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Abstract

The Jalapefio Dynamic Optimizing Compiler is a key com-
ponent of the Jalapefio Virtual Machine, a new Java' Vir-
tual Machine (JVM) designed to support efficient and scal-
able execution of Java applications on SMP server machines.
This paper describes the design of the Jalapefio Optimizing
Compiler, and the implementation results that we have ob-
tained thus far. To the best of our knowledge, this is the first
dynamic optimizing compiler for Java that is being used in a

JVM with a compile-only approach to program execution.

1 Introduction

This paper describes the Jalapefio Optimizing Compiler, a
key component of the Jalapefio Virtual Machine, a new JVM
being built at IBM Research. A distinguishing feature of
the Jalapefio JVM is that it takes a compile-only approach
to program execution. Instead of providing both an inter-
preter and a JIT compiler as in other JVMs, bytecodes are
always translated to machine code before they are executed.
Jalapefio has three different compilers to provide such trans-
lation: an optimizing compiler for computationally intensive
methods (which is the subject of this paper), a “quick”
compiler that performs a low level of code optimization (pri-
marily register allocation), and a “baseline” compiler that
mimics the stack machine of the JVM specification docu-
ment [29]. The compile-only approach makes it easier to
mix execution of unoptimized and optimized compiled meth-
ods in the Jalapefio JVM, compared to mixing interpreted

execution and JIT-compiled execution as in other JVMs.

*To appear in the 1999 ACM Java Grande Conference, San
Francisco, California, June 12-14, 1999.

!Trademark or registered trademark of Sun Microsystems, Inc.

A primary goal of the Jalapefio JVM is to deliver high
performance and scalability of Java applications on SMP
server machines. Some previous high performance imple-
mentations of Java (e.g., [9, 25, 22, 18]) have relied on static
compilation, and have therefore disallowed certain features
such as dynamic class loading. In contrast, the Jalapefio
JVM supports all features of Java [29], and the Jalapefio
Optimizing Compiler is a fully integrated dynamic compiler?
in the Jalapefio JVM.

The Jalapefio project was initiated in December 1997 at
the IBM T. J. Watson Research Center and is still work-in-
progress. This paper describes the design of the Jalapefio
Optimizing Compiler and the implementation results that
we have obtained thus far. To the best of our knowledge,
this 1s the first dynamic optimizing compiler for Java that
is being used in a JVM with a compile-only approach to
program execution.

The rest of the paper is organized as follows. Section 2
provides the context for this work by describing key features
of the Jalapefio Virtual Machine. Section 3 outlines the high-
level structure of the Jalapefio Optimizing Compiler and how
it is invoked within the Jalapefio Virtual Machine. Section 4
describes the intermediate representation (IR) used in the
Jalapefio Optimizing Compiler. Sections 5 and 6 describe
the “front-end” and “back-end” respectively of the Jalapefio
Optimizing Compiler; the front-end describes a (mostly)
single-pass translation of Java bytecodes to an optimized
high-level IR (HIR), and the back-end describes how HIR is
lowered and translated into optimized machine code accom-
panied by exception tables and GC stack-maps. Section 7
summarizes our framework for efficient flow-insensitive op-
timizations for single-assignment variables. Section 8 de-
scribes our framework for inlining method calls. Section 9

presents performance results obtained from the current im-

2Though dynamic compilation is the default mode for the Jalapefio
Optimizing Compiler, the same infrastructure can be used to support

a hybrid of static and dynamic compilation, as discussed in Section 2.



plementation of the Jalapefio Optimizing Compiler (as of
March 1999). Section 10 describes two interprocedural op-
timizations that are in progress as extensions to the current
implementation — interprocedural optimization of register
saves and restores, and interprocedural escape analysis. Fi-
nally, Section 11 discusses related work and Section 12 con-

tains our conclusions.

2 The Jalapeiio Virtual Machine

The subsystems of the Jalapefio JVM include a dynamic
class loader, dynamic linker, object allocator, garbage col-
lector, thread scheduler, profiler (on-line measurements sys-
tem), three dynamic compilers, and support for other run-
time features, such as exception handling and type testing.
Among the three dynamic compilers, the baseline compiler
was implemented first. It is used to validate the other com-
pilers, for debugging, and as the default compiler until the
quick compiler is fully functional. The class loader sup-
ports dynamic linking via backpatching for classes that were
loaded after compilation.

Memory management in the Jalapefio JVM consists of
an object allocator and a garbage collector. The Jalapefio
With a

view to future experimentation to determine which garbage

JVM supports type-accurate garbage collection.

collection algorithm will be best suited for SMP execution of
multithreaded Java programs, the Jalapefio JVM contains a
variety of type-accurate garbage collectors (generational and
non-generational, copying and non-copying) [24].

