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Abstract

We consider static one dimensional range searching problems. These problems are to build
static data structures for an integer setS � U , where U = f0; 1; : : : ; 2w � 1g, which support
various queries for integer intervals ofU . For the query of reporting all integers in S contained
within a query interval, we present an optimal data structure with linear space cost and with query
time linear in the number of integers reported. This result holds in the unit cost RAM model
with word size w and a standard instruction set. We also present a linear space data structure
for approximate range counting. A range counting query for an interval returns the number of
integers in S contained within the interval. For any constant " > 0, our range counting data
structure returns in constant time an approximate answer which is within a factor of at most 1+ "
of the correct answer.
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1 Introduction

Let S be a subset of the universeU = f0; 1; : : : ; 2w � 1g for some parameterw. We consider
static data structures for storing the setS such that various types of range search queries
can be answered forS. Our bounds are valid in the standard unit cost RAM with word sizew and a standard instruction set. We present an optimal data structure for the fundamen-
tal problem of reporting all elements from S contained within a given query interval. We
also provide a data structure that supports an approximate range counting query and show
how this can be applied for multi-dimensional orthogonal range searching. In particular, we
provide new results for the following query operations.

FindAny(a; b); a; b 2 U : Report any element inS \ [a; b℄ or ? if there is no such element.

Report(a; b); a; b 2 U : Report all elements inS \ [a; b℄.
Count"(a; b); a; b 2 U; " � 0: Return an integer k such thatjS\[a; b℄j � k � (1+")jS\[a; b℄j.

Let n denote the size ofS and let u = 2w denote the size of universeU . Our main result
is a static data structure with O(n) space cost that supports the queryFindAny in constant
time. As a corollary, the data structure allowsReport in time O(k), where k is the number
of elements to be reported.

Furthermore, we give linear space structures for the approximate range counting prob-
lem. That is, for any constant" > 0, we present a data structure that supportsCount" in
constant time and usesO(n) space.

The preprocessing time for the mentioned data structures isexpected timeO(nplog u).
1.1 Related work

Efficient static data structures for range searching have been studied intensively over the
past 30 years, for surveys and books see e.g. [1, 18, 20]. In one dimension there has been
much focus on the following two fundamental problems: themembership problemand the
predecessor problem. These problems address the following queries respectively:

Member(a); a 2 U : Return yes iff a 2 S.

Pred(a); a 2 U : Return the predecessor ofa, i.e.,max(S \ [0; a℄) or ? if there are no such
element.

The Member query is easily solved byFindAny, Report or Count" by restricting the
query to unit size. On the other hand, it is straightforward to compute these three queries by
at most two predecessor queries given an additional sorted (relative to U ) list of the points S,
where each point is associated its list rank.

An information theoretic lower bound implies that any data structure supporting any of
the above queries, includingMember, requires at leastlog �un� bits, i.e., has linear space cost
in terms ofw = logu bit words for n � u1�
(1). In [12], Fredman, Komlós and Szemeredi give
an optimal solution for the static membership problem, which supportsMember in constant
time and with space costO(n). In contrast, the predecessor problem does not permit a data
structure with constant query time for a space cost bounded by nO(1). This was first proved by
Ajtai [3], and later Beame and Fich [8] improved Ajtai’s lower bound and in addition gave a
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matching upper bound ofO(min(log logu= log log logu;plogn= log logn)) on the query time
for space costO(n1+Æ) for any constant Æ > 0. Beam and Fich’s lower bound holds forexact
counting queries, i.e.,Count" where " = 0. Our result shows that it is possible to circumvent
this lower bound by allowing a slack in the precision of the result of the queries.

