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Abstract

Text mining involves the use of statistical and machine learning techniques to learn

structural elements of text in order to search for useful information in previously

unseen text. The need for these techniques have emerged out of the rapidly growing

information era. Token identification is an important component of any text mining

tool. The accomplishment of this task enhances the functionof diverse applications

involving searching for patterns in textual data.

Several different identification methods have been reported in the literature. HMMs

and PPM models have been successfully used in language processing tasks. They

have also been applied separately to learning-based token identification. Most of

the existing systems are domain- and language-dependent.

In this thesis, we implement a system that bridges the two well known methods

through words new to the identification model. The system is fully domain- and

language-independent. No changes of code are necessary when applying to other

domains or languages. The only thing required is an annotated corpus.

The system has been tested on two corpora and achieved an overall F-measure of76:59% for TCC, and69:02% for BIB. This is not as good as would be expected

from a system which includes language-dependent components. However, our sys-

tem is more generalized. The identification of date has the best result,73% and92%
of correct tokens are identified respectively. The system also performs reasonably

well on people’s name with correct tokens of68% for TCC, and76% for BIB.
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Chapter 1

Introduction

In today’s information age, we have witnessed and experienced an ever increas-

ing flood of information. The Internet makes available a tremendous amount of

information, on an amazing variety of topics, that has been generated for human

consumption. According to Lawrence and Giles (1999),800 million web pages

were publicly indexable in February 1999. However, today’snumber is far greater.

For example the search engine Google claims1; 346; 966; 000web pages as of June

2001.1

Unfortunately, the hundreds of millions of pages of information make it difficult

to find information of interest to specific users or useful forparticular purposes.

The amount of text is simply too large to read and analyze easily. Furthermore,

it changes constantly, and requires ongoing review and analysis if one wants to

keep abreast of up-to-date information. Working in this ever-expanding sea of text

becomes extremely difficult.

In the past, much technological effort has been focused on computer tools that im-

prove the amount of storage and retrieval of information. This results in instant

access to far more information than humans can possibly handle. We have all expe-

rienced frustration when surfing the web with traditional search engines. Immense
1http://www.google.com
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lists of documents are returned. This makes it extremely difficult for users to find

information of interest.

1.1 Text mining

Text mining is about the use of statistical and machine learning techniques to learn

structural elements of text in order to search for useful information in previously

unseen text. It is an extension of data mining, which finds information in structured

database, to the far less structured domain of free text. In other words, it looks

for patterns in text while data mining looks for patterns in data (Witten and Frank,

2000). Text mining may be defined as the process of automatically analyzing text

to extract information that is of interest to a particular user or useful for a particular

purpose. It represents a new perspective to the common problem of finding relevant

information.

Text mining is particularly relevant today, because the enormous amount of infor-

mation is mostly available in text format. According to Tan (1999), approximately,80% of information of an organization is stored in unstructuredtextual forms: re-

ports, e-mails, meeting minutes and so on, although other forms do exist, such as

structured databases, videos and images. Text mining is used to create an envi-

ronment that helps make sense of information that is embedded in text documents,

either within an organization or outside it. Example reasons for using text min-

ing include: creating links between objects that mention the same event such as a

person’s name, extracting metadata for a modern digital library, uncovering a “nar-

rative” in an unstructured mass of text, exploring how a market is evolving, and

looking for more ideas or relations.

Previous work has proven that text mining is possible (e.g.,Sekine, 1998; Borthwick

et al., 1998; Bikel et al., 1999; Bray, 1999). Using text mining tools, people are able

to explore items which consist of one or more words, such as a person’s name and a

2



name of location, in a large collection of documents withouthaving to look through

a great number of files, and to understand the given text in order to extract useful

information from it.

However, text mining is difficult, because text can be in manydifferent styles, such

as names of people, names of organization, names of locations, phone numbers,

fax numbers, money amount, email addresses, web addresses,text tables, captions,

lists, bibliographies, and more. This makes it difficult to design automated systems

to extract information of interest.

1.2 Text mining versus data mining

Data mining works on structured data and extracts information for further use from

such data. In other words, data mining finds patterns and associations between

fields in a relational database—a set of relations. The result of data mining is a rule

(or set of rules) that allows people to predict future valuesof variables; find new

associations between events; or classify data into clusters of related values. Some

data mining systems are limited to work with numerical data,while others use any

structured data—including categorical, time series, and boolean data.

 
 

 
 
 

Potential-Customer 
 
 
 
 
 
 
 
 
 

Married-To 

Husband Wife 

Bob Smith Ann Smith 
Jack Brown Jane Brown 

 
 
 

Person Age Sex Income Customer 

Ann Smith 32 F 10 000 yes 
Joan Gray 53 F 1 000 000 yes 
Mary Blythe 27 F 20 000 no 
Jane Brown 55 F 20 000 yes 
Bob Smith 30 M 100 000 yes 
Jack Brown 50 M 200 000 yes 

Table 1.1: A relational database with two relations.
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Induced Rules 

 
IF Income(Person) ≥ 100 000 THEN Potential-Customer(Person) 
IF Sex(Person) = F AND Age(Person) ≥ 32 THEN Potential-Customer(Person) 

IF Married(Person, Spouse) AND Income(Person) ≥ 100 000 
THEN Potential-Customer(Spouse) 
IF Married(Person, Spouse) AND Potential-Customer(Person) 
THEN Potential-Customer(Spouse) 

Table 1.2: Rules induced by a data mining process from the data in Table 1.1.

For example, Table 1.1 (Dzeroski, 1996) is a relational database, containing two

relations: Potential-Customer and Married-To. Rules induced by a data mining pro-

cess are shown in Table 1.2 (Dzeroski, 1996). The first set of rules is to distinguish

between persons who are potential customers and those who are not. The second

set of rules defines the relation Potential-Customer in terms of itself and the relation

Married-To. The process of rule extraction relies stronglyon the structure of the

relational database.

However, as mentioned above, a large portion of informationappears in textual

form—unstructured data. Therefore, techniques that extract information from such

data become necessary. Text mining is analogous to data mining in that it uncovers

relationships in information. However, unlike data mining, text mining works on

information stored in a collection of text documents.

Text documents, the raw material of text mining, are unstructured, because they

contain no predefined relationships between words or phrases when they are stored

on a computer. Given the text document as shown in Figure 1.1,one can hardly find

relations between names of people, “Guy Kawasaki”, “William A. Law”, “Hewlett”

and “Packard”, or dates, “12Jul98” and “14Jun98”, and theirsurrounding words.2

In contrast, relational databases have a schema that describes the meaning of the

data source. However, text mining aims at finding all patterns of interest in such

text data.
2Here and later, textual examples are all taken from the available corpora.
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Somewhat related, there was some interesting commentary about Guy Kawasaki in the
San Jose Mercury News ”West” magazine insert on 12Jul98, following up on a 14Jun98
profile article. Kawasaki has written books about software evangelism (initially at Ap-
ple), and is now working a ”garage.com” consultancy to help small companies grow and
then get venture funding. Reader William A. Law notes the irony, that ”Hewlett and
Packard actually *built* something in their garage.” Kawasaki is a salesman looking for
a product he can market – preferably a success-bound companythat doesn’t need much
evangelizing. He lives in a mansion in Atherton; drives a Mercedes, Suburban, and Land
Rover; dines at Il Fornaio; and worries that he hasn’t ”hit the multimillion-dollar big
time” yet and that he doesn’t have time to be with his kids. Readers suggest that he sell
the physical assets, move to a tract house in San Jose, and ”kick back with the kids.”
He’s had enough success for most people, and there’s more to life than social network-
ing to find the next big deal. Silicon Valley has too many people on this ”self-indulgent
treadmill.”

Figure 1.1: A fragment of text documents.

In conclusion, text mining is similar to data mining in termsof dealing with large

volumes of data, and both fall into the information discovery area. The difference

between them is that text mining is looking for patterns in unstructured text data,

whereas data mining extracts patterns from structured data. Data mining is more

mature, while text mining is still in its infancy.

1.3 Token identification

Token identification is an important component of any text mining tool. It involves

identifying certain kinds of terms in text, such as names of people and locations,

whether or not these items occur in earlier text. A token consists of one or more

words. The task of token identification is to match tokens to their semantic class—

type. Example classes are name, location and organization.

Several researchers have reported token identification systems (e.g. Appelt et al.,

1993; Sekine, 1998; Borthwick et al., 1998; Bikel et al., 1999; Bray, 1999), includ-

ing hand-crafted systems and ones that use machine learning. Many of them rely on

a specific domain, and extra work needs to be done to apply themto other domains

or languages.
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The use of machine learning for token identification not onlysaves human devel-

opment effort, but also affects retargetability and generality. Retargetability means

that applying an existing technique to a new domain should not require code mod-

ification; at most, some feature modification is required. Interms of generality, the

system should be able to handle a wider range of domains and beless language–

specific.

1.3.1 Task and definition

Token identification involves finding, in unseen text, all instances of tokens whose

type is determined by training text. It takes place in two steps: first find tokens of

interest and then assign a type to each of them. Tokens of interest are distinguished

by inserting start token and end token labels before and after each token, where the

label itself represents the token type. This process is called mark-up.

The token identification system produces a single, unambiguous type for any rele-

vant string in the text. The only insertions allowed during processing are start and

end labels, which are placed in angle brackets. No extra symbols are to be inserted,

like white spaces, carriage returns and punctuations.

The text after mark-up has the following form:<token type>text-string</token type>.

For example:<n>Michael Hucka</n> recommends the following ...

where n is a tag that represents a person’s name.

The need to identify token types has two aspects: the identification of known tokens

and the discovery of new tokens. Some systems as described inChapter 2, rely on

6



lists of tokens of different types. To create these lists requires significant effort.

Many applications operate without such a resource. Therefore, tokens need to be

discovered in the text and assigned the types they refer to.

1.3.2 About tokens

Among the different types of tokens, some are more importantthan others. The

names of people, locations and organizations are particularly important for extrac-

tion systems. Typically, one wants to extract events, properties, and relations about

some particular objects, and the objects are usually identified by their names.

Some token types are easy to identify while others are more difficult. For example,

email addresses and URLs can be represented by a few simple patterns. On the

other hand, although names are important, they present somedifficult problems

for identification. For example, token-type ambiguity is quite common in names,

because places are named after famous people, such as “Washington D.C.”, and

organizations are named after their owners or locations, such as “Ford Motors” and

“New York University”. A naming convention is followed by most people, however,

there is no restriction on what words may comprise a name. Forpeople who enjoy

having unconventional and eccentric names, any word can be part of a name. The

name appearing in the following text fragment (McDonald, 1996) is just such a

example,

... Her name was equally preposterous. April Wednesday, shecalled

herself, and her press card bore this out.

1.3.3 Applications

Token identification is crucial for text mining and information extraction, and is

also useful as a preprocessing step for other applications,such as digital libraries,

7



 

 
 

Figure 1.2: Example of application in digital library.

machine translation, information retrieval, and natural language processing.

Digital library

Today’s digital libraries, a burgeoning information organizing technology, normally

keep thousands of documents. For instance, the New Zealand Digital Library 3

allows users to access collections by different ways, such as browsing by title and

author. It would be ideal if names of people in a document could be identified, then
3http://nzdl.org
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Name in English   Mrs. April Wednesday 

Transliterated in Chinese  
Converted to PinYin   Ai Bo Rou Wen Si De  

Translated as regular words  
 

Figure 1.3: Example of machine translation.

links could be inserted automatically to other documents that mention the same

names, for example, documents written by the identified persons.

Figure 1.2 is an illustration of how token identification canbe used in a digital li-

brary, featuring the New Zealand Digital Library. A person’s name, “Charles Dick-

ens”, appears in a document shown in the rear image. Ideally,it would be linked to

all documents written by the same person as shown in the frontimage.

By the same principle, links could be inserted to documents that mention the same

organization, location, email address, URLs and so on. Thismakes browsing a

digital library more flexible and convenient.

Machine translation

In the application of machine translation, token identification is used to create trans-

lations of unknown words or for disambiguation. For example, if a machine trans-

lation system encounters “Mrs. April Wednesday” in the input text and the support-

ing component, token identification, identifies that this string represents a person’s

name, it should not try to translate “April” and “Wednesday”, but translate the pre-

ceding title to the appropriate personal title in the targetlanguage and leave the

name itself intact.

However, if the target language is Chinese, the name can be transliterated or con-

verted to PinYin, rather than being translated as regular words. Figure 1.3 shows

the translation samples, where the transliterated name canbe variant because the

9



transliteration depends on the pronunciations in the original language. However,

exactly matching pronunciations in Chinese do not always exist. The transliteration

is then determined by the person in charge. In addition, tones in Chinese also result

in different characters. The family name translated as regular words has never been

used. And the name in PinYin is just another representation of the transliteration.

Information retrieval

For the same reason, an information retrieval system shouldnot expand words in

name “Hunter Wood”, organization “Tiger Dictionary”, location “Telegraph Hill”

and so on, to all of their morphological variants.

Natural language processing

Creating an annotated corpus is a common requirement in natural language pro-

cessing, and involves tedious labour. According to an experiment performed at

BBN Systems and Technologies (Bikel et al., 1999), annotating a text of650; 000
words, which is about two-thirds the length of one edition ofthe Wall Street jour-

nal, takes an inexperienced annotator 27 days, and 16 days for an experienced one.

Token identification can be used to annotate text automatically, making it easier to

produce a labeled corpus. Conversely, a labeled corpus can be very useful in the

development of token identification systems.

1.4 Corpora

Two different corpora have been used in the experiments described in this thesis.

The first is based on The Computists’ Weekly—formerly known as The Computists’

Communique (TCC).4 This is an on-line weekly publication of Computists Interna-
4http://www.computists.com
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Token type (label) Examples
Dates/time periods (d) August, 15Aug98
Email addresses (e) amin@cse.unsw.edu.au
Fax numbers (f) +44 161 275 6204 Fax
Phone numbers (h) 650-941-0336
Locations (l) Beaverton, Quebec
Sums of money (m) $1K, $100
People’s names (n) Randall B. Caldwell, Vernon Ehlers
Organizations (o) NSF, Santa Fe Institute
Sources, journals, book series (s) Genetic programming book series
URLs (u) http://www.elsevier.nl/locate/parco

Table 1.3: Token types with labels and examples.

tional, a professional association for artificial intelligence, information science, and

computer science researchers. It covers many topics: artificial intelligence, neural

networks, genetic algorithms, machine learning, logic, fuzzy logic, natural language

processing (NLP), machine translation, computational linguistics, information re-

trieval, expert systems and so on. A full-text indexing of issues from April 1991 to

the present is available from the New Zealand Digital Library, where one can search

for particular words that appear in the text, and access publications by title and by

date as well.

The second corpus comes from The Collection of Computer Science Bibliogra-

phies.5 This is a collection of bibliographies of scientific literature in computer sci-

ence from various sources, covering most aspects of computer science. The collec-

tion itself contains more than one million references, mostly from journal articles,

conference papers and technical reports.

1.4.1 TCC corpus

The Computists’ Weekly or TCC corpus is a collection of38 issues selected ran-

domly from an archive in the New Zealand Digital Library. Tendifferent types of

tokens in the collection are manually marked up with XML (eXtensible Mark-up
5http://liinwww.ira.uka.de/bibliography/index.html
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(a) Microsoft is planning a new campus in Mountain View, CA. ”The best expertise
today not only lives in Silicon Valley, it wants to stay living in Silicon Valley.” [AP,
07Aug98. EduP.] (New facilities often mean job opportunities...)
Mindjack is an online magazine about technology, culture, and technosocial is-
sues, available monthly at<<http://www.mindjack.com>. [Donald Melanson<<donald@mindjack.com>, newjour, 11Jun98.]

(b) <o>Microsoft</o> is planning a new campus in<l>Mountain View, CA</l>.
”The best expertise today not only lives in<l>Silicon Valley</l>, it wants to stay
living in Silicon Valley.” [<s>AP</s>, <d>07Aug98</d>. <s>EduP</s>.]
(New facilities often mean job opportunities...)<s>Mindjack</s> is an online magazine about technology, culture, and technoso-
cial issues,<d>available month</d>ly at <<<u>http://www.mindjack.com-</u>>. [<n>Donald Melanson</n> <<<e>donald@mindjack.com</e>>,<s>newjour</s>, <d>11Jun98</d>.]

