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Spelling errors that happen to result in a real word in the lexicon cannot be detected by a con-

ventional spelling checker. We present a method for detecting and correcting many such errors

by identifying tokens that are semantically unrelated to their context and are spelling variations

of words that would be related to the context. Relatedness to context is determined by a measure

of semantic distance initially proposed by Jiang and Conrath (1997).We tested the method on an

artificial corpus of errors; it achieved recall of up to 50% and precision of 18 to 25%— levels that

approach practical usability.

1 Real-word spelling errors

Conventional spelling checkers detect typing errors simply by comparing each token of

a text against a dictionary of words that are known to be correctly spelled. Any token

that matches an element of the dictionary, possibly after some minimal morphological

analysis, is deemed to be correctly spelled; any token that matches no element is flagged

as a possible error, with near-matches displayed as suggested corrections. Typing errors

that happen to result in a token that is a correctly spelled word, albeit not the one that

the user intended, cannot be detected by such systems. Such errors are not uncommon;

Mitton (1987) found that “real-word errors account for about a quarter to a third of all

spelling errors, perhaps more if you include word-division errors”. A fortiori, it is now

common for real-word errors to be introduced by auto-correction mechanisms1 and by� Department of Computer Science, Toronto, Ontario, Canada M5S 3G4; fgh, abmg@cs.toronto.edu
1 An auto-correction mechanism watches out for certain pre-defined “errors” as the user types, replacing
them with a “correction” and giving no indication or warning of the change. Such mechanisms are
intended for undoubted typing errors for which only one correction is plausible, such as correcting
accomodate to accommodate; deliberate misspellings (as in this footnote) are precluded. However, the
‘AutoCorrect’ feature of Microsoft Word 97 contains by default many “corrections” for which other
possibilities are also plausible. For example, wierd is changed to weird, although wired and wield are also
plausible; eyt is changed to yet, although eye is plausible; and Herat is changed to Heart, althoughHerat is
plausibly correct as it stands. Thus, a typing error that could have been subsequently detected by a
spelling-checker may be replaced by a real-word error that can’t be.
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conventional spelling checkers when the user carelessly accepts an incorrect recommen-

dation by the system or inadvertently chooses the wrong correction from a menu. By

contrast, a human proofreader, using linguistic and world knowledge, will usually no-

tice an error of this kind because it will cause the text to be set somehow awry. If the er-

roneous token is of a different part of speech from that intended, then the sentence that

it is in might not be parsable:

Example 1

The instrumental parts were recorded at different times and them [then] later combined

on the master tape to produce special effects.

If the erroneous token is semantically unrelated to the intended one, then the sentence

might not make sense:

Example 2

It is my sincere hole [hope] that you will recover swiftly.

Some typing errors will cause both conditions to occur:

Example 3

We all hole [hope] that you will recover swiftly.

And, of course, some errors result in a perfectly well-formed text, even if they produce

a meaning other than that intended, and hence cannot be detected without knowledge

or inference of the writer’s intention:

Example 4

The committee is now [not] prepared to grant your request.
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See Kukich (1992) for an extensive survey of types of spelling errors and early ap-

proaches to the problem.

In this paper, we will discuss the detection and correction of errors that result in se-

manticanomaly, as in example 2. To distinguish these errors fromthe other kinds,wewill

refer to them, somewhat loosely, asmalapropisms. Strictly speaking, a malapropism is an

amusing substitution, due to ignorance and pretentiousness on the part of the writer or

speaker, of one word for another of similar spelling or sound:2

Example 5

She has reached the pinochle [pinnacle] of success.

For our purposes in this paper, it is immaterial whether the cause of the error is igno-

rance, pretentiousness, poor typing, or careless use of a conventional spelling checker

(and whether or not the error is cause for amusement). Our goal is thus considerably

broader than that of other recent work on real-word errors that aims simply at detecting

occurrences of any of a small, pre-defined set of common errors; see section 7 below for

discussion of this work.

2 Malapropisms as perturbations of cohesion

By their nature, naturally occurring coherent, meaningful texts contain many instances

of the mechanisms of linguistic cohesion, such as word repetitions, coreference, and sets

of semantically related words (Halliday and Hasan, 1976; Hoey, 1991). A coherent text

will naturally refer to various concepts that are related to its topic or topics and hence

are related to one another. The recurrence in a text of lexemes related to a particular con-

2 The term is sometimes used even more loosely; for example, quite a number of the spoken
“malapropisms” attributed to George W. Bush, while possibly both amusing and due to ignorance, are
actually non-word errors (They misunderestimated me; This issue doesn’t seem to resignate with the people) or
other kinds of linguistic or non-linguistic error (Families is .. . where wings take dream; Our nation must come
together to unite); see http://slate.msn.com/Features/bushisms/bushisms.asp.
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cept is often characterizedmetaphorically as a ‘chain’ ofwords running through the text,

linked by lexical and semantic relationships such as literal repetition, coreference, syn-

onymy, and hyponymy (Halliday and Hasan, 1976; Morris and Hirst, 1991; Hoey, 1991).

A coherent text will havemany such lexical chains, each running through part or all of the

text and pertaining to some aspect of the topic or topics of the text; and, conversely, most

contentwords of the textwill bemembers of one ormore chains. Because they are indica-

tive of the structure and content of a text, lexical chains have been applied in computa-

tional linguistics for tasks such as text segmentation (Morris and Hirst, 1991; Okumura

and Honda, 1994), lexical disambiguation (Okumura and Honda, 1994), automatic cre-

ation of hypertext (Green, 1999), and text summarization (Barzilay and Elhadad, 1999);

see Budanitsky (1999) for a detailed review. However, it remains an open research ques-

tion as to just what kinds and degrees of semantic relationship should qualify as links

for a lexical chain; we discuss this issue in a companion paper (Budanitsky and Hirst, in

preparation).

