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Abstract

A database of in-car speech for the Italian language
was collected under the European projects SpeechDatCar and
VODIS II. It consists of 600 sessions recorded under various
noise and driving conditions and includes close-talk signals and
far microphone signals for hands-free interaction.

This paper describes some recognition experiments on two
tasks conceived on a portion of this database: connected digit
sequences and isolated command words. Recognition rate
achieved by means of HMMs trained on real in-car speech is
compared with that accomplished by a speech contamination
approach, which aims at simulating in-car data starting from a
clean speech corpus.

Recognition performance is also analyzed as a function of
the different noise conditions and of the consequent SNR at the
far microphones. Finally, the effect of HMM adaptation is in-
vestigated in order to tune the recognizer on the conditionsof
the various sessions.

1. Introduction
Reliable hands-free speech interaction inside the car is still a
challenging scenario. An essential requirement is robustness of
speech recognition against the various kinds of noise typical of
the car environment.

Several new applications in this context are envisaged in
the next future, allowing the driver to control by voice devices
such as RDS-tuner, CD and cassette player, air conditioner,etc.
Also more complex interactions like mobile telephone dialing
and access to a navigation system or to remote information ser-
vices [1] will be practicable in a full hands-free modality,with
increased flexibility and safety for the driver who can concen-
trate his attention on the road.

Security and convenience of hands-free interaction require
that the microphone must not encumber the user and therefore
can not be put close to his/her mouth. As a consequence the in-
put signal is characterized by a low SNR, being affected by sev-
eral noise components [2]. Engine and tyres contribute mainly
low frequency noise, while aerodynamic turbulence, predomi-
nant at high speed, has a broader spectral content [3]. Moreover,
other much more unpredictable noise events (road bumps, rain,
traffic noise...) characterize the car environment.

As a result, car speech recognition is a notably hard task,
due to the resulting disturbance, mainly additive, generally non-
stationary and almost incoherent, together with the low SNR,
the car-enclosure acoustic effect and the Lombard speech ef-
fect. In this context having large corpora of data acquired on

the field and representative of the various situations is a funda-
mental starting point for the development and assessment ofan
applicative technology.

The target of the European projects SpeechDatCar and
VODIS II1 was the collection of speech databases in the car en-
vironment, with homogeneous characteristics in 9 different lan-
guages2, to develop robust multi-lingual applications [4]. Under
these projects we collected an Italian database consistingof 300
speakers (� 125 items� 2 driving conditions) which can be
used to investigate many applicative aspects: from the study of
a speech recognizer under different environmental conditions,
to the influence of hands-free interaction with different micro-
phone types and positions, to the impact of a GSM channel, to
scenarios based on Distributed Speech Recognition (DSR), etc.

This paper addresses some of these aspects, presenting re-
sults of speech recognition on two standard tasks: connected
digits and isolated command words. Performance obtained with
HMMs trained on real data is compared with that achievable
when training HMMs on data artificially produced by contami-
nating a clean speech corpus [5]. The effect of batch adaptation
is also examined.

In the following we describe the speech corpus collected
in the car environment, the hands-free speech recognition sys-
tem under development and the early stage of experiments per-
formed on a portion of the whole database.

2. The speech corpus
The SpeechDatCar/VODIS II Italian corpus consists of 600 ses-
sions (300 speakers� 2 sessions) recorded under one of the
following conditions: car stopped with motor running (stop),
driving in the town-traffic (town), driving at low speed on rough
road (low), driving at high speed on good road (high). The
recordings are made either with or without additional environ-
mental noise due to air-conditioning, open windows, etc (noisy)
and with or without the car radio on (radio). Table 1 reports on
the distribution of the acquired sessions according to the noise
conditions as well as on the distribution of the 300 speakersac-
cording to their geographic origin and their age.

A session consists of 125 items, including isolated words,
spelled words, connected digit sequences, phonetically rich ut-
terances, continuous speech, etc. Recordings were accom-

1The collection of the Italian database under SpeechDatCar and
Vodis II projects was partially funded by the Commission of the EC,
Telematics Applications Programme, Language Engineering, Contracts
LE4-8334 and LE4-8336.

