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Abstract
Probabilistic roadmap planning methods have been

shown to perform well in a number of practical situations,
but their performance degrades when paths are required to
pass through narrow passages in the free space. We pro-
pose a new method of sampling the configuration space
in which randomly generated configurations, free or not,
are retracted onto the medial axis of the free space. We
give algorithms that perform this retraction while avoid-
ing explicit computation of the medial axis, and we show
that sampling and retracting in this manner increases the
number of nodes found in small volume corridors in a way
that is independent of the volume of the corridor and de-
pends only on the characteristics of the obstacles bound-
ing it. Theoretical and experimental results are given to
show that this improves performance on problems requir-
ing traversal of narrow passages.

1 Introduction
Motion planning in the presence of obstacles is an im-

portant problem in robotics with applications in other ar-
eas, such as simulation and computer aided design. While
complete motion planning algorithms do exist, they are
rarely used in practice since they are computationally in-
feasible in all but the simplest cases. For this reason, re-
cent attention has focused on probabilistic methods, which
sacrifice completeness in favor of computational feasibility
and applicability. In particular, several algorithms, known
collectively asprobabilistic roadmap planners, have been
shown to perform well in a number of practical situations,
see, e.g., [7]. The idea behind these methods is to create a
graph of randomly generated collision-free configurations
with connections between these nodes made by a simple
and fast local planning method. Actual global planning is
then carried out on this graph. These methods run quickly
and are easy to implement; unfortunately there are simple
situations in which they perform poorly, in particular situ-
ations in which paths are required to pass through narrow
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passages in configuration space.
Themedial axisor generalized Voronoi diagramhas a

long history of use in motion planning, see [2, 8]. This
stems from the fact the medial axisMA(F ) of the free
spaceF (the set of all collision-free configurations) has
lower dimension thanF but is still a complete represen-
tation for motion planning purposes. In particular, in two
dimensions the medial axis is a one dimensional graph-like
structure which can be used as a roadmap. Paths on the me-
dial axis also have other appealing properties such as large
clearance from obstacles. However, the medial axis is dif-
ficult and expensive to compute explicitly, particularly in
higher dimensions.

We propose a new algorithm, MAPRM, which com-
bines these two approaches by generating random net-
works whose nodes lie on the medial axis of the free space.
Our central observation is thatit is possible to efficiently re-
tract any sampled configuration, free or not, onto the me-
dial axis of the free space without having to compute the
medial axis explicitly.Sampling and retracting in this way
will be shown to give improved performance on problems
requiring traversal of narrow passages.

1.1 Probabilistic roadmap methods
Probabilistic roadmap methods generally operate as fol-

lows, see, e.g., [7]. During a preprocessing phase, a set of
configurations in the free space is generated by sampling
configurations at random and removing those that put the
workpiece in collision with an obstacle. These nodes are
then connected into a roadmap graph by inserting edges be-
tween configurations if they can be connected by a simple
and fast local planning method, e.g., a straight line planner.
This roadmap can then be queried by connecting given start
and goal configurations to nodes in the roadmap (again
using the local planner) and then searching for a path in
the roadmap connecting these nodes. Various sampling
schemes and local planners have been used, see [1, 6, 11].
The algorithms are easy to implement, run quickly, and are
applicable to a wide variety of robots.

The main shortcoming of these methods is their poor
performance on problems requiring paths that pass through
narrow passages in the free space. This is a direct conse-
quence of how the nodes are sampled fromF . For exam-
ple, using the usual uniform sampling overF , any corri-
dor of sufficiently small volume is unlikely to contain any
sampled nodes whatsoever. Some effort has been made to
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modify sampling to increase the number of nodes sampled
in narrow corridors. Intuitively, such narrow corridors may
be characterized by their large surface area to volume ratio:
the methods in [1] and [5] have exploited this idea.

In [1], nodes are sampled from thecontact space, the set
of configurations for which the workpiece is in contact (but
not collision), with an obstacle. This method has solved
some very difficult problems, however it is difficult to an-
alyze its performance because the sampling distribution is
unknown.

In [5], preliminary configurations are generated by al-
lowing the workpiece to penetrate the obstacles by a small
amount. The areas near these nodes are then resampled to
find nearby collision-free configurations. Again the idea
is that the allowed penetration dilates the free space by a
small amount (albeit not uniformly), and the sampling in
a narrow corridor is increased roughly in proportion to the
surface area. As the authors point out, dilating the free
space may alter its topology, opening corridors where none
existed. In practice, the amount of dilation must be care-
fully regulated to mitigate this effect.

