A formalization of a concurrent object calculus
up to a-conversion

Guillaume Gillard

INRIA Sophia Antipolis

Abstract. We experiment a method for representing a concurrent ob-
ject calculus in the Calculus of Inductive Constructions. Terms are first
defined in de Bruijn style, then names are re-introduced in binders. The
terms of the calculus are formalized in the mechanized logic by suitable
subsets of the de Bruijn terms; namely those whose de Bruijn indices
are relayed beyond the scene. The a-equivalence relation is the Leibnitz
equality and the substitution functions can de defined as sets of par-
tial rewriting rules on these terms. We prove induction schemes for both
the terms and some properties of the calculus which internalize the re-
naming of bound variables . We show that, despite that the terms which
formalize the calculus are not generated by a last fixed point relation,
we can prove the desire inversion lemmas. We formalize the computa-
tional part of the semantic and a simple type system of the calculus. At
least, we prove a subject reduction theorem and see that the specifica-
tions and proofs have the nice feature of not mixing de Bruijn technical
manipulations with real proofs.

1 Introduction

Providing a satisfactory method to encode the binding operators of a program-
ming language when we want to formalize it in a Logical Framework is still a
challenge. Although many different methods have been proposed so far, none
seems completely satisfactory. From de Bruijn codes to higher order encoding
each method has is advantages and disadvantages, its supporters and its detrac-
tors. A major problem raise by all these methods is that theorems and theirs
proofs become highly linked with chosen encoding. In other words, if it is some-
times possible to have specifications and theorems close to the unmechanized
version (which is not the case for de Bruijn encoding), the proof structures are
themselves very different from the informal ones. In this paper, we show that
the method proposed in [Gor94] for representing binders in mechanized logic
can successfully be extended to a large calculus with different kinds of binders.
Beside, we show that, once some work has been done with de Bruijn indices, real
proofs do not manipulate them moreover, they are similar to the unmechanized
ones.

We have chosen to formalize the concg-calculus [GH98|, a concurrent object
calculus consisting of M. Abadi and L. Cardelli’s imperative object calculus impg
[AC96] extended with primitives from the w-calculus [MPW92]. This calculus

was introduced as a possible formalism for modeling computations based on
concurrent processes and objects. We think that formal proofs of properties of
protocols can be realized within proof-assistant if we have good methods for
encoding such calculus. Our choice of this calculus is motivated by its size, its
different kinds of binder and its good expressiveness, thus giving an idea of
the real problems that arise when we encode such formalisms in computational
logics.

The COQ system we use for our implementation is a proof-assistant based
on the calculus of inductive constructions [Wer94], a higher order logic with
dependent types and inductive definitions. All the proofs have been done with
the user-interface CtCoq [BBCT97|. This paper has been written so as to be
understood by people not familiar with the COQ system. We use mathematical
notations instead of the COQ syntax and we only show significant parts of large
COQ encodings. Please refer to [Gil00] for a full presentation of our techniqueal
results.

Organization of the paper: In section 2 we formalize the concs-calculus
in COQ. In section 3 we prove a more powerful induction theorem for the terms
of the calculus which internalizes the renaming of bound names. In section 4
we formalize the semantics of the concg-calculus in COQ and we produce an
efficient induction principle for the semantic relation. In section 5 we give a simple
type system for the calculus and discuss the problems raised by the inversion
lemmas generated by the COQ system on this example. Section 6 presents the
statement and the proof of the subject reduction theorem. Section 7 is a short
discussion about the formalizing technique we used. Finally, section 8 draws
some conclusions.

2 The concg-calculus

This calculus was first introduced by A. Gordon and P. Hankin. It is the im-
perative object calculus impg of M. Abadi and L. Cardelli in which objects are
located at addresses, extended with a parallel composition and the name re-
striction operator from the m-calculus. The reader interested in a more detailed
presentation of this calculus should refer to [GH98|.