Amalapropism is a perturbation of the cohesion (and coherence) of a text. By defini-

tion, it is semantically inappropriate in its immediate context, and is probably therefore

also semantically inappropriate in the broader context of the text itself. It is therefore un-

likely that amalapropism can be linked into any of the lexical chains of the nearby text; it

will probably bear no semantic relationship to any other word in the text.3 On the other

hand, it is likely (though not assured) that the intendedwordwouldfit into a lexical chain

in the text. Thus the problem of detecting and correcting malapropisms can be cast as the

problem of detecting tokens that fit into no lexical chain of the text and replacing them

3 There are two qualifications to this statement. First, the malapropisms that we are considering are
performance errors — slips in typing. So if the malapropism is instead a competence error and is repeated
within the text — consistently typing pinochle for pinnacle, for example, in the belief that the former is the
correct spelling of the latter — then the malapropisms will form a lexical chain by their repetition. Such a
text would be incoherent but cohesive, and the methods to be discussed below will not apply. Second,
there is actually a mild cognitive bias in performance errors to words that are indeed related to the
intended word or its context (Fromkin, 1980), but we shall ignore this effect here.
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with words for which they are plausible mistypings that do fit into a lexical chain.

This idea was first tried by Hirst and St-Onge (1998), who reported modest suc-

cess; while the system’s performance in both detecting and correcting malapropisms

was well above baseline, it was nonetheless prone to far too many false alarms: for ev-

ery true malapropism that it found, it would flag about ten other tokens that were not

malapropisms at all. It was especially vulnerable to confusion by proper names and by

common words of minimal topical content; for example, it suggested that year was a

mistyping of pear in the context of Lotus Development Corporation, because lotus and pear

are bothhyponyms of fruit and hence could forma lexical chain. One of the serious prob-

lems underlying the system was an inadequate account of semantic relatedness in its

construction of lexical chains. Two non-identical lexemes were considered to be related

if and only if a short path of an allowable shape could be found between their synsets in

the noun portion ofWordNet. Paths could follow any of theWordNet relationships. (The

details of ‘allowable shape’ and requisite shortness are not necessary here; the interested

reader may see Hirst and St-Onge (1998).)

3 A new algorithm for detecting and correcting malapropisms

Wehave developed a new algorithm for malapropismdetection and correction that, like

Hirst and St-Onge’s, is based on the idea of detecting and eliminating perturbations of

cohesion in text. However, the new algorithmdoes not use lexical chains per se; rather, it

treats a text as a bag ofwords (more precisely, as a list of paragraph-sized bags of words).

Forgoing the chain structures enables the search tobe bidirectional insteadof left-to-right

and to wrap around from the end of the text to the start, thereby recognizing the poten-

tial cohesion between introduction and conclusion. In addition, the measure of semantic

relatedness that the algorithm employs can be varied independently, with the scope of

search being a parameter of the algorithm; distances in the text are measured in para-
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graphs rather than sentences; and disambiguation of words may be only partial. In ad-

dition, the new algorithm includes proper-name recognition and addresses problems of

ambiguity in inflectional morphology.

In accordance with the discussion above, the algorithm makes the following as-

sumptions:� A real-word spelling error is unlikely to be semantically related to the text.� Usually, the writer’s intended word will be semantically related to nearby

words.� It is unlikely that an intended word that is semantically unrelated to all those

nearby will have a spelling variation that is related.

In addition, the algorithm requires the definition of two independent mechanisms.

First, it requires a mechanism that, given a word (or any string), returns a list of all the

words in the lexicon for which it is a plausible misspelling— its spelling variations. Such

a mechanism can be found in any conventional spelling checker. In the system to be

described in section 4 below, we define the spelling variations of a word w to be those

words in the lexicon that are derived from w by the insertion, deletion, or replacement

of a single character, or the transposition of two adjacent characters. However, broader

or narrower definitions are possible. For example, one might allow only substitutions

of characters that are close to one another on the keyboard (Al-Mubaid and Truemper,

2000), or take into account the probability of each particular typing error, using the data

of Kernighan, Church, and Gale (1990), or permit phonetic near-matches such as kettle–

cattle (Al-Mubaid and Truemper, 2000).4

4 Some commercial spelling checkers are extremely liberal in their notion of spelling variation, allowing
multiple insertions, deletions, and transpositions, a strategy that taken to extremes could propose any
word for any other. For example, the spelling checker in Microsoft Word 97, given a list of uncommon
names, suggests implausible changes such as these: Procopia to Porkpie, Prunella to Purulent, Philena to

6



Hirst and Budanitsky Correcting Real-Word Spelling Errors

Second, the algorithm requires a mechanism that, given two words, determines

whether or not they are semantically related (or semantically close). It’s important to observe

that semantic relatedness is not just similarity; similar entities are usually assumed to be

semantically related by virtue of their likeness (bank–trust company), but dissimilar enti-

tiesmay also be semantically related by relationships such asmeronymy (car–wheel) and

antonymy(hot–cold), or just by anykind of functional relationshipor frequent association

or co-occurrence of ideas (soap–wash, penguin–Antarctica). Here, we require relatedness

in the broadest sense — pertaining to or associated with the same topic. Nonetheless,

taking relatedness too broadly will result in failing to detect malapropisms; they will be

spuriously found to be related to their context. Wewill discuss a constrainedmeasure of

semantic relatedness in section 4.1 below. A more-general discussion of such measures

and the theoretical issues that they raise is given by Budanitsky (1999) and Budanitsky

and Hirst (in preparation).

In outline, the algorithm for detecting and correcting malapropisms is as follows:

Words are (crudely) disambiguated where possible by accepting senses that are seman-

tically related to possible senses of other nearby words. If all senses of any open-class,

non–stop-list word that occurs only once in the text are found to be semantically unre-

lated to accepted senses of all other nearby words, but some sense of a spelling variation

of that word would be related (or is identical to another token in the context), then it is

hypothesized that the original word is an error and the variation is what the writer in-

tended; the user is warned of this possibility. For example, if no nearby word in a text is

related to diary but one or more are related to dairy, we suggest to the user that it is the

Filename, Pierette to Puerto. (This is in contrast with the auto-correction mechanism in the same software,
whose definition of spelling variation is much too narrow; see footnote 1 above.) Overly broad definitions
will reduce the precision of our algorithm, as it becomes more likely that some spelling variationwill be
wrongly preferred to the original word — see section 6 below. Nonetheless, in practical use, the definition
of spelling variation used with the algorithm should be the same as that used with any associated
non-word spelling corrector or auto-correct mechanism so that the errors that they make can be undone.
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0a. Look for non-word errors in the text, and make corrections (with help from
user).

