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A B S T R A C T  

Uncertain causal knowledge is stored in fuzzy cognitive maps (FCMs). FCMs are 
fuzzy signed digraphs with feedback. The sign (+ or - )  of  FCM edges indicates 
causal increase or causal decrease. The fuzzy degree of  causality is indicated by a 
number in [ -  1, 1]. FCMs learn by modifying their causal connections in sign and 
magnitude, structurally analogous to the way in which neural networks learn. An 
appropriate causal learning law for inductively inferring FCMs from time-series 
data is the differential Hebbian law, which modifies causal connections by correlating 
time derivatives of  FCM node outputs. The differential Hebbian law contrasts with 
Hebbian output-correlation learning laws of  adaptive neural networks. 

FCM nodes represent variable phenomena or fuzzy sets. An FCM node 
nonlinearly transforms weighted summed inputs into numerical output, again in 
analogy to a model neuron. Unlike expert systems, which are feedforward search 
trees, FCMs are nonlinear dynamical systems. FCM resonant states are limit cycles, 
or time-varying patterns. An FCM limit cycle or hidden pattern is an FCM inference. 
Experts construct FCMs by drawing causal pictures or digraphs. The corresponding 
connection matrices are used for inferencing. By additively combining augmented 
connection matrices, any number o f  FCMs can be naturally combined into a single 
knowledge network. The credibility wi in [0, 1] of  the ith expert is included in this 
learning process by multiplying the ith expert's augmented FCM connection matrix 
by w i. 

Combining connection matrices is a simple type of  adaptive inference. In general, 
connection matrices are modified by an unsupervised learning law, such as the 
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differential Hebbian learning law. Under special conditions, differential Hebbian 
dynamical systems are proved globally stable: they resonate on fixed-point 
attractors. 

KEYWORDS: neural networks, fuzzy  cognitive maps, dynamical systems, 
unsupervised learning, causal inference. 

KNOWLEDGE NETS VS. EXPERT SYSTEMS: 
DIGRAPHS VS. TREES 

What is an expert system? A decision tree with graph search. A search-tree 
structure underlies all expert systems: logic trees, game trees, Markov trees, 
Bayesian causal trees, frame-based inheritance systems, etc. An expert system's 
tree structure permits graph search; otherwise inferencing algorithms would get 
stuck in infinite logic loops. 

There are three fundamental problems with tree representations. First, trees 
are feedforward structures. They have no dynamical behavior. Feedback 
cannot be represented by a tree, at least not naturally, and feedback can be 
expected to abound in a universe everywhere connected by physical laws. 
Expressive power is lost. 

Second, search time increases with tree size. The more rules or branches in 
an expert system tree, the longer it takes to make an inference, to enumerate a 
path. Path enumeration is exponentially complex. Real-time behavior is in 
principle impossible for large search trees. 

Third, trees do not  naturally combine to yield a tree. In general, two or 
more trees can only be forced-fit into a single tree. (To "open"  a closed loop of 
length n in a graph, one of the n edges, or a subset of the edges, must be 
removed. But which edge or edges? Such edge removal is inherently ad hoc.) 
Knowledge representation accuracy is compromised. Search trees are in this 
sense noncombinable. That is why expert systems are built with very few 
experts. 

Ideally the knowledge-acquisition process should allow each expert to build 
his or her own expert system. These individual knowledge bases could then be 
combined into a representative knowledge base. Larger expert sample sizes 
should produce more reliable knowledge bases. But with search trees, which are 
inherently noncombinable, larger sample sizes produce less reliable knowledge 
bases. 

