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Abstract. This paper provides a brief overview of five projects in which
Honeywell has successfully used or developed model checking methods
in the verification and synthesis of safety-critical systems.

1 Introduction

Embedded software in control and communication systems is becoming increas-
ingly complex. Verification of important safety or mission-critical properties by
traditional methods of test and design review will soon be impossible or pro-
hibitively expensive. The only way developers of complex systems will be able
to manage life cycle costs and yet still field systems with the functionality that
the market demands is to rely on mathematical models and analyses as the basis
for our designs.

For several years Honeywell has been investigating the use of model checking
techniques to analyze the behavior and correctness of a variety of safety and
mission-critical systems. This paper provides a brief overview of five projects in
which we have successfully used or developed model checking tools and methods.

2 Automatic Synthesis of Real-Time Controllers

Unmanned Aerial Vehicles (UAVs) under development by the military and deep
space probes being developed by NASA require autonomous, flexible control
systems to support mission-critical functions. These applications require hybrid
real-time control systems, capable of effectively managing both discrete and con-
tinuous controllable parameters to maintain system safety and achieve system
goals.

We have developed a novel technique for automatically synthesizing hard
real-time reactive controllers for these and other similar applications that is
based on model-checking verification. Our algorithm builds a controller incre-
mentally, using a timed automaton model to check each partial controller for
correctness. The verification model captures both the controller design and the
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semantics of its execution environment. If the controller is found to be incor-
rect, information from the verification system is used to direct the search for
improvements. Using the CIRCA architecture for adaptive real-time control
systems [6], these controllers are synthesized automatically and dynamically,
on-line, while the platform is operating. Unlike many other intelligent control
systems, CIRCA’s automatically-generated control plans have strong temporal
semantics and provide safety guarantees, ensuring that the controlled system
will avoid all forms of mission-critical failure.

CIRCA uses model-checking techniques for timed automata [11] as an in-
tegral part of its controller synthesis algorithm. CIRCA’s Controller Synthesis
Module (CSM) incrementally builds a hard real time reactive controller from a
description of the processes in its environment, the control actions available, and
a set of goal states. To do this, the CSM must build a model of the controller it
is constructing that is faithful to its execution semantics and use this model to
verify that the controller will function safely in its environment.

CIRCA employs two strategies to manage this complex task. First, its mis-
sion planner decomposes the mission into more manageable subtasks that can
be planned in detail. Second, CIRCA itself is decomposed into two concurrently-
operating subsystems (see Figure 1): an Al Subsystem including the CSM rea-
sons about high-level problems that require powerful but potentially unbounded
computation, while a separate real-time subsystem (RTS) reactively executes the
generated plans and enforces guaranteed response times.

Adaptive Mission

/F Planner
Real-Time Controller Synthesis
Subsystem Module

Fig. 1. Basic CIRCA architecture.

The CIRCA CSM builds reactive discrete controllers that observe the sys-
tem state and some features of its environment and take appropriate control
actions. In constructing such a controller, the CSM takes a description of the
processes in the system’s environment, represented as a set of transitions that
modify world features and that have worst case time characteristics. From this
description, CIRCA incrementally constructs a set of reactions and checks them
for correctness using a timed automaton verifier.

The real-time controllers that CIRCA builds sense features of the system’s
state (both internal and external), and execute reactions based on the current
state. That is, the CIRCA RTS runs a memoryless reactive controller.

Given the above limitation on the form of the controller, the controller syn-
thesis problem can be posed as choosing a control action for each reachable
state (feature-value assignment) of the system. This problem is not as simple as



it sounds, because the set of reachable states is not a given by the choice of
control actions, the CSM can render some states (un)reachable.

Indeed, since the CSM focuses on generating safe controllers, a critical issue
is making failure states unreachable. In controller synthesis, this is done by the
process we refer to as preemption. A transition ¢ is preempted in a state s iff
some other transition ¢ from s must occur before ¢ could possibly occur.

