
Appliations of Model Cheking atHoneywell Laboratories ?Darren Cofer, Eri Engstrom, Robert Goldman, David Musliner, Steve VestalHoneywell Laboratories, Minneapolis MN 55418, USAdarren.ofer�honeywell.omAbstrat. This paper provides a brief overview of �ve projets in whihHoneywell has suessfully used or developed model heking methodsin the veri�ation and synthesis of safety-ritial systems.1 IntrodutionEmbedded software in ontrol and ommuniation systems is beoming inreas-ingly omplex. Veri�ation of important safety or mission-ritial properties bytraditional methods of test and design review will soon be impossible or pro-hibitively expensive. The only way developers of omplex systems will be ableto manage life yle osts and yet still �eld systems with the funtionality thatthe market demands is to rely on mathematial models and analyses as the basisfor our designs.For several years Honeywell has been investigating the use of model hekingtehniques to analyze the behavior and orretness of a variety of safety andmission-ritial systems. This paper provides a brief overview of �ve projets inwhih we have suessfully used or developed model heking tools and methods.2 Automati Synthesis of Real-Time ControllersUnmanned Aerial Vehiles (UAVs) under development by the military and deepspae probes being developed by NASA require autonomous, exible ontrolsystems to support mission-ritial funtions. These appliations require hybridreal-time ontrol systems, apable of e�etively managing both disrete and on-tinuous ontrollable parameters to maintain system safety and ahieve systemgoals.We have developed a novel tehnique for automatially synthesizing hardreal-time reative ontrollers for these and other similar appliations that isbased on model-heking veri�ation. Our algorithm builds a ontroller inre-mentally, using a timed automaton model to hek eah partial ontroller fororretness. The veri�ation model aptures both the ontroller design and the? This material is based in part upon work supported by Rome Labs (ontrat F30602-00-C-0017), AFOSR (ontrat F49620-97-C-0008), and NASA (ooperative agree-ment NCC-1-399)

2semantis of its exeution environment. If the ontroller is found to be inor-ret, information from the veri�ation system is used to diret the searh forimprovements. Using the CIRCA arhiteture for adaptive real-time ontrolsystems [6℄, these ontrollers are synthesized automatially and dynamially,on-line, while the platform is operating. Unlike many other intelligent ontrolsystems, CIRCA's automatially-generated ontrol plans have strong temporalsemantis and provide safety guarantees, ensuring that the ontrolled systemwill avoid all forms of mission-ritial failure.CIRCA uses model-heking tehniques for timed automata [11℄ as an in-tegral part of its ontroller synthesis algorithm. CIRCA's Controller SynthesisModule (CSM) inrementally builds a hard real time reative ontroller from adesription of the proesses in its environment, the ontrol ations available, anda set of goal states. To do this, the CSM must build a model of the ontroller itis onstruting that is faithful to its exeution semantis and use this model toverify that the ontroller will funtion safely in its environment.CIRCA employs two strategies to manage this omplex task. First, its mis-sion planner deomposes the mission into more manageable subtasks that anbe planned in detail. Seond, CIRCA itself is deomposed into two onurrently-operating subsystems (see Figure 1): an AI Subsystem inluding the CSM rea-sons about high-level problems that require powerful but potentially unboundedomputation, while a separate real-time subsystem (RTS) reatively exeutes thegenerated plans and enfores guaranteed response times.
Environment

Adaptive Mission
Planner

Subsystem
Real-Time

Module
Controller Synthesis

AI Subsystem

Fig. 1. Basi CIRCA arhiteture.The CIRCA CSM builds reative disrete ontrollers that observe the sys-tem state and some features of its environment and take appropriate ontrolations. In onstruting suh a ontroller, the CSM takes a desription of theproesses in the system's environment, represented as a set of transitions thatmodify world features and that have worst ase time harateristis. From thisdesription, CIRCA inrementally onstruts a set of reations and heks themfor orretness using a timed automaton veri�er.The real-time ontrollers that CIRCA builds sense features of the system'sstate (both internal and external), and exeute reations based on the urrentstate. That is, the CIRCA RTS runs a memoryless reative ontroller.Given the above limitation on the form of the ontroller, the ontroller syn-thesis problem an be posed as hoosing a ontrol ation for eah reahablestate (feature-value assignment) of the system. This problem is not as simple as