2.1 Informal syntax of the calculus

We assume that there are infinite disjoint sets of references, variables and labels.
We distinguish references, representing addresses of stored object (channels in
the m-calculus) from variables, representing intermediate values (variables in the
A-calculus). Let us call both notions names. The expressions of the language are
defined as follows:

In the method £(z)b, and in the expression let = a in b the variable z is
bound in b. In a restriction, (vp).a the reference p is bound in a. The notation
a = b means that the terms a and b are equal up to bound names renaming and
reordering of the labeled components of objects.

Table 1. Syntax of the informal concs-calculus

1 labels
u,v result
X,Y,Z variables
P9 references
a,b,c terms
u,v result
p—d denomination
p.l method select
pl<&(x).b method update
clone(p) cloning
let x =ainb let
alb parallel composition
vp.a restriction
d:= denotations

[li = E(:pl)al iel"n] Obj(-‘:Ct

2.2 de Bruijn specification

We define a de Bruijn syntax (table 2) in which free names n, m are encoded
by named names (reference?). Variables x,y,z are either free variables z,y,x or
de Bruijn variables (dvar i), (dvar j), labels [,l; are named and references p,q
are either free references p,q or de Bruijn references (derf i), (dref j). We assume
there are infinite disjoint sets of references, variables and labels and that equality
is decidable on each of these sets.

Table 2. de Bruijn formalism

DB “x|p|p— ODB|DB.|

DB.l <a, DB | clone(DB) | letay DB in DB | DB DB | vay.DB

ODB™ [|[l: DB ODBa

Except otherwise stated in the sequel of the paper we no longer refer to
references, variables, labels, results of the informal calculus described in 2.1. De
Bruijn terms a,b,c are call dbterm and for readability reasons, var and ref will be
use for free variables and free references respectively in all our formal definitions.

The binding constructors here are < g, letg, (in their second argument) and
the object-constructor ([|a») for de Bruijn variables. The v4, operator is the
only binding constructor for de Bruijn references. Objects are represented by
lists. Although sets seem closer to the idea of objects (a collection of attributes
and methods), we cannot define object as sets because sets in COQ are specified

as predicates, and predicates cannot be used in the type of a constructor of an
inductive set. Moreover, COQ provides an efficient tool for generating induction
scheme for mutual inductive definitions when some type is a list of another '.

Our syntax is a bit more general than the one proposed by A. Gordon for his
concg-calculus in the sense that we allow cloning, method calling, and method
updating not only for results but for all terms of our syntax. This choice was
motivated because dbterm are less nested than they would have been with a de
Bruijn result type. Since the concg-calculus terms will eventually be identified
by an inductively defined subset of dbterm this will not have any consequences
on its formalization in COQ.

Thanks to de Bruijn indices we do not need an alpha-equivalence notion and
a = b means that the dbterm a and b are equal in the sense of the Leibnitz
equality. De Bruijn formalization for binders takes off the syntax its intuitive
meaning. We shall show how to recover it later on (see 2.5).

As we have de Bruijn indices for both references and variables, we define two
degree functions (computing the usual notion of degree for a term with de Bruijn
indices), one for each kind. A dbterm is said to be closed when both degrees are
Zero.

2.3 Function as binders

Abstraction and instantiation functions. We define a variable abstraction
function Abst,. For a given dbterm a, Abst,(a x i) is computed by substituting
in a all the occurrences of the variable z by the de Bruijn variable (dvar i). The
substitution is defined recursively on the dbterms such that the Bruijn indices
substituted is increased by one each time a binder is met. In a dual way, we
define an instantiation function Inst,. Inst,(a i x) is computed by substituting
all the occurrences of (dvar i) in a by the variable z. Similarly, we define Abst,
and Inst, on references.

Functions as constructors We define new functions on dbterms let, res, and
eta behaving like the de Bruijn binding operators except that they use names in
their arguments.

