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Abstract

Text mining involves the use of statistical and machinerggy techniques to learn
structural elements of text in order to search for usefubiimfation in previously
unseen text. The need for these techniques have emergefitbetapidly growing
information era. Token identification is an important comeot of any text mining
tool. The accomplishment of this task enhances the functialiverse applications

involving searching for patterns in textual data.

Several different identification methods have been regari¢he literature. HMMs
and PPM models have been successfully used in languagespiogaasks. They
have also been applied separately to learning-based tolestification. Most of

the existing systems are domain- and language-dependent.

In this thesis, we implement a system that bridges the twad kvelwn methods
through words new to the identification model. The systenully fdomain- and
language-independent. No changes of code are necessamnyapply/ing to other

domains or languages. The only thing required is an anrbtaigus.

The system has been tested on two corpora and achieved aail ¢vereasure of
76.59% for TCC, and69.02% for BIB. This is not as good as would be expected
from a system which includes language-dependent compsnidotvever, our sys-
tem is more generalized. The identification of date has tkeresult,73% and92%

of correct tokens are identified respectively. The systesn performs reasonably

well on people’s name with correct tokensas? for TCC, and76% for BIB.
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Chapter 1

Introduction

In today’s information age, we have witnessed and expeeran ever increas-
ing flood of information. The Internet makes available a teacous amount of
information, on an amazing variety of topics, that has beemegated for human
consumption. According to Lawrence and Giles (1999)) million web pages

were publicly indexable in February 1999. However, todayisnber is far greater.
For example the search engine Google clalnl6, 966, 000 web pages as of June
20011

Unfortunately, the hundreds of millions of pages of infotina make it difficult
to find information of interest to specific users or useful farticular purposes.
The amount of text is simply too large to read and analyzeyeaburthermore,
it changes constantly, and requires ongoing review andysisaif one wants to
keep abreast of up-to-date information. Working in thisremganding sea of text

becomes extremely difficult.

In the past, much technological effort has been focused orpater tools that im-
prove the amount of storage and retrieval of information.isTiesults in instant
access to far more information than humans can possiblylbawé have all expe-

rienced frustration when surfing the web with traditionaref engines. Immense

http://www.google.com



lists of documents are returned. This makes it extremeljcdit for users to find

information of interest.

1.1 Text mining

Text mining is about the use of statistical and machine legrtechniques to learn
structural elements of text in order to search for usefubiimfation in previously
unseen text. It is an extension of data mining, which findsrimition in structured
database, to the far less structured domain of free text.tHarovords, it looks

for patterns in text while data mining looks for patterns atal(Witten and Frank,
2000). Text mining may be defined as the process of autontigitaraalyzing text

to extract information that is of interest to a particulaeusr useful for a particular
purpose. It represents a new perspective to the commongmmodil finding relevant

information.

Text mining is particularly relevant today, because therermus amount of infor-
mation is mostly available in text format. According to Td®99), approximately,
80% of information of an organization is stored in unstructutextual forms: re-
ports, e-mails, meeting minutes and so on, although otherdao exist, such as
structured databases, videos and images. Text mining @ tasereate an envi-
ronment that helps make sense of information that is emlukidext documents,
either within an organization or outside it. Example reas@r using text min-
ing include: creating links between objects that menti@ghme event such as a
person’s name, extracting metadata for a modern digitedtyh uncovering a “nar-
rative” in an unstructured mass of text, exploring how a reaik evolving, and

looking for more ideas or relations.

Previous work has proven that text mining is possible (&egkine, 1998; Borthwick
et al., 1998; Bikel et al., 1999; Bray, 1999). Using text mgntools, people are able

to explore items which consist of one or more words, such assop’s name and a



name of location, in a large collection of documents withmaiting to look through
a great number of files, and to understand the given text iardaextract useful

information from it.

However, text mining is difficult, because text can be in mdifferent styles, such
as names of people, names of organization, names of losatumone numbers,
fax numbers, money amount, email addresses, web addresddasbles, captions,
lists, bibliographies, and more. This makes it difficult ®styn automated systems

to extract information of interest.

1.2 Text mining versus data mining

Data mining works on structured data and extracts inforomefior further use from
such data. In other words, data mining finds patterns andcedgms between
fields in a relational database—a set of relations. The re$dlata mining is a rule
(or set of rules) that allows people to predict future valoésariables; find new
associations between events; or classify data into clkistierelated values. Some
data mining systems are limited to work with numerical dathile others use any

structured data—including categorical, time series, amuldan data.

Potential-Customer

Table 1.1: A relational database with two relations.

Person Age Sex IncomeCustomer

Ann Smith 32 F 10 000yes

Joan Gray 53 F 1 000 00Q@/es

Mary Blythe 27 F 20 000no

Jane Brown 55 F 20 000yes

Bob Smith 30 M 100 000yes

Jack Brown 50 M 200 000yes
Married-To

Husband Wife

Bob Smith Ann Smith

Jack Brown Jane Brown



Induced Rules

IF Income(Persorg 100 000 THEN Potential-Customer(Person)
IF Sex(Persorg F AND Age(Person 32 THEN Potential-Customer(Person)

IF Married(Person, Spouse) AND Income(Persedp0 000
THEN Potential-Customer(Spouse)
IF Married(Person, Spouse) AND Potential-Customengén)
THEN Potential-Customer(Spouse)

Table 1.2: Rules induced by a data mining process from theeidafable 1.1.

For example, Table 1.1 (Dzeroski, 1996) is a relational lolzga, containing two
relations: Potential-Customer and Married-To. Rules aetlby a data mining pro-
cess are shown in Table 1.2 (Dzeroski, 1996). The first satle§iis to distinguish
between persons who are potential customers and those whwar The second
set of rules defines the relation Potential-Customer in sevhitself and the relation
Married-To. The process of rule extraction relies strongythe structure of the

relational database.

However, as mentioned above, a large portion of informa#ippears in textual
form—unstructured data. Therefore, techniques that ekindormation from such
data become necessary. Text mining is analogous to datagrimthat it uncovers
relationships in information. However, unlike data miningxt mining works on

information stored in a collection of text documents.

Text documents, the raw material of text mining, are unstmadl, because they
contain no predefined relationships between words or paraken they are stored
on a computer. Given the text document as shown in Figureohd can hardly find
relations between names of people, “Guy Kawasaki”, “Willia. Law”, “Hewlett”
and “Packard”, or dates, “12Jul98” and “14Jun98”, and tsairounding words.
In contrast, relational databases have a schema that bbes¢he meaning of the
data source. However, text mining aims at finding all pattevhinterest in such

text data.

2Here and later, textual examples are all taken from the alvtaglcorpora.



Somewhat related, there was some interesting commentamyt &uy Kawasaki in the
San Jose Mercury News "West” magazine insert on 12Jul9gwioig up on a 14Jun98
profile article. Kawasaki has written books about softwargngelism (initially at Ap-
ple), and is now working a "garage.com” consultancy to hetal companies grow and
then get venture funding. Reader William A. Law notes theyrahat "Hewlett and
Packard actually *built* something in their garage.” Kawakisis a salesman looking fq
a product he can market — preferably a success-bound contipaingjoesn’t need much
evangelizing. He lives in a mansion in Atherton; drives a é&eles, Suburban, and Land
Rover; dines at Il Fornaio; and worries that he hasn't "hi thultimillion-dollar big
time” yet and that he doesn’t have time to be with his kids. dRessuggest that he se
the physical assets, move to a tract house in San Jose, arldd&ck with the kids.”
He’s had enough success for most people, and there’s maife thdn social network-
ing to find the next big deal. Silicon Valley has too many peaph this "self-indulgent
treadmill.”

—

Figure 1.1: A fragment of text documents.

In conclusion, text mining is similar to data mining in terwfsdealing with large
volumes of data, and both fall into the information discgvarea. The difference
between them is that text mining is looking for patterns istanmctured text data,
whereas data mining extracts patterns from structured daga mining is more

mature, while text mining is still in its infancy.

1.3 Token identification

Token identification is an important component of any textimg tool. It involves

identifying certain kinds of terms in text, such as namesexge and locations,
whether or not these items occur in earlier text. A token ®igaf one or more
words. The task of token identification is to match tokend&@rtsemantic class—

type Example classes are name, location and organization.

Several researchers have reported token identificatiolersygs(e.g. Appelt et al.,
1993; Sekine, 1998; Borthwick et al., 1998; Bikel et al., 29Bray, 1999), includ-
ing hand-crafted systems and ones that use machine leaMarg of them rely on
a specific domain, and extra work needs to be done to apply thetmer domains

or languages.



The use of machine learning for token identification not csdyes human devel-
opment effort, but also affects retargetability and gelitgreRetargetability means
that applying an existing technique to a new domain shoutdeguire code mod-
ification; at most, some feature modification is requiredteims of generality, the
system should be able to handle a wider range of domains atesbdanguage—

specific.

1.3.1 Task and definition

Token identification involves finding, in unseen text, atemces of tokens whose
type is determined by training text. It takes place in twstdirst find tokens of

interest and then assign a type to each of them. Tokens oésttare distinguished
by inserting start token and end token labels before and edieh token, where the

label itself represents the token type. This process igdatiark-up.

The token identification system produces a single, unanabigtlype for any rele-
vant string in the text. The only insertions allowed duringqessing are start and
end labels, which are placed in angle brackets. No extra sigwre to be inserted,

like white spaces, carriage returns and punctuations.

The text after mark-up has the following form:

<token type-text-string</token type-.

For example:

<n>Michael Hucka:/n> recommends the following ...

where n is a tag that represents a person’s name.

The need to identify token types has two aspects: the idesatidin of known tokens

and the discovery of new tokens. Some systems as descrili&thioter 2, rely on



lists of tokens of different types. To create these listaunesg significant effort.
Many applications operate without such a resource. Thexetokens need to be

discovered in the text and assigned the types they refer to.

1.3.2 About tokens

Among the different types of tokens, some are more importaan others. The
names of people, locations and organizations are partiguraportant for extrac-
tion systems. Typically, one wants to extract events, ptagse and relations about

some particular objects, and the objects are usually ifiettby their names.

Some token types are easy to identify while others are mdfiewdi. For example,

email addresses and URLs can be represented by a few sinfpgensa On the
other hand, although names are important, they present siiffieilt problems

for identification. For example, token-type ambiguity igtgicommon in names,
because places are named after famous people, such as fgashD.C.”, and

organizations are named after their owners or locatiord) as “Ford Motors” and
“New York University”. A naming convention is followed by nsbpeople, however,
there is no restriction on what words may comprise a namepEople who enjoy
having unconventional and eccentric names, any word caratiepa name. The
name appearing in the following text fragment (McDonald9@pis just such a

example,

. Her name was equally preposterous. April Wednesdaycaled

herself, and her press card bore this out.

1.3.3 Applications

Token identification is crucial for text mining and inforn@t extraction, and is

also useful as a preprocessing step for other applicatsudd) as digital libraries,
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Figure 1.2: Example of application in digital library.

machine translation, information retrieval, and natuaaljuage processing.

Digital library

Today'’s digital libraries, a burgeoning information organg technology, normally

keep thousands of documents. For instance, the New ZealagithlD ibrary 3

allows users to access collections by different ways, ssdbrawsing by title and

author. It would be ideal if names of people in a documentabel identified, then

3http://nzdl.org



Name in English Mrs. April Wednesday

Transliterated in Chinese &I iBERE A
Converted to PinYin Ai Bo Rou Wen Si D &A

Translated as regular words P H-E£H=3% A

Figure 1.3: Example of machine translation.

links could be inserted automatically to other document thention the same

names, for example, documents written by the identifiedqrers

Figure 1.2 is an illustration of how token identification dag used in a digital li-
brary, featuring the New Zealand Digital Library. A persename, “Charles Dick-
ens”, appears in a document shown in the rear image. |dé@alguld be linked to

all documents written by the same person as shown in the ifroage.

By the same principle, links could be inserted to documdrasmention the same
organization, location, email address, URLs and so on. Takes browsing a

digital library more flexible and convenient.

Machine translation

In the application of machine translation, token identifmais used to create trans-
lations of unknown words or for disambiguation. For examla machine trans-
lation system encounters “Mrs. April Wednesday” in the infext and the support-
ing component, token identification, identifies that thingt represents a person’s
name, it should not try to translate “April” and “Wednesdaplit translate the pre-
ceding title to the appropriate personal title in the tadgeiguage and leave the

name itself intact.

However, if the target language is Chinese, the name camhbesliterated or con-
verted to PinYin, rather than being translated as regulads:oFigure 1.3 shows

the translation samples, where the transliterated hamdearariant because the



transliteration depends on the pronunciations in the vabianguage. However,
exactly matching pronunciations in Chinese do not alwaysteXhe transliteration

is then determined by the person in charge. In addition, gam€hinese also result
in different characters. The family name translated aslegguords has never been

used. And the name in PinYin is just another representatidimectransliteration.

Information retrieval

For the same reason, an information retrieval system shoatlééxpand words in
name “Hunter Wood”, organization “Tiger Dictionary”, looan “Telegraph Hill”

and so on, to all of their morphological variants.

Natural language processing

Creating an annotated corpus is a common requirement irratdéuinguage pro-
cessing, and involves tedious labour. According to an erpat performed at
BBN Systems and Technologies (Bikel et al., 1999), annugedi text of650, 000
words, which is about two-thirds the length of one editiortled Wall Street jour-
nal, takes an inexperienced annotator 27 days, and 16 dags fexperienced one.
Token identification can be used to annotate text automigticaaking it easier to
produce a labeled corpus. Conversely, a labeled corpus eaery useful in the

development of token identification systems.

1.4 Corpora

Two different corpora have been used in the experimentsritbestin this thesis.
The firstis based on The Computists’ Weekly—formerly knowi e Computists’

Communique (TCC}.This is an on-line weekly publication of Computists Interna

“http://www.computists.com
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Token type (label) Examples

Dates/time periods (d) August, 15Aug98

Email addresses (e) amin@cse.unsw.edu.au

Fax numbers (f) +44 161 275 6204 Fax

Phone numbers (h) 650-941-0336

Locations (1) Beaverton, Quebec

Sums of money (m) $1K, $100

People’s names (n) Randall B. Caldwell, Vernon Ehlers
Organizations (0) NSF, Santa Fe Institute
Sources, journals, book series (s) Genetic programming beoes
URLs (u) http://www.elsevier.nl/locate/parcq

Table 1.3: Token types with labels and examples.

tional, a professional association for artificial intedligce, information science, and
computer science researchers. It covers many topics:catifntelligence, neural
networks, genetic algorithms, machine learning, logizzfulogic, natural language
processing (NLP), machine translation, computationauistics, information re-
trieval, expert systems and so on. A full-text indexing aigs from April 1991 to
the present is available from the New Zealand Digital Lilprarhere one can search
for particular words that appear in the text, and accessiqatiins by title and by

date as well.

