
A formalization of a concurrent object calculusup to �-conversionGuillaume GillardINRIA Sophia AntipolisAbstract. We experiment a method for representing a concurrent ob-ject calculus in the Calculus of Inductive Constructions. Terms are �rstde�ned in de Bruijn style, then names are re-introduced in binders. Theterms of the calculus are formalized in the mechanized logic by suitablesubsets of the de Bruijn terms; namely those whose de Bruijn indicesare relayed beyond the scene. The �-equivalence relation is the Leibnitzequality and the substitution functions can de de�ned as sets of par-tial rewriting rules on these terms. We prove induction schemes for boththe terms and some properties of the calculus which internalize the re-naming of bound variables . We show that, despite that the terms whichformalize the calculus are not generated by a last �xed point relation,we can prove the desire inversion lemmas. We formalize the computa-tional part of the semantic and a simple type system of the calculus. Atleast, we prove a subject reduction theorem and see that the speci�ca-tions and proofs have the nice feature of not mixing de Bruijn technicalmanipulations with real proofs.1 IntroductionProviding a satisfactory method to encode the binding operators of a program-ming language when we want to formalize it in a Logical Framework is still achallenge. Although many di�erent methods have been proposed so far, noneseems completely satisfactory. From de Bruijn codes to higher order encodingeach method has is advantages and disadvantages, its supporters and its detrac-tors. A major problem raise by all these methods is that theorems and theirsproofs become highly linked with chosen encoding. In other words, if it is some-times possible to have speci�cations and theorems close to the unmechanizedversion (which is not the case for de Bruijn encoding), the proof structures arethemselves very di�erent from the informal ones. In this paper, we show thatthe method proposed in [Gor94] for representing binders in mechanized logiccan successfully be extended to a large calculus with di�erent kinds of binders.Beside, we show that, once some work has been done with de Bruijn indices, realproofs do not manipulate them moreover, they are similar to the unmechanizedones.We have chosen to formalize the conc&-calculus [GH98], a concurrent objectcalculus consisting of M. Abadi and L. Cardelli's imperative object calculus imp&[AC96] extended with primitives from the �-calculus [MPW92]. This calculus

was introduced as a possible formalism for modeling computations based onconcurrent processes and objects. We think that formal proofs of properties ofprotocols can be realized within proof-assistant if we have good methods forencoding such calculus. Our choice of this calculus is motivated by its size, itsdi�erent kinds of binder and its good expressiveness, thus giving an idea ofthe real problems that arise when we encode such formalisms in computationallogics.The COQ system we use for our implementation is a proof-assistant basedon the calculus of inductive constructions [Wer94], a higher order logic withdependent types and inductive de�nitions. All the proofs have been done withthe user-interface CtCoq [BBC+97]. This paper has been written so as to beunderstood by people not familiar with the COQ system. We use mathematicalnotations instead of the COQ syntax and we only show signi�cant parts of largeCOQ encodings. Please refer to [Gil00] for a full presentation of our techniquealresults.Organization of the paper: In section 2 we formalize the conc&-calculusin COQ. In section 3 we prove a more powerful induction theorem for the termsof the calculus which internalizes the renaming of bound names. In section 4we formalize the semantics of the conc&-calculus in COQ and we produce ane�cient induction principle for the semantic relation. In section 5 we give a simpletype system for the calculus and discuss the problems raised by the inversionlemmas generated by the COQ system on this example. Section 6 presents thestatement and the proof of the subject reduction theorem. Section 7 is a shortdiscussion about the formalizing technique we used. Finally, section 8 drawssome conclusions.2 The conc&-calculusThis calculus was �rst introduced by A. Gordon and P. Hankin. It is the im-perative object calculus imp& of M. Abadi and L. Cardelli in which objects arelocated at addresses, extended with a parallel composition and the name re-striction operator from the �-calculus. The reader interested in a more detailedpresentation of this calculus should refer to [GH98].2.1 Informal syntax of the calculusWe assume that there are in�nite disjoint sets of references, variables and labels.We distinguish references, representing addresses of stored object (channels inthe �-calculus) from variables, representing intermediate values (variables in the�-calculus). Let us call both notions names. The expressions of the language arede�ned as follows:In the method �(x)b, and in the expression let x = a in b the variable x isbound in b. In a restriction, (�p):a the reference p is bound in a. The notationa = b means that the terms a and b are equal up to bound names renaming andreordering of the labeled components of objects.

