(0) = 0; moreover, there exists aε > 0 such that aε → 0 as ε → 0 and fε is concave in

(aε,+∞).

Simple heuristic considerations suggest that the volume term in the limit depends on the

behaviour of fε near zero. Then we require that fε behaves as a suitable rescaling of φ in a

neighborhood of zero; more precisely, we assume that:

(A2) lim
(ε,t)→(0,0)

fε(t)

εφ
(

t
ε

) = 1

For reference convenience we point out that, in particular, (A2) implies:

(1.2) lim
ε→0

fε(εs)

ε
= φ(s) for every s ≥ 0 ;

moreover, for every δ > 0 there exist tδ > 0 and εδ > 0 such that:

(1.3) fε(t) ≥ (1 − δ)εφ(t/ε) ,

whenever 0 ≤ t ≤ tδ and ε < εδ.

Analogously, we expect that the jump term in the limit depends on the pointwise behaviour

of fε. Accordingly, we assume that:

(A3) fε(t) → f(t) uniformly on the compact subsets of [0,+∞).

Given f and φ as above, a possible choice for fε satisfying (A1)–(A3) is:

fε(t) =







εφ
(

t
ε

)

if 0 ≤ t ≤ tε,

f(t− tε) + εφ( tεε ) if t ≥ tε,

where tε → 0, and tε/ε → +∞. The only non-trivial assumption to verify is (A2): since

(ε/t)φ(ε/t) → c0 as (ε, t) → (0, 0), with t ≥ tε, the check amounts to verify that:

lim
(ε,t)→(0,0)

f(t− tε) + εφ(tε/ε)

t
= 1 .

This follows immediately from f(t − tε)/(t− tε) → c0 and (ε/tε)φ(tε/ε) → c0 as (ε, t) → (0, 0),

with t ≥ tε.

We point out two properties we shall need in the sequel.

Remark 3.1.1 It is easy to see that there exist sequences (ch) and (dh) of real numbers with

(1.4) 0 ≤ ch ≤ c0 , φ(t) = sup
h∈N

(cht+ dh) for every t ≥ 0.
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Remark 3.1.2 There exists C > 0 such that

fε(t) ≤ Ct for every t ≥ 0 and ε small enough.

Proof. For every δ > 0 Assumption (A2) yields the existence of tδ, εδ > 0 such that

fε(t) ≤ (1 + δ)εφ(t/ε) for every 0 ≤ t ≤ tδ and 0 < ε ≤ εδ;

therefore, since φ(s) ≤ c0s, we have:

fε(t) ≤ c0(1 + δ)t for every 0 ≤ t ≤ tδ and 0 < ε ≤ εδ;

As to the interval [tδ,+∞), notice that we can suppose fε concave in [tδ/2,+∞) for every

0 < ε ≤ εδ; thus, if mεt + qε is the affine function with coincide with fε in tδ/2 and tδ, then

fε(t) ≤ mεt+ qε if t ≥ tδ. The pointwise convergence of fε gives the existence of m0 and q0 such

that

fε(t) ≤ m0t+ q0 for every t ≥ tδ and 0 < ε ≤ εδ.

The existence of a linear function majorizing fε on [0,+∞) uniformly in ε now easily follows.

Let us now state the main results of the paper.

Theorem 3.1.3 Let (Fε)ε>0 be as in (1.1), with fε satisfying (A0),(A1), (A2) and (A3). Then

(Fε) Γ-converges, in L1(a, b) as ε→ 0, to F : L1(a, b) → [0,+∞] given by

F(u) =



























∫ b

a

φ(|u′(x)|)dx + 2
∑

x∈Su

f

(

1

2
|u+(x) − u−(x)|

)

+ c0|Dcu|(a, b)

if u ∈ GBV (a, b) ,

+∞ otherwise.

Theorem 3.1.4 (Compactness) Let uj be a sequence in L1(a, b) such that

||uj ||∞ ≤M, Fεj (uj) ≤M

for a suitable constant M independent of j. Then there exists a subsequence (ujk) converging in

L1(a, b) to a function u ∈ BV (a, b).

As an example of application of these results (together with Theorem 1.4.1) we state the

following corollary.

Corollary 3.1.5 Let (εj) be a positive infinitesimal sequence and g ∈ L∞(a, b). For every

u ∈ L1(a, b), define:

Gj(u) = Fεj (u) +

∫ b

a

|u(x) − g(x)| dx ,
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and

G(u) = F(u) +

∫ b

a

|u(x) − g(x)| dx .

For every j let xj be an εj-minimizer of Gj in L1(a, b), i.e.

Gj(xj) ≤ inf
L1(a,b)

Gj + εj ,

Then (xj) converges, up to a subsequence, to a minimizer of G in L1(a, b).

Theorem 3.1.4 will be proved in the next section (Corollary 3.2.3) while Theorem 3.1.3 will

be completed in § 3.5. In Section 3.6 we shall compute the relaxed functional of Fε (which will

be useful in the proof of the estimate for the Γ-lower limit):

Proposition 3.1.6 For every ε > 0, the relaxed functional of Fε in the L1-topology is given by

(1.5) F̄ε(u) =
1

ε

∫ b

a

fε

(

ε

|(x− ε, x+ ε) ∩ (a, b)| |Du|((x− ε, x+ ε) ∩ (a, b))

)

dx

for every u ∈ BV (a, b).

Remark 3.1.7 Clearly, the functionals Fε and F can be defined with (a, b) replaced by an

arbitrary open subset A of R; in this case we shall make the dependence on the set A explicit

through the notation Fε(u,A) and F(u,A), respectively. Since every open subset of R is a

countable union of disjoint open intervals, it is not difficult to deduce, from Theorem 3.1.3, the

convergence of (Fε(·, A)) to F(·, A) for every open A ⊂ R.

Remark 3.1.8 The Γ-convergence of (Fε) easily implies the convergence of (F̃ε), where

F̃ε(u) =
1

ε

∫ b

a

fε

(1

2

∫

(x−ε,x+ε)∩(a,b)

|u′(y)| dy
)

dx

if u ∈ W 1,1(a, b), and F̃ε(u) = +∞ otherwise in L1(a, b). Since F̃ε ≤ Fε, we have only to check

the inequality

lim inf
j→+∞

F̃εj (uj) ≥ F(u)

whenever εj → 0 and uj → u in L1(a, b). For any σ > 0 and j sufficiently large, it turns out

that:

F̃εj (uj) ≥
1

εj

∫ b−σ

a+σ

fε

(1

2

∫

(x−ε,x+ε)∩(a,b)

|u′(y)| dy
)

dx ≥ Fεj

(

uj, (a+ σ, b − σ)
)

;

hence lim infj→+∞ F̃εj (uj) ≥ F
(

u, (a+ σ, b− σ)
)

: let now σ tend to zero.

If not otherwise specified, εj will stand for a positive infinitesimal sequence.
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3.2 Estimate from below of the volume and Cantor terms.

Compactness

The main result of this section is Proposition 3.2.8. Moreover, the technical Lemma 3.2.2 will

immediately imply the compactness result of Corollary 3.2.3.

Let us state a preliminary result (from [10], Lemma 4.2) whose proof follows by applying

the mean value theorem for integrals to the function
∑

α∈Z
ψ(x+ αη).

Lemma 3.2.1 Let ψ : R → R be a continuous function with compact support. For every η > 0

there exists x0 ∈ (−η/2, η/2) such that

∫

R

ψ(x)dx =
∑

α∈Z

ηψ(x0 + αη).

This allows to estimate Fε(u) by a useful integral sum (see (2.1) below).

Let us fix u ∈ W 1,1(a, b), ε > 0 and ϕε a cut-off function in C∞
c (a, b) such that 0 ≤ ϕε ≤ 1

in (a, b) and ϕε = 1 in (a+ ε, b− ε). Let ψε be the continuous function defined by

ψε(x) = ϕε(x)fε

(

ε

∫

(x−ε,x+ε)∩(a,b)

|u′(t)|dt
)

for x ∈ (a, b), and 0 for x ∈ R \ (a, b). Then, taking Lemma 3.2.1 into account, with η = 2ε, we

have

(2.1) Fε(u) ≥
1

ε

∫ b

a

ψε(x)dx =
1

ε

∫

R

ψε(x)dx =
∑

α∈Z

2ψε(xε + 2εα)

for a suitable xε ∈ R. Therefore, if we set xα = xεα = xε + 2αε, (α ∈ Z), and

Jε := {α ∈ Z : xα ∈ (a+ ε, b− ε)}

we get (ϕε(xα) = 1 if α ∈ Jε):

(2.2) Fε(u) ≥ 2
∑

α∈Jε

fε

(

ε

∫ xα+ε

xα−ε
|u′(t)|dt

)

.

Lemma 3.2.2 Let u ∈ W 1,1(a, b) and δ > 0; let tδ and εδ be as in (1.3). Fix ε < εδ. With the

notation above let

Pε = {(xα − ε, xα + ε) : α ∈ Jε}.

Then we can select a subfamily P ′
ε of Pε such that

(i) ♯(Pε \ P ′
ε) ≤

1

2
Fε(u)/fε(tδ);

(ii) Fε(u) ≥ (1 − δ)

∫

S

P′
ε

l(|u′(t)|)dt

whenever l is an affine function satisfying l ≤ φ.
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Since fε(tδ) → f(tδ) > 0, the inequality (i) states that for any given δ > 0 we can estimate

♯(Pε \ P ′
ε) by Fε(u)/f(tδ) for ε sufficiently small.

Proof. From (1.3) and (2.2), we get

Fε(u) ≥ 2(1 − δ)
∑

α∈Hε

εφ

( ∫ xα+ε

xα−ε
|u′(t)|dt

)

,

where

Hε =

{

α ∈ Jε : ε

∫ xα+ε

xα−ε
|u′(t)|dt < tδ

}

.

Fix now an affine function l : R → R with l ≤ φ, and define

P ′
ε = {(xα − ε, xα + ε)|α ∈ Hε}.

Then

Fε(u) ≥ 2ε(1 − δ)
∑

α∈Hε

l

( ∫ xα+ε

xα−ε
|u′(t)|dt

)

=

= (1 − δ)
∑

α∈Hε

∫ xα+ε

xα−ε
l(|u′(t)|)dt = (1 − δ)

∫

S

P′
ε

l(|u′(t)|)dt.

Finally, from (2.2), and the monotonicity of fε, it follows that

Fε(u) ≥ 2
∑

α∈Jε\Hε

fε(tδ) = 2♯(Jε \Hε)fε(tδ).

Corollary 3.2.3 (compactness) Let uj be a sequence in L1(a, b) such that

||uj ||∞ ≤M, Fεj (uj) ≤M

for a suitable constant M independent of j. Then there exists a subsequence (ujk) converging in

L1(a, b) to a function u ∈ BV (a, b).

Proof. Clearly, uj ∈W 1,1(a, b) for every j. Since

lim
t→+∞

φ(t)

t
= c0

there exists c1 ∈ R such that φ(t) ≥ c0t+ c1. Fix δ > 0 and apply Lemma 3.2.2 with u = uj and

l(t) = c0t+ c1; we determine a family Pj of intervals of width 2εj covering a.e. (a+ εj, b− εj),

and a subfamily P ′
j such that ♯(Pj \ P ′

j) is bounded independently of j, and

Fεj (uj) ≥ (1 − δ)

∫

S

P′

j

l(|u′j(x)|)dx.
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Then, if we define

vj(x) =

{

uj(x) x ∈ ⋃P ′
j

0 otherwise

it turns out that vj ∈ SBV (a, b), ||vj ||∞ ≤M , ♯Svj bounded independently of j, and

M ≥ (1 − δ)

∫ b

a

l(|v′j(x)|)dx = c′0

∫ b

a

|v′j(x)|dx + c′1

with c′0 > 0. Therefore (vj) is bounded in BV (a, b) and we can extract a subsequence (vjk)

converging in L1(a, b) to a function u ∈ BV (a, b). Since

||vj − uj||1 ≤ 2εjM(♯(Pj \ P ′
j) + 2)

we conclude that ujk converges to u in L1(a, b).