0b. Identify for consideration all words in the text that are in the lexicon but are
not on the stop-list nor used as (part of) the name of a named entity.

1. Mark a word as confirmed if it occurs more than once in the text, if it occurs in
the text as part of a known phrase, or if, within a window of n paragraphs
(wrapping around to the start or end of the text if necessary), there are one or
more words with a sense that is semantically related to at least one sense of the
word under consideration. When a word is confirmed, remove from
consideration all of its senses that were not involved in its confirmation.

2. If an unconfirmed word w (a suspect) has a spelling variation w0 that would
have been confirmed if it had appeared in the text instead of w, alert the user to
the possibility that w0 was intended where w appears (raise an alarm).

Figure 1
Algorithm for malapropism detection and correction.

latter that was intended. The exact window size implied by “nearby” is a parameter to

the algorithm.

A statement of the algorithm is given in figure 1. We now explain each step in detail.

Step 0: Preprocessing

Steps 0a and 0b of the algorithm are preprocessing. The first substep is correction of

non-word spelling errors (perhaps by a conventional spelling checker). This should oc-

cur before malapropisms are sought (rather than after or in parallel), in order to maxi-

mize the number of words in the text available to check for semantic relatedness to each

word considered by the algorithm.Moreover, aswe observed earlier, it is not unusual for

malapropisms to be introduced during conventional spelling checking, so malapropism

detection should follow that—but see also our remarks in section 8 belowon integration

of the two processes.

The second substep identifies words in the document to check for error by removing

from further consideration those that are not in the lexicon at all and those that are on a
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stop-list.The algorithm, by its nature, applies only towordswhosemeaning ormeanings

are known and have content that is likely to be topical.We therefore exclude closed-class

words and common non-topical words. Closed-class words are excluded as their role in

a text is almost always purely functional and unrelated to content or topic. It is of course

possible that a typing error could turn a highly contentful word into a closed-class word

or vice versa; but the former case will not be considered by the algorithm and the lat-

ter will be considered but not detected. The exclusion of ‘untopical’ open-class words,

such as know, find, and world, is well-precedented in information retrieval. Here, there is

a trade-off betweenmaking the list as short as possible, in order to let as many words as

possible be checked, and making the list as long as possible in order to avoid spurious

relationships, such as the year–pear–Lotus example mentioned above.

Step 1: Suspicion

The first step of the algorithm itself is to confirm as correct any word found to be related

to at least one other word in the text. This relationship can be identity — another occur-

rence of a word with the same lemma— or it can be a semantic relationship to another

word, as discussed above. In searching for an identical token, the entire text is scanned;

but in searching for a semantically relatedword, the scope of the search may be limited to

words that are within the context of the present word—physically not too far away. The

rationale for this is that in a large textwithmany topics, there is too high a chance of find-

ing a spurious semantic relationship between a malapropism and a word in some other

part of the text on a different topic; but this is less likely in the case of identity. (Pollock

and Zamora (1983) found that, with the exception of a handful of frequently misspelled

words,misspellings rarely tend tobe repeated in a document.) Of course, the risk of find-

ing a spurious relationship depends on the nature and length of the text, and different

kinds of text could be treated differently. (In the system to be described in section 4 be-

9



Computational Linguistics Volume 1, Number 1

low, we experimented with search scopes ranging from a single paragraph to the entire

text of a newspaper article.)

When the word under consideration has more than one sense, semantic relation-

ships are sought between all its senses and all the senses of other words in the search

scope. If any relationships are found between the word under consideration and any

others, then only the senses that participate in those relationships are retained for subse-

quent searches. Thus words are, rather roughly, disambiguated or at least partially dis-

ambiguated. For example, if relationships are sought for (senses of) the word file, and a

relationship to the tool sense of the word plane is the only one found, then only the tool

sense of filewill be retained.

In addition to identity and semantic relatedness, we follow St-Onge’s (1995) intu-

ition that the probability of accidentally forming a multiword compound that can be

found in the lexicon (e.g., abdominal cavity, chief executive officer, automated teller machine,

withdrawal symptom) is so low that thewords of any such phrase occurring in the text can

be regarded as mutually confirming.

Any word that cannot be confirmed in this step thus appears unrelated to its context,

andmight therefore be a real-word spelling error. We refer to such words as suspects; but

it should be understood that this, by itself, is not sufficient cause to flag the word as a

likely malapropism. It is not at all unusual for a text to contain such words, especially

if the search scope — the context — is limited to a single paragraph or little more than

that.

Step 2: Detection

To determine whether a suspect is a likely real-word spelling error, we look for positive

evidence: a spelling variation of the suspect that would fit better into context than the

suspect itself does.We therefore generate all spelling variations and for each one, attempt
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to confirm it as in Step 1 above. If at least one spelling variation is confirmed, then we

take this as indicating that the variation is a better fit and hence more likely to be the

intended word. The user is then alerted to this possibility, along with the variation or

variations.

4 A system for detecting and correcting malapropisms

Wehave built and evaluated a prototype system to detect and correct themalapropisms

in our test corpus bymeansof thealgorithmabove. In this section,we explain the compo-

nents of the system, and in the following section, we describe an evaluation of the sys-

tem. Details of the implementation that are not given here are covered by Budanitsky

(1999).

4.1 Semantic relatedness measure

We tried five different measures of semantic relatedness in our system, all of which rely

on a WordNet-like hierarchical thesaurus (Fellbaum, 1998) as their lexical resource. The

measureswere those of Hirst and St-Onge (1998), Jiang andConrath (1997), Leacock and

Chodorow (1998), Lin (1997; 1998), and Resnik (1995). By comparing the performance of

the different measures, which varied widely, we were able to study theories of semantic

relatedness, and we describe this work in a companion paper (Budanitsky and Hirst, in

preparation). Because these issues are orthogonal to malapropism detection, we report

here only our experiments with the best-performing measure, which was that of Jiang

and Conrath.