Table 1. Syntax of the informal conc&-calculusl labelsu,v resultx,y,z variablesp,q referencesa,b,c termsu,v resultp 7! d denominationp:l method selectp:l(�(x):b method updateclone(p) cloninglet x = a in b leta � b parallel composition�p:a restrictiond:= denotations[li = �(xi)ai i21::n] object2.2 de Bruijn speci�cationWe de�ne a de Bruijn syntax (table 2) in which free names n, m are encodedby named names (reference?). Variables x,y,z are either free variables x,y,x orde Bruijn variables (dvar i), (dvar j), labels l,li are named and references p,qare either free references p,q or de Bruijn references (derf i),(dref j). We assumethere are in�nite disjoint sets of references, variables and labels and that equalityis decidable on each of these sets.Table 2. de Bruijn formalismDB def= x j p j p 7! ODB j DB:l jDB:l (db DB j clone(DB) j letdb DB in DB j DB � DB j �db:DBODB def= [] j [l : DB :: ODB]dbExcept otherwise stated in the sequel of the paper we no longer refer toreferences, variables, labels, results of the informal calculus described in 2.1. DeBruijn terms a,b,c are call dbterm and for readability reasons, var and ref will beuse for free variables and free references respectively in all our formal de�nitions.The binding constructors here are(db, letdb (in their second argument) andthe object-constructor ([]db) for de Bruijn variables. The �db operator is theonly binding constructor for de Bruijn references. Objects are represented bylists. Although sets seem closer to the idea of objects (a collection of attributesand methods), we cannot de�ne object as sets because sets in COQ are speci�ed

as predicates, and predicates cannot be used in the type of a constructor of aninductive set. Moreover, COQ provides an e�cient tool for generating inductionscheme for mutual inductive de�nitions when some type is a list of another 1.Our syntax is a bit more general than the one proposed by A. Gordon for hisconc&-calculus in the sense that we allow cloning, method calling, and methodupdating not only for results but for all terms of our syntax. This choice wasmotivated because dbterm are less nested than they would have been with a deBruijn result type. Since the conc&-calculus terms will eventually be identi�edby an inductively de�ned subset of dbterm this will not have any consequenceson its formalization in COQ.Thanks to de Bruijn indices we do not need an alpha-equivalence notion anda = b means that the dbterm a and b are equal in the sense of the Leibnitzequality. De Bruijn formalization for binders takes o� the syntax its intuitivemeaning. We shall show how to recover it later on (see 2.5).As we have de Bruijn indices for both references and variables, we de�ne twodegree functions (computing the usual notion of degree for a term with de Bruijnindices), one for each kind. A dbterm is said to be closed when both degrees arezero.2.3 Function as bindersAbstraction and instantiation functions. We de�ne a variable abstractionfunction Abstv. For a given dbterm a, Abstv(a x i) is computed by substitutingin a all the occurrences of the variable x by the de Bruijn variable (dvar i). Thesubstitution is de�ned recursively on the dbterms such that the Bruijn indicessubstituted is increased by one each time a binder is met. In a dual way, wede�ne an instantiation function Instv. Instv(a i x) is computed by substitutingall the occurrences of (dvar i) in a by the variable x. Similarly, we de�ne Abstrand Instr on references.Functions as constructors We de�ne new functions on dbterms let, res, andeta behaving like the de Bruijn binding operators except that they use names intheir arguments. Table 3. Functions as constructor(res p a) def= �db:Abstr(a 0 p) (eta x a) def= Abstv(a 0 x)(let x a b) def= letdb a in Abstv(a 0 x)1 Using the Scheme tactic

