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Abstract

We consider static one dimensional range searching problesn These problems are to build
static data structures for an integer setS C U, whereU = {0,1,...,2¥ — 1}, which support
various queries for integer intervals of U. For the query of reporting all integers in S contained
within a query interval, we present an optimal data structure with linear space cost and with query
time linear in the number of integers reported. This result holds in the unit cost RAM model
with word size w and a standard instruction set. We also present a linear spa&cdata structure
for approximate range counting. A range counting query for an interval returns the number of
integers in S contained within the interval. For any constante > 0, our range counting data
structure returns in constant time an approximate answer which is within a factor of at most 1 + ¢
of the correct answer.
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1 Introduction

Let S be a subset of the universé’ = {0, 1,...,2* — 1} for some parameterw. We consider
static data structures for storing the setS such that various types of range search queries
can be answered forS. Our bounds are valid in the standard unit cost RAM with word size
w and a standard instruction set. We present an optimal data sticture for the fundamen-
tal problem of reporting all elements from S contained within a given query interval. We
also provide a data structure that supports an approximate ange counting query and show
how this can be applied for multi-dimensional orthogonal range searching. In particular, we
provide new results for the following query operations.

FindAny(a,b), a,b € U: Report any element inS N [a, b] or L if there is no such element.
Report(a,b), a,b € U: Report all elements inS N [a, b].
Count.(a,b), a,b € U,e > 0: Return an integer k such that|SN[a, b]| < k < (14¢)|SN[a, b]].

Let n denote the size ofS and let v = 2% denote the size of universd/. Our main result
is a static data structure with O(n) space cost that supports the query§indAny in constant
time. As a corollary, the data structure allowsReport in time O(k), where k is the number
of elements to be reported.

Furthermore, we give linear space structures for the approimate range counting prob-
lem. That is, for any constante > 0, we present a data structure that supportsCount. in
constant time and use<)(n) space.

The preprocessing time for the mentioned data structures igxpected timeO (n+/log u).

1.1 Related work

Efficient static data structures for range searching have ben studied intensively over the
past 30 years, for surveys and books see e.g. [1, 18, 20]. Ineodimension there has been
much focus on the following two fundamental problems: themembership problenand the
predecessor problenThese problems address the following queries respectiyel

Member(a), a € U: Returnyesiffa € S.

Pred(a), a € U: Return the predecessor ofs, i.e.,max(S N [0, a]) or L if there are no such
element.

The Member query is easily solved byFindAny, Report or Count, by restricting the
guery to unit size. On the other hand, it is straightforward to compute these three queries by
at most two predecessor queries given an additional sortedd]ative to U) list of the points S,
where each point is associated its list rank.

An information theoretic lower bound implies that any data structure supporting any of
the above queries, includingMember, requires at leastlog (Z) bits, i.e., has linear space cost
in terms of w = log u bitwords for n < «'~%M_ In[12], Fredman, Komlos and Szemeredi give
an optimal solution for the static membership problem, whid supports Member in constant
time and with space costO(n). In contrast, the predecessor problem does not permit a data
structure with constant query time for a space cost bounded »°("). This was first proved by
Ajtai [3], and later Beame and Fich [8] improved Ajtai’'s lower bound and in addition gave a
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matching upper bound of O(min(log log u/ logloglog u, \/log n/ loglog n)) on the query time
for space costO(n!*?) for any constanté > 0. Beam and Fich’s lower bound holds forexact
counting queries, i.e.Count, wheree = 0. Our result shows that it is possible to circumvent
this lower bound by allowing a slack in the precision of the rsult of the queries.

For data structures with linear space cost, Willard [24] provides a data structure with time
O(loglogu) for predecessor queries. Andersson and Thorup [7] show howotobtain a dy-
namic predecessor query with bound® (min(log log u-log log n/ log log log u, 1/logn/loglogn)).
For linear space cost, these bounds were previously also thest known for the queriesFind-
Any, Report and Count,.. However, for superlinear space cost, Milterseret al.[19] provide
a data structure which achieves constant time foFFind Any with space costO(n logu). Mil-
tersenet al. also show that testing for emptiness of a rectangle in two diensions is as hard as
exact counting in one dimension. Hence, there is no hope ofleving constant query time for
any of the above query variants including approximate rangecounting for two dimensions
using space at mosh°(".