1.2 Our results
In this paper we present MAPRM, a new sampling

scheme which retracts sampled nodes onto the medial
axis of the free space prior to their connection to form a
roadmap. The key results are:

� It is possible to efficiently retract almost any config-
uration, free or not, onto the medial axis of the free
space without having to compute the medial axis ex-
plicitly.

� Sampling and retracting in this manner increases the
number of nodes found in narrow (small volume) cor-
ridors in a way that is independent of the volume of
the corridor and depends only on the characteristics
of the obstacles bounding it.

� This improves performance on problems requiring
traversal of such corridors.

A typical approach using the medial axis in motion
planning is to compute the medial axis of the free space,
which has lower dimension, and to carry out the planning
there instead. This is valid becauseMA(F ) is a strong
deformation retract(SDR) ofF , meaning thatF can be
continuously deformed ontoMA(F ) while maintaining its
topological structure. In fact, as we will show, almost
the entire configuration space, free and collision configura-
tions alike, can be retracted ontoMA(F ). Now, although a
complete representation of the medial axis of the free space
is difficult and costly to compute, the final retracted image
onMA(F ) of a given free configuration can be computed
efficiently without such a representation. We exploit this
fact by sampling nodes from the full configuration space
and retracting them ontoMA(F ). These nodes, now all

in the free space, can be connected in the usual way to
form a roadmap. We will show that this has the effect of
increasing sampling in narrow corridors in a way that is
independent of the volume of the corridor.

We give a theoretical treatment and experimental results
for two dimensional configuration space, and present the
algorithm and experimental results for the case of a free-
flying rigid body in three dimensions. A theoretical treat-
ment of the rigid body case will be presented in the full
paper.

2 Retracting onto the medial axis in the plane
In this section we give the theoretical development for

the plane, which we interpret as a two dimensional config-
uration space. We first define the medial axis of a polygon
in the plane and show that it is a strong deformation retract;
this essentially means that the polygon can be continuously
deformed onto its medial axis while maintaining its topo-
logical structure. In the context of motion planning, if we
consider the free spaceF to be a polygon (with holes), this
implies that it it is valid to restrict attention to the medial
axisMA(F ), in the sense that there is a path between two
configurations inF if and only if there is a (homotopic)
path between their images onMA(F ). We will then show
how this map may be extended to retract almost all of the
full configuration space ontoMA(F ). The MAPRM al-
gorithm, uniform sampling followed by application of this
extended retraction map, will be shown to yield the desired
sampling increase in the narrow passages.

2.1 Retracting a polygon onto its medial axis
We momentarily leave the motion planning setting and

just consider the medial axis for a region in the plane. In
the next section we will regard the plane as a two dimen-
sional configuration space in which the free space and ob-
stacles are polygonal. It is crucial to note that in higher
dimensions, we are interested in the medial axis of the free
space, which lies in the configuration space and not in the
workspace.

Although this development could proceed assuming
only piecewise real analytic boundary (see [4]), for sim-
plicity we consider only setsP that are the disjoint union
of a finite number of closed polygons (including the inte-
rior, possibly with holes). Forx 2 P , we defineBP (x)
to be the largest closed disc centered atx that is a sub-
set ofP , i.e.,BP (x) = B

�
x; �P (x)

�
; whereB(x; r) de-

notes the closed disc of radiusr � 0 centered atx, and
�P (x) = dist(x;R2r P ) is the distance to the boundary
for points insideP , and0 for points outsideP .1 Theme-
dial axisMA(P ) of P is defined to be the set of all points
x of P whose associatedBP (x) are maximal; i.e.,

MA(P ) = fx 2 P j @ y 2 P with BP (x) ( BP (y)g:

1We define dist(x;S) = infy2S d(x; y) and dist(R;S) =
infx2R dist(x;S) whered denotes the Euclidean distance.
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Figure 1 shows an example of a polygon and its medial
axis. A pointx 2 P is called asimple pointif x has a

Figure 1: Medial axis of a polygon

unique nearest pointx0 in @P (so thatd(x; x0) = �P (x)).
Otherwise,x is called amultiple point.