For data structures with linear space cost, Willard [24] provides a data structure with timeO(log log u) for predecessor queries. Andersson and Thorup [7] show how to obtain a dy-
namic predecessor query with boundsO(min(log logu�log logn= log log logu;plogn= log logn)).
For linear space cost, these bounds were previously also thebest known for the queriesFind-
Any, Report and Count". However, for superlinear space cost, Miltersenet al. [19] provide
a data structure which achieves constant time forFindAny with space costO(n log u). Mil-
tersenet al. also show that testing for emptiness of a rectangle in two dimensions is as hard as
exact counting in one dimension. Hence, there is no hope of achieving constant query time for
any of the above query variants including approximate rangecounting for two dimensions
using space at mostnO(1).
Approximate data structures Several papers discuss the approach of obtaining a speed-upof
a data structure by allowing slack of precision in the answers. In [17], Matias et al. study
an approximate variant of the dynamic predecessor problem,in which an answer to a prede-
cessor query is allowed to be within a multiplicative or additive error relative to the correct
universe position of the answer. They give several applications of this data structure. In
particular, its use for prototypical algorithms, includin g Prim’s minimum spanning tree al-
gorithm and Dijkstra’s shortest path algorithm. The papers [4] and [6] provide approximate
data structures for other closely related problems, e.g., for nearest neighbor searching, dy-
namic indexed lists, and dynamic subset rank.

An important application of our approximate data structure is the staticd-dimensional
orthogonal range searching problem. The problem is given a set of points inUd, to compute
a query for the points lying in a d-dimensional boxR = [a1; b1℄ � � � � � [ad; bd℄. Known data
structures providing sublinear search time have space costgrowing exponential with the di-
mensiond. This is known as the “curse of dimensionality” [9]. Hence, for d of moderate
size, a query is often most efficiently computed by a linear scan of the input. A straight-
forward optimization of this approach using spaceO(dn) is to keep the points sorted by
each of thed coordinates. Then, for a given query, we can restrict the scan to the dimen-
sion i, where fewest points inS have the ith coordinate within the interval [ai; bi℄. This
approach leeds to a time cost ofO(dt(n) + opt) where opt is the number of points to be
scanned andt(n) is the time to compute a range counting query for a given dimension. Us-
ing the previous best data structures for the exact range counting problem, this approach
has a time cost ofO(dmin(log logu;plogn= log logn) + opt). Using our data structure
supporting Count" and FindAny, we improve the time for this approach to optimal timeO(d + opt(1 + �)) = O(d + opt) within the same space cost. A linear scan behaves well in
computational models, which consider a memory hierarchy, see [2]. Hence, even for large
values ofopt, it is likely that the computation needed to determine the dimension for the scan
majorizes the overall time cost.

2



1.2 Organization

The paper is organized as follows: In Section 2 we define our model of computation and the
problems we consider, and state definitions and known results needed in our data structures.
In Section 3 we describe our data structure for the range reporting problem, and in Section 4
we describe how to preprocess and build it. Finally, in Section 5 we describe how to extend
the range reporting data structure to support approximate range counting queries.

2 Preliminaries

A query Report(a; b) can be implemented by first queryingFindAny(a; b). If an x 2 S\[a; b℄
is returned, we report the result of recursively applying Report(a; x � 1), then x, and the
result of recursively applying Report(x + 1; b). Otherwise the empty set is returned. Code
for the reduction is given in Figure 2. If k elements are returned, a straightforward induction
shows that there are2k + 1 recursive calls toReport, i.e. at most2k + 1 calls to FindAny,
and we have therefore the following lemma.

Lemma 1 If FindAny is supported in time at mostt, thenReport can be supported in timeO(t�k), wherek is the number of elements reported.

The model of computation, we assume throughout this paper, is a unit cost RAM with
word sizew bits, where the set of instructions includes the standard boolean operations on
words, the arbitrary shifting of words, and the multiplicat ion of two words. We assume that
the model has access to a sequence of truly random bits.