Approximate data structures Several papers discuss the approach of obtaining a speed-op
a data structure by allowing slack of precision in the answes. In [17], Matias et al. study
an approximate variant of the dynamic predecessor problemin which an answer to a prede-
cessor query is allowed to be within a multiplicative or addiive error relative to the correct
universe position of the answer. They give several applicains of this data structure. In
particular, its use for prototypical algorithms, includin g Prim’s minimum spanning tree al-
gorithm and Dijkstra’s shortest path algorithm. The papers [4] and [6] provide approximate
data structures for other closely related problems, e.g.,dr nearest neighbor searching, dy-
namic indexed lists, and dynamic subset rank.

An important application of our approximate data structure is the static d-dimensional
orthogonal range searching problem. The problem is given aet of points in U¢, to compute
a query for the points lying in a d-dimensional boxR = [ay, b1] X - - - X [ag, bs]. Known data
structures providing sublinear search time have space cogjfrowing exponential with the di-
mensiond. This is known as the “curse of dimensionality” [9]. Hence, ér d of moderate
size, a query is often most efficiently computed by a linear sm of the input. A straight-
forward optimization of this approach using spaceO(dn) is to keep the points sorted by
each of thed coordinates. Then, for a given query, we can restrict the sgato the dimen-
sion i, where fewest points inS have the ith coordinate within the interval [a;,b;]. This
approach leeds to a time cost of)(dt(n) + opt) where opt is the number of points to be
scanned andt(n) is the time to compute a range counting query for a given dimesion. Us-
ing the previous best data structures for the exact range cauing problem, this approach
has a time cost ofO(d min(loglogu, \/logn/loglogn) + opt). Using our data structure
supporting Count, and FindAny, we improve the time for this approach to optimal time
O(d + opt(1 + €)) = O(d + opt) within the same space cost. A linear scan behaves well in
computational models, which consider a memory hierarchy, e [2]. Hence, even for large
values ofopt, itis likely that the computation needed to determine the dinension for the scan
majorizes the overall time cost.




1.2 Organization

The paper is organized as follows: In Section 2 we define our nael of computation and the

problems we consider, and state definitions and known reswdtneeded in our data structures.
In Section 3 we describe our data structure for the range repding problem, and in Section 4

we describe how to preprocess and build it. Finally, in Seatin 5 we describe how to extend
the range reporting data structure to support approximate range counting queries.

2 Preliminaries

A query Report(a, b) can be implemented by first queryingFindAny (a, b). Ifan = € SN|a, b]
is returned, we report the result of recursively applying Report(a,z — 1), then z, and the
result of recursively applying Report(z + 1,5). Otherwise the empty set is returned. Code
for the reduction is given in Figure 2. If k elements are returned, a straightforward induction
shows that there are2k + 1 recursive calls toReport, i.e. at most2k + 1 calls to FindAny,
and we have therefore the following lemma.

Lemma 1 If FindAny is supported in time at most thenReport can be supported in timé)(¢-
k), wherek is the number of elements reported.

The model of computation, we assume throughout this papersia unit cost RAM with
word size w bits, where the set of instructions includes the standard balean operations on
words, the arbitrary shifting of words, and the multiplicat ion of two words. We assume that
the model has access to a sequence of truly random bits.

For our constructions we need the following definitions and esults. Given two wordsz
and y, we letz @ y denote the binary exclusive-or ofr and y. If z is a w bit word and i
a nonnegative integer, we letr | 7 and = 1 ¢ denote the rightmostw bits of the result of
shifting x 7 bits to the right and i bits to the left respectively, i.e.x | i = 2 div 2’ and
r1i= (x-2") mod 2. For aword z, we letmsh(z) denote the most significant bit position
in z that contains a one, i.emsb(z) = max{i | 2! < z} for z # 0. We definemsb(0) = 0.
Fredman and Willard in [13] describe how to computemsb in constant time.

Theorem 1 (Fredman and Willard [13]) Given aw bit word z, the indexmsb(z) can be com-
puted in constant time, provided a constant number of wordsknown which only depend on
the word sizew.

Essential to our range reporting data structure is the efficent and compact implemen-
tation of sparse arrays We define a sparse array to be a static array where only a liméd
number of entries are initialized to contain specific valuesAll other entries may contain ar-
bitrary information, and crucial for achieving the compact representation: It is not possible
to distinguish initialized and not initialized entries. For the implementation of sparse arrays
we will adopt the following definition and result about perfect hash functions

Definition 1 A function h : [m] — [{] is perfect for a setS C [m] if his 1-1 onS. A family H
is an (m, n, ¢)-family of perfect hash functions, if for all subsets C [m] of sizen there is a
function h € H : [m] — [{] that is perfect forS.