In the Jalapefio JVM, each object has a two-word header:
a pointer to a type information block, and a status word for
hashing, locking, and garbage collection. Since threads in
Java are objects, the Jalapefio JVM creates a distinct object
for each Java thread. One of the fields of this thread object
holds a reference to the thread’s stack, which contains a
contiguous sequence of variable-size stack frames, one per
method invocation. These stack frames are chained together
by “dynamic links”.

Another distinguishing feature of the Jalapefio JVM is
that all its subsystems (including the compilers, run-time
routines, and garbage collector) are implemented in Java and
run alongside the Java application. Although it is written
in Java, the Jalapefio JVM is self-bootstrapping; 1.e., it does
not need to run on top of another JVM. One of the many
advantages of a pure Java implementation is that we can

dynamically self-optimize the Jalapefio JVM.
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Figure 1: Context for Jalapefio Optimizing Compiler

3 Structure of the Jalapefio Optimizing Compiler

The Jalapefio Optimizing Compiler is adaptive and dynamic.
It is invoked on an automatically selected set of methods
while an application is running. The goal of the Jalapefio
Optimizing Compiler is to generate the best possible code
for the selected methods for a given compile-time budget.
In addition, its optimizations must deliver significant per-
formance improvements while correctly preserving Java se-
mantics with respect to exceptions, garbage collection, and
threads. Reducing the cost of synchronization and other
thread primitives is especially important for achieving scal-
able performance on SMP servers. Finally, it should be
possible to retarget the Jalapefio Optimizing Compiler to
a variety of hardware platforms. Building a dynamic op-
timizing compiler that achieves all these goals i1s a major
challenge.

Figure 1 shows the overall design for how the Jalapefio
Optimizing Compiler is used in the Jalapefio Virtual Ma-
chine. The Optimizing Compiler is the key component of
Jalapefio’s Adaptive Optimization System, which also in-
cludes an On-Line Measurements (OLM) subsystem and a
Controller subsystem. (The OLM and Controller subsys-
tems are currently under development.) The OLM system
1s designed to monitor the performance of individual meth-
ods in the application by using software sampling and pro-
filing techniques combined with a collection of hardware
performance monitor information, and to maintain context-
sensitive profile information for method calls in a Calling
Context Graph (CCG) similar to the Calling Context Tree
introduced in [3]. The Controller subsystem will be invoked
when the OLM subsystem detects that a certain performance
threshold is reached. The controller uses the CCG and its

associated profiling information to build an “optimization
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piler for compiling a single method

plan” that describes which methods the optimizing compiler
should compile and with what optimization levels. The OLM
subsystem will continue monitoring individual methods, in-
cluding those already optimized by the optimizing compiler,
to trigger further optimization passes as needed.

The optimizing compiler can also work as a static com-

piler by saving the generated binary code in a file for later

execution. In fact, as part of Jalapefio’s bootstrapping pro-
cedure, the optimizing compiler currently compiles selected
methods from the Jalapefio JVM, and stores the resulting
binary code in a “boot image”. Similarly, the optimizing
compiler could also compile selected methods from a user
application and store them in a custom boot image tailored
to the application. When doing so, the optimizing compiler
would essentially function as a static compiler (as shown in
Figure 2).

When the Jalapefio Optimizing Compiler functions as
a pure dynamic compiler, it must generate the best pos-
sible code for a given compile-time budget. The compile-
time budget is less important when the Jalapefio Optimiz-
ing Compiler functions as a static compiler or as a static
bytecode-to-bytecode optimizer.?

Figure 3 shows the internal structure of the Jalapefio
Optimizing Compiler when compiling a single method. At
the highest level, the Jalapefio Optimizing Compiler consists
of an optimizer front-end (described in Section 5) and an

optimizer back-end (described in Section 6).

4 Intermediate Representation

This section outlines some essential features of the register-
based intermediate representation (IR) used by the Jalapefio
Optimizing Compiler. Compared to a stack-based IR, a
register-based IR better matches the load-store architectures
that we target. Thus, it enables more effective machine-
specific optimizations, as well as greater flexibility in code
motion and code transformation.

An instruction in our IR is an n-tuple (a generalization
of quadruples and three-address code [1]) consisting of an
operator and some number of operands. The most common
type of operand is the register operand, which represents
a symbolic register. There are also operands to represent
constants, branch targets, method signatures, types, etc. A
key difference between the Jalapefio HIR and Java byte-
codes is the addition of separate operators to implement
explicit checks for several common run-time exceptions, e.g.,
NULL_CHECK and BOUNDS_CHECK operators to test for null
pointer dereferences and out-of-bounds array accesses re-
spectively. These additional operators facilitate optimiza-
tion.

