
   

  

   

   
 

   

   

 

   

   Int. J. Knowledge Engineering and Soft Data Paradigms, Vol. 1, No. 1, 2009 63    
 

Similarity measures for binary and numerical data: 
a survey 

M-J. Lesot* and M. Rifqi* 
UPMC Univ Paris 06, 
UMR 7606, LIP6, 
104, avenue du Président Kennedy, 
75016 Paris, France 
E-mail: marie-jeanne.lesot@lip6.fr 
E-mail: maria.rifqi@lip6.fr 
*Corresponding authors 

H. Benhadda 
Thales Land and Joint, 
160 bd de Valmy, 
BP 82, 92704 Colombes, France 
E-mail: Hamid.BENHADDA@fr.thalesgroup.com 

Abstract: Similarity measures aim at quantifying the extent to which objects 
resemble each other. Many techniques in data mining, data analysis or 
information retrieval require a similarity measure, and selecting an appropriate 
measure for a given problem is a difficult task. In this paper, the diverse forms 
similarity measures can take are examined, as well as their relationships and 
respective properties. Their semantic differences are highlighted and numerical 
tools to quantify these differences are proposed, considering several points of 
view and including global and local comparisons, order-based and value-based 
comparisons, and mathematical properties such as derivability. The paper 
studies similarity measures for two types of data: binary and numerical data, 
i.e., set data represented by the presence or absence of characteristics and data 
represented by real vectors. 
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1 Introduction 

Most machine learning tasks rely on the use of a similarity measure, or a distance 
function, to compare objects one with another. In a classification task for instance, they 
make it possible to determine whether the compared objects can be assigned to the same 
class or not; likewise in clustering tasks, the similarity values directly influence the 
obtained data subgroups. For a given learning task, the choice of a similarity measure can 
be as important as the choice of the data representation or the feature selection step. In 
some cases, e.g., in the case of kernel-based learning methods, it actually even replaces 
the data representation step (Schölkopf and Smola, 2002). 

Informally, similarity measures are functions that quantify the extent to which objects 
resemble one another. They can be distinguished according to the type of data they apply 
to. Different measures are used for binary, numerical or structured data. In this paper, we 
consider the first two data types and propose an overview of the existing similarity 
measures. We examine the diverse forms they can take, discussing their respective 
properties and their relationships with one another, highlighting the choice levels that 
must be addressed to select a measure for a given problem. To that aim, we consider their 
differences from a semantic point of view, underlining the specific configuration of data 
that produce major differences, and we also propose numerical tools to quantify 
objectively their differences, from several points of view. 

The paper is organised as follows. In Section 2, we first recall a general definition of 
similarity measures and introduce the notations used throughout the paper. In Section 3, 
we then consider the case of binary data, also called set data, i.e., data represented by the 
presence or absence of characteristics. In Section 4, we consider the case of numerical 
data, i.e. data represented as vectors of real numbers. For each data type, we examine 
how the similarity measures can be compared, before concluding in Section 5. 

We do not examine the case of structured data, e.g., sequences, trees or graphs that 
are currently studied in the context of kernel functions and build a specific domain on 
their own. The interested reader is referred to Schölkopf and Smola (2002) and  
Shawe-Taylor and Cristianini (2004). 

2 General definition of similarity measures 

Informally, similarity measures are functions that quantify the extent to which objects 
resemble one another. They take as arguments object pairs and return numerical values 
that are all the higher as the objects are alike. As similarity measures are widely used in 
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many different domains, their terminology varies (they are also named e.g., coefficients 
of association, resemblance or matching), and a measure may have been proposed by 
several authors independently, with different names. 

More formally and despite the confusion in literature, some frequent requirements for 
a similarity measure can be exhibited. Denoting  the data space, also called the 
universe, a similarity measure is usually defined as follows: 

X

Definition 1: A similarity measure S is a function × → \X X  that verifies the following 
properties: 

• Positivity: ( ), , ,S 0∀ ∈ ≥x y x yX . 

( ) ( ), , , ,S S∀ ∈ =x y x y y xX• Symmetry: . 

( ) ( ), , ,S S∀ ∈x y x xX

x,

,

{ }0,1 p=

,≥ x y . • Maximality: 

Other properties can be required, as for instance normalisation constraints that impose the 
measure to take values in the interval [0, 1]. Normalised measures can be deduced from 
general similarity measures through a normalisation transformation. In the following, we 
consider the normalised framework. 

On the contrary, some of the above mentioned properties are sometimes relaxed, 
leading to more general definitions. In particular, Tversky (1977), going against metric 
approaches of similarity, proposed to reject the symmetry constraint. He argues on the 
directional nature of the similarity relation of the form ‘x is like y’. In such comparisons 
indeed, the two objects do not play the same role; y  is considered as a referent whom the 
other object, x , the subject, is compared to. To model this directionality, non-symmetric 
measures are necessary. Such measures can either insist on what y  has more than  or 
on what y  has less than x ; the former are called satisfiability measures, and the latter 
inclusion measures. The interested reader is referred to Bouchon-Meunier et al. (1996) 
for this general framework of object comparison. 

In the following, we consider the classic definition of similarity measure as stated in 
Definition 1 and examine how it can be instantiated for specific cases of X  considering 
binary data in Section 3 and numerical data in Section 4. 

3 Similarity measures for binary data 

The first case we consider is X� , i.e., data described by p binary attributes. Such 
data can encode set data, also called presence/absence data, i.e. data described by the set 
of present characteristics, from a predefined list. For each characteristic, an attribute is 
defined, that takes value 1 if the object possesses the characteristic, and 0 otherwise. 
Intuitively, the data comparison will then rely on the number of characteristics shared by 
the objects, and the number of distinctive characteristics. 

