
Overture – Open-source Tools for Formal Modelling TR-2010-03
March 2010

Tutorial for Overture/VDM++

by

Peter Gorm Larsen
John Fitzgerald

Sune Wolff
Nick Battle

Kenneth Lausdahl
Augusto Ribeiro
Kenneth Pierce

Overture – Open-source Tools for Formal Modelling.

Tutorial to Overture/VDM-RT

Document history
Month Year version of Overture.exe
January 2010 0.1.5
March 2010 0.2

ii

Contents

3 Overture Tool Support for VDM++: an Introductory Guide 1
3.1 Introduction . 1
3.2 Obtaining the Tools . 2
3.3 Using Enterprise Architect . 3
3.4 Using the Overture Perspective . 3
3.5 Getting Started using Templates . 7
3.6 Mapping UML to VDM . 9

3.6.1 Mapping VDM to UML . 10
3.7 Debugging . 10

3.7.1 The Debug Configuration . 10
3.8 Test coverage . 13
3.9 Combinatorial Testing . 15
3.10 Proof Obligations . 18
3.11 A Command-Line Interface . 19
3.12 Summary . 21

A A Chemical Plant Example 25
A.1 An informal description . 25
A.2 A VDM++ model of the Alarm example . 26

A.2.1 A UML Class Diagram . 26
A.2.2 The Plant Class . 27
A.2.3 The Expert Class . 28
A.2.4 the Alarm Class . 29
A.2.5 A Test Class . 29

iii

Chapter 3

Overture Tool Support for VDM++: an
Introductory Guide

Preamble
This is an introduction to the Overture Integrated Development Environment (IDE) and its facilities
for supporting modelling and analysis in VDM++. It may be used as a substitute for Chapter 3 of
“Validated Designs for Object-oriented Systems”1 or as a free-standing guide. Additional material
is available on the book’s web site2. Throughout this guide we will refer to the textbook as “the
book” and the book’s web site simply as “the web site”.

We use examples based on the alarm case study introduced in Chapter 2 of the book. For read-
ers using this as a free-standing guide, an informal explanation of the case study and its VDM++
model are given in Appendix A. The model has been slightly extended from the original version
in order to illustrate Overture’s test automation features.

We introduce the features of Overture that support the combination of formal modelling in
VDM++ with object-oriented design using UML. This is done by providing a “hands-on” tour of
Overture, providing enough detail to allow you to use Overture for serious applications, including
the exercises in the book. However, this is by no means a complete guide to Overture3; more
information can be obtained from www.overturetool.org.

3.1 Introduction
One of the main benefits of combining VDM++ and UML class diagrams and sequence diagrams is
the ability to use software tools to assist in the analysis of the models. Often the analytic power of

1John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico Plat and Marcel Verhoef. Validated Designs for Object-
oriented Systems, Springer, New York. 2005, ISBN 1-85233-881-4

2www.vdmbook.com.
3Note that the Overture tool suite support three different VDM dialects; VDM-SL (Specification Language), VDM++
and VDM-RT (Real Time) so although this tutorial illustrate how to use Overture with VDM++ models you will see
multiple references to these dialects.

1

Tutorial to Overture/VDM-RT

UML models alone can be limited as many tools concentrate on just the structural view of classes.
However, the combination of Enterprise Architect (EA) and Overture provides a significant number
of benefits.

This guide can be used to illustrate the combination of Enterprise Architect and Overture sup-
port, or just Overture support if EA is not available or desired.

Section 3.2 describes how to obtain the tools and the license for EA. For those readers who
would like to start using EA, Section 3.3 briefly explains how a first model can be built in UML.
Section 3.4 provides an initial introduction to the terminology used by Eclipse tools like Overture.
Section 3.6 shows how to import EA UML class and sequence diagrams into Overture and ex-
port them back to UML again. Section 3.7 describes the process of testing and debugging using
Overture. Section 3.8 describes how line coverage from using the debugger can be covered and
displayed. Section 3.9 shows how parts of the test process can be automated using Overture’s com-
binatorial testing feature. Section 3.10 demonstrates how it is possible to automatically generate
the additional checks (called proof obligations) needed in order to ensure that a model is consis-
tent. Finally, Section 3.11 illustrates how parts of Overture’s functionality can be accessed from a
command line.

3.2 Obtaining the Tools
In order to run the examples and exercises presented in the book, it is necessary to install two
separate tools – Overture and Enterprise Architect, the latter being license-controlled.

Overture: This is an open source tool developed by a community of volunteers and built on the
Eclipse platform. The Overture development project is managed on SourceForge4. The
best way to run Overture is to download a special version of Eclipse with the Overture
functionality already pre-installed. If you go to

http://sourceforge.net/projects/overture/files/

you can find pre-installed versions of Overture for Windows, Linux and Mac5.

Enterprise Architect: This is a commercial tool from a company called SparxSystems. The prod-
uct, and a free evaluation license, can be obtained from

http://www.sparxsystems.com.au/.