For our constructions we need the following definitions and results. Given two wordsx
and y, we let x � y denote the binary exclusive-or ofx and y. If x is a w bit word and i
a nonnegative integer, we letx # i and x " i denote the rightmostw bits of the result of
shifting x i bits to the right and i bits to the left respectively, i.e.x # i = x div 2i andx " i = (x � 2i) mod 2w. For a word x, we letmsb(x) denote the most significant bit position
in x that contains a one, i.e.msb(x) = maxfi j 2i � xg for x 6= 0. We definemsb(0) = 0.
Fredman and Willard in [13] describe how to computemsb in constant time.

Theorem 1 (Fredman and Willard [13]) Given aw bit word x, the indexmsb(x) can be com-
puted in constant time, provided a constant number of words is known which only depend on
the word sizew.

Essential to our range reporting data structure is the efficient and compact implemen-
tation of sparse arrays. We define a sparse array to be a static array where only a limited
number of entries are initialized to contain specific values. All other entries may contain ar-
bitrary information, and crucial for achieving the compact representation: It is not possible
to distinguish initialized and not initialized entries. For the implementation of sparse arrays
we will adopt the following definition and result about perfect hash functions.

Definition 1 A function h : [m℄ ! [`℄ is perfect for a setS � [m℄ if h is 1-1 onS. A family H
is an (m;n; `)-family of perfect hash functions, if for all subsetsS � [m℄ of sizen there is a
function h 2 H : [m℄! [`℄ that is perfect forS.
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The question of representing efficiently families of perfect hash functions has been throughly
studied. Schmidt and Siegel [21] described an(m;n;O(n))-family of perfect hash functions
where each hash function can be represented by�(n+ log logm) bits. Jacobs and van Emde
Boas [16] gave a simpler solution requiringO(n log logn + log logm) bits in the standard
unit cost RAM model augmented with multiplicative arithmetic. Jacobs and van Emde Boas
result suffices for our purposes. The construction in [16] makes repeated use of the data
structure in [12] where some primes are assumed to be known. By replacing the applica-
tions of the data structures from [12] with applications of the data structure from [10], the
randomized construction time in Theorem 2 follows immediately.

Theorem 2 (Jacobs and van Emde Boas [16])There is an(m;n;O(n))-family of perfect hash
functionsH such that any hash functionh 2 H can be represented in�((n log logn)=w) words
and evaluated in constant time form � 2w. The perfect hash function can be constructed in
expected timeO(n).

A sparse arrayA can be implemented using a perfect hash function as follows.AssumeA has sizem and containsn initialized entries each storingb bits of information. Using a
perfect hash functionh for the n initialized indices ofA, we can store then initialized entries
of A in an array B of sizen, such thatA[i℄ = B[h(i)℄ for each initialized entry A[i℄. If A[i℄ is
not initialized, B[h(i)℄ is an arbitrary of the n initialized entries (depending on the choice ofh). From Theorem 2 we immediately have the following corollary.

Corollary 1 A sparse array of sizem with n initialized entries each containingb bits of infor-
mation can with expected preprocessing timeO(n) be stored using spaceO(n � b=w) words, and
lookups are supported in constant time, iflog logn � b � w andm � 2w.

For the approximate range counting data structure in Section 5 we need the following
result achieved by Fredman and Willard for storing small sets (in [14] denoted Q-heaps;
these are actually dynamic data structures, but we only needtheir static properties). For a
setS and an elementx we definerankS(x) = jfy 2 S j y � xgj.
Theorem 3 (Fredman and Willard [14]) Let S be a set ofw bit words and an integern, wherejSj � (logn)1=4 and logn � w. Using timeO(jSj) and spaceO(jSj) words, a data structure can
be constructed that supportsrankS(x) queries in constant time, given the availability of a table
requiring space and preprocessing timeO(n).

The result of Theorem 3 can be extended to sets of size(logn) for any constant  > 0,
by constructing a (logn)1=4-ary search tree of height4 with the elements ofS stored at the
leaves together with their rank in S, and where internal nodes are represented by the data
structures of Theorem 3. Top-down searches then take time proportional to the height of the
tree.