In the following, we shall write let x := a in b for (let x a b), �p:a for (res p a)and �(x):a for (eta x a). We will also drop the db mark in a constructor when itcan be guessed from the context.2.4 Substitution and �-equivalenceTo relegate de Bruijn indices of the underlying terms behind the scene we alsoneed to de�ne two new substitution functions Substv and Substr. Intuitivelythese functions are de�ned to rename free names in dbterms. Their de�nitions(see de�nition table 4) use de Bruijn indices in their bodies but, with some work,we shall manipulate them without referring to de Bruijn indices (see 3.2). Wewrite a[x=y]v and a[p=q]r for Substv(a y x) and Substr(a q p) respectively.Table 4. Substitution functionsSubstv(a x y) def= Instv(Abstv(a 0 x) 0 y) Substr(a q p) def= Instr(Abstr(a 0 q) 0 p)If we think of the �, let and � function as constructors and Substv and Substras renaming functions, we prove that �-equivalent dbterms are encoded in ourformalism by a unique dbterm.2.5 Formalization of the syntaxThe result type (u,v,) is de�ned as the disjoint union of our free names:result def= var j refThe inductive predicate Term (table 5) de�nes the subset of dbterm which for-malizes the conc&-calculus. The proof of correctness of this encoding is straight-forward (omitted) if one thinks of let, res and eta as constructors.From now on, we shall call Term, a dbterm having the Term property andwrite 8a : Term:(P a) as a short hand for 8a : dbterm:(Term a)) (P a) in thetranslation of our COQ notations. Terms are based on a de Bruijn formalismbut de Bruijn indices are hidden in the syntax by the let, res and eta functions.3 An induction principle for the conc&-calculusIn the sequel, for readability reasons, we only show one (signi�cant) case of thetheorems. A more detailed presentation is available in [Gil00].

Table 5. formalization of the conc&-calculus in COQTerm : dbterm! Prop :=Resu: 8r : result:(Term r)| Deno: 8p : ref:8obj : denotation: (OTerm obj)) (Term p 7! obj)| Msel: 8l : labels:8u : result: (Term u:l)| Mupd: 8u : result:8a : dbterm:8l : labels:8x : var:(Term a)) (Term u:l (�(x):a)| Clone: 8u : result:(Term (clone u))| Let: 8a; b : dbterm:8x : var:(Term a)) (Term b)) (Term let x := a in b)| Par: 8a; b : dbterm:(Term a)) (Term b)) (Term a � b)| Res: 8a : dbterm:8p : ref: (Term a)) (Term �p:a)withOTerm : denotation! Prop :=Mnul: (OTerm [])| Mocons: 8l : label:8a : dbterm:8obj : denotation:8x : var:(Term a)) (OTerm obj)) (OTerm (l : �(x):a :: obj))3.1 The induction scheme generated by the COQ systemIt appears than the induction scheme generated by COQ (table 6) for the pred-icate Term is not powerful enough for our purpose2 .Table 6. Induction scheme generated by COQTerm_ind:=8P : dbterm! Prop:� � �h8x : var:8a; b : Term:(P a)) (P b)) (P let x := a in b)i)� � �8a; b : Term:(P a b):For example, it is not clear how one can derive the fact that Terms are closedunder the substitution Substv and Substr with it. We shall not be able to deduce(Term (let x := a in b)[z=y]v) from (Term a[z=y]v) and (Term b[z=y]v) becausewe have not the necessary informations on x; y and z to compute (let x :=a in b)[z=y]v. In this COQ formalization of the conc&-calculus �-equivalenceterms are equal. We want to integrate inside the induction scheme of Term thefact that bounded names, in Terms, can always be renamed .2 Actually we need to use the Scheme tactic to generate an e�cient principle

3.2 An intermediate induction scheme for TermsWe de�ne a new function length on dbterms which computes the numbers ofconstructors appearing in a term. The order �length induced on dbterms by thisfunction is well founded and we show that renaming names in a dbterm doesnot change its length. Using the general induction theorem for well foundedrelation with respect to �length we prove a more powerful induction schemethan Term_ind for the Term relation (table 7).Table 7. Intermediate induction schemeTerm_length_ind:=8P : dbterm! Prop:� � �8x : var:8a; b : Term:(P a)) h8b0 : Term: length(b) = length(b0)) (P b0)i)(P let x := a in b)i)� � �8a; b : Term:(P a b):With this theorem, as the length of dbterms is invariant for the renamingfunctions, we prove that substitution can be propagated inside binders for Termsif the side conditions are satis�ed (see table 8).Table 8. substitution rewriting rules for the let binderlet_rw1: 8x; y; z : var:8a; b : Term:x 6= y) x 6= z)(let x := a in b)[z=y] = let x := a[z=y] in b[z=y]:let_rw2: 8x; y : var:8a; b : Term:(let x := a in b)[y=x] = let x := a[y=x] in b:3.3 The full induction scheme for TermsThe use of the length function inside Term_length_ind is not satisfactory be-cause this is not natural. We prove a �nal induction scheme on Term (table9) using the Term_length_ind theorem and the properties of the substitutionsfunctions we have deduced from it.This induction scheme internalizes the property that bounded names canalways be chosen outside any set of names in the context.Example: Given a property P on Term, we prove that it holds for all Termsusing the term-induction theorem. In order to prove that (P let x := a in b)holds, we select a �nite set X and try to solve our goal under the assumptions(P a), (P b) and x =2 X. Giving the set X amounts to specify that x is a freshvariable.