Table 3. Functions as constructor

(res p a) = vap.Abst,(a 0 p) (eta = a) = Absty(a 0 z)

(let © a b) “ letay a in Abst,(a 0 x)

! Using the Scheme tactic

In the following, we shall write let x := a in b for (let x a b), vp.a for (res p a)
and £(z).a for (eta x a). We will also drop the 4 mark in a constructor when it
can be guessed from the context.

2.4 Substitution and a-equivalence

To relegate de Bruijn indices of the underlying terms behind the scene we also
need to define two new substitution functions Subst, and Subst,. Intuitively
these functions are defined to rename free names in dbterms. Their definitions
(see definition table 4) use de Bruijn indices in their bodies but, with some work,
we shall manipulate them without referring to de Bruijn indices (see 3.2). We
write a[z/y], and a[p/q]. for Subst,(a y x) and Subst,.(a g p) respectively.

Table 4. Substitution functions

Subst,(a x y) = Imsty, (Absty(a 0 z) 0 y) Subst,(a q p) = Imst.(Abst.(a 0 q) 0 p)

If we think of the v, let and £ function as constructors and Subst, and Subst,
as renaming functions, we prove that a-equivalent dbterms are encoded in our
formalism by a unique dbterm.

2.5 Formalization of the syntax

The result type (u,v,) is defined as the disjoint union of our free names:

de
result < var | ref

The inductive predicate Term (table 5) defines the subset of dbterm which for-
malizes the concg-calculus. The proof of correctness of this encoding is straight-
forward (omitted) if one thinks of let, res and eta as constructors.

From now on, we shall call Term, a dbterm having the Term property and
write Ya : Term.(P a) as a short hand for Va : dbterm.(Term a) = (P a) in the
translation of our COQ notations. Terms are based on a de Bruijn formalism
but de Bruijn indices are hidden in the syntax by the let, res and eta functions.

3 An induction principle for the concg-calculus

In the sequel, for readability reasons, we only show one (significant) case of the
theorems. A more detailed presentation is available in [Gil00].

Table 5. formalization of the concs-calculus in COQ

Term : dbterm — Prop :=

Resu: Vr:result.(Termr)
| Deno: Vp:ref.Yobj : denotation. (OTerm obj) = (T'erm p — obj)
| Msel: Vi:labels.Vu : result. (Term u.l)
| Mupd: Yu : result.Va : dbterm.Vi : labels.Nx : var.
(Term a) = (Term u.l < £(z).a)
| Clone: Vu : result.(Term (clone u))
| Let: Va,b:dbterm.Nz : var.(T'erm a) = (T'erm b) = (T'erm let z :=a in b)
| Par: Va,b:dbterm.(Term a) = (Term b) = (T'erm a ' b)
| Res: Va:dbtermNp:ref. (Term a) = (Term vp.a)

with
OT'erm : denotation — Prop :=

Mnul: (OTerm [])
| Mocons: Vi : label.Va : dbterm.Yobj : denotation.Vz : var.
(T'erm a) = (OTerm obj) = (OTerm (L : &(z).a :: obj))

3.1 The induction scheme generated by the COQ system

It appears than the induction scheme generated by COQ (table 6) for the pred-
icate Term is not powerful enough for our purpose? .

Table 6. Induction scheme generated by COQ

Term ind:=
VP :dbterm — Prop.

(Vo : varNa,b: Term.(P a) = (P b) = (P let 2 :=ain b)) =

Va,b: Term.(P a b).

For example, it is not clear how one can derive the fact that Terms are closed
under the substitution Subst, and Subst, with it. We shall not be able to deduce
(Term (let x := a in b)[z/y],) from (Term a[z/y],) and (T'erm b[z/y],) because
we have not the necessary informations on z,y and z to compute (let x :=
a in b)[z/y],. In this COQ formalization of the conce-calculus a-equivalence
terms are equal. We want to integrate inside the induction scheme of Term the
fact that bounded names, in Terms, can always be renamed .