A large library of sample VDM++ models, including all those needed for the exercises in the
book, is available and can be downloaded from SourceForge under the examplesPP.zip file
using the URL6:

4https://sourceforge.net/projects/overture/
5It is planned to develop an update facility, allowing updates to be applied directly from within the generic Eclipse
platform without requiring a reinstallation. However, this can be a risky process because of the dependencies on
non-Overture components and so is not yet supported.

6The library files are created to be used with Eclipse, but can be opened with file compression programs like Winrar
on Windows.

2

Chapter 3. Overture Tool Support for VDM++: an Introductory Guide

https://sf.net/projects/overture/files/Examples/

You can import the example library zip folder as described in Section 3.4. Finally, the web site
www.vdmbook.com contains all the examples used in this book as plain text files but these are
also all present in the above mentioned zip file. Finally, in order to make use of the test coverage
feature described in Section 3.8 it is necessary to have the text processing system called LATEX and
its pdflatex feature. This can for example be obtained from:

http://miktex.org/2.8/

Note for VDMTools R© users. Overture provides a new open source VDM tool set, but it can also
be used with VDMTools R©. VDMTools, originally developed by IFAD A/S, is now maintained and
developed by CSK Systems (see http://www.vdmtools.jp/en/). In the future Overture
will be able to access VDMTools functionality via a remote API, but the integration will to some
extent be limited by the API capabilities. However, the additional features of the Overture IDE
make it worth considering as a front end to the VDMTools functionality.

3.3 Using Enterprise Architect
This section describes the tool support available if you wish to start model construction using UML
class diagrams.

The alarmumlinit.eap file can be found on the book’s web site. This UML class diagram
model is identical to the initial class diagram from the previous chapter except that the Plant class
has been updated with the three operations identified in Appendix A. Note that the operations have
not yet been given signatures. Download this .eap file and open it using Enterprise Architect.
When this model is open, the class diagram should look like that shown in Figure 3.1.

The small ‘+’ next to the rôle name schedule indicates that this association is public. The
‘-’ in front of the rôle name alarms indicates that it is private. You can change the visibility
of the schedule association to private by double-clicking the association and changing the
Association properties with the target Role, changing the Access field.

You can update the signatures for the operations in the Plant class. However, this is awkward
and most developers prefer to use a text editor to perform such updates in the VDM++ text, then
converting back to the UML model automatically.

To convert a UML class diagram model to a VDM++ model, you first need to export the UML
model from EA to XMI format (see Figure 3.2). This is then subsequently imported into Overture
as will be explained in Section 3.6.

3.4 Using the Overture Perspective
Eclipse is an open source platform based on a workbench that provides a common look and feel
to a large collection of extension products. Thus if a user is familiar with one Eclipse product,

3

Tutorial to Overture/VDM-RT

Figure 3.1: The initial UML class diagram.

Figure 3.2: Exporting the UML model to XMI format.

4

Chapter 3. Overture Tool Support for VDM++: an Introductory Guide

it will generally be easy to start using a different product on the same workbench. The Eclipse
workbench consists of several panels known as views, such as the Script Explorer view at the top
left of Figure 3.3. A particular collection of panels designed to assist a specific activity is called
a perspective. For example Figure 3.3 shows the standard Overture perspective which contains
views for managing Overture projects, viewing and editing files. As we shall see later, several
other perspectives are also available in Overture.

Figure 3.3: The Overture Perspective

The Script Explorer view allows you to create, select, and delete Overture projects and navigate
between the files in these projects. Start by importing the alarm project from zip file mentioned
above. This can be done by right clicking the project view and selecting Import, followed by
General→ Existing Projects into Workspace. In this way the projects from .zip file mentioned
above can be imported easily. Initially it is recommended that you only import the AlarmErrPP
and the Alarm++tracesPP projects as shown in Figure 3.47.

An editor customised to the dialect of VDM being used in the project will appear when one of
the imported files are selected in the Explorer view by double clicking. When the AlarmErrPP
project has been imported one can right click on the project in the Explorer view and then select the
Properties item in the menu and then Figure 3.5 will pop up. This includes the properties set
for this project including specific VDM options. Note that there is a language version option that
for the AlarmErrPP project set to vdm10 which indicates that it include non-standard features
such as traces which is explained in Section 3.9. In addition, options are gathered here for
additional checks where the AlarmErrPP project simply follow the standard settings used for
new projects.

7You need both of these to carry out various exercises throughout this chapter.

5

Tutorial to Overture/VDM-RT

Figure 3.4: Importing the Alarm VDM++ Projects

Figure 3.5: Properties for the AlarmErrPP Project

The Outline view, to the right of the editor (see Figure 3.6) displays an outline of the file
selected in the editor. It shows all declared classes, their instance variables, values, types, functions,
operations and traces. Figure 3.3 shows the outline view on the right hand side. Clicking on an

6

Chapter 3. Overture Tool Support for VDM++: an Introductory Guide

operation or function will move the cursor in the editor to the definition of that operation/function.
At the top of the outline view there is a button to (optionally) order the elements of the outline view
alphabetically.