Corollary 3.2.4 Let (uj) be a converging sequence in L1(a, b). If Fεj (uj) is bounded, then the

limit of (uj) belongs to GBV (a, b). In particular, if F ′(u) < +∞ then u ∈ GBV (a, b).

Proof. Let u be the L1-limit of (uj). For each T > 0 apply the previous Corollary to uTj =

(uj ∧ T ) ∨ (−T ): we get (u ∧ T ) ∨ (−T ) ∈ BV (a, b); hence u ∈ GBV (a, b).

Lemma 3.2.5 Let u ∈ BV (a, b) and let (uj) be a sequence in W 1,1(a, b) converging to u in

L1(a, b) and a.e. in (a, b). Suppose that there exists σ ≥ 0 such that for every x ∈ Su:

|u+(x) − u−(x)| ≤ σ.

Then, for every j ∈ N, there exists ũj ∈ W 1,1(a, b) such that

Fεj (ũj) ≤ Fεj (uj)

ũj → u in L1(a, b), and

lim sup
j→+∞

||ũj − u||∞ ≤ σ.

Proof. Let us denote by u a precise representative. It is not difficult to see that for every η > 0

there exists δ > 0 such that whenever x, y ∈ (a, b):

|x− y| < δ ⇒ |u(x) − u(y)| < σ + η.

Indeed, suppose by contradiction that there exists η0 > 0 such that for every n ∈ N we can find

xn, yn ∈ (a, b) satisfying |xn − yn| < 1/n and

(2.3) |u(xn) − u(yn)| ≥ σ + η0.
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Up to a subsequence we can assume that xn and yn converge to a point x0 ∈ [a, b] and, moreover,

that

xn → x+
0 or xn → x−0 and yn → x+

0 or yn → x−0 .

Then by taking the limit as n→ +∞ in (2.3), we have a contradiction both if x0 is a continuity

or a jump point of u, and if x0 is an end point of (a, b).

By means of this uniform control on the oscillation of u, we truncate now uj. For any given

n ∈ N, let δn > 0 be such that

|x− y| < δn ⇒ |u(x) − u(y)| < σ +
1

n

whenever x, y ∈ (a, b). Consider a finite partition Pn of (a, b):

a = x0 < x1 < x2 < · · · < xk+1 = b

(we drop the dependence on n) with mesh size less than δn and such that each xi (for every

i = 1, . . . , k) is a point of convergence for the sequence uj . Let jn ∈ N be such that if j ≥ jn

|uj(xi) − u(xi)| ≤
1

n
for every i = 1, . . . , k.

We can choose jn strictly increasing. Fix j ∈ N and let jn ≤ j ≤ jn+1. On the first and last

interval of the partition Pn we define ũj with constant value uj(x1) and uj(xk) respectively. Let

now [ξ, η] be any of the subintervals of [xi, xi+1] for i = 1, . . . , k − 1. Without loss of generality

we can assume uj(ξ) ≤ uj(η). Now define

ũj(x) = [uj(x) ∨ uj(ξ)] ∧ uj(η)

for every x ∈ (ξ, η). Clearly, ũj equals uj at the endpoints ξ and η, hence ũj ∈ W 1,1(a, b).

Moreover, for every x ∈ [ξ, η]

u(ξ) − 1/n ≤ uj(ξ) ≤ ũj(x) ≤ ũj(η) ≤ u(η) + 1/n.

Therefore:

|ũj(x) − u(x)| ≤ osc[ξ,η]u+ 2/n ≤ σ + 3/n.

These inequalities hold in the first and last intervals of the decomposition, too. Hence we get the

stated estimate about the upper limit of ||ũj − u||∞. Since Fε decreases by truncation, we have

Fεj (ũj) ≤ Fεj (uj). As to the L1 convergence of the sequence ũj , consider, as above, the generic

subinterval [ξ, η] of the partition Pn; let ũ′j be the pointwise projection of uj onto the interval

[uj(ξ) − 1/n, uj(η) + 1/n]; since u takes values in this interval, we have:

|ũj − u| ≤ |ũj − ũ′j| + |ũ′j − u| ≤ 1/n+ |uj − u|, in [ξ, η].

This implies the pointwise convergence of ũj to u a.e. on the compact subsets of (a, b), hence on

(a, b); the equiboundedness of the sequence gives the L1 convergence.
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Remark 3.2.6 Given u ∈ L1(a, b), the set functions A 7→ Fε(u,A) are increasing and superad-

ditive. Consequently also the set function A 7→ F ′(u,A) is increasing and superadditive, i.e.

(i) F ′(u,A1) ≤ F ′(u,A2), whenever A1 ⊆ A2 ⊆ (a, b);

(ii) F ′(u,A1 ∪A2) ≥ F ′(u,A1) + F ′(u,A2), whenever A1 ∩A2 = ∅.

Remark 3.2.7 Let u ∈ BV (a, b) and λ be a positive Radon measure on (a, b); suppose

F ′(u, I) ≥
∫

I

g(x)dλ

for every interval I ⊆ (a, b), with g a non-negative Borel function. Then

(2.4) F ′(u,A) ≥
∫

A

g(x)dλ

for every A open subset of (a, b).

Proof. Let A be an open subset of (a, b); then A is a countable union of disjoint intervals Ih.

From the monotonicity and superadditivity of F ′, for every N ∈ N we have

F ′(u,A) ≥ F ′
(

u,

N
⋃

h=1

Ih

)

≥
N
∑

h=1

F ′(u, Ih) ≥
∫

S

N
h=1 Ih

g(x)dλ.

Passing to the limit as N → +∞ we obtain (2.4).

Proposition 3.2.8 For every u ∈ BV (a, b) ∩ L∞(a, b)

F ′(u) ≥
∫ b

a

φ(|u′(x)|)dx, F ′(u) ≥ c0|Dcu|(a, b).

Proof.

Step 1. We claim that if u ∈ BV (a, b) ∩ L∞(a, b) then: for every δ > 0 and lh ≤ φ affine

function, with lh(t) = cht+ dh as in (1.4), the following inequality holds:

F ′(u)

(

1 +
6σc0
f(tδ)

)

≥ (1 − δ)

(

∫ b

a

lh(|u′(x)|)dx + ch|Dcu|(a, b)
)

,

where tδ is as in the assumption (1.3), and

σ = sup
x∈Su

|u+(x) − u−(x)|.

Without loss of generality we can assume that there exists a sequence (uj) in W 1,1(a, b) such

that uj → u in L1(a, b) and a.e., and Fεj (uj) → F ′(u) < +∞. Let σ = supx∈Su
|u+(x)− u−(x)|.

Lemma 3.2.5 furnishes a sequence ũj in W 1,1(a, b), converging to u in L1(a, b), such that

Fεj (ũj) ≤ Fεj (uj) and lim sup
j→+∞

||ũj − u||∞ ≤ σ.
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In particular Fεj (ũj) → F ′(u). Let now η > 0 be fixed; we can suppose that ||ũj − u||∞ ≤ σ+ η

for every j ∈ N. As shown in the first part of the proof of Lemma 3.2.5, there exists γ > 0 such

that, if J ⊆ (a, b), then

diamJ < γ ⇒ oscJu < σ + η;

therefore

(2.5) diamJ < γ ⇒ oscJ ũj < 3(σ + η).

For every h ∈ N let lh(t) = cht + dh as in (1.4). Let δ > 0 be fixed; apply Lemma 3.2.2 with

u = ũj and l = lh. Thus, for j sufficiently large, we determine a uniform mesh (xα)α∈Z of R

with size 2εj and a subfamily P ′
j of

Pj = {(xα − εj, xα + εj) : xα ∈ (a+ εj , b− εj)}

with the following property

(2.6) ♯(Pj \ P ′
j) ≤

1

2f(tδ)
Fεj (ũj), Fεj (ũj) ≥ (1 − δ)

∫

S

P′

j

lh(|ũ′j(x)|)dx.

Let a0 = inf (
⋃Pj) and b0 = sup (

⋃Pj); define (a.e.) vj in (a0, b0) as follows

vj(x) =







ũj(x) x ∈ ⋃P ′
j

∫

J

ũj(z)dz x ∈ J ∈ Pj \ P ′
j .

We consider vj extended by continuity on (a, b) with values v+
j (a0) and v−j (b0). Then vj ∈

SBV (a, b) and, by (2.5):

|v+
j (x) − v−j (x)| ≤ 3(σ + η)

for j sufficiently large (such that 2εj < γ), for every x ∈ Svj . Moreover, by (2.6), vj → u in

L1(a, b) and

♯Svj ≤ 2

f(tδ)
Fεj (ũj).

Therefore,

Fεj (ũj)

(

1 +
6c0
f(tδ)

(σ + η)

)

≥

≥ (1 − δ)

(

∫ b

a

lh(|v′j(x)|)dx + c0|Dsvj |(a, b)
)

− (1 − δ)dh2εj(♯(Pj \ P ′
j) + 2) ≥

≥ (1 − δ)(ch|Dvj |(a, b) + dh(b − a)) − (1 − δ)dh2εj(♯(Pj \ P ′
j) + 2),

and, as j → +∞,

F ′(u)

(

1 +
6c0
f(tδ)

(σ + η)

)

≥ (1 − δ)(ch|Du|(a, b) + dh(b − a)) ≥

≥ (1 − δ)

(

∫ b

a

lh(|u′(x)|)dx + ch|Dcu|(a, b)
)

.
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By the arbitrariness of η we conclude.

Step 2. Let u ∈ BV (a, b) ∩ L∞(a, b); let us fix σ > 0 and consider the finite set of points

{x1, . . . , xn−1} ⊆ Su such that

|u+(xi) − u−(xi)| > σ

for i = 1, . . . , n− 1. Let a = x0 and b = xn; then for every i = 0, . . . , n− 1,

sup
x∈Su∩(xi,xi+1)

|u+(x) − u−(x)| ≤ σ.

By Step 1 we have (recall Remark 3.1.7)

F ′(u, (xi, xi+1))

(

1 +
6c0
f(tδ)

σ

)

≥ (1 − δ)

(∫ xi+1

xi

lh(|u′(x)|)dx + ch|Dcu|(xi, xi+1)

)

for every i = 0, . . . , n− 1. Then, by Remark 3.2.6

F ′(u)

(

1 +
6c0
f(tδ)

σ

)

≥ (1 − δ)

(

∫ b

a

lh(|u′(x)|)dx + ch|Dcu|(a, b)
)

.

By arbitrariness of σ > 0 and δ > 0, we obtain

F ′(u) ≥
∫ b

a

lh(|u′(x)|)dx + ch|Dcu|(a, b)

and thus

F ′(u) ≥
∫ b

a

lh(|u′(x)|)dx and F ′(u) ≥ ch|Dcu|(a, b).

Step 3. Let d0 = limt→+∞ φ(t)− c0t < 0; without loss of generality, we can suppose dh > d0 and

ch ≥ 0. Then, by Remark 3.2.7

F ′(u,A) − d0λ(A) ≥
∫

A

(lh(|u′(x)|) − d0)dλ

for every h and for every A ∈ A(Ω). By Lemma 1.1.5,

F ′(u, (a, b)) − d0λ(a, b) ≥
∫ b

a

(φ(|u′(x)|) − d0)dx

and then

F ′(u, (a, b)) ≥
∫ b

a

φ(|u′(x)|)dx.

By taking the supremum on h in

F ′(u) ≥ ch|Dcu|(a, b)

we have

F ′(u) ≥ c0|Dcu|(a, b).
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3.3 Estimate from below of the jump part

Lemma 3.3.1 Let u ∈ BV (a, b) and let (uj) be a sequence in W 1,1(a, b) converging to u in

L1(a, b). Let x ∈ Su; there exists x+
j , x

−
j ∈ (a, b) such that x±j → x± and such that

|uj(x+
j ) − u+(x)| → 0, |uj(x−j ) − u−(x)| → 0.