The second corpus comes from The Collection of Computern8eidibliogra-
phies® This is a collection of bibliographies of scientific liteva¢ in computer sci-
ence from various sources, covering most aspects of comgeience. The collec-
tion itself contains more than one million references, nydsbm journal articles,

conference papers and technical reports.

1.4.1 TCC corpus

The Computists’ Weekly or TCC corpus is a collection3sfissues selected ran-
domly from an archive in the New Zealand Digital Library. Teifferent types of

tokens in the collection are manually marked up with XMiX{ensible Mark-up

Shttp://linwww.ira.uka.de/bibliography/index.html
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(a) Microsoft is planning a new campus in Mountain View, CAh& best expertise
today not only lives in Silicon Valley, it wants to stay lignn Silicon Valley.” [AP,
07Aug98. EduP.] (New facilities often mean job opportusti.)

Mindjack is an online magazine about technology, cultured technosocial is
sues, available monthly at <http://www.mindjack.com». [Donald Melanson
< <donald@mindjack.com, newjour, 11Jun98.]

(b) <o>Microsoft</o> is planning a new campus kil >Mountain View, CA</I>.
"The best expertise today not only lives<ri>Silicon Valley</l >, it wants to stay
living in Silicon Valley.” [<s>AP</s>, <d>07Aug9&/d>. <s>Edub/s>.]
(New facilities often mean job opportunities...)
<s>Mindjack</s> is an online magazine about technology, culture, and testino
cial issues,<d>available montk/d>ly at <<<u>http://www.mindjack.com-
</u>>. [<n>Donald Melansor/n> <<<e>donald@mindjack.com</e>>,
<S>newjour/s>, <d>11Jun9&/d>.]

Figure 1.4: Example of TCC corpus. (a) A section of origireadtt (b) The same
section marked-up.

language style tags. They will also be referred aelasses Table 1.3 lists all the

types with corresponds labels and examples for each type.

Figure 1.4 shows a fragment of the original text and the aatedtcorpus. Labels
appear only at the beginning and end of tokens in the tenedaskh fact, every

word corresponds to a class. Words that do not belong to athyedkn classes are
calledplain text and they are left unmarked. Therefore, the class sequdrtbe o

first line in Figure 1.4b is:

<O><P><P><P><p><p><p><p><I><I><I>

where each pair of brackets, along with the label of classesponds to a word in
the text.

There are two things in the figure that need to be mentionee. fif$t is that one
appearance of “Silicon Valley” in the first fragment is notnked in the corpus.
This is an error and will be discussed in Section 4.3. The rse¢® the way that
email address and URL are represented. As shown in the figwse both start
with two angled open brackets and end up with one angled domeket in the

original text. These brackets are retained in the corpus.
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Although the TCC corpus is a free text collection, it consamany semi-structured
items. Figure 1.5 (Witten and Frank, 2000) lists all tokenfust one issue of The
Computists’ Weekly.

1.4.2 Bibliography corpus

The bibliography or BIB corpus is a collection 800 bibliographies from The
Collection of Computer Science Bibliographies. It has bieematted as free text,
with tags placed around all the tokens. There are severastgptokens, such as last
name, first name, title, date, year, pages and number in thieeahaip text (Yeates
etal., 2001).

Original marker Token type (label)
publisher publisher (b)
pages page (9)
address location (1)

title title (t)

journal source (s)
booktitle

date

month date (d)

year

name

first name (n)

last

school

organization organization (0)
institution

Table 1.4: Token types in BIB corpus.

Because the undertaken study does not consider hieralslivigature, the corpus
has been modified. Figure 1.6 shows two entries in differemhéts, where (b) is
the original marked-up records of (a), and (c) is the modifiecsion in which all

unrelated tags are deleted and the remainders are changleeirtcorresponding

labels. Table 1.4 shows the changes from the original tatsetoemaining labels.
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Autonomous Agents and Multi-Agent Systems Journal
Commerce Business Daily (CBD)

Computational Molecular Biology Series

DAI-List

ECOLOG-L

Evolutionary Computation Journal

Genetic Programming book series

IRList

International Series on Computational Intelligence
J. of Complex Systems

J. of Computational Intelligence in Finance (JCIF)
J. of Symbolic Computation (JSC)

J. of the Operational Research Society

Parallel Computing Journal

Pattern Analysis and Applications (PAA)

QOTD

SciAm

TechWeb

WHATS NEW

Washington Post

Wired

comp.ai.alife

comp.ai.doc-analysis.ocr

comp.ai.genetic

comp.ai.neural-nets

comp.simulation

dbworld

sci.math.num-analysis

sci.nanotech

http://cbdnet.access.gpo.gov/

http://ourworld.compuserve.com/homepages/ftpubiutati

http://www.ccic.gov/ac/interim/

http://www.cs.man.ac.uk/~kung-kiu/jsc
http:/iwww.cs.sandia.gov/~scistra/DAM
http://www.cs.tu-berlin.de/~tolk/AAMAS-CfP.html

http://www.elsevier.nl/locate/parco
http://www.santafe.edu/~bonabeau

http://www.soc.plym.ac.uk/soc/sameer/paa.htm
http://www.wired.com/wired/5.11/es_hunt.html

People’s namesr() Dates/time periods ¢) Email addressesd) Locations ()
Al Kamen 30Jul9s amin@cse.unsw.edu.au Beaverton
Barbara Davies 31Jul98 bonabeau@santafe.edu Bgrkele
Bill Park 02Aug98 booker@mitre.org Britain
Bruce Sterling 04Aug98 chd-support@gpo.gov Canada
Ed Royce 05Aug98 erricos.kontoghiorghes@info. umime Cleveland
Eric Bonabeau 07Aug98 espaa@soc.plym.ac.uk Italy
Erricos John Kontoghiorghes 08Aug98 hermes@iway.fr Montreal
Heather Wilson 09Aug98 koza@cs.stanford.edu NM
John Holland 10Aug98 koza@genetic-programming. org Norman
John R. Koza 11Aug98 kung-kiu@cs.man.ac.uk ProxdeeR|
Kung-Kiu Lau 13Aug98 l.jain@unisa.edu.au Quebec
Lakhmi C. Jain 14Aug98 mzemanko@nsf.gov Siliconl&gal
Lashon Booker 15Aug98 rbcaldwell@delphi.com Stadifor
Lily Laws August 18, 1998 ricos@dcs.gqmw.ac.uk us
Maria Zemankova 01Sep98 s.l.robinson@aston.ac.uk ennd
Mark Sanford 15Sep98 scistra@frodo2.cs.sandia.gov he Valley
Martyne Page 150ct98 simon.taylor@brunel.ac.uk
Mike Cassidy 310ct98 thclax00@ukec.uky.edu Phone numbers )
Po Bronson 10Nov98 tolk@cs.tu-berlin.de 650-9416033
Randall B. Caldwell 01Dec98 zoran@eecs.wsu.edu )(883-7609
Robert L. Park 01Apr99 +44 161 275 5716
Robert Tolksdorf Nov97 Organizations (0) +44-1752-232 558
Sherwood L. Boehlert Julog ACM
Simon Taylor Aug98 Austrian Research Inst. for Al Fax numbers )
Sorin C. Istrail Mar99 Bureau of Labor Statistics 506941-9430 fax
Stewart Robinson August CRC Press +44 161 275 6204
Terry Labach July Case Western Reserve U. (703)@BEBS fax
Vernon Ehlers Spring 1999 Fraunhofer CRCG +44-1282 540 fax
Zoran Obradovic Spring 2000 Ida Sproul Hall

1993-4 Kluwer Academic Publishers

Sums of money ifh) 1999 NSF
$1K 120 days Nohital Systems
$24K eight years Oregon Graduate Inst.
$60 eight-week Permanent Solutions
$65K end of 1999 Random House
$70 late 1999 Santa Fe Institute
$78K month UOklahoma
$100 twelve-year period UTrento

Sources, journals, book seriess| URLs (u)
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(a) [9] Case, K. M., and Monge, A. Explicitly time-dependent contssymmetries of
the higher-order KP equations. Journal of Mathematicalsi®isy30, 6 June 1989,
1250-1253.

[10] Eich, M. H. Main memory database research directions. Irc.P8ixth Int'l
Workshop on Database Machines (Deauville, France, Jun@) j0&51.

(b) [9] <name><last>Casex/last> <first>K. M.,_</first></name> and<name>-
<last>-Mongex/last> <first>A.</first></name>  <title>Explicitly time-
dependent constants/symmetries of the higher-order KRatiems</title> -
<journab>Journal of Mathematical Physiegournal> 30, 6 (<date><mont>-
June</month> <year-198%/year- </date>), <pages-1250-1253/pages-.
[10] <name><last>Eich,</last> <first>M. H.</first></name> <title>Main
memory database research directieriitle> In Proc. Sixth Int'l Workshop on
Database Machinesc@ddress-Deauville, France;/address <date><month>-
June</month> <year-198% /year- </date>) p. <pages-251</pages-.

() [9] <n>Case, K. Mg/n> and <n>Monge, A</n> <t>Explicitly time-
dependent constants/symmetries of the higher-order KRtieqs. </t> <j>-
Journal of Mathematical Physicg> 30, 6 (<d>June 198%/d>), <g>1250-
1253 /g>.

[10] <n>Eich, M. H</n> <t>Main memory database research directiertt>
In Proc. Sixth Int'l Workshop on Database Machined¥Deauville, Frances/I>
<d>June 198€/d>), p. <g>251</g>.

Figure 1.6: Example of BIB corpus. (a) A section of biblioging. (b) The same
section marked-up. (c) Modified marked-up version.

1.5 Thesis statement

This thesis makes two claims:

1. AHMM-based token identification system can be fully domand language-

independent.

2. PPM models can be utilized to handle unknown words in a Hvdded token

identification system.

Some token identification systems that have been describdtkiliterature take
text tagged by part-of-speech as their input (e.g. Sekia@8;1Baluja et al., 1999).
These systems perform syntactic and/or morphologicalyaigabn all words, in-
cluding capitalized ones, that are part of candidate tokétber systems keep a

huge list of known tokens. Both of these kinds of systems dems the domain
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and the language. Although a system has been reported asagaindependent
(Cucerzan and Yarowsky, 1999), it does not use HMMs. Thetfiesis statement
claims that it is possible to have a purely domain- and laggtindependent sys-

tem. This makes a system more flexible.

Unknown word handling is an essential component of any roloken identifica-
tion system. The second statement claims that PRivkeiction by partial match-
ing—models can be used in conjunction with HMMs&idden Markov modelsto

deal with this problem.

A hidden Markov model is a finite-state automaton with steticastate transitions
and symbol emissions (Rabiner, 1989). Recent researchdmasrtrated the ef-
fectiveness of HMMs for token identification. But when a uakm word is en-
countered, there is no information in a pre-trained HMM.f&ént methods have
been presented, but no one has ever used PPM models. Thsskihdges the gap
between HMMs and PPM models.

1.6 Thesis outline

Chapter 2 surveys previous research related to this théisis.divided into four

sections. Section 2.1 reviews the methods which have bexmttg used in the
token identification area, including hand-crafted systaesision trees, maximum
entropy models, HMMs and PPM models, and discusses systéimh are based
on these methods. Section 2.2 poses the problem of unknd&endand presents
some solutions. Section 2.3 discusses techniques for rsaumbthing. As a sum-
mary of the chapter, Section 2.4 briefly describes the metised in the undertaken

research and compares it with other systems.

Chapter 3 describes the methodology used in the thesissgadititioned into seven
sections. Section 3.1 introduces hidden Markov modelsp#ses of the system.

Token identification is to find out the class for each word ia thput text. The
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algorithm that solves this problem is described in Sectigh Fection 3.3 details
how the model is constructed and Section 3.4 describes Wwaahbdel looks like.
In Section 3.5, the PPM model is introduced. It is a chardetexl model, and will
be the back-off of word-level HMM model for unknown words. WM&®PM models
are used to handle unknown words is discussed in SectiorirBd¥der to explore
the impact of PPM, another method that handles unknown weralso described
in this section. Finally, Section 3.7 describes model smiogtmethods used in the

system.

Chapter 4 presents the experiments carried out using thoeitilign described in
Chapter 3, and answers the questions proposed in the thatesnents. Before
presenting empirical results, Section 4.1 describes nmeasnts of the results. The
first series of experiments are done on the TCC corpus, aneslds are presented
in Section 4.2. After analyzing the results, Section 4.8usses the shortcomings
of the corpus that affect both the quality of the model andattwuracy of the result.
Section 4.4 presents the result using the corrected cormulidiacusses in detail. In
Section 4.5, the HMM using PPM for unknown words is compacgithé one using
unified probability. Section 4.6 investigates the effecthaf quantity of the training
data. In Section 4.7, the effect of different model smoagmrethods is investigated.
As two corpora are available, Section 4.8 presents theteesdpplying the system
to BIB corpus, and discusses how the structure of the textenties the accuracy

of the result.

Chapter 5 is the conclusion. Section 5.1 highlights the figsdiof the thesis, and
the related discussions are presented in Section 5.2. Vééd possibly be done

in the future is described in Section 5.3.
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Chapter 2

Related work

Text mining is looking for patterns of interest in text, suah a person’s name, a
geographical name and time factors. It is of recent intei@shany researchers,
such as Merkl (1998), Tan (1999) and Bray (1999). The tasknegeporting in
text mining is to find such patterns and mark them up with prgred labels. We
call the taskoken identificationMany existing systems are based on the context of
the Message Understanding Conferences (MUCS) (Grishn8andheim, 1996),
which have involved the evaluation of information extraotsystems applied to a

common task.

This chapter is structured as follows. Section 2.1 dessritiferent approaches
used in the token identification task by other people. Se@i@ discusses the issue
of unknown words—words that have not been seen in the trgqutérta and appear in
the test text. In Section 2.3 we talk about model smoothhegptocess of replacing

the original elements in the model with modified ones.

2.1 Different methods

The token identification task discussed here is to automigticentify the bound-

aries of a variety of phrases of interest in raw text and miagkrt up with associated
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labels. The systems reported in the Message Understanadimig@nce are limited
to the following tokens: person, organization, locatioated time, money and per-
cent. For us, however, the token identification task has swicion—tokens are
defined by a system designer and could encompass any typohation that is
of interest. Token identification is an important compon&intany tasks such as
information extraction and retrieval, machine translat@md so on, as described in

Section 1.3.3. This section reviews previous researchkartadentification.