Corollary 2 Let  > 0 be fixed constant andS a set ofw bit words and an integern, wherejSj � (logn) and logn � w. Using timeO(jSj) and spaceO(jSj) words, a data structure
can be constructed that supports predecessor queries in constant time, given the availability of
a table requiring space and preprocessing timeO(n).
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Figure 1: The binary treeT for the casew=4,S = f3; 6; 7; 12; 14g, andH = 2. The setS induces the setsP = f1; 2; 3; 4; 5; 7; 9; 11; 14; 15g andV = f1; 2; 7; 11g, and the two sparse arraysB andD.

3 Range reporting data structure

In this section we describe a data structure supportingFindAny(a; b) queries in constant
time. The basic component of the data structure is (the implicitly representation of) a perfect
binary tree T with 2w leaves, i.e. a binary tree where all leaves have depthw, if the root has
depth zero. The leaves are numbered from left-to-right[2w℄, and the internal nodes ofT are
numbered 1; : : : ; n � 1. The root is the first node and the children of nodev are nodes2v
and 2v + 1, i.e. like the numbering of nodes in an implicit binary heap [11, 25]. Figure 1
shows the numbering of the nodes for the casew = 4. The treeT has the following properties
(see [15]):

Fact 1 The depth of an internal nodev is msb(v), and thedth ancestor ofv is v # d, for 0 �d � depth(v). The parent of leafa is the internal node2w�1 + (a # 1), for 0 � a < 2w. For0 � a < b < 2w, the nearest common ancestor of the leavesa and b is the 1 + msb(a � b)th
ancestor of the leavesa and b.

For a nodev in T , we let left(v) and right(v) denote the left and right children of v, and we
let Tv denote the subtree rooted atv and Sv denote the subset ofS wherex 2 Sv if, and only
if, x 2 S, and leafx is a descendent ofv. We letP be the subtree ofT consisting of the union
of the internal nodes on the paths from the root to the leaves in S, and we letV be the subset
of P consisting of the root ofT and the nodes where both children are inP . We denoteV the
set ofbranching nodes. Since each leaf-to-root path inT containsw internal nodes, we havejP j � n � w, and sinceV contains the root and the set of nodes of degree two in the subtree
defined byP , we havejV j = n�1, if both children of the root are in P and otherwisejV j = n.

To answer a queryFindAny(a; b), the basic idea is to compute the nearest common an-
cestor v of the nodesa and b in constant time. If S \ [a; b℄ 6= ;, then either maxSleft(v)
or minSright(v) is contained in [a; b℄, since [a; b℄ is contained within the interval spanned byv, and a and b are spanned by the left and right child of v respectively. Otherwise what-
ever computation we do cannot identify an integer inS \ [a; b℄. At most nw nodes satisfySv 6= ;. E.g. to computeFindAny(8; 13), we havev = 3, maxSleft(v) = maxS6 =?, andminSright(v) = minS7 = 12. By storing these nodes in a sparse array together withminSv
and maxSv, we obtain a data structure using spaceO(nw) words, which supportsFindAny
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Proc Report(a; b)x = FindAny(a; b)
if x 6=? then

Report(a; x� 1)
output(x)
Report(x+ 1; b)

Proc FindAny(a; b)
if a � b thenH = 1 " (msb(w) # 1)d = msb(a� b)u = ((1 " (w � 1)) + (a # 1)) # dz = u # ((w � 1� d) ^ (H � 1))v = B[z℄ ? V [u # D[u℄℄ : V [z # D[z℄℄

for x 2 f v:left:m; v:left:M; v:right:m; v:right:M g
if x 2 [a; b℄ then return x

return ?
Figure 2: Implementation of the queriesReport andFindAny.

in constant time. In the following we describe how to reduce the space usage of this approach
to O(n) words.

