
Second thoughts on some topics from Diophantine
approximation and analytic number theory

C. L. Stewart1

1 Introduction

I would like to thank the editors for asking me to contribute an article to this volume on the
occasion of the Canadian Mathematical Society’s fiftieth anniversary. I am honoured to do
so. My intention in this paper is to highlight some of the problems which have occupied my
attention over the past twenty years.

2 Polynomial congruences

Perhaps the most elementary problem which I have worked on is that of estimating the
number of solutions of polynomial congruences in one variable. I was led to study this
problem because I needed precise estimates for application in the study of Thue equations,
see §9.

Let f be a polynomial of degree r ≥ 2 with integer coefficients, say

f(x) = arx
r + ar−1x

r−1 + · · ·+ a0 ,

and suppose that f factors over the complex numbers as

f(x) = ar(x− α1) · · · (x− αr) .

The discriminant D of f is defined by

D = a2r−2
r

∏
i<j

(αi − αj)2 .

Let m be a positive integer. A natural question to ask is the following. How many
solutions modulo m does the congruence

f(x) ≡ 0 (modm)

have? By the Chinese Remainder Theorem it suffices to establish an upper bound for the
case when m is a power of a prime, say pk. Let us denote the number of solutions by
N = N(f, p, k). Let l = l(p,D) be defined by l = ordpD, in other words pl|D and pl+1 6 |D.
We shall assume henceforth that p does not divide the content of f .

If p does not divide D then N is at most r by Hensel’s Lemma. In 1921 Nagell [54] and
Ore [55] independently proved that

N ≤ rp2l.

1Research supported in part by Grant A3528 from the National Sciences and Engineering Research
Council of Canada.
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This was improved by Sándor [60], in a paper which appeared in 1952, to

N ≤ rpl/2 for k > l .

In fact Sándor was killed in 1944 in the Second World War. He had communicated his result
to Rédei who arranged for its publication. In 1981, Huxley [38], unaware of the work of
Sándor, proved

N ≤ rpl/2 for k > 0 .

For any real number θ let [θ] denote the largest integer less than or equal to θ. In 1991 we
proved [80] that

N ≤ 2p[l/2] + r − 2 . (1)

Let us see that this result is, in general, best possible. Let r and j be positive integers
with r ≥ 2 and let p be a prime with p > r. Put

f(x) = x(x+ pj)(x+ 1) · · · (x+ r − 2) .

Then l = ordpD = 2j and the solutions of f(x) ≡ 0(modp2j+1) are given by
x ≡ 0(modpj+1), x ≡ −pj(modpj+1) and x ≡ −i(modp2j+1) for i = 1, . . . , r − 2. In this case
the number of solutions modulo p2j+1 is

pj + pj + r − 2 = 2pl/2 + r − 2 .

While our upper bound (1) is, in general, precise, if k is small compared to l then we can
improve on (1). For any prime p and integers r, k and D with r ≥ 2 and D 6= 0 we define
T = T (r, k, p,D) by

T = min
j=0,...,r−2

{[
l

(j + 1)(j + 2)
+

jk

(j + 2)

]
,
[(
r − 1

r

)
k
]}

. (2)

Thus

T =



[
l

2

]
if k ≥ l ,

[
l

(j + 1)(j + 2)
+

(
j

j + 2

)
k

]
if
l

j
≥ k ≥ l

j + 1
for j = 1, . . . , r − 2 ,

[(
r − 1

r

)
k
]

if
l

r − 1
≥ k ≥ 1 .

Theorem 1 Let p be a prime and let f be a polynomial with integer coefficients, degree
r(≥ 2), non-zero discriminant D and content coprime with p. For each positive integer k
there is an integer t with 0 ≤ t ≤ r and there are non-negative integers b1, . . . , bt and u1, . . . ut
such that the complete solution of the congruence

f(x) ≡ 0(modpk)
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is given by the t congruences x ≡ bi(modpk−ui), for i = 1, . . . , t. Further

u1 + · · ·+ ut ≤ 2

[
l

2

]
(3)

and
0 ≤ ui ≤ T , (4)

for i = 1, . . . , t.