Several systems have been reported for token identificsisks. They are based
on: hand-crafted regular expressions (Appelt et al., 1€a8&hman, 1997); large
name lists (lwanska et al., 1995); sophisticated rule-thag®gproaches (Morgan
etal., 1995) and learning algorithms (e.g., Sekine, 19@8yttt et al., 1997; Baluja
et al., 1999; Borthwick et al., 1998; Mikheev et al., 199%diet al., 1999; Sey-
more et al., 1999; Bray, 1999). The early systems used theliirse approaches
and rely on much manual work, although some recently-repldegarning systems
are entirely automatic (e.g. Stevenson and Gaizauska$)2@uch systems are
normally domain-specific, can be extremely expensive t@lbgy and require large
amounts of maintenance. Also, it is not clear how much wonkesded to adapt
them to other domains or languages. The automatic approastam advantage
over hand-crafted rules, but the advantages of rapid anygl adeptation must be

considered when applying these techniques to differentailogror languages.

We briefly describe regular expressions in hand-craftetegys (Section 2.1.1), and
then focus on learning algorithms such as decision treedi{®e2.1.2), maximum
entropy models (Section 2.1.3) and hidden Markov modelsti{&@e2.1.4). Other
learning algorithms such as Brill’s transformation-bateatning algorithm (1995)
which has been used as described by Aberadeal. (1995), are not discussed in
this thesis. However, a closely related token identificaggstem, which uses the

PPM model, is reviewed (Section 2.1.5).
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2.1.1 Hand-crafted systems

Models used in hand-crafted systems are assembled by thmgpé@ining data.
Tokens are identified using a set of regular expressionsefaéiy the expressions
are stated in terms of parts-of-speech, syntactic feammdsorthographic features
such as capitalization. An example pattern in this type efesy might be “If proper
nouns follow a person’s title, then the proper nouns are aqres name”. There
are several indicators that help to identify names. Mostmomly, for example,
personal names can be identified by a preceding title suctMay “Prof.” and

“Rep.” as in the following:

Mr. Robert Smith
Prof. Sophia Young
Rep. Natalie Cowley

Some suffix words are also indicators of human names suchdasats (e.g. 1st),
Roman numerals and the words “Junior” and “Senior”. Othelidators include
middle initial, commonly used first names and royal titlestsas “Queen” and
“Prince”. Many indicators of human names are common (buitabgped) words that
can take a prepositional phrase, usually an “of” phrase.ekample, “Professor”
can immediately precede the name, such as “Professor An@reskhman”, or it
can be followed by a prepositional phrase to form a profesdibtle followed by a

human name, such as:

Professor of Computer Science Andrew Grishman

As with human names, there are a few words that indicate thabimg of a ge-
ographical name, such as “Lake Taupo” and “Mount Maungantiiiere are also
words that indicate the end of a location, such as “Rivergrii®, “Bay”, “Domain”

and “Garden”. Some words can indicate either the beginnirend of a location,

for example “North Cape” and “Cape Reinga”. There are algpgpsitional phrases
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for location names like “City of Auckland”. Many well-knowplaces, of course,

are obvious indicators of location.

Similarly, names of organization can usually be identifigdteir final token, such
as “Inc.” or “Co.”. Some words that indicate the name of anamigation may
appear at the end or before the very end of the name, such asckases” or
“Systems”, while some can appear anywhere in the name, sutraadcasting”,
“Club” and “Bank”.

An information extraction system described by Grishmard{)ses this method

to identify certain kind of tokens.

2.1.2 Decision trees

Decision trees are a way to represent rules underlyingitrgidata, with hierar-
chical sequential structures that recursively partitiba tata. Sekine (1998) and
Bennettet al. (1997) both implemented their token identification systerssg
decision trees. Their decision trees are based on almasticdéfeatures, such as
part-of-speech, character type information and specaiatiaries. While the two

systems are similar, there are, however, significant difiees between them.

The system described by Bennettal. (1997) has multiple decision trees. Each
one decides whether a particular class starts or ends atittencword. The system
makes more than one decision at each word, thus multipleciagjsl be assigned
to a single word, or possibly incompatible tags for two cangize words. They
introduced two methods to force one tag per word. One is tcaudistance score,
which finds an opening and closing pair for each word, basedlynan distance
information. The other is to use a priority scheme for tagliclw chooses a class
among different candidates based on a priority ordering sxa@ds. Parameters

required by these methods must be adjusted before beingdppla new domain.

In contrast, Sekine’s (1998) system uses only one decistertd produce the prob-
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abilities of information about a token. Multiple possibjlproblems are solved by
a probabilistic method. Manual adjustment of parametemmigecessary. This is a
strong advantage over the approach reported by Beahalt because it makes the
system more retargetable. Sekine also found that the denties used in his system
are not very domain-dependent, and speculated that lithidifination to the dic-
tionaries might be required when applying the system to ach@wain. This is an

advantage for any system that uses dictionaries.

Another system using decision trees is proposed by Balug. (1999). Like the
systems described by both Sekine and Beneie#ll,, it uses a part-of-speech tag-
ger, dictionary lookups, and word-level features, suchlasppercase, initial-caps,
single-character, and punctuation features. The expetsrfecused on identifying
which features affect the final performance most. Three geéxperiments were
performed: the use of each of the dictionary, part-of-sheew word-level knowl-
edge sources independently; the use of all pairwise cortibimgof the sources;
and the use of all three sources together. They found tHadwah none of these
features performs well independently, performance impsowhen the context is
increased. The experiments indicated that word level feataontain information
that is absent from both the part-of-speech and dictioneayures. Furthermore,
adding the dictionary feature to a system that uses only #éinegs-speech tagger

and word-level features achieved only a slight improvement

2.1.3 Maximum entropy models

Maximum Entropy is a general technique for estimating pbalitgt distributions
from data. It is widely used for a variety of natural languaggks, such as part-of-
speech tagging (Ratnaparkhi, 1996), language modelinggii®eld, 1994) and text
segmentation (Beeferman et al., 1999). It has been showmi#&emum entropy
performs well in these tasks. The underlying principle iattivithout any exter-
nal knowledge, the distributions should be as uniform asipts—that is, have

maximal entropy.
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Borthwick et al. (1998) described a token identification system built arcanuax-
imum entropy framework. The system uses a variety of knogéesburces, such
as orthographic, lexical, section and dictionary featut@snake tagging decisions.
For any particular class label, there are four statabel start, label.continue la-
belLendandlabel.unique The first three states are for the case that more than one
consecutive words are identified as the same class. Thenfeufdr the case that
only one word is identified in a particular class. In additithere is a special label—
other, which indicates that the word is not part of a class. For gdanthe phrase
“Jenny Bentley lives in Hamilton” is marked as “persstart, persorend, other,
other, locationunique”. One label is assigned to every word in the text. Hpis
proach is essentially the same as that described by Selkd88).1Borthwicket al.
use Viterbi’s (1967) search algorithm to find the highestyataility legal path. For
example, labekend can only be assigned to a word that follows a word withegith
labelstart or labelcontinue. The system is a purely statistical one, and cositad

hand-generated patterns.

Another system for token identification that uses a maximuatropy model is re-
ported by Mikheewet al. (1999). The model uses contextual features of tokens,
for example the position of tokens in a sentence, whethgrdppeear in lowercase

in general, whether they were used in lowercase somewhsedrethe same doc-
ument and so on. This system makes decisions using the anpvesided by the

Maximum Entropy model.

2.1.4 HMMs

A hidden Markov model, or HMM, is a particular kind of probasiic model based
on a sequence of events—in terms of token identificatios,répresents sequential
words in text. Although different approaches have beenistudnd implemented,
the best-known token identification system that incorgmat machine learning

component is based on hidden Markov models (Baluja et @919
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IdentiFinder (Bikel et al., 1999) is a well-known systemudes a variant of a hidden
Markov model to identify tokens like names, dates and nurakgquantities. Each
state of the HMM corresponds to a token class. There is a tiondl state for
“not a token class”. Each individual word is assumed to beegipart of some pre-
determined class or not part of any class. According to thHmitien of the task,
one of the class labels or the label that represent “nonesatlisses” is assigned to
every word. ldentiFinder uses word features, which are lagg-dependent, such
as capitalization, numeric symbols and special chargdbesause they give good

evidence for identifying tokens.

There are three components in the top-level model, one foergding a token class,
one for generating the first word in a class, and one for géingravords that are
not the first in a class. The models used by IdentiFinder anstaacted using the

counts in the training data.

Nymble (Bikel et al., 1997), a token identification systempaged about two years
earlier than IdentiFinder and by the same authors, is sittdladentiFinder in terms
of algorithm or techniques except that the results are 8lighfferent. When ap-
plied to English text, the F-measure (refer to Section 4fINlymble is93% and
91% for mixed case and upper case respectively, @htl% and93.6% for Identi-

Finder. The reason that causes these differences cannotbeé in the papers.

An information extraction system is reported by Seymetral. (1999). It extracts
fields of interest from the headers of computer science resgaapers using an
HMM. One state is assigned for each class, such as titlepgauiate and affilia-
tion. Unlike IdentiFinder, this system considers autooaly determining model
structure from data. At the beginning, each word in the trejrdata has its own
state, which transitions to the state of the following woillach state is associ-
ated with the class label of its word. Two merging techniggagighbor-merging
andV-merging—are used to form the final model. They used three sets ofitighin
data: labeled, unlabeled and distantly-labeled, whictrseto data labeled for other

purposes, but can be partially applied to the task.
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2.1.5 PPM models

PPM, prediction by partial matching, is a language modédllzes developed in the
field of text compression (Cleary and Witten, 1984). It usesgreceding context
to predict the probability of the upcoming symbol. A detdildescription of how
PPM works is provided in Section 3.5.

A system using character-based PPM models to identify kerunning text has
been reported by Bray (1999) and Wittehal. (1999a). All tokens in labeled
training data are grouped according to their type, such asesaf people, dates,
locations and email addresses. Words that are not part aflagges are grouped to-
gether and assigned a class—plain text. All tokens in egmhdye used to construct

a PPM compression model. Thus each type has its own model.

The goal of identifying tokens is tantamount to deciding ethclass each word
belongs to. Using compression models, the input text is cesged. A word is as-
signed the class whose PPM model compresses it most. Fopéxafthe location

model compresses a word the most, the location class isesbkig the word—that
is, the word is identified as part of a geographical name. Altdg in the text are

assigned classes that maximize the overall compression.

An experiment has been done to investigate how well tokems@mpressed both
in and out of the context of the surrounding text, namely hasgible tokens are
identified by the correct type (Bray, 1999). The result shives although the total
number of incorrectly identified tokens is increased by gsarrounding text, the
actual mis-identification is greatly decreased, while ttleeperrors are caused by
failure to identify a token as plain text instead of as paraaflass. The overall

compression is increased slightly.

Bray then applies a Viterbi-style algorithm to detect thelentying state sequence
that gives the best compression of the unseen text, in codégedide where is the
best place to start or end a model. The purpose is to insegtdab a way that

maximizes compression of the entire text.
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The system is based on PPM character models. It is a fullyhr@atio system which
can be adapted to other domains or languages without chgangine only thing

required is a labeled training corpus.

2.2 Unknown token

Unknown words are those that have not been encounteredimingadata. There
are two kinds of unknown word: neologisms, and existing wdaldht happen not to

appear in the training data.

Neologisms, or novel words, are almost always found in fese. tLexicons can
never contain all possible words because they are statiature, whereas the real

world never stops changing.

Zipf's law (Zipf, 1965), a theoretical model of word occunee, gives a good ex-
planation of encountering unknown words. It states thatafdg are ranked, in
descending order of frequency, with the most frequent rdrikethe second most
frequent ranked 2, and so on, the product of rankagd frequency () roughly fits
the relation:

rx f=0C (2.1)

Rank () Word Frequency (f)in%  r*f

1 the 6.15 0.062
2 of 3.54 0.071
3 and 2.70 0.081
4 to 2.51 0.100
5 a 2.14 0.107
6 in 1.90 0.114
7 that 0.97 0.068
8 is 0.95 0.076
9 was 0.94 0.085
10 for 0.86 0.086

Table 2.1: Statistics of the 10 most frequent words in thexBr&orpus.
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where(' is a constant, which is estimated to be abautin English text (Teahan,
1998). For example, Table 2.1 (Bell et al., 1990) shows thelwstatistics of the 0
most frequent words in the Brown Corpus. The right-most ewlus the product
of the rank and the frequency. They round to the condiant Zipf's law states
that the probability of occurrence of words starts high aqgkts off rapidly. Thus,
a few occur very often while many others occur rarely. Forregke in English,
words like “the”, “of’ and “to” occur frequently while othewords are rare, such as

“ubiquitous”, although it means something that exists ywéiere.

Table 2.2 (Teahan, 1998) gives the percentage of words ticatr only1 to 5 times
in the Brown Corpus. It indicates that a large percentageartierzoccur very few
times. Among the different words, about 71% occur five or fetimes, 53% occur
two or fewer times, and 38% occur only once. The consequenteat increas-
ing the amount of training text does not help much in avoidimgnown words.

Moreover, typographical errors also result in apparentignown words.

Number of occurrences (n) Types occurring n times (%)
1 38.3
2 14.6
3 8.5
4 54
5 4.0

Table 2.2: Percentage of word that oc¢up 5 times in the Brown Corpus.

Regardless of which approach is used to find and mark up tokieesize of the
lexicon is determined either by pre-formed name lists or laicéionary obtained
from the training data. Previously unseen words will conyabe encountered.
Dealing with these unknown words is an essential comporerarfy robust token

identification system.

Some studies that focus on unknown words (Mikheev, 1997jURad999) have
been reported. They are based on morphological analysisuandspecially use-
ful for part-of-speech tagging, although an extension ketoidentification seems

possible.

27



Bikel et al. (1999) and Seymoret al. (1999) both use an HMM and both assign
a special token to unknown words. Any words in the test deabdhe not present
in the vocabulary are mapped into this single “unknown-Wwaootten. Bikel et al.
split the training data in half and used each half to trainrttuelel separately; then
they added the counts from the two models. This yielded amast of how often
unknown tokens occur, and used all available training datthe system described
by Seymoreet al., the probability of an unknown word is calculated using ainso
discounting and is assigned as a portion of the mass propaitio the fraction
of singleton words observed only in the current class. Ma®itlabout absolute

discounting is given in the next section.

2.3 Model smoothing

Model smoothing is the process of replacing the originahtewith modified ones,
S0 as to redistribute the probability mass from more commobkerved events to
less frequent and unseen events. It is necessary because lttation of the

training data. If we define the actual count of an evenfsuch as a word) to be

c(E), then the modified court F) is

c(E) = d(c(E))c(E) (2.2)

whered(c¢(F)) is the weight applied to the original counts.

Several methods of smoothing are discussed in the literatDhen and Goodman
(1998) have empirically compared the most widely-used ghing techniques de-
veloped by Jelinek and Mercer (1980), Katz (1987), Bell aBleand Witten (1990),
Ney, Essen, and Kneser (1994), and Kneser and Ney (1998) asivord model
based on the Brown Corpus, the Wall Street Journal Corpuslj\8 North Amer-
ican Business news (NAB), the Switchboard Corpus, and tbadrast News Cor-

pus. Because the undertaken research uses HMMs, we focuaamihsng tech-
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niques that are used in similar models.