Jiang and Conrath’s (1997)measure of semantic relatedness (strictly speaking, of se-

mantic distance, the inverse of relatedness) is based on both the hierarchical structure of

a taxonomyand the informationcontent (IC) of its nodes. Given a node c in the hierarchy

(a synset in the case of WordNet), the information content of c is the negative logarithm
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of the probability p(c) of encountering an instance of concept c in a corpus — that is, any
lexeme that maps to c (thewords of the synset) or its hyponyms. Then the relatedness of

two lexemes that map to nodes c1 and c2 in the hierarchy is computed from the informa-

tion content of those nodes and that of their least superordinate (ormost specific subsumer),

lso(c1;c2), the lowest node in the hierarchy that is an ancestor to both. Specifically, Jiang
and Conrath define the semantic distance between a child-node c and its parent-node

par(c) as:
distJC(c; par(c)) = IC(c j par(c)) = IC(c)� IC(par(c)) :

Then the semanticdistance between twoarbitrary nodes c1 and c2 is the sumof the child-

parent distances along the shortest path that connects them, path(c1;c2). Let N(c1;c2) be
the set of nodes in path(c1;c2), including c1 and c2 themselves. Then we have:

distJC(c1;c2) = ∑
c2N(c1;c2)rlso(c1;c2)distJC(c; par(c))= IC(c1)+ IC(c2)�2� IC(lso(c1;c2))= 2 log(p(lso(c1;c2)))� (log(p(c1))+ log(p(c2))) :

Observe that, as a special case, the distance between two words in the same synset is

zero. For a detailed explication and interpretation of the derivation and justification of

Jiang and Conrath’s measure, see Budanitsky (1999).

For example, in WordNet 1.5, the concepts number (‘a sum or total or indefinite

quantity of units or individuals’) and limit/bounds/boundary (‘the greatest possible ex-

tent or degree of something’) are related through their lso, magnitude (‘relative size or

extent’) as shown in figure 2. The probability of encountering an instance of these con-

cepts in the Brown Corpus (see below) is respectively 1:746986�10�3, 9:889191�10�4,
and 3:748222�10�2, implying respective information content of 9:160916, 9:98186, and
4:73765. Hence distJC(number; limit) = 9:160916+9:98186�2�4:73765= 9:667477.
12



Hirst and Budanitsky Correcting Real-Word Spelling Errors

magnitude

extentamount

number limit

Figure 2
Shortest path from number to limit in WordNet 1.5.
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Corpus Following Resnik (1995), we obtained information content values for each node

in WordNet from frequency counts of words in the complete, untagged Brown Corpus.

In their original experiments, Jiang and Conrath used SemCor (Miller et al., 1993), a

sense-tagged subset of the Brown Corpus. Choosing the Brown Corpus over SemCor

essentially means trading away accuracy for size, but, like Resnik, we believe that us-

ing a non-disambiguated corpus constitutes a more general approach. The availability

of disambiguated texts such as SemCor is highly limited, due to the fact that automatic

sense-tagging of text remains an open problem and manual sense-tagging of large cor-

pora is prohibitively labor-intensive. On the other hand, the volume of raw textual data

in electronic form is steadily growing.

Calibrating the measure Because the Jiang–Conrath function returns a numerical measure

of distance on an essentially arbitrary scale, and not the boolean related–unrelated judg-

ment required by the malapropism-detection algorithm, we needed to set a threshold

distance belowwhich two lexemeswould be deemed close enough to be related. We did

this by calibrating the measure against human judgments of semantic relatedness.

The data thatweusedwere obtainedand publishedbyRubensteinandGoodenough

(1965), who asked 51 human subjects to make “synonymy judgments” on 65 pairs of

words. The pairs ranged from “highly synonymous” (gem–jewel) to “semantically unre-

lated” (noon–string). Subjects were asked to rate them on the scale of 0.0 to 4.0 according

to their “similarity of meaning” and ignoring any other observed semantic relationships

(such as in the pair journey–car). Rubenstein and Goodenough’s results are shown in fig-

ure 3; the y-axis shows average similarity rating, and the x-axis shows pairs enumerated

by increasing similarity. Observe the broad gap between pair numbers 37 and 38 that

separates the pairs into a more-similar group and a less-similar group.

To calibrate the Jiang–Conrath measure with this data, we evaluated each of the
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Figure 3
Human judgments of similarity on 65 pairs of words, in order of increasing similarity
(Rubenstein and Goodenough, 1965).
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65 Rubenstein–Goodenough pairs with the measure. The correlation between the mea-

sure and the human similarity judgments was �:781. (The correlation is negative be-
cause semantic distance is inversely related to similarity.) We therefore set the Jiang–

Conrath measure’s threshold of relatedness at the point at which it best separates the

two Rubenstein–Goodenough groups.

4.2 Other components of the system

Lexicon and thesaurus Because the Jiang–Conrath measure requires a hierarchical the-

saurus,weused the nounportionofWordNet 1.5 as our lexicon and thesaurus.However,

we did not limit use of the system to nouns in the text; semantic relatedness is indepen-

dent of part of speech, and the algorithm applies to any non-stop-list word found in the

lexicon. For our prototype system, we relied on the fact that, in English, verb lemmas

and adjectives that are orthographically identical to a noun are almost always closely

semantically related to that noun and so it was immaterial to our algorithm what the

actual part of speech of the token was.5 For example, for the sentence Nadia hoped for a

miracle, we use the noun synset for hope even though it occurs as a verb in the sentence.

While this leads to an obvious limitation on the prototype system — it simply cannot

deal with words that do not have a noun form — there is no reason to think that this

will not be resolved by the advent of a more-integrated hierarchical thesaurus that con-

nects all parts of speech, such as the wordnets of EuroWordNet (Vossen, 1998) and the

proposedWordNet 2.0 (Miller, 2001). See section 6 for additional discussion.