Instructions are grouped into basic blocks, delimited in
the instruction stream by LABEL and END_BBLOCK instruc-
tions. In our IR, method calls and potential trap sites do

not end basic blocks. The basic blocks and the control

®Another project at IBM is using the front-end of the Jalapefio
Optimizing Compiler as the foundation for building a static bytecode

optimizer.



flow graph (CFG) of the procedure are constructed as a
byproduct of BC2IR’s generating the HIR instruction stream
(see Section 5.1). The IR also includes space for the caching
of optional auxiliary information, such as reaching defini-
tion sets, a data dependence graph, or an encoding of the

procedure’s loop nesting structure.

5 Jalapefio Optimizing Compiler Front-end

The front-end contains two parts: (1) the BC2IR algorithm
that translates bytecodes to HIR and performs on-the-fly
optimizations during the translation, and (2) additional op-
timizations performed on the HIR after BC2IR. This section
contains a description of the BC2IR algorithm with bytecode
to HIR translation outlined in Section 5.1, and on-the-fly
optimizations summarized in Section 5.2. Examples of opti-
mizations that are performed on the HIR can be found later

in Section 7.

5.1 The BC2IR Algorithm

Figure 4 shows an overview of the BC2IR algorithm. The
algorithm contains two parts: (1) the Main Loop that se-
lects a basic block (BB) from a worklist, called the basic
block set (BBSet) and (2) the Abstract Interpretation Loop
that interprets bytecodes within a BB. The algorithm main-
tains a symbolic state during the translation process, which
corresponds to abstract values of stack operands and local
The nstial state of a BB is the symbolic state
of the machine at the start of the BB. Initially, certain
candidate BBs that can be put in the BBSet are identified
(for example, the BB beginning at bytecode 0 with an empty

variables.?

initial stack or exception handler blocks).

After the initial BBSet is identified, BC2IR enters the
main loop, and selects a BB such that its initial state is
fully known and no HIR has been generated for it. For each
BB, the bytecode in it is abstractly interpreted, the current
state 1s updated, and new BBs may be generated. The BBs
thus generated will be added to the BBSet. During this
phase the compiler constructs the CFG and performs other
analyses and optimizations. The abstract interpretation pro-
cess essentially interprets the bytecodes based on the Java
bytecode specification defined in [29].

Bytecodes that pass Java verification have an important
property that we exploit: “When there are two execution
paths into the same point, they must arrive there with ex-
actly the same type state” [4]. At a control flow join, the
values of stack operands may differ on different incoming

edges, but the types of these operands must match. An

*Abstract values of local variables are needed during on-the-fly

optimizations.
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Figure 4: Overview of BC2IR algorithm

class t1 {
static float foo(A a, B b, float cl, float c3)
{
float c2 = c1/c3;
return(cl*a.fl + c2*a.f2 + c3*b.f1);

Figure 5: An example Java program

element-wise meet operation is used on the stack operands
to update the symbolic state [38]. When a backward branch
whose target is the middle of an already-generated basic
block is encountered, the basic block is split at that point. If
the stack is not empty at the start of the split BB, the basic
block must be regenerated because the initial states may be
incorrect. The initial state of a BB may also be incorrect
due to as-of-yet-unseen control flow joins. To minimize the
number of a times HIR is generated for a BB a simple greedy
algorithm is used for selecting BBs in the main loop. When
selecting a BB to generate the HIR, the BB with the lowest
starting bytecode index is chosen. This simple heuristic
relies on the fact that, except for loops, all control-flow
constructs are generated in topological order, and that the
control flow graph is reducible. Surprisingly, for programs
compiled with current Java compilers, the greedy algorithm

can always find the optimal ordering in practice.®

5The optimal order for basic block generation that minimizes
number of regeneration is a topological order (ignoring the back
edges). However, because BC2IR computes the control flow graph

in the same pass, it cannot compute the optimal order a priori.



Example: Figure 5 shows an example Java source pro-
gram of class t1, and Figure 6 shows the HIR for method
foo of the example. The number on the first column of each
HIR instruction is the index of the bytecode from which
the instruction is generated. Before compiling class t1, we
compiled and loaded class B, but not class A. As a result,
the HIR instructions for accessing fields of class A, bytecode
indices 7 and 14 in Figure 6, are getfield unresolved, while
the HIR instruction accessing a field of class B, bytecode
index 21, is a regular getfield instruction.

Also notice that there is only one null_check instruction
that covers both getfieldunresolved instructions; this is

a result of BC2IR’s on-the-fly optimizations.

0 LABELO BO@O

2 float_div 14(float) = 12(float), 13(float)
7 null_check 10(A, NonNull)

7 getfield_unresolved t5(float) = 10(A), < A.f1>

10 float_mul t6(float) = 12(float), t5(float)
14 getfield_unresolved t7(float) 10(A, NonNull), < A.f2>
17 float_mul t8(float) = 14(float), t7(float)
18 float_add t9(float) = t6(float), t8(float)
21 null_check 11(B, NonNull)
21 getfield t10(float) = 11(B), < B.f1>
24 float_mul t11(float) = 13(float), t10(float)
25 float_add t12(float) = t9(float), ti1i(float)
26 float_return t12(float)

END_BBLOCK BO@O

Figure 6: HIR of method foo(). ! and ¢ are virtual registers

for local variables and temporary operands, respectively.