There is a well-defined notion of convexity ofP at a
vertex. Vertices at whichP is convex are in fact always on
the medial axis. Other vertices are less convenient to deal
with: we defineP 0 to beP minus its non-convex vertex
points. We collect a few facts about the medial axis.

Proposition 2.1. LetP be as above. Then:

1. Letx 2 @P . Thenx is inMA(P ) if and only ifx is a
convex vertex ofP .

2. Any multiple point ofP is contained inMA(P ). If
x 2MA(P ), thenx is in the interior ofP if and only
if x is a multiple point ofP .2

3. For eachx 2 P 0, BP (x) is contained in a unique
maximal discBP (y); wherey 2 MA(P ). Further-
more ifx 2 P � rMA(P ), theny is on the ray�!x0x
wherex0 2 @P is the unique nearest boundary point
tox. If x is a non-vertex point of the boundary, theny
is on the line throughx normal to the boundary atx.

4. The mapP rMA(P ) ! @P taking each point to its
nearest boundary point is continuous.

5. MA(P ) is a closed set.

Proof. See [13].

A subsetY of a setX � R2 is called astrong defor-
mation retract(SDR) ofX if X can be continuously de-
formed ontoY without moving any of the points ofY ; i.e.,
there must exist functionsht : X ! X for t 2 [0; 1] such
that:ht(y) = y for all y 2 Y and allt 2 [0; 1]; h0(x) = x

andh1(x) 2 Y for all x 2 X; andht(x) is a continu-
ous function oft andx. The importance of this concept
is thatY retains the topological structure ofX; in partic-
ular, there is a path between two points ofX if and only
if there is a (homotopic) path inY between their retracted
images onY . If we imagineX to be the free space for

2For more general domains, there may be simple points inMA(P ) \
P �. See [4].

some planning problem, then this would allow us to do the
planning onY instead; in our case we would like to know
thatY = MA(X) is an SDR ofX.

We now show that for our polygonP , MA(P ) is in
fact an SDR ofP 0. First, define a maprP takingP 0 to
MA(P ) by mapping each pointx not in MA(P ) to the
unique pointy 2 MA(P ) such thatBP (x) � BP (y), as
given by Proposition 2.1 Part 3. (See Figure 2.)

x

rP (x)

Figure 2: Image of a pointx under the canonical retraction
map.

We will show below thatrP is continuous, so we simply
defineht(x) = (1�t)x+t rP (x); observe that because the
segment connectingx andrP (x) always lies inP , ht does
in fact map intoP . The maprP is known as thecanonical
retraction map. In Figure 1, the dashed lines show the paths
along which points move during the retraction. Note the
obvious continuity problems if we try to include vertices at
whichP is not convex.3

As an immediate consequence we can actually compute
the retracted imagerP (x) onMA(P ) of any pointx in P 0

without having to first computeMA(P ). Using a bisec-
tion method, for example, we can simply search along the
ray�!x0x, to find arbitrarily close pointsxa andxb on�!x0x,
wherex0 is a nearest boundary point forxa but not forxb.
ThenrP (x) 2 xaxb. The only operation required here is
the ability to compute the nearest boundary point, which is
supported by many collision detection algorithms.

Proposition 2.2. MA(P ) is anSDRofP 0 under the map
ht given above.

Proof. See [13].

2.2 Extending the retraction map
We now return to the setting of motion planning for a

planar configuation space orC-space. The configuration
space can be broken into two pieces which are essentially

3It is true thatMA(P ) is an SDR of all ofP – showing this simply
involves first “shrinking”P slightly into its interior to make it a subset of
P 0, and then applyingrP .
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complements of each other: the free spaceF of collision
free configurations, and the configuration space obstacles
or C-obstacles. If we assume that the free spaceF is a
polygon (with holes), we can use the results of the previous
section to get a retraction map takingF (actuallyF 0) onto
its medial axisMA(F ); while this may have some bene-
fit such as increasing clearance from obstacles, there is no
obvious sampling increase in narrow passages. However,
we will show in this section how collision configurations
can also be retracted ontoMA(F ); this extended retrac-
tion map is what will give the desired sampling increase in
narrow passages. We use the following setting:

� Let C, theconfiguration space, be a closed rectangu-
lar region inR2.

� Let B � C, theC-obstacle, be a disjoint union of a
finite number of polygons.

� F = C rB is called thefree space. F consists of a fi-
nite number of connected components,each of which
is a polygon.