2For more details on the whole database design and collectionsee
the website http://www.speechdat.org/SP-CAR/



plished by using a PC equipped with a set of preamplifiers
and a multichannel acquisition board. The inputs included a
SHURE SM10A close-talk and three far electret condenser mi-
crophones, namely: a AKG Q400Mk3T placed near the A-pillar
(Mic1), a Peiker ME15/V520-1 placed in front of the driver be-
hind the sunvisor (Mic2), another AKG microphone placed over
the midconsole near the rear-view mirror (Mic3).Condition stop 62(600sessions) town 85town+ noisy 101low 103low + noisy 100high 89high+ radio 60Region north� east 141(300speakers) north� west 52enter 50south 57Age 18� 30 134(300speakers) 31� 45 11746� 60 46> 60 3
Table 1: Characteristics of the database: distribution of the
sessions according to the noise conditions and partitioning of
the speakers according to geographic origin and age.

For all of these input channels the recordings were real-
ized with 16 kHz sampling frequency and 16 bit accuracy. At
the same time an additional AKG far-microphone, connected
to a mobile telephone equipment, allowed remote recording (at
8 kHz/8bit A-law compression) of speech signals transmitted
through the GSM telephone network.

The acquired data were then annotated channel by chan-
nel (close-talk, three far microphones, GSM channel). Each
item was documented by means of specific labels to detail what
the speaker really uttered and to account for the various back-
ground noise as well as for the acoustic events occurred in the
recording. This operation was carried out by means of a specific
software tool (JavaSgram [6]), conceived for the annotation of
multichannel corpora. Thanks to this software and to the ap-
plication of a segmentation tool, utterance boundaries were de-
rived automatically and then checked manually. Figure 1 shows
an example of noisy signals acquired from a close-talk and a far
microphone.

2.1. Recognition tasks

As annotation and validation were still in progress, for theex-
periments described in the following only 400 out of 600 ses-
sion were used. In particular a set of 100 speakers (60 males and
40 females) was considered as training set to produce phone
HMMs, based on a total of 2410 phonetically rich utterances.
Other 100 speakers (59 males, 41 females) were designated as
test set. Thanks to the variety of speech material available, sev-
eral recognition tasks may be conceived: in this work two of
them are considered, namely connected digit and isolated com-
mand recognition. The first one concerns connected digit se-
quences of unknown length (cdigits) and consists of 1091 se-
quences, for a total of 9946 digits. The second task (Vodis81)
involves utterances from a vocabulary of 81 isolated commands
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Figure 1:Example of an utterance acquired in the noisy car en-
vironment with the close-talk (a) and with a far-talk microphone
(b), respectively.

(specifically designed under VODIS project), aimed at the con-
trol of in-car devices, and consists of 6832 utterances.

2.2. Signal to noise ratio

Variable noise level, driving conditions and speaker characteris-
tics induce heterogeneous Signal to Noise Ratios (SNRs) in the
utterances acquired by the microphones. Table 2 reports on the
average SNRs computed on the training set and on the test sets
acquired from the close-talk and the three far microphones.

Here SNR is calculated as10 log10((Ps � Pn)=Pn), wherePs andPn represent the average power of the speech segment
and the average power of the preceding and following back-
ground noise segments, respectively. In the following thisas-
pect will be better detailed with regard to SNR distribution
among different utterances.

ClTalk Mic1 Mic2 Mic3
Training 25:9 8:5 9:3 10:0
test cdigits 25:9 8:2 9:2 9:9
test Vodis81 25:7 8:4 8:9 9:7

Table 2: Average SNR (in dB) measured on training and test
sets.

3. System description
The in-car hands-free recognition system being developed at
ITC-irst consists of the acquisition system used for the database
collection, a feature extraction module and a Hidden Markov
Model (HMM)-based recognizer.