5.2 On-the-Fly Analyses and Optimizations

To illustrate our approach to on-the-fly optimizations we
consider copy propagation as an example. Java bytecode
often contains sequences that perform a calculation and store
the result into a local variable (see Figure 7). A simple copy
propagation can eliminate most of the unnecessary tempo-
raries. When storing from a temporary into a local variable,
BC2IR inspects the most recently generated instruction. If
its result is the same temporary, the instruction is modified
to write the value directly to the local variable instead.

Other optimizations such as constant propagation, dead

Java bytecode Generated IR Generated IR

(optimization off) (optimization on)

iload x INT_ADD tint, xint, 5 INT_ADD yint, xint, 5
iconst 5 INT_MOVE yint, tint

iadd

istore y

Figure 7: Example of limited copy propagation and dead

code elimination

code elimination, register renaming for local variables, method
inlining, etc. are performed during the translation process.
Further details are provided in [38].

6 Jalapefio Optimizing Compiler Back-end

In this section, we describe the back-end of the Jalapefio

Optimizing Compiler.

6.1 Lowering of the IR

After high-level analyses and optimizations are performed,
HIR is lowered to low-level IR (LIR). In contrast to HIR,
the LIR expands instructions into operations that are spe-
cific to the Jalapefio JVM implementation, such as object
layouts or parameter-passing mechanisms of the Jalapefio
JVM. For example, operations in HIR to invoke methods of
an object or of a class consist of a single instruction, closely
matching the corresponding bytecode instructions such as
invokevirtual/invokestatic. These single-instruction HIR
operations are lowered (i.e., converted) into multiple-instruction
LIR operations that invoke the methods based on the virtual-
function-table layout. These multiple LIR operations expose

more opportunities for low-level optimizations.

0 LABELO BO@O

2 float_div 14(float) = 12(float), 13(float) (nl)
7 null_check 10(A, NonNull) (n2)
7 getfield_unresolved t5(float) = 10(4), <A.f1> (n3)
10 float_mul t6(float) = 12(float), tb5(float) (n4)
14 getfield_unresolved t7(float) = 10(A, NonNull), <A.f2>(nb)
17 float_mul t8(float) = 14(float), t7(float) (n8)
18 float_add t9(float) = t6(float), t8(float) (n7)
21 null_check 11(B, NonNull) (n8)
21 float_load t10(float) = e{ 11(B), -16 } (n9)

24 float_mul
25 float_add

26 return

t11(float) = 13(float), t10(float) (ni10)
t12(float) = t9(float), ti1i(float) (nil)
t12(float) (n12)
END_BBLOCK BO@O

Figure 8: LIR of method foo()

Example: Figure 8 shows the LIR for method foo of the
example in Figure 5. The labels (nl) through (n12) on the
far right of each instruction indicate the corresponding node

in the data dependence graph shown in Figure 9.

6.2 Dependence Graph Construction

We construct an instruction-level dependence graph, used
during BURS code generation (Section 6.3), for each basic

block that captures register true/anti/output dependences,
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Figure 9: Dependence graph of basic block in method foo()
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synchronization dependence edges between synchronization
operations (monitor_enter and monitor_exit) and memory
operations. These edges prevent code motion of memory
operations across synchronization points. Java exception
semantics [29] is modeled by ezception dependence edges,
which connect different exception points in a basic block.
Exception dependence edges are also added between regis-
ter write operations of local variables and exception points
in the basic block. Exception dependence edges between
register operations and exceptions points need not be added
if the corresponding method does not have catch blocks.
This precise modeling of dependence constraints allows us

to perform more aggressive code generation.

Example: Figure 9 shows the dependence graph for the
single basic block in method foo() of Figure 5. The graph,
constructed from the LIR for the method, shows register-
true dependence edges, exception dependence edges, and a
control dependence edge from the first instruction to the last
instruction in the basic block. There are no memory depen-
dence edges because the basic block contains only loads and
no stores, and we do not currently model load-load input
dependences®. An exception dependence edge is created
between an instruction that tests for an exception (such as
null check) and an instruction that depends on the result
of the test (such as getfield).

6.3 BURS-based Retargetable Code Generation

In this section, we address the problem of using tree-pattern-
matching systems to perform retargetable code generation
after code optimization in the Jalapefio Optimizing Com-

piler [33]. Our solution is based on partitioning a basic

®The addition of load-load memory dependences will be necessary
to correctly support the Java memory model for multithreaded

programs that contain data races.
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Figure 10: Example of tree pattern matching for PowerPC

block dependence graph (defined in Section 6.2) into trees
that can be given as input to a BURS-based tree-pattern-
matching system [15]. Unlike previous approaches to parti-
tioning DAGs for tree-pattern-matching (e.g., [17]), our ap-
proach considers partitioning in the presence of memory and
exception dependences (not just register-true dependences).
We have defined legality constraints for this partitioning,
and developed a partitioning algorithm that incorporates
code duplication.