A directed graph is the minimal knowledge representation structure that 
overcomes the difficulties of search trees. In general a fuzz~ cognitive map 
(FCM) (see [1-5] and [6]) is a fuzzy signed digraph with feedback. An FCM is 
the feedback generalization of a search tree. An FCM graphically represents 
uncertain causal reasoning. Its matrix representation allows causal inferences to 
be made as feedback associative memory recollections. FCM cycles naturally 
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allow feedback to be represented. Abandoning graph search, the FCM (temporal 
associative memory; see [7]) dynamic system immediately reverberates [7] on 
an inference or prediction no matter how large the FCM. An arbitrary number of 
weighted FCMs of arbitrary structure can naturally be combined by summing 
the underlying augmented connection matrices. Moreover, the strong law of 
large numbers ensures that as expert sample size increases, knowledge base 
reliability increases. We now explicate these properties. 

A simple FCM has causal edge weights in { -  1, 0, 1 }. All causality is 
nonfuzzy. It occurs to maximal degree. In general, FCM causal edge weights are 
numbers in [ - 1 ,  1], allowing degrees of causality to be represented. An 
example of a simple FCM is abstracted as Figure 1 from an article by political 
economist Walter Williams [8]. 

Searching this FCM knowledge base is not easy! This nonfuzzy signed 
digraph with feedback is equivalent to the connection matrix 

Ci C2 C3 C4 C5 C 6 C7 C8 C9 

Cl 
C2 
C3 
C4 
C5 
C6 
C7 
Cs 
C9 _ 

0 1 1 0 0 0 0 1 1-- 
0 0 1 0 0 0 0 1 0 
0 0 0 1 0 - 1  0 1 1 
0 0 0 0 0 1 1 0 - 1  
0 - 1  - 1  0 0 1 1 0 0 
0 0 0 1 0 0 - 1  - 1  0 
0 0 0 0 1 0 0 - 1  0 
0 0 0 0 0 0 - 1  0 0 
0 0 0 0 - 1  0 0 1 O_ 

where the/th row lists the connection strengths of the edges eik directed out from 
Ci, and the ith column lists the edges eki directed in to Ci. Ci causally increases 
Cj if eij > 0, decreases Cj if eij < 0, and does not affect Cj if e o = 0. This 
matrix isomorphism with an FCM allows experts to graphically represent their 
knowledge by drawing causal pictures and allows that knowledge to be 
processed in feedback associative memory fashion by operating on the 
underlying connection matrices. Simple signed FCMs, rather than real-valued 
FCMs, are easier to get from experts. Simple FCMs are also usually more 
reliable, because experts are more likely to agree on causal signs than on 
magnitudes. The FCM matrix combination scheme [4] described below allows 
simple signed FCMs to be combined into a nonsimple FCM that naturally 
represents causal magnitudes as the expert sample size increases. 

FCM inference proceeds by nonlinear spreading activation. This implies [7] 
that an FCM inference or prediction is a reverberating limit cycle or temporal 
sequence of events. Each causal node Ci is a nonlinear function that transforms 
the path-weighted activation flowing into it into a value in [0, 1]. This nonlinear 
function is in general a bounded monotone increasing transformation, such as 
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Figure 1. A nine node political FCM (after 14). 

the sigmoid or S-shaped functions--for example,  the logistic function C (x) = 
(1 + e-X) - 1. I f  each Ci is binary, as we shall assume for simplicity, the simplest 
nonlinear operation that turns real inputs into binary values is thresholding: C (x) 
= 1 if x > T, C (x) = 0 otherwise, for some threshold T that we shall take as 
zero. The threshold operation is also the limiting case of  a steep sigmoid. We can 
write this synchronous state-transition law as 

[ ~  if C(t)Ei>O 
Ci(t+ 1)= if C(t)Ei<_O (1) 

where C (t) = [Cl( t) ,  " . ,  CA(t)] is the state vector of  causal activation at 
discrete t ime t, and E ~ is the / th  column of  the FCM connection matrix E .  For 
example, a six-node FCM with input activations [6 - 4  2 9 - 1 - 5 ]  thresh- 
olds to [1 0 1 1 0 0]. Only C1, C3, and C4 are active. 