Stop-list and proper name recognition We use St-Onge’s (1995) stop-list of 221 closed-class

and high-frequency words, which is rather small compared to the lists used in systems

for information retrieval and other applications in natural language processing. Thus we

5 There are exceptions to this heuristic, of course. For example, the verb to spell ‘to set down the
orthographic form of a word’ is not related to the noun spell ‘magic incantation’ or ‘period of time’.
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have opted for wider coverage over higher precision.

Proper names are filtered out by a module based on a lexical analyzer that was gen-

erously made available to us by Dekang Lin and Nalante Inc.

Spelling variations To generate spelling variations in Step 2 of the algorithm, we used

code from ispell, an open-source spelling checker whose definition of spelling variation

is as described in section 3 above: a single insertion, deletion, replacement, or transposi-

tion.

Lemmas and surface forms Although different occurrences of the same word in a text are

recognized through their having the same lemma, the original surface forms must also

be stored in order to generate spelling-variations. For example, if the lemma lie surfaces

in the text as the token lain, its spelling variations should include gain, lair, loin, lawn,

plain, etc., and not die, lee, life, lieu, or pie.

5 Evaluation of the system

5.1 Test data

To test the algorithm, we need a sufficiently large corpus of malapropisms in their con-

text, each identified and annotatedwith its correction. Since no such corpus of naturally

occurring malapropisms exists, we created one artificially. Following Hirst and St-Onge

(1998), we took 500 articles from the 1987–89 Wall Street Journal corpus, with lengths

ranging from 90 to 2763 tokens (an average of just over 600 words each), and we re-

placed one word in every 200 with a spelling variation. To be a candidate for replace-

ment, a word had to be present in our lexicon (see section 4.2 above), have at least one

spelling variation that was also in the lexicon, and not be a stop-list word or proper

noun. The corpus contained 107,233 such words, of which 1408 (1.31%) were replaced

by malapropisms — an average of 2.8 malapropisms per article. In 19 articles that con-
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tained few malapropizable words, no word was replaced; these articles were removed

from the data. We generated the spelling variations with the same code from ispell that

we used in the implementation of the algorithm. (This does not lead to circularity, but

merely to a consistent definition of what constitutes a spelling variation.)

In evaluating the system, we tried four different search scopes in determinations

of semantic relatedness: just the paragraph containing the target word (scope = 1); that

paragraph plus one or two adjacent paragraphs on each side (scope = 3 and 5); and the

complete article (scope = MAX).

The baseline algorithmformalapropismdetection is randomchoice (“chance”), flag-

gingwords as real-word spelling errors in the sameproportionas theyare expected tooc-

cur in the data. In addition, we compare our results to those of Hirst and St-Onge (1998).

5.2 Results

Weviewmalapropismdetectionas a retrieval taskandpresent our results below in terms

of precision, recall, and F-measure for each different search scope. In the first step of the

algorithm, we say that a suspect is a true suspect if it is indeed a malapropism and a false

suspect if it isn’t. In the second step, if an alarm word is indeed a malapropism, we say

that the alarm is a true alarm and that the malapropism has been detected; otherwise, it is

a false alarm. Then we can define precision (P), recall (R), and F-measure (F) for suspicion

(S), involving only the first step, and for detection (D), involving both steps, as follows:

Suspicion:

PS = number of true suspects

number of suspects
; (1)

RS = number of true suspects

number of malapropisms in text
; (2)

FS = 2�PS�RS
PS+RS : (3)
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Detection:

PD = number of true alarms

number of alarms
; (4)

RD = number of true alarms

number of malapropisms in text
; (5)

FD = 2�PD�RD
PD+RD : (6)

5.2.1 Suspicion We look first at the results for suspicion — just identifying words that

have no semantically related word nearby. Obviously, the chance of finding some word

that is judged to be related to the target word will increase with the size of the scope of

the search (with a large enough scope, e.g., a complete book, we would probably find a

relative for just about any word). So we expect recall to decrease as scope increases, be-

cause some relationshipswill be found even formalapropisms; that is, therewill bemore

false negatives. But we expect that precision will increase with scope, as it becomesmore

likely that (genuine) relationshipswill be found for non-malapropisms; that is, therewill

be fewer false positives, and this factorwill outweigh the decrease in the overall number

of suspects found.

Figure 4 and the left-hand side of table 1 show suspicion precision, recall, and F for

each of the search scopes.6 The values of precision range from 6.4% to 11.1%, increas-

ing significantly from scope 1 to the larger scopes7 and those of recall range from 23.3%

to 53.6%, decreasing, as expected, with scope (significantly everywhere except from 3

to 5). The value of F ranges between 11.2% and 14.1%, with a significant performance

improvement from scope 1 to scope 5. All these values are significantly (p < :001) bet-
ter than chance, for which all measures are 1.29% (and, of course, this is merely the first

stage of a two-stage algorithm).8Moreover, the value for precision is inherently limited

6 The precision, recall, and F values are computed as the mean values of these statistics across our
collection of 481 articles, which constitute a random sample from the population of allWSJ articles.
7 All the comparisons presented, except those with the baseline, were performed with the Bonferroni
multiple-comparison technique (Agresti and Finlay, 1997), with an overall significance level of .01.
8 To make statisticallymeaningful comparisons possible, we calculated a separate proportion for eachWSJ
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Table 1
Precision, recall, and F after the first step (suspicion) and second step (detection) of the
algorithm, varying the scope of the search for related words to 1, 3, or 5 paragraphs or the
complete news article (MAX).

Suspicion Detection
Scope PS RS FS PD RD FD
1 .064 .536 .112 .184 .498 .254
3 .086 .383 .135 .205 .372 .245
5 .097 .326 .141 .219 .322 .243
MAX .111 .233 .137 .247 .231 .211

Chance .0129 .0129 .0129 .0129 .0129 .0129

by the likelihood, as mentioned above, that, especially for small search scopes, there will

bewords other than our deliberatemalapropisms that are genuinely unrelated to all oth-

ers in the scope.

AlthoughHirst and St-Onge used their own, custom-made,measures of systemper-

formance (see St-Onge (1995)), we can use their figures to compute overall precision,

recall, and F for their system; this is shown in the top row of the left side of table 2.