Figure 1.4: Example of TCC corpus. (a) A section of original text. (b) The same
section marked-up.

language) style tags. They will also be referred asclasses. Table 1.3 lists all the

types with corresponds labels and examples for each type.

Figure 1.4 shows a fragment of the original text and the annotated corpus. Labels

appear only at the beginning and end of tokens in the ten classes. In fact, every

word corresponds to a class. Words that do not belong to any ofthe ten classes are

calledplain text, and they are left unmarked. Therefore, the class sequence of the

first line in Figure 1.4b is:<o><p><p><p><p><p><p><p><l><l><l>
where each pair of brackets, along with the label of class, corresponds to a word in

the text.

There are two things in the figure that need to be mentioned. The first is that one

appearance of “Silicon Valley” in the first fragment is not marked in the corpus.

This is an error and will be discussed in Section 4.3. The second is the way that

email address and URL are represented. As shown in the figure,these both start

with two angled open brackets and end up with one angled closebracket in the

original text. These brackets are retained in the corpus.
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Although the TCC corpus is a free text collection, it contains many semi-structured

items. Figure 1.5 (Witten and Frank, 2000) lists all tokens in just one issue of The

Computists’ Weekly.

1.4.2 Bibliography corpus

The bibliography or BIB corpus is a collection of2400 bibliographies from The

Collection of Computer Science Bibliographies. It has beenformatted as free text,

with tags placed around all the tokens. There are several types of tokens, such as last

name, first name, title, date, year, pages and number in the marked-up text (Yeates

et al., 2001).

Original marker Token type (label)
publisher publisher (b)
pages page (g)
address location (l)
title title (t)
journal source (s)
booktitle
date
month date (d)
year
name
first name (n)
last
school
organization organization (o)
institution

Table 1.4: Token types in BIB corpus.

Because the undertaken study does not consider hierarchical structure, the corpus

has been modified. Figure 1.6 shows two entries in different formats, where (b) is

the original marked-up records of (a), and (c) is the modifiedversion in which all

unrelated tags are deleted and the remainders are changed totheir corresponding

labels. Table 1.4 shows the changes from the original tags tothe remaining labels.
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People’s names (n)  Dates/time periods (d)  Email addresses (e)  Locations (l) 

Al Kamen 30Jul98 amin@cse.unsw.edu.au Beaverton 
Barbara Davies 31Jul98 bonabeau@santafe.edu Berkeley 
Bill Park 02Aug98 booker@mitre.org Britain 
Bruce Sterling 04Aug98 cbd-support@gpo.gov Canada 
Ed Royce 05Aug98 erricos.kontoghiorghes@info. unine.ch Cleveland 
Eric Bonabeau 07Aug98 espaa@soc.plym.ac.uk Italy 
Erricos John Kontoghiorghes 08Aug98 hermes@iway.fr Montreal 
Heather Wilson 09Aug98 koza@cs.stanford.edu NM 
John Holland 10Aug98 koza@genetic-programming. org Norman 
John R. Koza  11Aug98 kung-kiu@cs.man.ac.uk Providence, RI 
Kung-Kiu Lau 13Aug98 l.jain@unisa.edu.au Quebec 
Lakhmi C. Jain 14Aug98 mzemanko@nsf.gov Silicon Valley 
Lashon Booker 15Aug98 rbcaldwell@delphi.com Stanford 
Lily Laws August 18, 1998 ricos@dcs.qmw.ac.uk US 
Maria Zemankova 01Sep98 s.l.robinson@aston.ac.uk Vienna 
Mark Sanford 15Sep98 scistra@frodo2.cs.sandia.gov the Valley 
Martyne Page 15Oct98 simon.taylor@brunel.ac.uk  
Mike Cassidy 31Oct98 thclax00@ukcc.uky.edu  Phone numbers (p) 
Po Bronson 10Nov98 tolk@cs.tu-berlin.de 650-941-0336 
Randall B. Caldwell 01Dec98 zoran@eecs.wsu.edu (703) 883-7609 
Robert L. Park 01Apr99   +44 161 275 5716 
Robert Tolksdorf Nov97  Organizations (o) +44-1752-232 558 
Sherwood L. Boehlert Jul98 ACM  
Simon Taylor Aug98 Austrian Research Inst. for AI  Fax numbers (f) 
Sorin C. Istrail Mar99 Bureau of Labor Statistics 650-941-9430 fax 
Stewart Robinson August CRC Press +44 161 275 6204 Fax 
Terry Labach July Case Western Reserve U. (703) 883-6435 fax 
Vernon Ehlers  Spring 1999 Fraunhofer CRCG +44-1752-232 540 fax 
Zoran Obradovic Spring 2000 Ida Sproul Hall  
 1993-4 Kluwer Academic Publishers  

Sums of money (m) 1999 NSF  
$1K 120 days Nohital Systems  
$24K eight years  Oregon Graduate Inst.  
$60 eight-week Permanent Solutions  
$65K end of 1999 Random House  
$70 late 1999 Santa Fe Institute  
$78K month UOklahoma  
$100 twelve-year period UTrento  

      

Sources, journals, book series (s)  URLs (u) 

Autonomous Agents and Multi-Agent Systems Journal  http://cbdnet.access.gpo.gov/ 
Commerce Business Daily (CBD)  http://ourworld.compuserve.com/homepages/ftpub/call.htm 
Computational Molecular Biology Series  http://www.ccic.gov/ac/interim/ 
DAI-List  http://www.cs.man.ac.uk/~kung-kiu/jsc 
ECOLOG-L  http://www.cs.sandia.gov/~scistra/DAM 
Evolutionary Computation Journal  http://www.cs.tu-berlin.de/~tolk/AAMAS-CfP.html 
Genetic Programming book series  http://www.elsevier.nl/locate/parco 
IRList  http://www.santafe.edu/~bonabeau 
International Series on Computational Intelligence  http://www.soc.plym.ac.uk/soc/sameer/paa.htm 
J. of Complex Systems  http://www.wired.com/wired/5.11/es_hunt.html 
J. of Computational Intelligence in Finance (JCIF)   
J. of Symbolic Computation (JSC)   
J. of the Operational Research Society   
Parallel Computing Journal   
Pattern Analysis and Applications (PAA)   
QOTD   
SciAm   
TechWeb   
WHAT’S NEW   
Washington Post   
Wired   
comp.ai.alife   
comp.ai.doc-analysis.ocr   
comp.ai.genetic   
comp.ai.neural-nets   
comp.simulation  
dbworld  
sci.math.num-analysis  
sci.nanotech  

 

 

Figure 1.5: Generic data items extracted from one issue of The Computists’ Weekly.
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(a) [9℄ Case, K. M., and Monge, A. Explicitly time-dependent constants/symmetries of
the higher-order KP equations. Journal of Mathematical Physics 30, 6 June 1989,
1250-1253.[10℄ Eich, M. H. Main memory database research directions. In Proc. Sixth Int’l
Workshop on Database Machines (Deauville, France, June 1989) p. 251.

(b) [9℄ <name><last>Case,</last> <first>K. M., </first></name> and<name>-<last>Monge,</last> <first>A.</first></name> <title>Explicitly time-
dependent constants/symmetries of the higher-order KP equations.</title> -<journal>Journal of Mathematical Physics</journal> 30, 6 (<date><month>-
June</month> <year>1989</year></date>), <pages>1250-1253</pages>.[10℄ <name><last>Eich,</last> <first>M. H.</first></name> <title>Main
memory database research directions.</title> In Proc. Sixth Int’l Workshop on
Database Machines (<address>Deauville, France,</address> <date><month>-
June</month> <year>1989</year></date>) p.<pages>251</pages>.

(c) [9℄ <n>Case, K. M.,</n> and <n>Monge, A.</n> <t>Explicitly time-
dependent constants/symmetries of the higher-order KP equations. </t> <j>-
Journal of Mathematical Physics</j> 30, 6 (<d>June 1989</d>), <g>1250-
1253</g>.[10℄ <n>Eich, M. H.</n> <t>Main memory database research directions.</t>
In Proc. Sixth Int’l Workshop on Database Machines (<l>Deauville, France,</l><d>June 1989</d>), p.<g>251</g>.

Figure 1.6: Example of BIB corpus. (a) A section of bibliography. (b) The same
section marked-up. (c) Modified marked-up version.

1.5 Thesis statement

This thesis makes two claims:

1. A HMM-based token identification system can be fully domain- and language-

independent.

2. PPM models can be utilized to handle unknown words in a HMM-based token

identification system.

Some token identification systems that have been described in the literature take

text tagged by part-of-speech as their input (e.g. Sekine, 1998; Baluja et al., 1999).

These systems perform syntactic and/or morphological analysis on all words, in-

cluding capitalized ones, that are part of candidate tokens. Other systems keep a

huge list of known tokens. Both of these kinds of systems depend on the domain
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and the language. Although a system has been reported as language independent

(Cucerzan and Yarowsky, 1999), it does not use HMMs. The firstthesis statement

claims that it is possible to have a purely domain- and language-independent sys-

tem. This makes a system more flexible.

Unknown word handling is an essential component of any robust token identifica-

tion system. The second statement claims that PPM—prediction by partial match-

ing—models can be used in conjunction with HMMs—hidden Markov models—to

deal with this problem.

A hidden Markov model is a finite-state automaton with stochastic state transitions

and symbol emissions (Rabiner, 1989). Recent research has demonstrated the ef-

fectiveness of HMMs for token identification. But when a unknown word is en-

countered, there is no information in a pre-trained HMM. Different methods have

been presented, but no one has ever used PPM models. This thesis bridges the gap

between HMMs and PPM models.

1.6 Thesis outline

Chapter 2 surveys previous research related to this thesis.It is divided into four

sections. Section 2.1 reviews the methods which have been recently used in the

token identification area, including hand-crafted systems, decision trees, maximum

entropy models, HMMs and PPM models, and discusses systems which are based

on these methods. Section 2.2 poses the problem of unknown tokens and presents

some solutions. Section 2.3 discusses techniques for modelsmoothing. As a sum-

mary of the chapter, Section 2.4 briefly describes the methodused in the undertaken

research and compares it with other systems.

Chapter 3 describes the methodology used in the thesis, and is partitioned into seven

sections. Section 3.1 introduces hidden Markov models, thebasis of the system.

Token identification is to find out the class for each word in the input text. The
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algorithm that solves this problem is described in Section 3.2. Section 3.3 details

how the model is constructed and Section 3.4 describes what the model looks like.

In Section 3.5, the PPM model is introduced. It is a characterlevel model, and will

be the back-off of word-level HMM model for unknown words. How PPM models

are used to handle unknown words is discussed in Section 3.6.In order to explore

the impact of PPM, another method that handles unknown wordsis also described

in this section. Finally, Section 3.7 describes model smoothing methods used in the

system.

Chapter 4 presents the experiments carried out using the algorithm described in

Chapter 3, and answers the questions proposed in the thesis statements. Before

presenting empirical results, Section 4.1 describes measurements of the results. The

first series of experiments are done on the TCC corpus, and theresults are presented

in Section 4.2. After analyzing the results, Section 4.3 discusses the shortcomings

of the corpus that affect both the quality of the model and theaccuracy of the result.

Section 4.4 presents the result using the corrected corpus and discusses in detail. In

Section 4.5, the HMM using PPM for unknown words is compared to the one using

unified probability. Section 4.6 investigates the effect ofthe quantity of the training

data. In Section 4.7, the effect of different model smoothing methods is investigated.

As two corpora are available, Section 4.8 presents the results of applying the system

to BIB corpus, and discusses how the structure of the text influences the accuracy

of the result.

Chapter 5 is the conclusion. Section 5.1 highlights the findings of the thesis, and

the related discussions are presented in Section 5.2. What could possibly be done

in the future is described in Section 5.3.
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Chapter 2

Related work

Text mining is looking for patterns of interest in text, suchas a person’s name, a

geographical name and time factors. It is of recent interestto many researchers,

such as Merkl (1998), Tan (1999) and Bray (1999). The task we are reporting in

text mining is to find such patterns and mark them up with pre-defined labels. We

call the tasktoken identification. Many existing systems are based on the context of

the Message Understanding Conferences (MUCs) (Grishman and Sundheim, 1996),

which have involved the evaluation of information extraction systems applied to a

common task.

This chapter is structured as follows. Section 2.1 describes different approaches

used in the token identification task by other people. Section 2.2 discusses the issue

of unknown words—words that have not been seen in the training data and appear in

the test text. In Section 2.3 we talk about model smoothing, the process of replacing

the original elements in the model with modified ones.

2.1 Different methods

The token identification task discussed here is to automatically identify the bound-

aries of a variety of phrases of interest in raw text and mark them up with associated
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labels. The systems reported in the Message Understanding Conference are limited

to the following tokens: person, organization, location, date, time, money and per-

cent. For us, however, the token identification task has no restriction—tokens are

defined by a system designer and could encompass any type of information that is

of interest. Token identification is an important componentof many tasks such as

information extraction and retrieval, machine translation and so on, as described in

Section 1.3.3. This section reviews previous research in token identification.

Several systems have been reported for token identificationtasks. They are based

on: hand-crafted regular expressions (Appelt et al., 1993;Grishman, 1997); large

name lists (Iwanska et al., 1995); sophisticated rule-based approaches (Morgan

et al., 1995) and learning algorithms (e.g., Sekine, 1998; Bennett et al., 1997; Baluja

et al., 1999; Borthwick et al., 1998; Mikheev et al., 1999; Bikel et al., 1999; Sey-

more et al., 1999; Bray, 1999). The early systems used the first three approaches

and rely on much manual work, although some recently-reported learning systems

are entirely automatic (e.g. Stevenson and Gaizauskas, 2000). Such systems are

normally domain-specific, can be extremely expensive to develop, and require large

amounts of maintenance. Also, it is not clear how much work isneeded to adapt

them to other domains or languages. The automatic approach has an advantage

over hand-crafted rules, but the advantages of rapid and easy adaptation must be

considered when applying these techniques to different domains or languages.

We briefly describe regular expressions in hand-crafted systems (Section 2.1.1), and

then focus on learning algorithms such as decision trees (Section 2.1.2), maximum

entropy models (Section 2.1.3) and hidden Markov models (Section 2.1.4). Other

learning algorithms such as Brill’s transformation-basedlearning algorithm (1995)

which has been used as described by Aberdeenet al. (1995), are not discussed in

this thesis. However, a closely related token identification system, which uses the

PPM model, is reviewed (Section 2.1.5).
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2.1.1 Hand-crafted systems

Models used in hand-crafted systems are assembled by inspecting training data.

Tokens are identified using a set of regular expressions. Generally the expressions

are stated in terms of parts-of-speech, syntactic featuresand orthographic features

such as capitalization. An example pattern in this type of system might be “If proper

nouns follow a person’s title, then the proper nouns are a person’s name”. There

are several indicators that help to identify names. Most commonly, for example,

personal names can be identified by a preceding title such as “Mr.”, “Prof.” and

“Rep.” as in the following:

Mr. Robert Smith

Prof. Sophia Young

Rep. Natalie Cowley

Some suffix words are also indicators of human names such as ordinals (e.g. 1st),

Roman numerals and the words “Junior” and “Senior”. Other indicators include

middle initial, commonly used first names and royal titles such as “Queen” and

“Prince”. Many indicators of human names are common (but capitalized) words that

can take a prepositional phrase, usually an “of” phrase. Forexample, “Professor”

can immediately precede the name, such as “Professor AndrewGrishman”, or it

can be followed by a prepositional phrase to form a professional title followed by a

human name, such as:

Professor of Computer Science Andrew Grishman

As with human names, there are a few words that indicate the beginning of a ge-

ographical name, such as “Lake Taupo” and “Mount Maunganui”. There are also

words that indicate the end of a location, such as “River”, “Park”, “Bay”, “Domain”

and “Garden”. Some words can indicate either the beginning or end of a location,

for example “North Cape” and “Cape Reinga”. There are also prepositional phrases
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for location names like “City of Auckland”. Many well-knownplaces, of course,

are obvious indicators of location.