3it sounds, beause the set of reahable states is not a given | by the hoie ofontrol ations, the CSM an render some states (un)reahable.Indeed, sine the CSM fouses on generating safe ontrollers, a ritial issueis making failure states unreahable. In ontroller synthesis, this is done by theproess we refer to as preemption. A transition t is preempted in a state s i�some other transition t0 from s must our before t ould possibly our.Note that the question of whether a transition is preempted is not a questionthat an be answered based on loal information: preemption of a transition t ina state s is a property of the ontroller as a whole, not of the individual state.It is this non-loal aspet of the ontroller synthesis problem that has led us touse automati veri�ation.3 Real-Time Sheduler of the MetaH ExeutiveMetaH is an emerging SAE standard language for speifying real-time fault-tolerant high assurane software and hardware arhitetures[8℄. Users speifyhow software and hardware omponents are ombined to form an overall systemarhiteture. This spei�ation inludes information about one or more on�g-urations of tasks, their message and event onnetions, information about howthese objets are mapped onto a spei�ed hardware arhiteture, and informa-tion about timing behaviors and requirements, fault and error behaviors andrequirements, and partitioning and safety behaviors and requirements.The MetaH exeutive supports a reasonably omplex tasking model usingpreemptive �xed priority sheduling theory [1, 2℄. It inludes features suh asperiod-enfored aperiodi tasks, real-time semaphores, mehanisms for tasks toinitialize themselves and to reover from internal faults, and the ability to enforeexeution time limits on all these features (time partitioning).Traditional real-time task models annot easily handle variability and un-ertainty in lok and omputation and ommuniation times, synhronizations(rendezvous) between tasks, remote proedure alls, anomalous sheduling indistributed systems, dynami reon�guration and realloation, end-to-end dead-lines, and timeouts and other error handling behaviors. One of the goals of thisprojet was to use dense time linear hybrid automata models to analyze theshedulability of real-time systems that annot be easily modeled using tradi-tional sheduling theory.Figure 2 shows an example of a simple hybrid automata model for a pre-emptively sheduled, periodially dispathed task. A task is initially waiting fordispath but may at various times also be exeuting or preempted. The variablet is used as a timer to ontrol dispathing and to measure deadlines. The variablet is set to 0 at eah dispath (eah transition out of the waiting state), and asubsequent dispath will our when t reahes 1000. The assertion t � 750 eahtime a task transitions from exeuting to waiting (eah time a task ompletes)models a task deadline of 750 time units. The variable reords aumulatedompute time, it is reset at eah dispath and inreases only when the task isin the omputing state. The invariant � 100 in the omputing state means

4
executingpreempted

t 1000<_

t := 0
c := 0

c 100<_
waiting

c = 1
.
t = 1
.

if c 75>_

c = 0
.
t = 1
.

if unselected

if selected

if t = 1000
and selected

t := 0
c := 0 if t = 1000

and unselected

c = 0.
t = 1
.