These can then be compared with the corresponding quantities computed for our sys-

tem (shown in the remaining rows of the left side of the table), which are seen to be far

superior—with the crucial qualification that this comparison bears no statistical signif-

icance because, unlike the figures that we give in table 1, these figures are not based on

random sampling and are but overall proportions (which is why they differ from those

in table 1).

5.2.2 Detection We now turn to the results for malapropism detection, after the second

step of the algorithm. In the detection step, the suspects are winnowed by checking the

spelling variations of each for relatedness to their context. Since (true) alarms can only

result from (true) suspects, recall can only decrease (more precisely, not increase) from

that for suspicion (cf equations 2 and 5). However, if the system is any good, the propor-

article in the test data, by analogy with the method used to compute performance of our system. The mean
was 1.29%, slightly different from the overall proportion of 1.31%.
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Table 2
Overall precision, recall, and F after the first step (suspicion) and second step (detection) of Hirst
and St-Onge’s (1998) system and our system, varying the scope of the search for related words to
1, 3, or 5 paragraphs or the complete news article (MAX).

Suspicion Detection
Scope PS RS FS PD RD FD
Hirst–St-Onge .055 .314 .094 .125 .282 .174
1 .060 .516 .107 .157 .484 .237
3 .079 .373 .131 .199 .365 .258
5 .089 .309 .139 .225 .306 .260
MAX .103 .193 .134 .274 .192 .226

0
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0.2

0.3

0.4

0.5

0.6

1 3 5 MAX
scope

precision
recall

F

Figure 4
Suspicion precision (PS), recall (RS), and F-measure (FS), by scope.
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Figure 5
Detection precision (PD), recall (RD), and F-measure (FD), by scope.

tion of false alarmswill reduce more considerably— far fewer false suspectswill become

alarms than true suspects— thus resulting in higher precision for detection than for sus-

picion (cf equations 1 and 4).

Figure 5 and the right-hand side of table 1 showprecision, recall, and F for detection,

determined by the samemethod as those for suspicion. The values of recall range from

23.1% to just under 50%. While these values are, as expected, lower than those for sus-

picion recall, the decline (of 0.3–3.7 percentage points) is not statistically significant. The

values of precision range from 18.4% to 24.7% increasing, as expected, from suspicion

precision — and the increase (of between 11.9 and 13.6 percentage points) is statistically

significant at each scope. Furthermore, the increase in precision outweighs the decline

in recall, and F, which now ranges from 21.1% to 25.4%, increases by 10.7 percentage

points on average; this increase is also statistically significant for all scopes. Again, even

the lower ends of the precision, recall, and F ranges are significantly (p< :001) better than
chance (which again is 1.29%), and the results are quite impressive (e.g., 18% precision,
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50% recall for scope= 1, which had the highest FD). The right-hand side of table 2 shows
that this performance again far exceeds that of Hirst and St-Onge.

Scope differences As in the suspicion stage, detection recall goes down with scope (sta-

tistically significantly, except from 3 to 5); precision appears to go up, but the increase

is in fact statistically significant only between 1 and MAX. These overall flatter precision

and recall graphs explain the picture for FD: there are no significant differences among

the scopes, and so the F graph is not significantly different from being flat. Thus we can

choose scope = 1 — the smallest, most efficient search — as the optimal scope for our

malapropism detector.

5.2.3 Correction Last, we look at howoften detection of a malapropism led to correction

of the error. Our algorithm is founded on the assumption that a spelling variation that

is more related to context than a malapropism is will be the correct word that the writer

intended (or, if there is more than one such spelling variation, then the correct wordwill

be a member of the set). But it is nonetheless possible that a true malapropism could be

detected and yet the spelling variation (or set of variations) responsible for this detection

is not correct either — in effect, it would be another malapropism, and the detection of

the initial malapropismwould have been just a lucky accident.

In our experiments, we observed few such “lucky accidents”; as expected, in almost

all cases the correct wordwas the spelling variation, or one of the variations, responsible

for detection of themalapropism, and thus would be suggested to the user in an interac-

tive system. Specifically, the proportion of malapropisms for which the correct replace-

ment was found ranged from 8% for scope = 1 to 2.6% for scope = MAX.
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6 Discussion

With a recall of 50%and precision of nearly 20%, our systemapproaches practical usabil-

ity formalapropismdetection and correction. It is not realistic to expect absolute correct-

ness, 100% precision and recall, nor is this level of performance necessary for the system

to be useful. In conventional interactive spelling correction, it is generally assumed that

very high recall is imperative but precision of 25%or even less is acceptable— that is, the

usermay reject more than 3 out of 4 of the system’s suggestionswithout deprecating the

system as ‘dumb’ or not worth using. Very high recall is presently unachievable in un-

constrained, open-ended real-word spelling correction, but it is presently unknown just

what a typical user would consider to be an acceptable performance level. Nonetheless,

the performance of our systemis clearly competitive, especially in light of the constraints

under which it presently operates.

Limitations of WordNet In particular, the performance of our prototype is constrained by

limitations that arise from the use ofWordNet, many of which are likely to be eliminated

or attenuated in the future. For example, we have already mentioned in section 4.2 that

our prototype uses only the noun portion of WordNet (though adjectives and verb lem-

mas are taken as equivalent to any noun towhich they are identical in spelling) and that

a complete systemwould require links between synsets for different parts of speech, as

in EuroWordNet (Vossen, 1998). Another limitation arises from the fine-grainedness of

WordNet; its fine division of word-senses and its inclusion of obscure and metaphoric

senses (not labeled as such) are more likely to lead our algorithm astray than to help it.

The coarse-grainedWordNet presently under development by Mihalcea andMoldovan

(2001) could help alleviate this.
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Efficiency. In our present system,we perform a search inWordNet for each pair of words

whose semantic relatedness we wish to know. If semantic-relatedness measures were

pre-compiled for all possible pairs of synsets in WordNet, this search could be replaced

by table look-up.While the integratedWordNet of the future might contain, say, 100,000

distinct synsets, implying 1010 ordered pairs, in practice the table would be symmetric

and very sparse; if each word has an above-threshold semantic relationship to no more

than a couple of hundred others, and probably fewer, the size of the tablemight not need

to be significantly greater than that of WordNet itself. For more discussion of this point,

see Budanitsky and Hirst (in preparation).