Similarly, names of organization can usually be identified by their final token, such

as “Inc.” or “Co.”. Some words that indicate the name of an organization may

appear at the end or before the very end of the name, such as “Associates” or

“Systems”, while some can appear anywhere in the name, such as “Broadcasting”,

“Club” and “Bank”.

An information extraction system described by Grishman (1997) uses this method

to identify certain kind of tokens.

2.1.2 Decision trees

Decision trees are a way to represent rules underlying training data, with hierar-

chical sequential structures that recursively partition the data. Sekine (1998) and

Bennettet al. (1997) both implemented their token identification systemsusing

decision trees. Their decision trees are based on almost identical features, such as

part-of-speech, character type information and special dictionaries. While the two

systems are similar, there are, however, significant differences between them.

The system described by Bennettet al. (1997) has multiple decision trees. Each

one decides whether a particular class starts or ends at the current word. The system

makes more than one decision at each word, thus multiple tagscould be assigned

to a single word, or possibly incompatible tags for two consecutive words. They

introduced two methods to force one tag per word. One is to usea distance score,

which finds an opening and closing pair for each word, based mainly on distance

information. The other is to use a priority scheme for tags, which chooses a class

among different candidates based on a priority ordering over words. Parameters

required by these methods must be adjusted before being applied to a new domain.

In contrast, Sekine’s (1998) system uses only one decision tree to produce the prob-
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abilities of information about a token. Multiple possibility problems are solved by

a probabilistic method. Manual adjustment of parameters isunnecessary. This is a

strong advantage over the approach reported by Bennettet al., because it makes the

system more retargetable. Sekine also found that the dictionaries used in his system

are not very domain-dependent, and speculated that little modification to the dic-

tionaries might be required when applying the system to a newdomain. This is an

advantage for any system that uses dictionaries.

Another system using decision trees is proposed by Balujaet al. (1999). Like the

systems described by both Sekine and Bennettet al., it uses a part-of-speech tag-

ger, dictionary lookups, and word-level features, such as all-uppercase, initial-caps,

single-character, and punctuation features. The experiments focused on identifying

which features affect the final performance most. Three setsof experiments were

performed: the use of each of the dictionary, part-of-speech and word-level knowl-

edge sources independently; the use of all pairwise combinations of the sources;

and the use of all three sources together. They found that although none of these

features performs well independently, performance improves when the context is

increased. The experiments indicated that word level features contain information

that is absent from both the part-of-speech and dictionary features. Furthermore,

adding the dictionary feature to a system that uses only the part-of-speech tagger

and word-level features achieved only a slight improvement.

2.1.3 Maximum entropy models

Maximum Entropy is a general technique for estimating probability distributions

from data. It is widely used for a variety of natural languagetasks, such as part-of-

speech tagging (Ratnaparkhi, 1996), language modeling (Rosenfeld, 1994) and text

segmentation (Beeferman et al., 1999). It has been shown that maximum entropy

performs well in these tasks. The underlying principle is that without any exter-

nal knowledge, the distributions should be as uniform as possible—that is, have

maximal entropy.
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Borthwicket al. (1998) described a token identification system built arounda max-

imum entropy framework. The system uses a variety of knowledge sources, such

as orthographic, lexical, section and dictionary features, to make tagging decisions.

For any particular class label, there are four states:label start, label continue, la-

bel endandlabel unique. The first three states are for the case that more than one

consecutive words are identified as the same class. The fourth is for the case that

only one word is identified in a particular class. In addition, there is a special label—

other, which indicates that the word is not part of a class. For example, the phrase

“Jenny Bentley lives in Hamilton” is marked as “personstart, personend, other,

other, locationunique”. One label is assigned to every word in the text. Thisap-

proach is essentially the same as that described by Sekine (1998). Borthwicket al.

use Viterbi’s (1967) search algorithm to find the highest probability legal path. For

example, labelend can only be assigned to a word that follows a word with either

label start or labelcontinue. The system is a purely statistical one, and contains no

hand-generated patterns.

Another system for token identification that uses a maximum entropy model is re-

ported by Mikheevet al. (1999). The model uses contextual features of tokens,

for example the position of tokens in a sentence, whether they appear in lowercase

in general, whether they were used in lowercase somewhere else in the same doc-

ument and so on. This system makes decisions using the answers provided by the

Maximum Entropy model.

2.1.4 HMMs

A hidden Markov model, or HMM, is a particular kind of probabilistic model based

on a sequence of events—in terms of token identification, this represents sequential

words in text. Although different approaches have been studied and implemented,

the best-known token identification system that incorporates a machine learning

component is based on hidden Markov models (Baluja et al., 1999).
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IdentiFinder (Bikel et al., 1999) is a well-known system. Ituses a variant of a hidden

Markov model to identify tokens like names, dates and numerical quantities. Each

state of the HMM corresponds to a token class. There is a conditional state for

“not a token class”. Each individual word is assumed to be either part of some pre-

determined class or not part of any class. According to the definition of the task,

one of the class labels or the label that represent “none of the classes” is assigned to

every word. IdentiFinder uses word features, which are language-dependent, such

as capitalization, numeric symbols and special characters, because they give good

evidence for identifying tokens.

There are three components in the top-level model, one for generating a token class,

one for generating the first word in a class, and one for generating words that are

not the first in a class. The models used by IdentiFinder are constructed using the

counts in the training data.

Nymble (Bikel et al., 1997), a token identification system reported about two years

earlier than IdentiFinder and by the same authors, is similar to IdentiFinder in terms

of algorithm or techniques except that the results are slightly different. When ap-

plied to English text, the F-measure (refer to Section 4.1) of Nymble is 93% and91% for mixed case and upper case respectively, and94:9% and93:6% for Identi-

Finder. The reason that causes these differences cannot be found in the papers.

An information extraction system is reported by Seymoreet al. (1999). It extracts

fields of interest from the headers of computer science research papers using an

HMM. One state is assigned for each class, such as title, author, date and affilia-

tion. Unlike IdentiFinder, this system considers automatically determining model

structure from data. At the beginning, each word in the training data has its own

state, which transitions to the state of the following word.Each state is associ-

ated with the class label of its word. Two merging techniques—neighbor-merging

andV-merging—are used to form the final model. They used three sets of training

data: labeled, unlabeled and distantly-labeled, which refers to data labeled for other

purposes, but can be partially applied to the task.
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2.1.5 PPM models

PPM, prediction by partial matching, is a language model that was developed in the

field of text compression (Cleary and Witten, 1984). It uses the preceding context

to predict the probability of the upcoming symbol. A detailed description of how

PPM works is provided in Section 3.5.

A system using character-based PPM models to identify tokens in running text has

been reported by Bray (1999) and Wittenet al. (1999a). All tokens in labeled

training data are grouped according to their type, such as names of people, dates,

locations and email addresses. Words that are not part of anyclasses are grouped to-

gether and assigned a class—plain text. All tokens in each type are used to construct

a PPM compression model. Thus each type has its own model.

The goal of identifying tokens is tantamount to deciding which class each word

belongs to. Using compression models, the input text is compressed. A word is as-

signed the class whose PPM model compresses it most. For example, if the location

model compresses a word the most, the location class is assigned to the word—that

is, the word is identified as part of a geographical name. All words in the text are

assigned classes that maximize the overall compression.

An experiment has been done to investigate how well tokens are compressed both

in and out of the context of the surrounding text, namely how possible tokens are

identified by the correct type (Bray, 1999). The result showsthat although the total

number of incorrectly identified tokens is increased by using surrounding text, the

actual mis-identification is greatly decreased, while the other errors are caused by

failure to identify a token as plain text instead of as part ofa class. The overall

compression is increased slightly.

Bray then applies a Viterbi-style algorithm to detect the underlying state sequence

that gives the best compression of the unseen text, in order to decide where is the

best place to start or end a model. The purpose is to insert labels in a way that

maximizes compression of the entire text.
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The system is based on PPM character models. It is a fully automatic system which

can be adapted to other domains or languages without changing. The only thing

required is a labeled training corpus.

2.2 Unknown token

Unknown words are those that have not been encountered in training data. There

are two kinds of unknown word: neologisms, and existing words that happen not to

appear in the training data.

Neologisms, or novel words, are almost always found in free text. Lexicons can

never contain all possible words because they are static in nature, whereas the real

world never stops changing.

Zipf’s law (Zipf, 1965), a theoretical model of word occurrence, gives a good ex-

planation of encountering unknown words. It states that if words are ranked, in

descending order of frequency, with the most frequent ranked 1, the second most

frequent ranked 2, and so on, the product of rank (r) and frequency (f ) roughly fits

the relation: r � f = C (2.1)

Rank (r) Word Frequency (f) in % r*f
1 the 6.15 0.062
2 of 3.54 0.071
3 and 2.70 0.081
4 to 2.51 0.100
5 a 2.14 0.107
6 in 1.90 0.114
7 that 0.97 0.068
8 is 0.95 0.076
9 was 0.94 0.085
10 for 0.86 0.086

Table 2.1: Statistics of the 10 most frequent words in the Brown Corpus.
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whereC is a constant, which is estimated to be about0:1 in English text (Teahan,

1998). For example, Table 2.1 (Bell et al., 1990) shows the word statistics of the10
most frequent words in the Brown Corpus. The right-most column is the product

of the rank and the frequency. They round to the constant0:1. Zipf’s law states

that the probability of occurrence of words starts high and tapers off rapidly. Thus,

a few occur very often while many others occur rarely. For example in English,

words like “the”, “of’ and “to” occur frequently while otherwords are rare, such as

“ubiquitous”, although it means something that exists everywhere.

Table 2.2 (Teahan, 1998) gives the percentage of words that occur only1 to 5 times

in the Brown Corpus. It indicates that a large percentage of words occur very few

times. Among the different words, about 71% occur five or fewer times, 53% occur

two or fewer times, and 38% occur only once. The consequence is that increas-

ing the amount of training text does not help much in avoidingunknown words.

Moreover, typographical errors also result in apparently unknown words.

Number of occurrences (n) Types occurring n times (%)
1 38.3
2 14.6
3 8.5
4 5.4
5 4.0

Table 2.2: Percentage of word that occur1 to 5 times in the Brown Corpus.

Regardless of which approach is used to find and mark up tokens, the size of the

lexicon is determined either by pre-formed name lists or by adictionary obtained

from the training data. Previously unseen words will constantly be encountered.

Dealing with these unknown words is an essential component for any robust token

identification system.

Some studies that focus on unknown words (Mikheev, 1997; Daciuk, 1999) have

been reported. They are based on morphological analysis andare especially use-

ful for part-of-speech tagging, although an extension to token identification seems

possible.
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Bikel et al. (1999) and Seymoreet al. (1999) both use an HMM and both assign

a special token to unknown words. Any words in the test data that are not present

in the vocabulary are mapped into this single “unknown-word” token. Bikel et al.

split the training data in half and used each half to train themodel separately; then

they added the counts from the two models. This yielded an estimate of how often

unknown tokens occur, and used all available training data.In the system described

by Seymoreet al., the probability of an unknown word is calculated using absolute

discounting and is assigned as a portion of the mass proportional to the fraction

of singleton words observed only in the current class. More detail about absolute

discounting is given in the next section.

2.3 Model smoothing

Model smoothing is the process of replacing the original counts with modified ones,

so as to redistribute the probability mass from more commonly observed events to

less frequent and unseen events. It is necessary because of the limitation of the

training data. If we define the actual count of an eventE (such as a word) to be(E), then the modified count(E) is(E) = d((E))(E) (2.2)

whered((E)) is the weight applied to the original counts.

Several methods of smoothing are discussed in the literature. Chen and Goodman

(1998) have empirically compared the most widely-used smoothing techniques de-

veloped by Jelinek and Mercer (1980), Katz (1987), Bell, Cleary, and Witten (1990),

Ney, Essen, and Kneser (1994), and Kneser and Ney (1995), using a word model

based on the Brown Corpus, the Wall Street Journal Corpus (WSJ), the North Amer-

ican Business news (NAB), the Switchboard Corpus, and the Broadcast News Cor-

pus. Because the undertaken research uses HMMs, we focus on smoothing tech-
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niques that are used in similar models.

Thede and Harper (1999) describe the smoothing method used in their Second-order

HMM model. The method takes into account lower order information. The model

is smoothed using a logarithm function to calculate smoothing coefficients from the

number of occurrences of all order events within the training data. It can be viewed

as a variant of Jelinek-Mercer smoothing method (Jelinek and Mercer, 1980) with

the difference that Thede and Harper calculate the smoothing coefficients for each

event while Jelinek-Mercer smoothing requires the bucketing of interpolation coef-

ficients according to the total number of counts of the corresponding history. It is

unnecessary to use held-out data to optimize parameters, and thus computationally

inexpensive. Jelinek-Mercer method, however, is a far morecomplicated procedure

as the Baum-Welch algorithm is used.

IdentiFinder (Bikel et al., 1999) uses several back-off models, schemes used for

events that have not been encountered in the training data, and assigns a variable

weighting to each one. If� is the weight used for direct estimation of probabilities,

then(1 � �) is the weight of the back-off model.� is based on a function of the

number of times the given event occurs:� =  1� old (Y )(Y ) ! 11 + type ofY(Y ) (2.3)

where “old(Y )” is the sample size of the model from which they back off. The

expression of� has two factors. It is the second that does the real work of smooth-

ing. For example, consider only the second factor. Suppose that “Susan Smith” has

occurred twice in the training data, “Susan Robert” four times, and the word “Su-

san” has not been seen anywhere else in the person’s name class. When calculating

the probability of the word “Smith” given that the model is inthe name class, the

bi-gram probability

Pr((“Smith”, initCap)j (“Susan”, initCap), person’s name)
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would back off to the unigram probability

Pr((“Smith”, initCap)j person’s name)

with a weight of1=4, whereinitCap is the feature of the word, which indicates that

the word has a capitalized initial letter. The reason is thatthere are two different

words that follow “Susan”, and the total number of occurrences of “Susan” being

the first word in a bi-gram is six. Thus a weight of1=(1 + 2=6) = 3=4 is assigned

to the bi-gram probability, and a weight of1� 3=4 = 1=4 is for the back-off model.

A further back off is

Pr(“Smith” j person’s name)� Pr(initCapj person’s name)

and the final one is 1jV j � 1
number of features

wherejV j is the size of alphabet. Similarly, the policy described above applies to

two other models, name class model and first-word model.

Absolute discounting is a common method of smoothing. It definesd(r) = (r � b)=r (2.4)

in (2.2), wherer is the original count here. This has been applied on the emis-

sion estimates in the system described by Seymoreet al. (Seymore et al., 1999).

How they choose the constantb is not mentioned in the paper. This is, of course,

equivalent to simply subtracting the constantb from each count.

2.4 Summary

The system described in this thesis is based on an HMM. Each state represents a

token class and emits different words. Words unknown to the model are handled by
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PPM models. In order to label a new text with token classes, words in the text are

treated as observations and the Viterbi search algorithm isused to recover the most-

likely, hidden state sequence—a label sequence that is associated with the word

sequence in the task.

Three of the systems discussed previously in this chapter have a close relation to

the one presented in this thesis. The first one is IdentiFinder (Bikel et al., 1999).

It is the same as the system described in this thesis in model construction—using

counts of word occurrences in the labeled training data; label assignment—only

one label, either a class label or the label that indicates a given word is none of

the classes; and search algorithm—the Viterbi algorithm isused. Aside from these

identical factors, the two systems differ in some significant points. IdentiFinder uses

multiple HMMs and each word has its own state with emission probability 1, which

is unlike the common or traditional HMMs. It also uses word features. The methods

used to handle the unknown words and to smooth the model are quite different.

The second one is the system which extracts fields from the headers of computer

science research papers described by Seymoreet al. (1999). Their system and the

one described in this thesis are same in label assignment, search algorithm, and both

use only one HMM. However, the two systems use different kinds of training data

and different methods of unknown word handling and model smoothing.