The question of representing efficiently families of perfethash functions has been throughly
studied. Schmidt and Siegel [21] described afin, n, O(n))-family of perfect hash functions
where each hash function can be represented iy (n + log log m) bits. Jacobs and van Emde
Boas [16] gave a simpler solution requiringO(nloglogn + loglogm) bits in the standard
unit cost RAM model augmented with multiplicative arithmetic. Jacobs and van Emde Boas
result suffices for our purposes. The construction in [16] mies repeated use of the data
structure in [12] where some primes are assumed to be known. yBreplacing the applica-
tions of the data structures from [12] with applications of the data structure from [10], the
randomized construction time in Theorem 2 follows immediaély.

Theorem 2 (Jacobs and van Emde Boas [16]fhere is an(m,n, O(n))-family of perfect hash
functions 7 such that any hash functiorh € # can be represented i®((n loglogn)/w) words
and evaluated in constant time fom < 2*. The perfect hash function can be constructed in
expected timé(n).

A sparse array A can be implemented using a perfect hash function as followsAssume
A has sizem and containsn initialized entries each storingb bits of information. Using a
perfect hash functionh for the n initialized indices of A, we can store then initialized entries
of Ainan array B of sizen, such that A[i] = B[h(7)] for each initialized entry A[i]. If A[i]is
not initialized, B[h(i)] is an arbitrary of the n initialized entries (depending on the choice of
h). From Theorem 2 we immediately have the following corollay.

Corollary 1 A sparse array of sizen with n initialized entries each containing bits of infor-
mation can with expected preprocessing tirdén) be stored using spade(n - b/w) words, and
lookups are supported in constant time,lifglogn < b < w andm < 2%.

For the approximate range counting data structure in Sectim 5 we need the following
result achieved by Fredman and Willard for storing small ses (in [14] denoted Q-heaps;
these are actually dynamic data structures, but we only neetheir static properties). For a
setS and an elementz we definerank (z) = [{y € S | y < x}|.

Theorem 3 (Fredman and Willard [14]) Let S be a set ofw bit words and an integer., where
S| < (logn)'/* andlogn < w. Using timeO(|S|) and spaceD(|S|) words, a data structure can
be constructed that supportsink, (x) queries in constant time, given the availability of a table
requiring space and preprocessing tini&n).

The result of Theorem 3 can be extended to sets of sizebgn)© for any constantc¢ > 0,
by constructing a (logn)'/*-ary search tree of height4c with the elements ofS stored at the
leaves together with their rank in S, and where internal nodes are represented by the data
structures of Theorem 3. Top-down searches then take time piportional to the height of the
tree.

Corollary 2 Let ¢ > 0 be fixed constant ands a set ofw bit words and an integem, where

|S| < (logn)® andlogn < w. Using timeO(|S]) and spaceO(|S|) words, a data structure
can be constructed that supports predecessor queries irstamt time, given the availability of
a table requiring space and preprocessing tirgn).
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Figure 1: The binary tre@& for the casav=4, S = {3,6,7,12,14}, andH = 2. The setS induces the sets
P={1,2,3,4,5"7,9,11,14,15} andV = {1,2,7,11}, and the two sparse arraysandD.

3 Range reporting data structure

In this section we describe a data structure supportingFindAny(a,b) queries in constant
time. The basic component of the data structure is (the imptitly representation of) a perfect
binary tree T with 2* leaves, i.e. a binary tree where all leaves have depihb, if the root has
depth zero. The leaves are numbered from left-to-righ{2*], and the internal nodes ofT" are
numbered 1,... ,n — 1. The root is the first node and the children of nodev are nodes2v
and 2v + 1, i.e. like the numbering of nodes in an implicit binary heap [L1, 25]. Figure 1
shows the numbering of the nodes for the case = 4. The treeT" has the following properties
(see [15]):

Fact 1 The depth of an internal node is msb(v), and thed™ ancestor ofv is v | d, for 0 <
d < depth(v). The parent of leafa is the internal node2* ! + (a | 1), for 0 < a < 2. For
0 <a < b < 2v the nearest common ancestor of the leaveand b is the 1 + msb(a @ b)'"
ancestor of the leaves and b.