Binary data also correspond to a possible representation for nominal attributes, i.e., 
attributes whose possible values are elements of a predefined list and not from a 
continuous domain. Indeed, it is possible to replace a nominal attribute taking k different 
values by k binary attributes, that all take value 0 except the one corresponding to the 
appropriate nominal value, that takes value 1. 
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It is to be underlined that the notion of set data can be extended to the notion of fuzzy 
data. Instead of being defined as a subset of the characteristics universe, an object is then 
defined as a fuzzy set (Zadeh, 1965) on this universe. The similarity measures presented 
in this section can be extended to such fuzzy data (Rifqi, 1996). 

3.1 Notations 

Given two objects  and ( )1, , p= …x x x ( )1, , p= …y y y both belonging to { }  let ,0,1 p

{ }1iX i= =x  and { 1ii= =Y y } be the set of attributes present in objects  and y  

respectively. Moreover, let 

x

⋅  denote the cardinality of a set. 
The existing similarity measures for binary data can be expressed as functions of the 

following four quantities associated to the object couple ( ),x y  (Lerman, 1970; Gower 
and Legendre, 1986): 

, denoted a X Y∩• the number of attributes common to both objects: 

• the number of attributes present in x but not in y : –X Y , denoted b 

• the number of attributes present in y  but not in x : –Y X , denoted c 

• the number of attributes in neither x  nor y : X Y∩ , denoted d. 

( ),x y , we will equivalently use the notations In the following, for any data couple 
( ),x y , ( ),X Y  or ,a b c( ),d . ,

It is to be noticed that the sum a + b + c + d is constant and equals the dimension of 
the data space, a + b + c + d = p. Besides, one can note that a + b = 0 ⇔  a = b = 0 only 
occurs if , i.e., using the set representation, if X is the empty set. Likewise  
a + c = 0 corresponds to the case where Y

( )0, ,0= …x
0= /

x

x

. 
Existing similarity measures can then be divided into two groups. The first one 

contains the measures that do not take into account the number of characteristics 
possessed by none of the objects (i.e., d) and only depend on the characteristics present in 

 or y ; these measures are called type 1 similarity measures and are studied in Section 
3.2. The measures that, on the contrary, take d into account are called type 2 similarity 
measures and are examined in Section 3.3. 

3.2 Type 1 similarity measures 

3.2.1 Measure definitions 

Type 1 similarity measures are those that only depend on characteristics present either in 
 or in y  (possibly in both), but are independent of the attributes absent of both objects. 

Table 1 recalls the definitions of the main type 1 similarity measures. They are discussed 
in more details hereafter. All these similarity measures are increasing functions of a, and 
decreasing functions of b and c, modelling the fact that the similarity is all the higher as 
the objects share common characteristics and as they have few distinctive attributes. 
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Table 1 Type 1 similarity measures (names can vary according to authors) 

Similarity measure Notation Definition 

Jaccard (1908) JacS  a
a b c+ +

 

Dice (1945) DicS  2
2

a
a b c+ +

 

Sorensen (1948) SorS  4
4

a
a b c+ +

 

Anderberg (1973) AndS  8
8

a
a b c+ +

 

Sneath and Sokal 2 (1973) 2SSS  
( )2
a

a b c+ +
 

Ochiai (1957) OchS  a
a b a c+ +

 

Kulczynski 2 (1927) 2KuS  1
2

a a
a b a c

⎛ ⎞+⎜ ⎟+ +⎝ ⎠
 

Rifqi et al. (2000) FDS  ( )
( )

2

2

–

0 –

FD FD

FD FD

F F

F F

φ π⎛ ⎞
⎜ ⎟
⎝ ⎠
π⎛ ⎞

⎜ ⎟
⎝ ⎠

 

As can be seen from the table, the first five measures follow the same scheme and are 
defined as fractions of linear combination of a, b, c, more precisely as the quotient 
between  and the sum  + b + c where κ  is a multiplicative coefficient. They only 
differ through this multiplicative coefficient, i.e., vary the relative importance of the 
common and distinctive characteristics of the two objects. These measures were 
generalised by the contrast model proposed by Tversky (1977). 

aκ aκ

Definition 2: Given two positive real numbers α  and ,β  a Tversky’s similarity measure 

T eS υ is of the form: 

( ) ( )2, ,   , aST e a b cυ α β
∀ ∈ =

+ ⋅ + ⋅
x y x yX . (1) 

The contrast model defines more general similarity measures than stated in Definition 1, 
as it does not impose the symmetry property. Symmetry is obtained if and only if α β= . 

The previous measures are obtained through –1 2 nα β= = =κ and more precisely the 
Jaccard measure is obtained for n = 0, Dice for n = 1, Sorensen for n = 2, symmetric 
Anderberg for n = 3, Sokal and Sneath 2 for n = –1. 

As shown in Table 1, there also exist type 1 similarity measures that are not fractions 
of linear functions of a, b and c and cannot be expressed in the framework of the contrast 
model. It is the case of the Ochiai and Kulczynski 2 measures, that can respectively be 
seen as the geometric and the arithmetic means of recall, R, and precision, P, defined as 

a
a c+

=R and a
a b+

=P . Both are asymmetric measures of the contrast model. R can be 

interpreted as measuring the extent to which is included in  whereas P reciprocally 
measures the extent to which y is included in  R is actually a satisfiability measure and 

x ,y
.x
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P an inclusion measure (see p.3). Their combination through the arithmetic and geometric 
mean in Ochiai and Kulczynski 2 then defines similarity as the extent to which x  and 

are included in each other. y
Besides, the Ochiai measure can be interpreted as the cosine of the angle between x  

and y  represented in the characteristic universe. Thus, it can be seen as the transposition 
of a classic dot product to the binary data space. 