Figure 3.6: The Outline View

The Problems view presents information about all the open projects you are working on, such
as warning and error messages. In Figure 3.3 the problems view is shown at the bottom.

In the standard Overture perspective there is a VDM Quick Interpreter view in a pane in the
same area as the problems view. This can be used for evaluation of standard VDM expressions
independent of all VDM projects incorporated in your Overture IDE. This can be very convenient
to gain understanding of the different VDM operators. In Figure 3.7 it is possible to see how a
couple of expressions (typed in at the box at the botton of the view) are evaluated8.

Figure 3.7: The VDM quick interpreter view

Most of the other features of the workbench, such as the menus and toolbars, are similar to
those used in other Eclipse applications, though it is worth noting that there is a special menu with
Overture-specific functionality. One convenient feature is a toolbar that appears on the right side of
the screen and allows the user to switch between perspectives; the particular perspectives on show
here vary dynamically according to history.

3.5 Getting Started using Templates
Before proceeding, please make sure that you have imported both the AlarmErrPP and the
Alarm++tracesPP projects as shown in Figure 3.4. When editing a VDM++ model, the Over-

8If errors appear in this evaluation the current version of the Overture IDE simply yield a Fatal error where it is
anticipated that later releases will provide more helpful run-time errors to the users.

7

Tutorial to Overture/VDM-RT

Figure 3.8: Explicit operation template

ture IDE parses the content of the editor buffer continuously as changes are made. Any parse errors
will be reported in the problems view, as well as being highlighted in the editor. See the bottom of
Figure 3.3. Each time a VDM++ model file is saved the editor type-checks the model and reports
any errors or warnings. Note also that the suggestions made in the error messages may not always
be entirely the action you may wish to take when correcting the source since the tool cannot guess
what you intended to write.

Templates can be particularly useful when modifying VDM++ models. If you hit the key
combination CTRL+space after the initial characters of the template needed, Overture triggers a
proposal. For example, if you type ”op” followed by CTRL+space, the Overture IDE will propose
the use of an implicit or explicit operation template as shown in Figure 3.8. The Overture IDE
supports several types of template: cases, quantifications, functions (explicit/implicit), operations
(explicit/implicit) and many more9. Additional templates can easily be added in the future. The
use of templates makes it much easier for users lacking deep familiarity with VDM syntax to
nevertheless construct models.

A new VDM++ project is created by choosing File→ New→ Project. The dialog box shown
in Figure 3.9 will appear. Ensure that VDM++ is selected as the project type, click Next and then
name the project AlarmUML. Following this it is possible to select standard libraries as shown
in Figure 3.10. These standard libraries gives the possibility to get standard input/output, math
and general utility functionality by selecting the appropriate standard libraries. In this AlarmUML
project we can try to select the IO standard library. Afterwards one simply select Finish. Now
you have an almost empty project (with the exception of the IO.vdmpp file in the lib directory)
and you can then either add new VDM++ files to the project or simply paste in existing VDM++
source files from elsewhere. Adding a VDM++ file to a project you can rightclick on the project
and then select New → VDM-PP Class and then give a meaning full name (e.g. Test) to the

9It is possible to see and enhance the complete list of these by selecting Window→ Preferences→ Overture.

8

Chapter 3. Overture Tool Support for VDM++: an Introductory Guide

class you would like to start defining and press Finish. This will create a new class file with
the selected name and with space for the different kinds of definitions you can make inside such a
VDM++ class.

Figure 3.9: Creating a New VDM++ Project

Figure 3.10: The VDM++ Standard Libraries

3.6 Mapping UML to VDM
In order to map the UML class diagram created in Enterprise Architect to VDM, use the AlarmUML
project. By right-clicking the project root in the Script Explorer, UML Transformation can be cho-
sen, followed by Import XMI. Now browse to the XMI/XML file exported from EA and open this.
The round-trip engineering abilities of this link however is still at a prototype stage so if you wish
to use this you have to expect that this part is still not as automatic as we would like.

The three classes from the Alarm system will be converted to VDM++ format (.vdmpp), one
file per class.

9

Tutorial to Overture/VDM-RT

The transformation from UML to VDM is not entirely automated in the current release. For
example, any custom types are transformed to VDM++ definitions using machine-generated iden-
tifiers since custom types are not named in UML. As a result, you have to expect to make minor
modifications to the generated VDM files.

Before proceeding, delete the AlarmUML project in the Overture IDE. For the following, the
AlarmErrPP project is used. This project contains a number of VDM++ model files with a
number of deliberate errors. The errors are common ones such a semicolons separating definitions
that has been forgotten.

Exercise 3.1? Correct all the errors discovered by the syntax and type checker from Overture
and save the corrected files. Continue this process until no errors appear. Hint: Consult the model
presented in Appendix A to see how values (note using “=” rather than “:=”), types and construc-
tors should be defined and how access modifiers should be used. 2

3.6.1 Mapping VDM to UML
After correcting all the errors in the AlarmErrPP project, it is possible to map the complete VDM
model to UML. To do this, simply right click the project root and choose UML Transformation
→ Export XMI. The XMI file can subsequently be imported in EA, enabling the user to get an
overview of the complete model.