2 Actually we need to use the Scheme tactic to generate an efficient principle

3.2 An intermediate induction scheme for Terms

We define a new function length on dbterms which computes the numbers of
constructors appearing in a term. The order <4, induced on dbterms by this
function is well founded and we show that renaming names in a dbterm does
not change its length. Using the general induction theorem for well founded
relation with respect to <jeng¢n We prove a more powerful induction scheme
than Term_ind for the Term relation (table 7).

Table 7. Intermediate induction scheme

Term _length _ind:—
VP : dbterm — Prop.

Vz : varNa,b: Term.(P a) = (¥Yb' : Term. length(b) = length(b') = (P b')) =
(P let z:=ain b)) =

Va,b: Term.(P a b).

With this theorem, as the length of dbterms is invariant for the renaming
functions, we prove that substitution can be propagated inside binders for Terms
if the side conditions are satisfied (see table 8).

Table 8. substitution rewriting rules for the let binder

let_rwl: Va,y,z :varNa,b: Termax #y =z # z =
(let ¢ := a in b)[z/y] = let z := az/y] in blz/y].
let rw2: Vz,y:varVa,b: Term.(let z := a in b)[y/z] = let x := aly/x] in b.

3.3 The full induction scheme for Terms

The use of the length function inside Term_length ind is not satisfactory be-
cause this is not natural. We prove a final induction scheme on Term (table
9) using the Term_length ind theorem and the properties of the substitutions
functions we have deduced from it.

This induction scheme internalizes the property that bounded mames can
always be chosen outside any set of names in the context.

Example: Given a property P on Term, we prove that it holds for all Terms
using the term-induction theorem. In order to prove that (P let x := a in b)
holds, we select a finite set X and try to solve our goal under the assumptions
(P a), (Pb) and x ¢ X. Giving the set X amounts to specify that z is a fresh
variable.

Table 9. Induction scheme for the Term predicate

Term _induction:—
VP :dbterm — Prop.

(Va : Term.(P a) = (3X : set.(Finite X)A
Vz :varVb:Term.z ¢ X = (P b) = (P let z:=ainb))) =

Va,b: Term.(P a b).

4 Semantics of the concg-calculus

The semantics of the calculus is given by a reduction relation and a structural
congruence. The formalization of the reduction rules in COQ is natural and we
can prove an induction scheme which internalizes a-renaming .

4.1 Rules for the semantics

Informal semantics. Terms of the calculus are interpreted either as processes
or as expressions. Expressions and processes are concurrent computations but an
expression is expected to return a result while a process is not. As opposed to
many concurrent calculi the parallel composition (') is not commutative. The
term a I b is an expression in which a and b run in parallel. Its result is the result
returned by b; any result returned by a is discarded. The structural congruence
(=), except from the unusual behavior for (7") is standard. The reduction relation
(—rea) (table 10) is the matching piece to the S-reduction for the A-calculus.
The structural congruence relation allows the rearrangement inside a term so
that reduction may be applied. Please refer to [GH98] for the motivations and
more details on this semantics.

Table 10. Reduction relation: a — b

For the first three rules, let d = [I; = £(x;)bi€"™].

(pr—d)Ppl; — (p—d) T bj[p/z] ifjel.n
(pr—=d) 7P (pl; < &(x)b) = (p—d)rPp ifjel.n

d' = [lj : &(w).b, 1 = £(i)b; €]
(pr—d) T (clone p) = (p—d) P vq.((g—d) " q)if ¢ & fn(d)
let x =pin a — alp/z]

vp.a — vp.a' if a — a
(alb) — (a'Pb) ifa—a
(bPa)— (bPa) ifa—a
letz=ainb—letxz=a"inb ifa—a

a—b ifa=a',b=b",a" — ¥

The notations fn(a) and fv(a) denote respectively the sets of free names
and free variables in the expression a. The expression a[p/x] is the notation for
the substitution of the reference p for each free occurrence of the variable z in
the expression a.

