
Appli
ations of Model Che
king atHoneywell Laboratories ?Darren Cofer, Eri
 Engstrom, Robert Goldman, David Musliner, Steve VestalHoneywell Laboratories, Minneapolis MN 55418, USAdarren.
ofer�honeywell.
omAbstra
t. This paper provides a brief overview of �ve proje
ts in whi
hHoneywell has su

essfully used or developed model
he
king methodsin the veri�
ation and synthesis of safety-
riti
al systems.1 Introdu
tionEmbedded software in
ontrol and
ommuni
ation systems is be
oming in
reas-ingly
omplex. Veri�
ation of important safety or mission-
riti
al properties bytraditional methods of test and design review will soon be impossible or pro-hibitively expensive. The only way developers of
omplex systems will be ableto manage life
y
le
osts and yet still �eld systems with the fun
tionality thatthe market demands is to rely on mathemati
al models and analyses as the basisfor our designs.For several years Honeywell has been investigating the use of model
he
kingte
hniques to analyze the behavior and
orre
tness of a variety of safety andmission-
riti
al systems. This paper provides a brief overview of �ve proje
ts inwhi
h we have su

essfully used or developed model
he
king tools and methods.2 Automati
 Synthesis of Real-Time ControllersUnmanned Aerial Vehi
les (UAVs) under development by the military and deepspa
e probes being developed by NASA require autonomous,
exible
ontrolsystems to support mission-
riti
al fun
tions. These appli
ations require hybridreal-time
ontrol systems,
apable of e�e
tively managing both dis
rete and
on-tinuous
ontrollable parameters to maintain system safety and a
hieve systemgoals.We have developed a novel te
hnique for automati
ally synthesizing hardreal-time rea
tive
ontrollers for these and other similar appli
ations that isbased on model-
he
king veri�
ation. Our algorithm builds a
ontroller in
re-mentally, using a timed automaton model to
he
k ea
h partial
ontroller for
orre
tness. The veri�
ation model
aptures both the
ontroller design and the? This material is based in part upon work supported by Rome Labs (
ontra
t F30602-00-C-0017), AFOSR (
ontra
t F49620-97-C-0008), and NASA (
ooperative agree-ment NCC-1-399)

2semanti
s of its exe
ution environment. If the
ontroller is found to be in
or-re
t, information from the veri�
ation system is used to dire
t the sear
h forimprovements. Using the CIRCA ar
hite
ture for adaptive real-time
ontrolsystems [6℄, these
ontrollers are synthesized automati
ally and dynami
ally,on-line, while the platform is operating. Unlike many other intelligent
ontrolsystems, CIRCA's automati
ally-generated
ontrol plans have strong temporalsemanti
s and provide safety guarantees, ensuring that the
ontrolled systemwill avoid all forms of mission-
riti
al failure.CIRCA uses model-
he
king te
hniques for timed automata [11℄ as an in-tegral part of its
ontroller synthesis algorithm. CIRCA's Controller SynthesisModule (CSM) in
rementally builds a hard real time rea
tive
ontroller from ades
ription of the pro
esses in its environment, the
ontrol a
tions available, anda set of goal states. To do this, the CSM must build a model of the
ontroller itis
onstru
ting that is faithful to its exe
ution semanti
s and use this model toverify that the
ontroller will fun
tion safely in its environment.CIRCA employs two strategies to manage this
omplex task. First, its mis-sion planner de
omposes the mission into more manageable subtasks that
anbe planned in detail. Se
ond, CIRCA itself is de
omposed into two
on
urrently-operating subsystems (see Figure 1): an AI Subsystem in
luding the CSM rea-sons about high-level problems that require powerful but potentially unbounded
omputation, while a separate real-time subsystem (RTS) rea
tively exe
utes thegenerated plans and enfor
es guaranteed response times.
Environment

Adaptive Mission
Planner

Subsystem
Real-Time

Module
Controller Synthesis

AI Subsystem

Fig. 1. Basi
 CIRCA ar
hite
ture.The CIRCA CSM builds rea
tive dis
rete
ontrollers that observe the sys-tem state and some features of its environment and take appropriate
ontrola
tions. In
onstru
ting su
h a
ontroller, the CSM takes a des
ription of thepro
esses in the system's environment, represented as a set of transitions thatmodify world features and that have worst
ase time
hara
teristi
s. From thisdes
ription, CIRCA in
rementally
onstru
ts a set of rea
tions and
he
ks themfor
orre
tness using a timed automaton veri�er.The real-time
ontrollers that CIRCA builds sense features of the system'sstate (both internal and external), and exe
ute rea
tions based on the
urrentstate. That is, the CIRCA RTS runs a memoryless rea
tive
ontroller.Given the above limitation on the form of the
ontroller, the
ontroller syn-thesis problem
an be posed as
hoosing a
ontrol a
tion for ea
h rea
hablestate (feature-value assignment) of the system. This problem is not as simple as