Table 9. Induction scheme for the Term predicateTerm_induction:=8P : dbterm! Prop:� � �(8a : Term:(P a)) h9X : set:(Finite X)^8x : var:8b : Term: x =2 X) (P b)) (P let x := a in b)i))� � �8a; b : Term:(P a b):4 Semantics of the conc&-calculusThe semantics of the calculus is given by a reduction relation and a structuralcongruence. The formalization of the reduction rules in COQ is natural and wecan prove an induction scheme which internalizes �-renaming .4.1 Rules for the semanticsInformal semantics. Terms of the calculus are interpreted either as processesor as expressions. Expressions and processes are concurrent computations but anexpression is expected to return a result while a process is not. As opposed tomany concurrent calculi the parallel composition (�) is not commutative. Theterm a � b is an expression in which a and b run in parallel. Its result is the resultreturned by b; any result returned by a is discarded. The structural congruence(�), except from the unusual behavior for (�) is standard. The reduction relation(!red) (table 10) is the matching piece to the �-reduction for the �-calculus.The structural congruence relation allows the rearrangement inside a term sothat reduction may be applied. Please refer to [GH98] for the motivations andmore details on this semantics.Table 10. Reduction relation: a! bFor the �rst three rules, let d = [li = �(xi)bi21::ni].(p 7! d) � p:lj ! (p 7! d) � bj [p=xj] if j 2 1::n(p 7! d) � (p:lj (�(x):b) ! (p 7! d0) � p if j 2 1::nd0 = [lj : �(x):b; li = �(xi)bi i2(1::n)�j](p 7! d) � (clone p) ! (p 7! d) � �q:((q 7! d) � q) if q 62 fn(d)let x = p in a! a[p=x]�p:a! �p:a0 if a! a0(a � b) ! (a0 � b) if a! a0(b � a) ! (b � a0) if a! a0let x = a in b! let x = a0 in b if a! a0a! b if a � a0; b � b0; a0 ! b0

The notations fn(a) and fv(a) denote respectively the sets of free namesand free variables in the expression a. The expression a[p=x] is the notation forthe substitution of the reference p for each free occurrence of the variable x inthe expression a.Formalization in COQ. We use two inductive de�nitions to formalize theabove relation in COQ. The �rst one (table 11) is a restriction to e�ective re-ductions in terms. The second one (table 12) is the complete formalization inthe COQ system of the semantics (proof omitted here). We use this trick toprevent looping in the proofs. In the sequel of this paper we shall focus on the�rst de�nition.The COQ formalizations of both relations are the natural translations of therules in table 10 into inductive de�nitions (!red and !eval). The !red relationis de�ned for Terms and not dbterms so, for every dbterm a appearing in theCOQ de�nition of !red (Term a) must hold.Table 11. Formalization of the !red relation in COQ!red: dbterms! dbterms! Prop :=� � �Let_red1: 8a : Term:8p : ref:(let x := p in a) !red a[p=x]�� � �For any given term a, Subst�(a x p), written a[p=x]�, is computed by substi-tuting all the occurrences of the variable x by the reference p in a. In the COQsystem, Subst� must be de�ned on dbterms and de Bruijn indices are used in thebody of this function. With the help of technical lemmas, we show that Subst�restricted to Terms can be manipulated without dealing with de Bruijn indices.Table 12. Formalization of the reduction relation ! in COQ!eval: dbterm! dbterm! Prop :=Eval: 8a; a0; b; b; : Term:(a � a0)) (b � b0)) (a0 !red b0)) (a!eval b)4.2 Induction scheme for the semanticsAs before, for readability reasons, we only show one (signi�cant) part of thetheorems. Courageous readers could refer to [Gil00] for a more detailed presen-tation.We can extend the induction scheme for the !red relation as we did for theTerm predicate. In the induction scheme generated by the COQ system (table13) we do not have any informations for binded names.