Causal flow on an FCM is easily maintained with vector-matrix operations 
and thresholding: C(0)  -~ E -* C(1)  --* E --* • • -. In state-transition notation, 
C(t + 1) = TIC(t) El, where T is the vector threshold operation. This is 
equivalent to tracing causal flow around an FCM by inspection, as one might 
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inspect the feedforward flow on a search tree. Fortunately, for simple FCMs and 
many nonlinear FCMs, the causal flow immediately stabilizes on a limit cycle. 
This can be established [7] with attractor-basin arguments using the sum of 
"energy functions" of the form - Ci-IEC r as a limit-cycle Lyapunov function. 
(Arbitrary differentiable FCM models with time-varying edges can in principle 
resonate on chaotic attractors.) For the synchronous operation of simple FCMs, 
convergence is obvious, since the threshold operation is deterministic and there 
are 2 n possible binary states or "what-if" questions. So the FCM must converge 
in at most 2 n iterations. In practice it will converge after very few iterations. The 
first binary state of the limit cycle is the first state that is causally recalled twice. 

Consider how sustained CI affects C7 activity [8]. We can model this policy 
question by simply keeping Cj on during the inference cycle. The initial FCM 
input is the state 

S=[1  0 0 0 0 0 0 0 0] 

Then 

S E = [ 0  1 1 0 0 0 0 1 1]--*S 1 

= [ 1  1 1 0 0 0 0 1 1], 

which reminds us that CI has four outward causal arrows with positive weights 
and Cl is itself exogenously kept active. At the next iteration, 

S I E = [ 0  1 2 1 - 1  - 1  - 1  4 1 ]~S  2 

Then 

= [ 1  1 1 1 0 0 0 1 1]. 

SZE=[O 1 2 1 - 1  0 0 4 1]--*S 2 

= [ 1  1 1 1 0 0 0 1 1]. 

So S 2 = {Cl, C2, C3, C4, Cs, C9} is a fixed point of the dynamical system, a 
degenerate limit cycle. 

The resonant limit cycle S 1 is a hidden pattern in the causal edges E. The 
hidden patterns in an expert's FCM presumably correspond to the expert's 
characteristic set of responses to what-if questions. As with an expert's answer, 
the resonant hidden pattern can be tested against the available evidence, and the 
responsible FCM can be modified accordingly as needed. 

Continuing the example, Williams claims that the absence of Cl activity leads 
to, among other things, the absence of C8 activity. The simplest way to model 
this is to perturb the fixed-point equilibrium by turning off C~ in the stable state 
S z. Thus we present [0 1 1 1 0 0 0 1 1] to the FCM. Quickly the FCM 
resonates on the limit cycle {C4, C~} -* {(?6, C7} ~ {(?4, Cs} ~ " " .  Cs 
activity has disappeared as predicted. This two-step oscillation admits an 
interesting political interpretation [8]. 
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Binary limit cycles can be directly encoded into an FCM matrix E. This 
follows from the correlation decoding properties of temporal associative 
memories [7]. Let [Al, A2, • • ", Am, Al]  be a binary limit cycle. Each Ai is a 
binary n-vector, a point in {0, 1 } m. Convert each binary Ai into a bipolar Xi by 
replacing zeros with - 1 s. Then each Xi is a point in { - 1, 1 } n. Then, using row 
vectors, the limit cycle can be directly encoded in an n x n matrix F by 
summing contiguous bipolar correlation matrices: 

F= X r X 2 +  X r X 3  + " " + Xr,,_,Xm + X~c.Y, 

(This encoding scheme allows nonzero diagonal entries f./ to occur). The 
encoding procedure breaks down as the length m of the limit cycle (or the sum of 
the lengths of all encoded limit cycles) approaches the network dimension n. It 
also tends to fail to the extent that similar patterns do not contiguously abut 
similar patterns. For example, if we encode alphabet letters with large binary 
matrices, then NETWORK is encodable but BABY is not. The two B's in BABY 
are similar, but the A and Y are not. 