� The set@F is called thecontact space. For simplicity,
we assume that@B is disjoint from@C, so that@B �
@F .

As in the previous section, we have the canonical re-
traction maprF taking F 0 onto its medial axisMA(F ).
We now show how this map may be extended to take
C rMA(B) ontoMA(F ). The idea is simple: retraction
of points ofF 0 to MA(F ) moves points along lines that
meet the non-vertex points of the boundary ofF normally.
These lines can be continuously extended intoB until they
meet the medial axis ofB, so that any point ofBrMA(B)
can be moved towardF along these lines. This amounts to
moving each point ofB toward its nearest boundary point
on @B and through@B into F until MA(F ) is reached.
See Figure 3.

(a) (b)

Figure 3: The canonical retraction map (a) and extended
retraction map (b). The shaded area isB.

Proposition 2.3. WithC, B, andF as above, the canon-
ical retraction maprF : F 0 ! MA(F ) can be extended
continuously to mapC rMA(B) !MA(F ).

Proof. By Proposition 2.1 part 4, we can mapBrMA(B)
continuously onto the boundary@B � @F . Any non-
convex vertex ofF is a convex vertex ofB; because a con-
vex vertex ofB is already inMA(B) and is not a nearest
boundary point for any point ofB rMA(B), we have in
fact mappedB rMA(B) intoF 0. We may then apply the
canonical retraction maprF .

We call this map theextended retraction map. Using
the same definition ofht as before, it is easy to show that
in factMA(F ) is an SDR ofC rMA(B).

Again we can compute this extended retraction map for
a givenx 2 C rMA(B) without first computingMA(F ).
Let x0 be the nearest point on@B to x. If x is inF , move
x away fromx0 along the ray�!x0x as before. Ifx is in
B, move away fromx0 along the ray�!xx0 starting atx0.
(If x is actually on@B, we move in the direction given by
the outward normal to@B atx.) The MAPRM algorithm,
listed in detail below (Algorithm 3.1), is just uniform sam-
pling followed by application of this map. Note that in the
case of polygons in the plane, the medial axisMA(B) has
measure zero, see [4], so in practical terms we are able to
retract any configuration sampled fromC.

2.3 Sampling is increased in narrow corridors
We next examine the sampling distribution obtained by

MAPRM in sampling uniformly fromC and applying the
extended retraction map. We will show that this sample-
and-retract scheme improves sampling in small volume
corridors.

The medial axis provides a convenient definition for
what is meant by a corridor. LetrF : F 0 ! MA(F )
be the canonical retraction map. Acorridor in F is a
connected subsetS of F 0 such thatrF (S) � S and
r�1F

�
S \ MA(F )

�
� S These conditions essentially en-

sure thatS is bounded on “both” sides by obstacles.
We can easily compute a lower bound on the volume

of points that must map into such a corridor under the ex-
tended retraction map. Clearly any point of such a corridor
S remains inS under the extended retraction map. Fur-
thermore, any point inB whose nearest boundary point (on
@B) is also inS will be mapped intoS; if x 2 @S \ B0,
thenx is the nearest boundary point for all points on the
(open) segmentx rB(x). These segments are normal to
the piecewise linear boundary ofB0, so we have:

Proposition 2.4. Let S � F 0 be a corridor,
rB : B0 !MA(B) the canonical retraction map for
B, andq : C rMA(B) !MA(F ) the extended retration
map. The volume of pointsx 2 C that map intoS underq
is no smaller than:

Vol(S) +

Z

@S\B0

d
�
x; rB(x)

�
d`(x): (2.1)

(d` is the unit of arc length along the boundary.)
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Note that although we have increased the volume of
points that produce nodes in the corridor (as compared to
uniform sampling), we are also sampling from a larger set:
all ofC rather than justF . So the sampling is not improved
in everycorridor, but only in those with sufficiently small
volume.

We can view the functiond
�
x; rB(x)

�
defined on the

surface of the obstacle as a measure of how “thick” the
obstacle is nearx. If d

�
x; rB(x)

�
is small, the medial axis

is very near the surface and there are other features (edges)
nearby. Note that the value of the integral in the above
expression depends only on the values of this function on
the obstacle surfaces that form the corridor and not on the
volume of the corridor itself.

3 MAPRM: Sampling from the medial axis
In this section, we summarize the MAPRM algorithm

in two dimensions and give some experimental results.