Thede and Harper (1999) describe the smoothing method nsleeir Second-order
HMM model. The method takes into account lower order infdiora The model
is smoothed using a logarithm function to calculate smawtkbefficients from the
number of occurrences of all order events within the trajrdata. It can be viewed
as a variant of Jelinek-Mercer smoothing method (JelinekMercer, 1980) with
the difference that Thede and Harper calculate the smapttoefficients for each
event while Jelinek-Mercer smoothing requires the budkgetif interpolation coef-
ficients according to the total number of counts of the cgoesling history. It is
unnecessary to use held-out data to optimize parametatshaa computationally
inexpensive. Jelinek-Mercer method, however, is a far moreplicated procedure

as the Baum-Welch algorithm is used.

IdentiFinder (Bikel et al., 1999) uses several back-off gledschemes used for
events that have not been encountered in the training datbassigns a variable
weighting to each one. K is the weight used for direct estimation of probabilities,
then(1 — A) is the weight of the back-off model\ is based on a function of the

number of times the given event occurs:

old ¢(Y) 1
A= (1 oY) > |+ bypeofy (2.3)

(V)
where “old¢(Y")” is the sample size of the model from which they back off. The
expression of\ has two factors. It is the second that does the real work ob$imo
ing. For example, consider only the second factor. Suppgte $usan Smith” has
occurred twice in the training data, “Susan Robert” fourgsnand the word “Su-
san” has not been seen anywhere else in the person’s naree\Wlhen calculating
the probability of the word “Smith” given that the model istime name class, the

bi-gram probability

Pr((“Smith”, initCap)

(“Susan”, initCap), person’s name)
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would back off to the unigram probability

Pr((“Smith”, initCap)| person’s name)

with a weight of1/4, whereinitCapis the feature of the word, which indicates that
the word has a capitalized initial letter. The reason is thate are two different
words that follow “Susan”, and the total number of occuresof “Susan” being
the first word in a bi-gram is six. Thus a weightbf(1 + 2/6) = 3/4 is assigned
to the bi-gram probability, and a weight bf- 3/4 = 1/4 is for the back-off model.

A further back off is

Pr(*Smith”

person’s namex Pr(initCap| person’s name)

and the final one is
1 1

— X
|V|  number of features

where|V| is the size of alphabet. Similarly, the policy describedabapplies to

two other models, name class model and first-word model.

Absolute discounting is a common method of smoothing. ltesfi
dir)=(r=20)/r (2.4)

in (2.2), wherer is the original count here. This has been applied on the emis-
sion estimates in the system described by Seymebird. (Seymore et al., 1999).
How they choose the constaints not mentioned in the paper. This is, of course,

equivalent to simply subtracting the constaftom each count.

2.4 Summary

The system described in this thesis is based on an HMM. Eath gpresents a

token class and emits different words. Words unknown to tbdehare handled by
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PPM models. In order to label a new text with token classesdsvim the text are
treated as observations and the Viterbi search algorithusad to recover the most-
likely, hidden state sequence—a label sequence that isiatsd with the word

sequence in the task.

Three of the systems discussed previously in this chaptex haclose relation to
the one presented in this thesis. The first one is IdentiFi(Bikel et al., 1999).

It is the same as the system described in this thesis in madskmriction—using
counts of word occurrences in the labeled training dataellalssignment—only
one label, either a class label or the label that indicatesvengvord is none of
the classes; and search algorithm—the Viterbi algorithosisd. Aside from these
identical factors, the two systems differ in some signiftqaoints. IdentiFinder uses
multiple HMMs and each word has its own state with emissi@bability 1, which

is unlike the common or traditional HMMs. It also uses wordttees. The methods

used to handle the unknown words and to smooth the model #&eediffierent.

The second one is the system which extracts fields from thdengaf computer
science research papers described by Seymioaé (1999). Their system and the
one described in this thesis are same in label assignmantjsalgorithm, and both
use only one HMM. However, the two systems use different «ioictraining data

and different methods of unknown word handling and modelatimag.

The third is the one that uses PPM model as described in 8e&tlob. The system
itself is, in fact, not very similar to the described systemaérms of the main tech-
niques, but the way it uses PPM models is the same, wherebyt@leen class has

a PPM model, and the same training corpus is used.
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Chapter 3
Information extraction with HMMs
and PPM

One of the thesis statement in Section 1.5 claims that PPMelm@an be used to
handle the problem of unknown words in HMM-based token iifieation. PPM
is a statistical language model in which a certain numberefipus symbols pre-
dict the probability of occurrence of the next one. A chagattvel PPM model
contains accurate information on the statistics of characteen in the past, which
encourages its use to estimate the probabilities of unkneanas. This chapter
introduces both HMMs and PPM, and shows how PPM can be usaedapthe

occurrence of unknown words.

Section 3.1 describes the basic theory of hidden Markov fsaed how they are
used in the task. For a general introduction to HMMs, refdR&biner (1989) and
Poritz (1988). Section 3.2 reviews the Viterbi algorithmhigh is used to find the
hidden state sequence. Section 3.3 describes how the HVivheders are obtained
from the training corpus. Section 3.4 is about training.t®&c3.5 reviews the PPM
compression model and its zero-frequency problem. In 8e@&i6, we talk about
how to deal with unknown words. This is where PPM is introdlicgo the HMM

model. Finally, model smoothing is discussed in Section 3.7
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3.1 Hidden Markov model

A hidden Markov model is a finite-state automaton with steticastate transitions
and symbol emissions (Rabiner, 1989). It is a particular@hbdsed on a sequence
of events, and consists of a set of states and a set of outplidy. The automaton
generates a sequence of symbols by starting from the ista#, transitioning to a
new state, emitting an output symbol, transitioning to hapstate, emitting another

symbol, and so on, until the final state is reached and theyasbol is emitted.

3.1.1 Model definition

For each member of the set of statés+ {S;, Ss, ..., Sy }, there are two probabil-
ity distributions. One governs the outgoing state traosgi which indicates how
likely another state is to follow; the other governs the esiois of symbols in the
observation vocabulary = {11, V5, ..., V), }, which indicates how likely a symbol
is to be generated in the particular stat€.and M are the number of states and

number of symbols respectively.

We assume that time is discrete, and the model transitioigelea states at each
time unit. In the case of a first-order Markov model, whichsgd in the undertaken
research, the probability of moving from staigto statesS; is stored in thestate

transition matrix A = {a;;}, where:
aij = Pr(q = Sjlq;1 = Si], 1<i,7<N. (3.1)

In this and future equationsrefers to the time instang, is the variable that records
the state assignment to ttié symbol, andS;, the;*" member of the set of possible
states, is the assigned value. In other words, the probabflbeing in the current

state is determined by the previous state.

When the HMM moves between states, it emits an output syniftesleach transi-
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tion. Exactly which output symbol is emitted depends orathigput symbol distribu-
tion B, which defines the probability of emitting a particular syshim a particular
state. For first-order HMMB is a two dimensional matrix defined &= {b,(k)},

where:

b;j(k) = Prlo, = Vg, = 5], 1<j<N, 1<Ek<M. (3.2)

Here,o, is the variable that records tié symbol emission, ant),, thek™ member

of the observation vocabulary, is the emitted symbol.

To complete the model we need an initial probability disttion 7 = {m;} over
states, where:

T = Prlq = Sy, 1<i<N. (3.3)

The entire model can be describedas= {A, B,7}. It is based on two inde-
pendence assumptions—Markov assumptions. The first asgumigpthat the next
state is based on the current state only. The second assumipthat the appear-
ance of a symbol is independent of the preceding or succgetiate. While these
independence assumptions are often not valid, they app&ark reasonably well

in practice.

Figure 3.1: Example of HMM.

Figure 3.1 is an example of a three state first-order HMM. Frioatfigure, state,
transitions to stat&; with probability 0.5 and to states; with probability0.3. The

probability of staying in the same stateli®. Notice that each state can be reached
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from any other state in only one step. This is a so-callély connectednodel.
However, models obtained from training data (refer to ®ecti.4) to represent

certain circumstances are not originally in this style.

0.1

Figure 3.2: Example of partially connected HMM.

Because of the assumptions, distributiBnis state-specific, and generally it is
multinomial, that is, each state generates more than onbayaind the probability

of generating a symbol differs from state to state.

Figure 3.2 shows a partially connected HMM model with foates,S = {S;, Ss,
Ss3, S4} and their transitions. It is more like a model attained incpiee. Its state

transition probabilityA written in a matrix is:

[ 02 0.0 00 08 ]

0.6 0.0 0.1 0.3
A= . (3.4)
0.7 0.2 0.0 01

[ 0.0 0.3 0.4 0.3 |

Assume that there are four observation symbblss= {q, b, ¢, d}, and the symbol

emission distributior3 is:

[ 0.36 0.23 0.12 0.29
0.65 0.00 0.25 0.10
B = . (3.5)
0.74 0.26 0.00 0.00

| 0.00 0.13 0.44 0.43
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Each state emits a symbol with different probability, foaexle, states; emits
symbola with probability 0.36, S3 emits symbok with probability0.74, andsS, is

unable to emit. If the four states have equal likelihood at the beginnihgnt

7 = {0.25,0.25,0.25,0.25}. (3.6)

A hidden Markov model probabilistically connects the olaéipns to the state tran-

sitions in a system. There are three basic problems thateaolked by an HMM:

1. the probability that model generates a particular observation sequénce

2. the most likely state sequence the model went throughnermgéing the ob-

served sequence of symbols,

3. a set of re-estimation formulas for iteratively updatthg HMM parameters
given several observation sequences as training datajén tor maximize the

probability of the sequences being generated by the model.

The first one is described below, the second one is discusskdail in Section 3.2,
and the third one, also known as Baum-Welch algorithm, istraead in Section 2.3

and Section 3.3.

For a given state sequence, the first problem, the probathkit the model gener-
ates a particular sequence of symbols, is computed by ryittgpthe probability
of being in a state by the probability of generating a cergimbol in the state.
For instance, given the model in Figure 3.2 and the sequéngesS,55545,, the
probability that the sequence generatesgbbc is computed as follows. We start
from the initial stage. The probability that the start siaté, is 0.25, and the prob-
ability of generating symbalt in statesS, is 0.65, so the probability of being %,
and generating symbalis 0.25 x 0.65. Then we move on to the second symbol.
The probability of reaching statey from S, is 0.6 and the probability of generating
symbolc from stateS; is 0.12, so the combined probability i56 x 0.12. We move
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on to the next symbol and compute the combined probabilityedfig in the state
and generating a specific symbol in the same way until thesjasbol is processed.
Finally, the required probability is obtained by multiptg all these combined prob-
abilities (0.25 x 0.65) (0.6 x 0.12)(0.8 x 0.43) (0.4 x 0.26) (0.1 x 0.13)(0.3 x 0.25) =
4.08 x 1077,

The wordhiddenin the term of hidden Markov model refers to the state tramsit
sequence which is hidden from the observer. It is revealgdtbrough the observed

symbol sequence, and may never be known with certainty.

3.1.2 Applying HMMs to token identification

For the token identification application discussed in $&cti.3, the observation
sequence is a sequence of words in text. The symbols emitteddh state are

words, and the HMM is a word-level model.

In the system described in this thesis, each sequence pormés to a sentence in
text, and each state corresponds to a type of token that tdgrgm will identify
and mark up. Example token class include people’s namegygeioical locations,
monetary amounts and e-mail addresses. Each type of tokebevmarked in
the text by a unique tagN, the number of states in the model, is the number of
different token classes, and is determined by the trainatg.dBecause the system
uses a word-level HMM model\/, the size of the output vocabulary, is the number

of different words that appear in the training data.

The matrix A gives the probability that the current word belongs to aipaldr
token type given that the previous word belongs to a padrcadken type as well.
We also call it thecontextual probability Distribution B is the probability of the
same words being seen in a particular token class. It is tdegendent: different
token classes have different probabilities for a certaimdwa3 is also called the
lexical probability The initial distributionr is the probability that each type of

token starts a sentence.
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For instance, in the following sentence, a fragment in aaeot version of The
Computists’ Weekly, 1998,

<0>Polytechnic University./o> in <I>Brooklyn</I> will get
<m>%$190M</m> from the <n>Othmek/n> estate, about four

times the school’s previous endowment.

the sequence of four words “Polytechnic”, “University’n"iand “Brooklyn” con-
tributes to the four-element class sequeree-<0><p><I> (see Section 1.4.1).
It contributes the probabilities of transitioning from argzation ¢) to organiza-
tion, statev to o; organization to plain text, o to p; and plain text to locatior],

p to [. Thus probabilities are given by the elements of mattiXThe words them-
selves will be counted as the appearances in the correspptakien class to make
up the elements of matri®, for example, words “Polytechnic” and “University”
labeled as organization would increase the counts for tegiurences in this class.
“Polytechnic” as part of organization would also incredse probability of token

<0> starting a sentence.

Recall from Section 1.3 that the token identification taslkassfollows: given a
sequence of words, identify the appropriate tokens and rtiek up with pre-

defined labels, given that a model has already been corstruct

It is assumed that each individual word belongs to a classnsider names of
particular types: people’s names and location. Whether ra vgoa name or not is
random with an estimable probability. For example, the wkkshington” could
refer to a person, or it could refer to a location. The proligtof being a person or
a location can be estimated from a training corpus in whi@netype of name has
been labelled. Because each state in the HMM has its own iemigsstribution,
stated in Section 3.1.1, the probability is conditioned ordy on the word, but on
the state that the model is in at that moment. For exampl&y#shington” follows
a preceding title like “president” and “Mr.” or a common nafiigob”, it is likely

to be a person, while if it is followed by “D.C.", it is likelyotbe a location.
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As mentioned above, words and token class refer to observayimbols and states
in the HMM. Finding tokens in an sequence of words means figthe state se-
guence that underlies the input. This is just the secondeoftitee basic problems
of HMM. Given the observation sequence and the model, howelohwose a cor-
responding state sequence which is optimal in some meanisghse (i.e., that
best “explains” the observations) (Rabiner, 1989)? Thetsmni is discussed in the

following section.

3.2 Decoding

Let us assume that an HMM model has been constructed for myartkind of
sequence, and we are presented with a new example of suchuanseq) =
o1, 09, ..., o. The problem of finding the most likely state seque@ce: ¢, ¢, ...,
gr that produces the given symbol sequence is callszbding There are several
possible ways of solving this problem. A commonly used metisaheViterbi al-
gorithm (Ryan and Nudd, 1993; Viterbi, 1967; Forney, 19%@®)ijch is to recover
the state sequence that has the highest probability of guioduced the given
observation sequence. For the sake of computation, thafimify variable is intro-
duced:

5t(.7): max Pr[Q1Q2---Qt71, 0102...0¢t—1, Qt:Sj,Ot}- (3-7)
q1,92,---,4t—1

This is the probability of the best sequence ending at stateith a transition
going from state5; to stateS; for symbolo; over all state assignments. It gives the
highest possible probability that the partial observasequence and state sequence
up to timet can have. By induction, it is easy to observe the followingursive

relationship:

Ot11(j) = [max 4(7)ai;]b;(0111), 1<j<N, 1<t<T-1
1<i<N
(3.8)
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The initial condition is

51(]) = 7ijj(01), 1 S 7 S N (39)

The most important point is that because of the Markov assiong sequences that
end in the same state can be collapsed together since thstaextiepends only on

the previous state in the sequence.