The third is the one that uses PPM model as described in Section 2.1.5. The system

itself is, in fact, not very similar to the described system in terms of the main tech-

niques, but the way it uses PPM models is the same, whereby each token class has

a PPM model, and the same training corpus is used.
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Chapter 3

Information extraction with HMMs

and PPM

One of the thesis statement in Section 1.5 claims that PPM models can be used to

handle the problem of unknown words in HMM-based token identification. PPM

is a statistical language model in which a certain number of previous symbols pre-

dict the probability of occurrence of the next one. A character-level PPM model

contains accurate information on the statistics of characters seen in the past, which

encourages its use to estimate the probabilities of unknownwords. This chapter

introduces both HMMs and PPM, and shows how PPM can be used to predict the

occurrence of unknown words.

Section 3.1 describes the basic theory of hidden Markov models and how they are

used in the task. For a general introduction to HMMs, refer toRabiner (1989) and

Poritz (1988). Section 3.2 reviews the Viterbi algorithm, which is used to find the

hidden state sequence. Section 3.3 describes how the HMM parameters are obtained

from the training corpus. Section 3.4 is about training. Section 3.5 reviews the PPM

compression model and its zero-frequency problem. In Section 3.6, we talk about

how to deal with unknown words. This is where PPM is introduced into the HMM

model. Finally, model smoothing is discussed in Section 3.7.
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3.1 Hidden Markov model

A hidden Markov model is a finite-state automaton with stochastic state transitions

and symbol emissions (Rabiner, 1989). It is a particular model based on a sequence

of events, and consists of a set of states and a set of output symbols. The automaton

generates a sequence of symbols by starting from the initialstate, transitioning to a

new state, emitting an output symbol, transitioning to another state, emitting another

symbol, and so on, until the final state is reached and the lastsymbol is emitted.

3.1.1 Model definition

For each member of the set of states,S = fS1; S2; :::; SNg, there are two probabil-

ity distributions. One governs the outgoing state transitions, which indicates how

likely another state is to follow; the other governs the emission of symbols in the

observation vocabularyV = fV1; V2; :::; VMg, which indicates how likely a symbol

is to be generated in the particular state.N andM are the number of states and

number of symbols respectively.

We assume that time is discrete, and the model transitions between states at each

time unit. In the case of a first-order Markov model, which is used in the undertaken

research, the probability of moving from stateSi to stateSj is stored in thestate

transition matrix, A = faijg, where:aij = Pr[qt = Sjjqt�1 = Si℄; 1 � i; j � N: (3.1)

In this and future equations,t refers to the time instant,qt is the variable that records

the state assignment to thetth symbol, andSj, thejth member of the set of possible

states, is the assigned value. In other words, the probability of being in the current

state is determined by the previous state.

When the HMM moves between states, it emits an output symbol after each transi-
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tion. Exactly which output symbol is emitted depends on theoutput symbol distribu-

tionB, which defines the probability of emitting a particular symbol in a particular

state. For first-order HMM,B is a two dimensional matrix defined asB = fbj(k)g,
where:bj(k) = Pr[ot = Vkjqt = Sj℄; 1 � j � N; 1 � k �M: (3.2)

Here,ot is the variable that records thetth symbol emission, andVk, thekth member

of the observation vocabulary, is the emitted symbol.

To complete the model we need an initial probability distribution � = f�ig over

states, where: �i = Pr[q1 = Si℄; 1 � i � N: (3.3)

The entire model can be described as� = fA;B; �g. It is based on two inde-

pendence assumptions—Markov assumptions. The first assumption is that the next

state is based on the current state only. The second assumption is that the appear-

ance of a symbol is independent of the preceding or succeeding state. While these

independence assumptions are often not valid, they appear to work reasonably well

in practice.
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Figure 3.1: Example of HMM.

Figure 3.1 is an example of a three state first-order HMM. Fromthe figure, stateS1
transitions to stateS2 with probability0:5 and to stateS3 with probability0:3. The

probability of staying in the same state is0:2. Notice that each state can be reached
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from any other state in only one step. This is a so-calledfully connectedmodel.

However, models obtained from training data (refer to Section 1.4) to represent

certain circumstances are not originally in this style.
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Figure 3.2: Example of partially connected HMM.

Because of the assumptions, distributionB is state-specific, and generally it is

multinomial, that is, each state generates more than one symbol and the probability

of generating a symbol differs from state to state.

Figure 3.2 shows a partially connected HMM model with four states,S = fS1; S2;S3; S4g and their transitions. It is more like a model attained in practice. Its state

transition probabilityA written in a matrix is:

A = 2666666664 0:2 0:0 0:0 0:80:6 0:0 0:1 0:30:7 0:2 0:0 0:10:0 0:3 0:4 0:3
3777777775 : (3.4)

Assume that there are four observation symbols,V = fa; b; ; dg, and the symbol

emission distributionB is:

B = 2666666664 0:36 0:23 0:12 0:290:65 0:00 0:25 0:100:74 0:26 0:00 0:000:00 0:13 0:44 0:43
3777777775 : (3.5)
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Each state emits a symbol with different probability, for example, stateS1 emits

symbola with probability0:36, S3 emits symbola with probability0:74, andS4 is

unable to emita. If the four states have equal likelihood at the beginning, then� = f0:25; 0:25; 0:25; 0:25g: (3.6)

A hidden Markov model probabilistically connects the observations to the state tran-

sitions in a system. There are three basic problems that can be solved by an HMM:

1. the probability that model� generates a particular observation sequenceO,

2. the most likely state sequence the model went through in generating the ob-

served sequence of symbols,

3. a set of re-estimation formulas for iteratively updatingthe HMM parameters

given several observation sequences as training data, in order to maximize the

probability of the sequences being generated by the model.

The first one is described below, the second one is discussed in detail in Section 3.2,

and the third one, also known as Baum-Welch algorithm, is mentioned in Section 2.3

and Section 3.3.

For a given state sequence, the first problem, the probability that the model gener-

ates a particular sequence of symbols, is computed by multiplying the probability

of being in a state by the probability of generating a certainsymbol in the state.

For instance, given the model in Figure 3.2 and the sequenceS2S1S4S3S4S2, the

probability that the sequence generatesadbb is computed as follows. We start

from the initial stage. The probability that the start stateis S2 is 0:25, and the prob-

ability of generating symbola in stateS2 is 0:65, so the probability of being inS2
and generating symbola is 0:25 � 0:65. Then we move on to the second symbol.

The probability of reaching stateS1 fromS2 is 0:6 and the probability of generating

symbol from stateS1 is 0:12, so the combined probability is0:6� 0:12. We move

36



on to the next symbol and compute the combined probability ofbeing in the state

and generating a specific symbol in the same way until the lastsymbol is processed.

Finally, the required probability is obtained by multiplying all these combined prob-

abilities(0:25�0:65)(0:6�0:12)(0:8�0:43)(0:4�0:26)(0:1�0:13)(0:3�0:25) =4:08� 10�7.
The wordhiddenin the term of hidden Markov model refers to the state transition

sequence which is hidden from the observer. It is revealed only through the observed

symbol sequence, and may never be known with certainty.

3.1.2 Applying HMMs to token identification

For the token identification application discussed in Section 1.3, the observation

sequence is a sequence of words in text. The symbols emitted in each state are

words, and the HMM is a word-level model.

In the system described in this thesis, each sequence corresponds to a sentence in

text, and each state corresponds to a type of token that the program will identify

and mark up. Example token class include people’s names, geographical locations,

monetary amounts and e-mail addresses. Each type of token will be marked in

the text by a unique tag.N , the number of states in the model, is the number of

different token classes, and is determined by the training data. Because the system

uses a word-level HMM model,M , the size of the output vocabulary, is the number

of different words that appear in the training data.

The matrixA gives the probability that the current word belongs to a particular

token type given that the previous word belongs to a particular token type as well.

We also call it thecontextual probability. DistributionB is the probability of the

same words being seen in a particular token class. It is token-dependent: different

token classes have different probabilities for a certain word. B is also called the

lexical probability. The initial distribution� is the probability that each type of

token starts a sentence.
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For instance, in the following sentence, a fragment in annotated version of The

Computists’ Weekly, 1998,<o>Polytechnic University</o> in <l>Brooklyn</l> will get<m>$190M</m> from the<n>Othmer</n> estate, about four

times the school’s previous endowment.

the sequence of four words “Polytechnic”, “University”, “in” and “Brooklyn” con-

tributes to the four-element class sequence<o><o><p><l> (see Section 1.4.1).

It contributes the probabilities of transitioning from organization (o) to organiza-

tion, stateo to o; organization to plain text (p), o to p; and plain text to location (l),p to l. Thus probabilities are given by the elements of matrixA. The words them-

selves will be counted as the appearances in the corresponding token class to make

up the elements of matrixB, for example, words “Polytechnic” and “University”

labeled as organization would increase the counts for theiroccurences in this class.

“Polytechnic” as part of organization would also increase the probability of token<o> starting a sentence.

Recall from Section 1.3 that the token identification task isas follows: given a

sequence of words, identify the appropriate tokens and markthem up with pre-

defined labels, given that a model has already been constructed.

It is assumed that each individual word belongs to a class. Consider names of

particular types: people’s names and location. Whether a word is a name or not is

random with an estimable probability. For example, the word“Washington” could

refer to a person, or it could refer to a location. The probability of being a person or

a location can be estimated from a training corpus in which every type of name has

been labelled. Because each state in the HMM has its own emission distribution,

stated in Section 3.1.1, the probability is conditioned notonly on the word, but on

the state that the model is in at that moment. For example, if “Washington” follows

a preceding title like “president” and “Mr.” or a common name“Bob”, it is likely

to be a person, while if it is followed by “D.C.”, it is likely to be a location.
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As mentioned above, words and token class refer to observation symbols and states

in the HMM. Finding tokens in an sequence of words means finding the state se-

quence that underlies the input. This is just the second of the three basic problems

of HMM. Given the observation sequence and the model, how do we choose a cor-

responding state sequence which is optimal in some meaningful sense (i.e., that

best “explains” the observations) (Rabiner, 1989)? The solution is discussed in the

following section.

3.2 Decoding

Let us assume that an HMM model has been constructed for a particular kind of

sequence, and we are presented with a new example of such a sequence,O =o1; o2; :::; oT . The problem of finding the most likely state sequenceQ = q1; q2; :::;qT that produces the given symbol sequence is calleddecoding. There are several

possible ways of solving this problem. A commonly used method is theViterbi al-

gorithm (Ryan and Nudd, 1993; Viterbi, 1967; Forney, 1973),which is to recover

the state sequence that has the highest probability of having produced the given

observation sequence. For the sake of computation, the following variable is intro-

duced: Æt(j) = maxq1;q2;:::;qt�1Pr[q1q2:::qt�1; o1o2:::ot�1; qt = Sj; ot℄: (3.7)

This is the probability of the best sequence ending at stateSj with a transition

going from stateSi to stateSj for symbolot over all state assignments. It gives the

highest possible probability that the partial observationsequence and state sequence

up to timet can have. By induction, it is easy to observe the following recursive

relationship:Æt+1(j) = [max Æt(i)aij℄1�i�N bj(ot+1); 1 � j � N; 1 � t � T � 1:
(3.8)
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The initial condition isÆ1(j) = �jbj(o1); 1 � j � N: (3.9)

The most important point is that because of the Markov assumptions, sequences that

end in the same state can be collapsed together since the nextstate depends only on

the previous state in the sequence.

In summary, the algorithm starts by calculatingÆ1(j) for 1 � j � N . Then it

uses the recursive relationship (3.8) to calculate the following Æt(j) until t = T to

retrieve the optimal state sequence. It is necessary to keeptrack of the best state

sequence found so far for each possible ending state. At the end, the final statej� is

found by j� = arg max1�j�NÆT (j): (3.10)

Starting from the pointer to this state, the algorithm backtracks through the optimal

sequence, and the path that is produced represents the required sequence of states.

The Viterbi algorithm can be written as:Q� = arg maxq1:::qT2QT TYt=1 Pr[qt = Sjjqt�1 = Si℄Pr[ot = Vkjqt = Sj℄; (3.11)

whereQ� is the optimal state sequence that maximizes the Viterbi scores, and

Pr[qt = Sjjqt�1 = Si℄ and Pr[ot = Vkjqt = Sj℄ are the state transition probabil-

ity and symbol emission probability respectively, as defined above.

The entire algorithm is illustrated in Figure 3.3, where nodes represent the states of

the HMM at each time instantt for 1 � t � T . N = 4 in the figure.

To find the most likely sequence, the algorithm starts at the initial stage and moves

forward through the observations one at a time, finding the most likely sequence

for each ending state. In other words, it calculates the probability that each state

generates symbolo1 by using the initial condition (3.9), then finds theN = 4 best
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Figure 3.3: Viterbi algorithm interpretation.

sequences for the two observationso1o2: the best ending witho2 in S1, the best

in S2, the best inS3, until the best inSN . This information is used to find theN = 4 best sequences foro1o2o3, each one ending in a different state. This process

is repeated until all the observations are accounted for. The solid arrows represent

those best sequences. Finally the maximum probability at the last stage is chosen,

and the required state sequence is recovered by backtracking the path indicated by

heavier arrows.

For instance, take the model described in Figure 3.2 ( Section 3.1.1, Page 35) and

assume that probabilities not in Figure 3.2—zero elements in the matrixA (3.4)—

have a value of0:0001. Suppose the input sequence isaba. The algorithm operates

as follows. The first step is performed in the initializationphase using (3.9). Due to

the emission probability of Figure 3.2, only entries forS1, S2, S3 are non-zero. So

the most likely sequence of one state ending inS1 to generatea has a probability

of �1b1(a) = 0:25 � 0:36 = 0:09, whereas the most likely one ending inS2 has

probability of0:25 � 0:65 = 0:1625, and0:185 and0 for one ending inS3 andS4
respectively. The result of the first step of the algorithm isshown at the left-hand

side of Figure 3.4.
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Figure 3.4: The result of the first two steps of the Viterbi algorithm running on
sequenceaba.

The second step of the algorithm extends the sequences one symbol and keeps track

of the best sequence. Equation (3.8) is used to compute the most likely sequence

of two states ending in each state. For example, the probability of generatinga
ending in stateS1 is computed as follows:Æ2(1) = [max Æ1(i)ai1℄1�i�N b1(o2)= max[Æ1(1)a11; Æ1(2)a21; Æ1(3)a31℄b1()= max[0:09� 0:2; 0:1625� 0:6; 0:185� 0:7℄� 0:12= 0:185� 0:7� 0:12= 0:0159
The most likely two-state sequence that generatesa and ends inS1 has proba-

bility 0:0159, namely the sequenceS3S1. The most likely one ending inS2 has

probability0:0093, namely sequenceS3S2. The most likely one ending inS4 has

probability0:0317, namely sequenceS1S4. There are no transitions toS3 because

in the emission distributionB (3.5) (Section 3.1.1, Page 35),b3(o2) = b3() = 0.

The right-hand side of Figure 3.4 is the result of the second step with a sequence
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Figure 3.5: The result of the third step of the Viterbi algorithm running on the
sequenceaba.

of two states. The solid arrows represent the best sequencesup to each state. The

computation runs recursively in the same way until the last symbol has been pro-

cessed.

Figure 3.5 illustrates the result after processing the third symbol, and Figure 3.6

illustrates the final result. The only difference between the values shown in Fig-

ure 3.6 and the actual computation is that the values are rounded in the figure. The

maximum probability sequence ends in stateS3. The heavier arrows in Figure 3.6

indicate the required state sequenceS3S1S4S3.
A more explicit interpretation of the result is shown in Figure 3.7, where horizontal

arrows indicate the underlying transition of states and vertical arrows indicate the

emission of symbols in each state.

3.3 Estimating the parameters of an HMM

Once the model structure is determined, the next problem is to estimate the model

parameters for the state transition probabilitiesA and state-specific lexical distri-
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Figure 3.7: The interpretation of generating sequenceaba.

butionB given a set of training data. Generally, there are two kinds of methods:

unsupervised and supervised.

For unsupervised learning, the training data is untagged—no labels are inserted into

it. A andB can be estimated by applying the Baum-Welch algorithm (Baum, 1972).