Figure 10 shows a simple example of pattern matching
for the PowerPC. The data dependence graph is partitioned
into trees before using BURS. Then, pattern matching is
applied on the trees using a grammar (relevant fragments
are illustrated in Figure 10). FEach grammar rule has an
associated cost, in this case the number of instructions that
the rule will generate. For example, rule 2 has a zero cost
because it 1s used to eliminate unnecessary register moves,
i.e., coalescing. Although rules 3, 4, 5, and 6 could be used
to parse the tree, the pattern matching selects rules 1, 2,
and 7 as the ones with the least cost to cover the tree. Once
these rules are selected as the least cover of the tree, the
selected code is emitted as MIR instructions. Thus, for our
example, only two PowerPC instructions are emitted for five
input LIR instructions. Figure 11 shows the MIR for method
foo in Figure 5, as generated by our BURS code generator.



LABELO BO@O

2 ppc_fdivs 14(float) = 12(float), 13(float)
7 getfield_unresolved t5(float) = 10(A, NonNull), < A.f1>
10 ppc_fmuls t6(float) = 12(float), t5(float)
14 getfield_unresolved t7(float) = 10(A4, NonNull), < A.f2>
17 ppc_fmuls t8(float) = 14(float), t7(float)

18 ppc_fadds
21 ppc_lfs

24 ppc_fmuls
25 ppc_fadds

26 return

t9(float) = t6(float), t8(float)
t10(float) = @{ -16, 11(B, NonNull) }
t11(float) = 13(float), t10(float)
t12(float) = t9(float), tii(float)
t12(float)

END_BBLOCK BO@O

Figure 11: MIR of method foo() with virtual registers
6.4 Register Allocation

Our register allocator framework supports different alloca-
tion schemes, according to the available time that can be
spent in optimizing a method. We currently employ a linear
scan register allocator [32].

The LIR that reaches the register allocator contains two
types of symbolic registers: temporaries, obtained from con-
verting stack simulation into registers, and locals, obtained
from Java locals specified in the bytecode. We give higher
priority to allocating physical registers to those temporaries
whose live range does not span a basic block.

The linear scan algorithm is not based on graph coloring,
but allocates registers to variables in a single linear-time
scan of the variables’ live ranges in a greedy fashion. This
algorithm is several times faster than algorithms based on
graph coloring, and results in code that is almost as efficient
as that obtained using more complex allocators [32].
Example: The virtual registers, used by MIR, will be
converted into physical registers by the register allocator, as
shown in Figure 12. The output of the register allocator
also includes prologues and epilogues at the beginning and
end of each method, as shown in the figure. Note that no
null_check instructions appear in the MIR; this is because
the Jalapefio JVM’s object model allows null-pointer excep-
tions to be caught without the need for explicit checking.

6.5 Final Assembly

The final phase of the Jalapefio Optimizing Compiler is the
assembly phase that emits the binary executable code of
an opt-compiled method into an instruction array of int.
The assembly phase also finalizes the exception table and
the stack map of the instruction array, by converting offsets
in the IR to offsets in the machine code. The handle of
the optimized instruction array, a Java array reference, is
stored into a field of the object instance for the method.

In addition to the baseline compiled instruction array, the

0 LABELO BO@O
0 ppec_stwu FP(int), @{-24, FP(int) %}
0 ppec_ldi RO(int) = 4021
0 ppc_stw RO(int), e{ 4, FP(int) %}
0 ppe_mfspr RO(int) = LR(int)
0 ppc_stw RO(int), e{ 32, FP(int) %}
2 ppe_fdivs F3(float) = Fi(float), F2(float)
7 getfield_unresolved F4(float) = R3(4, NonNull), < A.f1>
10 ppec_fmuls Fi(float) = Fi(float), F4(float)
14 getfield_unresolved F4(float) = R3(4, NonNull), < A.f2>
17 ppec_fmuls F3(float) = F3(float), F4(float)
18 ppc_fadds Fi(float) = Fi(float), F3(float)
21 ppec_lfs F3(float) = @{ -16, R4(B, NonNull) }
24 ppec_fmuls F2(float) = F2(float), F3(float)
25 ppc_fadds Fi(float) = Fi(float), F2(float)
0 ppc_lwz RO(int) = @{ 32, FP(int) }
0 ppe_mtspr LR(int) = RO(int)
0 ppec_addi FP(int) = FP(int), 24
26 ppc_blr LR(int)
END_BBLOCK BO@O

Figure 12: MIR of method foo() with physical registers

object instance of a method can concurrently hold multiple
opt-compiled instruction arrays, each of which is specialized
based on factors such as the call-site contexts or the values of
the parameters. Selection of a particular instruction array
to be invoked at a particular invocation site can be made
during compile-time when LIR is generated or at the actual

invocation time via back patching.