Consider, for example, the binary limit cycle [A~, Az, A3, Al] given by 

AI=[1  0 0 1 0 0 1 0 0 1] 

A2=[1 1 0 0 1 1 0 0 1 1] 

A3=[1 0 1 0 1 1 1 0 1 0] 

Then the appropriate FCM (temporal associative memory) is found by 

F= x r x 2  + x r x 3  + x r x ,  

3 - 1  - 1  - 1  1 1 - 1  - 3  1 1 
- 1  - 1  3 - 1  1 1 1 1 1 - 3  
- 1  - 1  - 1  3 - 3  - 3  1 1 - 3  1 
- 1  3 - 1  - 1  1 1 - 3  1 1 1 

1 - 3  1 1 - 1  - 1  3 - 1  - 1  - 1  
1 - 3  1 1 - 1  - 1  3 - 1  - 1  - 1  
1 1 - 3  1 - 1  - 1  - 1  - 1  - I  3 

- 3  1 1 1 - 1  - 1  - 1  3 - 1  - 1  
1 - 3  1 1 - 1  - 1  3 - 1  - 1  - 1  
1 1 1 - 3  3 3 - 1  - 1  3 - 1  

For example 

A I F = [ 4  4 - 4  - 4  4 4 - 6  - 4  4 

--*[1 1 0 0 1 1 0 0 1 1 ] = Z 2  

A2F=[6  - 1 0  6 - 2  2 2 8 - 6  2 - 6 ]  

--*[1 0 1 0 1 1 1 0 1 0]=Aa 

41 



Combined and Adaptive Knowledge Networks 383 

and 
A 3 F = [ 6  - 1 0  - 2  6 - 6  - 6  8 - 6  - 6  2] 

--.[1 0 0 1 0 0 1 0 0 1 ]=AI  

completing the limit cycle. A key insight is that the limit cycle can be played 
backwards by passing information through the FCM matrix transpose F r. In an 
FCM, passing information through F r is a crude attempt to reverse the causal 
arrow of time. It produces a rough "backward chaining" inference. 

COMBINING FUZZY KNOWLEDGE NETWORKS 

Any set of FCMs can be naturally combined [4, 5]. Each expert can draw a 
different size FCM with different FCM causal concepts. There is no restriction 
on the number of experts or on the number of concepts. Indeed, the more experts 
the better. We are not restricted to the prejudices of a small number of experts. 
Larger sample sizes yield more reliable combined FCMs. Moreover, each 
expert can have a credibility weight wi in [0, 1]. Combined weighted FCMs 
naturally reflect the different levels of expertise of the acquired knowledge. The 
hidden patterns of each combined FCM, modulated by wi, blend into the hidden 
patterns of the combined FCM. 

FCMs are combined by adding augmented connection matrices [4]. This is a 
mathematical transform trick: Transform digraphs to augmented connection 
matrices, combine additively, then inverse transform back to a single representa- 
tive FCM fuzzy signed digraph. Suppose k-many experts each draw an FCM. 
The ith expert's FCM is equivalent to an n i x ni connection matrix Ei. These 
different connection matrices are not likely to be conformable for addition. In 
general they involve different concepts. Or do they? Suppose the second expert 
uses a concept C in his analysis that the first expert does not use. The first expert 
presumably does not believe that C is causally relevant. This means that every 
concept the first expert uses has zero causal connectivity to C, as if C were a 
phantom concept. Ei  can be augmented to include C by adding a row and column 
of all zeros. 