Exercise 3.2 Add an instance variable to one of the other classes at the VDM++ level. Save it
and it will automatically be syntax and type checked at the VDM++ level. Then export the model
to XMI in order to see your changes in EA. 2

3.7 Debugging
This section describes how to debug a model by testing it using the Overture IDE. A test file
(Test1.vdmpp) can be found in the alarm project and it is provided in Appendix A.2.

Using this test, it is possible to exercise the system informally in order to check if the correct
expert is paged as a result of a given alarm.

3.7.1 The Debug Configuration
Before the debugging can begin in Overture, a debug configuration must be created by right click-
ing the project and choosing Debug As→ Debug configuration10. The debug configuration dialog
requires the project name and the class and the operation/function used as the entry point of the
test. Figure 3.11 shows the debug configuration for the alarm model. The class and operation/-
function name can be chosen from a Browse dialog; if the operation or function has arguments,
these must be typed in manually between the brackets of the entry point function/operation.

10Note that the Run As functionality existing Eclipse users are used to is not supported in the current version of Overture.

10

Chapter 3. Overture Tool Support for VDM++: an Introductory Guide

Figure 3.11: The debug configuration dialog

Once the debug configuration is ready, the model can be debugged. If any breakpoints are set
this will change the main perspective of the Overture IDE to the Debug perspective which contains
the views needed for debugging in VDM. The Debug perspective is illustrated in Figure 3.12.
Breakpoints can easily be set by double clicking in left margin in the editor view. When the
debugger reaches the location of a breakpoint, evaluation suspends and you can inspect the values
of different variables and step through the VDM model line by line.

The Debug view in the upper left corner of the Debug perspective shows all running threads
in the VDM++ model and their call stacks. It also shows whether a given model is stopped,
suspended or running. All threads are also shown, along with their running status. It is possible to
switch between threads from the Debug view.

At the top of the view are buttons for controlling debugging such as stop, step into, step over
and resume. These are standard Eclipse debugging buttons (see Table 3.1).

The Variables view shows all the variables in a given context, when a breakpoint is reached.
The variables and their displayed values are automatically updated when stepping through a model.
The view is located in the upper right corner in the Debug perspective.

The Breakpoints view gives an overview of all breakpoints set (see Figure 3.13). From this view
you can easily navigate to the location of a given breakpoint, disable or delete them, or set their
properties. Conditional breakpoints are supported. These are a powerful tool for the developer
since they allow a condition to be specified which has to be true in order for the debugger to stop
at the given breakpoint. The condition can either be a boolean expression using variables in scope
at the breakpoint, or it can be a hit count after which the breakpoint should become active.

You can make a simple breakpoint conditional by right clicking on the breakpoint mark in the

11

Tutorial to Overture/VDM-RT

Figure 3.12: Debugging perspective

Button Explanation
Resume debugging

Suspend debugging

Terminate debugging

Step into

Step over

Step return

Use step filters

Table 3.1: Overture debugging buttons

Figure 3.13: Breakpoint View

12

Chapter 3. Overture Tool Support for VDM++: an Introductory Guide

Figure 3.14: Conditional breakpoint options

left margin of the editor and selecting the option Breakpoint properties. This opens a dialog shown
in Figure 3.14.

The Expressions view allows the user to enter watch expressions whose values are automati-
cally displayed and updated when stepping. Watch expressions can be added manually or created
by selecting create watch expression from the Variables view. It is possible to edit existing expres-
sions. Like the Breakpoints view, this view is hidden in the upper right hand corner in Figure 3.12.

While the Overture Expressions view allows you to inspect values, the functionality is some-
what limited. For more thorough inspections in Overture, the Interactive Console view is provided.
Here commands can be executed in a given context, i.e. when the debugger is at a breakpoint. The
Interactive Console keeps a command history, so that previously executed commands can be run
again easily. The interactive console can be seen at the bottom of Figure 3.12.

Exercise 3.3 Use the interpreter to evaluate the following expression: new Test1().Run().
2

3.8 Test coverage
It is often useful to know how much of a model has been exercised by a set of tests11. This gives
some insight into the thoroughness of a test suite and may also help to identify parts of the model

11Note that this feature is not yet supported for models using unicode characters such a Japanese identifiers.

13

Tutorial to Overture/VDM-RT

Figure 3.15: The generated pdf file with test coverage information

that have not been assessed, allowing new tests to be devised to cover these. When any evaluation
is performed on a VDM++ model, the interpreter records the lines of the VDM++ model that are
executed. This permits the line coverage to be examined after a test to identify the parts of the
VDM++ model that have not yet been exercised – coverage is cumulative, so a set of tests can be
executed and their total coverage examined at the end.