Estimates (3) and (4) are both sharp. Observe that the single congruence x ≡ bi(modpk−ui)
is equivalent to the pui congruence x ≡ aj(modpk) where aj = bi + jpk−ui for j = 1, . . . , pui .
Thus the number of solutions modulo pk of f(x) ≡ 0(modpk) is pu1 + · · ·+ put . Since for any
positive integers u, v with u ≥ v we have

pu+1 + pv−1 > pu + pv ,

and since t ≤ r, u1 + · · ·+ ut ≤ 2

[
l

2

]
and T ≤

[
l

2

]
, we see that

pu1 + · · ·+ put ≤ 2p[ l
2

] + r − 2 .

The proof of Theorem 1 depends on a careful p-adic analysis in Ωp, the completion of an
algebraic closure of IQp. In the fall term of 1992 I visited Wolfgang Schmidt at the University
of Colorado in Boulder. We studied the related problem of determining the possible solution
trees of polynomial congruences modulo powers of a prime p, [68].

3 Lucas and Lehmer numbers

For any integer n, let P (n) denote the greatest prime factor of n with the convention that
P (0) = P (1) = P (−1) = 1. In 1965 Erdös conjectured that

P (2n − 1)

n
→∞

as n tends to infinity. The elementary result that P (an − bn) ≥ n + 1 when n > 2 and
a > b > 0, was first proved by Zsigmondy [89] in 1892 and was rediscovered by Birkhoff and
Vandiver [11] in 1904. Bang [9] had obtained such a result when b = 1 in 1886. In 1962
Schinzel [63] showed that P (an − bn) ≥ 2n + 1 if ab is a square or twice a square. Let κ be
a real number with 0 < κ < 1/ log 2. In my first paper [73] I made some progress towards
Erdös’ conjecture. We proved that

P (an − bn)

n
→∞

as n runs through the sequence of primes and more generally as n runs through those integers
with at most κ log log n distinct prime factors. Andrzej Schinzel was a visitor to Cambridge

3



when I obtained this result and his interest in my work was enormously encouraging for me
since at the time I was a beginning graduate student.

In 1878 Lucas, [47], in an article in the first volume of the American Journal of Mathe-
matics, investigated the integer sequences (un)∞n=0 where

un =
αn − βn

α− β
for n = 0, 1, 2, . . . ,

and where α and β are distinct roots of a quadratic equation x2−Px−Q = 0 with relatively
prime non-zero integer coefficients P and Q. Lucas was not the first to study such sequences,
Euler, Lagrange, Gauss, Dirichlet and others did so also , but his treatment was the most
comprehensive. Such sequences are the natural generalization of the sequences (an − bn)∞n=0

with a and b coprime integers and are known as Lucas sequences. Lucas sequences are
divisibility sequences. In other words if m|n then um|un. In fact, more generally, we have

(um, un) = u(m,n) ,

for all positive integers m and n. Matijasevic exploited this property of Lucas sequences
in order to resolve Hilbert’s 10th problem. Lucas numbers arise in many other settings, for
example in the solutions of Pell’s equation x2 − dy2 = 1, where d is a positive integer which
is not a perfect square, and in primality testing.

In 1930 Lehmer [43] introduced the sequences (un)∞n=0 where

un =



αn − βn

α− β
for n odd ,

αn − βn

α2 − β2
for n even ,

and where αβ and (α + β)2 are coprime integers. The sequences are known as Lehmer
sequences. Lehmer showed that his sequences had similar divisibility properties to those of
Lucas sequences and he used them to extend the Lucas test for primality.

In [69], with T. N. Shorey, and in [74] and [79] we generalized our results on P (an − bn)
to give lower bounds for the greatest prime factor and the greatest square-free factor of the
n-th term of a Lucas or Lehmer sequence (un)∞n=0. For example, we proved that there is a
positive number c, which is effectively computable in terms of α and β, such that if p is a
prime number then

P (up) > cp log p .

A primitive divisor of a Lucas number un is a prime which divides un but does not divide
(α − β)2u2 · · ·un−1. Similarly a primitive divisor of a Lehmer number un is a prime which
divides un but does not divide (α− β)2(α + β)2u3 · · ·un−1. Suppose now that (α + β)2 and
αβ are coprime integers. We may write

αn − βn =
∏
d|n

Φd(α, β) , (5)
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where

Φd(α, β) =
d∏
j=1

(j,d)=1

(α− ζjβ)

and where ζ is a primitive d-th root of unity. Φd(α, β) is an integer for d larger than 2 and
so, by (5), primitive divisors of a Lucas or Lehmer number un must divide Φn(α, β).