Formalization in COQ. We use two inductive definitions to formalize the
above relation in COQ. The first one (table 11) is a restriction to effective re-
ductions in terms. The second one (table 12) is the complete formalization in
the COQ system of the semantics (proof omitted here). We use this trick to
prevent looping in the proofs. In the sequel of this paper we shall focus on the
first definition.

The COQ formalizations of both relations are the natural translations of the
rules in table 10 into inductive definitions (—,eq and —¢,q;). The — 4 relation

is defined for Terms and not dbterms so, for every dbterm a appearing in the
COQ definition of —,.4 (Term a) must hold.

Table 11. Formalization of the —,.4 relation in COQ

—red: dbterms — dbterms — Prop =

Let_redl: Va: Term.\Np:ref.(let x :==pin a) —,eq alp/z]«

For any given term a, Subst.(a x p), written a[p/z]., is computed by substi-
tuting all the occurrences of the variable = by the reference p in a. In the COQ
system, Subst, must be defined on dbterms and de Bruijn indices are used in the
body of this function. With the help of technical lemmas, we show that Subst.,
restricted to Terms can be manipulated without dealing with de Bruijn indices.

Table 12. Formalization of the reduction relation — in COQ

—ewalt dbterm — dbterm — Prop :=
Eval: Va,a',b,b,: Term.(a =a') = (b=V") = (a' —,eca b') = (@ —cvar b)

4.2 Induction scheme for the semantics

As before, for readability reasons, we only show one (significant) part of the
theorems. Courageous readers could refer to [Gil00] for a more detailed presen-
tation.

We can extend the induction scheme for the —,..4 relation as we did for the
Term predicate. In the induction scheme generated by the COQ system (table
13) we do not have any informations for binded names.

Table 13. —,.4 induction scheme generated by COQ

Red_ind:—
VP :dbterm — dbterm — Prop.

(Vp:refVa,b:Term.(a —,eqa b) = (P a b) = (P vp.a vp.b)) =

Va,b: dbterm.(a —,eq b) = (P a b).

Following the idea of the section 3 we can produce an extended induction
scheme which internalizes the a-renaming of bound names in proofs. By using
the general well founded induction theorem for a suitable order on pairs of dbterm
we prove an intermediate theorem (table 14) in which the length of dbterm is
introduced.

Table 14. —, .4 induction scheme with the length function

Red length ind:—
VP : dbterm — dbterm — Prop.

(Vp:refNa,b: Term.

(Va', b : Term.

length(a) = length(a') = length(b) = length(b') = (a’' —rea b') = (P a' V"))
= (@ —reqa b) = (P vp.a vp.b)) =

Va,b: dbterm.(a —reqa b) = (P a b).

At least, we prove the induction scheme (table 15) in which bounded names
can be chosen outside the set of names in the context. To prove the theorem, we
first need an intermediary lemma stating that —...4 is closed for names renaming.
More precisely, we show that — .4 is closed for names renaming provided that
names are renamed in new names.

Table 15. —,.4 induction scheme

Red induction:=
VP : dbterm — dbterm — Prop.

(Eé.: set.(Finite Q) A
(Vp:ref¥a,b:Term.p ¢ Q = (a —=rea b) = (P ab) = (P vp.avpb))) =

Va,b: dbterm.(a —reqa b) = (P a b).

5 Well-formed terms

The concg-calculus can be typed to distinguish expressions from processes. This
very basic types system has only two types Fxp and Proc standing for expres-
sions and processes respectively. Basically, this typing system only ensures that
proper processes cannot appear in a context expecting an expression and that
references are correctly handled in a term. A term a is defined as an ezpression
or a process if a : Exp and a : Proc, respectively.