Table 13. !red induction scheme generated by COQRed_ind:=8P : dbterm! dbterm! Prop:� � �(8p : ref:8a; b : Term:(a!red b)) (P a b)) (P �p:a �p:b)))� � �8a; b : dbterm:(a!red b)) (P a b):Following the idea of the section 3 we can produce an extended inductionscheme which internalizes the �-renaming of bound names in proofs. By usingthe general well founded induction theorem for a suitable order on pairs of dbtermwe prove an intermediate theorem (table 14) in which the length of dbterm isintroduced.Table 14. !red induction scheme with the length functionRed_length_ind:=8P : dbterm! dbterm! Prop:� � �(8p : ref:8a; b : Term:h8a0; b0 : Term:length(a) = length(a0)) length(b) = length(b0)) (a0 !red b0)) (P a0 b0)i) (a!red b)) (P �p:a �p:b)))� � �8a; b : dbterm:(a!red b)) (P a b):At least, we prove the induction scheme (table 15) in which bounded namescan be chosen outside the set of names in the context. To prove the theorem, we�rst need an intermediary lemma stating that!red is closed for names renaming.More precisely, we show that !red is closed for names renaming provided thatnames are renamed in new names.Table 15. !red induction schemeRed_induction:=8P : dbterm! dbterm! Prop:� � �h9Q : set:(Finite Q) ^(8p : ref:8a; b : Term:p =2 Q) (a!red b)) (P a b)) (P �p:a �p:b))i)� � �8a; b : dbterm:(a!red b)) (P a b):

5 Well-formed termsThe conc&-calculus can be typed to distinguish expressions from processes. Thisvery basic types system has only two types Exp and Proc standing for expres-sions and processes respectively. Basically, this typing system only ensures thatproper processes cannot appear in a context expecting an expression and thatreferences are correctly handled in a term. A term a is de�ned as an expressionor a process if a : Exp and a : Proc, respectively.5.1 De�nitionThe typing rules are de�ne in table 16. T stands for either Exp or Proc. Thedomain of a term a, dom(a) is the set of the free references representing theaddresses of an object. Please refer to [GH98] for a general overview.Table 16. The well� formed relation(Well Result) (Well Clone) (Well Res)u : Exp clone(u) : Exp a : T p 2 dom(a)�p:a : T(Well Select) (Well Concur) (Well Update)u:l : Exp a : Expa : Proc b : Exp dom(b) = ;u:l (&(x)b : Exp(Well Let) (Well Par)a : Exp b : Exp dom(b) = ;let x = a in b : Exp a : Proc b : T dom(a) \ dom(b) = ;a � b : T(Well Object)bi : Exp dom(bi) = ; 8i 2 1::np 7! [li = &(xi)bi21::ni] : ProcThe COQ formalization of the well-formed relation is its natural translation asan inductive de�nition well_formed, given table 16. well_formed is de�ned forTerm and not dbterms. We must insure than for every term a, (Term a) holdsin the COQ de�nition.5.2 InversionIn the activity of proofs, inversion theorems are as important as inductionschemes. In the usual cases, inversion theorems automatically generated by theproof assistants are those expected because the syntax of the calculi are de�nedin terms of a least �xed point. In our formalism, binders are functions on top

Table 17. Formalization of well_formed in COQ�ag def= Exp j Procwell_formed : dbterms! flag ! Prop :=� � �Well_Res: 8a : Term:8p : ref:8T : flag:(well_formed a T))p 2 dom(a)) (well_formed �p:a T):� � �of a de Bruijn syntax thus from the equality �p:a = �q:b it is not possible todeduce than p = q and a = b. If the inversion theorems generated by COQ areused roughly they introduced news terms not directly related to anything in theproof. In table 18 we present the inversion theorem for theWell_Res constructorof the well_formed property generated by COQ 3.Table 18. Inversion lemma for well_formed generated by COQ8P : dbterm! flag ! Prop:8a : Term:8p : ref:8T : flag:h8q : names:8b : Term: �p:a = �q:b) q 2 dom(b)) (well_formed b T)) (P a T)i) (well_formed �p:a T)) (P a T):In a proof in which (well_formed �p:a T) is amongst the assumptions, us-ing this theorem will not add (well_formed a T) in the hypothesis as expected.Similarly to induction schemes, the right inversion lemmas must be proved. For-tunately, it is su�cient to derive a specialized lemma for each constructors of theinductive de�nition. Then the COQ system provides tactics to use them prop-erly4. Because we can produce one lemma for each constructor, their formulationremains simple (see table 19 as an example).Table 19. Inversion lemma for the Well_Res constructorLemma well_res_inv: 8P : dbterm! flag ! Prop:8a : Term:8p : ref:8T : flag(p 2 dom(a)) (well_formed a T)) (P a T))) (well_formed �p:a T)) (P a T):To prove mres_inv we use a property stating than if �p:a = �p:b holds thena = b holds (such properties has to be proved for each of our binders). To com-plete the proof, we must show that if (well_formed a T) holds for a term a3 The COQ system generates a general inversion theorem for well_formed; this is aspecialized version4 inversion hyp using lemma