Proof. By definition, for all σ > 0 there exists δ = δσ > 0 such that

∣

∣

∣

∣

∣

u+(x) −
∫ x+δ

x

u(y)dy

∣

∣

∣

∣

∣

<
σ

2
;

clearly, we can assume that δσ < σ. By the L1-convergence of (uj) there exists jσ such that

∣

∣

∣

∣

∣

∫ x+δ

x

uj(y)dy −
∫ x+δ

x

u(y)dy

∣

∣

∣

∣

∣

<
σ

2

for all j ≥ jσ; by the mean value Theorem for integrals, for every j ≥ jσ we can find x+
j ∈

(x, x + δσ) such that

|uj(x+
j ) − u+(x)| < σ.

For every k ∈ N let jk be the integer jσ corresponding to σ = 1/k. We can assume that jk

is strictly increasing. If we select the points x+
j , defined above, with jk ≤ j < jk+1, we get a

sequence satisfying the required conditions. An analogous argument yields x−j .

Proposition 3.3.2 For every u ∈ BV (a, b)

F ′(u) ≥ 2
∑

x∈Su

f

(

1

2
|u+(x) − u−(x)|

)

.

Proof.

Step 1. We claim that for any x̄ ∈ Su

F ′(u) ≥ 2f

(

1

2
|u+(x̄) − u−(x̄)|

)

.

Let (uj) be a sequence in W 1,1(a, b) converging to u in L1(a, b) and such that

F ′(u) = lim
j→+∞

Fεj (uj) < +∞.

Fix x̄ ∈ Su and let (x±j ) be the sequences provided by Lemma 3.3.1 applied with x = x̄. Assume

u−(x̄) < u+(x̄); thus we suppose that uj(x
−
j ) < uj(x

+
j ) for every j. Let ũj be the continuous

extension of uj from (x−j , x
+
j ) to (a, b) with the constant values uj(x

−
j ) and uj(x

+
j ). Clearly:

Fεj (uj) ≥ Fεj (ũj).
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We can also assume that ũj is non-decreasing, otherwise we replace ũj by

(

ũj(a) +

∫ x

a

(ũ′j(t))
+dt

)

∧ ũj(b),

(this lower the value of Fεj ). Apply now estimate (2.2) with ε = εj and u = ũj; then

Fεj (ũj) ≥ 2
∑

α∈Ij

fεj

(

εj

∫ xα+εj

xα−εj

ũ′j(t)dt

)

,

where

Ij = {α ∈ Jεj : (xα − εj, xα + εj) ∩ (x−j , x
+
j ) 6= ∅}.

The convergence x±j → x̄ yields that (♯Ij)εj → 0 as j → +∞. For each α ∈ Ij let

δαj = εj

∫ xα+εj

xα−εj

ũ′j(t)dt =
1

2
[uj(xα + εj) − uj(xα − εj)].

Given δ > 0, we can find tδ > 0 and jδ such that (see (1.3))

(3.1) fεj (t) ≥ (1 − δ)εjφ(t/εj)

whenever 0 ≤ t ≤ tδ and j ≥ jδ. Define

I ′j = {α ∈ Ij : δαj ≥ tδ}, I ′′j = {α ∈ Ij : δαj < tδ}.

Then

Fεj (ũj) ≥ 2





∑

α∈I′j

fεj (δ
α
j ) +

∑

α∈I′′j

fεj (δ
α
j )



 .

From the subadditivity of fεj in (aεj ,+∞) (see Assumption (A1)),

∑

α∈I′j

fεj (δ
α
j ) ≥ fεj





∑

α∈I′j

δαj



 .

Let ♯I ′′j = Nj ; then, by the convexity of φ, and (3.1)

2
∑

α∈I′′j

fεj (δ
α
j ) ≥ 2(1 − δ)εjNj

∑

α∈I′′j

1

Nj
φ

(

δαj
εj

)

≥ (1 − δ)φ

(∑

α∈I′′j
δαj

Njεj

)

2Njεj .

Since

2
∑

α∈Ij

δαj = uj(x
+
j ) − uj(x

−
j ) → u+(x̄) − u−(x̄),

we can suppose that, up to a subsequence:

∑

α∈I′j

δαj → s1 and
∑

α∈I′′j

δαj → s2,
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with s1 + s2 = 1
2 |u+(x̄)− u−(x̄)|. Then, by the uniform convergence of fεj to a concave function

f , (see assumption (A3)) and taking into account the linear growth of φ (notice that Njεj → 0)

we have:

lim inf
j→+∞

Fεj (ũj) ≥ 2(f(s1) + (1 − δ)c0s2) ≥ 2[f(s1) + (1 − δ)f(s2)] ≥

≥ 2(1 − δ)f

( |u+(x̄) − u−(x̄)|
2

)

,

where, in the last inequality, we have used the subadditivity of f . Finally, letting δ → 0:

F ′(u) ≥ lim inf
j→+∞

Fεj (ũj) ≥ 2f

( |u+(x̄) − u−(x̄)|
2

)

.

Step 2. For any N ∈ N consider a finite subset {x1, . . . , xN} of Su and let I1, . . . , IN be pairwise

disjoint intervals such that xi ∈ Ii ⊆ (a, b) for every i = 1, . . . , N . Apply the inequality of Step

1 with (a, b) replaced by Ii and x̄ = xi; then, by the subadditivity of F ′(u, ·) (Remark 3.2.6):

F ′(u, (a, b)) ≥ F ′
(

u,

N
⋃

i=1

Ii

)

≥
N
∑

i=1

F ′(u, Ii) ≥ 2

N
∑

i=1

f

(

1

2
|u+(xi) − u−(xi)|

)

.

Since N is arbitrary, we conclude.

3.4 Estimate from below of the lower Γ-limit

Theorem 3.4.1 For every u ∈ GBV (a, b) the inequality F ′(u) ≥ F(u) holds.

Proof.

Step 1. Let us first consider the case u ∈ BV (a, b)∩L∞(a, b). Apply Propositions 3.2.8 and 3.3.2

with (a, b) replaced by an arbitrary open subinterval of (a, b): taking Remark 3.2.7 into account

we get

F ′(u,A) ≥
∫

A

φ(|u′(x)|)dx, F ′(u,A) ≥ c0|Dcu|(A)

and

F ′(u,A) ≥ 2
∑

x∈Su∩A
f

(

1

2
|u+(x) − u−(x)|

)

for every A open in (a, b). Let λ be the Borel measure defined by

λ(B) = L1(B) + ♯(Su ∩B) + c0|Dcu|(B)

for every Borel subset B of (a, b). Let E be a Borel subset of (a, b) \ Su with |E| = 0 and on

which |Dcu| is concentrated, i.e. |Dcu|((a, b) \ E) = 0. Then

µ(A) := F ′(u,A) ≥
∫

A

ψi(x)dλ
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for i = 1, 2, 3, and for every A open in (a, b), where

ψ1(x) =







φ(|u′(x)|) x ∈ (a, b) \ (Su ∪ E)
0 x ∈ Su
0 x ∈ E

ψ2(x) =







0 x ∈ (a, b) \ (Su ∪ E)
2f
(

1
2 |u+(x) − u−(x)|

)

x ∈ Su
0 x ∈ E

ψ3(x) =







0 x ∈ (a, b) \ (Su ∪ E)
0 x ∈ Su
c0 x ∈ E .

Obviously

ψ(x) := sup
i
ψi(x) =







φ(|u′(x)|) x ∈ (a, b) \ (Su ∪ E)
2f
(

1
2 |u+(x) − u−(x)|

)

x ∈ Su
c0 x ∈ E

and then, from Lemma 1.1.5,

µ(A) ≥
∫

A

sup
i
ψi(x)dλ =

∫

A

ψ(x)dλ = F(u,A)

for every open subset A of (a, b).

Step 2. Let u ∈ GBV (a, b) and let (uj) be a sequence in L1(a, b) converging to u in L1(a, b) and

such that

F ′(u) = lim inf
j→+∞

Fεj (uj).

Define

uTj = (uj ∧ T ) ∨ (−T ), uT = (u ∧ T ) ∨ (−T ).

Since uTj → uT in L1(a, b), by Step 1 we have

F ′(u) = lim inf
j→+∞

Fεj (uj) ≥ lim inf
j→+∞

Fεj (u
T
j ) ≥

≥
∫ b

a

φ(|(uT )′(x)|dx + 2
∑

x∈SuT

f

(

1

2
|(uT )+(x) − (uT )−(x)|

)

+ c0|DcuT |(a, b).

We conclude by taking the limit as j → +∞ and recalling that (see the definition of the space

GBV in Section 1.2)

(uT )′ =

{

u′ a.e. on {|u| ≤ T }
0 a.e. on {|u| > T } , |Dc(uT )|(a, b) → |Dcu|(a, b)

(uT )±(x) → u±(x) for Hn−1-a.e. x ∈ Su.
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3.5 Estimate from above of the upper Γ-limit

Lemma 3.5.1 For every u ∈ W 1,1(a, b) we have

lim
j→+∞

Fεj (u) =

∫ b

a

φ(|u′(x)|)dx.

Proof. Consider the functions

gεj (x) =

∫

(x−εj ,x+εj)∩(a,b)

|u′(y)|dy =

∫ b

a

ϕεj (x− y)|u′(y)|dy ,

where

ϕεj =
1

2εj
χ(−εj ,εj).

Since |u′| ∈ L1(a, b), the sequence (gεj ) converges to |u′| in L1(a, b) and a.e. in (a, b); by (1.2),

and since fεj is non-decreasing, it turns out that

lim
j→+∞

1

εj
fεj (εjgεj (x)) = φ(|u′(x)|)

for a.e. x ∈ (a, b). Then, by Remark 3.1.2, we can pass to the limit under the integral; thus

lim
j→+∞

1

εj

∫ b

a

fεj (εjgεj (x))dx =

∫ b

a

φ(|u′(x)|)dx.

Proposition 3.5.2 For every u ∈ SBV (a, b) the inequality F ′′(u) ≤ F(u) holds.

Proof. Every u ∈ SBV (a, b) is the L1-limit of a sequence (uh) such that

♯Suh
< +∞, F(uh) → F(u).

Indeed, if Su = {xi : i ∈ N}, define, e.g.

uh(x) =

∫ x

a

u′(t)dt+
∑

xi<x; i=1,...,h

(u+(xi) − u−(xi)).

Therefore, by the semicontinuity of F ′′, we can prove the stated inequality only in the case that

♯Su is finite. We shall even suppose that Su consists of a single point x0, since the argument

applied will be easily generalized to a finite number of jump points.

For any x let Ij(x) = (x− εj , x+ εj). By Proposition 3.1.6:

(5.1) F εj (u) ≤ Fεj (u, (a, x0)) + Fεj (u, (x0, b)) +Rj ,

where

Rj =
1

εj

∫

Ij(x0)

fεj

(1

2
|Du|(Ij(x))

)

dx.
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Notice that for x ∈ Ij(x0)

|Du|(Ij(x)) ≤
∫

Ij(x)

|u′(t)| dt+ |Dsu|(Ij(x)) ≤
∫

Ij(x)

|u′(t)| dt+ |u+(x0) − u−(x0)|;

then for any σ > 0 there exists jσ ∈ N such that for every j ≥ jσ and x ∈ Ij(x0)

|Du|
(

Ij(x)
)

≤ |u+(x0) − u−(x0)| + σ.

By (A3) we immediately conclude that

lim sup
j→+∞

Rj ≤ 2f
(1

2
|u+(x0) − u−(x0)|

)

.

Let us now pass to the limit in (5.1): taking Lemma 3.5.1 into account we get:

F ′′(u) ≥ lim sup
j→+∞

F εj (u) ≤
∫ b

a

φ(|u′(x)|) dx + 2f
(1

2
|u+(x0) − u−(x0)|

)

.

Theorem 3.5.3 For every u ∈ GBV (a, b) the inequality F ′′(u) ≤ F(u) holds.