The last similarity measure in Table 1 was introduced by Rifqi et al. (2000), and is 
based on the Fermi-Dirac function: 

( )
0

1    with   arctan
–

1 exp

b c
a

φ φ
φ φ

+⎛ ⎞= = ⎜ ⎟
⎝ ⎠⎛ ⎞

+ ⎜ ⎟
⎝ Γ ⎠

FDF  

where  is a positive real number and Γ 0 0,φ
2
π⎡ ⎤∈ ⎣ ⎦ . It was introduced to allow a better 

control on the similarity measure discrimination power (see p.12) and is commented in 
more details in the section where this notion is presented. 

3.2.2 Indeterminate forms 

Most of the previous similarity measures are not defined for all triples (a, b, c) and lead 
to indeterminate forms that can be solved using the following remarks. 

The contrast model measures are indeterminate when a + b + c = 0, i.e., when  
a = b = c = 0, that is  and 0X = / 0Y = / . Now from the maximality property (see 
Definition 1) and as all measures are normalised, one can solve the indeterminacy by 
setting . ( )0,0 1S / / =

The Ochiai and Kulczynski 2 measures are indeterminate when a + b = 0 or a + c = 0, 
i.e., when X or Y is the empty set. In this case, it is more difficult to assign a relevant 
value. From the set data point of view, one can consider that the empty set does not 
resemble any set, and thus assign a similarity value 0 to any data couple ( ),x y where X is 
empty and not Y, and reciprocally. As previously, the maximality property imposes that 
the similarity equals 1 when both X and Y are empty. Thus, one can define if 

and . 
( )0, 0S Y/ =

0≠ / ( )0,0 1S / / =Y

3.3 Type 2 similarity measures 

Type 2 similarity measures are those that take into account all four quantities derived 
from the objects, i.e., their intersection, set differences and also the intersection of their 
complementary sets, the d component, i.e., the number of characteristics that are 
possessed by none of the objects to be compared. The major difference with type 1 
similarity measures is that for type 2 measures, the size of the universe influences the 
similarity. Depending on the measures, two objects can, e.g., be more similar in a small 
universe than in a large one. 
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3.3.1 Classic measure definitions 

Table 2 provides the definition of well-known similarity measures of type 2. Note that 
some of them normally take values in the interval [ ]–1,1 . They were normalised to 
[ ]0,1 using the classic transformation through the function ( ) ( )1 2f S S= + . 

Table 2 Type 2 similarity measures (names can vary according to authors) 

Similarity measure Notation Definition 
Rogers and Tanimoto (1960) RTS  

( )2a b c
a d

d
+

+ + +
 

Sokal and Michener (1958) SMS  a d
a b c d

+
+ + +

 

Sokal and Sneath 1 (1963) 1SSS  
( )1

2
a b c

a d

d

+

+ + +
 

Russel and Rao (1940) RRS  a
a b c d+ + +

 

YuQS  ad
ad bc+

 Yule and Kendall (1950) 

YuYS  ad
ad bc+

 

Thus, the formulation of the Yule Q and Yule Y measures may differ from the classic 
notation. Moreover, through this transformation, the Hamman measure (Hamman, 1961) 
becomes identical to the simple matching measure, and thus does not appear in the table. 

Like type 1 measures, type 2 measures are increasing with a and decreasing with b 
and c. The role of d varies. For all measures except Russel and Rao, a and d play the 
same role, i.e., 2 objects are all the more similar as they have the same present 
characteristics and the same absent characteristics. This implies that the absence of the 
same characteristics increases the similarity between two objects. These measures then 
differ by the relative weight of the (a + d) and (b + c) components. 

The Russel and Rao measure is more severe. Its numerator reduces to a, which 
implies that it only bases the resemblance on the shared characteristics. It can be noticed 
that, as a + b + c + d = p is a constant equal to the size of the universe, Russel and Rao 
can be simplified to a/p. This implies that it only takes p + 1 different values, as a only 
takes all values from 0 to p. 

It can also be noticed that the simple matching measure  corresponds to the 
classic Hamming distance between binary data. 

SMS

Yule Q and Yule Y are not fractions of linear combinations of the components a, b, c 
and d. It must be underlined that, as opposed to the other measures, they have a specific 
behaviour when comparing two objects such that X Y⊆ Y X⊆(or reciprocally ). Indeed, 
for such data, Yule Q and Yule Y lead a total similarity, S = 1, whereas all other 
similarity measures (including type 1 measures) provide a result that depends on the 
cardinal of Y, and that is all the smaller as Y has a low cardinal. 
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3.3.2 Baulieu’s dissimilarity 

There exist other type 2 similarity measures, derived from the general framework of 
Baulieu’s presence/absence based dissimilarity coefficient (Baulieu, 1989) that recalls 
Tversky’s definition of type 2 similarity (see Definition 2). Baulieu’s dissimilarity 
coefficients are defined as rational functions: 

( ), b cD
a b c dα β

+
=

′ ′⋅ + + + ⋅
x y  

with α′ and β ′ two real numbers. Similarity measures can then be derived as 1 – D. 
More precisely, the relationship with Tversky’s model is the following: as Baulieu 

considers dissimilarity rather than similarity, the numerator is defined as b + c instead of 
a in the contrast model. Regarding the parameter values, the contrast model corresponds 
to the specific case where 0β ′ = , as it does not take into account the d component. 
Baulieu’s α′  parameter corresponds to the two parameters α  and β  of the contrast 
model, allowing only the special case where the coefficients assigned to b and c are 
equal. Indeed, Baulieu only allows symmetric measures, whereas the contrast model also 
encompasses non-symmetric similarity measures. 