5.1 Definition

The typing rules are define in table 16. T stands for either Exp or Proc. The
domain of a term a, dom(a) is the set of the free references representing the
addresses of an object. Please refer to [GH98] for a general overview.

Table 16. The well — formed relation

(Well Result) (Well Clone) (Well Res)
a:T pedom(a)

w: Exp clone(u) : Exp vpa:T
(Well Select) (Well Concur) (Well Update)
a: Exp b: Exp dom(b) =10
u.l: Exp a : Proc ul<=g¢(z)b: Ezp
(Well Let) (Well Par)
a:Exp b:Ezp dom(b)=0 a:Proc b:1T dom(a)Ndom(b) =10
let x=ainb: Exp alb:T

(Well Object)
bi: Exzp dom(b;)) =0 Viel.n

pr[li = c(mi)bjel”"] : Proc

The COQ formalization of the well-formed relation is its natural translation as
an inductive definition well formed, given table 16. well formed is defined for
Term and not dbterms. We must insure than for every term a, (T'erm a) holds

in the COQ definition.

5.2 Inversion

In the activity of proofs, inversion theorems are as important as induction
schemes. In the usual cases, inversion theorems automatically generated by the
proof assistants are those expected because the syntax of the calculi are defined
in terms of a least fixed point. In our formalism, binders are functions on top

Table 17. Formalization of well _ formed in COQ
flag = Exp | Proc
well _formed : dbterms — flag — Prop :=

Well _Res: Va: Term.Np: refNT : flag.(well _formed a T) =
p € dom(a) = (well _formed vp.a T).

of a de Bruijn syntax thus from the equality vp.a = vq.b it is not possible to
deduce than p = ¢ and a = b. If the inversion theorems generated by COQ are
used roughly they introduced news terms not directly related to anything in the
proof. In table 18 we present the inversion theorem for the Well Res constructor
of the well formed property generated by COQ *.

Table 18. Inversion lemma for well formed generated by COQ

VP :dbterm — flag — Prop.

Va: Term.Np:refNT : flag.

(Vg : names Vb : Term. vp.a =vqb= q € dom(b) = (well formed bT)= (P aT))
= (well formed vp.aT)= (Pal).

In a proof in which (well _formed vp.a T) is amongst the assumptions, us-
ing this theorem will not add (well _formed a T') in the hypothesis as expected.
Similarly to induction schemes, the right inversion lemmas must be proved. For-
tunately, it is sufficient to derive a specialized lemma for each constructors of the
inductive definition. Then the COQ system provides tactics to use them prop-
erly?. Because we can produce one lemma for each constructor, their formulation
remains simple (see table 19 as an example).

Table 19. Inversion lemma for the Well_ Res constructor

Lemma well res_inv: VP : dbterm — flag — Prop.
Va : Term.Np:refNT : flag
(p € dom(a) = (well formed aT)= (P aT))= (well formedvp.aT)= (PaTl).

To prove mres inv we use a property stating than if vp.a = vp.b holds then
a = b holds (such properties has to be proved for each of our binders). To com-
plete the proof, we must show that if (well formed a T) holds for a term a

The COQ system generates a general inversion theorem for well formed; this is a
specialized version
* inversion hyp using lemma

then (well formed a[p/q] T') holds for any ¢ and any p such that p ¢ @ for a
finite set Q). In other words, we need to prove than well formed is closed under
reference (name in general) renaming. Again, this is not surprising. This prop-
erty of the relation well formed should also be checked when we are reasoning
up to a-conversion during informal proofs, through this is most often omitted.

6 Subject reduction theorem

We show that well formed terms are closed for the —,..4 relation. The formu-
lation of this theorem (see table 20) is exactly the same as its unmechanized
version appearing in [GH98]. The proof is done by induction on —,.4 using the
extended induction theorem (see table 15). For each induction case, there is an
hypothesis of the form (well formed a T). We use our inversion lemmas to
extract informations on sub-terms of a from it.