In 1913 Carmichael [18] showed that if un is a Lucas number with α, β real and n larger
than 12 then un possesses a primitive divisor. In 1955 Ward [87] proved the analogous result
for Lehmer numbers, see also [21]. This dealt only with the case when α and β are real
numbers. Schinzel, in [64], [67], overcame this hurdle. He proved that there is an effectively
computable positive number c0 such that if n exceeds c0 then the n-th term of a Lucas or
Lehmer sequence possesses a primitive divisor. In [75] we modified an argument of Baker [5]
to give an, at the time, sharp estimate from below for a linear in two logarithms of the form

b1 log(−1) + b2 logα ,

where α is an algebraic number and b1 and b2 are rational integers. We used this estimate
to show that one could take c0 = e452467. More significantly however, we were able to prove
that there are only finitely many Lehmer sequences whose n-th term, n > 6, n 6= 8, 10 or 12,
does not possess a primitive divisor and that these sequences may be explicitly determined.
For Lucas sequences the restriction n > 6, n 6= 8, 10 or 12 may be replaced by n > 4, n 6= 6.
The restrictions on n cannot be weakened and so the problem of determining all exceptional
Lucas and Lehmer numbers, (those without a primitive divisor and n outside of the forbidden
ranges), is solved in principle. However in practice much work needs to be done still since
we reduced the problem to one of solving a finite, but large, number of Thue equations.
Paul Voutier, a former Master’s student of mine at the University of Waterloo, determined
in his thesis all exceptional numbers un with n at most 30 and he conjectured that there
are no exceptional numbers un with n larger than 30, [85]. Furthermore by making use of
recent work of Laurent, Mignotte and Nesterenko [42] on estimates for linear forms in two
logarithms he has shown [86] that one can take c0 = 30, 030.

4 Recurrence sequences

Let r and s be integers with r2 + 4s non-zero. Let u0 and u1 be integers and put

un = run−1 + sun−2 , (6)

for n = 2, 3, . . . . Then for n ≥ 0 we have

un = aαn + bβn , (7)

where α and β are the roots of x2 − rx− s and

a =
u0β − u1

β − α
, b =

u1 − u0α

β − α
,
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whenever α 6= β. The sequence of integers (un)∞n=0 is a binary recurrence sequence and it is
said to be non-degenerate if abαβ 6= 0 and α/β is not a root of unity. Observe that if u0 = 0
and u1 = 1 and r and s are coprime we have a Lucas sequence.

In 1934, Mahler [49] used a p-adic version of the Thue-Siegel theorem to prove that if
(un)∞n=1 is a non-degenerate binary recurrence sequence then

P (un)→∞ as n→∞ .

In 1967, Schinzel was able to give an effective version of Mahler’s result by means of Gelfond’s
estimates for linear forms in two logarithms of algebraic numbers. Let d be the degree of α
over the rationals. He proved [66] that

P (un) > c1n
θ1(log n)θ2 ,

where c1 is a positive number which is effectively computable in terms of a, b, α and β and
where θ1 = 1/84 and θ2 = 7/12 if d is 1 and θ1 = 1/133 and θ2 = 7/19 if d is 2. In 1982 we
proved [78], using estimates for linear forms in logarithms due in the complex case to Baker
[4] and in the p-adic case to van der Poorten [58], that

P (un) > c2(n/ log n)1/(d+1) , (8)

where c2 is a positive number which is effectively computable in terms of a and b only. In [78]
we were also able to give non-trivial effective lower bounds for the greatest prime factor of the
n-th term of a general linear recurrence provided that one of the roots of the characteristic
polynomial of the recurrence was larger in absolute value than the rest.

With Tarlok Shorey [69] we studied occurrences of squares, cubes and higher powers in
binary recurrence sequences. We proved the following result.

Theorem 2. Let h be a non-zero integer and let un, as in (7), be the n-th term of a
non-degenerate binary recurrence sequence. If

hxq = un ,

for integers x and q larger than one, then the maximum of x, q and n is less than c3, a
number which is effectively computable in terms of a, α, b, β and h.