Similarity versus semantic relatedness Although we have spoken throughout the paper of

semantic relatedness, the Jiang–Conrath measure that we have used is actually a mea-

sure of similarity (expressed as its inverse, semantic distance) rather than semantic re-

latedness per se: the only links of WordNet that it uses are hypernymy, hyponymy, and

the implicit link of synonymy. This is in contrast to the measure used by Hirst and St-

Onge, which used all WordNet noun synset links, including antonymy, meronymy, and

holonymy. In our companion paper (Budanitsky andHirst, in preparation), in which we

compare and evaluate a number of measures of semantic relatedness, we explain in de-

tail why the Jiang–Conrath measure is superior overall to the Hirst–St-Onge measure,

even though it will not find non-hypernymic semantic relationships (such as yacht–keel)

that would clearly be helpful in our task. But regardless of which WordNet relation-

ships are and aren’t used, semantic relationships that do not appear in WordNet at all,

especially those that are merely matters of typical association (e.g., penguin–Antarctica)

will not be found. EuroWordNet (Vossen, 1998) employs additional lexical relationships,

such as non-factitive causality (search–find), that might begin to help with this. In the

companion paper, we discuss this matter, including consideration of the effects of using
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a Roget-style thesaurus in place of WordNet. Here, it suffices to point out that because

the essence of our method lies in a sensitivity to cohesion and perturbations of cohesion,

the success of its performance depends on having an excellent measure of semantic re-

latedness. The Jiang–Conrathmeasure forWordNet has donewell, but there is stillmuch

room for improvement.

Setting the threshold of relatedness The algorithm treats semantic relatedness as boolean:

two words are either related or they aren’t. So if the underlying measure of relatedness

is a continuous function (and most of the measures that have been proposed are — see

Budanitsky (1999)), then it is necessary to find the breakpoint on the function at which

relatedness is separated from unrelatedness. We calibrated the Jiang–Conrath measure

with data on human judgments of “similarity of meaning” from Rubenstein and Good-

enough’s experiments, taking the breakpoint to correspond with that observed in their

data. This was justified by the strong correlation that we found between the measure

and the human judgments. But the correlationwas by nomeans perfect; theRubenstein–

Goodenough dataset is very small; and of course, similarity of meaning is not the same

thing as semantic relatedness. However, there is at present no large dataset of human

judgments of semantic relatedness and no better way to calibrate a computational mea-

sure.

Proper names Last, our method is limited by its inability to use proper nouns in its con-

siderations of semantic relatedness. As we pointed out in section 2, misleading proper

names (such as Lotus Development Corporation) could get Hirst and St-Onge’s system into

seriousdifficulty, and for that reasonwesimply excluded them from consideration in our

system. But this is also unsatisfactory; many company names contain words used with

their ordinarymeaning that are potentiallyhelpful in our task— for example,United Par-

cel Service—and it would be helpful to have somemethod of identifying such words. In
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addition, manywidely known brand names carry meaning that we could usefully relate

to otherwords — for example,McDonald’s–hamburger; Visa–MasterCard–credit—and the

same is true of the names of well-known places and people, some of which are indeed

listed inWordNet (e.g., New York, Statue of Liberty, Bill Clinton). But any thesaurus thatwe

choose will contain comparatively few proper nouns, and a topical supplement would

be desirable.

Limitations of our method of evaluation In addition to limitations in the method itself, our

method of evaluation also has its limitations: the use of artificial test data and our some-

what narrow definition of “spelling variation”. The need for artificial data is obvious:

there is no large-enough, naturally occurring annotated corpus of malapropisms. But,

following Hirst and St-Onge, we chose theWall Street Journal as the basis for our corpus

merely as amatterof convenience. Thus our results do not necessarily hold for other gen-

res of text. The malapropism-insertion rate of one word in 200 was an arbitrary choice

that seemed“sparse enough” to prevent themalapropisms interacting with one another.

Inserting toomanymalapropisms (oneword in ten, say)wouldbe unrealistic andwould

not just perturb the cohesion of the text but completely destroy it, undermining the very

basis of the algorithm. Thus there is an underlying assumption that humans, likewise,

do not normally make malapropisms so frequently as to render their text wholly inco-

herent.

Our results are in part dependent upon the definition of “spelling variation” that

we chose— that used by the open-source spelling checker ispell. Clearly, the broader the

definition, the greater the chance of false alarms and the less well the algorithmwill per-

form. (In the limit, any word could be a spelling variation of any other, so a spurious

connection could always be found.) We could not try our algorithm with the extremely

liberal definition of spelling variation that is used in Microsoft Word (see footnote 4) as
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this is proprietary information, but our results would almost certainly be poorer. How-

ever, this must be seen as a weakness of Word’s overly broad definition, not of our algo-

rithm.

7 Related research

Kukich (1992) reviews early approaches to the detection of real-word spelling errors;

such techniques included looking for unlikely part-of-speech bigrams (Atwell and El-

liott, 1987), and looking for unlikely word trigrams (Mays, 1991). Some of the more re-

cent work on spelling correction has focused on smarter identification of non-word er-

rors (Zhao and Truemper, 1999), the use of syntax (Vosse, 1994; Zhao and Truemper,

1999), andmethods for improving the suggested corrections offered for non-word errors

(Mc Hale and Crowter, 1996; Agirre, Gojenola, Sarasola, and Voutilainen, 1998).