6.6 Generation of Exception Tables and GC Stack-Maps

An exception table for an opt-compiled method is constructed
during BC2IR using the information in the class file. The
entries in the table are in terms of the HIR instructions, and
the table 1s updated as high-level optimizations applied to
the HIR result in modifications in the HIR. The table is also
updated as the HIR is converted into LIR, as optimizations
are applied to the LIR, and as LIR is converted into MIR
(machine-specific IR). Since different activation records on
the run-time stack may be generated by methods compiled
by different compilers (baseline and optimizing), a common
interface among compilers is used, making the Jalapefio ex-
ception handler unaware of which compiler is providing this
exception table.

When a garbage collection occurs, the type-accurate gar-
bage collector needs mapping information describing which
registers and stack locations (register spills) hold references
(object pointers). As these locations vary among program
points, a different map could be generated for each program
point. However, since garbage collection can only occur at
certain predefined points called GC points, maps are only
stored for these points. Jalapefio employs a common inter-

face among compilers, analogous to the one for exception



tables, making the garbage collector unaware of which com-

piler generates this stack map information.

7 Flow-Insensitive Optimizations

Based on profiling feedback, a dynamic compiler can re-
serve the most time-consuming optimizations for “hot spots”
in the code, and rely on quicker optimizations for other
sections. We focus on a few quick, flow-insensitive opti-
mizations here. Fast and effective flow-sensitive algorithms
remain topics for future work.

The optimizing compiler performs several types of flow-
insensitive optimizations. Clearly, when optimizing the HIR
or LIR, the compiler can quickly perform transformations
local to a basic block, such as local common subexpression
elimination and elimination of redundant local exception
checks. Furthermore, some semantic expansion transforma-
tions of standard Java library classes do not require flow-
sensitive information [39].

To optimize across basic blocks, we can exploit the JVM
specification which ensures that “Every variable in a Java
program must have a value before it is used” [29]. Using this
rule, if any variable has only one definition, then that defi-
nition reaches every use of the variable. For such variables,
we can build def-use chains and perform copy propagation
and dead code elimination, without any expensive analysis.
This technique will conservatively catch many optimization
opportunities, but will miss some cases that flow-sensitive
analysis would detect.

Threads, exceptions, and garbage collection constrain
transformations such as code motion, redundancy elimina-
tion, loop optimizations, and locality-enhancing optimiza-
tions. Our future flow-sensitive optimization algorithms must
consider the semantics of these language features. Section 6.2
addressed these 1ssues for modeling exceptions and synchro-

nization when building a data dependence graph.

8 Inline Expansion of Method Calls

Our current implementation performs inlining at two stages
during the translation process: during front-end BC2IR trans-

lation and during HIR optimization.

8.1 Inlining in BC2IR

The optimizing compiler performs top-down inlining during
BC2IR. To inline a call site, the BC2IR implementation
processes the basic blocks of the callee method as if they
belong to the caller. This approach has the advantage that
the front-end’s top-down optimizations, such as constant

folding and constant propagation, naturally extend into the

inlined method body. Additionally, the front-end translation
process automatically links thrown exceptions in the inlined
method to catch blocks in the caller.

We currently use static code size and depth heuristics
to decide whether or not to inline. The top-down on-the-
fly inlining hinders the efficacy of static heuristics, since at
the time we must decide to inline, we have not yet seen the
full call graph. To bypass this limitation, in future work,
the controller will make inlining decisions based on profiling
information, and pass an “inlining plan” to BC2IR.

Inlining of Java static and final methods is always safe.
Inlining virtual methods presents some complications, and
1s postponed until the HIR optimization phase, as described

next.

8.2 Inlining in HIR Optimization phase

During HIR optimization, we wish to perform analysis and
transformations based on semantics of some special Java
bytecodes, such as monitorenter and new. We preserve
these bytecodes during HIR optimization, and expand them
into inlined method calls immediately prior to conversion
from HIR to LIR. To inline at the HIR level, we generate
a new HIR for the inlined call, and patch it into the caller
HIR. The patching process updates the control flow graph
as necessary, including setting up links from the callee to
exception handlers in the caller.

Inlining virtual methods 1s more complicated than inlin-
ing static and final methods. We currently inline selected
virtual methods during HIR optimization, predicting the
receiver of a virtual call to be the declared type of the object,
and rely on static bytecode-size heuristics. We guard each
inlined virtual method with a run-time conditional test to
verify that the receiver is predicted correctly, and default to
a normal virtual method invocation if it is not. In future
work, we will examine guards with run-time trap instruc-
tions, which may run faster on current processors for correct
predictions, but necessitate more complex and costly recov-

ery for incorrectly predicted methods (see Section 10.3).