3.1 The MAPRM algorithm in 2D
The MAPRM algorithm for construction of a roadmap

consists of uniform sampling in the the full configuration
space, followed by application of the extended retraction
map. The nodes are then connected to form a roadmap
using a local planner as usual.

MAPRM in the plane is given in Algorithm 3.1.

Algorithm 3.1 MAPRM in 2D
Preprocessing:
Input. N; the number of nodes to generate.
Output. N nodes inF connected into a roadmap graph.

1: repeat
2: Generate a uniformly random pointp in C.
3: Find the nearest pointq on@F to p.
4: if p is freethen
5: Take the retraction direction~v to be�!q p , and let the start

points bep.
6: else
7: Take the retraction direction~v to be�!p q , and let the start

points beq.
8: end if
9: Using bisection, moves in the direction~v until q is not the

unique nearest point of@F to s. This movess onto the
medial axis ofF

10: until N nodes have been generated
11: For each pair of nodes: if the pair can be connected with a

straight line, insert an edge into the graph connecting them.

3.2 Examples
We give two examples: one in which MAPRM shows

significant advantage over uniform sampling, and one in
which it does not. We omit the connections between nodes
and show only the results of the sampling.

Figure 4 shows an example of a free space containing
a narrow corridor. Part (a) shows the result of sampling
100 nodes from the free space: this required generating

168 random configurations. Part (b) shows the result of
sampling 100 nodes using the MAPRM Algorithm 3.1:
100 points were generated in the square and the extended
retraction map was applied to them. MAPRM produces
many nodes in the corridor because the obstacles form-
ing the corridor are “thick” which gives a reasonably large
value for the integral in Equation (2.1). Because of this,
pushing the two obstacles closer together would not greatly
affect the number of nodes MAPRM generates in the cor-
ridor.

(a) (b)

Figure 4: Uniform sampling (a) vs. MAPRM sampling (b)

(a) (b)

Figure 5: Uniform sampling (a) vs. MAPRM sampling (b)

Figure 5 shows an example in which MAPRM is less
helpful. As before, nodes in (a) are 100 free configurations
(203 samples required), and nodes in (b) are 100 samples
from the square retracted toMA(F ). The medial axis of
the obstacles forming the corridor has a “maze-like” qual-
ity. The medial axis is very near the surface causing the
integral in Equation (2.1) to be smaller in this case.

The running time of both algorithms on these planar ex-
amples is insignificant. However, as we will see below in
the 3d rigid body case, as the volume of the free space gets
smaller, MAPRM actually takes significantlylesstime to
generate a free node than uniform sampling, decreasing the
overall running time.

4 MAPRM for a rigid body
In this section we explain the extension of MAPRM to

the case of a rigid polyhedron moving among polyhedral
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obstacles inR3. The goal in this setting is to perform the
retraction in configuration space, which in this case is six
dimensional. Specifically, we want to retract all configu-
rations, free or otherwise, onto the medial axis of the free
space. While avoiding explicit computation of the medial
axis as before, we also seek to avoid the costly computation
of theC-obstacle boundaries in configuration space. With-
out explicit knowledge of these boundaries, we are able to
retract all free configurations but only a subset of the colli-
sion configurations.

The collision configurations that are discarded are those
that retract to contact configurations with more than one
contact point, i.e., contact configurations that are on the
medial axis of the free space. Such contact configurations
roughly correspond to the convex vertices ofF in the pla-
nar case. However, this reduced subset is still sufficient to
increase sampling in narrow corridors.

We give only the algorithm in this paper; the theoret-
ical treatment of the rigid body case will be presented in
the full paper. The theory is complicated by the issue of
choice of metric on the configuration space: the definition
of the medial axis depends on the choice of metric, the re-
traction maps depend on a notion of a line or shortest path
between configurations, and even the idea ofuniform sam-
pling from the configuration space depends on the choice
of metric. Our approach is use a Riemannian metric to im-
pose the necessary geometric structure, but there are still
many possible choices, see [12]. Rather than restricting
our attention to a particular Riemannian metric, we enu-
merate our assumptions about the metric being used and
give a retraction algorithm which will always work un-
der these conditions. We present the resulting algorithm
here, described in terms of geometry and motions in the
workspace.

Finally, we give experimental results showing how a
preliminary implementation performs on a specific prob-
lem requiring traversal of a narrow corridor.