Table 20. Subject reduction theorem

Theorem srt:
Va,b: dbterm NT : flag. (well _formed a T) = (a —,eq b) =
(well _formed b T') A dom(a) = dom(b).

The proof of the theorem is very closed to the informal proof with implicit
renamings of bound names. We do not manipulate de Bruijn indices neither are
we doing a-renaming. All the lemmas used during the proof have a semantic
contents.

7 Discussion and related work

The size of the different parts of the COQ code is summarize in the table below.
In the column of Term we consider all the formalizations and proofs necessary
for using the Terms. It includes the properties for the a-conversion and the
renaming, the proofs of the extended induction principles the Term property
most of the lemmas we have proved with the theorem Term induction. We
classify in the column of well formed and —,.4 all the COQ codes which deal
with the corresponding property (induction schemes, inversion lemmas, behavior
of Subst, and dom). The srt column stand for the subject reduction theorem
COQ codes part and the total column include all the previous ones plus some
general lemmas (mainly set theory theorems) which do not use de Bruijn indices.

Term | well formed —,ed | Srt| total
lignes of COQ code | 7 700 2 400 2 500 [1000| 14 600
% of de Bruijn code | 65% 10% 25% - 40%

The percentage of the de Bruijn code in proofs is high during the setting of
this technique. In fact, large de Bruijn codes mainly concern the Abst and Inst
functions. But, once we have completely mastered the behaviors of Terms we do
not use de Bruijn indices.

Given a property P : Term — ... — Term — Prop, we must show that
there exists a finite set X such that m ¢ X = (P ay...a,) = (Pai[m/n]...ay[m/n])
to get an induction principle which internalizes name renaming and the expected
inversion lemmas. Checking that P is closed by renaming of names can be la-
borious in COQ whereas this is assumed for on paper proofs. Moreover, as we
have experimented during this development, it clears the way for further proofs
on the P property.

Related work. Among all the works formalizing the variable-binding oper-
ators in calculi none, as far as we know, uses the technique we have used here.
Daniel Hirschkoff has encoded a polyadic n-calculus with de Bruijn numbers and
proved many bisimulation results [Hir97]. Bruno Barras [Bar95] formalizes COQ
in COQ with de Bruijn indices. In both approaches de Bruijn indices appear in
almost all theorems and specifications. We think this is not natural. L. Henry-
Greéard [Hen98] uses R. Pollack and J. McKinna technique [MP93] to formalize
the m-calculus and prove a subject reduction theorem for it. In this technique,
closer to the on paper formalism, there are two kinds of names, one for free ones
and another for bound one. We think this is not completely natural. J. Despey-
roux has investigated a higher-order approach in which the lambda abstraction
of the logic is used for binding free variables of the calculus [Des|. See [DH94],
for a general approach of this technique in COQ. F. Honsel, M. Miculan and
I. Scagnetto [FI98] have encoded the w-calculus in COQ following a higher or-
der approach. They use Co inductive types in their encoding of bisimulation.
Although second order techniques are very efficient, we think that proofs using
these techniques are very different from proofs on paper.

8 Conclusion and future work

We have formalized a concurrent object calculus in the COQ system with names
in binders using a technique proposed by A. Gordon [Gor94]. We have shown
that defining properties on Terms, namely those who formalize the concg-calculus
in the COQ system, is very natural and easy because we just need to rewrite
them using the COQ syntax. Under the assumption that a given property P
is invariant under the renaming of names, the induction theorem generated by
COQ for P can be strengthened to internalize a-renaming of bound variables.
In spite of our syntax is not generated by a last fixed point we have inversion
lemmas for P but they must be proved. The proofs of these theorems as the
proof of the subject reduction theorem, are de Bruijn indices free. Moreover, the
proofs dealing with real property of the calculus follow the general guideline of
their on paper matching piece.