Given the initial parameters, this algorithm adjusts modelparameters iteratively to

maximize the likelihood of untagged data. However, becausethere can be different

possible results, the corpus must be correctly analyzed before being used for pa-

rameter estimation. It requires great effort to analyze a large corpus manually. The

result is also sensitive to the initial parameters, becausethe maximization is local.

Supervised learning uses tagged training data—that is, sequences of words with the

target words already marked up with associated labels. The information required to

construct the model can be obtained by recognizing the labels. But to obtain such a

44



corpus requires a large amount of effort to tag tokens manually.

While both methods involve some manual effort, analyzing the corpus may require

more expertise than tagging. On the other hand, training data can be tagged by

applying an automatic tagger to the raw material and checking the result manually.

Also, the unsupervised method creates more complex models than the supervised

one. Previous work has shown that supervised methods have been applied quite

successfully to the task (Bikel et al., 1997).

In the undertaken research, labeled training corpora are used; thus learning is super-

vised. The original state transition probability and symbol emission distribution are

calculated in a straightforward manner by using the ratio ofcounts, events/sample-

size or words/vocabulary: aij = Count(Si ! Sj)Count(Si) (3.12)

and bj(k) = Count(Vk " Sj)Count(Sj) ; (3.13)

whereCount(Si ! Sj) is the frequency of occurrence of the two consecutive

classesSi andSj, Count(Si) andCount(Sj) are the frequencies of occurrences of

classSi andSj respectively, andCount(Vk " Sj) is the frequency of occurrence of

wordVk in the class ofSj.
Let us take the sentence given in Section 3.1.2 (Page 38) as anexample. It is re-

peated for easy reference:<o>Polytechnic University</o> in <l>Brooklyn</l> will get<m>$190M</m> from the<n>Othmer</n> estate, about four

times the school’s previous endowment.

The corresponding state sequence is shown below:<o><o><p><l><p><p><m><p><p><n><p><p><p>
45



<p><p><p><p><p>.

where each tag corresponds to a word. For example, the first four tags correspond

to the first four words—“Polytechnic”, “University”, “in”,and “Brooklyn”.

Let i represent class<o> andj represent class<p>. <o> occurred twice, once

followed by<o> and the other time followed by<p>. Soaii = 1=2 andaij = 1=2.<p> appeared thirteen times, nine times followed by itself. Soajj = 9=13. There

are twelve different words in class<p>, and the wordthe occurred twice. If we

denote the wordtheby k, thenbj(k) = 2=13.

As mentioned in Section 3.1.1, we still need the initial probability vector� to com-

plete the model. Two different methods are used to construct�.

The first is to estimate� from the training data, as withaij andbj(k):�j = Start! Count(Sj)Count(Start) ; (3.14)

whereCount(Start) is the total number of classes that start a sentence, that is,the

number of sentences, andCount(Start! Sj) is the number of times that classSj
starts a sentence.

An alternative method is to assign each class equal probability, therefore�j = 1=N ,

whereN is the number of token class. This method has been applied to the model

given in Figure 3.2.

3.4 Training the HMM

Before constructing the model, the training data is split into sentences. The system

processes the training data in two passes. The first pass counts the number of token

classes,N , the number of different words,M , and the vocabularies for each token

type. The second pass counts the number of events and calculates theA andB
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Figure 3.8: A HMM obtained from the training data.

For illustration, Figure 3.8 is an example of an HMM obtainedfrom part of the

training data. It is annotated with token labels explained in Section 1.4.1, and with

transition probabilities. The figure shows that it is possible for words in the plain

text (p) class to follow words in any other token classes, and these words can also

be followed by words in any other class except email (e). It is reasonable that words

in all token classes can be surrounded by plain text. The location class (l), monetary

class (m) and URL (u) class have no direct relationship between each other. They

never appear one after another and always have tokens in other classes between

them. This is understandable from the grammatical point of view. Probabilities

from plain text to some other token class, such as date, source and location, are

very low. This is not because the events are rare but because they are overwhelmed

by plain text words, which makes the denominator bigger and results in smaller

numbers.

The figure indicates that there are no tokens in fax and phone classes in this par-

ticular set of training data, because classes, along with vocabularies, depend on the

training data.

The issue of data sparseness with respect to the estimatesA andB is addressed in
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Section 3.7

3.5 The PPM model for text compression

PPM is a predictive language model that was developed in the field of text compres-

sion (Cleary and Witten, 1984). On files of English text it typically achieves com-

pression rates of about 2.2 bits per character (Moffat et al., 1997), which saves over

70% of the original data space. Such a big saving can be of great use in the prac-

tical world, where the amount of information is increasing tremendously. Though

many other compression techniques exist, PPM has become a benchmark in the

compression community (Witten et al., 1999b). It has been widely used in language

processing tasks, such as character level language modeling (Teahan, 1998; Bray,

1999).

The PPM text compression model can be used together with HMM to identify to-

kens in text. In this application we use the prediction probabilities generated by

PPM, but we do not make any use of the actual compressed result. This section de-

scribes the principle of PPM and how to determine symbol and escape probabilities.

How the model is constructed and used in the task will be described in Section 3.6.

3.5.1 PPM model

Models that take a few immediately preceding symbols into account to make a pre-

diction are calledfinite-contextmodels of orderm, wherem is the number of pre-

ceding symbols used (Witten et al., 1999c). The PPM technique uses finite-context

models of characters (Cleary and Witten, 1984). It is a so-called character-level

model. It uses the last few characters in the input string to predict the upcoming

one. By considering such a context, each character can be better predicted. The

prediction is done by using the counts of occurrences of eachcontext. The prob-

abilities associated with each character that has followedthe context are used to
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predict the probability for the upcoming character.

PPM uses fixed-order context models with different values ofm, up to a pre-

determined maximum. The maximum number is a given constant,which we call

theorder of the model. The bigger the order, the more information is considered.

But increasing the order does not guarantee better compression, because the con-

texts become rarer as the order grows. Studies have found that increasing the or-

der beyond about five does not generally improve compression(Cleary and Witten,

1984; Moffat, 1990; Cleary et al., 1995).

Several orders are blended together in PPM to obtain a good probability estimate

for the current character. The prediction starts with a given maximum orderm and

checks the occurrence of the orderm context. If the orderm context has occurred

with the upcoming character following it, the corresponding counts are used to pre-

dict the probability. If the context has not been seen in the past, the model then uses

the orderm� 1 context.

Consider the case where the context has occurred but never followed by the upcom-

ing character. This is called thezero-frequencysituation (Witten and Bell, 1991)—

the character will be predicted using a zero count. In this case, a special transmis-

sion calledescapeis used to drop the model down one order, and the orderm � 1
model is used to make the prediction. The problem of what the escape probability

should be will be discussed in Section 3.5.2.

Another possible situation is that the character has never occurred in the past—an

unknown character. Then even order 0 cannot be used. This is another instance

of the zero-frequency problem. The model then escapes down to a bottom-level

model, order�1, that predicts all characters equally.

To illustrate the PPM modeling technique, Table 3.1 (Teahanet al., 2000) shows

the four models with order2, 1, 0 and�1 after the stringtobeornottobe has been

processed.
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Order 2  Order 1  Order 0 
Prediction c p  Prediction c p  Prediction c p 

be → o 1 1/2  b → e 2 3/4  → b 2 3/26 
 → esc 1 1/2   → esc 1 1/4  → e 2 3/26  
eo → r 1 1/2  e → o 1 1/2  → n 1 1/26 
 → esc 1 1/2   → esc 1 1/2  → o 4 7/26 
no → t 1 1/2  n → o 1 1/2  → r 1 1/26 
 → esc 1 1/2   → esc 1 1/2  → t 3 5/26 
ob → e 2 3/4  o → b 2 3/8  → esc 6 3/13  
 → esc 1 1/4   → r 1 1/8      
or → n 1 1/2   → t 1 1/8  
 → esc 1 1/2   → esc 3 3/8  

Order  –1 

ot → t 1 1/2  r → n 1 1/2  
 → esc  1 1/2   → esc 1 1/2  

→ A 1 1/|A| 

rn → o 1 1/2  t → o 2 1/2      
 → esc 1 1/2   → t 1 1/6      
to → b 2 3/4   → esc 2 1/3      
 → esc 1 1/4            
tt → o 1 1/2            
 → esc 1 1/2            
 

Table 3.1:PPM model after processing the stringtobeornottobe.
In this illustration the maximum model order is 2. For each model, all previously

occurring contexts are shown with their associated predictions, along with occur-

rence counts and probabilitiesp. The probabilities are determined from the counts

using escape method D that will be discussed below. In the table, thees is for

escape andjAj is the size of the alphabet. It is this that determines the probability

for each unknown character.

The model in Table 3.1 is used as follows. Suppose the character followingtobeornottobe is o. Since the order-2 context isbe, and the upcoming symbol has already

been seen once in this context, the order-2 model is used and the probability is1=2. If the next character, instead ofo, weret, this has not been seen in the current

order. Consequently an order-2 escape probability of1=2 is used and the context

is truncated to the order-1 contexte. Again it has not been seen in this context, so

an order-1 escape probability of1=2 is used and the context is truncated once more

to the null context, corresponding to order 0. Finally the charactert is predicted

with a probability of5=26. Thus the prediction oft is done in three steps, using

order 2 to order 0 context respectively, with a probability of 1=2 � 1=2 � 5=26. If

the upcoming character had beenx instead oft, a final level of escape to order�1
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would have occurred with a probability of3=13, andx would be predicted with a

probability of1=256 (assuming that the alphabetjAj = 256).

  Context 
  tobeornottobe nottobeorto 

  Probability Model used Probability Model used 

o ½ Order 2 ½×½×5/6 Order 0 Upcoming 

character 
t ½×½×5/26 Order 0 ½×1/6 Order 1 

 

Table 3.2: Effect of context and current character with order-2 PPM model.

The probabilities predicted by PPM are based on the occurrences of the prior con-

text and the characters that have followed each context every time the context has

occurred in the training text. Table 3.2 shows how the previous context being pro-

cessed and current character affect the result in terms of the order of model and

probabilities by using the same prior contexts to predict different characters and

vice versa.

In the case where the upcoming character iso, for the stringtobeornottobe, the

preceding context isbe (using an order-2 model), which has been seen once and

followed by the same charactero. Henceo can be predicted using the current order

of model with probability1=2. For the stringnottobeorto, although the previous

contextto occurred before, it is followed by a different character from the upcoming

one. The model is forced to move down to the lower order. This continues untilo is

finally predicted using the order-0 model, and the total probability is 1=2 � 1=2�5=6, where two1=2 are for escapes from higher-order model to lower ones. The

same principle applies when the upcoming character ist. The orders of model

used for prediction of the stringstobeornottobe andnottobeorto are 0 and 1 with

probabilities of1=2� 1=2� 5=26 and1=2� 1=6 respectively.
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3.5.2 Estimating probabilities in PPM

If the context has never occurred in the processed text—the zero-frequency situa-

tion, PPM uses an escape to drop the model down to a lower order. The problem of

how to deal with zero frequencies reduces to the problem of calculating the escape

probability. This issue has been discussed by researchers (e.g., Cleary and Wit-

ten, 1984; Moffat, 1990; Howard, 1993) and several different methods have been

proposed. Table 3.3 shows four different methods used in theexperiments.

Let us definep(�) to be the probability of symbol�, a character in this task;e the

probability of escape;(�) the count of a particular context followed by the char-

acter�; t the distinct number of characters that have followed a particular context;

andn the number of times a context has appeared.

Method Escape probability       Symbol probability 

A e = 
1

1
+n

 pi(φ) =  
1

)(

+n

ci φ
 

B e = 
n

t
 pi(φ)  =  

n

ci 1)( −φ
 

C e = 
tn

t

+
 pi(φ)  =  

tn

ci

+
)(φ

 

D e = 
n

t

2
 pi(φ)  =  

n

ci

2

1)(2 −φ
 

 

Table 3.3: Methods for zero frequency problems.

In Table 3.3, methods A and B were proposed by Cleary and Witten (1984). Method

A simply adds one count to each occurrence: the more the context has occurred, the

smaller the escape probability. Method B does not count contexts that have appeared

only once. By doing this, unusual contexts are ignored. Method C was introduced

by Moffat (1990), and bases the probability on the number of types of context. It

is similar to method B except that characters are predicted immediately. Method D,

a variant of method C, was proposed by Howard (1993). It adds1=2 count to both

character and escape, instead of one as in method C. The four methods also refer to
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the name of PPM followed by the capital letter of the method itself, such as PPMA

for method A.

3.6 Unknown word handling

One of the main goals of token identification is to choose the correct label in cases

where a word can have more than one label assignment. Additionally, a system

must deal with words that have not been encountered in the training data, and so are

not found in the lexicon.

The lexicon for the HMM is built during training, so the modelcontains all words.

It also contains all the counts that are needed to calculate the probabilities in (3.11).

If an unknown word is encountered during decoding, there is no entry in the model.

The emission probability in the state transition matrixB is unknown. To ensure that

the process continues and works in a proper way, some policy must be adopted to

estimate the probability that the current state will emit the given unknown word.

To make an entry for unknown words, a special token is assigned that matches all

unknown words, regardless of what they are. The question arises how to calculate

the probability for this special token. Different methods have been discussed in

Section 2.2. In this section, this section discusses two methods used in the system.

One relies on a PPM model; the other uses a unified probability.

3.6.1 PPM models for unknown words

As described in Section 3.5.1, a PPM model is a finite-contextcharacter-based

model that uses the last few characters in the input stream topredict the upcoming

one. In the system, PPM models are used to provide HMM with a unique prob-

ability for each individual unknown word. In other words, the word-level HMM

drops down to the character-level PPM model when unknown words are encoun-
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tered. In this way we bridge the two models. The probability provided by PPM is

more relevant to the unknown word itself than the unified probability discussed in

Section 3.6.2.

A PPM model is constructed for each token class, using all tokens in a class in

the training data. For example, in Figure 1.5 (Section1.4.1), words in the location

column are used to construct a PPM model for location, and words in the people’s

name column are used to construct a PPM model for names.

The PPM models are now available to deal with unknown words. Whenever a word

that has not been encountered in training is seen, and is therefore not contained in

the lexicon, the value ofbj(k) is assigned the probability that is predicted by an

appropriate PPM model, when computing (3.8) and (3.9) to findout the most likely

path.

Since there are several PPM models and each one predicts a probability, it is nec-

essary to determine which is the appropriate one. In the experiments, the largest

probability was used. All calculations are done on the fly.

3.6.2 Unified probability for unknown words

Another way of handling unknown words is to provide a unified probability that

governs every such word in a class, regardless of what it is. This idea is based on

the method of Bikelet al. (1999) mentioned in Section 2.2.

The training data is divided into two parts, and the trainingprocedure is accom-

plished in two steps. The first step, which is calledtraining, is to train the model

using one half of the training data. The second, which is calledupdating, uses the

other half of the training data to update the model that is obtained from the first step.

As mentioned in Section 3.1.1, the output symbol distribution is state-specific. The

probability of generating a particular symbol depends on the state. Because of this,

it is necessary to seek a method of assigning each state its own probability for the
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unknown token.

During updating, the dictionary stores an extra item—the token classes that have

been associated with each word. Every time a word is encountered, the system

checks it in the dictionary along with the token class. Thereare three possibilities:

not in the dictionary, in the dictionary but not associated with the class, and in the

dictionary and associated with the same class. In the first case, the word is added

to the dictionary, and associated with the token class to which it belongs, and the

count for the unknown token of the corresponding state is updated. In the second

case, the new token class is stored with the word, and the count of the corresponding

unknown token is updated. In the third case, only the word’s count is updated.

In this way, we estimate how often an unknown word will occur in each class.

Only the first occurrence of a new word is taken into account when estimating the

probability of the unknown token.

3.7 Smoothing the probabilities

Smoothing is a technique for adjusting probability estimates that have been obtained

from the training data. Smoothing is necessary when data is sparse. It is especially

important for handling the zero frequency problem, which isubiquitous in models

constructed by learning.