 t 750<_assert

Fig. 2. Hybrid Automata Model of a Preemptively Sheduled Task.the task must omplete before it reeives more than 100 time units of proessorservie, the guard � 75 on the ompletion transition means the task may om-plete after it has reeived 75 time units of proessor servie (i.e. the task omputetime is unertain and/or variable but always falls in the interval [75; 100℄).In this example the edge guards seleted and unseleted represent shedul-ing deisions made at sheduling events (alled sheduling points in the real-timeliterature). These deisions depend on the available resoures (proessors, busses,et.) being shared by the tasks.We began our work using an existing linear hybrid automata analysis tool,HyTeh [4℄, but found ourselves limited to very small models. We developedand implemented a new reahability method that was signi�antly faster, morenumerially robust, and used less memory. However, our prototype tool allowsonly onstant rates (not rate ranges) and does not provide parametri analysis.Using this new reahability proedure we were able to aomplish one ofour goals: the modeling and veri�ation of a piee of real-time software. Wedeveloped a hybrid automata model for that portion of the MetaH real-timeexeutive that implements uniproessor task sheduling, time partitioning anderror handling. Results of this work are presented in [9℄.Our hybrid automata model was not developed using a separate modelinglanguage. Instead, statements were added to the ode to generate piees of themodel as subprograms were unit tested. When unit testing of all subprogramswas ompleted, the omplete system model was then subjeted to reahabilityanalysis. This provided a high degree of traeability between ode and model.The onditions we heked during reahability analysis were that all deadlineswere met whenever the shedulability analyzer said an appliation was shedu-lable; no aessed variables were unonstrained (unde�ned) and no invariantswere violated on entry to a region; and no two tasks were ever in a semaphoreloking state simultaneously. Assertion heks appearing in the ode were alsoaptured and veri�ed in the model.We disovered nine defets in the ourse of our veri�ation exerise. In ourjudgement, three of these would have been almost impossible to detet by test-ing due to the multiple arefully timed events required to produe erroneousbehavior.

5There are limits on the degree of assurane that an be provided, but in ourjudgement the approahmay be signi�antly more thorough and signi�antly lessexpensive that traditional testing methods. This result suggests the tehnologyhas reahed the threshold of pratial utility for the veri�ation of small amountsof software of a partiular type.4 Fault-Tolerant Ethernet ProtoolLarge industrial ontrol systems require highly reliable ommunation servies,espeially in hemial proessing appliations. We have developed a Fault-TolerantEthernet (FTE) ommuniation network for industrial ontrol appliations. Thenetwork is omposed of dual redundant LANs implemented with standard om-merially available hardware and software drivers. It is transparent to ontrolappliations, both in terms of appliation oding and ommuniation lateny.The original FTE protools performed failure detetion and reovery for sin-gle point of network failure. We used the Spin model heker [5℄ to produe asimple model of the dual LAN fault detetion algorithm and verify the orret-ness of the initial version of the protools. We found one signi�ant error andsome minor ambiguities and potential design errors that were addressed in the�nal design and implementation of the system.We �rst onstruted a single node model to verify that faults are orretlydeteted by the fault detetion algorithm, and that single message losses aretolerated. The model onsisted of four proesses: the two LANs, a state broad-ast proess (sends pairs \I'm alive" messages on the two LANs), and the faultdetetion algorithm.Faults were injeted by permitting single message losses in eah of the twoLANs. Messages ould be lost at any time, as long as two onseutive messageson a LAN were never lost. In this situation, the fault detetion algorithm shouldnever enter its error state.Veri�ation of this model identi�ed an exeution in whih the error stateould be (inorretly) entered, thus exposing an error in the algorithm. Theproblem oured beause the algorithm assumed that a lost message alwaysresults in the arrival of two onseutive messages from the same LAN. However,message ordering is not suÆient to detet a missing message.The fault detetion algorithm was revised to add a short sequene number toeah \I'm alive" message. The maximum sequene number must be larger thanthe number of onseutive lost messages that are to be tolerated, so 2 or 3 bitsis suÆient. Eah message in a pair is given the same sequene number so pairsof messages an be identi�ed by mathing sequene numbers. However, Spinidenti�ed an further ounterexample for the revised design in whih alternatingmessages are lost on eah LAN. There are never two messages lost in a row oneither LAN, but a omplete pair of messages is never reeived.Two possibilities were onsidered to deal with this situation:1. Revise the robustness requirement to exlude the message loss senario iden-ti�ed above.