then (well_formed a[p=q] T) holds for any q and any p such that p =2 Q for a�nite set Q. In other words, we need to prove than well_formed is closed underreference (name in general) renaming. Again, this is not surprising. This prop-erty of the relation well_formed should also be checked when we are reasoningup to �-conversion during informal proofs, through this is most often omitted.6 Subject reduction theoremWe show that well_formed terms are closed for the !red relation. The formu-lation of this theorem (see table 20) is exactly the same as its unmechanizedversion appearing in [GH98]. The proof is done by induction on !red using theextended induction theorem (see table 15). For each induction case, there is anhypothesis of the form (well_formed a T). We use our inversion lemmas toextract informations on sub-terms of a from it.Table 20. Subject reduction theoremTheorem srt:8a; b : dbterm:8T : flag: (well_formed a T)) (a!red b))(well_formed b T) ^ dom(a) = dom(b):The proof of the theorem is very closed to the informal proof with implicitrenamings of bound names. We do not manipulate de Bruijn indices neither arewe doing �-renaming. All the lemmas used during the proof have a semanticcontents.7 Discussion and related workThe size of the di�erent parts of the COQ code is summarize in the table below.In the column of Term we consider all the formalizations and proofs necessaryfor using the Terms. It includes the properties for the �-conversion and therenaming, the proofs of the extended induction principles the Term propertymost of the lemmas we have proved with the theorem Term_induction. Weclassify in the column of well_formed and !red all the COQ codes which dealwith the corresponding property (induction schemes, inversion lemmas, behaviorof Subst� and dom). The srt column stand for the subject reduction theoremCOQ codes part and the total column include all the previous ones plus somegeneral lemmas (mainly set theory theorems) which do not use de Bruijn indices.Term well_formed !red srt totallignes of COQ code 7 700 2 400 2 500 1000 14 600% of de Bruijn code 65% 10% 25% - 40%

The percentage of the de Bruijn code in proofs is high during the setting ofthis technique. In fact, large de Bruijn codes mainly concern the Abst and Instfunctions. But, once we have completely mastered the behaviors of Terms we donot use de Bruijn indices.Given a property P : Term ! : : : ! Term ! Prop, we must show thatthere exists a �nite setX such thatm =2 X) (P a1 : : : an)) (P a1[m=n] : : : an[m=n])to get an induction principle which internalizes name renaming and the expectedinversion lemmas. Checking that P is closed by renaming of names can be la-borious in COQ whereas this is assumed for on paper proofs. Moreover, as wehave experimented during this development, it clears the way for further proofson the P property.Related work. Among all the works formalizing the variable-binding oper-ators in calculi none, as far as we know, uses the technique we have used here.Daniel Hirschko� has encoded a polyadic �-calculus with de Bruijn numbers andproved many bisimulation results [Hir97]. Bruno Barras [Bar95] formalizes COQin COQ with de Bruijn indices. In both approaches de Bruijn indices appear inalmost all theorems and speci�cations. We think this is not natural. L. Henry-Gréard [Hen98] uses R. Pollack and J. McKinna technique [MP93] to formalizethe �-calculus and prove a subject reduction theorem for it. In this technique,closer to the on paper formalism, there are two kinds of names, one for free onesand another for bound one. We think this is not completely natural. J. Despey-roux has investigated a higher-order approach in which the lambda abstractionof the logic is used for binding free variables of the calculus [Des]. See [DH94],for a general approach of this technique in COQ. F. Honsel, M. Miculan andI. Scagnetto [FI98] have encoded the �-calculus in COQ following a higher or-der approach. They use Co inductive types in their encoding of bisimulation.Although second order techniques are very e�cient, we think that proofs usingthese techniques are very di�erent from proofs on paper.8 Conclusion and future workWe have formalized a concurrent object calculus in the COQ system with namesin binders using a technique proposed by A. Gordon [Gor94]. We have shownthat de�ning properties on Terms, namely those who formalize the conc&-calculusin the COQ system, is very natural and easy because we just need to rewritethem using the COQ syntax. Under the assumption that a given property Pis invariant under the renaming of names, the induction theorem generated byCOQ for P can be strengthened to internalize �-renaming of bound variables.In spite of our syntax is not generated by a last �xed point we have inversionlemmas for P but they must be proved. The proofs of these theorems as theproof of the subject reduction theorem, are de Bruijn indices free. Moreover, theproofs dealing with real property of the calculus follow the general guideline oftheir on paper matching piece.The main drawback of this approach is that each time we have to de�nefunctions on Terms we have to de�ne them on dbterms �rst, then prove that