3.1. Feature extraction

The feature extraction module processes the input signal pre-
emphasizing it and blocking it into frames of 20 ms duration
(with 50% frame overlapping). For each frame, 8 Mel scaled
Cepstral Coefficients (MCCs) and the log-energy are extracted.
MCCs are normalized by subtracting the MCC means computed
on the whole utterance. The log-energy is also normalized with
respect to the maximum value in the utterance. The resulting
MCCs and the normalized log-energy, together with their first



and second order time derivatives, are arranged into a single
observation vector of 27 components.

Note that here end-point detection is not considered, as man-
ually segmented speech items were used both in training and in
test. Nevertheless this is a critical issue for the development of
real application systems, and is being investigated at our labs.

3.2. Recognition System

The HMM module is based on a set of 34 phone-like speech
units. Each acoustic-phonetic unit is modeled with left-to-right
Continuous Density HMMs with output probability distribu-
tions represented by means of mixtures having 16 Gaussian
components with diagonal covariance matrices.

3.2.1. HMM training

HMM training was accomplished through the standard Baum-
Welch training procedure and was carried out exploiting the
2410 phonetically rich sentences of the training set.

For comparison purposes, another set of HMMs was trained
on data artificially derived [7] from a clean corpus [8] to sim-
ulate the car environment. The effect of additive noise was ac-
counted for by summing clean speech data and real noise se-
quences recorded inside a car (different from that of database
collection), with properly scaled amplitudes to reproducevari-
ous SNRs in the range0� 12 dB [5].

3.2.2. HMM adaptation

HMM adaptation is used to reduce the mismatch in acoustic-
phonetic modeling between training and testing conditions.
While using HMMs trained on contaminated speech there is an
actual mismatch with the test, in the case of training on realdata
HMM adaptation [7, 9] can be used to comply with the speaker
characteristics and with the specific noise condition.

Maximum Likelihood Linear Regression (MLLR) approach
[10] was adopted for batch adaptation of the initial set of Gaus-
sian mixtures to the speaker and to the actual operating acoustic
conditions. Each adaptation data set consisted in four phoneti-
cally rich sentences which were uttered in the same session of
test data collection. Due to the small amount of adaptation data,
only means were adapted using a global transformation matrix.

4. Experiments
A first recognition experiment investigates the performance ob-
tained when using three different sets of HMMs, namely: mod-
els trained under matched conditions (Matched), models trained
on contaminated speech (Contam) as described in Section 3.2.1,
and models trained on clean speech (Clean) as a reference case.
The resulting Word Recognition Rates (WRRs) are reported in
Table 3.

A relevant improvement is observed onClTalk case when
using HMMs trained underMatched conditions: this fact may
be related to the very different interaction style as well asto the
background noise and to the acquisition systems characterizing
the clean and the in-car databases. Table 3 shows also a pro-
gressive relevant improvement obtained with far microphones,
firstly using HMMs trained on contaminated speech and finally
using HMMs trained on real data.

Recognition performance are then investigated as a function
of the SNR at the input, with no matter about which environ-
mental condition corresponded to each utterance. Both testsets

ClTalk Mic1 Mic2 Mic3
Matched 99:1 92:6 95:3 94:2

cdigits Contam � 69:6 80:7 73:6
Clean 95:5 32:8 30:5 38:1
Matched 99:1 95:8 97:5 96:3

Vodis81 Contam � 83:2 91:2 85:3
Clean 95:7 27:7 31:9 31:3

Table 3: WRRs (in %) obtained on the two tasks cdigits and
Vodis81, when using Matched, Contamand CleanHMMs.

were split into three subsets, according to the SNR estimated
for each utterance (SNR < 5dB; 5dB � SNR � 15dB andSNR > 15dB). Only Matched HMMs are used here and only
the channelMic2 is considered, as it provides the best results (it
was verified that the better performance ofMic2 is mainly due
to its position and not to its type). Table 4 reports on the WRRs
corresponding to the three SNR-based subsets.< 5dB 5dB � 15dB > 15dB

cdigits 90:9 96:2 98:4
Vodis81 96:8 97:3 98:7

Table 4:WRRs (in %) obtained with MatchedHMMs on cdigits
and Vodis81tasks, with Mic2 and three SNR-based subsets.