3.3.3 Indeterminate forms 

Among type 2 measures, indeterminate forms can only occur for the Yule Q and the  
Yule Y measures: the denominator of the other measures contain the d component and 
cannot equal 0. For Yule Q and Yule Y, indeterminate forms occur when ad = bc = 0, 
which corresponds to different cases, examined in turn in the following: 

• When a = b = c = 0, i.e., when 0 :X Y= = /  this comparison of the empty object with 
itself can be solved using the maximality property, setting ( )0,0 1= . S / /

• When a = b = 0 or a = c = 0, i.e., when only one of the two compared objects is 
empty: as for Kulczynski 2 and Ochiai, one can consider that the empty set does not 
resemble any set except itself. Thus we set ( )0, 0 if 0YS Y/ = ≠ / . 

• When d = b = 0 or d = c = 0: d = 0 implies that one of the objects is the point 
possessing all characteristics, represented as (1,...,1). Thus, the other object is 
included in it. As ( ) ( ), ,Y Yu 1Yu = =x y  if x y Q X Y⊆  or Y X⊆ , by continuity, 

one can define ,1 , 1( )( )1,S = ( ) ( )… y if 0Y ≠ / . Regarding ( ), 0, ,0…  indeed, 
i.e., in the very particular case where the point possessing none of the characteristics 
is compared with the point possessing all characteristics, it seems more relevant to 
apply the empty set rule, and to consider that the similarity is zero. These choices 
imply a discontinuity when going from non-empty sets to the empty one, which is 
due to the specific form of these similarity measures. 

1, ,1S …

3.4 Criteria for the comparison of binary data similarity measures 

In the previous section, similarity measures were categorised into two groups, depending 
on whether they take into account the characteristics absent of both objects to be 
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compared or not. They were compared based on their semantics, exhibiting their 
respective properties in particular cases. These particularities can help selecting an 
appropriate measure from each type. Regarding the choice between types 1 and 2 
measures, the selection strongly depends on the data: Sokal and Sneath (1963) have put 
forward the situations where type 2 similarity measures are more suitable than type 1. It 
can be added that all type 2 measures, except Russel and Rao, converge to 1 as d grows. 
Now this is a frequent situations for instance in text mining when a document is 
represented in the space of words. 

In this section, we consider other characterisations of similarity measures, through 
several properties and relationships existing between the measures. Two types of 
comparisons are presented, depending on the characteristics of the considered problem. 
In tasks such as document retrieval, the similarity values obtained when comparing 
documents one with another are not important as such, only the induced order matters. 
Indeed, a user is only interested in the documents most similar to her request, the actual 
similarity values are of no importance. In such cases, the comparison should only deal 
with the order the measures induce, whereas in a more general case, the similarity values 
themselves must be taken into account. Section 3.4.1 deals with order-based 
comparisons, Section 3.4.2 with value-based comparisons. 

3.4.1 Order-based comparisons 

In many applications such as image retrieval, the user is interested in the list of objects 
most similar to his request, ignoring the similarity score of each object: as pointed out by 
Santini and Jain (1999), Payne et al. (1999) and Omhover et al. (2006), the relevant 
information is contained in the ranking induced by the similarity values, not in the values 
themselves. Similarly, monotone equivariant cluster analysis (Janowitz, 1979) constitutes 
a clustering approach where only the similarity rankings matter, and not their numerical 
values. In such cases, the choice between two similarity measures is of little interest if 
they both lead to the same ordered lists. To formalise this point, several authors 
introduced and studied the notion of order equivalence (Lerman, 1967; Janowitz, 1979; 
Baulieu, 1989; Batagelj and Bren, 1995), defining two measures as equivalent if they 
induce the same ranking. More formally, this leads to the following definition. 

Definition 3: Two similarity measures  and  are equivalent if and only if 1S 2S

( ) ( ) ( ) ( )4
1 1 2, S S S S∀ ∈ < <x,y,z,t x,y z,t x, z,tX 2 y

2S

⇔

1S

. 
It has been shown (Batagelj and Bren, 1995; Omhover et al., 2006) that this definition 

is equivalent to the following one:  and  are equivalent if and only if there exists a 
strictly increasing function ( ) ( )1 2:f Im S Im S→ such that 2 ,S f S1= D  where 

( ) [ ] ( ) ( ){ }20,1 , , ,Im S s s S= ∈ ∃ ∈ =x y x yX . 

Classes content 

Using the previous definition, several classes of equivalent similarity measures can be 
exhibited (Omhover et al., 2006), i.e., groups of measures that always lead to the same 
object ranking when comparing a set of objects with a given reference. The similarities 
can be grouped in the following classes: 
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• {Jaccard, Dice, Sorensen, Symmetric Anderberg, Sokal and Sneath 2, Fermi-Dirac} 

• {Sokal and Sneath 1, Rogers and Tanimoto, Simple Matching} 

• {Yule Q, Yule Y} 

• each of the remaining measures forms a class by itself. 

For the particular case of Tversky’s parametrised similarity measure, it was shown 
(Omhover et al., 2006) that two Tversky’s measures with parameters ( , )α β  and 
( , )α β′ ′ are equivalent if and only if . . .α β α β′ ′=  This in particular implies that all 
symmetric Tversky’s measures, for which ,α β=  are equivalent; they belong to the first 
of the above mentioned classes. 