Note that the question of whether a transition is preempted is not a question
that can be answered based on local information: preemption of a transition ¢ in
a state s is a property of the controller as a whole, not of the individual state.
It is this non-local aspect of the controller synthesis problem that has led us to
use automatic verification.

3 Real-Time Scheduler of the MetaH Executive

MetaH is an emerging SAE standard language for specifying real-time fault-
tolerant high assurance software and hardware architectures[8]. Users specify
how software and hardware components are combined to form an overall system
architecture. This specification includes information about one or more config-
urations of tasks, their message and event connections, information about how
these objects are mapped onto a specified hardware architecture, and informa-
tion about timing behaviors and requirements, fault and error behaviors and
requirements, and partitioning and safety behaviors and requirements.

The MetaH executive supports a reasonably complex tasking model using
preemptive fixed priority scheduling theory [1,2]. It includes features such as
period-enforced aperiodic tasks, real-time semaphores, mechanisms for tasks to
initialize themselves and to recover from internal faults, and the ability to enforce
execution time limits on all these features (time partitioning).

Traditional real-time task models cannot easily handle variability and un-
certainty in clock and computation and communication times, synchronizations
(rendezvous) between tasks, remote procedure calls, anomalous scheduling in
distributed systems, dynamic reconfiguration and reallocation, end-to-end dead-
lines, and timeouts and other error handling behaviors. One of the goals of this
project was to use dense time linear hybrid automata models to analyze the
schedulability of real-time systems that cannot be easily modeled using tradi-
tional scheduling theory.

Figure 2 shows an example of a simple hybrid automata model for a pre-
emptively scheduled, periodically dispatched task. A task is initially waiting for
dispatch but may at various times also be executing or preempted. The variable
t is used as a timer to control dispatching and to measure deadlines. The variable
t is set to 0 at each dispatch (each transition out of the waiting state), and a
subsequent dispatch will occur when ¢ reaches 1000. The assertion ¢ < 750 each
time a task transitions from executing to waiting (each time a task completes)
models a task deadline of 750 time units. The variable ¢ records accumulated
compute time, it is reset at each dispatch and increases only when the task is
in the computing state. The invariant ¢ < 100 in the computing state means
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Fig. 2. Hybrid Automata Model of a Preemptively Scheduled Task.

the task must complete before it receives more than 100 time units of processor
service, the guard ¢ > 75 on the completion transition means the task may com-
plete after it has received 75 time units of processor service (i.e. the task compute
time is uncertain and/or variable but always falls in the interval [75,100]).

In this example the edge guards selected and unselected represent schedul-
ing decisions made at scheduling events (called scheduling points in the real-time
literature). These decisions depend on the available resources (processors, busses,
etc.) being shared by the tasks.

We began our work using an existing linear hybrid automata analysis tool,
HyTech [4], but found ourselves limited to very small models. We developed
and implemented a new reachability method that was significantly faster, more
numerically robust, and used less memory. However, our prototype tool allows
only constant rates (not rate ranges) and does not provide parametric analysis.

Using this new reachability procedure we were able to accomplish one of
our goals: the modeling and verification of a piece of real-time software. We
developed a hybrid automata model for that portion of the MetaH real-time
executive that implements uniprocessor task scheduling, time partitioning and
error handling. Results of this work are presented in [9].

Our hybrid automata model was not developed using a separate modeling
language. Instead, statements were added to the code to generate pieces of the
model as subprograms were unit tested. When unit testing of all subprograms
was completed, the complete system model was then subjected to reachability
analysis. This provided a high degree of traceability between code and model.

The conditions we checked during reachability analysis were that all deadlines
were met whenever the schedulability analyzer said an application was schedu-
lable; no accessed variables were unconstrained (undefined) and no invariants
were violated on entry to a region; and no two tasks were ever in a semaphore
locking state simultaneously. Assertion checks appearing in the code were also
captured and verified in the model.

We discovered nine defects in the course of our verification exercise. In our
judgement, three of these would have been almost impossible to detect by test-
ing due to the multiple carefully timed events required to produce erroneous
behavior.