Since |un| → ∞ as n → ∞ whenever (un)∞n=0 is a non-degenerate binary recurrence
sequence, we see that un is a pure power for only finitely many integers n. Independently
Petho [56] proved a similar result to Theorem 2. He assumed, in addition to the hypotheses
of Theorem 2, that r and s in (6) are coprime and then showed that the maximum of x, q
and n is less than a number which is effectively computable in terms of a, α, b, β and the
greatest prime factor of h.
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5 Lehmer’s question

Let f(x) = arx
r + ar−1x

r−1 + · · · + a0 be a polynomial with integer coefficients of degree
r(≥ 1). We define M(f), the Mahler measure of the polynomial f , to be

M(f) = |ar|
r∏
i=1

max(1, |αi|) ,

where α1, . . . , αr are the roots of f . Equivalently, we have, by Jensen’s theorem,

M(f) = exp
∫ 1

0
log |f(e2πit)| dt .

For any algebraic number α we define M(α) to be equal to M(f) where f is the minimal
polynomial of α. Observe that M(f1f2) = M(f1)M(f2) and that M(αβ) ≤ M(α)M(β) for
any algebraic numbers α and β. .

It is easy to see that if α is a non-zero algebraic number which is not a unit then M(α) ≥ 2
and that if α is a root of unity then M(α) = 1. In 1857, Kronecker [39] proved that if α is
a non-zero algebraic number with M(α) = 1 then α is a root of unity. In 1933 D.H. Lehmer
[44] asked whether for each positive number ε there exists a polynomial f with integer
coefficients for which 1 < M(f) < 1 + ε. A negative answer to Lehmer’s question would
give a substantial improvement on Kronecker’s theorem and Lehmer did some searching to
find polynomials with small measure larger than one. The smallest example he found was
M(f0) = 1.17628081... where

f0(x) = x10 + x9 − x7 − x6 − x5 − x4 − x3 + x+ 1 ,

and more extensive searches by Boyd [16] and others have failed to turn up any smaller
examples.

Lehmer’s question has turned up in a variety of settings, [17], [76]. For instance a negative
answer would resolve the question of whether the Salem numbers are dense in [1,∞). Recall
that a Salem number is a real algebraic integer larger than 1 having one conjugate on the
unit circle and all other conjugates, apart from itself, on or inside the unit circle. Further,
Lind [45] has shown that the set of possible values for the entropy of a continuous algebraic
automorphism of a separable compact group can be described subject to the answer to
Lehmer’s question.

In 1971 Blanksby and Montgomery [12] took a big step towards resolving Lehmer’s ques-
tion. They proved, by means of Fourier analysis, that if f is a polynomial with integer
coefficients and degree r and

M(f) < 1 + (52r log 6r)−1 (9)

then M(f) = 1. I spent the academic year 1976-77 at the Mathematisch Centrum in Amster-
dam after completing my Ph.D. and during that time I found a new method of approaching
Lehmer’s question based on an idea from transcendental number theory; although I didn’t
write up my result [77] until the following academic year which I spent at I.H.E.S. . The idea
was to construct an exponential polynomial related to f with many zeros and small integer
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coefficients by means of Siegel’s lemma and then to extrapolate to produce more zeros and,
ultimately, a contradiction. This led to a result of comparable strength to that of Blanksby
and Montgomery but with a smaller constant; in (9) 52 was replaced by 104. Dobrowolski
[20] took up this approach and introduced a lovely idea which allowed him to prove that
there exists a positive number c4 such that if α is a non-zero algebraic number of degree
r(> 2), and

M(α) < 1 + c4

(
log log r

log r

)3

,

then α is a root of unity and this is the most precise result known.
The transcendence theory approach has proved to be useful in related settings. For

instance, Anderson, Masser and others have used it to investigate the elliptic and abelian
analogues of Lehmer’s question [1], [52].

6 The abc conjecture

For any positive integers x, y and z define G = G(x, y, z) by

G =
∏
p|xyx

p a prime

p .

Suppose now that (x, y, z) = 1 and x + y = z. Oesterlé, motivated by the theory of elliptic
curves, conjectured that there exists a positive constant c5 such that

z < Gc5 .

Masser, in 1985, refined this conjecture by analogy with a result of Mason [51] in the function
field case. He conjectured that for any positive real number ε there exists a positive number
c6(ε), depending on ε, such that

z < c6(ε)G1+ε . (10)

This last conjecture is known as the abc conjecture. The conjecture is significant because
it links the additive and multiplicative properties of the integers and it has a multitude of
important consequences. It is perhaps surprising that such a simple and beautiful conjecture
was not made years earlier.