This procedure can be extended to augment every connection matrix to 
account for every concept discussed by all the experts. If  the total number of 
distinct concepts is n, then each connection matrix Ei  is augmented to an n x n 
matrix, perhaps quite sparse. The rows and columns of these new matrices are 
then permuted as needed to bring them into mutual coincidence, relabeling the 
row/column concepts from C1 to C, .  This produces k-many conformable 
augmented connection matrices F1, • • ", Fk. The augmented connection matrices 
are combined by adding pointwise, F = F1 + • • • + Fk. If  each expert has a 
credibility weight wi in [0, 1], with wi -- 1 as the default weight, then the 
weighted combined FCM matrix F W is found by summing multiplicatively 
weighted augmented connection matrices F w = WlFi  + • " " + wgF~. This is 
shown pictorially in Figure 2. 
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The combined FCM connection matrix F naturally weights the knowledge of 
the experts. Suppose each expert assigns causal edge weights in [ - 1, 1 ]. Then if 
only one expert out of k asserts a particular causal connection, that connection 
can have maximum magnitude 1/k. If the experts are equally weighted and half 
assert that J~j = 1, say, and the other half assert that 3~j = - 1, the combined 
weight j~j = 0 reflects the perfect disagreement of the experts. Large sample 
sizes tend to produce stable connection strengths. 

In general, j~j is not a number in [ - 1 ,  1]. This causes no problem for 
nonlinear associative recall. In particular, it is clear that, for zero thresholds in 
(1), F can be replaced with ( 1 / k ) F  to normalize edges. For weighted experts, 
one can also use the normalization factor 1 / w ,  where w is the sum of credibility 
weights, w = w~ + . . .  + WE. 

Consider a simple example. Suppose four unweighted experts provide the four 
simple FCMs shown in Figure 3. There are six distinct concept nodes. Each 
expert uses only four concepts. We can represent these FCMs by four 6 x 6 
augmented connection matrices: 

0 1 
0 0 

- 1  1 
F l =  0 0 

0 0 
0 0 

- 1  1 0 0 
0 - 1  0 0 
0 - 1  0 0 
1 0 0 0 
0 0 0 0 
0 0 0 0 
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FCM reliability increases with expert sample size. The simplest way to prove 
this is to view the experts as independent identically distributed (i.i.d.) random 
variables [5]. Independence models individuality; identical distribution, problem 
domain focus; randomness, inherent error. The response of the ith expert is a 
number in [ -  1, 1]. Then matrix entry 3~j in the combined FCM matrix F is, 
when normalized by n, the sample mean of the ijth-distributed random 
variables. Thus the Kolmogorov strong law of large numbers ensures that, with 
probability one, as sample size increases, ( 1 / n ) F  approaches the underlying 
matrix of distribution means. In a probabilistic setting these distribution means 
are arguably the knowledge we seek to represent. This seems reasonable if we 
assume that an expert consensus is an informed average opinion. 

But how reasonable are averages? We must be careful because statistical 
pathologies abound when density functions have thick tails and the expert 
random variables have infinite variances. For example, consider the one- 
dimensional Cauchy probability density function, 

1 
f c ( x )  = - -  r(1 + x  2) 

which is locally indistinguishable from the standard normal density function 

1 
f N ( X )  = ~ / ~  eX2 /2 

If one million experts are Cauchy-distributed, then the sample mean is also 
Cauchy-distributed. So any one of the million expert responses predicts as well 
(or as badly) as the sample mean! Random variables with infinite variances in 
general do not obey laws of large numbers or central limit theorems. Logically 
speaking, they are as likely to occur in nature as are finite-variance random 
variables. A nonprobabilistic approach to combining knowledge is developed by 
Kosko in Ref. 5. 

Another sample-size property of the FCM additive combination scheme is that 
experts need only give causal signs ( - or + ), not magnitudes in [ - 1, 1]. This 
is extremely practical. Causal signs are more safely acquired than magnitudes, 
especially when the FCM is constructed from documents. It is easier to evoke 
dissent, indifference, or assent - -{-  1, 0, 1}--from a queried expert than to 
evoke shades of these responses. A good exercise is to construct 10 or more 4 x 
4 matrices with values in [ -  1, 1] and compute the matrix of sample means. 
Then threshold each matrix according to sign, find the new matrix of sample 
means of the thresholded matrices, and compare the original matrix and new 
matrix of sample means. The difference tends to be even less when a more 
equitable threshold rule is used, such as thresholding all numbers in [ -  1, - 1/ 
3) to - 1, all in [ -  1/3, 1/3] to 0, and all in (1/3, 1] to 1. 