There are limits on the degree of assurance that can be provided, but in our
judgement the approach may be significantly more thorough and significantly less
expensive that traditional testing methods. This result suggests the technology
has reached the threshold of practical utility for the verification of small amounts
of software of a particular type.

4 Fault-Tolerant Ethernet Protocol

Large industrial control systems require highly reliable communcation services,
especially in chemical processing applications. We have developed a Fault-Tolerant
Ethernet (FTE) communication network for industrial control applications. The
network is composed of dual redundant LANs implemented with standard com-
mercially available hardware and software drivers. It is transparent to control
applications, both in terms of application coding and communication latency.

The original FTE protocols performed failure detection and recovery for sin-
gle point of network failure. We used the Spin model checker [5] to produce a
simple model of the dual LAN fault detection algorithm and verify the correct-
ness of the initial version of the protocols. We found one significant error and
some minor ambiguities and potential design errors that were addressed in the
final design and implementation of the system.

We first constructed a single node model to verify that faults are correctly
detected by the fault detection algorithm, and that single message losses are
tolerated. The model consisted of four processes: the two LANSs, a state broad-
cast process (sends pairs “I'm alive” messages on the two LANs), and the fault
detection algorithm.

Faults were injected by permitting single message losses in each of the two
LANs. Messages could be lost at any time, as long as two consecutive messages
on a LAN were never lost. In this situation, the fault detection algorithm should
never enter its error state.

Verification of this model identified an execution in which the error state
could be (incorrectly) entered, thus exposing an error in the algorithm. The
problem occured because the algorithm assumed that a lost message always
results in the arrival of two consecutive messages from the same LAN. However,
message ordering is not sufficient to detect a missing message.

The fault detection algorithm was revised to add a short sequence number to
each “I'm alive” message. The maximum sequence number must be larger than
the number of consecutive lost messages that are to be tolerated, so 2 or 3 bits
is sufficient. Each message in a pair is given the same sequence number so pairs
of messages can be identified by matching sequence numbers. However, Spin
identified an further counterexample for the revised design in which alternating
messages are lost on each LAN. There are never two messages lost in a row on
either LAN, but a complete pair of messages is never received.

Two possibilities were considered to deal with this situation:

1. Revise the robustness requirement to exclude the message loss scenario iden-
tified above.



2. Relax the fault detection algorithm to tolerate the message loss scenario.
This could be done by clearing the missing message counters upon receipt
of the missing message, even if its sequence number does not match.

The second approach was selected. This is reasonable since messages are in
fact being received from both LANSs, so there is no reason to declare a LAN
failure.

5 Time Partitioning in Integrated Modular Avionics

The Digital Engine Operation System (DEOS) was developed by Honeywell for
use in our Primus Epic avionics product line. DEOS supports flexible Integrated
Modular Avionics applications by providing both space partitioning at the pro-
cess level and time partitioning at the thread level. Space partitioning ensures
that no process can modify the memory of another process without authoriza-
tion, while time partitioning ensures that a thread’s access to its CPU time
budget cannot be impaired by the actions of any other thread.

The DEOS scheduler enforces time partitioning using a Rate Monotonic
Analysis (RMA) scheduling policy. Using this policy, threads run periodically
at specified periods and they are given per-period CPU time budgets which are
constrained so that the system cannot be overutilized [3].

Honeywell engineers and researchers at NASA Ames collaborated to produce
a model for use with the Spin model checker [7]. The model was translated from
a core “slice” of the DEOS scheduler. This model was then checked for violations
of a global time partitioning invariant using Spin’s automated state space explo-
ration techniques. We successfully verified the time partitioning invariant over
a restricted range of thread types. We also introduced into the model a subtle
scheduling error; the model checker quickly detected that the error produced a
violation of the time partitioning invariant.

We attempted to verify the following liveness property, which is necessary
(but not sufficient) for time partitioning to hold: If the CPU is not scheduled at
100% utilization, then the idle thread should run during every longest period.
When verification was attempted with two user threads and dynamic thread
creation and deletion enabled, Spin reported a violation. The error scenario
results when one of the user threads deletes itself and its unused budget is
immediately returned to the main thread (instead of waiting until the next
period). This bug was, in fact, one which had been previously discovered by
Honeywell during code inspections (but intentionally not disclosed to the NASA
researchers performing the verification). Therefore, it would seem that model
checking can provide a systematic and automated method for discovering subtle
design errors.