4.1 Motion planning for a rigid body
The configuration space for a free-flying rigid bodyU

inR3 describes all possible positions and orientations ofU

ignoring any obstacles that may be present. A particular
configuration of a rigid body may be described by speci-
fying the position and orientation of a moving coordinate
system attached toU , the body frame, with respect to a
particular fixed system, theworld frame. Such coordinate
systems are related by a rotation matrix4 in SO(3) giv-
ing the orientation of the body frame with respect to the
world frame, together with a vector inR3 specifying the
location of the origin of the body frame with respect to
the world frame. We denote the set of all such pairs by
SE(3) = SO(3) � R3. A particular pair(R; p) 2 SE(3)
operates on the body frame coordinatesqa of a point to
produce the world frame coordinatesRqa+ p of that same

4SO(3) = fR 2 R3�3 j RRT = I anddet(R) = 1g

point. If c = (R; p), we writec � U or (R; p) � U to mean
the coordinates of all points ofU with respect to the world
frame whenU is in configurationc. See [10] for more de-
tail onSE(3).

Now, given an obstacleV in the workspaceR3, certain
configurations ofU are prohibited because they causeU

to overlapV , i.e., fc 2 SE(3) j (c � U ) \ V 6= ;g. We
call this set of configurations theC-obstacleof V . This
divides the configuration space into two pieces:F , thefree
spaceof collision free configurations, andB the union of
theC-obstacles associated with any obstacles present in
the workspace.

� We take the configuration spaceC to be a “rectangu-
lar” subset ofSE(3); i.e., C = SO(3) � W where
W is a closed rectangular region inR3, which will be
convenient for sampling.

� We assume theworkpiece U and the obstacles
Vj ; j = 0; :::; n are closed polyhedra inR3 (including
the interior, possibly with holes), with theVj (pair-
wise) disjoint. We letV be the union of theVj .

� We let the free spaceF be the closure ofC minus the
C-obstacles of theVj .

� Configurations in@F are calledcontact configura-
tions; they putU in contact with eitherV or the
boundary of the configuration space.

The problem now is to plan a path of configurations in
F between given start and goal configurations inF . We
would in particular like to apply the retraction method of
the previous section replacing the plane and its polygonal
obstacles bySE(3) and itsC-obstacles. In addition, we
would like to avoid not only explicit computation of the
medial axis, but explicit computation of theC-obstacles as
well.

4.2 MAPRM for a rigid body
The relevant points of the theory are:

� Let c be a free configuration. Ifc � U has two dis-
tinct nearest obstacle points, i.e., there are two dis-
tinct pointsy1; y2 2 V such thatdist(V; c � U ) =
dist(y1; c � U ) = dist(y2; c � U ), thenc is on the me-
dial axis ofF .

� Retraction of a free configuration onto the medial axis
of F amounts to translatingU away from the unique
nearest point ofV until there are at least two distinct
nearest obstacle points: i.e., ifc is a free configuration
not on the medial axis, andx 2 c � U andy 2 V

are nearest points ofc � U andV (so thatd(x; y) =
dist(c � U; V )) then the retraction map translatesU
away fromy along the line

 !

x y until there is no unique
nearest point ofV .
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� For a collision configurationc, the (extended) retrac-
tion map makes the shortest translation that will free
U from collision (soU will then be in contact withV )
and continues in that direction as above until there is
no unique nearest point toU onV .

� For collision configurations, we only retract config-
urations whose nearest contact configuration putsU

in contact withV in a single point. Contact configu-
rations placingU in contact withV in more than one
point are already on the medial axis and are analogous
to convex vertices ofF in the planar case.

The resulting algorithms are given in Algorithms 4.1
and 4.2. Our simple algorithm for computing the nearest
contact configuration for a collision configuration is essen-
tially an exhaustive search for the shortest translation.5

Algorithm 4.1 MAPRM for rigid bodies in 3D
Preprocessing:
Input. N; the number of nodes to generate.
Output. N nodes inF connected into a roadmap.

1: repeat
2: Sample a configuration(R; p) fromC.
3: Use Algorithm 4.2 to get the nearest contact configuration

(R; q) to (R; p).
4: if (R; p) is freethen
5: Take the retraction direction~v to be�!q p , and let the start

points bep.
6: else
7: Take the retraction direction~v to be�!p q , and let the start

points beq.
8: end if
9: Starting in configuration(R; s), translateU in the direc-

tion ~v until there are two nearest points onV to U . This
configuration is on the medial axis of the free space.