Foranodew in T, we letleft(v) and right(v) denote the left and right children of v, and we
let 7, denote the subtree rooted av and S, denote the subset of where xz € S, if, and only
if, z € S, and leafz is a descendent of.. We let P be the subtree ofl" consisting of the union
of the internal nodes on the paths from the root to the leaveqi S, and we letV” be the subset
of P consisting of the root of7" and the nodes where both children are inP. We denoteV’ the
set ofbranching nodes. Since each leaf-to-root path ifi’ contains w internal nodes, we have
|P| < n-w, and sinceV contains the root and the set of nodes of degree two in the subt
defined by P, we have|V'| = n— 1, if both children of the root are in P and otherwise|V| = n.

To answer a queryFindAny(a, b), the basic idea is to compute the nearest common an-
cestor v of the nodesa and b in constant time. If S N [a,b] # 0, then either max Se(y)
Or min Syighe(v) IS CONtained in[a, b], since|a, b] is contained within the interval spanned by
v, and a and b are spanned by the left and right child of v respectively. Otherwise what-
ever computation we do cannot identify an integer inS N [a, b]. At most nw nodes satisfy
S, # 0. E.g. to computeFindAny(8,13), we havev = 3, max Sier(y) = max Sg =1, and
min Seght(vy = minS; = 12. By storing these nodes in a sparse array together witlmin S,
and max S, we obtain a data structure using spac® (nw) words, which supportsFindAny



Proc Report(a, b)
z = FindAny(a, b)
if x #1 then
Report(a, z — 1)
outpu{z)
Report(z + 1, b)

Proc FindAny(a, b)

if @ < bthen
H =11 (msb(w) | 1)
d =msb(a @ b)

— (11 (w—-1))+(ad 1) 1 d
—ul((w—1-d) A (H-1))
= Blz] 7 V[u | D[u]] : V[z | D[z]]
for z € {v.left.m, v.left. M, v.right.m, v.right. M }
if z € [a,b] thenreturn z
return L

S n &

Figure 2: Implementation of the queriBeport andFindAny.

in constant time. In the following we describe how to reducehe space usage of this approach
to O(n) words.

We consider the treeT” as partitioned into a set of layers each consisting aff consecutive
levels of T, where H = 1 1 (msh(w) | 1), i.e. H = 2lz'°8%] or equivalently H is the power of
two, where $\/w < H < \/w. For a nodeu, we letw(u) denote the nearest ancestot of u,
such thatdepth(z) mod H = 0. If depth(u) mod H = 0, then7(u) = u. SinceH is a power
of 2, we can computer mod H asz A (H — 1), i.e. for an internal node u, we can compute
m(u) = u | (depth(u) A (H —1)). E.g.inFigure 1, H =2and7(9) =9 3 A (2—-1)) =
911=4.

The data structure for the setS consists of three sparse array$3, D, and V, each being
implemented according to Corollary 1. The arraysB and D will be used to find the nearest
ancestor of a node inP that is a branching node.

B : Abit-vector that for each node z in P with 7(z) = z (or equivalently depth(z) mod H =
0), hasB[z| = 1 if, and only if, there exists a nodeu in V with 7(u) = =.

D : A vector that for each nodew in P wherer(u) = u or B[r(u)] = 1 stores the distance to
the nearest ancestow in V' of u, i.e. D[u] = depth(v) — depth(u).

V. A vector that for each branching nodewv in V' stores a record with the fields: left, right,
m and M, where V[v].m = min S, and V[v].M = max S, and left (and right respec-
tively) is a pointer to the record of the nearest descendent in V' of v in the left (and
right respectively) subtree ofv. If no such u exists, thenV[v].left = v (respectively
Vv].right = v).

Given the above data structureFindAny(a, b) can be implemented by the code in Figure 2.
If « > b, the query immediately returns L. Otherwise the value H is computed, and the
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nearest common internal ancestoru in T' of the leavesa and b is computed together with
z = 7w(u). Using B, D, and V' we then compute the nearest common ancestor branching
nodewv in V of the leavesa and b. In the computation of v an error may be introduced, since
the arrays B, D and V' are only well defined for a subset of the nodes df'. However, as we
show next, this only happens whert N [a,b] = 0. Finally we check if one of them and M
values ofv.left and v.right is in [a, b]. If one of the four values belongs tda, b, we return such
a value. Otherwise L is returned.