Baulieu (1989) showed similar results for presence/absence based dissimilarity 
coefficients with linear numerator and denominator: ,Dα β  and ,Dα β′ ′  are equivalent if 

and only if they have the same ratio .α β α′ β ′  =
Thus, when only the similarity-induced ranking matters, the selection of an 

appropriate measure reduces to the selection of an appropriate equivalence class. 

Graphical representation 

The function f that links two equivalent similarity measures, as the definition of order 
equivalence states, can be graphically exhibited plotting a measure  against another 
one . Figure 1 shows such plots for four similarity measure couples. Data were 

uniformly sampled in {  and the similarity values were computed for all pairs of 
distinct data. Each point on the graph corresponds to such a couple, and has for 
coordinates the value  and  take for this data pair. It can be noticed that the plots 
only contain few points: the similarity measures only take few different values and many 
data couples lead to the same point on the plot. 

1S

2S

}100,1

1S 2S

)

From such graphs, in the case of equivalent measures [Figures 1(a) and 1(b)],  
we observe the function linking the two measures. An analytical study  
leads to ( ( )Dic JacS f S=  with ( ) ( )2 1f = +x x x  and Yu YuS S=Q Qg

( ) ( )
 with 

2 22 – 2 1= +g x x x x . 
For non-equivalent measures [Figures 1(c) and 1(d)], the plot is not a curve, but a 

scattering of points. For instance a particular value of the Yule Q measure corresponds to 
several values of the Sokal and Sneath 1 measure and reciprocally [see Figure 1(d)]; thus 
Yule Q (YuQ in the following) cannot be written as a function of Sokal and Sneath 1 
(SS1 in the following). Furthermore, Figure 1(d) illustrates the fact that SS1 and YuQ 
have very different semantics, due to the large point spreading. The latter is due to two 
cases: first, if the two objects to be compared are such that X Y⊆  (or reciprocally), then 
YuQ assigns a similarity value of 1, whereas the SS1 result depends on the relative sizes 
of X and Y and can take small values if the difference is high. Second, when one of the 
objects to be compared is the empty set, YuQ yields a similarity value of 0, whereas SS1 
result depends on the size of the second object, and can take high value if the latter is 
almost empty. 
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Figure 1 Graphical pairwise comparisons of some similarity measures (a)  vs Jac DicS S  (b) 
 (c)   Y u Y uYQ  vs S S  vs Jac OchS S  vs S S and (d)  (see online version for 

colours) 
1Y u SSQ

  
(a)   (b) 

  
(c)   (d) 

The case of such non-equivalent measures has been studied by Rifqi et al. (2008). They 
propose to quantify the extent to which two measures are equivalent, and compute a 
degree of equivalence, based on the number and the positions of rank inversions the two 
measures lead to. 

3.4.2 Value-based comparisons 

In some machine learning tasks, not only the order induced by the similarity measures 
matters, the numerical values also have to be taken into account. Other comparison 
measures between the similarity measures are then to be considered, depending on 
whether the comparison is made locally, on certain parts of the universe, or globally, on 
the whole universe. 

Global comparison: degree of severity 

The characterisation of a measure in terms of degree of severity models the fact that, 
given two objects and a similarity level, some measures require the objects to have more 
common characteristics than others to reach the given level. 
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This can in particular be formalised in the case of the contrast model measures when 
–2 .nα β= =  Denoting M the average number of characteristics possessed by the two 

considered objects, ( ) 2M X Y= + , the measures can be written: 

( ) ( )1– 1–
,

1– 2 2n n

aS
a M

=
+

x y . 

Thus, they take values higher than 0.5 if and only if 

–11 2n+
Mα ≥ . (2) 

This implies that the lower n is, the higher the number of common characteristics must be 
to conclude to the same value of similarity, which can be interpreted in terms of degree of 
severity: for a low n, the constraints are stronger to judge the similarity of two objects 
than for a high n. 

It is to be underlined that this characterisation in terms of degree of severity is 
complementary to the previous notion of equivalence classes and provides additional 
information. Indeed, inequality (2) for instance implies that the Jaccard measure is more 
severe than the Dice measure: even if Jaccard and Dice always lead to the same ranking, 
as they are equivalent, the values obtained by Jaccard are always smaller than those of 
Dice. This can also be observed in Figure 1(a): the curve is above the diagonal. 

Local comparison: power of discrimination 

Whereas the degree of severity compares similarity measures globally, the discrimination 
power is a local comparison tool. It evaluates the sensitivity of the similarity measures 
with respect to the values of their arguments. The question is whether small variations of 
the input values, i.e., small variations in the configurations of the two objects to compare, 
lead to small differences in the similarity values or large ones. Moreover, this question is 
considered locally, i.e., the discrimination power studies whether such variations occur 
for high similarity values or for small ones. 

More formally, the discrimination power of a similarity measure is a function defined 
as its derivative with respect to the objects. As previously described, similarity measures 
are generally expressed as functions of the quadruples (a, b, c, d), for which the 
derivative may be difficult to compute. Rifqi et al. (2003) studied in details this notion in 
the case of type 1 similarity measures and proposed a change of the coordinate system 
from (a, b, c) to the spherical system. This enables the reduction of the domain definition 
and facilitates the discrimination power computation and the comparison of measures in 
terms of this discrimination power. 