they behave as expected on Terms. We believe that with a good understandingof the behavior of a function on Terms, it is not hard to give its de�nition ondbterms. We claim that this weakness does not overcome the advantages of themethod. In fact, new functions on our syntax will probably use functions wehave already de�ned, allowing re-use of our COQ proofs (as it is done for thefunction Subst� which appears in !red).For property P , the strengthened induction theorems could be a large term.It is interesting to develop tools for generating it automatically because thisextended induction scheme is mechanically derivable (not provable) from P .Another reasonable development could be to include tactics for automating, onTerms, the computation steps of functions. We have done some preliminary workin this direction.Acknowledgments I specially thank Joëlle Despeyroux, my advisor, for en-lightening discussions about this work.References[AC96] Martin Abadi and Luca Cardelli. A Theory of Objects. Monographs inComputer Science. Springer-Verlag, 1996.[Bar95] B. Barras. Coq en Coq. Mémoire du DEA informatique, mathématiques etapplications, École Polytechnique, 1995. INRIA research report RR-3026,October 1996.[BBC+97] Janet Bertot, Yves Bertot, Yann Coscoy, Healfdene Goguen, and FrancisMontagnac. User guide to the CtCoq proof environment, October 1997. Inriatechnical report, RT-0210.[Des] Joëlle Despeyroux. A higher-order speci�cation of the pi-calculus. Presentedat the Modelisation and Veri�cation seminar, Marseille, Dec 98. Submittedfor publication, March.[DH94] Joëlle Despeyroux and André Hirschowitz. Higher-order syntax and in-duction in Coq. In F. Pfenning, editor, Proceedings of the �fth Int. Conf.on Logic Programming and Automated Reasoning (LPAR 94), volume 822,pages 159�173. Springer-Verlag LNAI, July 1994. Also appears as INRIAResearch Report RR-2292 (June 1994).[FI98] M.Miculan F.Honsell and I.Scagnetto. Pi calculus in (co)inductive typetheories. Technical report, Universita` di Udine, September 1998.[GH98] A. Gordon and P. Hankin. A concurrent object calculus: reduction andtyping. In Proceedings of the HLCL'98 Conference. Elsevier ENTCS, 1998.[Gil00] Guillaume Gillard. A full formalization of a concurrent object cal-culus up to alpha-conversion. draft, January 2000. Available at//ftp-sop.inria.fr/certilab/ps/conc_calculus.ps.[Gor94] A. Gordon. A mechanisation of name-carrying syntax up to alpha-conversion. In Proceedings of the 6th int. workshop on Higher Order LogicTheorem Proving and its Applications, Vancouver, Springer-Verlag LNCS780, pages 413�425, 1994.[Hen98] Loïc Henry_Greard. A proof of type preservation for the pi-calculus in Coq.Research Report RR-3698, Inria, December 1998. Also available in the CoqContrib library.

[Hir97] Daniel Hirschko�. A full formalization of pi-calculus theory in the Calculusof Constructions. In Amy Felty and Elsa Gunter, editors, Proceedings ofthe International Conference on Theorem Proving in Higher Order Logics,Murray Hill, New Jersey, August 1997.[MP93] James McKinna and Robert Pollack. Pure Type Sytems formalized. InM. Bezem and J. F. Groote, editors, Proceedings of the International Con-ference on Typed Lambda Calculi and Applications, pages 289�305. Springer-Verlag LNCS 664, March 1993.[MPW92] R. Milner, R. Parrow, and J. Walker. A calculus of mobile processes, (partI and II). Information and Computation, 100:1�77, 1992.[Wer94] B. Werner. Une Théorie des Constructions Inductives. PhD thesis, Univer-sité Paris VII, Mai. 1994.