As an exampled consider the quenfFindAny(8, 13) for the set in Figure 1. Hered = 2,
u=8+4)13=3,2=31(B83-2)A1)=3]1=1. SinceB[l] =1, we haveD[u] =1,
andv = V[u | D[u]] = V[3 | 1] = V]1]. The four values tested are then and M values of
V(2] and V[7],i.e.{3,7,12,14}, and we return 12.

Theorem 4 The data structure supportsindAny in constant time andReport in time O(k),
wheref is the number of elements reported. The data structure reggispace)(|S|) words.

Proof. The correctness ofFindAny(a, b) can be seen as follows: I N [a,b] = 0, then the
algorithm returns _L, since before returning an element there is a check to find ifite element
is contained in the interval [a, b]. Otherwise S N [a, b] # (.

If @« = b € S, then by Fact 1 the computedu = 2! +a | 1 is the parent of ¢ and
z=ul (w=1) A (H-=1)) = u | (depth(u) mod H) = =n(u). We now argue thatv
is the nearest ancestor node of the leaf that is a branching node. If Sy, = {a}, then
Trwy NV =0 and Bir(u)] = 0, and v is computed asV' [z (u) | D[r(u)]], which by definition
of D is the nearest ancestor ofr(u) that is a branching node. Otherwise|S,,)| > 2, implying
Trwy NV # 0 and B[r(u)] = 1. By definition D[u] is then defined such thatV'[u | D[u]] is
the nearest ancestor of; that is a branching node. We conclude that the computed is the
nearest ancestor of the leaf: that is a branching node. If the leafa is contained in the left
subtree ofv, then v.left = v and v.m = a. It follows that v.left.m = a. Similarly, if the leaf a
is contained in the right subtree ofv, then v.right. M = a .

For the case whereS N [a, b] # () and a < b, we have by Fact 1 that the computed node
is the nearest common ancestor of the leavesand b, where depth(u) = w — (d + 1), and
that z = u | (w—1—d) A (H—-1)) = u | (depth(u) mod H) = m(u). Similarly to the
casea = b, we have that the computed node is the nearest ancestor of the node that is a
branching node. If v = u, i.e.v is the nearest common ancestor of the leavesand b, then
Siefe(v) N [a, b] # 0 OF Syighe(w) N [a, 0] # 0. If [Sier(w)| > 2 @nd Siese(v) N [a, b] # 0, thenv.left # v
andv left. M € [a,b]. If \Sleft )| = 1and Sief(v) [a b] # 0, thenv left = vanduv.left.m € [a, b].
Similarly if Signe(s) N [a, b] ;é 0, then eltherv right.m € [a,b] or v.right.M € [a,b]. Finally
we consider the case where # u, i.e. eitheru € Tieqp) OF u € Thighen). If u € Tiee(n)
and |Sies(y| = 1, thenvleft = v and Sieq(ny = {v.m} = {v.left:m} C [a,b]. Similarly if
U € Tiighe(v) @and |S,.ght )| = 1, then v.right = v and Sqight(v) = {v.- M} = {v.right. M} C [a, b].
If u € Tief(v) @NA | Siefe(w | > 2, thenT, 1. IS either asubtree OfTlefe(u) OF Tright(u), IMplying that
vleft. M € [a b] or v. left m € [a,b] respectively. Similarly if u € T,.ght and | Sright(v)| > 2,
then either v.right. M € [a, b] or v.right.m € [a, b].

We conclude that if S N [a, b] # 0, then FindAny returns an elementinS N [a, b].

The fact that Find Any takes constant time follows from Theorem 1 and Corollary 1, sice
only a constant number of boolean operations and arithmetioperations is performed plus
two calls to msb and three sparse array lookups. The correctness dReport and the O(k)
time bound follows from Lemma 1.



The space required by the data structure depends on the sizequired for the three sparse
arrays B, D, and V. The number of internal levels of T with depth mod H = 0is [w/H],
and therefore the number of initialized entries in B is at mostn[w/H] = O(ny/w). Similarly,
the number of initialized entries in D due ton(u) = u is at mostn[w/H|. For the number of
initialized entries in D due to B{r(u)] = 1, we observe that the subtree-, of height H rooted
at z = w(u) by definition contains at least one node from’. If |7, N V| = s, then 7, has at
most s + 1 leaves which are nodes irP, and we have|r, N P| < (s + 1)H < 2Hk. Sincer,
contributes to B with at most 2H |7, N V| entries and |V'| < n, the total number of initialized
entries contributed to B due to B[r(u)] = 1 is bounded by2Hn. The number of initialized
entries in B is therefore bounded by2Hn + nfw/H| = O(ny/w). Finally, by definition, V'
contains at mostn initialized entries.