In our simple example, the different tests in the exercise above does cause the majority of the
VDM++ model to be executed, but for demonstration purposes let us start by cleaning the model
(right click on the project and select Clean). If we simply take the AlarmPP debug launch
configuration the ExpertIsOnDuty and ExpertToPage operations in plant.vdmpp are
called by the Run function. Remember that whenever test coverage information is desired the
Generate Latex Coverage option must be selected as shown in Figure 3.11. Once the
debugger has completed and the result is written out in the console it is possible to right click
on the AlarmPP project and select the Latex → Latex coverage. The coverage information that
have been gathered in any expressions that have been debugged since the last change to a file have
been saved or the project have been cleaned will be turned into a pdf file. The AlarmPP.pdf
file is placed in the generated/latex directory as shown in Figure 3.15 and it includes the
VDM definitions from all the files included in the project including coverage information. Note
that whenever the model is adjusted or it is cleaned so it gets type checked again all the files in the
generated directory are deleted.

The coverage information is provided in a way where uncovered expressions are shown in
red in the generated pdf file. In addition to the content of each VDM++ source file a table with
coverage overview is provided in tabular form. For the plant.vdmpp file this looks like:

Function or operation Coverage Calls
ExpertIsOnDuty 100.0% 1
ExpertToPage 100.0% 1

14

Chapter 3. Overture Tool Support for VDM++: an Introductory Guide

NumberOfExperts 0.0% 0
Plant 100.0% 1
PlantInv 100.0% 2
plant.vdmpp 89.0% 5

where the ExpertIsOnDuty and ExpertToPage operations are fully covered by just one call
(due to the fact that its body is simply one line) whereas the PlantInv operation is called twice12.

3.9 Combinatorial Testing
The previous sections have shown how to test and debug models manually. However, Overture also
contains a feature enabling more automation in the testing process, making more comprehensive
high-volume testing feasible. It is possible to write regular expressions, as traces, that one would
like to expand into a large set of individual tests. When new traces are incorporated in a VDM
project you may need to press the Refresh button () in the CT Overview view.

In order to illustrate how this can be used, we extend the Plant class with two additional
operations for adding and removing experts from a given schedule. Both operations take a given
Period and an Expert and then update the schedule instance variable from the Plant class.
The AddExpertToSchedule operation can be defined as:�
public AddExpertToSchedule: Period * Expert ==> ()
AddExpertToSchedule(p,ex) ==

schedule(p) := if p in set dom schedule
then schedule(p) union {ex}
else {ex};
� �

and the RemoveExpertFromSchedule operation can be expressed as:�
public RemoveExpertFromSchedule: Period * Expert ==> ()
RemoveExpertFromSchedule(p,ex) ==

let exs = schedule(p) in
schedule := if card exs = 1

then {p} <-: schedule
else schedule ++ {p |-> exs \ {ex}}

pre p in set dom schedule;
� �
Note that RemoveExpertFromSchedule contains a deliberate error. It fails to take account
of the invariant so the operation can leave the Plant in a state where it cannot be guaranteed

12Note that the coverage from the combinatorial testing feature described in Section 3.9 is not taken into account in the
current version of the Overture IDE, but this will be enabled in a later release.

15

Tutorial to Overture/VDM-RT

that experts with the right qualifications are available in the periods that have been scheduled.
AddExpertToSchedule has a similar error. If nobody is scheduled at the period provided as
an argument, and the expert added for the schedule at this period does not have all the necessary
qualifications, the invariant will again be violated. In fact this means that one would probably have
to change the signature of this operation such that it instead of taking a simple expert would take a
collection of experts. Instead of adding the two operations manually, use the Alarm++tracesPP
project.

We could use the debugger presented above to test these two new operations manually, but we
can also automate a part of this process. In order to do the automation, Overture needs to know
about the combinations of operation calls that you would like to have carried out, so it is necessary
to write a kind of regular expression called a trace. VDM++ has been extended such that traces
can be written directly as a part of a VDM++ model. A full explanation of this can be found
in [Larsen&09]. In our case, inside the Test1 class one can write13:�
traces

AddingAndDeleting:
let myex in set exs
in

let myex2 in set exs \ {myex}
in

let p in set ps
in
(plant.AddExpertToSchedule(p,myex);
plant.AddExpertToSchedule(p,myex2);
plant.RemoveExpertFromSchedule(p,myex);
plant.RemoveExpertFromSchedule(p,myex2));
� �

The three nested let-be statements in the trace called AddingAndDeleting yield all possible
combinations of their variable bindings whereas manual debugging will just select a few combina-
tions. The cardinality of these sets determines the overall number of test cases, each being formed
as a sequence of four operation calls, as shown. In this case, the cardinality of the three sets are
respectively 4, 3 and 4. Multiplying these gives 48 tests in total. If you select the Combinatorial
Testing perspective you will see the CT Overview view. Inside this combinatorial testing view you
can select the Alarm++tracesPP project, right click it and choose the Full Evaluation option
as shown in Figure 3.16. Now Overture expands and executes all 48 test cases one after another.
The results of these executions are illustrated with green check marks and red crosses, meaning
that the tests passed or failed respectively. See Figure 3.17. Note that in the Combinatorial Testing
perspective, the view in the lower region is able to show the individual steps of a selected test case,

13Such traces can actually also be represented as UML sequence diagrams and then automatically translated into the
corresponding VDM++ textual form, but since this is still at a prototyping stage it is not explained further here.