The notion of discrimination power can be visually displayed in the case of the 
Fermi-Dirac measure  (see Table 1): the FMS Γ  parameter that controls the decreased 
speed of the measure precisely has a direct influence on the measure discrimination 
power. This is illustrated in Figure 2 that represents the values of the Fermi-Dirac 
measure as a function of the spherical coordinates ( ) ,μλ t for differen  Γ values. Whe  
Γ  is small, e.g., f 0.01 , small deviations between the compared objects lead to 
little difference in the similarity values. From a threshold that equals 

n
or Γ =

4π on the 
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illustrated example, the measure decreases quickly; the discrimination at this point is very 
high. Finally, for large deviations, the Fermi-Dirac measure again makes little difference. 
When  is high, another behaviour is observed: the resemblance varies linearly, i.e., 
uniformly, which means that every deviation between the compared objects is penalised 
in an equal manner. 

Γ

Figure 2 The Fermi-Dirac measure for several values of Γ  (see online version for colours) 
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Source: Rifqi et al. (2003) 

4 Similarity measures for numerical data 

The previous section considered similarity measures for binary data and presented an 
overview on existing measures, highlighting their semantic differences and proposing 
numerical tools to quantify these differences, from several points of view. In this section, 
we consider the case of numerical data, i.e., data represented as real vectors. Denoting as 
previously p the number of characteristics, the data space is thus written X . The 
major difference with the previous binary data is then the fact that the attributes take their 
values from a continuous domain, and not a discrete one. 

p= \

[

In this case, contrary to the case of set data, the relative position of two data cannot be 
characterised by the four complementary components, defined as their intersection, their 
set differences and the intersection of their complementary sets. The information is 
reduced and depends on a single quantity, expressed as a distance or a scalar product 
between the two vectors. Thus, a normalised similarity measure can only be seen as a 
function 

]
( ) ( )

:   0,1
  ,   ,

p p

S
× →\ \

6x y x y      
S�

 

that is an increasing function of a dot product or a decreasing function of a distance. Two 
kinds of similarity measures can be distinguished: measures derived from dissimilarity 
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measures and measures based on dot products. In the following, we successively consider 
these two categories. 

4.1 Similarity measures deduced from dissimilarity 

A classic definition of similarity consists in deriving a measure from a dissimilarity 
measure through a decreasing function; this is equivalent to deducing it from a distance 
function. Three choice levels must then be considered, we examine them in turn in the 
following. We first recall the distances that are most frequently used in the case of 
numerical data. We then consider normalisation processes that make it possible to derive 
normalised dissimilarity measures. Lastly, we study some decreasing functions that can 
be used to define similarity measures. 

4.1.1 Distances 

The distances that are most frequently used to compare numerical data are recalled in 
Table 3; for each of them, the set of points at distance 1 from the origin is depicted in 
Figure 3 in the case of 2-dimensional data. These functions are as diverse as the similarity 
measures presented in the previous section. The main difference is the fact that they do 
not depend on integer values, but on real values, and most of them are derivable 
functions. 
Table 3 Main distances measures for numerical data, and their associated dot products 

Name Distance Dot product 

Euclidean 
( ) ( )2

1
, –i i

i
d

=
= ∑x y x y

p
 

1
,,

i=
= =∑ T

i ix y xx y
p

y  

Weighted Euclidean 
( ) ( )2

1
, –

p

i i i
i

d α
=

= ∑x y x y  
1

,,
p

i
α

=
=∑ i i ix yx y

)

 

Mahalanobis –
( ) ( ( )–1 x – y, td = ∑x y x – y  

1, T= ∑x yx y

( )

 

Minkowski 1
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

i i– y
γγ

1
,

p

i
d x

=
= ∑x yγ  

 

Notes: p denotes the data dimension, ( ) 1..i i p==x x and ( ) 1..i i p==

( ) 1..,p
i i pα =\

y y  two data points 

belonging to  a vector of positive weights, ∑ the data covariance 

matrix and γ a positive parameter. 

The most frequently used distance is the Euclidean distance. As illustrated in Figure 3(a), 
the set of points at distance 1 from the origin is a circle with radius 1. This distance can 
be modified by the use of weights to rule the relative importance of each attribute in the 
comparison, leading to the weighted Euclidean distance. Using the latter is equivalent to 
applying a linear transformation to the data before applying the Euclidean distance. Each 
attribute is multiplied by a factor iα . This makes it possible to normalise the attributes, 
which is in particular necessary when they cover different scales: it avoids that an 
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attribute taking high values dominate the comparison, the other attributes having only a 
small influence. As indicated in Figure 3(a), the level lines are then ellipses parallel to the 
axes. 

One can consider more general linear transformations of the data, defining, for any 

symmetric definite positive matrix ( ) ( ) ( ) ( )1 2 1 2,  , – – ,tA d A d A A= =x y x y x y x x . 
The weighted Euclidean distance corresponds to the case of diagonal A matrices. The 
Mahalanobis distance also belongs to this framework, but uses as A matrix the inverse of 
the data covariance matrix. Thus, the transformation applied to the data is derived from 
their statistical distribution. In the case where this matrix is diagonal, the Mahalanobis 
distance is equivalent to normalising the attributes so that they have mean 0 and standard 
deviation 1. In the general case, it takes into account the attribute correlations. Figure 3(a) 
illustrates its level lines that are ellipses. 

Figure 3 Points at distance 1 from the origin for several distances, (a) Euclidean (full line), 
weighted Euclidean (dashes), Mahalanobis (dots) and (b) Euclidean (full line), 
Manhattan (dashes), Tchebychev (dots) 

 
(a)    (b) 

Beyond these Euclidean distance variants, one can also use, more generally, Minkowski 
distances (see Table 3). The case 2=γ  corresponds to the Euclidean distance. Other 
classic cases are , called Manhattan distance, and , called Tchebychev 
distance. The latter can also be written 

1=γ →∞γ

( )d 1.., maxi p∞ == −i ix y x y . Their level lines are 

indicated in Figure 3(b) and show that they possess other properties than the Euclidean 
distance. For instance, the Manhattan distance is not a derivable function, but it is more 
robust than the Euclidean distance, insofar as it increases less rapidly and takes lower 
values when comparing with outliers. 