In summary, the algorithm starts by calculatifidj) for 1 < ;7 < N. Then it
uses the recursive relationship (3.8) to calculate thealg é,(j) until ¢ = 7' to
retrieve the optimal state sequence. It is necessary to tkaek of the best state
sequence found so far for each possible ending state. Antihdlege final statg* is
found by

J* = arg max dp(j). (3.10)

1<G<N

Starting from the pointer to this state, the algorithm beatits through the optimal

sequence, and the path that is produced represents thesggaguence of states.

The Viterbi algorithm can be written as:

T
Q* = arg max [[Prla; = Sjla—1 = Si]Pr[o, = Vi|a, = 5], (3.11)

q1--qreQT t=1

where Q* is the optimal state sequence that maximizes the Viterbies¢cand
Prig. = S;lqi—1 = S;] and Pfo, = Vi|g, = S;] are the state transition probabil-

ity and symbol emission probability respectively, as defiabove.

The entire algorithm is illustrated in Figure 3.3, where esdepresent the states of

the HMM at each time instamtfor 1 < ¢ < T. N = 4 in the figure.

To find the most likely sequence, the algorithm starts atriteal stage and moves
forward through the observations one at a time, finding thstriikely sequence
for each ending state. In other words, it calculates the gdvdity that each state

generates symbeol, by using the initial condition (3.9), then finds thé = 4 best
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alelrs

Observation

Figure 3.3: Viterbi algorithm interpretation.

sequences for the two observations,: the best ending witla, in Sy, the best

in Sy, the best inS;, until the best inSy. This information is used to find the
N = 4 best sequences foro,03, each one ending in a different state. This process
is repeated until all the observations are accounted foe sidiid arrows represent
those best sequences. Finally the maximum probabilityeata$t stage is chosen,
and the required state sequence is recovered by backtgattierpath indicated by

heavier arrows.

For instance, take the model described in Figure 3.2 ( Se&ib.1, Page 35) and
assume that probabilities not in Figure 3.2—zero elementise matrixA (3.4)—
have a value of.0001. Suppose the input sequencedsa. The algorithm operates
as follows. The first step is performed in the initializatjgimase using (3.9). Due to
the emission probability of Figure 3.2, only entries £y, Sy, S5 are non-zero. So
the most likely sequence of one state endingirto generate: has a probability
of mbi(a) = 0.25 x 0.36 = 0.09, whereas the most likely one ending $g has
probability of0.25 x 0.65 = 0.1625, and0.185 and0 for one ending inS; and S,
respectively. The result of the first step of the algorithrshewn at the left-hand

side of Figure 3.4.
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Figure 3.4: The result of the first two steps of the Viterbialthm running on
sequencecba.

The second step of the algorithm extends the sequences mi®bkgnd keeps track
of the best sequence. Equation (3.8) is used to compute tkelikely sequence
of two states ending in each state. For example, the pratyabfl generatingac

ending in state5; is computed as follows:

(52(1> = [max 51(2')@7;1]61(02)
1<i<N
= max[&l(l)au, 51(2)&21, (51 (3)&31][)1 (C)
= max[0.09 x 0.2,0.1625 x 0.6,0.185 x 0.7] x 0.12
= 0.185 x 0.7 x 0.12

= 0.0159

The most likely two-state sequence that generateand ends inS; has proba-
bility 0.0159, namely the sequencgS;. The most likely one ending ¥, has
probability 0.0093, namely sequencé;S,. The most likely one ending i§; has
probability 0.0317, namely sequencg, S,. There are no transitions t&; because
in the emission distributio® (3.5) (Section 3.1.1, Page 33)(0,) = b3(c) = 0.

The right-hand side of Figure 3.4 is the result of the secdad with a sequence
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are1s
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Figure 3.5: The result of the third step of the Viterbi alglomh running on the
sequencecba.

of two states. The solid arrows represent the best sequeipceseach state. The
computation runs recursively in the same way until the lgstl®l has been pro-

cessed.

Figure 3.5 illustrates the result after processing thedtlymbol, and Figure 3.6
illustrates the final result. The only difference betweea Walues shown in Fig-
ure 3.6 and the actual computation is that the values aredemim the figure. The
maximum probability sequence ends in stéie The heavier arrows in Figure 3.6

indicate the required state sequengé,;.5,.5;.

A more explicit interpretation of the result is shown in Figu8.7, where horizontal
arrows indicate the underlying transition of states andie@rarrows indicate the

emission of symbols in each state.

3.3 Estimating the parameters of an HMM

Once the model structure is determined, the next probleim estimate the model

parameters for the state transition probabilitiesnd state-specific lexical distri-
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Figure 3.6: The result of the final step of the Viterbi alganit running on the

sequencecba.
S5 (s1) ? ?
a C b a

Figure 3.7: The interpretation of generating sequende.

bution B given a set of training data. Generally, there are two kinfdsiethods:

unsupervised and supervised.

For unsupervised learning, the training data is untaggealaimels are inserted into
it. A andB can be estimated by applying the Baum-Welch algorithm (B&al872).

Given the initial parameters, this algorithm adjusts mqubhmeters iteratively to
maximize the likelihood of untagged data. However, bec#use can be different
possible results, the corpus must be correctly analyzedrédfeing used for pa-
rameter estimation. It requires great effort to analyzerge@orpus manually. The

result is also sensitive to the initial parameters, bec#usenaximization is local.

Supervised learning uses tagged training data—that isies@gs of words with the
target words already marked up with associated labels. fifloemation required to

construct the model can be obtained by recognizing thedalBelt to obtain such a
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corpus requires a large amount of effort to tag tokens méyual

While both methods involve some manual effort, analyziregdbrpus may require
more expertise than tagging. On the other hand, training dah be tagged by
applying an automatic tagger to the raw material and chedkia result manually.
Also, the unsupervised method creates more complex madaghsthe supervised
one. Previous work has shown that supervised methods haredgplied quite

successfully to the task (Bikel et al., 1997).

In the undertaken research, labeled training corpora ae;ulsus learning is super-
vised. The original state transition probability and syirdraission distribution are
calculated in a straightforward manner by using the ratioafnts, events/sample-

size or words/vocabulary:

~_ Count(S; = 5))
g = Count(S;)

(3.12)

and
~ Count(V,, 1 5;)

bi(k) = Count(S;) '

(3.13)

where Count(S; — S;) is the frequency of occurrence of the two consecutive
classesS; andsS;, Count(S;) andCount(S;) are the frequencies of occurrences of
classS; andsS; respectively, and’ount(V) 1 S;) is the frequency of occurrence of

word V; in the class of5;.

Let us take the sentence given in Section 3.1.2 (Page 38) asample. It is re-

peated for easy reference:

<0>Polytechnic University./o> in <I>Brooklyn</I> will get
<m>%$190M</m> from the <n>Othmek/n> estate, about four

times the school’s previous endowment.

The corresponding state sequence is shown below:

<0><0><p><I><p><p><m> <p><p><n><p><p><p>
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<p><p><p><p><p>.

where each tag corresponds to a word. For example, the fustégs correspond

to the first four words—“Polytechnic”, “University”, “in"and “Brooklyn”.

Let i represent classo> andj represent classp>. <o0> occurred twice, once
followed by <o> and the other time followed byp>. Soa;; = 1/2 anda;; = 1/2.
<p> appeared thirteen times, nine times followed by itself.ago= 9/13. There
are twelve different words in classp>, and the wordhe occurred twice. If we

denote the wordheby k, thenb; (k) = 2/13.

As mentioned in Section 3.1.1, we still need the initial @bitity vectorr to com-

plete the model. Two different methods are used to construct
The first is to estimate from the training data, as witly; andb, (k):

~_ Start = Count(S;)
"= Count(Start)

(3.14)

whereCount(Start) is the total number of classes that start a sentence, thheis,
number of sentences, aitbunt(Start — S;) is the number of times that clas$

starts a sentence.

An alternative method is to assign each class equal pratyatiiereforer;, = 1/N,
whereN is the number of token class. This method has been applidgtmbdel

given in Figure 3.2.

3.4 Training the HMM

Before constructing the model, the training data is sptit entences. The system
processes the training data in two passes. The first passsabemnumber of token
classes)V, the number of different wordsy/, and the vocabularies for each token

type. The second pass counts the number of events and d¢ektieA and B
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matrices.

Figure 3.8: A HMM obtained from the training data.

For illustration, Figure 3.8 is an example of an HMM obtairfeain part of the
training data. It is annotated with token labels explaime8ection 1.4.1, and with
transition probabilities. The figure shows that it is pobsiior words in the plain
text (p) class to follow words in any other token classes, and thegeswcan also
be followed by words in any other class except email [t is reasonable that words
in all token classes can be surrounded by plain text. Thditotalass {), monetary
class {n) and URL () class have no direct relationship between each other. They
never appear one after another and always have tokens in ddsses between
them. This is understandable from the grammatical pointiedvv Probabilities
from plain text to some other token class, such as date, sand location, are
very low. This is not because the events are rare but bechagate overwhelmed
by plain text words, which makes the denominator bigger awllts in smaller

numbers.

The figure indicates that there are no tokens in fax and phtasses in this par-
ticular set of training data, because classes, along witalwalaries, depend on the

training data.

The issue of data sparseness with respect to the estimaad B is addressed in
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Section 3.7

3.5 The PPM model for text compression

PPM is a predictive language model that was developed ingltkdf text compres-
sion (Cleary and Witten, 1984). On files of English text itibglly achieves com-
pression rates of about 2.2 bits per character (Moffat e18P7), which saves over
70% of the original data space. Such a big saving can be of gseain the prac-
tical world, where the amount of information is increasingniendously. Though
many other compression techniques exist, PPM has becomachrbark in the
compression community (Witten et al., 1999b). It has beatelyiused in language
processing tasks, such as character level language mgdékahan, 1998; Bray,
1999).

The PPM text compression model can be used together with HMidentify to-

kens in text. In this application we use the prediction pholitzes generated by
PPM, but we do not make any use of the actual compressed.réhigdtsection de-
scribes the principle of PPM and how to determine symbol acdge probabilities.

How the model is constructed and used in the task will be de=tin Section 3.6.

3.5.1 PPM model

Models that take a few immediately preceding symbols intmant to make a pre-
diction are calledinite-conteximodels of ordern, wherem is the number of pre-
ceding symbols used (Witten et al., 1999c). The PPM teclenitpes finite-context
models of characters (Cleary and Witten, 1984). It is a dedaharacter-level
model. It uses the last few characters in the input stringréalipt the upcoming
one. By considering such a context, each character can ber pe¢dicted. The
prediction is done by using the counts of occurrences of eaatext. The prob-

abilities associated with each character that has follothhedcontext are used to
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predict the probability for the upcoming character.

PPM uses fixed-order context models with different valuesnofup to a pre-
determined maximum. The maximum number is a given constanth we call
the order of the model. The bigger the order, the more information issidered.
But increasing the order does not guarantee better compressecause the con-
texts become rarer as the order grows. Studies have foumdéhttraasing the or-
der beyond about five does not generally improve compreg€iteary and Witten,

1984; Moffat, 1990; Cleary et al., 1995).

Several orders are blended together in PPM to obtain a gamuhpility estimate
for the current character. The prediction starts with a gireaximum ordern and
checks the occurrence of the ordercontext. If the ordern context has occurred
with the upcoming character following it, the corresporgaounts are used to pre-
dict the probability. If the context has not been seen in tst,dhe model then uses

the orderm — 1 context.

Consider the case where the context has occurred but ndimvéal by the upcom-
ing character. This is called ttmero-frequencgituation (Witten and Bell, 1991)—
the character will be predicted using a zero count. In th&eca special transmis-
sion calledescapes used to drop the model down one order, and the order 1
model is used to make the prediction. The problem of what sitage probability

should be will be discussed in Section 3.5.2.

Another possible situation is that the character has neseurced in the past—an
unknown character. Then even order O cannot be used. Thisoiher instance
of the zero-frequency problem. The model then escapes dovenbiottom-level

model, order-1, that predicts all characters equally.

To illustrate the PPM modeling technique, Table 3.1 (Teadtaal., 2000) shows
the four models with orde?, 1, 0 and—1 after the string.obeornottobe has been

processed.
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Order 2 Order 1 Order O
Predicton ¢ p Prediction ¢ p Predictionc p
be - o 1 12 b -~ e 2 34 -~ b 2  3/26

-~ esc 1 1/2 -~ esc 1 1/4 - e 2 326
eo - r 1 1/2 e -~ 0 1 1/2 -~ n 1 1/26
- esc 1 1/2 - esc 1 1/2 - 0 4 7126
no - t 1 1/2 n -~ 0 1 1/2 O 1 1/26
- esc 1 1/2 - esc 1 1/2 - t 3 5/26
ob - e 2 34 o] - b 2 38 -~ esc 6 3/13
-~ esc 1 1/4 ST 1 1/8
or — n 1 1/2 N t 1 1/8 Order -1
- esc 1 1/2 - esc 3 3/8
ot - t 1 12 r - n 1 12 S A 1 1/|A|
- esc 1 1/2 - esc 1 1/2
mn -~ 0 1 1/2 t -~ 0 2 1/2
- esc 1 1/2 -t 1 1/6
to - b 2 34 -~ esc 2 1/3
- esc 1 1/4
tt ) 1 1/2
- 6c 1 1/2

Table 3.1:PPM model after processing the stringbeornottobe.

In this illustration the maximum model order is 2. For eachdelpall previously
occurring contexts are shown with their associated prexfist along with occur-
rence counts and probabilitiep. The probabilities are determined from the counts
using escape method D that will be discussed below. In the,téfieesc is for
escape and\| is the size of the alphabet. It is this that determines th&advdity

for each unknown character.

The model in Table 3.1 is used as follows. Suppose the clerfatiowing tobeorn
ottobe is 0. Since the order-2 context ig, and the upcoming symbol has already
been seen once in this context, the order-2 model is usedrengrobability is
1/2. If the next character, instead ofweret, this has not been seen in the current
order. Consequently an order-2 escape probability/afis used and the context
is truncated to the order-1 context Again it has not been seen in this context, so
an order-1 escape probability bf2 is used and the context is truncated once more
to the null context, corresponding to order 0. Finally tharetttert is predicted
with a probability of5/26. Thus the prediction of is done in three steps, using
order 2 to order O context respectively, with a probabilitylg2 x 1/2 x 5/26. If

the upcoming character had beeinstead oft, a final level of escape to orderl
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would have occurred with a probability 8§13, andz would be predicted with a

probability of 1/256 (assuming that the alphahbet| = 256).