It can be noted that performance onVodis81 task is less
sensitive to SNR than in the case ofcdigits task. The reason
is that digit sequences of unknown length are more prone to
insertions of extra digits when the noise level is high, while
this cannot happen with commands, because of the grammar
constraint to recognize a single word for each utterance.
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Figure 2: Distributions of the utterances of Vodis81 task as a
function of the SNR quantized at 1 dB step (channel Mic2).

However, there is not a univocal relationship between the
recording conditions listed in Section 2 and the correspondingly
obtained SNR in the recorded signals. This is due to the large
variability of driving situations and loudness levels of the speak-
ers. Hence a rough partition has been determined into three lev-
els of car speed: car stopped with motor running (Stop), low
speed (Low) and high speed (High). It was found that a finer



partition according to all the possible noise recording conditions
is not worth for a deeper insight. Figure 2 depicts the distribu-
tions of the items ofVodis81 task as a function of the SNR. The
four curves correspond to the overall test set and to the three
speed levelsStop, Low andHigh respectively.

Table 5 reports WRRs withMatched HMMs when the test
sets are split according to the three speed-based conditions dur-
ing data collection. Again a lower immunity to noise (in partic-
ular at high speed) can be observed incdigits task.

Stop Low High Total
Matched 96:2 95:8 93:1 95:3

cdigits Contam 86:4 82:5 70:0 80:7
Matched 97:6 97:6 97:0 97:5

Vodis81 Contam 92:3 92:5 85:7 91:2
Table 5: WRRs (in %) obtained with Matchedand Contam
HMMs on cdigits and Vodis81 tasks, with Mic2 and three
speed-based subsets. The total WRRs are also reported.

A final experiment was carried out to assess the effect of
batch MLLR adaptation of HMMs to each acquisition session.
Signals of each session included in the test set were recognized
by using models obtained after adaptation on four phonetically
rich utterances acquired from the same speaker and under the
same driving conditions. Table 6 reports on the consequent
WRRs.

Stop Low High Total
Matched 96:9 96:6 94:8 96:3

cdigits Contam 95:5 93:0 87:0 92:2
Matched 98:7 97:7 97:5 97:8

Vodis81 Contam 98:6 97:2 95:4 97:0
Table 6:WRRs (in %) obtained with HMM adaptation starting
from either Matchedor Contammodels.

Results show the benefits of adaptation (compare with Ta-
ble 5), particularly evident in some experiments usingContam
HMMs, even if only four utterances were used. The poten-
tial for further improvement, when using more utterances, more
iterations and different adaptation techniques may be investi-
gated. However, in a car application a more practical solution
is envisaged by adopting an on-line adaptation scheme, in order
to adjust the system to rapidly changing conditions.

5. Conclusions
This work has presented some baseline results for what con-
cerns the use of an in-car hands-free speech recognizer for the
Italian language.

As expected results showed an improvement with re-
spect to our previous baseline system trained on contaminated
speech, thanks to the use of a large portion of the SpeechDat-
Car/VODIS II database. As a result, the most significant experi-
ments provided 96.3% and 97.8% WRR, in connected digit and
isolated command recognition tasks, respectively.

Many issues still deserve further investigation, among which:
the application of a reliable end-point detector, currently under
development; the use of online adaptation techniques to further

reduce mismatch between training and actual test conditions;
improvement in robustness for lower SNRs, for instance us-
ing new acoustic features, compensation techniques and a more
complex acoustic modeling; the use of special microphones [11]
or microphone arrays to further enhance input signal quality.

The next work will also address recognition tasks as spelled
words and use of large vocabularies, with the final aim of in-
tegrating the resulting technology in an advanced system per-
forming driver-machine dialogue interaction. Most of these ac-
tivities will be conducted under the European project VICO
(Virtual Intelligent COdriver - Information Society Technolo-
gies 2000-25426) started in March 2001.
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