Proof. By lower semicontinuity of F ′′ and by relaxation Theorem 1.3.4 we have F ′′(u) ≤ F(u)

for every u ∈ BV (a, b). If u ∈ GBV (a, b), it sufficies to pass to the limit as T → +∞ in

F ′′(uT ) ≤ F(uT ).

3.6 Relaxation and convergence of minima

Proof of Proposition 3.1.6

Denote by Hε the functional on the right-hand side of (1.5). Let Iε(x) = (x − ε, x + ε) ∩ (a, b)

and cε = ε/|Iε(x)|. It is easy to prove the L1-l.s.c. of Hε in BV . Indeed, if uh is a sequence

in BV converging to u ∈ BV (a, b) in the L1-topology, then, by Fatou’s lemma and the lower

semicontinuity of the total variation,

lim inf
h→+∞

Hε(uh) = lim inf
h→+∞

1

ε

∫ b

a

fε (cε|Duh|(Iε(x))) dx ≥

≥ 1

ε

∫ b

a

lim inf
h→+∞

fε (cε|Duh|(Iε(x))) dx =
1

ε

∫ b

a

fε

(

cε lim inf
h→+∞

|Duh|(Iε(x))
)

dx ≥

≥ 1

ε

∫ b

a

fε (cε|Du|(Iε(x))) dx = Hε(u).

Since Hε(u) ≤ Fε(u) for all u ∈ BV (a, b), the relaxed functional F̄ε is estimated from below by

Hε. Consider now the opposite inequality. Given u ∈ BV (a, b), if (vh) denotes the sequence



CHAPTER III. THE ONE-DIMENSIONAL CASE 43

obtained from u (extended to a neighborhood of (a, b)) by standard mollification, then vh → u

in L1(a, b) and

|Dvh|(Iε(x)) → |Du|(Iε(x))

for a.e. x ∈ (a, b) (see, e.g., [5] Proposition 3.7). Then by the dominated convergence theorem

lim
h→+∞

Fε(vh) =
1

ε

∫ b

a

fε (cε|Du|(Iε(x))) dx = Hε(u).

This shows that Hε(u) is the relaxed functional of Fε on BV (a, b).

Proof of the corollary 3.1.5

By definition, {uj} is a sequence in W 1,1(a, b) with

Gεj (uj) ≤ inf
L1(a,b)

Gεj + εj.

Since g ∈ L∞(a, b) we can assume that (uj) is equibounded. By Corollary 3.2.3 there exists

u0 ∈ BV (a, b) such that uj → u0 in L1(a, b). By Theorem 1.4.1, since Gεj Γ-converge to G, u0

is a minimum point of G on L1(a, b).



Chapter IV

The n-dimensional case

In this chapter we tackle the problem of the n-dimensional extension of the convergence result

given for Fε in the previous chapter. Unlike in the one-dimensional case, here we restrict the

study to a fixed integrand function f , independent of ε.

4.1 Statement of the results

Let Ω ⊆ R
n be a bounded open set, and f : [0,+∞) → [0,+∞) be a non-decreasing, strictly

concave and C2 function such that

lim
t→0+

f(t)

t
= 1 .

We consider the functionals Fε : L1(Ω) → R, with ε > 0, and F : L1(Ω) → R defined by

Fε(u) =











1

ε

∫

Ω

f

(

ε

∫

Bε(x)∩Ω

|∇u(y)|dy
)

dx u ∈ W 1,1(Ω)

+∞ otherwise

F(u) =















∫

Ω

|∇u(x)|dx +

∫

Su

θ(|u+(x) − u−(x)|)dHn−1 + |Dcu|(Ω)

u ∈ GBV (Ω)
+∞ otherwise

with

(1.1) θ(y) = 2

∫ 1

0

f

(

ωn−1

ωn
y(
√

1 − t2)n−1

)

dt (y > 0),

where ωn denotes the volume of the n-dimensional ball in R
n (with ω0 = 1).

The main result is the following theorem:

Theorem 4.1.1 The family (Fε)ε>0 Γ-converges to F in L1(Ω) as ε→ 0.

As in the one-dimensional case, in the computation of the upper Γ limit it will be useful the

following result (which will be proved in Section 4.5).

44
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Proposition 4.1.2 For every ε > 0, the relaxed functional of Fε in the L1-topology is given by

(1.2) F̄ε(u) =
1

ε

∫

Ω

f

(

ε

|Bε(x) ∩ Ω| |Du|(Bε(x) ∩ Ω)

)

dx

for every u ∈ BV (Ω).

Finally we conclude, as in the previous Chapter, with a corollary about the convergence of

minima.

Corollary 4.1.3 Let (εj) be a positive infinitesimal sequence and g ∈ L∞(Ω). For every u ∈
L1(Ω), define:

Gj(u) = Fεj (u) +

∫

Ω

|u(x) − g(x)|dx,

and

G(u) = F(u) +

∫

Ω

|u(x) − g(x)|dx.

For every j let uj be an εj-minimizer for Gj in L1(Ω), i.e.

Gj(uj) ≤ inf
L1(Ω)

Gj + εj ;

then uj converges, up to a subsequence, to a minimizer of G in L1(Ω).

Remark 4.1.4 We shall need the following “localization” of the functional Fε: for every open

subset A of Ω, we set

Fε(u,A) =











1

ε

∫

A

f

(

ε

∫

Bε(x)∩Ω

|∇u(y)|dy
)

dx u ∈W 1,1(Ω)

+∞ u ∈ L1(Ω) \W 1,1(Ω).

Clearly, if A ⊂⊂ Ω, the lower and upper Γ-limits of (Fε(·, A)) do not change by replacing Ω with

any Ω′ ⊃⊃ A.

4.2 Compactness. Estimate from below of the volume and

Cantor terms

The Lemma below is essentially Proposition 4.1 in [10] (the proof is the same, up to a minor

modifications). This estimate of Fε(u) from below by the absolutely continuous part of the

derivative is not enough to get a bound for the lower Γ-limit of Fε (differently from what happens

with the gradient squared which allows the application of the SBV compactness theorem).

Though, we can deduce a compactness result for the family (Fε). Denote by A̺ the following set

A̺ = {x ∈ A : d(x, ∂A) > ̺} .
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Lemma 4.2.1 Let A an open subset of Ω, and let u ∈ W 1,1(Ω) ∩ L∞(Ω). For every ε > 0 and

δ > 0, there exists a function v ∈ SBV (A) ∩ L∞(A) such that:

(1 − δ)

∫

A

|∇v(x)|dx ≤ Fε(u,A),

Hn−1(Sv ∩A6ε) ≤ cFε(u,A),

||v||L∞(A) ≤ ||u||L∞(A),

||v − u||L1(A6ε) ≤ cεFε(u,A)||u||L∞(A),

where c is a constant depending only by n, δ and f .

Proposition 4.2.2 Let {uj} be a sequence in L1(Ω) such that

||uj ||∞ ≤M, Fεj (uj) ≤M

for some M > 0 independent on j; then there exists a subsequence (not relabelled) such that

uj → u0 for some u0 ∈ BV (Ω).

Proof. Let A ⊂⊂ Ω, with ∂A smooth. By Lemma 4.2.1 there exists a sequence (vj) in SBV (A)

and a constant C independent of A such that

||vj ||BV (A) ≤ C, ||vj ||L∞(A) ≤M,

and

||vj − uj||L1(A) → 0 as j → +∞.

Therefore there exists a subsequence (vjk ) which converges to a function u0 ∈ BV (A), with

(2.1) ‖u0‖BV (A) ≤ C.

Clearly, also (ujk) converges to u0 in L1(A). The arbitrariness ofA and a diagonal argument allow

to find a subsequence (ujk) which converges in L1
loc(Ω) to a function u0 ∈ BVloc(Ω); actually,

u0 ∈ BV (Ω) by (2.1). Finally, the uniform bound of ‖uj‖L∞(Ω) implies the L1(Ω)-convergence

of (ujk) to u0.

Corollary 4.2.3 Let (uj) be a converging sequence in L1(Ω). If Fεj (uj) is bounded, then the

limit of (uj) belongs to GBV (Ω). In particular, if F ′(u) < +∞ then u ∈ GBV (Ω).

Proof. For each T > 0 apply the previous Corollary to uTj = (uj ∧ T ) ∨ (−T ): we get (u ∧ T ) ∨
(−T ) ∈ BV (Ω); hence u ∈ GBV (Ω).

Given y ∈ R
n−1 and r > 0, define

(2.2) Q̃r(y) = {z ∈ R
n−1 : |zi − yi| < r, i = 1, . . . , n− 1}.
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Lemma 4.2.4 Let A be an open subset of R
n−1, and a, b ∈ R, with a < b. Let uj , u ∈ L1

(

(a, b)×
A
)

(j ∈ N) and uj → u in L1
(

(a, b) × A
)

. For a.e. x ∈ (a, b), for every y ∈ A and j ∈ N with

εj <
1√
n−1

d(y, ∂A) we can define

vyj (x) =

∫

Q̃εj
(y)

uj(x, s) ds.

Then there exists a subsequence of (vyj )j which converges to u(·, y) in L1(a, b) for a.e. y ∈ A.

Proof. There exists N ⊆ (a, b), with |N | = 0 such that for every x ∈ (a, b) \N

uj(x, ·), u(x, ·) ∈ L1(A).

In particular vyj (x) is well-defined for every x ∈ (a, b) \N and y ∈ A, εj < d(y, ∂A)/
√
n− 1. Let

φj(s) =
1

|Q̃εj (0)|
χQ̃εj

(0)(s),

where χQ̃εj
(0) denotes the characteristic function of Q̃εj (0). We have

∫

A

(

∫ b

a

|vyj (x) − u(x, y)|dx
)

dy =

∫

A

dy

∫ b

a

∣

∣

∣

∣

∫

Rn−1

(uj(x, s)φj(s− y) − u(x, y))ds

∣

∣

∣

∣

dx ≤

≤
∫

A

dy

∫ b

a

dx

∫

Rn−1

|uj(x, s) − u(x, s)|φj(s− y)ds+

+

∫

A

dy

∫ b

a

∣

∣

∣

∣

∫

Rn−1

u(x, s)φj(s− y)ds− u(x, y)

∣

∣

∣

∣

dx.

Let I ′j and I ′′j be the two integrals terms on the right-hand side of the inequality above. By

standard properties of Lp-functions

(2.3) lim
|ξ|→0

||u(· − ξ) − u||L1(A×(a,b)) = 0

if u ∈ L1(A× (a, b)); then

I ′′j ≤
∫ b

a

dx

∫

A

dy

∫

Rn−1

|u(x, s)−u(x, y)|φj(s−y)ds =

∫ b

a

dx

∫

A

dy

∫

Rn−1

|u(x, y+z)−u(x, y)|φj(z)dz =

=

∫

Rn−1

φj(z)||u(·, · + z) − u||L1(A×(a,b))dz ≤ sup
|z|≤cεj

||u(·, · + z) − u||L1(A×(a,b))

for some c positive constant. By (2.3) I ′′j tends to 0 as j → +∞. Let us now consider I ′j ;

I ′j =

∫

A

(

∫ b

a

(|uj − u|(x, ·) ∗ φj)(y)dx
)

dy ≤

≤
∫ b

a

||(uj − u)(x, ·)||L1(A)||φj ||L1(Rn−1)dx = ||uj − u||L1((a,b)×A),

which tends to 0 as j → +∞. Thus we conclude that for any A open subset of R
n−1

lim
j→+∞

∫

A

(

∫ b

a

|vyj (x) − u(x, y)|dx
)

dy = 0.
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In particular there exists a subsequence (vyjk)k which converges to u(x, ·) in L1(a, b) for a.e. y ∈ A.

Remark 4.2.5 The result of the previous lemma can be immediately generalized to the case

where (a, b) is replaced by any open subset of R.

Let ξ ∈ Sn−1 and let ν1, . . . , νn be an orthonormal basis of R
n, with ν1 = ξ. For every r > 0

and x ∈ R
n, define:

Qξr(x) = {y ∈ R
n : 〈y − x, νi〉| < r, i = 1, . . . , n}.