Context
tobeornottobe nottobeorto
Probabilty = Modelused Probabilty Model used
Upcoming o] Yo Order 2 1ox12x5/6 Order 0
character
t Yox1/>x5/26 Order O 1ox116 Order 1

Table 3.2: Effect of context and current character with o2I@PM model.

The probabilities predicted by PPM are based on the ocoteseaf the prior con-
text and the characters that have followed each contexy ¢wee the context has
occurred in the training text. Table 3.2 shows how the previcontext being pro-
cessed and current character affect the result in termseobttier of model and
probabilities by using the same prior contexts to prediffecent characters and

vice versa.

In the case where the upcoming charactes,igor the stringtobeornottobe, the
preceding context ise (using an order-2 model), which has been seen once and
followed by the same character Henceo can be predicted using the current order
of model with probabilityl /2. For the stringnottobeorto, although the previous
contextto occurred before, it is followed by a different charactemnfrthe upcoming
one. The model is forced to move down to the lower order. Torgiaues untib is
finally predicted using the order-0 model, and the total phulity is 1/2 x 1/2 x

5/6, where twol/2 are for escapes from higher-order model to lower ones. The
same principle applies when the upcoming character ighe orders of model
used for prediction of the stringsbeornottobe andnottobeorto are 0 and 1 with

probabilities of1 /2 x 1/2 x 5/26 and1/2 x 1/6 respectively.
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3.5.2 Estimating probabilities in PPM

If the context has never occurred in the processed text—éhefzequency situa-
tion, PPM uses an escape to drop the model down to a lower. drdermproblem of
how to deal with zero frequencies reduces to the problemlofiaing the escape
probability. This issue has been discussed by researcbays Cleary and Wit-
ten, 1984; Moffat, 1990; Howard, 1993) and several differaethods have been

proposed. Table 3.3 shows four different methods used ietperiments.

Let us definep(¢) to be the probability of symbap, a character in this task;the
probability of escape;(¢) the count of a particular context followed by the char-
acterg; t the distinct number of characters that have followed a paldr context;

andn the number of times a context has appeared.

Method Escape probability Symbol probability
A e= n%l pi(g) = (;‘Ef?
c e= (g = 52
D o= (g = 240

Table 3.3: Methods for zero frequency problems.

In Table 3.3, methods A and B were proposed by Cleary and k\it884). Method
A simply adds one count to each occurrence: the more thexidmds occurred, the
smaller the escape probability. Method B does not counectsithat have appeared
only once. By doing this, unusual contexts are ignored. Met@ was introduced
by Moffat (1990), and bases the probability on the numbeypés$ of context. It
is similar to method B except that characters are predictedadiately. Method D,
a variant of method C, was proposed by Howard (1993). It addscount to both

character and escape, instead of one as in method C. The &hods also refer to
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the name of PPM followed by the capital letter of the methedlft such as PPMA
for method A.

3.6 Unknown word handling

One of the main goals of token identification is to choose tireect label in cases
where a word can have more than one label assignment. Addilyp a system
must deal with words that have not been encountered in thertgedata, and so are

not found in the lexicon.

The lexicon for the HMM is built during training, so the modeintains all words.
It also contains all the counts that are needed to calcuiatprobabilities in (3.11).
If an unknown word is encountered during decoding, ther@ismtry in the model.
The emission probability in the state transition mafixs unknown. To ensure that
the process continues and works in a proper way, some polisst be adopted to

estimate the probability that the current state will emé tfiven unknown word.

To make an entry for unknown words, a special token is asdigimat matches all

unknown words, regardless of what they are. The questigeshow to calculate
the probability for this special token. Different methodsvé been discussed in
Section 2.2. In this section, this section discusses twhaoustused in the system.

One relies on a PPM model; the other uses a unified probability

3.6.1 PPM models for unknown words

As described in Section 3.5.1, a PPM model is a finite-contbgtracter-based
model that uses the last few characters in the input stregrettict the upcoming
one. In the system, PPM models are used to provide HMM withiguenprob-
ability for each individual unknown word. In other wordsetiword-level HMM

drops down to the character-level PPM model when unknowrdsvare encoun-
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tered. In this way we bridge the two models. The probabilityvded by PPM is
more relevant to the unknown word itself than the unified pimlity discussed in
Section 3.6.2.

A PPM model is constructed for each token class, using akriekn a class in
the training data. For example, in Figure 1.5 (Section)},4vbrds in the location
column are used to construct a PPM model for location, andisvior the people’s

name column are used to construct a PPM model for names.

The PPM models are now available to deal with unknown wordseiéver a word
that has not been encountered in training is seen, and isfthemot contained in
the lexicon, the value of;(k) is assigned the probability that is predicted by an
appropriate PPM model, when computing (3.8) and (3.9) todimdhe most likely
path.

Since there are several PPM models and each one predictbalyity, it is nec-
essary to determine which is the appropriate one. In therexpats, the largest

probability was used. All calculations are done on the fly.

3.6.2 Unified probability for unknown words

Another way of handling unknown words is to provide a unifiedhability that
governs every such word in a class, regardless of what itlgs iflea is based on
the method of Bikekt al. (1999) mentioned in Section 2.2.

The training data is divided into two parts, and the traingrgcedure is accom-
plished in two steps. The first step, which is caltegining, is to train the model
using one half of the training data. The second, which isedalpdating uses the

other half of the training data to update the model that igioletd from the first step.

As mentioned in Section 3.1.1, the output symbol distritnuts state-specific. The
probability of generating a particular symbol depends andiate. Because of this,

it is necessary to seek a method of assigning each state tpmbability for the
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unknown token.

During updating, the dictionary stores an extra item—thestoclasses that have
been associated with each word. Every time a word is encretht¢he system
checks it in the dictionary along with the token class. Thaeethree possibilities:
not in the dictionary, in the dictionary but not associatathwhe class, and in the
dictionary and associated with the same class. In the fisst,dhe word is added
to the dictionary, and associated with the token class t@hvhibelongs, and the
count for the unknown token of the corresponding state isatgml In the second
case, the new token class is stored with the word, and the obthre corresponding

unknown token is updated. In the third case, only the wordigt is updated.

In this way, we estimate how often an unknown word will occureach class.
Only the first occurrence of a new word is taken into accourgmstimating the

probability of the unknown token.

3.7 Smoothing the probabilities

Smoothing is a technique for adjusting probability estiesdhat have been obtained
from the training data. Smoothing is necessary when dataaiss. It is especially
important for handling the zero frequency problem, whichibgguitous in models

constructed by learning.

Zero frequencies occur in both contextual and lexical pbiliees. For example,
in the model described in Section 3.4, because of the lackaofihg data, there
is no relationship between some classes. Therefore thebildgp that the model
transitions between the corresponding states is zero. @lefeequency problem
occurs more often in lexical estimation because of the pabfitext: most words
are plain text. The probabilities that these words are geadrin other classes are

Zero.
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In the illustration of the Viterbi algorithm on page 41 (Seat3.2), a small con-
stant0.0001 is assigned to zeros in the contextual probability matri(zeros in the
lexical probability matrixB are left unchanged). This does not seem to be reason-
able in general. It is hard to say how small the number shoaldibthout taking
other counts into consideration. The value001 is small enough in the example of

Figure 3.2, but not for a model with actual probabilitiesttiige smaller thafn.0001.

Rather than using a fixed small number, we looked for a methatidepended on
the number of occurrences of existing events, such as tdaesas and words. The
existing model smoothing methods are discussed in SectBTa our knowledge,
there has been no systematic investigation of smoothingpappes for token iden-
tification. However, smoothing methods proposed in otheeaech areas, such as
language modeling (Chen and Goodman, 1998) and part-eichpeentification
(Thede and Harper, 1999), can be adapted.

The experiments use the four escape methods in PPM (dedénitgection 3.5.2)

as smoothing methods. The results are discussed in Secfion 4
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Chapter 4

Experimental evaluation

The HMM-based token identification model described in Caapthas been evalu-
ated in several different ways. This chapter presents asalidses the experimental

results.

Before describing experiments to assess the system, ttardasd measurements
that are commonly used in this field are described in Sectitin Bor the purpose
of easy analysis, a stand-alone measurement is also icegddin order to see how
the system worked, it was first applied to the TCC corpus dasdiin Section 1.4.
The results are presented in Section 4.2. Section 4.3 disswerrors in the cor-
pus. Because the errors affect both the model and the finaltsethe corpus was
corrected and the experiments run again on the new versitwe. corresponding
results, along with discussion, are presented in Sectibnld.order to explore the
impact of PPM, Section 4.5 compares different unknown wamudting methods.
The empirical experiments indicate that combining PPM wittHMM-based iden-
tification model for unknown words results in better perfame than that using a
unified probability. Section 4.6 investigates the effectpemformance of the size
of the models, which is determined by the amount of trainiatad Increasing the
amount of training data results in better identificationthdugh the performance
continues to improve as the size of the training data growsthe available cor-

pus, using5 issues of TCC newsletters to train the model seems to be tadtep
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Section 4.7 investigates the effect of different model sthiog methods. Finally,
in Section 4.8, the system is evaluated on bibliographibs.résults are better than

for TCC text because of the characteristic structure ofibgshphic text.

4.1 Measuring

Three standard measurescall, precisionand F-measurgVan Rijsbergen, 1979;
Lewis, 1995), along witkerror-rate are used to evaluate the accuracy of the token
identification system. They are calculated by using theesponding manually
marked-up fragment in the training corpus as the gold stahd@or easy reference,

let us call this gold standatthnd mark-up To define them, the following terms are

used:
N Number of tokens occurring in the standard text;
c Number of tokens correctly marked up by the system;
e Number of tokens incorrectly marked up by the system;

n =c+e Number of tokens marked up by the system.

The measures take into account two aspects of the mark-epaliel! itself, and the
boundary where the label is inserted. A token is consideydxbtcorrectly marked

up when both label and boundaries are correct. For example

The board has been begging and bribig>Steve Jobs/n> to stay

on, but he hasn't accepted yet.

“Steve Jobs” is correctly marked as a person’s name and ttibates one count to

C.

Recall and precision are widely used to assess the qualignahformation re-
trieval system in terms of how many of the relevant documargsetrieved (recall)

and how many of the retrieved documents are relevant (poegis In the token
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identification task, recall is the proportion of the corremkens which are actually
identified by the system, while precision is the proportidriakens identified by

the system which are correct. They are written as:

C

Recall= — 4.1

5 (4.1)
.. C

Precision= —. (4.2)
n

The two measures do not always provide an adequate evalusause there are
some extreme situations where one of them is very small whéeother is large.
For example, if the system identifies few tokens comparechéonumber of NV
and they are all correct, recall will be very small whereascigsion is100%. It is
better to have a measure that yields a high score only wheitl sead precision are
balanced. A widely used measure is the F-measure (Van Risbel979; Lewis,

1995):
(5% + 1) x Precisionx Recall

F-measure= —
(3? x Precisior+ Recall

(4.3)

where values of; between) andoo give varying weights to recall and precision.
In this thesis,5 = 1, gives equal importance to recall and precision, therefore

F-measure is the harmonic mean of recall and precision:

2 x Precisionx Recall
F-measure= i . (4.4)
Precision+- Recall

The measure of error-rate is used just for easy analysiseafebult. It is defined as
Error-rate= — (4.5)
=5 :

This is normally used on its own as an overall indicator of ¢uality of identi-
fication. However, it can give misleading results—an ex&esondition is where
the system only identifies a single word, leading to a verylseneor-rate of1/N

despite the fact that all tokens but one remain unidentified.
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If the system marks up the same number of tokens as the harkduparecall and
precision both become equal to one minus the error-rate. rlegeidentification

system will have an error-rate of zero, and recall and pregisf 100%.

During the checking procedure, labels and boundaries aredseparately at half
a count each. In one case, a token may be marked with the ttabet but has one
of its boundaries displaced. Examples are given below wigrcbrrect mark-ups in

bold:

Happens everfew <d>years</d>, and sometimes does result in pro-
gram cuts.
Happens<d>everyfew years</d>, and sometimes does result in pro-
gram cuts.
<0>TheBureau of Labor Statistics</o> characterized the computer

field as having “strong long-term growth trends.”

In these cases, the correct label along with one correctdemyrcontributes a half
count toc, the number of tokens correctly marked up by the system, lamadther

incorrect boundary contributes a half countetahe number of tokens incorrectly
marked up by the system against the hand mark-up. This pdbeg not always

apply to each case. For example, the following are considaseerrors:

<s>NY Times,19Jan98. EduR/s>.
The Mining Company has au>college admissions guide at <http

:// collegeapps.miningco.comiu>>>, including tips on interviewing.

In the first example, not only is one of the boundaries at tregiposition, parts of
the textincluded, which are shown in bold, should be marlssother classes—date
and source respectively. In the second example, too mang wxirds (in bold) are
included, in other words the wrong boundary is too far froswdorrect position.
Only one word displacements are accepted. The correct opafkr these two is

shown below:
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<s>NY Times</s>, <d>19Jan9&/d>. <s>EduR/s>.
The Mining Company has a college admissions guide<at u>http://

collegeapps.miningco.comu>>>, including tips on interviewing.

The second situation in which the mark-up contributes adwiht toc is where the

boundaries are correct but with the wrong label. For example

And the company is definitely getting better at the>Washington
</o> power game.

<0>Statistical Computing & Graphiego> is a joint newsletter of the
Statistical Computing and Statistical Graphics Sectidnthe Ameri-

can Statistical Association, distributed to members thiraes a year.

Here and later in this chapter all labels that are not disisse suppressed for
readability. Instead of organization, “Washington” heh®sld be marked up as a
location according to the hand mark-up. Similarly, “Stitial Computing & Graph-

ics” in the second example is a source rather than an org#omza

These measures are calculated manually by comparing thk césdentification

against the hand mark-up in the corpus.