Zero frequencies occur in both contextual and lexical probabilities. For example,

in the model described in Section 3.4, because of the lack of training data, there

is no relationship between some classes. Therefore the probability that the model

transitions between the corresponding states is zero. The zero frequency problem

occurs more often in lexical estimation because of the nature of text: most words

are plain text. The probabilities that these words are generated in other classes are

zero.
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In the illustration of the Viterbi algorithm on page 41 (Section 3.2), a small con-

stant0:0001 is assigned to zeros in the contextual probability matrixA (zeros in the

lexical probability matrixB are left unchanged). This does not seem to be reason-

able in general. It is hard to say how small the number should be without taking

other counts into consideration. The value0:0001 is small enough in the example of

Figure 3.2, but not for a model with actual probabilities that are smaller than0:0001.

Rather than using a fixed small number, we looked for a method that depended on

the number of occurrences of existing events, such as token classes and words. The

existing model smoothing methods are discussed in Section 2.3. To our knowledge,

there has been no systematic investigation of smoothing approaches for token iden-

tification. However, smoothing methods proposed in other research areas, such as

language modeling (Chen and Goodman, 1998) and part-of-speech identification

(Thede and Harper, 1999), can be adapted.

The experiments use the four escape methods in PPM (described in Section 3.5.2)

as smoothing methods. The results are discussed in Section 4.7.
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Chapter 4

Experimental evaluation

The HMM-based token identification model described in Chapter 3 has been evalu-

ated in several different ways. This chapter presents and discusses the experimental

results.

Before describing experiments to assess the system, three standard measurements

that are commonly used in this field are described in Section 4.1. For the purpose

of easy analysis, a stand-alone measurement is also introduced. In order to see how

the system worked, it was first applied to the TCC corpus described in Section 1.4.

The results are presented in Section 4.2. Section 4.3 discusses errors in the cor-

pus. Because the errors affect both the model and the final results, the corpus was

corrected and the experiments run again on the new version. The corresponding

results, along with discussion, are presented in Section 4.4. In order to explore the

impact of PPM, Section 4.5 compares different unknown word handling methods.

The empirical experiments indicate that combining PPM withan HMM-based iden-

tification model for unknown words results in better performance than that using a

unified probability. Section 4.6 investigates the effect onperformance of the size

of the models, which is determined by the amount of training data. Increasing the

amount of training data results in better identification. Although the performance

continues to improve as the size of the training data grows, for the available cor-

pus, using25 issues of TCC newsletters to train the model seems to be acceptable.
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Section 4.7 investigates the effect of different model smoothing methods. Finally,

in Section 4.8, the system is evaluated on bibliographies. The results are better than

for TCC text because of the characteristic structure of bibliographic text.

4.1 Measuring

Three standard measures,recall, precisionandF-measure(Van Rijsbergen, 1979;

Lewis, 1995), along witherror-rate are used to evaluate the accuracy of the token

identification system. They are calculated by using the corresponding manually

marked-up fragment in the training corpus as the gold standard. For easy reference,

let us call this gold standardhand mark-up. To define them, the following terms are

used:N Number of tokens occurring in the standard text; Number of tokens correctly marked up by the system;e Number of tokens incorrectly marked up by the system;n = + e Number of tokens marked up by the system.

The measures take into account two aspects of the mark-up: the label itself, and the

boundary where the label is inserted. A token is considered to be correctly marked

up when both label and boundaries are correct. For example

The board has been begging and bribing<n>Steve Jobs</n> to stay

on, but he hasn’t accepted yet.

“Steve Jobs” is correctly marked as a person’s name and it contributes one count to.
Recall and precision are widely used to assess the quality ofan information re-

trieval system in terms of how many of the relevant documentsare retrieved (recall)

and how many of the retrieved documents are relevant (precision). In the token
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identification task, recall is the proportion of the correcttokens which are actually

identified by the system, while precision is the proportion of tokens identified by

the system which are correct. They are written as:

Recall= N ; (4.1)

Precision= n: (4.2)

The two measures do not always provide an adequate evaluation because there are

some extreme situations where one of them is very small whilethe other is large.

For example, if the system identifies few tokens compared to the number ofN
and they are all correct, recall will be very small whereas precision is100%. It is

better to have a measure that yields a high score only when recall and precision are

balanced. A widely used measure is the F-measure (Van Rijsbergen, 1979; Lewis,

1995):

F-measure= (�2 + 1)� Precision� Recall�2 � Precision+ Recall
(4.3)

where values of� between0 and1 give varying weights to recall and precision.

In this thesis,� = 1, gives equal importance to recall and precision, therefore,

F-measure is the harmonic mean of recall and precision:

F-measure= 2� Precision� Recall
Precision+ Recall

: (4.4)

The measure of error-rate is used just for easy analysis of the result. It is defined as

Error-rate= eN : (4.5)

This is normally used on its own as an overall indicator of thequality of identi-

fication. However, it can give misleading results—an extreme condition is where

the system only identifies a single word, leading to a very small error-rate of1=N
despite the fact that all tokens but one remain unidentified.
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If the system marks up the same number of tokens as the hand mark-up, recall and

precision both become equal to one minus the error-rate. A perfect identification

system will have an error-rate of zero, and recall and precision of 100%.

During the checking procedure, labels and boundaries are scored separately at half

a count each. In one case, a token may be marked with the correct label but has one

of its boundaries displaced. Examples are given below with the correct mark-ups in

bold:

Happens everyfew<d>years</d>, and sometimes does result in pro-

gram cuts.

Happens<d>everyfew years</d>, and sometimes does result in pro-

gram cuts.<o>TheBureau of Labor Statistics</o> characterized the computer

field as having “strong long-term growth trends.”

In these cases, the correct label along with one correct boundary contributes a half

count to, the number of tokens correctly marked up by the system, and the other

incorrect boundary contributes a half count toe, the number of tokens incorrectly

marked up by the system against the hand mark-up. This policydoes not always

apply to each case. For example, the following are considered as errors:<s>NY Times,19Jan98. EduP</s>.

The Mining Company has a<u>college admissions guide at<<http

:// collegeapps.miningco.com</u>>>, including tips on interviewing.

In the first example, not only is one of the boundaries at the wrong position, parts of

the text included, which are shown in bold, should be marked as other classes—date

and source respectively. In the second example, too many extra words (in bold) are

included, in other words the wrong boundary is too far from its correct position.

Only one word displacements are accepted. The correct mark-up for these two is

shown below:
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<s>NY Times</s>,<d>19Jan98</d>. <s>EduP</s>.

The Mining Company has a college admissions guide at<<<u>http://

collegeapps.miningco.com</u>>>, including tips on interviewing.

The second situation in which the mark-up contributes a halfcount to is where the

boundaries are correct but with the wrong label. For example:

And the company is definitely getting better at the<o>Washington</o> power game.<o>Statistical Computing & Graphics</o> is a joint newsletter of the

Statistical Computing and Statistical Graphics Sections of the Ameri-

can Statistical Association, distributed to members threetimes a year.

Here and later in this chapter all labels that are not discussed are suppressed for

readability. Instead of organization, “Washington” here should be marked up as a

location according to the hand mark-up. Similarly, “Statistical Computing & Graph-

ics” in the second example is a source rather than an organization.

These measures are calculated manually by comparing the result of identification

against the hand mark-up in the corpus.

4.2 Application to the TCC corpus

The first series of evaluations used the TCC corpus. The corpus was first split into

sentences because the system processes input sentence by sentence. As mentioned

in Section 1.4.1, the available TCC corpus contains38 issues of the newsletter.25
issues, which are randomly selected, are used as the training set.

The statistics of the training data are shown in Table 4.1. The number of words

depends on exactly how a “word” is defined. Besides spaces, back slashes in URLs

and dots in email addresses are also considered as word delimiters. This increases
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Token type Number of words Percentage of words
dates (d) 1089 2.9%
email addresses (e) 1302 3.5%
fax numbers (f) 35 0.1%
phone numbers(h) 62 0.2%
locations (l) 559 1.5%
sums of money (m) 157 0.4%
names (n) 1151 3.1%
organizations (o) 814 2.2%
plain text 28919 77.7%
sources (s) 1054 2.8%
URLs (u) 2083 5.6%
total 37225 100.0%

Table 4.1: Statistics of the training data in the TCC corpus.

the number of words in the email and URL classes. Based on thisdefinition, about78% of words in the training data are plain text. Except for URL and email ad-

dress, the name class has the most words (3:1%), and date and source rank second

(2:9%) and third (2:8%) respectively. The percentage of words in these three classes,8:8%, is just double that in the fax, phone, location, sum of moneyand organization

classes—4:4%. The table shows that few words are labeled as fax or phone—taken

together, these two classes account for only0:3% of words. The more words in a

class that occur in the training data, the more likely it is that tokens in that class will

be identified correctly in new text.

To see how the system works,5 of the remaining issues are used as the test set with

all the tags removed. PPM models are used for the unknown words and the model

is smoothed using PPMA, which is described in Section 3.5.2.

Table 4.2 shows the results for each of the five test files in terms of recall, precision,

F-measure and error-rate. It also gives the average values of these measures.

In the table, the value of precision is almost always higher than that of recall. This

indicates that the system marks less tokens than it should do. Consequently, some

tokens are either missed out—left unmarked, or merged into another token by the

system.
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file Recall (%) Precision (%) F-measure(%) Error-rate (%)
test1 60.47 66.38 63.29 30.63
test2 59.00 55.66 57.28 47.00
test3 58.33 61.76 60.00 36.11
test4 54.39 62.00 57.94 33.33
test5 60.67 62.76 61.69 36.00

Average 58.57 61.71 60.04 36.61

Table 4.2: Result for five TCC test files using the model of HMM+PPM.

The errors can be divided into two different types:

1. correctly marked up tokens that are mistakenly not labeled or labeled incor-

rectly in the hand mark-up;

2. incorrectly marked up tokens.

The first type is calledfalse positive. Inspect the result of file test2 in Table 4.2, the

low precision compared to recall is caused by a large number of false positives–24
false positives out of a total of 106 marked-up tokens. Several aspects that affect

the accuracy of the results are discussed in the following section.

4.3 Defects in the corpus

The identification system is based on two components: the corpus and the algo-

rithm. Errors in either affect the final results. Because thecorpus is annotated by

hand, one hundred percent accuracy is hard to achieve. Errors can arise through

human negligence or mistake, and also through differences in judgment that hap-

pen between individuals. This section presents the shortcomings of the corpus that

affect the accuracy of the result.

As mentioned in Section 4.1, measurements are done by comparing the result of the

system with the hand mark-up in the corpus, which is pre-marked manually. The
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(a) <l>U.S.</l> News has a ”.edu Colleges and Careers Center” with lots of infor-
mation about colleges and campus life, graduate schools, and beyond.<l>Stanford</l> Testing Systems offers free SAT skill-building exercises at<<http://www.testprep.com>>.

(b) <s>U.S. News</s> has a ”.edu Colleges and Careers Center” with lots of infor-
mation about colleges and campus life, graduate schools, and beyond.<o>Stanford Testing Systems</o> offers free SAT skill-building exercises at<<http://www.testprep.com>>.

Figure 4.1: Examples of ambiguity. (a) Hand mark-up. (b) System mark-up.

marking differences between these two that count as errors during evaluation are

discussed in terms of ambiguity, omission and error.

As mentioned in Section 4.1, both the training data and the hand mark-up, the

marked-up version of test data, are part of the corpus and selected randomly. So

problems in the hand mark-up exist in the training set as well. This reduces the

performance of the system, because the model is trained on imperfect data.

4.3.1 Ambiguities

Marking ambiguities are found during experiments. Figure 4.1 shows two exam-

ples. Figure 4.1a shows how the tokens are marked in the hand mark-up and Fig-

ure 4.1b shows the results from the identification system. “U.S.” can stand alone

as a location, though more commonly people use “US” instead.But in the context

of this sentence, “U.S. News” is more likely to be a multi-word token in the source

class. Moreover, “U.S. News” has occurred as part of a sourcein the training data.

Similarly, in the training data, “Stanford” has been seen several times as a location.

But based on semantics, identifying “Stanford Testing Systems” in the test file as

an organization is more reasonable than “Stanford” alone asa location in the hand

mark-up. The system, however, does not include any semanticprocessing.

It has also been found that all occurrences of “weekly” and “monthly” are stemmed

when marking up by hand, as shown in the following examples:
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(a) IEEE Internet Computing is soliciting articles.
Now in its second year, it has the 2nd largest circulation of the IEEE Com-
puter Societyoptional publications.
Integrating multiple overlapping metadata standards; J. of the American So-
ciety for Information Science (JASIS).
Queen’s U.

(b) 4> <l>Silicon Valley</l> jobs:
Martyne Page’ has returned to Canada after a year of writing aSilicon Valley
column for a French-Canadian newspaper in Quebec.
(<l>Mount Arlington, NJ </l>/Paris, France): MS/PhD French/English
computational linguist with NN, ML, NLP.
(Mount Arlington, NJ ): MS/PhD center director in computational linguistics,
NN, NLP.
That, and that<n>Steve Jobs</n> kept undermining his relationship with
the board.
The board has been begging and bribingSteve Jobsto stay on, but he hasn’t
accepted yet.
The<l>US</l> created 20K new computer services jobs in Jul98, plus 3K
in computer manufacturing, out of just 66K newUS jobs total.

Figure 4.2: Examples of omission. (a) Tokens are left unmarked. (b) Tokens are not
marked up for all occurrences.<d>new week</d>ly<d>available month</d>ly

These examples show disagreement in human judgment. The person who marked

the corpus might have followed his/her rules which are not incorrect. The system

did the right thing as well. However, the results are considered as errors because

they differ from that in the hand mark-up.

4.3.2 Omissions

The labels of some tokens are accidently missed out in the hand mark-up. There are

two cases: tokens that obviously belong to some classes are left unmarked as shown

in Figure 4.2a, and tokens that are not marked up for all occurrences as shown in

Figure 4.2b.

In Figure 4.2a, the text in bold belongs to some token class, for example, “IEEE
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Internet Computing” is a source and “American Society for Information Science

(JASIS)” is an organization. All of them are marked up correctly by the system.

However, they are considered as errors when measuring because the measure is

against the imperfect hand mark-up.

Figure 4.2b shows four samples where a token, in bold, is marked somewhere while

the same token is left unmarked in other places. For example in the first part of

Figure 4.2b, “Silicon Valley” is marked as a location in one sentence and in the

other sentence it is left unmarked. For the same reason as above, this increases

the number of errors because the system marks both up as locations. The same

situation occurs for the next two samples in Figure 4.2b. Typically, the last sample

in Figure 4.2b presents the failure in the same sentence.

Moreover, some tokens are marked in different ways. For example “Educom Up-

date” appears in three different ways:

Educom Update<s>Educom</s> Update<s>Educom Update</s>
where the last one is the right one. During measuring, whether the mark-up is either

correct, partially correct or false depends on what it is in the hand mark-up at the

same position.

4.3.3 Errors

Other errors have been found in the hand mark-up as shown in Figure 4.3. Fig-

ure 4.3a shows two errors that occurred in the hand mark-up. It is obvious that

both “ISTA” and “CASA” are acronyms of the preceding organizations. Although

the system did not mark them correctly either, as shown in Figure 4.3b, at least it

identifies the tokens as the right class. These kind of errorsin the hand mark-up

may affect system performance elsewhere.
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(a) Int. Science & Technology Associates (<l>ISTA</l>; Philadelphia): BS
linguists for Japanese patent machine translation.
Center for Adaptive Systems Applications (<l>CASA</l>; Los Alamos,
NM): scientists in data mining, adaptive computing for financial modeling or
fraud detection.

(b) Int. <o>Science & Technology Associates (ISTA</o>; Philadelphia): BS
linguists for Japanese patent machine translation.<o>Center</o> for Adaptive Systems Applications (CASA; Los Alamos,
NM): scientists in data mining, adaptive computing for financial modeling or
fraud detection.

Figure 4.3: Examples of error. (a) Hand mark-up. (b) System mark-up.

4.3.4 Effect of the imperfect training data

The above types of failure occurred in the randomly selectedtest set in the corpus.

They occur in the entire corpus as well. For example, in the training set, “US”

occurs68 times:18 times as a location by itself,6 times as part of an organization

and44 times it was left unmarked. This makes the models ambiguous and therefore

affects the performance of the system because the identification system is based on

the model.