Much recent work specifically on real-word spelling correction, especially that of

Golding and colleagues (Golding and Roth, 1996; Golding and Schabes, 1996; Golding

and Roth, 1999) on methods for what they call “context-sensitive spelling correction”,

has viewed the task as one of “word disambiguation” (Golding and Roth, 1996). Am-

biguity among words is modeled by pre-specified confusion sets: a confusion set C =fw1; : : :;wng means that each word wi 2 C “could mistakenly be typed” (Golding and
Schabes, 1996) when another word w j 2Cwas intended— for example, fprincipal, prin-
cipleg. Given an occurrence of a word fromC in the text, then, the task is to decide, from
the context, which wk 2C was actually intended. The specific techniques of addressing
the issue are what distinguish the methods.WinSpell (Golding and Roth, 1996; Golding

and Roth, 1999) uses a machine-learning algorithm in which weights are updatedmulti-

plicatively and members of confusion sets are represented as clouds of “simple and slow

neuron-like” nodes that correspond to co-occurrence and collocation features. TriBaySpell

(Golding and Schabes, 1996) combines a part-of-speech trigram method and a Bayesian
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hybrid method from Golding (1995), both statistical in nature: the trigrammethod relies

on probabilities of part-of-speech sequences and fires for confusion sets whose mem-

bers would differ as parts of speech when substituted in a given sentence (e.g., fhear,
hereg, fcite, sight, siteg, and some cases of fraise, riseg); the Bayesian hybrid method re-
lies on probabilities of the presence of particular words, as well as collocations and se-

quences of part-of-speech tags, within a window around a target word and is applied

in all the other cases (e.g., for confusion sets like fcountry, countyg and (most cases of)fpeace, pieceg).When testedon 21 confusion sets (takenmostly from the list of commonly
confusedwords that is given as an appendix of the Random House Unabridged Dictionary

(Flexner, 1983)), these methods were correct, on average, 93% to 96.4% of the time, com-

pared with a baseline of 74.8% by choosing the most frequent member of the confusion

set (Golding and Roth, 1999).

Other researchers have also used the confusion set model of correction, but with

other disambiguationmethods. Mangu and Brill (1997), put off by the idea of extracting

“large sets of opaque features and weights”, as in the Golding methods, applied data-

driven transformation-based learning to “automatically learn simple, small ... sets” of rules

for correcting probable instances of confusion-set errors. The rules acquired were in-

tended to account for transformations that correspond to co-occurrences, collocations, and

collocations with wildcards. An example of a rule is “Change except to accept if the word

three before is he and the immediately preceding word is not.” The method was tested

on 14 confusion sets, with results that were “comparable” to those of Golding and col-

leagues despite the relative simplicity of the method. Jones and Martin (1997) applied

latent semantic analysis (Landauer, Foltz, and Laham, 1998) to the task of discriminat-

ing members of confusion sets. Treating sentences as documents and words andword bi-

grams (stemmedandweighted) as terms, they constructed a separate predictor space for

each confusion set, then formed projections of a test sentence onto the space (by comput-
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ing a weighted average of its term vectors), and chose the member of the confusion set

whose vector is closest (in the Euclidean sense). Testing the method with 18 of the con-

fusion sets that Golding and colleagues used, they found the results to be “competitive”

with those of TriBayes.

One advantage of these machine-learning–based confusion-set methods over se-

mantic methods such as ours is that they can handle function-word and low-semantic-

content–word errors with apparent ease, simply by considering confusion sets such asfthan, theng and fto, toog. Furthermore, they are not restricted to spelling variations:famount, numberg is a perfectly valid confusion set. Their principal drawback, however,
is that all the confusion sets must be defined in advance: they can look only for specific

errors that they know about ahead of time. Thus the process of detection is reduced to

what might be termed verification: a word will be checked for being an error only if it

belongs to a confusion set; moreover, every occurrence of such a word will undergo an

attempt to be corrected (i.e., its confusions will be considered in its place every time the

word is encountered).

Al-Mubaid and Truemper (2000) present a method that is based on the classification

of lexical context. Their systemfindswhat they call “inadvertent semantic errors”— that

is, slips in typing orperformance errors rather than competence errors; like our system, it

will be misled by consistent mistakes. The method is quite complex, but in outline their

idea is as follows. In the training phase, deliberate real-word spelling errors are intro-

duced into a “training text”. Each word in the text is characterized by a vector that repre-

sents its immediate context (�2 tokens), and a classifier then derives rules to distinguish
words that are erroneous in their context, as exemplified in the training text, fromwords

that are correct in their context, as exemplified by a separate, unaltered “history text”

from the same domain. The method is limited by the fact that both the target word and

each of its spelling variations must occur at least three times in each of the training and
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history texts. It is therefore unable to derive rules for many words, though it performs

fairly well on those words that it is able to check. Moreover, a separate set of classifica-

tion rules must be derived for each domain (with training times ofmany hours), and the

original history text for each domain must be present along with the classification rules

whenever the system is used to check a text.

8 Conclusion

Themethodof detecting and correcting real-word spelling errors thatwehave presented

in this paper is, of course, a research prototype that still awaits integration with a con-

ventional spelling checker for non-word errors and a suitable user interface in a word-

processor (or similar software) in order to be tested in a realistic setting.While we spec-

ulated above that the performance of our system, in terms of precision and recall, ap-

proaches practical usability, only a trial in an integrated system could test this and per-

haps determine just what level of performance users would find sufficient in order to

gladly use such a system.

In particular, we have not attempted to address issues in the user interface. Conven-

tional spelling checkers have very spare interfaces; typically, the suspect word is high-

lighted in someway and a list of alternatives is presented; it is the user’s job to recognize

whether the original word or one of the alternatives is whatwas intended. An integrated

systemmust be careful to distinguish possible malapropisms from non-word errors, or

else the user is likely to too-rapidly recognize the highlighted word as correctly spelled

andmove on. So somemessage relating to themeaning must be presented; for example:

Wrong word?
Ontologistmeans someone who studies the nature of existence.
Did you mean oncologist, someone who studies or treats cancer?

If WordNet is present in the system anyway, its glosses and other words in the synset
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can be used as the basis for such messages. However, the precise nature of the message

is a matter for study.

By recognizing that malapropisms will usually perturb the lexical cohesion of a

text, we have demonstrated a practical method for detecting and correcting real-word

spelling errors by looking for spelling variations that restore cohesion. Further develop-

ment of the approach will depend, in turn, upon the development of more-appropriate

lexical resources and better models of semantic relatedness.
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