Lemma 4.2.6 There exists a sequence (ch) of positive real numbers, with limh→+∞ ch = 1 , such

that, for every u ∈ W 1,1(Ω), ξ ∈ R
n and A,A′ open subsets of Ω, with A′ ⊂⊂ A, and for every

ε < d(A′, ∂A)/2, the following inequality holds:

Fε(u,A) ≥ 1

hσhε

∫

A′

fh



σhε

∫

Qξ

σh
ε

(z)

|∇u(y)|dy



 dz,

where fh(t) = f(chht) and σhε = ε/h.

Proof. For ease of notation we shall drop the superscript ξ in Qξr(z) (ξ ∈ Sn−1 fixed). For every

h > 0 let

Zh = {α ∈ Z
n : Q1/h(2α/h) ⊆ B1(0)}, Nh = ♯Zh.

Clearly

ch :=
2nNh
ωnhn

→ 1 h→ +∞,

and, for every ε > 0 and x ∈ R
n

Zh = {α ∈ Z
n : Qhε (x, α) := x+Qε/h(2αε/h) ⊆ Bε(x)}.

Fix now u ∈ W 1,1(Ω); then for every ε > 0 and x ∈ Ω, with d(x, ∂Ω) > ε:

∫

Bε(x)

|∇u(y)|dy ≥
∑

α∈Zh

(

2ε
h

)n

ωnεn

∫

Qh
ε (x,α)

|∇u(y)|dy =
∑

α∈Zh

ch
Nh

∫

Qh
ε (x,α)

|∇u(y)|dy.

By the concavity of f ,

f

(

ε

∫

Bε(x)

|∇u(y)|dy
)

≥
∑

α∈Zh

1

Nh
f

(

εch

∫

Qh
ε (x,α)

|∇u(y)|dy
)

.

Let A′ ⊂⊂ A, and 2ε < d(A′, ∂A); we can find an open subset A′′ of A such that

A′ ⊂⊂ A′′ ⊂⊂ A, d(A′, ∂A′′) > ε, d(A′′, ∂A) > ε.
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Thus, if we set σhε = ε/h, we get:

Fε(u,A
′′) =

1

ε

∫

A′′

f

(

ε

∫

Bε(x)

|∇u(y)|dy
)

dx ≥

≥
∑

α∈Zh

1

Nh

(

1

hσhε

∫

A′′

fh

(

σhε

∫

Qh
ε (x,α)

|∇u(y)|dy
)

dx

)

with fh as in the statement of the lemma. The change of variables z = x+ 2σhεα now yields:

Fε(u,A) ≥
∑

α∈Zh

1

Nh

(

1

hσhε

∫

A′

fh

(

σhε

∫

Q
σh

ε
(z)

|∇u(y)|dy
)

dz

)

.

Since the Nh terms of the sum do not depend on α, we conclude.

Remark 4.2.7 It is easy to see that Remark 3.2.6 holds unchanged in the n-dimensional setting;

then, given u ∈ L1(Ω), the set function A 7→ F ′(u,A) is increasing and superadditive, i.e.

(i) F ′(u,A1) ≤ F ′(u,A2), whenever A1 ⊆ A2 ⊆ (a, b);

(ii) F ′(u,A1 ∪A2) ≥ F ′(u,A1) + F ′(u,A2), whenever A1 ∩A2 = ∅.

Proposition 4.2.8 For every u ∈ BV (Ω) and A ∈ A(Ω)

F ′(u,A) ≥
∫

A

|∇u(x)|dx + |Dcu|(A).

Proof. Let (εj) be a positive infinitesimal sequence and let (uj) be a sequence in W 1,1(Ω)

converging to u ∈ L1(Ω) and such that Fεj (uj , A) → F ′(u,A) as j → +∞. Let ξ ∈ Sn−1. By

Lemma 4.2.6, applied with ε = εj and u = uj , and by Fubini’s Theorem, if A and A′ are open

subsets of Ω, with A′ ⊂⊂ A, and 2εj < d(A′, ∂A), we have (here σhj = εj/h):

Fεj (uj , A) ≥ 1

hσhj

∫

A′

fh



σhj

∫

Qξ

σh
j

(z)

|∇uj(x)|dx



 dz =

=

∫

Q

ξ





1

hσhj

∫

A′

ξ,y

fh



σhj

∫

Qξ

σh
j

(y+tξ)

|∇uj(x)|dx



 dt



 dHn−1(y)

where
∏

ξ and A′
ξ,y stand for the subspace orthogonal to ξ and for the one dimensional section

of A′ in the direction ξ, as in Theorem 1.2.3. It is not restrictive to assume ξ = e1 (and we shall

drop the superscript ξ); let y = (t, ỹ) ∈ R × R
n−1 denote the generic element of R

n, and denote

A′
e1,y as A′

ỹ . Then, recalling the definition of Q̃

∫

Q
σh

j
(y+te1)

|∇uj(x)|dx ≥
∫

Q
σh

j
(t,ỹ)

∣

∣

∣

∣

∂uj
∂x1

(x)

∣

∣

∣

∣

dx ≥
∫ t+σh

j

t−σh
j

∣

∣

∣

∣

∣

∣

∫

Q̃
σh

j
(ỹ)

∂uj
∂s

(s, x̃)dx̃

∣

∣

∣

∣

∣

∣

ds,
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hence
∫

Q
σh

j
(y+te1)

|∇uj(x)|dx ≥
∫ t+σh

j

t−σh
j

∣

∣

∣

∣

∣

∣

d

ds

∫

Q̃
σh

j
(ỹ)

uj(s, x̃)dx̃

∣

∣

∣

∣

∣

∣

ds.

For any fixed A′ ⊂⊂ A, we can find an open set P with A′ ⊂⊂ P ⊂⊂ A and which is a finite

union of sets of the form E ×G, with E ⊆ R and G ⊆ R
n−1 open sets. Then, by Lemma 4.2.4

and the subsequent remark, the sequence (vỹj ) defined by

vỹj (s) =

∫

Q̃
σh

j
(ỹ)

uj(s, x̃)dx̃, s ∈ A′
ỹ

converges (up to a subsequence, which does not affect the rest of the proof) to uỹ := u(·, ỹ) in

L1(A′
ỹ) for a.e. ỹ in the set Ã′ = {ỹ ∈ R

n−1 : A′
ỹ 6= ∅}. By Fatou’s Lemma:

lim inf
j→+∞

Fεj (uj , A) ≥
∫

Q

e1

1

h

(

lim inf
j→+∞

1

σhj

∫

A′

ỹ

fh

(

σhj

∫ t+σh
j

t−σh
j

∣

∣

∣

∣

∣

dvỹj
ds

(s)

∣

∣

∣

∣

∣

ds

)

dt

)

dỹ;

thus, taking the one-dimensional Γ-convergence result into account:

lim inf
j→+∞

Fεj (uj , A) ≥
∫

Q

e1

1

h

(

∫

A′

ỹ

chh|(uỹ)′(s)|ds+ chh|Dcuỹ|(A′
ỹ)

)

dỹ.

By the slicing Theorem 1.2.3 we deduce that

lim inf
j→+∞

Fεj (uj , A) ≥ ch

(∫

A′

|〈∇u(x), e1〉|dx+ |〈Dcu, e1〉|(A′)

)

.

As mentioned above, this result holds with any ξ in place of e1; therefore, since ch → 1 as

h→ +∞ and A′ ⊂⊂ A is arbitrary, we get

F ′(u,A) ≥
∫

A

|〈∇u(x), ξ〉|dx + |〈Dcu, ξ〉|(A)

for every ξ ∈ Sn−1. Superadditivity of F ′ and Lemma 1.1.5 conclude the proof.

4.3 Estimate from below of the surface term

In this section for any sequence (Fεj ) and any given function u ∈ BV we shall apply Besicovitch’s

differentiation Theorem, with respect to Hn−1 Su, to the lower Γ-limit considered as a set

function (Proposition 4.3.1). Through a rescaling argument the density of this bound will be

estimated in terms of the lower Γ-limit on the functions u0 obtained by “blow-up” (Proposition

4.3.2 and subsequent Corollary). Let us notice that, when considering F ′ for u0 on a unit ball

B1 (or on a cilinder C1 of unit size, as in Proposition 4.3.5), we shall assume as Ω any set strictly

containing B1 (or C1): see Remark 4.1.4. The passage to the evaluation of F ′ on a cilinder

with axis normal to the jump set (Proposition 4.3.5) allows an explicit computation of the lower

bound (see Proposition 4.3.6 together with 4.3.7).
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Proposition 4.3.1 Let (εj) be a positive infinitesimal sequence, A ∈ A(Ω) and let Φ′(·, A) be

the lower Γ-limit of
(

Fεj (·, A)
)

. Then Φ′(u, ·) : A(Ω) → R, is the trace on A(Ω) of a Borel

measure on Ω; moreover, for every u ∈ BV (Ω)

Φ′(u,A) ≥
∫

Su∩A
h(x)dHn−1

where, for Hn−1 a.e. x ∈ Su:

h(x) = lim
̺→0

Φ′(u,B̺(x))

ωn−1̺n−1
.

Proof. The proof of the first part of the Lemma (Φ′(u, ·) trace of a Borel measure) can be

obtained by Proposition 4.3 and Theorem 4.6 of [14] (these results are shown in the case p > 1,

but the same proof works in the case p = 1).

Given u ∈ BV (Ω), for every k ∈ N let

Jk = {x ∈ Ju : |u+(x) − u−(x)| > 1/k}.

Clearly, Hn−1(Jk) < +∞; let

νk = Hn−1 Jk,

and denote by µ the Borel measure which extends Φ′(u, ·); we can assume Φ′(u,Ω) < +∞. By

Besicovitch’s differentiation theorem, for νk-a.e. x ∈ Ω the limit

g(x) = lim
̺→0

µ(B̺(x))

νk(B̺(x))

exists and is finite; moreover, the Radon-Nikodym decomposition of µ is given by

µ = gνk + µs, µs ⊥ νk.

Since Jk is Hn−1-rectifiable, for Hn−1-a.e. x ∈ Jk we have

νk(B̺(x))

ωn−1̺n−1
=

Hn−1(B̺(x) ∩ Jk)
ωn−1̺n−1

→ 1, ̺→ 0

(see, e.g. , [5] Theorem 2.63). Thus, for Hn−1-e.e. x ∈ Jk

g(x) = lim
̺→0

µ(B̺(x))

ωn−1̺n−1
= lim

̺→0

Φ′(u,B̺(x))

ωn−1̺n−1
= h(x).

Taking into account that µs is non-negative, we deduce that for every A ∈ A(Ω)

Φ′(u,A) ≥
∫

Ω

h(x)dνk =

∫

Jk∩A
h(x)dHn−1.

The conclusion follows considering the supremum for k ∈ N.
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Proposition 4.3.2 Let Φ′ be as in Proposition 4.3.1; then for every u ∈ BV (Ω)

lim inf
̺→0

Φ′(u,B̺(x0))

̺n−1
≥ F ′(u0, B1(x0)), for Hn−1-a.e. x0 ∈ Su,

where u0 is the function given by

u0(x) =

{

u+(x0) 〈x− x0, ν〉 ≥ 0
u−(x0) 〈x− x0, ν〉 < 0

with ν = νu(x0).

Proof. We can assume x0 = 0. Let ̺k be a decreasing infinitesimal sequence; for every k ∈ N

there exists wj ∈ W 1,1(Ω) such that wj → u in L1(Ω) and

lim inf
j→+∞

Fεj (wj , B̺k
(0)) ≤ Φ′(u,B̺k

(0)) +
̺n−1
k

k
.

Let j̄ = j(k) be such that εj̄/̺k ≤ 1/k and

Fεj̄
(wj̄ , B̺k

(0)) ≤ Φ′(u,B̺k
(0)) +

̺n−1
k

k
,

||wj̄ − u||L1(Ω) ≤
1

k
,

∫

B2(0)

|wj̄(̺kx) − u(̺kx)|dx ≤ 1

k
.