62. Relax the fault detetion algorithm to tolerate the message loss senario.This ould be done by learing the missing message ounters upon reeiptof the missing message, even if its sequene number does not math.The seond approah was seleted. This is reasonable sine messages are infat being reeived from both LANs, so there is no reason to delare a LANfailure.5 Time Partitioning in Integrated Modular AvionisThe Digital Engine Operation System (DEOS) was developed by Honeywell foruse in our Primus Epi avionis produt line. DEOS supports exible IntegratedModular Avionis appliations by providing both spae partitioning at the pro-ess level and time partitioning at the thread level. Spae partitioning ensuresthat no proess an modify the memory of another proess without authoriza-tion, while time partitioning ensures that a thread's aess to its CPU timebudget annot be impaired by the ations of any other thread.The DEOS sheduler enfores time partitioning using a Rate MonotoniAnalysis (RMA) sheduling poliy. Using this poliy, threads run periodiallyat spei�ed periods and they are given per-period CPU time budgets whih areonstrained so that the system annot be overutilized [3℄.Honeywell engineers and researhers at NASA Ames ollaborated to produea model for use with the Spin model heker [7℄. The model was translated froma ore \slie" of the DEOS sheduler. This model was then heked for violationsof a global time partitioning invariant using Spin's automated state spae explo-ration tehniques. We suessfully veri�ed the time partitioning invariant overa restrited range of thread types. We also introdued into the model a subtlesheduling error; the model heker quikly deteted that the error produed aviolation of the time partitioning invariant.We attempted to verify the following liveness property, whih is neessary(but not suÆient) for time partitioning to hold: If the CPU is not sheduled at100% utilization, then the idle thread should run during every longest period.When veri�ation was attempted with two user threads and dynami threadreation and deletion enabled, Spin reported a violation. The error senarioresults when one of the user threads deletes itself and its unused budget isimmediately returned to the main thread (instead of waiting until the nextperiod). This bug was, in fat, one whih had been previously disovered byHoneywell during ode inspetions (but intentionally not dislosed to the NASAresearhers performing the veri�ation). Therefore, it would seem that modelheking an provide a systemati and automated method for disovering subtledesign errors.Our urrent time partitioning model does not inorporate several importanttime-related features of DEOS. These inlude:{ The existene of multiple proesses, whih serve as (among other things)budget pools for dynamially reating and deleting threads. Time partition-ing must be veri�ed at a proess level as well as a thread level.

7{ Several types of thread synhronization primitives provided by DEOS, in-luding ounting semaphores, events, and mutexes. These allow threads tosuspend themselves or be suspended in ways not aounted for by the urrentmodel.{ The existene of aperiodially running threads, used to servie aperiodihardware interrupts.We plan to integrate these features into the model and verify that time par-titioning still holds with these features present. The prinipal hallenge here willbe keeping the state spae size manageable while inreasing the omplexity ofthe model by inorporating these new features. The urrent model has alreadyapproahed the bounds of exhaustive veri�ability on urrently available om-puter systems, although subsequent optimizations have redued the size of themodel somewhat. Furthermore, the urrent model has only been tested on asmall range of possible thread budgets and periods.6 Synhronization Protool for Avionis CommuniationBusASCB-D (Avionis Standard Communiations Bus, rev. D) is a bus struturedesigned for real-time, fault-tolerant periodi ommuniations between Honey-well avionis modules. The algorithm we modeled is used to synhronize theloks of ommuniating modules to allow periodi transmission. The algorithmis suÆiently omplex to test the limits of urrently available modeling tools.Working from its spei�ation, we modeled the synhronization algorithm andveri�ed its main orretness property using Spin [10℄.The ASCB-D synhronization algorithm is run by eah of a number of NICs(Network Interfae Cards) whih ommuniate via a set of buses. For eah sideof the airraft there are two buses, a primary and a bakup bus. Eah NIC anlisten to, and transmit messages on, both of the buses on its own side. It analso listen to, but not transmit on, the primary bus on the other side.The operating system running on the NICs produes frame tiks every 12.5mse whih trigger threads to run. In order for periodi ommuniation to oper-ate, all NICs' frame tiks must be synhronized within a ertain tolerane. Thepurpose of the synhronization algorithm is to enable that synhronization toour and to be maintained, within ertain performane bounds, over a widerange of faulty and non-faulty system onditions.The synhronization algorithm works by transmitting speial timing mes-sages between the NICs. Upon initial startup, these messages are used to desig-nate the lok of one NIC as a \referene" to whih the other NICs synhronize;after synhronization is ahieved, the messages are used to maintain synhroniza-tion by orreting for the NICs' lok drift relative to eah other. The algorithmis required to ahieve synhronization within 200 mse of initial startup regard-less of the order in whih the NICs start.The synhronization algorithm must also meet the 200 mse deadline in thepresene of malfuntioning NICs or buses. For example, any one of the NICs