10: until N vertices have been output
11: For each pair of vertices: if the pair can be connected with the

local planner, insert an edge into the graph connecting them.

4.3 Implementation and experimental results
We implemented MAPRM for rigid bodies using V-Clip

[9] to provide collision detection and closest pair calcu-
lations. We used a single local planner: translation with
simultaneous rotation about the principal axis of rotation.
Normally in practice, connections are not attempted be-
tween all pairs of nodes, only between “nearby” nodes ac-
cording to some metric. In our example, so few nodes are
generated that it was feasible to attempt connections be-
tween all pairs necessary to determine the components of
the roadmap.

Our example is shown in Figure 6. The workpiece is a
cube of side length 2; the obstacle is a solid cube of side

5Some work has been done on this shortest translation problem, but
only for convex polyhedra, see [3].

Algorithm 4.2 Finding the nearest contact configuration
Input. A configuration(R; p).
Output. A shortest translation(R; q) from configuration(R; p)

that putsU in contact (but not collision) with an obstacle, or
failure .

1: if (R; p) is a free configurationthen
2: Return(R; p+ (x� y)), wherex 2 (R; p) �U andy 2 V

are a pair of closest points betweenU andV .
3: else
4: For each feature (vertex, edge, face) ofU , and each fea-

ture of theVj, find the configuration(R; q) with smallest
jp� qj that puts these features in contact in a single point.

5: Such a configuration may putU strictly in collision (not
just contact) with an obstacle; discard any such configura-
tions.

6: If no configurations remain, outputfailure .
7: Otherwise, output a remaining configuration(R; q) with

smallestjp� qj.
8: end if

length 20 with the indicated corridor cut through it. The
corridor has2:5� 2:5 cross section.

We compared experiments using uniform sam-
pling (with collisions discarded) against sampling with
MAPRM. The same local planner, collision detection,
connection scheme, etc., were used for both methods.
Configurations were sampled with arbitrary rotation, and
translations placing the center of the workpiece anywhere
inside the20 � 20 � 20 cube. Execution of each method
was terminated when some component of the roadmap
reached from one mouth of the corridor to the other.

The mean results for 15 runs are given in Table 1.6 Ob-
serve that on average the MAPRM algorithm solved the
problem in less than one-tenth of the time required by uni-
form random sampling. MAPRM generated nodes at about
13 times the rate of uniform sampling. Note the huge num-
ber of random samples required using uniform sampling.
However, observe that MAPRM generally required more
nodes in the roadmap to be able to solve the problem. We
attribute this to the non-uniform distribution of nodes gen-
erated by MAPRM along the medial axis: in general there
will be somewhat fewer nodes sampled near corners than in
the straight sections. However, the much greater sampling
rate of MAPRM far outstrips this demand for additional
nodes. This effect warrants further investigation.

5 Conclusions
We have described a new sampling method for prob-

abilistic path planning which retracts sampled configura-
tions onto the medial axis of the free space. The method
was shown, theoretically and experimentally, to give im-
proved performance on problems requiring traversal of
small volume passages in the free space.

Although the method performs well, it employs more

6Experiments were run on a MIPS R10000 processor at 200 Mhz.



Proc. IEEE Int. Conf. Robotics and Automation (ICRA), 1999, pp. 1024-1031. 8

Figure 6: Rigid body example. The obstacle block is solid
with the indicated corridor cut through it.

Table 1: Experimental results (times in seconds)

MAPRM Uniform
Sampling time 690 7875
Connection time 82 79
Total preprocessing time 772 7954
# roadmap nodes required 404 351
# random config. sampled 39,568 114,058,889
Mean time to generate a node 1.71 22.65

complicated geometric calculations than the standard uni-
form sampling and is consequently slightly more difficult
to implement. For larger problems, we expect time re-
quired for the calculation of the nearest contact configura-
tion to become more significant: additional sophistication
will probably be required in that calculation.

In the future, we would like to apply this technique to
articulated robots, an area in which probabilistic methods
have been very successful. Finally, the existing theoretical
results regarding probability of success of the overall prob-
abilistic roadmap method assume uniform sampling of the
free space; we would like to prove some similar general
results about the overall performance of MAPRM.
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