Let uk = wj(k). We can suppose that the sequence j(k) is increasing, and then we set σk = εj(k);

then uk → u in L1(Ω) and
∫

B2(0)

|uk(̺kx) − u(̺kx)|dx ≤ 1

k
,

Fσk
(uk, B̺k

(0)) ≤ Φ′(u,B̺k
(0)) +

̺n−1
k

k
.

Since
∫

B2(0)

|uk(̺kx) − u0(̺kx)|dx ≤ 1

k
+

∫

B2(0)

|u(̺kx) − u0(̺kx)|dx→ 0

as k → +∞,

lim inf
k→+∞

Φ′(u,B̺k
(0))

̺n−1
k

≥ lim inf
k→+∞

Fσk
(uk, B̺k

(0))

̺n−1
k

.

Let vk(t) = uk(̺kt); then

∫

Bσk
(x)

|∇uk(y)|dy =
̺n−1
k

ωnσnk

∫

Bσk/̺k
(x/̺k)

|∇vk(η)|dη.

Finally, setting x/̺k = z,

Fσk
(uk, B̺k

(0))

̺n−1
k

=
1

σk/̺k

∫

B1(0)

f

(

σk
̺k

∫

Bσk/̺k
(x)

|∇vk(y)|dy
)

dx .

Since γk := σk/̺k → 0 as k → +∞, and vk → u0 in L1(B2(0)), we conclude by the arbitrariness

of ̺k and the definition of F ′.

From the two propositions just proved the following result immediately follows:
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Corollary 4.3.3 Let u ∈ BV (Ω) and A ∈ A(Ω). Then

F ′(u,A) ≥
∫

Su∩A
σ(x) dHn−1,

where

σ(x0) = ω−1
n−1F

′(u0, B1(x0)
)

, for Hn−1-a.e. x0 ∈ Su,

with (ν = νu(x0))

u0(x) =

{

u+(x0) 〈x− x0, ν〉 ≥ 0
u−(x0) 〈x− x0, ν〉 < 0 .

Let ν ∈ Sn−1. For any y ∈ R
n denote by yν and yν⊥ the projections onto the subspaces

V = {tν : t ∈ R} and V ⊥, respectively. For ̺ > 0 and x ∈ R
n define

Cν̺ (0) = {y ∈ R
n : |yν | < ̺, |yν⊥ | < ̺}, Cν̺ (x) = x+ Cν̺ (0).

The next lemma proves that the “‘transition set” between two constant values shrinks onto

the interface.

Lemma 4.3.4 Let ν ∈ Sn−1 and

u0(x) =

{

a 〈x, ν〉 ≥ 0
b 〈x, ν〉 < 0 .

Let Ω′ ⊃⊃ Cν1 (0). For any A open subset of Cν1 (0), there exist a positive infinitesimal sequence

(εj) and a sequence (uj) in W 1,1(Ω′) converging to u0 in L1(Ω′) and such that

lim
j→+∞

Fεj (uj , A) = F ′(u0, A)

uj(x) = a 〈x, ν〉 ≥ aj ; uj(x) = b 〈x, ν〉 ≤ −bj,

where (aj) and (bj) are suitable positive infinitesimal sequences.

Proof. It is not restrictive to assume ν = e1. Fix A open subset of Cν1 (0).

Step 1. Let 0 < ε < d(Cν1 (0), ∂Ω′), σ > 0 and u1, u2, ϕ ∈ W 1,1(Ω′), with ϕ given by

ϕ(x) =







0 x ∈ Aε
affine x ∈ Sε
1 x ∈ Bε

where Aε = {x ∈ Ω′ : x1 ≤ −2ε−σ}, Bε = {x ∈ Ω′ : x1 ≥ −2ε}, and Sε = {x ∈ Ω′ : −2ε−σ <
x1 < −2ε}. In particular, |∇ϕ| ≤ 1/σ. Then, denoting by v = ϕu1 + (1 − ϕ)u2, we have

εFε(v,A) =

∫

A∩Ãε

f

(

ε

∫

Bε(x)

|∇u2(y)|dy
)

dx+

∫

A∩B̃ε
f

(

ε

∫

Bε(x)

|∇u1(y)|dy
)

dx+

+

∫

A∩S̃ε
f

(

ε

∫

Bε(x)

|∇v(y)|dy
)

dx,
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where Ãε = {x ∈ Ω′ : x1 ≤ −3ε− σ}, B̃ε = {x ∈ Ω′ : x1 − ε}, and S̃ε = {x ∈ Ω′ : −3ε− σ <

x1 < −ε}. By the subadditivity of f ,

∫

A∩S̃ε

f

(

ε

∫

Bε(x)

|∇v(y)|dy
)

≤

≤
∫

A∩S̃ε

f

(

ε

∫

Bε(x)

(ϕ(y)|∇u1(y)| + (1 − ϕ(y))|∇u2(y)| + |u1(y) − u2(y)||∇ϕ(y)|)dy
)

dx ≤

≤
∫

A∩S̃ε

f

(

ε

∫

Bε(x)

ϕ(y)|∇u1(y)|dy
)

dx +

∫

A∩S̃ε

f

(

ε

∫

Bε(x)

(1 − ϕ(y))|∇u2(y)|dy
)

dx+

+

∫

A∩S̃ε

f

(

ε

∫

Bε(x)

|u1(y) − u2(y)||∇ϕ(y)|dy
)

dx.

Then (since f(t) ≥ t)

(3.1) Fε(v,A) ≤ Fε(u1, A ∩ (B̃ε ∪ S̃ε)) + Fε(u2, A ∩ (Ãε ∪ S̃ε)) + Iε

with

Iε ≤
1

σ

∫

S̃ε∩Cν
1 (0)

∫

Bε(x)

|u1(y) − u2(y)|dydx.

A simple application of Fubini’s theorem now gives

Iε ≤
1

σ

∫

Ω′

−

|u1(y) − u2(y)| dy,

where Ω′
− = {x ∈ Ω : x1 ≤ 0}. Step 2. Let εj → 0 and (uj) in W 1,1(Ω′) converging to u0 in

L1(Ω′) such that

Fεj (uj, A) → F ′(u0, A).

For every j ∈ N apply estimate (3.1) with ε = εj, u1 = uj and u2 = b. If vj = ϕuj + (1 − ϕ)b,

since Fεj (b, A) = 0, we have:

Fεj (vj , A) ≤ Fεj (uj , A) +
1

σ

∫

Ω′

−

|uj(y) − b|dy.

Notice that
∫

Ω′

−

|uj(y) − b|dy =

∫

Ω′

−

|uj(y) − u0(y)|dy → 0

as j → +∞. Therefore, if (σh) is a positive infinitesimal sequence, we can find a strictly increasing

sequence (jh) in N such that

1

σh

∫

Ω′

−

|ujh − b|dy → 0 as h→ +∞.

Then

lim inf
h→+∞

Fεjh
(vjh , A) ≤ lim inf

h→+∞
Fεjh

(ujh , A) = F ′(u0, A).



CHAPTER IV. THE N-DIMENSIONAL CASE 55

Moreover,

vjh(x) =

{

b x1 ≤ −2εjh − σh
ujh x1 ≥ 0 .

Clearly vjh → u0 in L1(Ω′), and vjh(x) = b when x1 is negative and outside a left neighborhood

of 0, shrinking to 0 as h → +∞. An analogous procedure allows to modify vjh so that, while

mantaining the convergence of the functionals to F ′(u0, A), it takes the value a at the points x

with x1 positive and outside a neighborhood of 0, shrinking to 0.

Proposition 4.3.5 For Hn−1 a.e. x0 ∈ Su

F ′(u0, B1(x0)) = F ′(u0, C
ν
1 (x0))

where ν = νu(x0) and u0 is as in Corollary 4.3.3.

Proof. Clearly, the relevant inequality is F ′(u0, B1(x0)) ≥ F ′(u0, C
ν
1 (x0)). It is not restrictive

to assume x0 = 0 and ν = e1. Let 0 < δ < 1 and δ < τ < 1; let uj be a sequence converging

to u in L1. Let Sj = (−bj, aj) × R
n−1, where aj and bj are given by previous Lemma. Then

Sj ∩ Cτ1 (0) ⊂⊂ B1(0) and, always by previous Lemma, we can suppose uj = a if x1 ≥ aj and

uj = b if x1 ≤ −bj. Now, we extend the definition of uj at all Cτ1 (0), simply by setting ũj = uj

in B1(0) ∩Cτ1 (0), ũj = a if x1 ≥ aj and ũj = b if x1 ≤ −bj. Then

Fεj (uj, B1(0)) ≥ Fεj (uj , B1(0) ∩ Cνδ (0)) = Fεj (ũj , C
ν
δ (0))

By taking the infimum on all sequences we have

F ′(u0, B1(0)) ≥ F ′(u0, C
ν
δ (0))

and the conclusion follows by taking the supremum on δ ∈ (0, 1).

Proposition 4.3.6 Let u0 : R
n → R be given by

u0(x) =

{

a x1 ≥ 0
b x1 < 0 ,

with a, b ∈ R and a 6= b; then

F ′(u0, C
e1
1 (0)) ≥ ωn−1 inf

X
G ,

where

G(v) =

∫

R

f

(

(n− 1)ωn−1

ωn

∫ 1

0

[v(ξ +
√

1 − η2, η) − v(ξ −
√

1 − η2, η)]ηn−2dη

)

dξ ,

and X is the space of all functions v ∈W 1,1
loc (R× (0, 1)) non-decreasing in the first variable, such

that there exists ξ0 < ξ1 (depending on v) with v = b if ξ ≤ ξ0, and v = a if ξ ≥ ξ1.
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Proof. Denote Ce11 (0) by C; let (uj) be a sequence inW 1,1(Ce12 (0)) converging to u0 in L1(Ce12 (0))

and such that

lim inf
j→+∞

Fεj (uj , C) = lim
j→+∞

Fεj (uj , C) = F ′(u0, C).

We can suppose a > 0 and b = 0. Moreover, by Lemma 4.3.4 (with A = C), we can assume that

uj(x) = 0 if x1 ≤ −bj, and uj(x) = a if x1 ≥ aj, for some positive aj , bj → 0.

Let

αj(x1, x2, . . . , xn) =

∫ x1

−1

(

∂

∂t
uj(t, x2, . . . , xn)

)+

dt ,

and vj = αj ∧ a. Then vj ∈ W 1,1(Ce12 (0)), vj(x) = u0(x) if x1 /∈ (−bj , aj), and vj is non-

decreasing in the first variable. Moreover

|∇uj | ≥
∣

∣

∣

∣

∂uj
∂x1

∣

∣

∣

∣

≥ ∂vj
∂x1

≥ 0.

Then

Fεj (uj, C) ≥ 1

εj

∫

C

f

(

εj

∫

Bεj
(x)

∂vj
∂s1

(s)ds

)

dx.

Let Bn−1
̺ be the (n − 1)-dimensional ball of center 0 and radius ̺. Since C = (−1, 1) × Bn−1

1 ,

we have

Fεj (uj, C) ≥ 1

εj

∫

Bn−1
1

dx2 · · · dxn
∫ 1

−1

f

(

εj

∫

Bεj
(x)

∂vj
∂s1

(s)ds

)

dx1.

Let (x̄2, · · · , x̄n) ∈ Bn−1
1 be such that

∫ 1

−1

f

(

εj

∫

Bεj
(x1,x̄2,··· ,x̄n)

∂vj
∂s1

(s)ds

)

dx1 =

= min
(x2,··· ,xn)∈Bn−1

1

∫ 1

−1

f

(

εj

∫

Bεj
(x1,··· ,xn)

∂vj
∂s1

(s)ds

)

dx1 .

We can assume, up to a translation, that for all i, x̄i = 0. Then

Fεj (uj , C) ≥ ωn−1

εj

∫ 1

−1

f

(

1

ωnε
n−1
j

∫

Bεj
(x1,0)

∂vj
∂s1

(s)ds

)

dx1 .