We consider the treeT as partitioned into a set of layers each consisting ofH consecutive
levels ofT , whereH = 1 " (msb(w) # 1), i.e.H = 2b 12 logw, or equivalently H is the power of
two, where 12pw < H � pw. For a nodeu, we let�(u) denote the nearest ancestorz of u,
such that depth(z) mod H = 0. If depth(u) mod H = 0, then �(u) = u. SinceH is a power
of 2, we can computex mod H asx ^ (H � 1), i.e. for an internal nodeu, we can compute�(u) = u # (depth(u) ^ (H � 1)). E.g. in Figure 1,H = 2 and �(9) = 9 # (3 ^ (2� 1)) =9 # 1 = 4.

The data structure for the setS consists of three sparse arraysB, D, and V , each being
implemented according to Corollary 1. The arraysB and D will be used to find the nearest
ancestor of a node inP that is a branching node.B : A bit-vector that for each nodez in P with �(z) = z (or equivalently depth(z) mod H =0), hasB[z℄ = 1 if, and only if, there exists a nodeu in V with �(u) = z.D : A vector that for each nodeu in P where�(u) = u or B[�(u)℄ = 1 stores the distance to

the nearest ancestorv in V of u, i.e.D[u℄ = depth(v)� depth(u).V : A vector that for each branching nodev in V stores a record with the fields: left, right,m and M , where V [v℄:m = minSv and V [v℄:M = maxSv and left (and right respec-
tively) is a pointer to the record of the nearest descendentu in V of v in the left (and
right respectively) subtree ofv. If no such u exists, thenV [v℄:left = v (respectivelyV [v℄:right = v).

Given the above data structureFindAny(a; b) can be implemented by the code in Figure 2.
If a > b, the query immediately returns ?. Otherwise the valueH is computed, and the
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nearest common internal ancestoru in T of the leavesa and b is computed together withz = �(u). Using B, D, and V we then compute the nearest common ancestor branching
nodev in V of the leavesa and b. In the computation of v an error may be introduced, since
the arrays B, D and V are only well defined for a subset of the nodes ofT . However, as we
show next, this only happens whenS \ [a; b℄ = ;. Finally we check if one of them and M
values ofv:left and v:right is in [a; b℄. If one of the four values belongs to[a; b℄, we return such
a value. Otherwise? is returned.

As an exampled consider the queryFindAny(8; 13) for the set in Figure 1. Hered = 2,u = (8 + 4) # 3 = 3, z = 3 # ((3� 2) ^ 1) = 3 # 1 = 1. SinceB[1℄ = 1, we haveD[u℄ = 1,
and v = V [u # D[u℄℄ = V [3 # 1℄ = V [1℄. The four values tested are them and M values ofV [2℄ and V [7℄, i.e.f3; 7; 12; 14g, and we return 12.

Theorem 4 The data structure supportsFindAny in constant time andReport in time O(k),
wherek is the number of elements reported. The data structure requires spaceO(jSj) words.

Proof. The correctness ofFindAny(a; b) can be seen as follows: IfS \ [a; b℄ = ;, then the
algorithm returns ?, since before returning an element there is a check to find if the element
is contained in the interval [a; b℄. OtherwiseS \ [a; b℄ 6= ;.

If a = b 2 S, then by Fact 1 the computedu = 2w�1 + a # 1 is the parent of a andz = u # ((w � 1) ^ (H � 1)) = u # (depth(u) mod H) = �(u). We now argue that v
is the nearest ancestor node of the leafa that is a branching node. If S�(u) = fag, thenT�(u) \ V = ; and B[�(u)℄ = 0, and v is computed asV [�(u) # D[�(u)℄℄, which by definition
of D is the nearest ancestor of�(u) that is a branching node. OtherwisejS�(u)j � 2, implyingT�(u) \ V 6= ; and B[�(u)℄ = 1. By definition D[u℄ is then defined such thatV [u # D[u℄℄ is
the nearest ancestor ofu that is a branching node. We conclude that the computedv is the
nearest ancestor of the leafa that is a branching node. If the leafa is contained in the left
subtree ofv, then v:left = v and v:m = a. It follows that v:left:m = a. Similarly, if the leaf a
is contained in the right subtree ofv, then v:right:M = a .