8might be unable to transmit on, or unable to listen to, one or more of the buses;or it might babble on one of the buses, sending gibberish whih prevents othermessages from being transmitted; or one of the buses might fail ompletely atstartup, or fail intermittently during operation.The introdution of an expliit numerial time model, and the ombinationof that time-modeling apability and the message-transmission apability in thesame \environment" proess, allowed us to produe a tratable four-NIC modelthat inludes most of the important features of the synhronization algorithm.The environment proess enapsulates all those parts of the system that pro-vide input to the algorithm we wish to model (frame tiks, bu�ers, and buses),while the NIC proess enapsulates the algorithm itself. The interfae betweenthe two is simple and loalized. It allows faults to be injeted and ompliatedhardware interations to be added with no hange required to the NIC ode.Compliated tik orderings produed by frames of di�erent lengths are expliitlyand aurately represented in the model. Beause the interfae between environ-ment and NIC inludes all the data that must be shared between them, there isno need for global data strutures. This allows Spin's ompression tehniques toredue the memory required to store eah state.With this model we were able to verify the key system property as an as-sertion in the environment proess that states that all NICs should be in synwithin 200 mse of the startup time.Referenes1. P. Binns. Sheduling Slak in MetaH. Real-Time Systems Symposium, Deember1996.2. P. Binns. Inremental Rate Monotoni Sheduling for Improved Control SystemPerformane. Real-Time Appliations Symposium, 1997.3. P. Binns. Design Doument for Slak Sheduling in DEOS. Honeywell TehnologyCenter Tehnial Report SST-R98-009, September 1998.4. T. Henzinger, P. Ho, H. Wong-Toi. A User Guide to HyTeh. University of Cali-fornia at Berkeley, www.ees.berkeley.edu/~tah/HyTeh).5. G. Holzmann. The SPIN Model Cheker. IEEE Transations on Software Engi-neering, vol. 23, no. 5, May 1997, pp. 279-295.6. D. Musliner, E. Durfee, and K. Shin. CIRCA: a ooperative intelligent real-time ontrol arhiteture. IEEE Transations on Systems, Man and Cybernetis23(6):1561-1574.7. J. Penix, W. Visser, E. Engstrom, A. Larson, and N. Weininger. Veri�ation oftime partitioning in the DEOS sheduler kernel. ICSE 2000.8. S. Vestal. An arhitetural approah for integrating real-time systems. Workshopon Languages, Compilers and Tools for Real-Time Systems, June 1997.9. S. Vestal. Modeling and veri�ation of real-time software using extended linearhybrid automata. Fifth NASA Langley Formal Methods Workshop, June 2000 (seehttp://atb-www.lar.nasa.gov/fm/Lfm2000/).10. N. Weininger, D. Cofer. Modeling the ASCB-D Synhronization Algorithm withSpin: A Case Study. 7th International Spin Workshop, September 2000.11. S. Yovine. Kronos: A veri�ation tool for real-time systems. International Journalof Software Tools for Tehnology Transfer, vol. 1, no. 1/2, Ot. 1997.