The main drawback of this approach is that each time we have to define
functions on Terms we have to define them on dbterms first, then prove that

they behave as expected on Terms. We believe that with a good understanding
of the behavior of a function on Terms, it is not hard to give its definition on
dbterms. We claim that this weakness does not overcome the advantages of the
method. In fact, new functions on our syntax will probably use functions we
have already defined, allowing re-use of our COQ proofs (as it is done for the
function Subst, which appears in —,..4).

For property P, the strengthened induction theorems could be a large term.
It is interesting to develop tools for generating it automatically because this
extended induction scheme is mechanically derivable (not provable) from P.
Another reasonable development could be to include tactics for automating, on
Terms, the computation steps of functions. We have done some preliminary work
in this direction.

Acknowledgments 1 specially thank Joélle Despeyroux, my advisor, for en-
lightening discussions about this work.

References

[AC96] Martin Abadi and Luca Cardelli. A Theory of Objects. Monographs in
Computer Science. Springer-Verlag, 1996.

[Bar95] B. Barras. Coq en Coq. Mémoire du DEA informatique, mathématiques et
applications, Ecole Polytechnique, 1995. INRITA research report RR-3026,
October 1996.

[BBCT97] Janet Bertot, Yves Bertot, Yann Coscoy, Healfdene Goguen, and Francis
Montagnac. User guide to the CtCoq proof environment, October 1997. Inria
technical report, RT-0210.

[Des] Joélle Despeyroux. A higher-order specification of the pi-calculus. Presented
at the Modelisation and Verification seminar, Marseille, Dec 98. Submitted
for publication, March.

[DH94] Joélle Despeyroux and André Hirschowitz. Higher-order syntax and in-
duction in Coq. In F. Pfenning, editor, Proceedings of the fifth Int. Conf.
on Logic Programming and Automated Reasoning (LPAR 94), volume 822,
pages 159 173. Springer-Verlag LNAI, July 1994. Also appears as INRIA
Research Report RR-2292 (June 1994).

[FT98] M.Miculan F.Honsell and T.Scagnetto. Pi calculus in (co)inductive type
theories. Technical report, Universita’ di Udine, September 1998.

[GH98] A. Gordon and P. Hankin. A concurrent object calculus: reduction and
typing. In Proceedings of the HLCL’98 Conference. Elsevier ENTCS, 1998.

[Gilo0] Guillaume Gillard. A full formalization of a concurrent object cal-
culus up to alpha-conversion. draft, January 2000. Available at
//ftp-sop.inria.fr/certilab/ps/conc_calculus.ps.

[Gor94] A. Gordon. A mechanisation of name-carrying syntax up to alpha-
conversion. In Proceedings of the 6th int. workshop on Higher Order Logic
Theorem Proving and its Applications, Vancouver, Springer-Verlag LNCS
780, pages 413-425, 1994.

[Hen98] Loic Henry Greard. A proof of type preservation for the pi-calculus in Coq.
Research Report RR-3698, Inria, December 1998. Also available in the Coq
Contrib library.

[Hir97]

[MP93]

[MPW92]

[Wer94]

Daniel Hirschkoff. A full formalization of pi-calculus theory in the Calculus
of Constructions. In Amy Felty and Elsa Gunter, editors, Proceedings of
the International Conference on Theorem Proving in Higher Order Logics,
Murray Hill, New Jersey, August 1997.

James McKinna and Robert Pollack. Pure Type Sytems formalized. In
M. Bezem and J. F. Groote, editors, Proceedings of the International Con-
ference on Typed Lambda Calculi and Applications, pages 289 305. Springer-
Verlag LNCS 664, March 1993.

R. Milner, R. Parrow, and J. Walker. A calculus of mobile processes, (part
I and II). Information and Computation, 100:1 77, 1992.

B. Werner. Une Théorie des Constructions Inductives. PhD thesis, Univer-
sité Paris VII, Mai. 1994.