For the case whereS \ [a; b℄ 6= ; and a < b, we have by Fact 1 that the computed nodeu
is the nearest common ancestor of the leavesa and b, where depth(u) = w � (d + 1), and
that z = u # ((w � 1� d) ^ (H � 1)) = u # (depth(u) mod H) = �(u). Similarly to the
casea = b, we have that the computed nodev is the nearest ancestor of the nodeu that is a
branching node. If v = u, i.e. v is the nearest common ancestor of the leavesa and b, thenSleft(v) \ [a; b℄ 6= ; or Sright(v) \ [a; b℄ 6= ;. If jSleft(v)j � 2 and Sleft(v) \ [a; b℄ 6= ;, then v:left 6= v
and v:left:M 2 [a; b℄. If jSleft(v)j = 1 andSleft(v)\[a; b℄ 6= ;, thenv:left = v and v:left:m 2 [a; b℄.
Similarly if Sright(v) \ [a; b℄ 6= ;, then either v:right:m 2 [a; b℄ or v:right:M 2 [a; b℄. Finally
we consider the case wherev 6= u, i.e. either u 2 Tleft(v) or u 2 Tright(v). If u 2 Tleft(v)
and jSleft(v)j = 1, then v:left = v and Sleft(v) = fv:mg = fv:left:mg � [a; b℄. Similarly ifu 2 Tright(v) and jSright(v)j = 1, then v:right = v and Sright(v) = fv:Mg = fv:right:Mg � [a; b℄.
If u 2 Tleft(v) and jSleft(v)j � 2, thenTv:left is either a subtree ofTleft(u) or Tright(u), implying thatv:left:M 2 [a; b℄ or v:left:m 2 [a; b℄ respectively. Similarly if u 2 Tright(v) and jSright(v)j � 2,
then either v:right:M 2 [a; b℄ or v:right:m 2 [a; b℄.

We conclude that ifS \ [a; b℄ 6= ;, then FindAny returns an element inS \ [a; b℄.
The fact that FindAny takes constant time follows from Theorem 1 and Corollary 1, since

only a constant number of boolean operations and arithmeticoperations is performed plus
two calls to msb and three sparse array lookups. The correctness ofReport and the O(k)
time bound follows from Lemma 1.
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The space required by the data structure depends on the size required for the three sparse
arrays B, D, and V . The number of internal levels ofT with depth mod H = 0 is dw=He,
and therefore the number of initialized entries inB is at mostndw=He = O(npw). Similarly,
the number of initialized entries in D due to�(u) = u is at mostndw=He. For the number of
initialized entries in D due toB[�(u)℄ = 1, we observe that the subtree�z of heightH rooted
at z = �(u) by definition contains at least one node fromV . If j�z \ V j = s, then �z has at
most s + 1 leaves which are nodes inP , and we havej�z \ P j � (s + 1)H � 2Hk. Since�z
contributes toB with at most 2Hj�z \ V j entries and jV j � n, the total number of initialized
entries contributed to B due toB[�(u)℄ = 1 is bounded by2Hn. The number of initialized
entries in B is therefore bounded by2Hn + ndw=He = O(npw). Finally, by definition, V
contains at mostn initialized entries.