3it sounds, be
ause the set of rea
hable states is not a given | by the
hoi
e of
ontrol a
tions, the CSM
an render some states (un)rea
hable.Indeed, sin
e the CSM fo
uses on generating safe
ontrollers, a
riti
al issueis making failure states unrea
hable. In
ontroller synthesis, this is done by thepro
ess we refer to as preemption. A transition t is preempted in a state s i�some other transition t0 from s must o

ur before t
ould possibly o

ur.Note that the question of whether a transition is preempted is not a questionthat
an be answered based on lo
al information: preemption of a transition t ina state s is a property of the
ontroller as a whole, not of the individual state.It is this non-lo
al aspe
t of the
ontroller synthesis problem that has led us touse automati
 veri�
ation.3 Real-Time S
heduler of the MetaH Exe
utiveMetaH is an emerging SAE standard language for spe
ifying real-time fault-tolerant high assuran
e software and hardware ar
hite
tures[8℄. Users spe
ifyhow software and hardware
omponents are
ombined to form an overall systemar
hite
ture. This spe
i�
ation in
ludes information about one or more
on�g-urations of tasks, their message and event
onne
tions, information about howthese obje
ts are mapped onto a spe
i�ed hardware ar
hite
ture, and informa-tion about timing behaviors and requirements, fault and error behaviors andrequirements, and partitioning and safety behaviors and requirements.The MetaH exe
utive supports a reasonably
omplex tasking model usingpreemptive �xed priority s
heduling theory [1, 2℄. It in
ludes features su
h asperiod-enfor
ed aperiodi
 tasks, real-time semaphores, me
hanisms for tasks toinitialize themselves and to re
over from internal faults, and the ability to enfor
eexe
ution time limits on all these features (time partitioning).Traditional real-time task models
annot easily handle variability and un-
ertainty in
lo
k and
omputation and
ommuni
ation times, syn
hronizations(rendezvous) between tasks, remote pro
edure
alls, anomalous s
heduling indistributed systems, dynami
 re
on�guration and reallo
ation, end-to-end dead-lines, and timeouts and other error handling behaviors. One of the goals of thisproje
t was to use dense time linear hybrid automata models to analyze thes
hedulability of real-time systems that
annot be easily modeled using tradi-tional s
heduling theory.Figure 2 shows an example of a simple hybrid automata model for a pre-emptively s
heduled, periodi
ally dispat
hed task. A task is initially waiting fordispat
h but may at various times also be exe
uting or preempted. The variablet is used as a timer to
ontrol dispat
hing and to measure deadlines. The variablet is set to 0 at ea
h dispat
h (ea
h transition out of the waiting state), and asubsequent dispat
h will o

ur when t rea
hes 1000. The assertion t � 750 ea
htime a task transitions from exe
uting to waiting (ea
h time a task
ompletes)models a task deadline of 750 time units. The variable
 re
ords a

umulated
ompute time, it is reset at ea
h dispat
h and in
reases only when the task isin the
omputing state. The invariant
 � 100 in the
omputing state means

4
executingpreempted

t 1000<_

t := 0
c := 0

c 100<_
waiting

c = 1
.
t = 1
.

if c 75>_

c = 0
.
t = 1
.

if unselected

if selected

if t = 1000
and selected

t := 0
c := 0 if t = 1000

and unselected

c = 0.
t = 1
.

 t 750<_assert

Fig. 2. Hybrid Automata Model of a Preemptively S
heduled Task.the task must
omplete before it re
eives more than 100 time units of pro
essorservi
e, the guard
 � 75 on the
ompletion transition means the task may
om-plete after it has re
eived 75 time units of pro
essor servi
e (i.e. the task
omputetime is un
ertain and/or variable but always falls in the interval [75; 100℄).In this example the edge guards sele
ted and unsele
ted represent s
hedul-ing de
isions made at s
heduling events (
alled s
heduling points in the real-timeliterature). These de
isions depend on the available resour
es (pro
essors, busses,et
.) being shared by the tasks.We began our work using an existing linear hybrid automata analysis tool,HyTe
h [4℄, but found ourselves limited to very small models. We developedand implemented a new rea
hability method that was signi�
antly faster, morenumeri
ally robust, and used less memory. However, our prototype tool allowsonly
onstant rates (not rate ranges) and does not provide parametri
 analysis.Using this new rea
hability pro
edure we were able to a