It is not obvious, a priori, that any bound for z in terms of G should exist. With
Tijdeman [81] we proved that such a bound does exist, indeed that there exists an effectively
computable positive number c7 such that

z < exp(c7G
15) .

In 1991 we refined this result with Yu [83] by proving that for each positive number ε there
is a positive number c8(ε) which is effectively computable in terms of ε, for which

z < c8(ε) exp(G2/3+ε) .
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On taking x = 1 , y = 2n and z = 1 + 2n for n = 1, 2, . . . we see that z ≥ G/2 for
infinitely may triples (x, y, z) of coprime positive integers. Thus the exponent of G on the
right hand side of inequality (10) must be at least 1. Could we replace the term Gε by a
power of logG? The answer is no and this is a consequence of the next result which we
obtained with Tijdeman [81].

Theorem 3. Let δ > 0. There exist infinitely many triples (x, y, z) of coprime positive
integers with x+ y = z for which

z > G exp

(
(4− δ)

√
logG

log logG

)
.

7 The arithmetical character of sumsets

For any set X let |X| denote its cardinality. Let N be a positive integer and let A and B be
subsets of {1, . . . , N}. What can one say about the arithmetical character of sums a+b with
a in A and b in B? It turns out that if A and B are sufficiently dense subsets of {1, . . . , N}
then many of the arithmetical properties of the sumset A+B are similar to those of the set
of consecutive integers {1, . . . , 2N}. When A and B are less dense this analogy breaks down
but some structure is still present.

For any positive integer n let ω(n) denote the number of distinct prime factors of n. In
1934 Erdös and Turán [27] proved that if |A| = k then, for k ≥ 2,

ω

 ∏
a,a′εA

(a+ a′)

 > c9 log k ,

where c9 is an effectively computable positive number. They conjectured that a similar result
should hold when we replace sums a+ a′ by sums a+ b from sets A and B respectively. We
resolved this with Györy and Tijdeman [36] in 1986 when we used a result of Evertse [28]
on S-unit equations to prove that if |A| = k and |B| = l with k ≥ l ≥ 2 then

ω

 ∏
aεA,bεB

(a+ b)

 > c10 log k . (11)

Thus, by the prime number theorem, there exists an a in A and a b in B for which

P (a+ b) > c11 log k log log k ; (12)

here c10 and c11 are effectively computable positive numbers. With Erdös and Tijdeman [26]
we showed that, when l = 2, (11) and (12) are not far from best possible. In particular
the right hand sides of the inequalities cannot be replaced by (1

8
+ ε)(log k)2 log log k and

(1
4

+ ε)(log k log log k)2 respectively for any positive real number ε.
For the above results we have not required the sets A and B to be dense subsets of

{1, . . . , N}. For thin sets the techniques applied to extract information come from combi-
natorial number theory and Diophantine approximation. For dense sets different methods
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are called for and they usually come from the province of analytic number theory. András
Sárközy visited me at the University of Waterloo in 1983. Since then we have kept up
an active collaboration studying problems of the latter type, sometimes together with Paul
Erdös and Carl Pomerance [24], [57]. Let me mention a few such results. We shall adapt
Vinogradov’s notation >> for brevity. Thus |A| >> N means there is a positive constant
c, which is independent of N , such that |A| > cN . If c depends on a parameter k we write
|A| >>k N . The first problem we consider is the following. If A and B are dense subsets of
{1, . . . , N} can we find a sum a + b which is divisible by a large prime or by a power of a
large prime? In 1984 Balog and Sárközy [8] used the large sieve inequality to prove that if
|A| >> N and |B| >> N then there exist an a in A and a b in B such that

P (a+ b) >> N/ logN .

In 1986, Sárközy and I used the Hardy-Littlewood circle method to sharpen the above
conclusion [61]. We proved that

P (a+ b) >> N ,

for >> N2/ logN pairs (a, b) with a in A and b in B. In 1988 we extended this method
to treat the case of large prime powers [62]. Let k be a positive integer. If |A| >> N and
|B| >> N then there exist >>k N

1+1/k/ logN pairs (a, b) for which a + b is divisible by pk

where p is a prime and pk >>k N . The result is sharp, up to determination of constants,
with respect to the lower bounds for pk and the number of pairs (a, b). It is worth noting
that, unlike the case k = 1 where we have (12), if k ≥ 2 then there is no analogue of this
result for thin sets.