Our current time partitioning model does not incorporate several important
time-related features of DEOS. These include:

— The existence of multiple processes, which serve as (among other things)
budget pools for dynamically creating and deleting threads. Time partition-
ing must be verified at a process level as well as a thread level.



Several types of thread synchronization primitives provided by DEOS, in-
cluding counting semaphores, events, and mutexes. These allow threads to
suspend themselves or be suspended in ways not accounted for by the current
model.

The existence of aperiodically running threads, used to service aperiodic
hardware interrupts.

We plan to integrate these features into the model and verify that time par-
titioning still holds with these features present. The principal challenge here will
be keeping the state space size manageable while increasing the complexity of
the model by incorporating these new features. The current model has already
approached the bounds of exhaustive verifiability on currently available com-
puter systems, although subsequent optimizations have reduced the size of the
model somewhat. Furthermore, the current model has only been tested on a
small range of possible thread budgets and periods.

6 Synchronization Protocol for Avionics Communication
Bus

ASCB-D (Avionics Standard Communications Bus, rev. D) is a bus structure
designed for real-time, fault-tolerant periodic communications between Honey-
well avionics modules. The algorithm we modeled is used to synchronize the
clocks of communicating modules to allow periodic transmission. The algorithm
is sufficiently complex to test the limits of currently available modeling tools.
Working from its specification, we modeled the synchronization algorithm and
verified its main correctness property using Spin [10].

The ASCB-D synchronization algorithm is run by each of a number of NICs
(Network Interface Cards) which communicate via a set of buses. For each side
of the aircraft there are two buses, a primary and a backup bus. Each NIC can
listen to, and transmit messages on, both of the buses on its own side. It can
also listen to, but not transmit on, the primary bus on the other side.

The operating system running on the NICs produces frame ticks every 12.5
msec which trigger threads to run. In order for periodic communication to oper-
ate, all NICs’ frame ticks must be synchronized within a certain tolerance. The
purpose of the synchronization algorithm is to enable that synchronization to
occur and to be maintained, within certain performance bounds, over a wide
range of faulty and non-faulty system conditions.

The synchronization algorithm works by transmitting special timing mes-
sages between the NICs. Upon initial startup, these messages are used to desig-
nate the clock of one NIC as a “reference” to which the other NICs synchronize;
after synchronization is achieved, the messages are used to maintain synchroniza-
tion by correcting for the NICs’ clock drift relative to each other. The algorithm
is required to achieve synchronization within 200 msec of initial startup regard-
less of the order in which the NICs start.

The synchronization algorithm must also meet the 200 msec deadline in the
presence of malfunctioning NICs or buses. For example, any one of the NICs



might be unable to transmit on, or unable to listen to, one or more of the buses;
or it might babble on one of the buses, sending gibberish which prevents other
messages from being transmitted; or one of the buses might fail completely at
startup, or fail intermittently during operation.

The introduction of an explicit numerical time model, and the combination
of that time-modeling capability and the message-transmission capability in the
same “environment” process, allowed us to produce a tractable four-NIC model
that includes most of the important features of the synchronization algorithm.

The environment process encapsulates all those parts of the system that pro-
vide input to the algorithm we wish to model (frame ticks, buffers, and buses),
while the NIC process encapsulates the algorithm itself. The interface between
the two is simple and localized. It allows faults to be injected and complicated
hardware interactions to be added with no change required to the NIC code.
Complicated tick orderings produced by frames of different lengths are explicitly
and accurately represented in the model. Because the interface between environ-
ment and NIC includes all the data that must be shared between them, there is
no need for global data structures. This allows Spin’s compression techniques to
reduce the memory required to store each state.

With this model we were able to verify the key system property as an as-
sertion in the environment process that states that all NICs should be in sync
within 200 msec of the startup time.
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