By Fubini’s Theorem,
∫

Bεj
(x1,0)

∂vj
∂s1

(s)ds =

∫

Bn−1
εj

[

vj
(

x1 +
√

ε2j − |y|2, y
)

− vj
(

x1 −
√

ε2j − |y|2, y
)

]

dy .

Define

v̂j(t, ̺) =

∫

∂Bn−1
̺

vj(t, y)dHn−2(y), ̺ ∈ (0, εj) .

Then
∫

Bεj
(x1,0)

∂vj
∂s1

(s)ds =

∫ εj

0

d̺

∫

∂Bn−1
̺

[

vj
(

x1 +
√

ε2j − |y|2, y
)

− vj
(

x1 −
√

ε2j − |y|2, y
)]

dHn−2(y)

=

∫ εj

0

Hn−2(∂Bn−1
̺ )[v̂j(x1 +

√

ε2j − ̺2, ̺) − v̂j(x1 −
√

ε2j − ̺2, ̺)]d̺ .
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By the change of variables x1/εj = ξ and ̺ = εjη, we obtain, for j sufficiently large:

Fεj (uj , C) ≥ ωn−1

∫ 1/εj

−1/εj

f

(

(n− 1)ωn−1

ωn

∫ 1

0

[v̂j(εjξ + εj
√

1 − η2, εjη)+

−v̂j(εjξ − εj
√

1 − η2, εjη)]η
n−2dη

)

dξ .

Let wj(x) = v̂j(εjx). Clearly wj is non-decreasing in the first variable, and there exist ξ0 < ξ1

such that wj(x) = a if x ≥ ξ1 and wj(x) = 0 if x ≤ ξ0. Then wj can be extended to all R× (0, 1)

(with values 0 and a) and thus wj ∈ X . Hence F ′(u,C) ≥ ωn−1G(wj).

Proposition 4.3.7 With the notation of Proposition 4.3.6 we have

inf
X
G ≥ ϑ(|a− b|) .

Proof. We can suppose a > 0 and b = 0. Recall that

G(v) =

∫

R

f

(

an

∫ 1

0

[

v(ξ +
√

1 − η2, η) − v(ξ −
√

1 − η2, η)
]

ηn−2 dη

)

dξ

where an = (n− 1)ωn−1/ωn. For each k ∈ N we now consider a discrete version of G defined on

the space of the functions on S = R× [0, 1] which are constant on each of the squares determined

by a coordinate partition of S and with sides of length 1/k. We also require the monotonicity in

the first variable and the constant value 0 and a on the left and right of [ξ0, ξ1]×[0, 1], respectively,

for some ξ0 < ξ1.

Clearly, we can deal only with the values on the nodes; thus, for any N ∈ N, define Y Nk as

the set of functions

v = (vi,j)i,j : Z × {1, . . . , k − 1} → [0, a],

such that:

a) for every j the function i 7→ vi,j is increasing;

b) vi,j = 0 if i < −Nk and vi,j = a if i ≥ Nk.

Let Yk =
⋃

N∈N
Y Nk , and let Gk : Yk → R be defined by:

Gk(v) =

(N+1)k
∑

i=−(N+1)k

1

k
f

(

an

k−1
∑

j=1

1

k
[v]i,j

)

, on Y Nk ,

where

[v]i,j =
(

vi+ĵ,j − vi−ĵ,j
)

(j/k)n−2,

with ĵ denoting the integer part of
√

k2 − j2 (see a sketch in the next figure).
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0

1

j
k

η

ξ
i
k

i+2ĵ
k

i+ĵ
k

Step 1. Each minimizer of Gk on Y Nk takes only the values 0 and a.

Let v be a minimizer of Gk on Y Nk . Suppose, by contradiction, that there exists i0, j0 with

vi0,j0 = c ∈ (0, a). We can assume that for a suitable s ∈ N:

vi0−1,j0 < c , c = vi0,j0 = vi0+1,j0 = · · · = vi0+s,j0 , vi0+s+1,j0 > c .

Then, given t ∈ R, we define vt = (vi,jt )i,j as vi0+l,j0
t = c+ t, if 0 ≤ l ≤ s, and vt = v otherwise.

For |t| sufficiently small, vt ∈ Y Nk . Let

I1 = {i ∈ Z : i+ ĵ0 ∈ [i0, i0 + s]} , I2 = {i ∈ Z : i− ĵ0 ∈ [i0, i0 + s]} .

Notice that if i /∈ I1∆I2 then [vt]i,j = [v]i,j . Therefore:

Gk(vt) =
∑

i∈I1\I2

1

k
f

(

an

k−1
∑

j=1

1

k
[vt]i,j

)

+
∑

i∈I2\I1

1

k
f

(

an

k−1
∑

j=1

1

k
[vt]i,j

)

+

+
∑

i/∈I1∆I2

1

k
f

(

an

k−1
∑

j=1

1

k
[v]i,j

)

=

=
∑

i∈I1\I2

1

k
f



an

k−1
∑

j=1

1

k
[v]i,j +

an
k

( j0
k

)n−2

t



+
∑

i∈I2\I1

1

k
f



an

k−1
∑

j=1

1

k
[v]i,j −

an
k

(j0
k

)n−2

t





+
∑

i/∈I1∆I2

1

k
f

(

an

k−1
∑

j=1

1

k
[v]i,j

)

.

The function t 7→ Gk(vt) is twice continuously differentiable in t = 0 (due to the smoothness of

f), and:
d2

dt2
Gk(vt)

∣

∣

t=0
=

=
a2
n

k3

( j0
k

)2(n−2)





∑

i∈I1\I2

f ′′



an

k−1
∑

j=1

1

k
[v]i1,j



+
∑

i∈I2\I1

f ′′



an

k−1
∑

j=1

1

k
[v]i2,j







 < 0 .

by strict concavity of f ; this is a contradiction, since v is a minimizer for Gk. Step 2. We claim

that if v ∈ Y Nk takes only the values 0 and a, then

Gk(v) ≥ Gk(v),
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where

v̄i,j =

{

0 i < Nk,
a i ≥ Nk

Indeed, assume that

Ev := {i ∈ Z : ∃j vi+ĵ,j = a, i+ ĵ < Nk} 6= ∅

(otherwise v = v). Let i0 = minEv and

jM = max{j : vi0+ĵ,j = a, i0 + ĵ < Nk},

JM = {j : ĵ = ĵM , v
i0+ĵ,j = a}, j0 = min JM .

Then vi0+ĵ0,j0 = a and

(3.2) j < j0 ⇒ vi0+ĵ0,j = 0.

Indeed, if we had j < j0 with the property vi0+ĵ0,j = a, then we would have ĵ > ĵ0 = ĵM , and

Nk > i0 + ĵ0 = i0 − l + ĵ, with l = ĵ − ĵ0 > 0;

therefore

vi0−l+ĵ,j = a,

and i0 − l ∈ E, which contrasts with the definition of i0. Denote by w the function obtained by

modifying v in (i0 + ĵ, j) for j ∈ JM :

wi0+ĵ,j = 0 for j ∈ JM , wi,j = vi,j otherwise.

We want to show that

(3.3) Gk(v) ≥ Gk(w).

Notice that in the sum over i defining Gk(v) the terms vi0+ĵ,j (j ∈ JM ) appear only if i = i0

or i = i0 + 2ĵ0. Accordingly, let us write kGk(v) as:

(3.4) kGk(v) = f(q + δ) + f(p) +
∑

i/∈{i0,i0+2ĵ0}

f

(

∑

j

an
k

[v]i,j

)

,

where:

q =
∑

j /∈JM

an
k

[v]i0,j, δ =
∑

j∈JM

ana

k

(

j

k

)n−2

, p =
k−1
∑

j=0

an
k

[v]i0+2ĵ0,j
.

An analogous splitting can be written for kGk(w): clearly, the last term is the same as in (3.4).

Thus:

(3.5) kGk(v) − kGk(w) = f(q + δ) − f(q) − [f(p+ δ) − f(p)].
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By the definition of j0 it turns out that:

q =
∑

j<j0

an
k

[v]i0,j .

Moreover, if j < j0 then ĵ ≥ ĵ0; the monotonicity in the first variable and (3.2) yield:

vi0+2ĵ0−ĵ,j ≤ vi0+ĵ0,j = 0.

Hence:

j < j0 ⇒ vi0+2ĵ0−ĵ,j = 0,

so that

j < j0 ⇒ [v]i0+2ĵ0,j
= vi0+2ĵ0+ĵ,j − vi0+2ĵ0−ĵ,j ≥ vi0+ĵ,j = [v]i0,j.

Therefore

p ≥
∑

j<j0

an
k

[v]i0+2ĵ0,j
≥ q.

Notice now that the strict concavity of f implies:

q ≤ p ⇒ f(q + δ) − f(q) ≥ f(p+ δ) − f(p).

This, together with (3.5), proves (3.3). If Ew is not empty, it has a minimum strictly greater

than i0 = minEv. A finite iteration of the above argument proves the claim.

Step 3. We have shown that for every N > 0, infY N
k
Gk = Gk(v̄), where v̄ does not depend on

N . Then infYk
Gk = infN>0 infY N

k
Gk = Gk(v̄). Let’s compute

lim
k→+∞

Gk(v̄)

where, up to a translation, we can suppose v̄ given by

v̄i,j =

{

0 i < 0
a i ≥ 0.

We have

Gk(v̄) = 2

0
∑

i=−k

1

k
f



an

k−1
∑

j=0,i+ĵ>0

a

k

(

j

k

)n−2


 = 2

0
∑

i=−k

1

k
f





ana

k

î
∑

j=0

(

j

k

)n−2




where î denotes the integer part of
√
k2 − i2. Obviously

1

k

î
∑

j=0

(

j

k

)n−2

≤
∫ î

k

0

tn−2dt.

Moreover
∫ î

k

0

tn−2dt ≤ 1

k

î
∑

j=0

(

j + 1

k

)n−2

=
1

k

î
∑

j=0

(

j

k

)n−2

+ bk
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where

bk =
1

k

(

î+ 1

k

)n−2

→ 0, k → +∞.

Then
∫ î

k

0

tn−2dt− bk ≤ 1

k

î
∑

j=0

(

j

k

)n−2

≤
∫ î

k

0

tn−2dt.

By the monotonicity of f ,

0
∑

i=−k

1

k
f

(

∫ î
k

0

tn−2dt− bk

)

≤
0
∑

i=−k

1

k
f





1

k

î
∑

j=0

(

j

k

)n−2


 ≤

≤
0
∑

i=−k

1

k
f

(

∫ î
k

0

tn−2dt

)

.

Thus, by the definition of the Riemann integral as the limit of the Riemann sums, we have, by

taking k → +∞,

inf
Yk

Gk → 2

∫ 1

0

f

(

ωn−1

ωn
a(
√

1 − t2)n−1

)

dt

Step 4. Let us show that a function v ∈ X can be approximated by a sequence of continuous

functions belongs to X .

Indeed, fix τ > 0 and let ̺ε be a convolution kernel. Consider the function vτ : R
n → [0, a]

given by

vτ (x) =







a x1 ≥ ξ1,−τ ≤ x2 ≤ 1 + τ
v x ∈ S
0 otherwise

where ξ1 is such that v = a for every x1 ≥ ξ1. Then vτ ∗ ̺ε|S ∈ X is a continuous function, and

vτ ∗ ̺ε|S → v in L1(S) and a.e. x ∈ S, as ε → 0. Step 5. We conclude the proof. Let σ > 0;

then there exists vσ ∈ X such that

(3.6) inf
X
G ≥ G(vσ) − σ.

By Step 4 we can suppose vσ continuous, hence uniformly continuous. Hence there exists δ > 0

such that

|(x, y) − (x′, y′)|1 < δ ⇒ |vσ(x, y) − vσ(x
′, y′)| < σ .