The second problem I wish to discuss in this context is that of finding sums a+b for which
ω(a+ b) is large. By means of an argument of a combinatorial nature involving the repeated
application of the large sieve inequality, Sárközy and I were able to prove the following result
[63].

Theorem 4. Let θ be a real number with 1
2
< θ ≤ 1 and let N be a positive integer. There

exists a positive number c12, which is effectively computable in terms of θ, such that if A and
B are subsets of {1, . . . , N} with N greater than c12 and

(|A||B|)1/2 ≥ N θ ,

then there exists an integer a from A and an integer b from B for which

ω(a+ b) >
1

6

(
θ − 1

2

)2

(logN)/ log logN . (13)

By the prime number theorem the maximum of ω(n) in {1, . . . , 2N} is (1+o(1)) logN/ log logN
and so, up to the dependence on θ, estimate (13) is optimal.

8 S-unit equations

Let K be an algebraic number field of degree d over IQ. Let MK be the set of places (equiva-
lence classes of multiplicative valuations) on K. Let S be a finite set of places of K containing
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all infinite places. An algebraic number α from K is said to be an S-unit if |α|v = 1 for
every valuation | |v from a place vεMK\S. The S-units form a group. Let α1, α2 and α3 be
non-zero elements of K and consider the S-unit equation

α1x+ α2y = α3 , (14)

in S-units x and y. The study of many Diophantine equations can be reduced to the study
of S-unit equations, see [6], [41] and [71] and see [30] for other applications. Lang [40] proved
that (14) has only finitely many solutions. Denote this number by νS(α1, α2, α3) and let s
denote the cardinality of S. In 1984, Evertse [28] proved that

νS(α1, α2, α3) ≤ 3 · 7d+2s (15)

for every (α1, α2, α3)ε(K∗)3. With Erdös and Tijdeman [26] we showed that estimate (15)
cannot be improved much in general. On the other hand, with Evertse, Györy and Tijdeman
[29] we showed that most S-unit equations have few solutions.

Let us first discuss the latter result. We call two triples (α1, α2, α3) and (β1, β2, β3) in
(K∗)3 S-equivalent if there exists a permutation σ of (1, 2, 3), a λ in K∗ and S-units ε1, ε2
and ε3 such that

βi = λεiασ(i) for i = 1, 2, 3 .

Plainly if (α1, α2, α3) and (β1, β2, β3) are S-equivalent then νS(α1, α2, α3) = νS(β1, β2, β3). In
1988 we proved with Evertse, Györy and Tijdeman [29] the following result.

Theorem 5. Let S be a finite subset of MK containing all infinite places. Then there exists
a finite set A of triples in (K∗)3 such that for each triple (α1, α2, α3)ε(K∗)3 which is not
S-equivalent to a triple from A,

νS(α1, α2, α3) ≤ 2 . (16)

The quantity 2 on the right hand side of inequality (16) cannot be replaced by 1. The
proof of Theorem 5 depends, ultimately, on a p-adic version of Schmidt’s Subspace Theorem.

While Theorem 5 shows that most S-unit equations have few solutions the next result,
which we obtained with Erdös and Tijdeman [26], shows that even when K = IQ there are
S-unit equations with many solutions.

Theorem 6. Let ε be a positive real number. There exists a number c13, which is effectively
computable in terms of ε, such that if s exceeds c13 then there exists a set S of prime numbers
with |S| = s for which the equation

x+ y = z ,

has at least exp((4−ε)(s/ log s)1/2) solutions in coprime positive integers composed of primes
from S.

For the proof we use a combinatorial argument in conjunction with estimates for ψ(x, y),
the function which counts the number of positive integers up to x all of whose prime factors
are at most y. My two coauthors on this paper were a big help to me when I was starting my
career. The second paper I wrote was a joint one with Paul Erdös [25] and he kept in touch
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afterwards with a steady stream of letters. Further, Robert Tijdeman arranged to bring me
to the Mathematisch Centrum in Amsterdam for my first job in the year after I obtained
my Ph.D. .