These rational sample means tend to approach the underlying real-valued 
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sample means provided the underlying probability density functions are 
sufficiently "spread out" (do not have too little variance) over [ - 1 ,  1]. It 
should, for instance, be intuitively clear that if the values are normally 
distributed with zero mean and unit variance, then an equal proportion of values 
will tend to fall in [ -  1, - 1/3) and in (1/3, 1]. If the normal mean is shifted to 
1/2, proportionately more values will tend to fall in (1/3, 1] than in [ -  1, - 1/ 
3), and so on. 

ADAPTIVE INFERENCE T H R O U G H  CONCOMITANT VARIATION 

Inference occurs on an FCM as data-driven activation flows through FCM 
edges and nodes. The causal edge structure is the logical structure that represents 
empirical hypotheses. This is clear when causal edges are viewed as fuzzy 
logical implications (or conditional probabilities). Adaptive inference occurs 
when this logical structure itself is modified by data. Persistent activation of 
FCM concepts gradually shapes the inferential mechanisms housed by the FCM 
connection matrix. In the next section we prove sufficient conditions for global 
stability of a wide variety of adaptive inference dynamical systems. 

The FCM combination technique just discussed is a simple form of adaptive 
inferencing. It represents a recursive "learning" procedure for gradually 
modifying connection strengths as new causal information becomes available in 
the form of weighted expert opinion. A new FCM can always be added to the 
current combined FCM by suitably augmenting the new FCM matrix or the 
combined FCM matrix, or both. Once several FCMs have been combined in a 
problem domain, new FCMs are less likely to contain new concepts. More 
important, since each new FCM matrix contains weighted elements in [ -  1, I] 
and the unnormalized strength of a combined edge is in [ - k, k], the addition of 
a new FCM matrix is not likely to significantly change the magnitude of an 
arbitrary combined edge and is even less likely to change its sign. 

The problem of adaptive inference can be stated as a set of questions. How can 
the causal structure of an environment be inferred? Which things are connected 
to which things, and how? One answer is to ask an expert. To the extent that 
such information is available it should be incorporated in the inferential 
structure. But how did the expert obtain his knowledge? Ideally it came directly 
or indirectly from observation, from sensing and perhaps measuring the flux of 
experience. Experience enters the FCM model by additively entering the 
equation for a concept node's activation. If the activation of the ith node Ci is 
some real number x;, then the simplest model for causal activation is equivalent 
to the additive short-term memory model of a neuron's activation: 

xi = - x i +  ~ Cj(xi)eji+ Ii (2) 
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where Cj is a sigmoid function. Several state activation models other than (2) are 
possible. The first term in (2) is passive causal decay. Something happens if and 
only if something causally makes it happen. The second term is path-weighted 
internal feedback. The third term is external input, raw observation. 

Which causal "learning" law best infers the causal structure of an 
environment? Ask God. A more tractable question is, Which learning laws 
reproduce an FCM in sign and magnitude when applied to data generated from 
that FCM? A good answer is: those laws that measure changes in the 
environmental parameters or, in the terminology of John Stuart Mill [9], that 
measure concomitant variation. The "causes" of a phenomenon's behavior 
are the variables of which that phenomenon's behavior is a function: B = f(vl,  
02, • " ') .  If changes in a variable quantity Q1 are repeatedly followed by changes 
in another quantity Q2, what can an empiricist conclude but that, to some extent, 
Q~ "causes" Q2? The greater the concomitant or lagged variation in frequency 
and magnitude, the bolder the causal conjecture. 