9 Performance Results

9.1 Implementation Status

As shown in Figure 1, the Jalapefio Adaptive Optimization
System consists of three major subsystems: Online Mea-
surements (OLM), Controller, and Optimizing Compiler. To
date, our main implementation focus has been the Optimiz-
ing Compiler subsystem. Our initial implementation of the
optimizing compiler targets the PowerPC and correctly sup-

ports all JVM bytecodes, including support for exceptions



and threads. For the experimental results reported below, a
conservative non-copying garbage collector was used because
the optimizing compiler’s generation of GC stack-maps is not
yet robust enough to run all of the larger benchmarks.

Although a prototype version of the OLM subsystem
has been built, work on the controller subsystem is still
in the design phases. Therefore, the optimizing compiler
can currently only be invoked as either a static compiler or
dynamically by the Jalapefio JVM class loader to optimize
all methods of all dynamically loaded classes.

9.2 Experimental Methodology

The performance results in this section were obtained on an
IBM F50 Model 7025 with four 166MHz PPC604e processors
running AIX v4.3. The system has 1GB of main memory.
Each processor has split 32KB first-level instruction and
data caches and a 256KB second-level cache. Because of
the incomplete implementation of the Controller and OLM
subsystems, in this paper we only present results for time
spent in program execution; time spent in dynamic compi-
lation was not instrumented or measured.

In the next subsection, we compare results using the

following four Java environments:

e JDK w/o JIT: The IBM enhanced port of the Sun
JDK 1.1.6 interpreter (without the JIT).

e JDK w/ JIT: The IBM enhanced port of the Sun
JDK 1.1.6 with v3.0 of the IBM JIT compiler [23].
This product compiler performs an extensive set of
optimizations, including inlining of math library meth-
ods, virtual methods, recursive calls, field privatiza-
tion, constant propagation, dead store elimination, elim-
ination of redundant numerical type-casts, elimination
of redundant exception checks, common subexpression
elimination, optimized loop generation, register alloca-

tion, and instruction scheduling.

The Jalapefio Virtual Machine

configured to use the Jalapefio Baseline Compiler as a

o Jalaperio Baseline:

JIT for all classes dynamically loaded by the applica-

tion.

The Jalapefio Virtual Machine

configured to use the Jalapefio Optimizing Compiler as

e Jalaperio Optimizer:

a JIT for all classes dynamically loaded by the applica-
tion. The following optimizations were performed: in-
lining of static and final methods, semantic inlining of
selected library routines, limited static class prediction
to safely inline virtual methods, linear scan register
allocation, limited constant propagation, type prop-

agation, unreachable code elimination, local common

Test JDK | Jalapeno JDK Jalapeno

w/o JIT Baseline | w/ JIT | Optimizer
BSort 77.19 34.26 3.20 3.94
Bi BSort 67.93 30.49 2.32 3.10
Qsort 15.27 6.10 1.11 0.78
Sieve 11.47 4.74 0.34 0.42
Hanoi 17.84 7.90 1.00 1.54
Dhrystone 7.12 2.33 0.65 0.68
Tree 9.87 14.49 2.44 3.40
Fibonacchi 20.23 11.58 1.75 0.98
Array 4.95 10.15 1.01 0.84
Compress 85.67 46.08 5.86 7.23
DB 7.18 3.89 1.73 2.94
Javac 7.52 4.21 2.29 7.63
Jack 31.36 23.46 7.06 10.54

Table 1: Execution times (seconds)

subexpression elimination, flow-insensitive copy propa-
gation and dead code elimination, and local redundant

bounds check elimination.

In both Jalapefio configurations, the “boot image” contain-
ing the Jalapefio JVM itself was created by using the Jalapefio
Optimizing Compiler as a static compiler performing all the

optimizations listed above.

9.3 Micro-benchmark Programs

To evaluate code quality, Figure 13 and Table 1 compare the
performance on these four Java environments for nine micro-
benchmarks developed by Symantec Corporation. For the
micro-benchmarks, we report the mean wall-clock execution
time for the last ten of eleven runs; standard deviations were
negligible.

The results show that on three of the nine tests (QSort,
Fibonacci, Array), the optimizing compiler delivers better
performance than the product JIT compiler. This is en-
couraging because the product JIT compiler performs many
more optimizations than the current implementation of the
optimizing compiler. Performance on Dhrystone is roughly
equivalent, and on the remaining five tests the optimizing
compiler performance is within a factor of 1.6 of the product

JIT compiler.

9.4 Macro-Benchmark Programs

To evaluate system performance on medium-sized bench-
marks, we present performance results on several codes from
the SPECjvm98 suite [14]. The system currently runs four of
the seven tests (_201_compress, 209_db, _213_javac, 228_jack);
the others do not yet run due to incomplete library support.