Theorem 6 and the techniques used to prove it allowed us to show the existence of Thue-
Mahler equations and Ramanujan-Nagell equations with very many solutions [26], [53]. In
addition it has been used by Zagier [88] in his study of linear relations between values of
polylogarithms.

9 Thue equations

In 1844, Liouville [46] proved that if α is an algebraic number of degree r > 1, then there
exists a positive real number c14(α) which is effectively computable in terms of α, such that
for all rational numbers p/q with q > 0,∣∣∣∣∣α− p

q

∣∣∣∣∣ > c14(α)

qr
. (17)

In 1955 Roth [59], building on earlier work of Thue [84] and Siegel [72], was able to show
that, for each positive number ε, estimate (17) holds with r replaced by 2 + ε and c14(α)
replaced by c15(α, ε). The work of Thue, Siegel and Roth was ineffective, however, since
given α and ε their proofs did not give a method for determining c15(α, ε). The first explicit
improvement on the Liouville exponent of r for an algebraic number of degree r > 2 was
obtained by Baker [2] in 1964 by means of the hypergeometric method. For instance, he
proved that for all rationals p/q with q > 0 we have∣∣∣∣∣α− p

q

∣∣∣∣∣ > c16

qκ
, (18)

with α = 3
√

2 , c16 = 10−6 and κ = 2.955. This was refined by Chudnovsky [19] in 1983.
David Easton, my first Ph.D. student, made some of the work of Chudnovsky explicit [22]
in 1986 and in 1994 Michael Bennett [10], as a postdoctoral fellow at Waterloo, showed that
one could take α = 3

√
2 , c16 = 1/4 and κ = 2.5 in (18).

The hypergeometric method gives many striking improvements on Liouville’s theorem
but it does not apply to all algebraic numbers α. The first general effective improvement
is due to Baker [3] and it follows from his estimates for linear forms in the logarithms of
algebraic numbers. This was subsequently refined by Feldman [31] and made explicit by
Györy and Papp [35]. Bombieri [13], [14] has recently found an effective approach based on
the Thue-Siegel method.

I spend the first half of 1985 on sabbatical at Institut des Hautes Études Scientifique and
during this period Alan Baker, my Ph.D. supervisor, was also a visitor. We decided to tailor
the linear forms in logarithms arguments in order to yield improvements to Liouville’s result.
We chose to focus on the case when α is the cube root of an integer and we completed our
work [7] during a visit by Baker to Waterloo later that year.
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Theorem 7. Let α be a positive integer which is not a perfect cube and let α = 3
√
a. Further

let ε(> 1) be the fundamental unit in the field IQ ( 3
√
a). Then (18) holds for all rational

numbers p/q , q > 0 with c16 = 1/(3ac17) and κ = 3− 1/c18, where

c17 = ε(50 log log ε)2

, c18 = 1012 log ε . (19)

An immediate consequence of Theorem 7 is that if a and h are positive integers with a
not a perfect cube then all solutions in integers x and y of the Diophantine equation

x3 − ay3 = h , (20)

satisfy
max(|x|, |y|) < (c17h)c18 .

Equation (20) is an example of a Thue equation. Let F (x, y) = arx
r+ar−1x

r−1y+· · ·+a0y
r

be a binary form with integer coefficients, content 1, discriminant D and with r ≥ 3. Let h
be a non-zero integer. The equation

F (x, y) = h , (21)

is known as the Thue equation; in 1909 Thue proved that if F is irreducible over IQ then
(21) has only finitely many solutions. A solution of (21) with x and y coprime is said to be
a primitive solution. In 1933, Mahler [48] proved that if F is irreducible then (21) has at

most c
1+ω(h)
19 primitive solutions, where c19 is effectively computable in terms of F . In 1984,

Evertse [28] solved a conjecture of Siegel by proving that if D 6= 0 then (21) has at most

2 · 7r3(2ω(h)+3)

primitive solutions. In 1987, Bombieri and Schmidt [15] refined this result by showing that
if F is irreducible then (21) has at most c20r

1+ω(h) primitive solutions where c20 is a positive
number which can be taken to be 430 for r sufficiently large. Four years later [80] we showed,
by appealing to Theorem 5, that if D 6= 0 then (21) has at most 4rω(h) primitive solutions
for h sufficiently large. Also, following an approach initiated by Erdös and Mahler [23] in
1938, we showed that if the discriminant of F is non-zero and h is divisible by a large integer
composed of few prime factors then we could improve the above estimates.