Each entry of B, D, and V' requires space:1, [logw], and O(w) bits respectively, andB,
D, and V' have O(n\/w), O(ny/w), and at mostn initialized entries respectively. The total
number of words for storing the three sparse arrays by Corolary 1 is therefore O((logw -
nyw + w - n)/w) = O(n) words. It follows that the total space required for storing the data
structure is O(n) words. O

4 Construction

In this section we describe how to construct the data structxe of the previous section in
expected timeO (ny/w).

Theorem 5 Given an unordered set of distinct integers each ofv bits, the range reporting
data structure in Section 3 can be constructed in expectedei (n/w).

Proof. Initially S can be sorted in space)(n) with the algorithm of Thorup [23] in time
O(n(loglogn)?) = O(n+/w) or with the randomized algorithm of Andersson et al. [5] in
expected timeO(n loglogn) = O(ny/w). Therefore without loss of generality we can assume
S=A{a,...,a,} wherea; < a;; for 1 <i < n.

We observe thatv € V' if, and only if, v is the root or v, is the nearest common ancestor
of a; and a,;; for some, where1 < i < n. Similarly as for the FindAny query, we can by
Fact 1 find the nearest common ancestos; € V induced by a; and a; . in constant time by
the expression

vi=(11 (w—=1)) 4 (a; 4 1)) L msb(a; ® a;y1) .

The nodesv € V form by the pointers v.left and v.right a binary tree 7y,. The defined
sequencev, ... ,v,_; forms an inorder traversal of T.. Furthermore the nodes satisfy heap
order with respect to their depths in 7. Recall that depth(v;) = msb(v;) can be computed in
constant time.

The inorder together with the heap order on the depth of thev; nodes uniquely defines
Ty since these are exactly the constraints determining the spa of the treapsintroduced
by Seidel and Aragon [22]. By applying anO(n) time treap construction algorithm [22] to
v1, U9, ... , U, 1 We get the required left and right pointers for V. The m and M fields for the
nodes inV” can be constructed in a bottom-up traversal ofly, in time O(n).



The information to be stored in the arrays B and D can by another traversal of Ty, be
constructed in time linear in the number of nodes to be initidized. Consider an edggu, v)
in Ty, where v is the parent of u in Ty, i.e. v is the nearest ancestor node of; in T that
is a branching node orv is the root. Let u = ug, uy,...,uq = v be the nodes on the path
from w to v in T such thatdepth(u;) — depth(u,;41) = 1. While processing the edgéu, v) we
will compute the information to be stored in the sparse arrays for the nodesug, uy, ... ,uq 1,
i.e. the nodes on the path fromu to v exclusivev. From the defintion of B and D we get the
following: Forthe array B we storeB[r(u)] = 1, if depth(7(u)) > depth(v), and B[u;] = 0 for
alli=0,...,d—1,wheredepth(u;) < depth(n(u)) and depth(u;) mod H = 0. For the array
D we store D[u;] = depth(v) — depth(u;) forall i = 0,... ,d — 1 wheredepth(u;) mod H =0
or depth(u;) < H|[depth(v)/H] or depth(u;) > depth(x(u)). Finally, we store for the root
B[1] = 1and D[1] = 0.

Constructing the three sparse arrays, after having identifed the O(n/w) entries to be
initialized, by Corollary 1 takes expected timeO(n/w). 0

5 Approximate range counting

In this section we provide a data structure for approximate range counting. LetS C U
denote the input set, and let: denote the size of5. The data structure uses spacé(n) words
such that we can supportCount, in constant time, for any constants > 0.

We assumeS has been preprocessed such that in constant time we can compindAny (a, b)
forall a,b € U. Next we have a sparse array such that we for each elementc S can compute
rankg(z) in constant time. Both these data structures usé (n) space.

Definecount(a, b) = |S N [a, b]|. We need to build a data structure which for anya,b € U
computes an integerk such thatcount(a, b) < k < (1 + ¢)count(a, b).