omplish one ofour goals: the modeling and veri�
ation of a pie
e of real-time software. Wedeveloped a hybrid automata model for that portion of the MetaH real-timeexe
utive that implements unipro
essor task s
heduling, time partitioning anderror handling. Results of this work are presented in [9℄.Our hybrid automata model was not developed using a separate modelinglanguage. Instead, statements were added to the
ode to generate pie
es of themodel as subprograms were unit tested. When unit testing of all subprogramswas
ompleted, the
omplete system model was then subje
ted to rea
habilityanalysis. This provided a high degree of tra
eability between
ode and model.The
onditions we
he
ked during rea
hability analysis were that all deadlineswere met whenever the s
hedulability analyzer said an appli
ation was s
hedu-lable; no a

essed variables were un
onstrained (unde�ned) and no invariantswere violated on entry to a region; and no two tasks were ever in a semaphorelo
king state simultaneously. Assertion
he
ks appearing in the
ode were also
aptured and veri�ed in the model.We dis
overed nine defe
ts in the
ourse of our veri�
ation exer
ise. In ourjudgement, three of these would have been almost impossible to dete
t by test-ing due to the multiple
arefully timed events required to produ
e erroneousbehavior.

5There are limits on the degree of assuran
e that
an be provided, but in ourjudgement the approa
hmay be signi�
antly more thorough and signi�
antly lessexpensive that traditional testing methods. This result suggests the te
hnologyhas rea
hed the threshold of pra
ti
al utility for the veri�
ation of small amountsof software of a parti
ular type.4 Fault-Tolerant Ethernet Proto
olLarge industrial
ontrol systems require highly reliable
ommun
ation servi
es,espe
ially in
hemi
al pro
essing appli
ations. We have developed a Fault-TolerantEthernet (FTE)
ommuni
ation network for industrial
ontrol appli
ations. Thenetwork is
omposed of dual redundant LANs implemented with standard
om-mer
ially available hardware and software drivers. It is transparent to
ontrolappli
ations, both in terms of appli
ation
oding and
ommuni
ation laten
y.The original FTE proto
ols performed failure dete
tion and re
overy for sin-gle point of network failure. We used the Spin model
he
ker [5℄ to produ
e asimple model of the dual LAN fault dete
tion algorithm and verify the
orre
t-ness of the initial version of the proto
ols. We found one signi�
ant error andsome minor ambiguities and potential design errors that were addressed in the�nal design and implementation of the system.We �rst
onstru
ted a single node model to verify that faults are
orre
tlydete
ted by the fault dete
tion algorithm, and that single message losses aretolerated. The model
onsisted of four pro
esses: the two LANs, a state broad-
ast pro
ess (sends pairs \I'm alive" messages on the two LANs), and the faultdete
tion algorithm.Faults were inje
ted by permitting single message losses in ea
h of the twoLANs. Messages
ould be lost at any time, as long as two
onse
utive messageson a LAN were never lost. In this situation, the fault dete
tion algorithm shouldnever enter its error state.Veri�
ation of this model identi�ed an exe
ution in whi
h the error state
ould be (in
orre
tly) entered, thus exposing an error in the algorithm. Theproblem o

ured be
ause the algorithm assumed that a lost message alwaysresults in the arrival of two
onse
utive messages from the same LAN. However,message ordering is not suÆ
ient to dete
t a missing message.The fault dete
tion algorithm was revised to add a short sequen
e number toea
h \I'm alive" message. The maximum sequen
e number must be larger thanthe number of
onse
utive lost messages that are to be tolerated, so 2 or 3 bitsis suÆ
ient. Ea
h message in a pair is given the same sequen
e number so pairsof messages
an be identi�ed by mat
hing sequen
e numbers. However, Spinidenti�ed an further
ounterexample for the revised design in whi
h alternatingmessages are lost on ea
h LAN. There are never two messages lost in a row oneither LAN, but a
omplete pair of messages is never re
eived.Two possibilities were
onsidered to deal with this situation:1. Revise the robustness requirement to ex
lude the message loss s
enario iden-ti�ed above.