A differential Hebbian learning law [1, 3, 4, 6, 10] is the minimal 
unsupervised learning law for measuring change. It correlates time derivatives 
of node activations or of node outputs, or some mix thereof. For example, 

= - eu  + c i c j  = - eu  + c / c j  yci, j (3) 

where C i' = dCi/dxi. Expert opinion can be added to (3). By (3), e,j converges 
to an exponentially weighted average of correlated change. Simulations have 
shown that (3) and its variates tend to reproduce in sign, and often in magnitude, 
the FCM used to generate time-series concept node data. In contrast, the 
Hebbian law of neural associative learning, which simply correlates activations 
or outputs, if used by itself, connects all active concepts and rapidly produces a 
connection matrix full of spurious causal conjectures. 

GLOBAL STABILITY OF DIFFERENTIAL HEBBIAN LEARNING 

Most nonlinear dynamic systems are unstable. They persistently oscillate on 
"noise"  patterns. Some resonate or equilibrate on chaotic (aperiodic) attractors. 
Others, like discrete binary FCMs in synchronous operation, resonate on limit 
cycles [7] or repeating temporal patterns. Rarest of all is equilibration to fixed 
points. This is global stability. As Cohen and Grossberg [11] phrase (absolute) 
global stability: The limits of system trajectories exist for all inputs and all 
choices of system parameters. All input balls rapidly roll down a local "energy"  
or Lyapunov minimum. 

Most global stability results are for nonlearning networks, that is, for dmiHdt 
= 0, where in the tradition of neural networks we use mij instead of e U to denote 
the long-term memory trace or synapse between the/th and j th  units. We shall 
also denote the bounded monotone-nondecreasing output of the/th unit by the 
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signal function Si instead of the concept Ci. When only one field FA of neurons 
or concept variables is involved--the autoassociative case--the fixed connec- 
tion matrix M must be symmetric (M = M r) to ensure global stability. The 
widest class of globally stable nonleaming, symmetric dynamical systems are 
those found in the Cohen-Grossberg theorem [I 1]. These models subsume upon 
change of variables many popular neural network models, including the 
Hopfield neural circuit, as well as Lotka-Volterra predator-prey models of 
population biology and Eigen-Schuster hypercycle models of macromolecular 
evolution. These results are extended to the n x p matrix M that interconnects 
the two fields FA and FB--the heteroassociative case--in the bidirectional 
associative memory (BAM) model [7]. Information flows from FA to FB in the 
forward direction by passing through M and from FB to FA in the backward 
direction by passing through M r, thus symmetrizing the (in general asymmetric 
or rectangular) matrix M. Every matrix is globally stable in a BAM. The 
autoassociative case is obtained when FA = FB and M = M r. 

The adaptive BAM (Kosko [7, 12-14]) extends global stability to learning, or 
adaptively inferring, networks. Let xi be the activation of the/th unit in FA and yj 
the activation of the j th  unit in FB. Then, using the notation of Cohen and 
Grossberg [11], and thus achieving the same generality of dynamical models, 
every dynamical system of the form 

)(i = -- a i ( x i ) [  b i ( x i )  -- ~ d  Sj(yy)mij] (4) 
J 

.i'/= - aj(yj)[ bjtyj) - ]~ Si(x,)mij] (5) 
i 

where ai is nonnegative, bi is essentially arbitrary and Si is bounded with S" = 
dSi/dxi > 0, and with the learning law the signal Hebb law 

mij = - mij + S~(x~)Sj(yj), (6) 

is globally stable. Constants can be added anywhere as desired. The Cohen- 
Grossberg theorem [11] is the special case of the ABAM theorem when FA = 
FB, M = M T, and the time derivative of M is identically zero. The ABAM 
stability theorem is proved by noting that the bounded function L is an 
appropriate Lyapunov function for the dynamical system (4)-(6): 