16

Chapter 3. Overture Tool Support for VDM++: an Introductory Guide

along with the corresponding results from its four operation calls.

Figure 3.16: Invoking the combinatorial testing feature

Figure 3.17: Using Combinatorial Testing for the Alarm VDM++ model

The syntax for traces also enables operation repetition and alternatives to be specified, but these
were not needed for this simple case. Using the full power of traces, it is possible to efficiently
generate and execute very large test suites. Naturally, this is most likely to find inconsistencies
when the model attempts to define its essential predicates (invariants, pre and post-conditions)14.

14Note that when using repetitions and sequencing in combination it is easy to define traces that expands to hundreds
of thousands of test cases and naturally their execution may then be very slow if one executes them all. Thus work is
underway for a feature that reduce the numbers of tests to be executed using various intelligenet selection techniques.
This will be released in a future version of Overture.

17

Tutorial to Overture/VDM-RT

3.10 Proof Obligations
The Overture tool is also able to generate Proof Obligations automatically for VDM++ models.
Proof obligations are boolean expressions that describe constraints to be met at various points in
the model in order to ensure that the model is internally consistent (i.e. no run-time errors will
occur while debugging if these are all satisfied). Proof obligations are generated to ensure, for
example, that operations will always respect invariants on instance variables. Each proof obligation
generated from a model should evaluate to true.

The proof obligation generator is invoked by right clicking on the project in the Explorer view
and then selecting the Proof Obligations -> Generate Proof Obligations entry. This will start up
a proof obligation perspective with a special PO view. For the alarm example this view takes the
form shown in Figure 3.18.

Figure 3.18: The Proof Obligation view for the Alarm VDM++ model

One of the first proof obligations listed for this example is related to the PlantInv function.
Recall that the first part of the function’s definition is as follows:�
PlantInv: set of Alarm * map Period to set of Expert ->

bool
PlantInv(as,sch) ==

(forall p in set dom sch & sch(p) <> {}) and ...
� �
The proof obligation records the constraint that the mapping application sch(p) should be

valid (i.e. that the p is in the domain of the mapping sch). This is described as a proof obligation
in the following form:�
forall as:set of Alarm, sch:map Period to set of Expert &

forall p in set (dom sch) &
p in set dom sch
� �

It is easy to see with simple pattern matching that this proof obligation is true and thus in the Proof
Obligation Explorer view the status field the small checkmark indicates that indeed the proof
obligation generation have been able to automatically determine this.

18

Chapter 3. Overture Tool Support for VDM++: an Introductory Guide

In general proof obligations represent checks that should be made on a model in order to gain
confidence in its consistency. At present, proof obligations have to be checked by manual inspec-
tion of the model code. Proof tools are being developed for Overture to check as many as possible
of the proof obligations automatically and with human assistance, but there are always likely to
be some that have to be checked manually. If we for example instead consider the fifth proof
obligation it is derived from the body of the expertToPage operation. That body looks like:�

let expert in set schedule(p) be st
a.GetReqQuali() in set expert.GetQuali()

in
return expert
� �

where an expert on duty with the right qualifications are being selected. The proof obligation here
states:�
exists expert in set schedule(p) &

a.GetReqQuali() in set expert.GetQuali()
� �
This is exactly describing that in order for this expression to be defined it is necessary to gurantee
that there exists at least one such expert. Thus, without taking the pre-condition for the operation
here into account it would not be possible to gurantee that. So it will never be possible to automat-
ically to determin this using simple pattern matching because this is only guranteed because of the
invariant over the instance variables for the Plant class that has been defined.

3.11 A Command-Line Interface
So far only the graphical user interface of Overture has been presented but the engine underlying
Overture, called VDMJ, also provides a simple command line interface. This is useful for the
automatic batch execution of tests, though the command line also provides a full set of interactive
execution and debugging commands which can be useful when examining batch tests. The com-
mand line also provides access to tool facilities that have not yet been included in the Overture
IDE.

VDMJ is written in Java, and so to run it from the command line, the VDMJ jar file 15 should
be executed with a Java JRE (version 5 or later):

java -jar vdmj-2.0.0.jar

If the jar file is executed with no further options like this, it will print a list of available options
and exit. The most important option is the VDM dialect that the tool should use. In the case of

15See the Overture documentation at sourceforge.net/projects/overture for the location of the jar file.

19

Tutorial to Overture/VDM-RT

our alarm example, we want to use VDM++ for which the option is -vdmpp. After this, we can
simply specify the names of the VDM model files to load, or the name of a directory from which
all VDM model files will be loaded:

java -jar vdmj-2.0.0.jar -vdmpp AlarmPP

That will perform a syntax and type check of all the VDM model files in the AlarmPP directory,
producing any errors and warning messages on the console, before terminating:

Parsed 4 classes in 0.561 secs. No syntax errors
Type checked 4 classes in 0.031 secs. No type errors

In the case of our alarm example, there are no syntax or type checking errors. Any warnings can
be suppressed using the -w option.