4.1.2 Normalised dissimilarity measures 

The previous distance functions take positive values, they must be normalised to define 
measures taking values in the interval [0, 1]. The definition of the normalisation process 
builds a second choice level that can vary the properties of the final similarity measure. 

The simplest normalisation consists in applying the function 
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( ) –
–

m

M m

d d
d

d d
η =  (3) 

where  and md Md  respectively represent the minimal and maximal observed distances. 
This transformation guarantees that the values are between 0 and 1, these limits being 
obtained only in the extreme cases md d=  and Md d= . The drawback of this approach 
comes from its sensitivity to outliers: if the maximal observed distance corresponds to an 
aberrant point, the scale of interesting distance values can be reduced as compared to the 
scale of observed distances, leading to a distorted normalisation process. 

Thus, it can be interesting to consider a richer transformation that introduces 
saturation effects 

( ) –min max ,0 ,1
–Z

d md
M m

η ⎛ ⎛= ⎜⎜ ⎝ ⎠⎝ ⎠
⎞⎞

⎟ ⎟

)

 (4) 

where ( ,Z m M=

d

 represents the function parameters. The extreme values are defined by 
the user and not derived from the data, which solves the problem of outlier sensitivity. 
Furthermore, this transformation offers a saturation property. It guarantees the value 0 for 
any distance m≤ and the value 1 for any distance . Thus the m parameter can 
be interpreted as a tolerance threshold: distinct points (having a non-zero distance) can be 
considered as totally similar. The M parameter corresponds to the distance from which 
point couples are considered as totally dissimilar: the two points at maximal distance are 
not the only ones to have dissimilarity equals to 1. 

 d M≥

4.1.3 Distance-based similarity measures 

Similarity measures can then be derived from the previous dissimilarity measures or 
distance functions, through decreasing functions. One can for instance consider 
( ) ( ), 1– ,S D=x y x y ( )ZD dη=, where d is a dissimilarity measure defined as , d being 

one of the distance functions presented previously. The similarity is thus defined as the 
complement to 1 of dissimilarity. Indeed, when dissimilarity is 0, the similarity is total, 
and reciprocally. In this case, similarity is defined as a linear function of the distance. 

Other, richer, functions can also be used. One can define similarity as 
( ) ( )(,S f d=x y x y ), , where f is a decreasing function. One can for instance use the 

Cauchy function (denoted fc in the following), the generalised Gaussian function ( )fgg  

or an adaptation of the Fermi-Dirac function (Rifqi et al., 2000) (see also p.6), also called 
sigmoid function and denoted FDf  in the following. They are respectively defined as 

( ) 1
cf =z

γ

1
σ
⎛ ⎞+ ⎜ ⎟
⎝ ⎠
z

( )

 (5) 

exp –f
σ

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

gg
z

z
γ

 (6) 
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( ) 1
–1 exp

FDf
σ

=
⎛ ⎞+ ⎜ ⎟
⎝ ⎠

z
z
γ

 (7) 

where  and γ σ  are the parameters of the functions. These functions are represented in 
Figures 4–7 for different values of their parameters after normalisation by Zη . Their 
global behaviour is similar, we comment hereafter the role of the  and γ σ  parameters. 

The influence of the  parameter can be interpreted in terms of discrimination power 
(Rifqi et al., 2000) (see also p.12), which measures the sensitivity of the function with 
respect to specific input values. For instance, for small  values such as 0.1, the Cauchy 
and generalised Gaussian functions have a steep decrease for small distance values, 
which implies they have a high discrimination power: small differences in the input 
values produce major differences in the output. This implies that distances, even small, 
lead to an important decrease of the similarity. For γ  values higher than 1 (see right part 
of Figures 4 and 5), the function concavity is different and the discrimination between 
small values is weak or zero. On the contrary, values around 0.5 are acutely 
distinguished. The same behaviour can be observed for the sigmoid function (see left part 
of Figure 6). However, the latter does not present a high discrimination for small distance 
values. When  increases, the sigmoid function tends towards a linear function whose 
discrimination power is uniformly distributed on the interval [0, 1]. 

γ

γ

γ

The second parameter, σ  determines the position of the point with maximal 
discrimination power, i.e., the point where the derivative is maximal (this point is exactly 
located at d σ=  for the Cauchy and Fermi-Dirac functions, a dependence to  remains 

in the Gaussian case for which it is located at 

γ

( ) )( )–1σ γγ γ . Thus, σ  determines the 
threshold from which the obtained values are small or zero. This is illustrated on the right 
part of Figures 6 and 7. 

These functions thus make it possible to transform a dissimilarity measure into a 
similarity measure, providing the user with parameters to precisely rule its behaviour. It 
can be noticed that these functions can in turn be modified to define dissimilarity 
measures. Defining for instance ( )( )1– ZD f dη= gg  makes it possible to control the 
dissimilarity discrimination power. 
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Figure 4 Cauchy function [see equation (5)], after normalisation through the Zη  function [see 

equation (4)], with ( )1m f= c and ( )0M f= γ 0.5c , for several  values, with σ =

1
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Figure 5 Generalised Gaussian function [see equation (6)], after normalisation through the 
Zη function [see equation (4)], with ( )1m f and = gg ( )0M f= gg γ, for several  values, 

with 0.5σ =

1
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Figure 6 Fermi-Dirac function [see equation (7)], for several  values (left) with γ 0.5σ = , 
 (right) with 0.2σ =  
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Figure 7 Cauchy function (left) and generalised Gaussian function (right) after normalisation 
 through the Zη function [see equation (4)], with ( )1m f= ( )0M f=

γ 0.2
and for several 

  function, with σ =
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4.2 Similarity measures deduced from dot products 

Another definition of similarity measures for numerical data consists in basing them on 
dot products. Considering two data as vectors in , the scalar product depends on the 
angle between the two vectors and their norms: 

p\

( )cos ,, = x y x yx y . 