4.2 Application to the TCC corpus

The first series of evaluations used the TCC corpus. The sos@s first split into
sentences because the system processes input sentencegmgseAs mentioned
in Section 1.4.1, the available TCC corpus contai®isssues of the newslette?s

issues, which are randomly selected, are used as the gaatn

The statistics of the training data are shown in Table 4.1e mbmber of words
depends on exactly how a “word” is defined. Besides spacek,dbashes in URLs

and dots in email addresses are also considered as wordtéesinThis increases
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Token type Number of words | Percentage of words
dates (d) 1089 2.9%
email addresses (g 1302 3.5%
fax numbers (f) 35 0.1%
phone numbers(h) 62 0.2%
locations (1) 559 1.5%
sums of money (m 157 0.4%
names (n) 1151 3.1%
organizations (0) 814 2.2%
plain text 28919 77.7%
sources (S) 1054 2.8%
URLSs (u) 2083 5.6%
total 37225 100.0%

Table 4.1: Statistics of the training data in the TCC corpus.

the number of words in the email and URL classes. Based omléfiisition, about
78% of words in the training data are plain text. Except for URLldamail ad-
dress, the name class has the most wosds/), and date and source rank second
(2.9%) and third ¢.8%) respectively. The percentage of words in these threeedass
8.8%, is just double that in the fax, phone, location, sum of mas&y organization
classes—4.4%. The table shows that few words are labeled as fax or phonleerta
together, these two classes account for any of words. The more words in a
class that occur in the training data, the more likely it sttlokens in that class will

be identified correctly in new text.

To see how the system workspf the remaining issues are used as the test set with
all the tags removed. PPM models are used for the unknownsasrd the model

is smoothed using PPMA, which is described in Section 3.5.2.

Table 4.2 shows the results for each of the five test files mdef recall, precision,

F-measure and error-rate. It also gives the average vafubsse measures.

In the table, the value of precision is almost always highantthat of recall. This
indicates that the system marks less tokens than it shoul€donsequently, some
tokens are either missed out—Ileft unmarked, or merged intaheer token by the

system.
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file Recall (%) Precision(%) F-measure(%) Error-rate (%)
testl 60.47 66.38 63.29 30.63
test2 59.00 55.66 57.28 47.00
test3 58.33 61.76 60.00 36.11
test4 54.39 62.00 57.94 33.33
tests 60.67 62.76 61.69 36.00
Average 58.57 61.71 60.04 36.61

Table 4.2: Result for five TCC test files using the model of HVRPM.

The errors can be divided into two different types:

1. correctly marked up tokens that are mistakenly not labeldabeled incor-

rectly in the hand mark-up;

2. incorrectly marked up tokens.

The first type is calledialse positive Inspect the result of file test2 in Table 4.2, the
low precision compared to recall is caused by a large numbiaise positives24
false positives out of a total of 106 marked-up tokens. S#\espects that affect

the accuracy of the results are discussed in the followiogse

4.3 Defects in the corpus

The identification system is based on two components: theusoand the algo-
rithm. Errors in either affect the final results. Becausedbgus is annotated by
hand, one hundred percent accuracy is hard to achieve. skcagr arise through
human negligence or mistake, and also through different@sdgment that hap-
pen between individuals. This section presents the shoitaggs of the corpus that

affect the accuracy of the result.

As mentioned in Section 4.1, measurements are done by corgphe result of the

system with the hand mark-up in the corpus, which is pre-edukanually. The
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(@) <I>U.S</I> News has a ".edu Colleges and Careers Center” with lots of-inf
mation about colleges and campus life, graduate schoalsheyond.
<I>Stanford</I> Testing Systems offers free SAT skill-building exercisds a
< <http://lwww.testprep.com>.

(b) <s>U.S. News:/s> has a ”".edu Colleges and Careers Center” with lots of infor-
mation about colleges and campus life, graduate schoalsheyond.
<o>Stanford Testing Systemgo> offers free SAT skill-building exercises at
< <http:/lwww.testprep.com>.

Figure 4.1: Examples of ambiguity. (a) Hand mark-up. (b)t&ysmark-up.

marking differences between these two that count as erumisglevaluation are

discussed in terms of ambiguity, omission and error.

As mentioned in Section 4.1, both the training data and thed hraark-up, the
marked-up version of test data, are part of the corpus aretteel randomly. So
problems in the hand mark-up exist in the training set as.w€Hlis reduces the

performance of the system, because the model is trained perfact data.

4.3.1 Ambiguities

Marking ambiguities are found during experiments. Figurk shows two exam-
ples. Figure 4.1a shows how the tokens are marked in the hankup and Fig-
ure 4.1b shows the results from the identification system.S*Ucan stand alone
as a location, though more commonly people use “US” inst8ad.in the context
of this sentence, “U.S. News” is more likely to be a multi-adoken in the source

class. Moreover, “U.S. News” has occurred as part of a saartee training data.

Similarly, in the training data, “Stanford” has been seeresal times as a location.
But based on semantics, identifying “Stanford Testing &yst’ in the test file as
an organization is more reasonable than “Stanford” aloreelasation in the hand

mark-up. The system, however, does not include any semanoessing.

It has also been found that all occurrences of “weekly” andrithly” are stemmed

when marking up by hand, as shown in the following examples:
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(a) IEEE Internet Computing is soliciting articles.
Now in its second year, it has the 2nd largest circulationheflEEE Com-
puter Society optional publications.
Integrating multiple overlapping metadata standardsf theAmerican So-
ciety for Information Science (JASIS).
Queen’s U

(b) 4> <I>Silicon Valley</I> jobs:
Martyne Page’ has returned to Canada after a year of writigieon Valley
column for a French-Canadian newspaper in Quebec.
(<I>Mount Arlington, NJ </I>/Paris, France): MS/PhD French/Engli
computational linguist with NN, ML, NLP.
(Mount Arlington, NJ ): MS/PhD center director in computational linguistics,
NN, NLP.
That, and thakn>Steve Jobs:/n> kept undermining his relationship wit
the board.
The board has been begging and bribBtgve Jobgo stay on, but he hasnit
accepted yet.
The <I>US</I> created 20K new computer services jobs in Jul98, plus| 3K
in computer manufacturing, out of just 66K né&¥ jobs total.

h

UJ

=

Figure 4.2: Examples of omission. (a) Tokens are left unerkb) Tokens are not
marked up for all occurrences.

<d>new week/d>ly

<d>available montk:/d>ly

These examples show disagreement in human judgment. Therpeho marked
the corpus might have followed his/her rules which are nobirect. The system
did the right thing as well. However, the results are congdes errors because

they differ from that in the hand mark-up.

4.3.2 Omissions

The labels of some tokens are accidently missed out in the imamk-up. There are
two cases: tokens that obviously belong to some classesfatmmarked as shown
in Figure 4.2a, and tokens that are not marked up for all sgeoges as shown in
Figure 4.2h.

In Figure 4.2a, the text in bold belongs to some token classexample, “IEEE
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Internet Computing” is a source and “American Society fdioimation Science
(JASIS)” is an organization. All of them are marked up cotireby the system.
However, they are considered as errors when measuring e¢he measure is

against the imperfect hand mark-up.

Figure 4.2b shows four samples where a token, in bold, is etesskmewhere while
the same token is left unmarked in other places. For exampled first part of
Figure 4.2b, “Silicon Valley” is marked as a location in orentence and in the
other sentence it is left unmarked. For the same reason agathos increases
the number of errors because the system marks both up aslsatThe same
situation occurs for the next two samples in Figure 4.2b.id@3ly, the last sample

in Figure 4.2b presents the failure in the same sentence.

Moreover, some tokens are marked in different ways. For garfEducom Up-

date” appears in three different ways:

Educom Update
<s>Educomx/s> Update

<s>Educom Update/s>

where the last one is the right one. During measuring, whiettgemark-up is either
correct, partially correct or false depends on what it ishie hand mark-up at the

same position.

4.3.3 Errors

Other errors have been found in the hand mark-up as shownguré-é4.3. Fig-
ure 4.3a shows two errors that occurred in the hand mark-ts dbvious that
both “ISTA” and “CASA’ are acronyms of the preceding orgaations. Although
the system did not mark them correctly either, as shown imiféig.3b, at least it
identifies the tokens as the right class. These kind of efrotke hand mark-up

may affect system performance elsewhere.
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(@ Int. Science & Technology Associates!ISTA</I>; Philadelphia): BS
linguists for Japanese patent machine translation.

Center for Adaptive Systems Applications:|(&>CASA</I>; Los Alamos,
NM): scientists in data mining, adaptive computing for fioiah modeling or
fraud detection.

(b) Int. <o>Science & Technology Associates (IS¥#o>; Philadelphia): BS
linguists for Japanese patent machine translation.
<0>Centek /o> for Adaptive Systems Applications (CASA,; Los Alamas,
NM): scientists in data mining, adaptive computing for fioiah modeling or
fraud detection.

Figure 4.3: Examples of error. (a) Hand mark-up. (b) Systeankrup.

4.3.4 Effect of the imperfect training data

The above types of failure occurred in the randomly seletgstiset in the corpus.
They occur in the entire corpus as well. For example, in thening set, “US”
occurs68 times: 18 times as a location by itself, times as part of an organization
and44 times it was left unmarked. This makes the models ambiguodsherefore
affects the performance of the system because the idetitificsystem is based on

the model.

For example, in the first test file, “US” occurs three timeshe hand mark-up,
once as a location and twice as plain text, but the systentifdsnit as plain text
for all three occurrences. According to Table 4.1, the pbaiig of generating
“US” in the location class is higher than that in plain texowver, besides symbol
emission probability, the hidden Markov model involves teo probability—state
transition probability. The large amount of text means thatstate that represents
plain text has a higher chance of being chosen as the cutegat # all occurrences
of “US” had been marked correctly, there would be only a sroladince for it to be

considered as plain text.

An additional experiment was performed to investigate. thigr the same training
data, location labels were added for all occurrences ofiposly unlabeled “US”
that are likely to stand as a location. Other occurrenceg \part of a class which

the token belongs to, for example:b>US Air Force</o>" and “<0>US Dept. of
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Education (DoER/o0>". The model was then trained using the modified version.
By applying the model on the same test file, the result shoaisath three occur-
rences are marked up as location. Two of them are fully coard the other has

one boundary incorrect<l>The US</I>".

4.4  Application to the corrected TCC corpus

Because the models and therefore the performance of thensyse based on the
corpus, the quality of the corpus is important. Accordinghte shortcomings de-
scribed in Section 4.3 and further examination, the origir@C corpus was cor-
rected by hand. The experiment described in Section 4.2 wasgain using the
corrected version of the corpus. The same training and pdis$ svere used as in

the original run.

File Recall (%) Precision(%) F-measure(%) Error-rate (%)
testl 64.86 72.37 68.41 24 76
test2 65.67 74.58 69.84 22.39
test3 68.72 78.34 73.21 18.99
test4 60.96 74.79 67.17 20.55
tests 66.26 66.67 66.46 33.13

Average 65.29 73.35 69.02 23.96

Table 4.3: Result for five TCC test files using the correctapes and the model of
HMM+PPM.

Table 4.3 shows the results for the corrected corpus. Orageerecall and pre-
cision are improved bg.72% and11.64% respectively, which results in &198%
improvement over the original corpus for F-measure. At thea time, error-rate

drops down byi2.65%.

However, there were still some errors left by accident. ameple, not all appear-
ances of “Washington Post” and “Scott Thurm” were markedsugaurce and name

respectively. And all mark-ups with word stemming were lefthanged.

In more detail, Figure 4.4 presents the proportion of cdlyanarked tokens (dark
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Figure 4.4: Detailed result for five TCC test files using therected corpus and the
model of HMM+PPM.

gray) and errors (light gray) over the corresponding nursleéitokens in the hand

mark-up for each class and overall.

The figure shows that organization class has a very poortregth only abou20%

of correct tokens identified. This is probably due to the Iopercentage of words
in this class in the training data. As mentioned before, tloeenwords in a class
that occur in the training data, the more likely it is thate¢ok in the same class can
be identified in new text. The proportion of words in classeshsas fax number and
sums of money are also small, however, they have specialtedandicators, for
example “fax” and “$”. This increases the performance fasthclasses. However,

a hame of an organization is more likely to comprise diverseds, such as:
<0>Bell Labs</o>

<0>John Benjamins/o>

<o0>Holland Academic Graphiego>
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The percentage of correct tokens in date, email and faxeteam® about the same.
However, the system is more successful on date class bettausgor rate is very

low. This is understandable because date has much less @tghilgan email
address and fax number. Most tokens in date class are digheple in both
words and format. Errors happen in special cases such as (3840 years/d>"

and word stemming. But they are rare. On the other hand, esddilesses can

be mixed up with URLs due to the definition of a word. Some sesirsuch as
“<s>comp.ai.genetic/s>" also increase the error in email address and URL classes.
There is no distinction between fax number and phone numksspe the word
“fax/Fax”, which is a strong indicator to distinguish fax mber from any other

classes.

It is interesting to notice that a token which is a money ant@ugither marked up
correctly or left unmarked. Due to the format of the tokenhistparticular class,

there is no marking ambiguities.

Generally speaking, name of a person is relatively hardedeatify than other
classes. The figure shows that it gets the second best reshtith the correct ratio
and error ratio. As we have noticed, there are some name®dtcat repeatedly.
For example, “Ken”, “Bill Park” and “Brandon” have occurredveral times in the
entire corpus and none of them has been found to be identiftedrectly. However,

most of the names are not in this special case.

4.5 Exploring impact of PPM

One of the thesis statements claims that PPM models can d¢aisandle unknown
words for an HMM-based token identification system. The jones experiments
have shown the results. How it works compared to other meithetill a question.
This section presents the results of the experiments whare win by using both

PPM models and unified probability for unknown words.
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The same25 TCC issues of training data aridissues of test data are used. The
experiment was run twice. The probability of every unknowken is provided by
PPM models the first time and set to a unified value for eachtoless as described
in Section 3.6.2 the second time. To estimate how often unkrtokens occur in
each class, the5 issues of training data were divided into two patit3,issues for

training andl2 issues for updating.

model Recall(%) Precision(%) F-measure(%) Error-rate (%) \
PPM+HMM 65.29 73.35 69.02 23.96
Unified+HMM 60.73 69.94 65.00 25.24

Table 4.4: Average results of 5 TCC files using PPM and unifiedbability for
unknown words.

Table 4.4 shows the average results in terms of recall, gimati F-measure and
error-rate. On close examination of the results, the difiees are mainly due to
the number of fully correct marked-up tokens. With PPM megdeiore tokens are
marked up fully correctly, which means both label and bouiedzare correct. For
example, the system failed in the following cases when thiednprobability is

used,

<s>Al Kamen, Washington Posis>
<e>fr</e>

<s>comp.ai.genetic, 05Aug98s>
<s>AWAD, 05Aug98</s>

but it performed correctly with PPM models,

<n>Al Kamen</n>, <s>Washington Post/s>
<e>hermes@iway.f/e>
<s>comp.ai.genetic/s>, <d>05Aug98</d>
<s>AWAD </s>, <d>05Aug9&/d>

The results using PPM models are better overall, but in soamses; mark-up is
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improved when using the unified probability. For example dystem identified

the following URL correctly,
<u>http://lwww.elsevier.nl/locate/paredu>
while only part of the URL is marked up when using PPM models,

<u>http://lwww.elsevier.nk/u>

4.6 Effect of the quantity of training data

For any learning system, the effect of the amount of theitngidata is an important
issue, especially for a supervised learning system. Itradetes how much human
work is required to prepare the data in order to get acceptabiformance. In the
previous experiment5 randomly selected issues were used to train the model.
Whether the size of the training data is reasonable is alageatmpn that needs to

be addressed.