For example, in the first test file, “US” occurs three times in the hand mark-up,

once as a location and twice as plain text, but the system identifies it as plain text

for all three occurrences. According to Table 4.1, the probability of generating

“US” in the location class is higher than that in plain text. However, besides symbol

emission probability, the hidden Markov model involves another probability—state

transition probability. The large amount of text means thatthe state that represents

plain text has a higher chance of being chosen as the current state. If all occurrences

of “US” had been marked correctly, there would be only a smallchance for it to be

considered as plain text.

An additional experiment was performed to investigate this. For the same training

data, location labels were added for all occurrences of previously unlabeled “US”

that are likely to stand as a location. Other occurrences were part of a class which

the token belongs to, for example “<o>US Air Force</o>” and “<o>US Dept. of
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Education (DoED</o>”. The model was then trained using the modified version.

By applying the model on the same test file, the result shows that all three occur-

rences are marked up as location. Two of them are fully correct and the other has

one boundary incorrect, “<l>The US</l>”.

4.4 Application to the corrected TCC corpus

Because the models and therefore the performance of the system are based on the

corpus, the quality of the corpus is important. According tothe shortcomings de-

scribed in Section 4.3 and further examination, the original TCC corpus was cor-

rected by hand. The experiment described in Section 4.2 was run again using the

corrected version of the corpus. The same training and test splits were used as in

the original run.

File Recall (%) Precision (%) F-measure(%) Error-rate (%)
test1 64.86 72.37 68.41 24 76
test2 65.67 74.58 69.84 22.39
test3 68.72 78.34 73.21 18.99
test4 60.96 74.79 67.17 20.55
test5 66.26 66.67 66.46 33.13

Average 65.29 73.35 69.02 23.96

Table 4.3: Result for five TCC test files using the corrected corpus and the model of
HMM+PPM.

Table 4.3 shows the results for the corrected corpus. On average, recall and pre-

cision are improved by6:72% and11:64% respectively, which results in an8:98%
improvement over the original corpus for F-measure. At the same time, error-rate

drops down by12:65%.

However, there were still some errors left by accident. For example, not all appear-

ances of “Washington Post” and “Scott Thurm” were marked up as source and name

respectively. And all mark-ups with word stemming were leftunchanged.

In more detail, Figure 4.4 presents the proportion of correctly marked tokens (dark
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Figure 4.4: Detailed result for five TCC test files using the corrected corpus and the
model of HMM+PPM.

gray) and errors (light gray) over the corresponding numbers of tokens in the hand

mark-up for each class and overall.

The figure shows that organization class has a very poor result, with only about20%
of correct tokens identified. This is probably due to the lower percentage of words

in this class in the training data. As mentioned before, the more words in a class

that occur in the training data, the more likely it is that tokens in the same class can

be identified in new text. The proportion of words in classes such as fax number and

sums of money are also small, however, they have special so-called indicators, for

example “fax” and “$”. This increases the performance for these classes. However,

a name of an organization is more likely to comprise diverse words, such as:<o>Bell Labs</o><o>John Benjamins</o><o>Holland Academic Graphics</o>
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The percentage of correct tokens in date, email and fax classes are about the same.

However, the system is more successful on date class becausethe error rate is very

low. This is understandable because date has much less ambiguity than email

address and fax number. Most tokens in date class are distinguishable in both

words and format. Errors happen in special cases such as “30-<d>40 years</d>”

and word stemming. But they are rare. On the other hand, emailaddresses can

be mixed up with URLs due to the definition of a word. Some sources such as

“<s>comp.ai.genetic</s>” also increase the error in email address and URL classes.

There is no distinction between fax number and phone number except the word

“fax/Fax”, which is a strong indicator to distinguish fax number from any other

classes.

It is interesting to notice that a token which is a money amount is either marked up

correctly or left unmarked. Due to the format of the token in this particular class,

there is no marking ambiguities.

Generally speaking, name of a person is relatively harder toidentify than other

classes. The figure shows that it gets the second best result for both the correct ratio

and error ratio. As we have noticed, there are some names thatoccur repeatedly.

For example, “Ken”, “Bill Park” and “Brandon” have occurredseveral times in the

entire corpus and none of them has been found to be identified incorrectly. However,

most of the names are not in this special case.

4.5 Exploring impact of PPM

One of the thesis statements claims that PPM models can be used to handle unknown

words for an HMM-based token identification system. The previous experiments

have shown the results. How it works compared to other methodis still a question.

This section presents the results of the experiments which were run by using both

PPM models and unified probability for unknown words.
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The same25 TCC issues of training data and5 issues of test data are used. The

experiment was run twice. The probability of every unknown token is provided by

PPM models the first time and set to a unified value for each token class as described

in Section 3.6.2 the second time. To estimate how often unknown tokens occur in

each class, the25 issues of training data were divided into two parts,13 issues for

training and12 issues for updating.

model Recall(%) Precision (%) F-measure(%) Error-rate (%)
PPM+HMM 65.29 73.35 69.02 23.96
Unified+HMM 60.73 69.94 65.00 25.24

Table 4.4: Average results of 5 TCC files using PPM and unified probability for
unknown words.

Table 4.4 shows the average results in terms of recall, precision, F-measure and

error-rate. On close examination of the results, the differences are mainly due to

the number of fully correct marked-up tokens. With PPM models, more tokens are

marked up fully correctly, which means both label and boundaries are correct. For

example, the system failed in the following cases when the unified probability is

used,<s>Al Kamen, Washington Post</s><e>fr</e><s>comp.ai.genetic, 05Aug98</s><s>AWAD, 05Aug98</s>
but it performed correctly with PPM models,<n>Al Kamen</n>, <s>Washington Post</s><e>hermes@iway.fr</e><s>comp.ai.genetic</s>,<d>05Aug98</d><s>AWAD</s>,<d>05Aug98</d>
The results using PPM models are better overall, but in some cases, mark-up is
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improved when using the unified probability. For example, the system identified

the following URL correctly,<u>http://www.elsevier.nl/locate/parco</u>
while only part of the URL is marked up when using PPM models,<u>http://www.elsevier.nl</u>
4.6 Effect of the quantity of training data

For any learning system, the effect of the amount of the training data is an important

issue, especially for a supervised learning system. It determines how much human

work is required to prepare the data in order to get acceptable performance. In the

previous experiments,25 randomly selected issues were used to train the model.

Whether the size of the training data is reasonable is also a question that needs to

be addressed.

For the TCC corpus, experiments have been done with different amounts of train-

ing data. Eighteen models were trained with successively larger amounts of data

starting from2 issues of the newsletter, with each training set an extension of the

preceding one with two more issues. The eighteen models wereevaluated on one

TCC issue, which is not included in any of the training sets.

Figure 4.5 presents the results from the different models. The lines marked with

circular and cross points correspond to the value of precision and recall respectively.

The solid line with no points corresponds to error-rate. Thedashed line corresponds

to F-measure.

Starting with two issues of training data, the performance of the system is improved

as more training data is used. For precision and recall, the significant improvement

happens before the point of12 issues of training data. Both of the values keep
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 Figure 4.5: Effect of the amount of training data.

increasing, but at a more steady rate after this point. They appear to be more stable

after the point of24 issues of training data. For the error-rate, the value fluctuates.

It increases while more training data is added until10 issues of training data. This

is because there is not enough training data yet. Therefore,more errors occurred

although many more tokens are identified correctly as shown by both precision and

recall. It starts to decrease after this point except for a fluctuation at the point of22
issues. It then levels off after this point.

Overall, Figure 4.5 implies that the performance of the system is improved in terms

of standard measurements and practice by using more training data. After24 issues,

although lines are more flattened, adding training data still improves the values of

precision and recall. It is assumed that with sufficient data, the least amount of train-

ing data which gives reasonable performance will be more apparent. This point ex-

ists because more ambiguities are introduced when more training data is used, even

if correctly annotated. For example, a token may appear in different classes, which

affects the ability of the system to make the final identification decision. Balancing

the improvement and errors caused by ambiguities, there must be an amount after

which the entire performance of the system tends to be stable. However, for the

available amount of corpus,25 issues for training seems to be a good choice from

the figure.
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4.7 Effect of model smoothing method

Different smoothing methods have been described in Section3.5.2. In the previous

experiments, Method A has been used. This section investigates how the other

methods perform, and whether using Method A is a good decision. The same25
issues of TCC in the corpus are used to train the model. Three issues of TCC, which

are randomly selected from the remainder are tested with four smoothing methods:

Method A, Method B, Method C and Method D. They are defined in Section3.5.2,

and originally for PPM models. Table 4.5 shows the average results.

Smoothing Recall(%) Precision (%) F-measure(%) Error-rate (%)
Method A 64.48 75.83 69.70 20.58
Method B 54.51 71.89 61.93 21.39
Method C 52.84 77.11 62.61 15.78
Method D 58.12 76.09 65.80 17.99

Table 4.5: Average results from different model smoothing methods.

From the table, Method A has the highest value of recall whileprecision and error-

rate are worse than for some of the other methods. By inspecting the results, it

is apparent that the system with Method A always marks up moretokens than the

others, which increases both the number of correct tokens and errors.

Method C has the highest value of precision but the lowest value of recall. This is

caused by a lower number of tokens being identified. This benefits precision a lot.

Recall from the definition of precision and recall in Section4.1, a higher value of

precision means that among the identified tokens, more of them are correct. And a

higher value of recall indicates that more correct tokens are identified by the system.

Ideally, a method which results in both the highest precision and recall is a good

choice. However, for the situation here, Method A is the bestchoice overall at a

little expense of error-rate. Method D can be an alternativebecause the differences

compared to the best one in both precision and recall are small, and the error-rate is

also lower.
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Method B and Method C perform comparatively worse than othertwo. As above,

Method B marks up more tokens either correct or incorrect. This results in larger

recall but smaller precision. Considering the larger error-rate of Method B, Method

C is more acceptable than Method B on average.

To sum up, the choice of smoothing method can be made by the value of F-measure

with consideration of error-rate.

4.8 Application to bibliographies

Another thesis statement claims that the system is fully domain- and language-

independent. The domain-independence is evaluated by applying the system on

a bibliography corpus without any changes.

The text in bibliographies is more structured than that in the TCC newsletter, which

the model takes advantage of. A bibliography entry containsname, title and date.

Most of them have page number(s), and some provide organization, publisher, lo-

cation and source. In the experiments, the BIB corpus of2400 references were se-

lected randomly from the bibliography collection mentioned in Section 1.4.2. The

model is trained on2200 entries, and the experiments are done by running the sys-

tem on100 of the remaining references with labels removed.

Corpus Recall(%) Precision (%) F-measure(%) Error-rate (%)
BIB 72.02 81.78 76.59 16.05
TCC 65.29 73.35 69.02 23.96

Table 4.6: Average result for 100 bibliographic entries and5 TCC issues.

Table 4.6 shows the average value of recall, precision, F-measure and error-rate

for 100 bibliographic entries. It also shows the average result of 5TCC issues

for comparison. Overall, the system was successfully applied on the new text. The

figure indicates that the performance is7:57% better in F-measure than that of TCC.

Figure 4.6 shows the proportion of correctly marked tokens (dark gray) and errors
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Figure 4.6: Detailed result for 100 bibliographic entries and 5 TCC issues.

(light gray) over the corresponding numbers of tokens in thehand mark-up for each

class and overall.

In the figure, the combined values of correct and error for publisher, date and source

class end up more than100%. This is because the system marks up more tokens than

that in the corresponding classes in the hand mark-up.

The figure shows that not a single token is marked up as an organization whether

correct or not. In fact, there are4 organizations in the test data.3 of them are marked

up incorrectly in the hand mark-up and one is left unmarked. Figure 4.7 gives an

example, which shows the contrast between the output of the system and what in

the hand mark-up. The other two have the exactly same problem—only labels are

different, and it is still acceptable.

Tokens in date class have the best identification result. More than90% of date are

correctly marked up, and among the mistakes, some of them arebecause the system

marks up date like
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(a) Bodnarchuk, R., and Bunt, R. A synthetic workload model for a distributed
systems file server. In Proc. 1991 ACM SIGMETRICS Conf. on Mea-
surement and Modeling of Computer Systems ACM SIGMETRICS Perfor-
mance Evaluation Review (San Diego, California, USA, May 21- 24 1991),<b>Univ. of Saskatchewan,</b> p. 50. Published as Proc. 1991 ACM
SIGMETRICS Conf. on Measurement and Modeling of Computer Systems
ACM SIGMETRICS Performance Evaluation Review, volume 19, number 1.

(b) Bodnarchuk, R., and Bunt, R. A synthetic workload model for a distributed
systems file server. In Proc. 1991 ACM SIGMETRICS Conf. on Mea-
surement and Modeling of Computer Systems ACM SIGMETRICS Perfor-
mance Evaluation Review (San Diego, California, USA, May 21- 24 1991),<o>Univ. of Saskatchewan</o>, p. 50. Published as Proc. 1991 ACM
SIGMETRICS Conf. on Measurement and Modeling of Computer Systems
ACM SIGMETRICS Performance Evaluation Review, volume 19, number 1.

Figure 4.7: Example of marking error. (a) Hand mark-up. (b) System mark-up.<d>May 21- 24 1991</d>
as <d>May</d> 21- 24<d>1991</d>.

However, it is understandable regardless of the hand mark-up. Some of the errors

are false positive.

Many tokens in the page class are missed out. Out of the total number of72, almost

all of those that have only one number like “p. 25” in the references are left un-

marked. This is assumed to be due to ambiguities, because a similar number format

occurs many times in plain text, such as the number of volume and series.

The system marks up only17 locations out of40, and9 of them are errors. It is

interesting that8 of the errors are false positive, such as<d>San Mateo, CA</d><d>Amsterdam</d><d>Atlantic City</d>
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It is noticeable that about two third of names are correctly identified. It is the struc-

ture of the text that improves the performance on name class,which is compara-

tively harder than some other classes.

Compare Figure 4.6 to Figure 4.4 (Section 4.4), there are fiveclasses in common:

date, location, name, organization and source. It is obvious that the system performs

very poor on both location and organization, especially thelatter. One of the reasons

for this is the lower number of words in these classes in the training data. And

another one is ambiguity. For example, a place may be named after a famous person,

and an organization may be named after its owner or location.

On comparison, the system works well for tokens in date classwith about92%
and73% correct tokens identified for text in bibliographies and TCCnewsletters

respectively. Undeniably, the format of date in the text contributes a lot to the result.

The result for people’s name is also good on both TCC and BIB text, although not

the best among all the classes. It has been discussed (in Section 1.3.2) that names

of people are not easy to identify correctly. This result indicates that the system

performs well on this class.

As we have not got any proper corpora in languages other than English, no ex-

periments were done to evaluate the language-independence. However, since the

system does not comprise any language-dependent components, there should be no

problem once a suitable corpus is available.
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Chapter 5

Conclusion

This thesis makes two claims: that hidden Markov models can be successfully used

to develop a domain- and language-independent token identification system, and

that PPM models can be used in conjunction with HMMs to provide the probability

for every unknown word in this application. The technique isdomain independent

in that it uses no domain or language-specific techniques, but good results cannot of

course be guaranteed in any domain. The corresponding algorithms and evaluations

have been described in Chapter 3 and Chapter 4 respectively.Section 5.1 highlights

what has been done in the thesis. In Section 5.2, we briefly discuss each of the

achievements. As with any research thesis, this is certainly not the end of the study.

There are always problems that remain unsolved or just ariseat the end. Section 5.3

presents some directions for future work.

5.1 Key findings� PPM models can be used to provide probability for an unknown word for a

HMM-based token identification system.� PPM for unknown words performs better than the unified probability.
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� The system can be successfully applied to a different corpuswithout any

changes in the code. This makes the system more generalized.� The amount of training data affects the performance of the system, increasing

the amount leads to a better result.� Shortcomings in the corpus degrade the performance of the system.� Using PPM’s escape Method A as the smoothing method gives thebest iden-

tification result compared to other methods.