62. Relax the fault dete
tion algorithm to tolerate the message loss s
enario.This
ould be done by
learing the missing message
ounters upon re
eiptof the missing message, even if its sequen
e number does not mat
h.The se
ond approa
h was sele
ted. This is reasonable sin
e messages are infa
t being re
eived from both LANs, so there is no reason to de
lare a LANfailure.5 Time Partitioning in Integrated Modular Avioni
sThe Digital Engine Operation System (DEOS) was developed by Honeywell foruse in our Primus Epi
 avioni
s produ
t line. DEOS supports
exible IntegratedModular Avioni
s appli
ations by providing both spa
e partitioning at the pro-
ess level and time partitioning at the thread level. Spa
e partitioning ensuresthat no pro
ess
an modify the memory of another pro
ess without authoriza-tion, while time partitioning ensures that a thread's a

ess to its CPU timebudget
annot be impaired by the a
tions of any other thread.The DEOS s
heduler enfor
es time partitioning using a Rate Monotoni
Analysis (RMA) s
heduling poli
y. Using this poli
y, threads run periodi
allyat spe
i�ed periods and they are given per-period CPU time budgets whi
h are
onstrained so that the system
annot be overutilized [3℄.Honeywell engineers and resear
hers at NASA Ames
ollaborated to produ
ea model for use with the Spin model
he
ker [7℄. The model was translated froma
ore \sli
e" of the DEOS s
heduler. This model was then
he
ked for violationsof a global time partitioning invariant using Spin's automated state spa
e explo-ration te
hniques. We su

essfully veri�ed the time partitioning invariant overa restri
ted range of thread types. We also introdu
ed into the model a subtles
heduling error; the model
he
ker qui
kly dete
ted that the error produ
ed aviolation of the time partitioning invariant.We attempted to verify the following liveness property, whi
h is ne
essary(but not suÆ
ient) for time partitioning to hold: If the CPU is not s
heduled at100% utilization, then the idle thread should run during every longest period.When veri�
ation was attempted with two user threads and dynami
 thread
reation and deletion enabled, Spin reported a violation. The error s
enarioresults when one of the user threads deletes itself and its unused budget isimmediately returned to the main thread (instead of waiting until the nextperiod). This bug was, in fa
t, one whi
h had been previously dis
overed byHoneywell during
ode inspe
tions (but intentionally not dis
losed to the NASAresear
hers performing the veri�
ation). Therefore, it would seem that model
he
king
an provide a systemati
 and automated method for dis
overing subtledesign errors.Our
urrent time partitioning model does not in
orporate several importanttime-related features of DEOS. These in
lude:{ The existen
e of multiple pro
esses, whi
h serve as (among other things)budget pools for dynami
ally
reating and deleting threads. Time partition-ing must be veri�ed at a pro
ess level as well as a thread level.

7{ Several types of thread syn
hronization primitives provided by DEOS, in-
luding
ounting semaphores, events, and mutexes. These allow threads tosuspend themselves or be suspended in ways not a

ounted for by the
urrentmodel.{ The existen
e of aperiodi
ally running threads, used to servi
e aperiodi
hardware interrupts.We plan to integrate these features into the model and verify that time par-titioning still holds with these features present. The prin
ipal
hallenge here willbe keeping the state spa
e size manageable while in
reasing the
omplexity ofthe model by in
orporating these new features. The
urrent model has alreadyapproa
hed the bounds of exhaustive veri�ability on
urrently available
om-puter systems, although subsequent optimizations have redu
ed the size of themodel somewhat. Furthermore, the
urrent model has only been tested on asmall range of possible thread budgets and periods.6 Syn
hronization Proto
ol for Avioni
s Communi
ationBusASCB-D (Avioni
s Standard Communi
ations Bus, rev. D) is a bus stru
turedesigned for real-time, fault-tolerant periodi

ommuni
ations between Honey-well avioni
s modules. The algorithm we modeled is used to syn
hronize the
lo
ks of
ommuni
ating modules to allow periodi
 transmission. The algorithmis suÆ
iently
omplex to test the limits of
urrently available modeling tools.Working from its spe
i�
ation, we modeled the syn
hronization algorithm andveri�ed its main
orre
tness property using Spin [10℄.The ASCB-D syn
hronization algorithm is run by ea
h of a number of NICs(Network Interfa
e Cards) whi
h
ommuni
ate via a set of buses. For ea
h sideof the air
raft there are two buses, a primary and a ba
kup bus. Ea
h NIC
anlisten to, and transmit messages on, both of the buses on its own side. It
analso listen to, but not transmit on, the primary bus on the other side.The operating system running on the NICs produ
es frame ti
ks every 12.5mse
 whi
h trigger threads to run. In order for periodi