For the TCC corpus, experiments have been done with diffemerounts of train-
ing data. Eighteen models were trained with successivefjetaamounts of data
starting from2 issues of the newsletter, with each training set an extarsiahe

preceding one with two more issues. The eighteen models ealeated on one

TCC issue, which is not included in any of the training sets.

Figure 4.5 presents the results from the different modelse llhes marked with
circular and cross points correspond to the value of pregiand recall respectively.
The solid line with no points corresponds to error-rate. @ashed line corresponds

to F-measure.

Starting with two issues of training data, the performana@e system is improved
as more training data is used. For precision and recall,igreficant improvement

happens before the point @2 issues of training data. Both of the values keep
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Figure 4.5: Effect of the amount of training data.

increasing, but at a more steady rate after this point. Tipggar to be more stable
after the point o224 issues of training data. For the error-rate, the value flafetst
It increases while more training data is added urtiiissues of training data. This
is because there is not enough training data yet. Therefooege errors occurred
although many more tokens are identified correctly as shomwolh precision and
recall. It starts to decrease after this point except for etdiation at the point of2

issues. It then levels off after this point.

Overall, Figure 4.5 implies that the performance of theaysis improved in terms
of standard measurements and practice by using more tgailaita. After24 issues,
although lines are more flattened, adding training dathistproves the values of
precision and recall. It is assumed that with sufficient g least amount of train-
ing data which gives reasonable performance will be moraegt. This point ex-
ists because more ambiguities are introduced when morerigadlata is used, even
if correctly annotated. For example, a token may appearffardnt classes, which
affects the ability of the system to make the final identifaratiecision. Balancing
the improvement and errors caused by ambiguities, there beuan amount after
which the entire performance of the system tends to be stdtimvever, for the
available amount of corpugp issues for training seems to be a good choice from

the figure.
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4.7 Effect of model smoothing method

Different smoothing methods have been described in Se8t2. In the previous
experiments, Method A has been used. This section invéstigeow the other
methods perform, and whether using Method A is a good detisidie same5
issues of TCC in the corpus are used to train the model. Theees of TCC, which
are randomly selected from the remainder are tested withdimoothing methods:
Method A, Method B, Method C and Method D. They are defined ictiSe3.5.2,

and originally for PPM models. Table 4.5 shows the averagelt®

Smoothing Recall(%) Precision(%) F-measure(%) Error-rate (%) \
Method A 64.48 75.83 69.70 20.58
Method B 54.51 71.89 61.93 21.39
Method C 52.84 77.11 62.61 15.78
Method D 58.12 76.09 65.80 17.99

Table 4.5: Average results from different model smoothirggmds.

From the table, Method A has the highest value of recall whikzision and error-
rate are worse than for some of the other methods. By inspettie results, it
is apparent that the system with Method A always marks up rakens than the

others, which increases both the number of correct toked€aors.

Method C has the highest value of precision but the lowestevaf recall. This is

caused by a lower number of tokens being identified. This fitsrgrecision a lot.

Recall from the definition of precision and recall in Sectii, a higher value of
precision means that among the identified tokens, more of #ve correct. And a
higher value of recall indicates that more correct tokers@entified by the system.
Ideally, a method which results in both the highest preadisiad recall is a good
choice. However, for the situation here, Method A is the lobstice overall at a
little expense of error-rate. Method D can be an alterndieeause the differences

compared to the best one in both precision and recall ard,samalthe error-rate is

also lower.
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Method B and Method C perform comparatively worse than otiver As above,
Method B marks up more tokens either correct or incorrectis Tésults in larger
recall but smaller precision. Considering the larger erate of Method B, Method

C is more acceptable than Method B on average.

To sum up, the choice of smoothing method can be made by the wdF-measure

with consideration of error-rate.

4.8 Application to bibliographies

Another thesis statement claims that the system is fully alaomand language-
independent. The domain-independence is evaluated byiagghe system on

a bibliography corpus without any changes.

The text in bibliographies is more structured than that exTICC newsletter, which
the model takes advantage of. A bibliography entry contaarse, title and date.
Most of them have page number(s), and some provide orgamzatublisher, lo-
cation and source. In the experiments, the BIB corpuslof references were se-
lected randomly from the bibliography collection mentidne Section 1.4.2. The
model is trained 02200 entries, and the experiments are done by running the sys-

tem on100 of the remaining references with labels removed.

Corpus Recall(%) Precision(%) F-measure(%) Error-rate (%)
BIB 72.02 81.78 76.59 16.05
TCC 65.29 73.35 69.02 23.96

Table 4.6: Average result for 100 bibliographic entries &nCC issues.

Table 4.6 shows the average value of recall, precision, &some and error-rate
for 100 bibliographic entries. It also shows the average result GiC& issues
for comparison. Overall, the system was successfully agmin the new text. The

figure indicates that the performanc&is7% better in F-measure than that of TCC.

Figure 4.6 shows the proportion of correctly marked toketesk gray) and errors
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Figure 4.6: Detailed result for 100 bibliographic entriesld TCC issues.

(light gray) over the corresponding numbers of tokens inh#wed mark-up for each

class and overall.

In the figure, the combined values of correct and error folighbr, date and source

class end up more than0%. This is because the system marks up more tokens than

that in the corresponding classes in the hand mark-up.

The figure shows that not a single token is marked up as an iaegaom whether

correct or not. In fact, there adeorganizations in the test dataof them are marked

up incorrectly in the hand mark-up and one is left unmarkeiduie 4.7 gives an

example, which shows the contrast between the output ofytbters and what in

the hand mark-up. The other two have the exactly same preblenty labels are

different, and it is still acceptable.

Tokens in date class have the best identification result.eMman90% of date are

correctly marked up, and among the mistakes, some of thelreagause the system

marks up date like
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(@)

Bodnarchuk, R., and Bunt, R. A synthetic workload modeld distributed

systems file server. In Proc. 1991 ACM SIGMETRICS Conf. on Mea

surement and Modeling of Computer Systems ACM SIGMETRICSore
mance Evaluation Review (San Diego, California, USA, May 24 1991),
<b>Univ. of Saskatchewar/b> p. 50. Published as Proc. 1991 AC
SIGMETRICS Conf. on Measurement and Modeling of Computest&ys
ACM SIGMETRICS Performance Evaluation Review, volume l18nber 1.

M

(b)

Bodnarchuk, R., and Bunt, R. A synthetic workload modeld distributed
systems file server. In Proc. 1991 ACM SIGMETRICS Conf. on M
surement and Modeling of Computer Systems ACM SIGMETRICSore
mance Evaluation Review (San Diego, California, USA, May 24 1991),
<o>Univ. of Saskatchewan/o>, p. 50. Published as Proc. 1991 AC
SIGMETRICS Conf. on Measurement and Modeling of Computest&ys
ACM SIGMETRICS Performance Evaluation Review, volume l18mnber 1.

ea

M

Figure 4.7: Example of marking error. (a) Hand mark-up. (3t8m mark-up.

as

<d>May 21- 24 199%/d>

<d>May</d> 21- 24<d>1991</d>.

However, it is understandable regardless of the hand markSome of the errors

are false positive.

Many tokens in the page class are missed out. Out of the totaber of72, almost

all of those that have only one number like “p. 25” in the refezes are left un-

marked. This is assumed to be due to ambiguities, becauselarsiumber format

occurs many times in plain text, such as the number of volumiesaries.

The system marks up only7 locations out o40, and9 of them are errors. It is

interesting thag of the errors are false positive, such as

<d>San Mateo, CA/d>
<d>Amsterdamx/d>

<d>Atlantic City</d>
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It is noticeable that about two third of names are correcgntified. It is the struc-
ture of the text that improves the performance on name clalgh is compara-

tively harder than some other classes.

Compare Figure 4.6 to Figure 4.4 (Section 4.4), there arectagses in common:
date, location, name, organization and source. It is ols/flat the system performs
very poor on both location and organization, especiallydkter. One of the reasons
for this is the lower number of words in these classes in thmimg data. And

another one is ambiguity. For example, a place may be nanebedimous person,

and an organization may be named after its owner or location.

On comparison, the system works well for tokens in date ckgis about92%
and73% correct tokens identified for text in bibliographies and T@&wsletters

respectively. Undeniably, the format of date in the texttabates a lot to the result.

The result for people’s name is also good on both TCC and BB &though not
the best among all the classes. It has been discussed (ior52@.2) that names
of people are not easy to identify correctly. This resultitades that the system

performs well on this class.

As we have not got any proper corpora in languages other timghidh, no ex-
periments were done to evaluate the language-independétmeever, since the
system does not comprise any language-dependent compgptiee should be no

problem once a suitable corpus is available.
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Chapter 5

Conclusion

This thesis makes two claims: that hidden Markov models essuiccessfully used
to develop a domain- and language-independent token fabation system, and
that PPM models can be used in conjunction with HMMs to previt probability

for every unknown word in this application. The techniquedsnain independent
in that it uses no domain or language-specific techniquégydad results cannot of
course be guaranteed in any domain. The correspondingthigsrand evaluations
have been described in Chapter 3 and Chapter 4 respectBation 5.1 highlights
what has been done in the thesis. In Section 5.2, we briefgugsseach of the
achievements. As with any research thesis, this is ceytamil the end of the study.
There are always problems that remain unsolved or just atidee end. Section 5.3

presents some directions for future work.

5.1 Key findings

e PPM models can be used to provide probability for an unknowrdvior a

HMM-based token identification system.

e PPM for unknown words performs better than the unified prdigb
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The system can be successfully applied to a different cowgtlsout any

changes in the code. This makes the system more generalized.

The amount of training data affects the performance of tlséesy, increasing

the amount leads to a better result.

Shortcomings in the corpus degrade the performance of ttersy

Using PPM'’s escape Method A as the smoothing method givdssftaden-

tification result compared to other methods.

5.2 Discussion

The token identification system developed in this thesistivasmotivations. One
is to bridge HMMs and PPM models in order to handle unknowrdsan the input
text. It is based on the success of HMMs and PPM models inquie\applications
(e.g. Bikel et al., 1999; Seymore et al., 1999; Bray, 1999té&fiet al., 1999a).

Starting from this motivation, we first showed that the idé&dmdging HMM and
PPM is feasible (Section 4.2). The system gets an F-measui®.@% when
applied on the TCC corpus. It is not as good as would be expdoden a sys-
tem which includes language-dependent components. Hoywrwesystem is more

generalized.

As we know, there is always a trade-off between generalitiyaaaturacy. The more
specific the application, the higher accuracy a system gesvi The undertaken
research emphasizes retargetability and generalityetb, resulting in a lower
accuracy. An obvious point where the system is degradec itk of a language-
dependent component. For example, the model of IdentiFifRRikel et al., 1999)

contains a word-feature component, such as the format ofreeria number, capi-
talization, initial of a person’s name and the abbreviatiba source or organization.

This can be a very small set. However, the model could be ivgatby these fea-
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tures. For instance, the feature of a number helps the sytstetatect whether it
belongs to date, monetary amount, phone/fax number or.otheerall, this sys-
tem could be efficient on applications which prefer geneagion. For applications

which ask for higher accuracy, it is not the best choice.

The performance of the identification system with PPM fornamkn words is supe-
rior to that with a unified probability (Section 4.5). The uéiss improved by about
4% in terms of F-measure. This is what we expected because tienRitlels are

character level, therefore, the information provided igenmontext related.

The system has been tested on another corpus, bibliograppys; without any
changes in the code. It has been found that structure in hén@roves the per-
formance of the system. A bibliography entry is so-callethisstructured. For
example, it always starts with the author(s), followed bytla,tand many sources
start with the preposition “In”. On average, the value of Easure i§.57% higher
than that of TCC corpus.

Five classes are in common in TCC and BIB corpus. The systaforpes the
best on date class, with2% and73% correct tokens identified in the two corpora.
The performance on name class is also good, W&¥ and76% correct tokens
identified. On the other hand, it is very poor on organizatotihh an F-measure of

20% for TCC, while none of the organizations is identified for BIB

We investigated the effect of the quantity of the trainingadéSection 4.6). Al-
though more data leads to better identificatidhissues of TCC newsletters achieved
an acceptable result. Addiri% more training data, making #6 issues, only re-

sulted in an increase af37% in terms of F-measure.

The performance of the system is greatly affected by theityuzfithe corpus. The
evaluation using TCC corpus has been done two times becamseabvious errors
in the corpus are found after the first evaluation. Thesaeafiect the performance
of the system. Therefore, the corpus was corrected manaaidysame experiment

was run again. As presented in Section 4.4, recall, pratiaimd F-measure are
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improved by6.72%, 11.64% and8.98%, respectively, by using the correct version

of the corpus. And error-rate is improved b.65%.

Several smoothing methods have been tested (Section A& )hést performance of
the system can be obtained by choosing Method A (Section @8)of the escape
methods of PPM model, as the smoothing method for the modele Wiethod D

can be used alternatively. Method B and Method C are not rezemded, especially
the former because it not only marks less tokens, but therenare errors among

the tokens.

5.3 Future work

We have contributed to the research area of text mining bgldeing a domain-
and language-independent token identification systemjpgral novel method for
unknown words, combining two well-known language modelswever, there is
still much work on the path that needs to be done to conseligad extend the work

in this thesis.

First of all, we would like to have a large and correct corpysahich the perfor-
mance of the system can be evaluated. As the corpus is mapkethnually, even
if negligence and mistakes can be eliminated, differencgsdgment between in-
dividuals would still exist. However, a larger amount ofalatakes the result more
stable. We would also like to have more corpora in a wider eaofglomains, and in
different languages, to further test the domain- and laggtiadependence of the

system.

As the system is word-based, the definition of a word playsngmortant role in
the performance of the system. In the thesis, space and ddiaak slash in email
addresses and URLs are used as word delimiters. Other sgngoch as dash and
apostrophe, are part of a word. The system will be more abptathese non-

alphabetic symbols could be handled flexibly.
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Unknown word handling is an important part for any identifica system, espe-
cially when training data is insufficient. In this thesis, have used PPM models
to provide the probability for unknown words. The largestipability predicted by
a particular PPM model is used. In this way, the PPM model dataffect the
state which the HMM is currently in. An obvious extension tbe work in the
thesis is that when the system encounters an unknown waed;1khM is forced
to the corresponding state that represents the word bestdwdmg the largest

probability.

Another extension which we believe has potential is to iaseethe order of the
HMM. Second-order HMMs have been successfully used forqlaspeech tag-
ging (Thede and Harper, 1999). How it works for token idecdifion deserves
further exploration. However, it is assumed that more adednor complicated
smoothing methods will be necessary because the higherwitleertainly cause

more serious zero-frequency problems.
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