Each entry ofB, D, and V requires space:1, dlogwe, andO(w) bits respectively, andB,D, and V haveO(npw), O(npw), and at mostn initialized entries respectively. The total
number of words for storing the three sparse arrays by Corollary 1 is therefore O((logw �npw + w � n)=w) = O(n) words. It follows that the total space required for storing the data
structure is O(n) words. 2
4 Construction

In this section we describe how to construct the data structure of the previous section in
expected timeO(npw).
Theorem 5 Given an unordered set ofn distinct integers each ofw bits, the range reporting
data structure in Section 3 can be constructed in expected timeO(npw).
Proof. Initially S can be sorted in spaceO(n) with the algorithm of Thorup [23] in timeO(n(log logn)2) = O(npw) or with the randomized algorithm of Andersson et al. [5] in
expected timeO(n log logn) = O(npw). Therefore without loss of generality we can assumeS = fa1; : : : ; ang where ai < ai+1 for 1 � i < n.

We observe thatv 2 V if, and only if, v is the root or v, is the nearest common ancestor
of ai and ai+1 for some i, where 1 � i < n. Similarly as for the FindAny query, we can by
Fact 1 find the nearest common ancestorvi 2 V induced by ai and ai+1 in constant time by
the expression vi = ((1 " (w � 1)) + (ai # 1)) # msb(ai � ai+1) :
The nodesv 2 V form by the pointers v:left and v:right a binary tree TV . The defined
sequencev1; : : : ; vn�1 forms an inorder traversal of TV . Furthermore the nodes satisfy heap
order with respect to their depths in T . Recall that depth(vi) = msb(vi) can be computed in
constant time.

The inorder together with the heap order on the depth of thevi nodes uniquely definesTV since these are exactly the constraints determining the shape of the treaps introduced
by Seidel and Aragon [22]. By applying anO(n) time treap construction algorithm [22] tov1; v2; : : : ; vn�1 we get the required left and right pointers for V . Them andM fields for the
nodes inV can be constructed in a bottom-up traversal ofTV in time O(n).
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The information to be stored in the arraysB and D can by another traversal ofTV be
constructed in time linear in the number of nodes to be initialized. Consider an edge(u; v)
in TV , where v is the parent of u in TV , i.e. v is the nearest ancestor node ofu in T that
is a branching node orv is the root. Let u = u0; u1; : : : ; ud = v be the nodes on the path
from u to v in T such thatdepth(ui)� depth(ui+1) = 1. While processing the edge(u; v) we
will compute the information to be stored in the sparse arrays for the nodesu0; u1; : : : ; ud�1,
i.e. the nodes on the path fromu to v exclusivev. From the defintion of B and D we get the
following: For the array B we storeB[�(u)℄ = 1, if depth(�(u)) > depth(v), andB[ui℄ = 0 for
all i = 0; : : : ; d�1, wheredepth(ui) < depth(�(u)) and depth(ui) mod H = 0. For the arrayD we storeD[ui℄ = depth(v)� depth(ui) for all i = 0; : : : ; d� 1 wheredepth(ui) mod H = 0
or depth(ui) < Hddepth(v)=He or depth(ui) � depth(�(u)). Finally, we store for the rootB[1℄ = 1 andD[1℄ = 0.

Constructing the three sparse arrays, after having identified theO(npw) entries to be
initialized, by Corollary 1 takes expected timeO(npw). 2
5 Approximate range counting

In this section we provide a data structure for approximate range counting. LetS � U
denote the input set, and letn denote the size ofS. The data structure uses spaceO(n) words
such that we can supportCount" in constant time, for any constant" > 0.

We assumeS has been preprocessed such that in constant time we can compute FindAny(a; b)
for all a; b 2 U . Next we have a sparse array such that we for each elementx 2 S can computerankS(x) in constant time. Both these data structures useO(n) space.

Definecount(a; b) = jS \ [a; b℄j. We need to build a data structure which for anya; b 2 U
computes an integerk such that count(a; b) � k � (1 + ")count(a; b).

In the following we will use the observation that fora; b 2 S, a � b, it is easy to compute
the exact value ofcount(a; b). This value can be expressed asrankS(b) � rankS(a) + 1 and
thus the computation amounts to two lookups in the sparse array storing the ranks.