If a VDM model has no type checking errors, it can either be given an expression to evaluate as
an option on the command line, or the user can enter an interactive mode to evaluate expressions
and debug their execution.

To evaluate an expression from the command line, the -e option is used, followed by a VDM
expression to evaluate. You may also find the -q option useful, as this suppresses the informational
messages about the parsing and type checking:

java -jar vdmj-2.0.0.jar -vdmpp -q -e "new Test1().Run()"
AlarmPP

This produces a single line of output for the evaluation, since the parsing and checking messages
are suppressed:

mk_({mk_token("Monday day")},
Expert{#3, quali:={<Mech>, <Bio>}})

Clearly a batch of test evaluations could be performed automatically by running a series of
similar commands and saving the output results for comparison against expected results.

To run the command line interpreter interactively, the -i command line option must be given.
Instead of terminating after the type check, this will cause VDMJ to enter its interactive mode, and
give the interactive > prompt:

Parsed 4 classes in 0.468 secs. No syntax errors
Type checked 4 classes in 0.031 secs. No type errors
Initialized 4 classes in 0.031 secs.
Interpreter started
>

20

Chapter 3. Overture Tool Support for VDM++: an Introductory Guide

From this prompt, various interactive commands can be given to evaluate expressions, debug their
evaluation, or examine the VDM model environment. The help command lists the commands
available. The quit command leaves the interpreter.

For example, the following session illustrates the creation of a test object, followed by an
evaluation (using a print command) of its Run operation, and a debug session with a breakpoint
at the start of the same operation:

> create test := new Test1()
> print test.Run()
= mk_({mk_token("Monday day")},

Expert{#3, quali:={<Mech>, <Bio>}})
Executed in 0.172 secs.

> break Test1‘Run
Created break [1] in ’Test1’ (test1.vdmpp) at line 26:3
26: let periods = plant.ExpertIsOnDuty(ex1),

> print test.Run()
Stopped break [1] in ’Test1’ (test1.vdmpp) at line 26:3
26: let periods = plant.ExpertIsOnDuty(ex1),
[MainThread-10]> print plant.NumberOfExperts(

mk_token("Wednesday"))
Runtime: Error 4071: Precondition failure:

pre_NumberOfExperts in
’Test1’ (console) at line 1:1

[MainThread-10]> continue
= mk_({mk_token("Monday day")}

Expert{#3, quali:={<Mech>, <Bio>}})
Executed in 34.858 secs.

Notice that the print command is available at the breakpoint to examine the runtime state of the
system. In the example, we attempt to evaluate an operation which fails its precondition (because
the system is not yet initialized). The help command is context sensitive, and will list the extra
debugging commands available at a breakpoint, such as continue, step, stack, list and so
on. The full set of commands is described in the VDMJ User Guide16.

3.12 Summary

In this guide we have introduced the following major features of tool support for VDM++:

16Supplied with the Overture documentation.

21

Tutorial to Overture/VDM-RT

• using Enterprise Architect with class diagrams;

• mapping back and forth between Enterprise Architect and Overture;

• syntax checking of VDM++ models;

• type checking of VDM++ models;

• executing and debugging VDM++ models;

• collecting and displaying test coverage information on VDM++ models;

• combinatorial testing enabling automation of parts of the testing process;

• proof obligation generation and

• a command-line interface enabling access to test coverage.

22

References

[Fitzgerald&98] John Fitzgerald and Peter Gorm Larsen. Modelling Systems – Practical Tools
and Techniques in Software Development. Cambridge University Press, 1998.

[Larsen&09] Peter Gorm Larsen and Kenneth Lausdahl. User Manual for the Overture
Combinatorial Testing Plug-in. Technical Report TR-2009-01, The Overture
Initiative, www.overturetool.org, March 2009. 30 pages.

23

Tutorial to Overture/VDM-RT

24

Appendix A

A Chemical Plant Example

This appendix presents the requirements for a simple alarm system for a chemical plant. It forms
a running example that serves to illustrate the process described earlier and to introduce elements
of the VDM++ modelling language. Although the modelling process is described here as though
it were a single-pass activity, a real development would usually be iterative.

A.1 An informal description
The example is inspired by a subcomponent of a large alarm system developed by IFAD A/S and
introduced in [Fitzgerald&98]. A model of the system will be developed and validated using the
facilities of Enterprise Architect and Overture enabling a graphical overview of the model in the
form of UML class diagrams and sequence diagrams corresponding to traces. Chapter 3 provides
an interactive and hands-on tour of the tools available for supporting the development of the model.