In the following we will use the observation that fora,b € S, a < b, it is easy to compute
the exact value ofcount(a, b). This value can be expressed asinkg(b) — rankg(a) + 1 and
thus the computation amounts to two lookups in the sparse aay storing the ranks.

We reduce the task of computingCount.(a, b) to the case where either or b are in S.
First, it is easy to check ifS N [a, b] is empty, i.e.,FindAny(a, b) returns L, in which case we
simply return O for the query. Hence, assumeS N [a, b] is non-empty and letc be any element
in this set. Then for any integersk, and &, such thatcount(a, ¢) < k, < (1+¢)count(a, ¢c) and
count(c, b) < k;, < (1+¢)count(c, b), it holds that count(a, b) = count(a, ¢) + count(c, b) — 1 <
ko + ky — 1 < (1 + ¢)count(a, b). Hence, we can returnCount.(a,c) — Count.(c,b) — 1 as
the answer for Count.(a,b), where ¢ € S N [a,b] is an integer returned by FindAny(a, b).
Clearly, both calls to Count. satisfy that one of the endpoints is inS, i.e., the integerc. In
the following we can thus without loss of generality limit ouselves to the case for a query
Count.(a, b) with a € S (the other caseb € S is treated symmetrically).

We start by describing the additional data structures needd, and then how to compute
the approximate range counting query using these. Defing = [logn],andJ = {x € S |
(rankg(z) — 1) mod p = 0 } Umax S. We construct the following additional data structures
(see Figure 3).

JumpR: For each elementj € .J we store the setlumpR(j) = {y € S | count(j,y) = 2! Ai €
[0, p] }-



JnodeR: For each elements € S we store the integerJnodeR s) being the successor of in
J.

LN : For each elementj € .J we store the seLN (j) = {i € S | j = JnodeR)}.

JumpR(10)

([ Tafaofzol T T Tao facfao [ o[ [ 27 [ [ T [erf2rl [ T [ Te7f¢[aa] [aafsd] [ [sefaz] T [ T [azlarl [ar] [ Jar] [ T Tealer] [ea] [ T [ [ Jealer]ed |

(BT T T XD T X T T T T DT T TR DD TR T T T D K TR T T DX DT T T T DX

0123 10 20 27 30 34 40 47 50 60 61 6263

LN(10)

Figure 3: Extension of the data structure to suppgoount. queries.w = 8, n = |[S| = 27, andp =
[logn] = 5.

Each of the setsJumpR and LN have size bounded by < log|U|, and hence using the
R-heaps from Corollary 2, we can compute predecessors for tise small sets in constant time.
These@-heaps have space cost linear in the set sizes. Since the tatamber of elements in
the structures JumpR and LN is O(]S|), the total space cost for these structures i§)(]S]).
Furthermore, for the elements in S given in sorted order, the total construction of these data
structures is alsoO(|.S]).

To determine Count.(a,b), wherea € S, we iterate the following computation until the
desired precision of the answer is obtained.

Let j = JnodeRa). If j > b, return R + count(a, Pred  x(;(b)). Otherwise, j > b,
and we increasek by count(a, j) — 1. Let y = Predympr;)(b) and i = rankyumprg;)(y) — 1.
Now count(j,y) = 2° < count(j,b) < 2'Tl. We increasek by 2°. Now k& = count(a,y) and
count(y,b) < 2. If y = bwe return k. If (k+2°)/k < 1+ ¢, we are also satisfied and return
k + 2¢. Otherwise we iterate once more, now to determin€ount.(y, b).

Theorem 6 The data structure uses space(|S|) words and support€ount. in constant time
for any constant= > 0.

Proof. From the observations above we conclude that the structure ses space(n) and
expected preprocessing timé&(n). Each iteration takes constant time, and next we show that
the number of iterations is at most/ < 1+ [log(1/¢)]. Let k = 2T + f, f < 21, after the
first iteration. In the Ith iteration we either return count(a,b) or k + 2° > count(a, b), where
i < I —1+ 1. Inthe latter case we havek < count(a,b) < k + 2771, We need to show that
k + 2 < (1 + €)count(a, b). Sincek < count(a,b), we can write k + 2° < (1 + &)k. We have
2! < ke. Sincei < T —1+1andk > 2" + f, we have2’~'~! < 27¢ and the result follows. O
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