It cannot be used as similarity measure directly, because it does not verify the maximality 
property: there exist couples ( ),x y  such that , ,>x y x x , such as ( ), 2x x  for instance. 
The similarity should actually be defined as the cosine of the angle between  
the two vectors, that takes its maximal value when x and  are identical. It must  
still be stressed that such a similarity measure does not take into account the  
norms of the vectors, and that positively collinear vectors are considered as totally 
similar, e.g., 

y

( ) (, 2x S ), 1= =x xS x . 
As the cosine takes values in the interval [−1, 1], it must be normalised; a simple 

approach is thus to define 

( ) ,1, 1
⎛ ⎞

= +⎜ ⎟
x y

S x y
2 ⎝ ⎠x y

( ) ( ) ( )

. 

It is to be underlined that dot products provide analytical properties, such as  
definite-positiveness, that can be useful for instance when the similarity measure is used 
in a cost function to be optimised. 

4.2.1 Classic dot products 

Numerous dot products can be considered: the Euclidean distances variants presented in 
Section 4.1.1 are associated to scalar products as indicated in the last column of Table 3. 

They can be interpreted as data transformations in the same way as the corresponding 
distances. For instance, the Mahalanobis dot product is equivalent to applying a linear 
transformation that leads to attributes with mean 0 and covariance matrix identity before 
using the Euclidean scalar product. 

4.2.2 Kernel functions 

The kernel function framework, initially proposed by Vapnik (1995) (see also Schölkopf 
and Smola, 2002), leads to other interesting scalar products: this framework relies on a 
non-linear transformation of the data, performed before applying the Euclidean dot 
product to the transformed data. More formally, a kernel function is defined as 

, ,k φ φ=x y x y , where φ  denotes a non-linear transformation function. The 
kernel trick consists in providing a formulation of the k function that does not require the 
computation of the transformed data ( )φ x

( )

 but only depends on the initial representation 
of the data. 

Consider as example the polynomial kernel, defined as ( ), ,= +x y x y
γk l . This 

kernel is equivalent to transforming the data, considering new attributes defined as 
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monomials of the initial attributes. In the case of 2D data for instance, 
 and , for ( )2

1 2,  ,∈ =\x x x x ( 1 2,y = y y ) 2 et 1l= =γ , one has 

( ) ( ) ( ) ( ) ( )2 2,1 2 1 2 1 2,  with 1, 2 , 2 , 2,k φφ φ= =x y x x x x x x xx y ,  

Thus, it is equivalent to transforming the data and enriching them with new attributes 
defined as the power 2 of the initial attributes and the product of the two coordinates, 
making it possible to take into account quadratic correlations between the attributes. More 
generally, the polynomial kernel implicitly enriches the data by components defined as 
monomials with degree inferior or equal to  computed with the initial attributes. Now 
this enrichment remains implicit: no computation is performed in the high dimensional 
transformed space, the k function only depends on the dot product in the initial space, 
which has a low computational cost. Using this measure enriches the data representation 
without increasing the computational cost. 

γ

As other example, one can mention the Gaussian kernel, defined as 

( )
2

2, exp –k
σ

⎛ ⎞
⎜=
x – y

x y
2

⎟
⎝ ⎠

. (8) 

It can be shown that in this case, the implicit function φ  maps the data to an infinite 
dimensional space, providing significant data description enrichment. It is to be noticed 
that this function is similar to the similarity measure defined as a decreasing function of 
the distance, using a generalised Gaussian function [see equation (6)] with . The 
kernel framework provides a complementary theoretical justification of this similarity 
measure definition. 

2=γ

Other kernel functions for numerical data are described for instance by Schölkopf and 
Smola (2002). It is to be noticed that this formalism also applies more generally to any 
type of data, and in particular to structured data. 

5 Conclusions 

In this paper, we proposed an overview of existing similarity measures for binary and 
numerical data, and of tools for comparing them and analysing their behaviours. This 
characterisation provides guidelines for the problem of selecting a similarity measure for 
a given learning task. 

More precisely, as a result of this study, it first appears that the initial choice depends 
on the data nature itself, as different measures are to be used when the data are binary or 
numerical. 

In the case of binary data, the selection depends on the nature of the considered 
problem. In the case where only the data ranking induced by similarity matters, the 
selection problem reduces to the choice of a similarity equivalence class instead of a 
measure itself. In the case where the similarity values are of importance, the choice can be 
guided by the notion of discrimination power. In all cases, some general considerations 
regarding, e.g., the expected behaviours for specific data configurations (dependence to 
the universe size, case of included data) can help selecting an appropriate measure. 
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For numerical data, the selection can be decomposed into three steps. The choice of a 
distance function, or of a scalar product, must depend on knowledge about the attributes, 
e.g., whether they are of equal importance, correlated, or sufficient (or whether an 
implicit transformation to a space with higher dimension is required). The second step 
regards a possible normalisation, which depends on the data characteristics, and for 
instance on the presence of outliers. Lastly, the main selection tool for a decreasing 
function is the discrimination power. 
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