Theorem 8. Let F be a binary form with integer coefficients of degree r(≥ 3), content 1
and non-zero discriminant D. Let h be a non-zero integer and let ε be a positive real number.
Let g be any divisor of h with g ≥ |h|2/r+ε. If |h| ≥ (D, g2)1/ε then the number of primitive
solutions of (21) is at most

2800
(

1 +
1

4εr

)
r1+ω(g) .

10 Elliptic curves

Let E be an elliptic curve over IQ. It has a Weierstrass equation y2 = x3 + ax+ b with a, b in
IQ and 4a3 + 27b2 6= 0. The set of rational points on E together with the point at ∞ can be
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endowed with a group structure in a natural way by means of the chord and tangent process.
The group is abelian and it consists of a finite torsion subgroup and a subgroup isomorphic
to the direct product of r copies of ZZ; r is known as the rank of E. How does the rank
vary as we run over twists of a given elliptic curve E? That is, we restrict our attention to
families of elliptic curves defined over IQ which are isomorphic over lC. There are families of
quadratic, cubic, quartic and sextic twists.

Let d be a non-zero integer and let Ed denote the quadratic twist of E given by the
equation dy2 = x3 + ax + b. Let r(d) denote the rank of Ed. Note that if d1 and d2 are
non-zero integers then Ed1 is isomorphic to Ed2 over IQ if and only if d1/d2 is the square
of a rational number. Goldfeld [32] conjectured that the average value for r(d) is 1/2 and
this corresponds to computational evidence. Can we show that there are in fact quite a
few curves of rank at least 2? The first theoretical results in this context were obtained by
Gouvêa and Mazur [33] in 1991. Let ε > 0. Under the assumption of the Parity Conjecture,
they proved that there are positive numbers c21 and c22, which depend on ε and E, such that
for any positive integer T larger that c21 the number of square-free integers d with |d| ≤ T
for which the rank of Ed is at least 2 is at least c22T

1/2−ε. Mai [50] extended this work to
cubic twists of x3 + y3 = 1.

Jaap Top and I started to work together in this area while Jaap held a postdoctoral
position in Queen’s University in 1990. I was fortunate to have a Killam Research Fellow-
ship during this period. We managed to avoid the use of the Parity Conjecture and give
unconditional analogues of the above results. For instance we proved [82] that there is a
positive number c23 such that if T exceeds 657 then the number of cube-free integers d with
|d| ≤ T for which the curve given by x3 + y3 = d has rank at least 3 is at least c23T

1/6.
Further let E be the elliptic curve with equation y3 = x3 + ax + b with ab 6= 0. There are
positive numbers c24 and c25, which depend on E, such that if T exceeds c24 then the number
of square-free integers d with |d| ≤ T for which the rank of dy2 = x3 + ax+ b is at least 2 is
at least c25T

1/7/(log T )2.
Let k be an integer with k ≥ 2. An integer is said to be k-free if it is not divisible

by the k-th power of a prime. Let F be a binary form with integer coefficients, non-zero
discriminant and degree r with r ≥ 3. Let Rk(x) denote the number of k-free integers t with
|t| ≤ x for which there exist integers a and b with F (a, b) = t. For our estimates on the
ranks of twists of elliptic curves we required information on the function Rk(x). Suppose
that there is no fixed k-th power larger than 1 which divides F (a, b) for all (a, b) ∈ ZZ × ZZ.
Let m be the largest degree of an irreducible factor of F over IQ and suppose that m ≤ 2k+1
or that k = 2 and m = 6. With Top [82], we proved that there are positive numbers c26 and
c27, which depend on k and F , such that if x is a real number larger than c26 then

Rk(x) > c27x
2/r.

This estimate is best possible up to the determination of c27. For the proof we appealed to
a sieve theoretical result of Greaves [34], which built on work of Gouvêa and Mazur [33] and
also Hooley [37], and to Theorem 8.
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102 (1986), 251–257.

[82] C.L. Stewart and J. Top, On ranks of twists of elliptic curves and power-free values of
binary forms, J. Amer. Math. Soc., 8 (1995), 943-973.

[83] C.L. Stewart and Kunrui Yu, On the abc conjecture, Math. Annalen, 29 (1991), 225–230.
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