Imagine that you are developing a system that manages the calling out of experts to deal with
operational faults discovered in a chemical plant. The plant is equipped with sensors that are able
to raise alarms in response to conditions in the plant. When an alarm is raised, an expert must be
called to the scene. Experts have different qualifications for coping with different kinds of alarms.
It has been decided to produce a model to ensure that the rules concerning the duty schedule and
the calling out of experts are correctly understood and implemented. The individual requirements
are labelled R1, R8 for further reference:

R1. A computer-based system is to be developed to manage the alarms of this plant.

R2. Four kinds of qualifications are needed to cope with the alarms: electrical, mechanical,
biological, and chemical.

R3. There must be experts on duty during all periods allocated in the system.

R4. Each expert can have a list of qualifications.

R5. Each alarm reported to the system has a qualification associated with it along with a descrip-
tion of the alarm that can be understood by the expert.

25

Tutorial to Overture/VDM-RT

R6. Whenever an alarm is received by the system an expert with the right qualification should be
found so that he or she can be paged.

R7. The experts should be able to use the system database to check when they will be on duty.

R8. It must be possible to assess the number of experts on duty.

In the next section the development of a model of an alarm system to meet these requirements
is initiated. The purpose of the model is to clarify the rules governing the duty roster and calling
out of experts to deal with alarms.

A.2 A VDM++ model of the Alarm example

This section presents the UML class diagram and the full VDM++ model of the alarm example.
However, it does so without any explanatory text. That is placed in the VDM++ book so if you are
a newcommer to VDM++ please read that there.

A.2.1 A UML Class Diagram

In Figure A.1 the final class diagram for the extended alarm example is shown from Enterprise
Architect.

Figure A.1: UML diagram translated from VDM++ files

26

Appendix A. A Chemical Plant Example

A.2.2 The Plant Class

The Plant class is the main class in this example.�
class Plant

instance variables

alarms : set of Alarm;
schedule : map Period to set of Expert;
inv PlantInv(alarms,schedule);
� �
�
functions

PlantInv: set of Alarm * map Period to set of Expert ->
bool

PlantInv(as,sch) ==
(forall p in set dom sch & sch(p) <> {}) and
(forall a in set as &

forall p in set dom sch &
exists expert in set sch(p) &

a.GetReqQuali() in set expert.GetQuali());

types

public Period = token;

operations

public ExpertToPage: Alarm * Period ==> Expert
ExpertToPage(a, p) ==

let expert in set schedule(p) be st
a.GetReqQuali() in set expert.GetQuali()

in
return expert

pre a in set alarms and
p in set dom schedule

post let expert = RESULT
in

expert in set schedule(p) and
a.GetReqQuali() in set expert.GetQuali();

27

Tutorial to Overture/VDM-RT

public NumberOfExperts: Period ==> nat
NumberOfExperts(p) ==

return card schedule(p)
pre p in set dom schedule;

public ExpertIsOnDuty: Expert ==> set of Period
ExpertIsOnDuty(ex) ==

return {p | p in set dom schedule &
ex in set schedule(p)};

public Plant: set of Alarm *
map Period to set of Expert ==> Plant

Plant(als,sch) ==
(alarms := als;

schedule := sch)
pre PlantInv(als,sch);

end Plant
� �
A.2.3 The Expert Class

�
class Expert

instance variables

quali : set of Qualification;

types

public Qualification = <Mech> | <Chem> | <Bio> | <Elec>;

operations

public Expert: set of Qualification ==> Expert
Expert(qs) ==

quali := qs;

public GetQuali: () ==> set of Qualification
GetQuali() ==

28

Appendix A. A Chemical Plant Example

return quali;

end Expert
� �
A.2.4 the Alarm Class

�
class Alarm
types

public String = seq of char;

instance variables

descr : String;
reqQuali : Expert‘Qualification;

operations

public Alarm: Expert‘Qualification * String ==> Alarm
Alarm(quali,str) ==
(descr := str;

reqQuali := quali
);
� �
�
public GetReqQuali: () ==> Expert‘Qualification
GetReqQuali() ==

return reqQuali;

end Alarm
� �
A.2.5 A Test Class

�
class Test1

instance variables

29

Tutorial to Overture/VDM-RT

a1 : Alarm := new Alarm(<Mech>,"Mechanical fault");
a2 : Alarm := new Alarm(<Chem>,"Tank overflow");
ex1 : Expert := new Expert({<Mech>,<Bio>});
ex2 : Expert := new Expert({<Elec>});
ex3 : Expert := new Expert({<Chem>,<Bio>,<Mech>});
ex4 : Expert := new Expert({<Elec>,<Chem>});
plant: Plant := new Plant({a1},{p1 |-> {ex1,ex4},

p2 |-> {ex2,ex3}});

values

p1: Plant‘Period = mk_token("Monday day");
p2: Plant‘Period = mk_token("Monday night");
p3: Plant‘Period = mk_token("Tuesday day");
p4: Plant‘Period = mk_token("Tuesday night");

operations

public Run: () ==> set of Plant‘Period * Expert
Run() ==

let periods = plant.ExpertIsOnDuty(ex1),
expert = plant.ExpertToPage(a1,p1)

in
return mk_(periods,expert);

end Test1
� �

30