ommuni
ation to oper-ate, all NICs' frame ti
ks must be syn
hronized within a
ertain toleran
e. Thepurpose of the syn
hronization algorithm is to enable that syn
hronization too

ur and to be maintained, within
ertain performan
e bounds, over a widerange of faulty and non-faulty system
onditions.The syn
hronization algorithm works by transmitting spe
ial timing mes-sages between the NICs. Upon initial startup, these messages are used to desig-nate the
lo
k of one NIC as a \referen
e" to whi
h the other NICs syn
hronize;after syn
hronization is a
hieved, the messages are used to maintain syn
hroniza-tion by
orre
ting for the NICs'
lo
k drift relative to ea
h other. The algorithmis required to a
hieve syn
hronization within 200 mse
 of initial startup regard-less of the order in whi
h the NICs start.The syn
hronization algorithm must also meet the 200 mse
 deadline in thepresen
e of malfun
tioning NICs or buses. For example, any one of the NICs

8might be unable to transmit on, or unable to listen to, one or more of the buses;or it might babble on one of the buses, sending gibberish whi
h prevents othermessages from being transmitted; or one of the buses might fail
ompletely atstartup, or fail intermittently during operation.The introdu
tion of an expli
it numeri
al time model, and the
ombinationof that time-modeling
apability and the message-transmission
apability in thesame \environment" pro
ess, allowed us to produ
e a tra
table four-NIC modelthat in
ludes most of the important features of the syn
hronization algorithm.The environment pro
ess en
apsulates all those parts of the system that pro-vide input to the algorithm we wish to model (frame ti
ks, bu�ers, and buses),while the NIC pro
ess en
apsulates the algorithm itself. The interfa
e betweenthe two is simple and lo
alized. It allows faults to be inje
ted and
ompli
atedhardware intera
tions to be added with no
hange required to the NIC
ode.Compli
ated ti
k orderings produ
ed by frames of di�erent lengths are expli
itlyand a

urately represented in the model. Be
ause the interfa
e between environ-ment and NIC in
ludes all the data that must be shared between them, there isno need for global data stru
tures. This allows Spin's
ompression te
hniques toredu
e the memory required to store ea
h state.With this model we were able to verify the key system property as an as-sertion in the environment pro
ess that states that all NICs should be in syn
within 200 mse
 of the startup time.Referen
es1. P. Binns. S
heduling Sla
k in MetaH. Real-Time Systems Symposium, De
ember1996.2. P. Binns. In
remental Rate Monotoni
 S
heduling for Improved Control SystemPerforman
e. Real-Time Appli
ations Symposium, 1997.3. P. Binns. Design Do
ument for Sla
k S
heduling in DEOS. Honeywell Te
hnologyCenter Te
hni
al Report SST-R98-009, September 1998.4. T. Henzinger, P. Ho, H. Wong-Toi. A User Guide to HyTe
h. University of Cali-fornia at Berkeley, www.ee
s.berkeley.edu/~tah/HyTe
h).5. G. Holzmann. The SPIN Model Che
ker. IEEE Transa
tions on Software Engi-neering, vol. 23, no. 5, May 1997, pp. 279-295.6. D. Musliner, E. Durfee, and K. Shin. CIRCA: a
ooperative intelligent real-time
ontrol ar
hite
ture. IEEE Transa
tions on Systems, Man and Cyberneti
s23(6):1561-1574.7. J. Penix, W. Visser, E. Engstrom, A. Larson, and N. Weininger. Veri�
ation oftime partitioning in the DEOS s
heduler kernel. ICSE 2000.8. S. Vestal. An ar
hite
tural approa
h for integrating real-time systems. Workshopon Languages, Compilers and Tools for Real-Time Systems, June 1997.9. S. Vestal. Modeling and veri�
ation of real-time software using extended linearhybrid automata. Fifth NASA Langley Formal Methods Workshop, June 2000 (seehttp://atb-www.lar
.nasa.gov/fm/Lfm2000/).10. N. Weininger, D. Cofer. Modeling the ASCB-D Syn
hronization Algorithm withSpin: A Case Study. 7th International Spin Workshop, September 2000.11. S. Yovine. Kronos: A veri�
ation tool for real-time systems. International Journalof Software Tools for Te
hnology Transfer, vol. 1, no. 1/2, O
t. 1997.