5.2 Discussion

The token identification system developed in this thesis hastwo motivations. One

is to bridge HMMs and PPM models in order to handle unknown words in the input

text. It is based on the success of HMMs and PPM models in previous applications

(e.g. Bikel et al., 1999; Seymore et al., 1999; Bray, 1999; Witten et al., 1999a).

Starting from this motivation, we first showed that the idea of bridging HMM and

PPM is feasible (Section 4.2). The system gets an F-measure of 69:02% when

applied on the TCC corpus. It is not as good as would be expected from a sys-

tem which includes language-dependent components. However, our system is more

generalized.

As we know, there is always a trade-off between generality and accuracy. The more

specific the application, the higher accuracy a system provides. The undertaken

research emphasizes retargetability and generality, therefore, resulting in a lower

accuracy. An obvious point where the system is degraded is the lack of a language-

dependent component. For example, the model of IdentiFinder (Bikel et al., 1999)

contains a word-feature component, such as the format of a numeric number, capi-

talization, initial of a person’s name and the abbreviationof a source or organization.

This can be a very small set. However, the model could be improved by these fea-
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tures. For instance, the feature of a number helps the systemto detect whether it

belongs to date, monetary amount, phone/fax number or other. Overall, this sys-

tem could be efficient on applications which prefer generalization. For applications

which ask for higher accuracy, it is not the best choice.

The performance of the identification system with PPM for unknown words is supe-

rior to that with a unified probability (Section 4.5). The result is improved by about4% in terms of F-measure. This is what we expected because the PPM models are

character level, therefore, the information provided is more context related.

The system has been tested on another corpus, bibliography corpus, without any

changes in the code. It has been found that structure in the text improves the per-

formance of the system. A bibliography entry is so-called semi-structured. For

example, it always starts with the author(s), followed by a title, and many sources

start with the preposition “In”. On average, the value of F-measure is7:57% higher

than that of TCC corpus.

Five classes are in common in TCC and BIB corpus. The system performs the

best on date class, with92% and73% correct tokens identified in the two corpora.

The performance on name class is also good, with68% and76% correct tokens

identified. On the other hand, it is very poor on organizationwith an F-measure of20% for TCC, while none of the organizations is identified for BIB.

We investigated the effect of the quantity of the training data (Section 4.6). Al-

though more data leads to better identification,24 issues of TCC newsletters achieved

an acceptable result. Adding50% more training data, making it36 issues, only re-

sulted in an increase of1:37% in terms of F-measure.

The performance of the system is greatly affected by the quality of the corpus. The

evaluation using TCC corpus has been done two times because some obvious errors

in the corpus are found after the first evaluation. These errors affect the performance

of the system. Therefore, the corpus was corrected manually, and same experiment

was run again. As presented in Section 4.4, recall, precision and F-measure are
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improved by6:72%, 11:64% and8:98%, respectively, by using the correct version

of the corpus. And error-rate is improved by12:65%.

Several smoothing methods have been tested (Section 4.7). The best performance of

the system can be obtained by choosing Method A (Section 3.3), one of the escape

methods of PPM model, as the smoothing method for the model, while Method D

can be used alternatively. Method B and Method C are not recommended, especially

the former because it not only marks less tokens, but there are more errors among

the tokens.

5.3 Future work

We have contributed to the research area of text mining by developing a domain-

and language-independent token identification system; andby a novel method for

unknown words, combining two well-known language models. However, there is

still much work on the path that needs to be done to consolidate and extend the work

in this thesis.

First of all, we would like to have a large and correct corpus by which the perfor-

mance of the system can be evaluated. As the corpus is marked up manually, even

if negligence and mistakes can be eliminated, differences in judgment between in-

dividuals would still exist. However, a larger amount of data makes the result more

stable. We would also like to have more corpora in a wider range of domains, and in

different languages, to further test the domain- and language-independence of the

system.

As the system is word-based, the definition of a word plays an important role in

the performance of the system. In the thesis, space and dot and back slash in email

addresses and URLs are used as word delimiters. Other symbols, such as dash and

apostrophe, are part of a word. The system will be more adaptable if these non-

alphabetic symbols could be handled flexibly.
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Unknown word handling is an important part for any identification system, espe-

cially when training data is insufficient. In this thesis, wehave used PPM models

to provide the probability for unknown words. The largest probability predicted by

a particular PPM model is used. In this way, the PPM model doesnot affect the

state which the HMM is currently in. An obvious extension forthe work in the

thesis is that when the system encounters an unknown word, the HMM is forced

to the corresponding state that represents the word best by providing the largest

probability.

Another extension which we believe has potential is to increase the order of the

HMM. Second-order HMMs have been successfully used for part-of-speech tag-

ging (Thede and Harper, 1999). How it works for token identification deserves

further exploration. However, it is assumed that more advanced or complicated

smoothing methods will be necessary because the higher order will certainly cause

more serious zero-frequency problems.

83



Bibliography

Aberdeen, J., Burger, J., Day, D., Hirschman, L., Robinson,P. and Vilain, M.

(1995). MITRE: Description of the alembic system as used forMUC-6. In

Proceedings of the Sixth Message Understanding Conference(MUC-6) (pp.

141–155). Columbia, MD: Morgan Kaufmann Publishers.

Appelt, D., Hobbs, J., Bear, J., Israel, D. and Tyson, M. (1993). FASTUS: A finite-

state processor for information extraction from real-world text. InProceedings

of the 13th International Joint Conference on Artificial Intelligence (IJCAI-93)

(pp. 1172–1178). Chambery, France.

Baluja, S., Mittal, V. O. and Sukthankar, R. (1999). Applying machine learning for

high performance named-entity extraction. InProceedings of the Conference of

the Pacific Association for Computational Linguistics(pp. 365–378). Waterloo,

CA.

Baum, L. E. (1972). An inequality and associated maximization technique in statis-

tical estimation for probabilistic functions of a Markov process.Inequalities,

3, 1–8.

Beeferman, D., Berger, A. and Lafferty, J. (1999). Statistical models for text seg-

mentation.Machine learning, special issue on Natural Language Processing,

34(1-3), 177–210.

Bell, T., Cleary, J. and Witten, I. (1990).Text Compression. Englewood Cliffs, NJ:

Prentice-Hall.

84



Bennett, S. W., Aone, C. and Lovell, C. (1997). Learning to tag multilingual texts

through observation. InProceedings of the Second Conference on Empirical

Methods in Natural Language Processing(pp. 109–116). Providence, Rhode

Island.

Bikel, D. M., Miller, S., Schwartz, R. and Weischedel, R. (1997). Nymble: a high-

performance learning namefinder. InProceedings of the Fifth Conference on

Applied Natural Language Processing (ANLP-97)(pp. 194–201).

Bikel, D. M., Schwartz, R. and Weischedel, R. M. (1999). An algorithm that learns

what’s in a name.Machine Learning Journal, 34, 211–231.

Borthwick, A., Sterling, J., Agichtein, E. and Grishman, R.(1998). Exploiting di-

verse knowledge sources via maximum entropy in named entityrecognition. In

Proceedings of the Sixth Workshop on Very Large Corpora. Montreal, Canada.

Bray, Z. C. (1999). Using compression models for text mining. Master’s thesis,

Department of Computer Science, University of Waikato, Private Bag 3105,

Hamilton, New Zealand.

Brill, E. (1995). Transformation-based error-driven learning and natural language

processing: A case study in part-of-speech tagging.Computational Linguis-

tics, 21(4), 543–566.

Chen, S. F. and Goodman, J. (1998). An empirical study of smoothing techniques

for language modeling. Technical Report TR-10-98, HarvardUniversity.

Cleary, J. G., Teahan, W. J. and Witten, I. H. (1995). Unbounded length contexts

for PPM. In Stover, J. A. and Cohn, M. (Eds.),Proceedings DCC’95. IEEE

Computer Society Press.

Cleary, J. G. and Witten, I. H. (1984). Data compression using adaptive coding and

partial string matching.IEEE Trans on Communications, 32(4), 396–402.

Cucerzan, S. and Yarowsky, D. (1999). Language independentnamed entity recog-

nition combining morphological and contextual evidence. In Proceedings of

85



the 1999 Joint SIGDAT Conference on Empirical Methods in NLPand Very

Large Corpora(pp. 90–99). College Park, MD.

Daciuk, J. (1999). Treatment of unknown words. InWorkshop on Implementing

Automata WIA’99. Potsdam, Germany.

Dzeroski, S. (1996). Inductive logic programming and knowledge discovery in

databases.Advances in Knowledge Discovery and Data Mining(pp. 117–152).

AAAI Press / The MIT Press.

Forney, J. G. D. (1973). The Viterbi algorithm.Proceedings of the IEEE, 61(3),

268–278.

Grishman, R. (1997). Information extraction: Techniques and challenges. InInfor-

mation Extraction (International Summer School SCIE-97). Springer-Verlag:

Maria Teresa Pazienza.

Grishman, R. and Sundheim, B. (1996). Message understanding conference - 6: A

brief history. InProceedings of the 16th International Conference on Compu-

tational Linguistics. Copenhage.

Howard, P. G. (1993).The design and analysis of efficient lossless data compression

systems. PhD thesis, Brown University, Providence, RI.

Iwanska, L., Croll, M., Yoon, T. and Adams., M. (1995). WayneState University:

Description of the UNO natural language processing system as used for MUC-

6. In Proceedings of the Sixth Message Understanding Conference(MUC-6).

Columbia, MD: NIST, Morgan Kaufmann Publishers.

Jelinek, F. and Mercer, R. L. (1980). Interpolated estimation of Markov source pa-

rameters from sparse data. InProceedings of the Workshop on Pattern Recog-

nition in Practice. Amsterdam, The Netherlands: North-Holland.

Katz, S. M. (1987). Estimation of probabilities from sparsedata for the language

model component of a speech recognizer.IEEE Transactions on Acoustics,

Speeech and Signal Processing, 35(3), 400–401.

86



Kneser, R. and Ney, H. (1995). Improved backing-off for m-gram language model-

ing. In IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing, Volume 1 (pp. 181–184). Detroit, Michigan.

Lawrence, S. and Giles, C. L. (1999). Accessibility of information on the web.

Nature, 400(6740), 107–109.

Lewis, D. D. (1995). Evaluating and optimizing autonomous text classification

systems. InProceedings of the Eighteenth Annual International ACM Special

Interest Group on Information Retrieval(pp. 246– 254).

McDonald, D. D. (1996). Internal and external evidence in the identification and

semantic categorization of proper names. In B. Boguraev andJ. Pustejovsky

(Eds.),Corpus Processing for Lexical Aquisition(pp. 21–39). Cambridge, MA:

The MIT Press.

Merkl, D. (1998). Text data mining. InA Handbook of Natural Language Process-

ing: Techniques and Applications for the Processing of Language as Text. New

York: Marcel Dekker.

Mikheev, A. (1997). Automatic rule induction for unknown-word guessing.Com-

putational Linguistics, 23(3), 405–423.

Mikheev, A., Moens, M. and Grover, C. (1999). Named entity recognition without

gazetteers. InProceedings of EACL. Bergen, Norway.

Moffat, A. (1990). Implementing the PPM data compression scheme.IEEE Trans-

actions on Communication, 38(11), 1917–1921.

Moffat, A., Bell, T. C. and Witten, I. H. (1997). Lossless compression for text and

images. International Journal of High Speed Electronics and Systems, 8(1),

179–231.

Morgan, R., Garigliano, R., Callaghan, P., Poria, S., Smith, M., Urbanowicz, A.,

Collingham, R., Costantino, M., Cooper, C. and the LOLITA Group (1995).

87



University of Durham: Description of the LOLITA system as used for MUC-

6. In Proceedings of the Sixth Message Understanding Conference(MUC-6).

Columbia, MD: NIST, Morgan Kaufmann Publishers.

Ney, H., Essen, U. and Kneser, R. (1994). On structuring probabilistic dependencies

in stochastic language modeling.Computer Speech and Language, 8(1), 1–38.

Poritz, A. B. (1988). Hidden Markov models: A guided tour. InProceedings of the

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP ‘88)(pp. 7–13).

Rabiner, L. R. (1989). A tutorial on hidden Markov models andselected applica-

tions in speech recognition.Proceedings of the IEEE, 77(2), 257–286.

Ratnaparkhi, A. (1996). A maximum entropy model for part-of-speech tagging. In

Brill, E. and Church, K. (Eds.),Proceedings of the Conference on Empirical

Methods in Natural Language Processing(pp. 133–142). University of Penn-

sylvania, Philadelphia, Pa.

Rosenfeld, R. (1994).Adaptive Statistical Language Modeling: A Maximum En-

tropy Approach. PhD thesis, School of Computer Science, Carnegie Mellon

University, Pittsburgh, PA.

Ryan, M. S. and Nudd, G. R. (1993). The Viterbi algorithm. Research Report CS-

RR-238, Department of Computer Science, University of Warwick, Coventry,

UK.

Sekine, S. (1998). NYU: Description of the Japanese NE system used for MET-2.

In Proceedings of MUC-7 1998.

Seymore, K., McCallum, A. and Rosenfeld., R. (1999). Learning hidden Markov

model structure for information extraction. InProceedings of the Sixteenth Na-

tional Conference on Artificial Intelligence: Workshop on Machine Learning

for Information Extraction(pp. 37–42). Orlando, FL.

88



Stevenson, M. and Gaizauskas, R. (2000). Using corpus-derived name lists for

named entity recognition. InProceedings of the Sixth Conference on Applied

Natural Language Processing and First Conference of the North American

Chapter of the Association for Computational Linguistics(pp. 290–296.). Seat-

tle.

Tan, A.-H. (1999). Text mining: Promises and challenges. InSouth East Asia

Regional Computer Confederation (SEARCC’99). Westin Stamford Hote, Sin-

gapore.

Teahan, W. J. (1998).Modelling English Text. PhD thesis, Department of Computer

Science, University of Waikato, Private Bag 3105, Hamilton, New Zealand.

Teahan, W. J., Wen, Y., McNab, R. and Witten, I. H. (2000). A compression-based

algorithm for Chinese word segmentation.Computational Linguistics, 26(3),

375–393.

Thede, S. M. and Harper, M. P. (1999). A second-order hidden Markov model for

part-of-speech tagging. InProceedings of the 37th Annual Meeting of the As-

sociation for Computational Linguistics, Association for Computational Lin-

guistics (pp. 175–182).

Van Rijsbergen, C. J. (1979).Information Retrieval(Second Ed.). London: Butter-

worths.

Viterbi, A. J. (1967). Error bounds for convolutional codesand an asymptotically

optimum decoding algorithm.IEEE Transactions on Information Theroy, IT-

13(2), 260–269.

Witten, I., Bray, Z., Mahoui, M. and Teahan, W. (1999a). Textmining: a new fron-

tier for lossless compression. InProceedings Data Compression Conference

(DCC’99) (pp. 198–207). Snowbird, Utah.

Witten, I. H. and Bell, T. C. (1991). The zero-frequency problem: Estimating the

89



probabilities of novel events in adaptive text compression. IEEE Transactions

on Information Theory, 37(4), 1085–1093.

Witten, I. H., Bray, Z., Mahoui, M. and Teahan, W. J. (1999b).Using language mod-

els for generic entity extraction. InICML-99 Workshop on Machine learning

in text data analysis. Stockholm, Sweden.

Witten, I. H. and Frank, E. (2000).Data Mining: Practical Machine Learning

Tools and Techniques with Java Implementations. San Francisco, CA.: Morgan

Kaufmann Publishers.

Witten, I. H., Moffat, A. and Bell, T. C. (1999c).Managing Gigabytes-Compressing

and Indexing Documents and Images(2 Ed.). ISBN 1-55860-570-3. San Fran-

cisco, California: Morgan Kaufmann Publishers.

Yeates, S., Witten, I. H. and Bainbridge, D. (2001). Tag insertion complexity. In

Storer, J. A. and Cohn, M. (Eds.),Proceedings of Data Compression Confer-

ence(pp. 243–252). Snowbird, Utah, US.

Zipf, G. K. (1965). Human Behavior and the Principle of Least Effort: an Intro-

duction to Human Ecology(Facsimile of 1949 edition Ed.). Hafner Publishing

Company.

90