We reduce the task of computingCount"(a; b) to the case where eithera or b are in S.
First, it is easy to check ifS \ [a; b℄ is empty, i.e.,FindAny(a; b) returns ?, in which case we
simply return 0 for the query. Hence, assumeS \ [a; b℄ is non-empty and let be any element
in this set. Then for any integerska and kb such thatcount(a; ) � ka � (1+")count(a; ) and
count(; b) � kb � (1+ ")count(; b), it holds that count(a; b) = count(a; )+ count(; b)� 1 �ka + kb � 1 � (1 + ")count(a; b): Hence, we can returnCount"(a; ) � Count"(; b) � 1 as
the answer for Count"(a; b), where  2 S \ [a; b℄ is an integer returned by FindAny(a; b).
Clearly, both calls to Count" satisfy that one of the endpoints is inS, i.e., the integer. In
the following we can thus without loss of generality limit ourselves to the case for a query
Count"(a; b) with a 2 S (the other caseb 2 S is treated symmetrically).

We start by describing the additional data structures needed, and then how to compute
the approximate range counting query using these. Definep = dlogne, and J = f x 2 S j(rankS(x) � 1) mod p = 0 g [ maxS. We construct the following additional data structures
(see Figure 3).

JumpR : For each elementj 2 J we store the setJumpR(j) = fy 2 S j count(j; y) = 2i ^ i 2[0; p℄ g.
9



JnodeR: For each elements 2 S we store the integerJnodeR(s) being the successor ofs inJ .

LN : For each elementj 2 J we store the setLN(j) = fi 2 S j j = JnodeR(i)g.
1 2 20 30 40 6027 47 61 6250 630 103 34

1 1010101010 27272727 27 3434343434 4747474747 61616161 6261

JumpR(10)
LN(10)

Figure 3: Extension of the data structure to supportCount" queries. w = 8, n = jSj = 27, andp =dlog ne = 5.

Each of the setsJumpR and LN have size bounded byp � log jU j, and hence using theQ-heaps from Corollary 2, we can compute predecessors for these small sets in constant time.
TheseQ-heaps have space cost linear in the set sizes. Since the total number of elements in
the structures JumpR and LN is O(jSj), the total space cost for these structures isO(jSj).
Furthermore, for the elements inS given in sorted order, the total construction of these data
structures is alsoO(jSj).

To determine Count"(a; b), where a 2 S, we iterate the following computation until the
desired precision of the answer is obtained.

Let j = JnodeR(a). If j > b, return R + count(a;PredLN(j)(b)). Otherwise, j � b,
and we increasek by count(a; j) � 1. Let y = PredJumpR(j)(b) and i = rankJumpR(j)(y) � 1.
Now count(j; y) = 2i � count(j; b) < 2i+1. We increasek by 2i. Now k = count(a; y) and
count(y; b) < 2i. If y = b we return k. If (k + 2i)=k < 1 + �, we are also satisfied and returnk + 2i. Otherwise we iterate once more, now to determineCount"(y; b).
Theorem 6 The data structure uses spaceO(jSj) words and supportsCount" in constant time
for any constant" > 0.

Proof. From the observations above we conclude that the structure uses spaceO(n) and
expected preprocessing timeO(n). Each iteration takes constant time, and next we show that
the number of iterations is at most l � 1 + dlog(1=")e. Let k = 2I + f , f < 2I , after the
first iteration. In the lth iteration we either return count(a; b) or k + 2i > count(a; b), wherei � I � l + 1. In the latter case we havek < count(a; b) < k + 2I�l�1. We need to show thatk + 2i � (1 + ")count(a; b). Sincek < count(a; b), we can writek + 2i < (1 + ")k. We have2i < k". Sincei � I � l + 1 and k � 2I + f , we have2I�l�1 < 2I" and the result follows. 2
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