1 
L =  - ~  ~ S i ( x i ) S j ( y j ) m i j + -  ~ ~ ~ m S 

i j i j 

+ .7. 
i j 

since L _< 0 upon time differentiating L, rearranging, and eliminating the time 
derivatives ofxi,  yj, and m e with (4), (5), and (6), respectively. If S[ > O, S:  

J 

> O, ai > O, ay > 0, then/~ = 0 iff xi = .Py = 7~iij = 0 for all i and j .  The 
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ABAM theorem extends to any number of fields interconnected in BAM fashion. 
It also extends to any number of higher-order correlations [14]. Careful 
examination of the proof of the ABAM theorem reveals, though, that only the 
signal Hebb law (6) is compatible with the quadratic-form structure of the 
Lyapunov function L in (7). Other learning laws that modify mij on the basis of 
locally available information are not in general globally stable unless additional 
dynamical assumptions are made. A like remark holds for higher-order networks 
and the higher-order forms used in the accompanying Lyapunov functions. 

Is the differential Hebbian law globally stable? In full generality we cannot 
expect it to be stable, since FCMs in general house nontrivial limit cycles. The 
analysis of these limit cycles--how the underying basins of attractions in the 
network state space gradually evolve as learning unfolds--is difficult. We can 
gain insight into the hidden-pattern dynamics of the differential Hebbian law by 
examining when which form of the learning law with which state model leads to 
fixed points, when such adapting networks globally stabilize. 

A globally stable differential Hebbian model allows activations xi and Yi to be 
driven by the time derivatives of the signals Sj(yj) and Si(xi) as they flow back 
and forth over the pathway mij. For instance, the simple additive model (2) must 
be extended to the model 

Xi  = --Xi+ ~ Cj(xj)eji+ ~ Cj(xj)eji+ Ii (8) 
J J 

The globally stable form of the learning law (3) includes a Hebbian product as 
well as a differential Hebbian product: 

mi.i = - mij + Si(xi)Sj(yj) + ,Si(xi),~i(Yj) (9) 

stated in two-field or heteroassociative notation. In general, the general 
dynamical systems (10) and (11) are compatible with the adaptation law (9): 

Xi = -- ai(xi)[ bi(xi) - ~ S j ( y j ) m i j -  ~ Sj(yj)mij] (10) 
J J 

yj= -aj(yj)[ bj(yj)- ~ Si(xi)mij- ~ Si(xi)mij] (11) 
i i 

To eliminate the signal derivative terms in (9)-(11), a kinetic energy [3] 
quadratic form must be added to the Lyapunov function in (7) to give the 
appropriate L: 

1 
L = - ~  ~ Si(x i )Sy(y j )mi j+~ ~.t ~ m2. 

i y i j 

i Y 

(12) - ~, ~, s,(x,)Sj(yj)mu 
i j 
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-But now to prove global stability we must make a crucial assumption on signal 
accelerations. They must approximate signal velocities: 

,~i(xi).~.S)(xi) and ,~j(xj)..~S)(xj) for all i, j (13) 

(More generally, signal velocities and accelerations must agree, or tend to agree, 
in sign). If (13) holds, then L __< 0. And if all ai > 0 and S/' > 0, then/~ = 0 iff 
~?i = Yj = mij = 0 for all i and j .  Hence global stability eliminates the 
contribution of signal velocity information. This may explain why neural 
network global theorists have overlooked velocity information in state and 
learning models: It is "observable" only as a transient phenomenon. 

In general, (13) is violated if for no other reason than that sigmoid signal 
functions contain accelerations and decelerations. [A thresholded exponential 
signal function satisfies (13).] Causal concepts in FCMs tend to behave as 
sigmoids or inverted sigmoids, suitably scaled. 

The Hebb product in (9) can, of course, be scaled so small that it makes no 
contribution to learning, and so can the signal derivative terms in (8), (10), and 
(11). Then only concomitant variation drives adaptation, and the original 
adaptive inference model (2) and (3) returns. As (13) is violated, limit cycles, 
and perhaps more complicated attractors, can occur. 
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