Fix k ∈ N, and consider the function wi,j ∈ Yk given by

wi,j(Qi,jk ) =

∫

Qi,j
k

vσdx

where Qi,jk = [i/k, (i+ 1)/k)× [j/k, (j + 1)/k). Let ξ ∈ (i/k, (i+ 1)/k) and η ∈ (j/k, (j + 1)/k);

then
i+ (j + 1)∧

k
≤ ξ +

√

1 − η2 ≤ i+ ĵ + 1

k
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Thus, for k sufficiently large (say k ≥ k̄)and for every (x′, y′) ∈ Qi+ĵ,jk , |(ξ +
√

1 − η2, η) −
(x′, y′)| < δ; analougly, one can be obtain |(ξ −

√

1 − η2, η)− (x′, y′)| < δ. Then for every k ≥ k̄

and for every ξ ∈ (i/k, (i+ 1)/k) and η ∈ (j/k, (j + 1)/k),

(3.7) (vσ(ξ +
√

1 − η2, η) − vσ(ξ −
√

1 − η2, η))ηn−2 ≥ [w]i,j − σ .

This implies

∫ 1

0

vσ(ξ +
√

1 − η2, η) − vσ(ξ −
√

1 − η2, η))ηn−2dη ≥ 1

k

k−1
∑

j=0

[w]i,j − σ.

By the mean value Theorem for integrals, we have

G(vσ) =
k
∑

i=−k

1

k
f

(∫ 1

0

vσ(ξ(i) +
√

1 − η2, η) − vσ(ξ(i) −
√

1 − η2, η)ηn−2dη

)

where ξ(i) ∈ (i/k, (i+ 1)/k). By (3.6) and (3.7), and by the arbitrariness of σ, we obtain

inf
X
G ≥ lim

k→+∞
inf
Yk

Gk

and this, by Step 3, concludes the proof.

4.4 Estimate from below of the lower Γ-limit

Theorem 4.4.1 For every u ∈ GBV (Ω)

F ′(u) ≥
∫

Ω

|∇u(x)|dx +

∫

Su

ϑ(|u+(x) − u−(x)|)dHn−1 + |Dcu|(Ω).

Proof. Let u ∈ BV (Ω) and A ∈ A(Ω). From Proposition 4.2.8 we have

F ′(u,A) ≥
∫

A

|∇u(x)|dx + |Dcu|(A);

moreover, Corollary 4.3.3 and Propositions 4.3.5, 4.3.6 and 4.3.7 give

F ′(u,A) ≥
∫

Su∩A
ϑ(|u+(x) − u−(x)|)dHn−1 .

Let λ = Ln + Hn−1 Su + |Dcu|. Let E be a Borel subset of Ω with |E| = 0 and such that

|Dcu| is concentrated on E, i.e. |Dcu|(Ω \ E) = 0. Then

µ(A) := F ′(u,A) ≥
∫

A

ψi(x)dλ

for i = 1, 2, where

ψ1(x) =







|∇u(x)| x ∈ Ω \ (Su ∪ E)
0 x ∈ Su
1 x ∈ E
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ψ2(x) =







0 x ∈ Ω \ (Su ∪E)
ϑ(|u+(x) − u−(x)|) x ∈ Su
0 x ∈ E.

Obviously

ψ(x) := sup
i
ψi(x) =







|∇u(x)| x ∈ Ω \ (Su ∪E)
ϑ(|u+(x) − u−(x)|) x ∈ Su
1 x ∈ E

and then, from Lemma 1.1.5,

µ(A) ≥
∫

A

sup
i
ψi(x)dλ =

∫

A

ψ(x)dλ = F(u,A) .

In particular F ′(u) ≥ F(u) for every u ∈ BV (Ω). The extension of this inequality to the whole

GBV (Ω) is the same as in the one-dimensional case (see Step 2 in the proof of Theorem 3.4.1).

4.5 Estimate from above of the upper Γ-limit

Lemma 4.5.1 Let u ∈ W 1,1(Ω) and A ∈ A(Ω). Then

lim
j→+∞

Fεj (u,A) =

∫

A

|∇u(x)|dx.

Proof. Consider the sequence

gj(x) =

∫

Bεj
(x)∩Ω

|∇u(y)|dy.

Since g ∈ L1(Ω), from Lebesgue differentation Theorem gj converge to |∇u| in L1(Ω) and a.e. in

Ω; by hypothesis on f , there exists b ≥ 1 such that f(t) ≤ bt for all t ≥ 0. Then

1

εj
f(εjgj(x)) ≤ bgj(x)

for every x ∈ Ω and for every j ∈ N. Since

lim
j→+∞

1

εj
f(εjgj(x)) = |∇u(x)|,

then, by the dominated convergence Theorem, we obtain

lim
j→+∞

1

εj

∫

A

f(εjgj(x))dx =

∫

A

|∇u(x)|dx.

Proposition 4.5.2 Let u ∈ GBV (Ω); then

F ′′(u) ≤
∫

Ω

|∇u(x)|dx +

∫

Su

ϑ(|u+(x) − u−(x)|)dHn−1 + |Dcu|(Ω).
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Proof.

Step 1. Assume first that u is in the space W(Ω) provided by the approximation result of

Theorem 1.2.4; it is easy to see that we can reduce to the case in which

S̄u ⊆ K ⊆ Ω,

with K a (n− 1)-dimensional simplex. It is not restrictive to assume that K is contained in the

hyperplane {x1 = 0}.
Let F̄ε be the relaxed functional of Fε in the L1-topology; then (as shown in Proposition

4.1.2)

F̄ε(u) =
1

ε

∫

Ω

f

(

ε

|Bε(x) ∩ Ω| |Du|(Bε(x) ∩ Ω)

)

dx

for every u ∈ BV (Ω). Since

F ′′ ≥ lim sup
ε→0

F̄ε ,

we shall obtain a bound for F ′′(u) if we estimate F̄ε(u).

Set

h(x) = u+(x) − u−(x), x ∈ Ω ∩ {x1 = 0}.

Since u ∈ W(Ω), the function h is continuous. Assume 2ε < d(S̄u, ∂Ω), and let (Su)ε = {x ∈ Ω :

d(x, S̄u) < ε}; then

F̄ε(u) =
1

ε

∫

Ω

f

(

ε

|Bε(x) ∩ Ω| |Du|(Bε(x) ∩ Ω)

)

dx ≤

≤ 1

ε

∫

Ω\(Su)ε

f

(

ε

∫

Bε(x)∩Ω

|∇u(y)|dy
)

dx+

+
1

ε

∫

(Su)ε

f

(

ε

∫

Bε(x)

|∇u(y)|dy +
1

ωnεn−1
|Du|s(Bε(x))

)

dx,

In view of Lemma 4.5.1 it is easy to see that

lim
ε→0

1

ε

∫

Ω\(Su)ε

f

(

ε

∫

Bε(x)∩Ω

|∇u(y)|dy
)

dx =

∫

Ω

|∇u(x)|dx.

By the concavity of f ,

1

ε

∫

(Su)ε

f

(

ε

∫

Bε(x)

|∇u(y)|dy +
1

ωnεn−1
|Du|s(Bε(x))

)

dx ≤

≤ 1

ε

∫

(Su)ε

f

(

ε

∫

Bε(x)

|∇u(y)|dy
)

dx+Rε,

where

Rε =
1

ε

∫

(Su)ε

f

(

1

ωnεn−1
|Du|s(Bε(x))

)

dx.
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Since |(Su)ε| → 0, then

1

ε

∫

(Su)ε

f

(

ε

∫

Bε(x)

|∇u(y)|dy
)

dx→ 0.

Up to now we have proved that

lim sup
ε→0

F̄ε(u) ≤
∫

Ω

|∇u(x)|dx+ lim sup
ε→0

Rε.

Let (Su)
0
ε = {y ∈ R

n−1 : (0, y) ∈ (Su)ε}; by Fubini’s theorem we have

Rε ≤
1

ε

∫

(Su)0ε

(∫ ε

−ε
f
( 1

ωnεn−1
|Du|s(Bε(s, y))

)

ds

)

dy.

Fix σ > 0; since h is uniformly continuous on any fixed neighborhood of S̄u, for ε sufficiently

small and for every (s, y) ∈ (−ε, ε) × (Su)
0
ε we have

|Du|s(Bε(t, y)) ≤ ωn−1(
√

ε2 − t2)n−1(|h(0, y)| + σ).

Therefore

Rε ≤
1

ε

∫

(Su)0ε

(∫ ε

−ε
f
(ωn−1

ωn

(
√

1 − (t/ε)2
)n−1

(|h(0, y)| + σ)
)

dt

)

dy.

By the change of variable s = t/ε we deduce that

lim sup
ε→0

Rε ≤
∫

S̄u

(∫ 1

−1

f
(ωn−1

ωn
(
√

1 − t2)n−1(|h(z)| + σ)
)

dt

)

dHn−1(z).

By taking the limit as σ → 0, we conclude.

Step 2. In the case u ∈ SBV 2(Ω) ∩ L∞(Ω), we can apply Theorem 1.2.4, with φ(a, b, ν) =

ϑ(|a−b|). Then there exists a sequence wj → u in L1(Ω), with wj ∈ W(Ω), such that ∇wj → ∇u
in L2(Ω,Rn) and

lim sup
j→+∞

∫

Swj

ϑ(|w+
j (x) − w−

j (x)|)dHn−1 ≤
∫

Su

ϑ(|u+(x) − u−(x)|)dHn−1;

thus, by the lower semicontinuity of F ′′ and the Step 1,

F ′′(u) ≤ lim inf
j→+∞

F ′′(wj) ≤
∫

Ω

|∇u(x)|dx +

∫

Su

ϑ(|u+(x) − u−(x)|)dHn−1.

Using now the relaxation Theorem 1.3.4, we have

F ′′(u) ≤
∫

Ω

|∇u(x)|dx +

∫

Su

ϑ(|u+(x) − u−(x)|)dHn−1 + |Dcu|(Ω)

for every u ∈ BV (Ω). Finally, by a truncation argument and again the lower semicontinuity of

F ′′ we obtain the desired inequality in GBV (Ω).
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4.6 Relaxation and convergence of minima

Proof of Proposition 4.1.2

Denote by Hε the functional on the right-hand side of (1.2). Let Iε(x) = Bε(x) ∩ (a, b) and

cε = ε/|Iε(x)|. It is easy to prove the L1-l.s.c. of Hε in BV . Indeed, if uh is a sequence

in BV converging to u ∈ BV (Ω) in the L1-topology, then, by Fatou’s lemma and the lower

semicontinuity of total variation,

lim inf
h→+∞

Hε(uh) = lim inf
h→+∞

1

ε

∫

Ω

fε (cε|Duh|(Iε(x))) dx ≥

≥ 1

ε

∫

Ω

lim inf
h→+∞

fε (cε|Duh|(Iε(x))) dx =
1

ε

∫

Ω

fε

(

cε lim inf
h→+∞

|Duh|(Iε(x))
)

dx ≥

≥ 1

ε

∫

Ω

fε (cε|Du|(Iε(x))) dx = Hε(u).

Since Hε(u) ≤ Fε(u) for all u ∈ BV (Ω), the relaxed functional F̄ε is estimated from below by Hε.

Consider now the opposite inequality. Given u ∈ BV (Ω), if (vh) denotes the sequence obtained

from u (extended to a neighborhood of Ω) by standard mollification, then vh → u in L1(Ω) and

|Dvh|(Iε(x)) → |Du|(Iε(x))

for a.e. x ∈ Ω (see [5] Proposition 3.7). Then by the dominated convergence theorem

lim
h→+∞

Fε(vh) =
1

ε

∫

Ω

fε (cε|Du|(Iε(x))) dx = Hε(u).

This show that Hε(u) is the relaxed functional of Fε on BV (Ω).

Proof of the corollary 4.1.3

By definition, {uj} is a sequence in W 1,1(Ω) with

Gεj (uj) ≤ inf
L1(Ω)

Gεj + εj .

Since g ∈ L∞(a, b) we can assume that (uj) is equibounded. By Proposition 4.2.2 there exists

u0 ∈ BV (Ω) such that uj → u0 in L1(Ω). By Theorem 1.4.1, since Gεj Γ-converge to G, u0 is a

minimum point of G on L1(Ω).
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