We ran the tests using the SPEC driver program, con-
figured to run each test between two and four times, and

report the best wall-clock time. This methodology factors
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Figure 13: Execution time (in seconds) for micro and macro benchmarks

out compile-time. We run the benchmarks using the SPEC
problem size parameter set to 10, for medium-size input
parameters. Note that these results do not follow the official
SPEC reporting rules, and therefore should not be treated
as official SPEC results.

Figure 13 and Table 1 show the results in the four Java
environments enumerated above. The results show that the
current optimizing compiler runs these codes between 1.2 to
3.3 times slower than the product JIT. We believe that the
performance inversion of the Jalapefio Baseline and Opti-
mizing configurations for javac can be attributed to perfor-
mance problems in the conservative GC subsystem. Given
the current immature state of our JVM and compiler, we
are encouraged that our performance is within an order of
magnitude of the best current commercial technology. These
results suggest that with much more tuning and further
optimization, a JVM written entirely in Java may achieve
performance competitive with a state-of-the-art JVM im-

plemented in C.

10 Interprocedural Optimizations — Extensions to Cur-

rent Implementation

This section describes two interprocedural optimizations that
are in progress as extensions to the current implementa-
tion — interprocedural optimization of register saves and
restores (Section 10.1), and interprocedural escape analysis
(Section 10.2). In addition, Section 10.3 discusses issues
related to interprocedural optimization in the presence of

dynamic class loading.
10.1 Interprocedural Optimization of Register Saves and
Restores

To optimize register saves and restores at call sites [12, 34],

we first perform interprocedural register usage analysis. In-

terprocedural register usage is a backward analysis performed
over the call graph of a program to determine the register
requirements across method boundaries. Without interpro-
cedural analysis, all caller save registers have to be saved
and restored at call sites even if they are not used in callee
methods. For interprocedural analysis we first construct a
call graph of all methods that are compiled by the optimizing
compiler. The call graph accommodates virtual method
call sites. We then process the methods in the call graph
in reverse topological order.” The analysis assumes that
registers are allocated contiguously, starting from the first
available register. For each method we first compute the
number of registers used intraprocedurally. This information
is propagated back to caller(s) of the method. The value
at each node gives the number of registers that have to be
saved and restored at each call site which invokes that node.
If the callee is compiled with the baseline compiler, then we
propagate L to the caller (L indicates that all live caller save
registers have to be saved and restored at that call site). In
the presence of cycles, we can either compute a fixed point
or propagate L.

To illustrate our approach consider the call graph shown
in Figure 14. The numbers on the left of each node corre-
spond to the register requirements within each method (com-
puted intraprocedurally). The numbers enclosed in square
brackets are the register requirements computed during our
backward interprocedural analysis. The meet of two values
is the maximum value of the two values, and meet of a |

with any value is a L.

10.2 Escape Analysis

Escape analysis is a technique for determining whether an
object that is created in a method may escape a call to the

method. The most well-known application of escape analysis

“We ignore the back edges while determining the topological order.
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Figure 14: An example for interprocedural register saves and

restores

1s to allocate non-escaping objects on the stack instead of the
heap. This leads to (i) reduced overheads of object allocation
and deallocation (i.e., garbage collection, for languages that
support it), and (ii) usually, improved data locality [6]. In
the context of Java, escape analysis can also be used to iden-
tify objects that are local to a thread. This leads to another
important benefit — reduced synchronization overhead, as we
can eliminate the locking operations on thread-local objects.

We have developed several algorithms for performing es-
cape analysis. Among them, we have implemented an ap-
proach based on a connection graph abstraction, in the con-
text of a static compiler to evaluate its potential benefits.
Our results are encouraging, especially for reducing syn-
chronization overheads [11]. We are currently implementing

escape analysis in the Jalapefio Optimizing Compiler.

10.3 Handling Dynamic Class Loading

Interprocedural optimizations and those optimizations that
depend on the structure of the class inheritance graph can
become invalid in the presence of dynamic class loading.
When an optimization applied to a method becomes invalid
in this manner, all optimized versions of the method cur-
rently on the call stack must be replaced. One option is
to replace them by the unoptimized version of the method.
We maintain a ‘“resolution dependence graph” during the
optimization phase that indicates which methods could be
affected when a new class is loaded.

Consider the interprocedural optimization of register saves
and restores described in Section 10.1. Assume, for example,
that a new class can be loaded at the point where C is called
(in Figure 14). Also, assume that we have a new call C’
in place of C. Methods C’, B, and A are affected. Now
assume that the intraprocedural register requirement for C’
is 6. Only the register requirement of C’ is affected, since

the register requirement of B is already 6. In summary, we

essentially incrementally update only affected nodes. For
this purpose we can use techniques from incremental data
flow analysis and compilation [7, 26].

The invalidation mechanism for dynamic class loading

has not yet been implemented.

11 Related Work

Dynamic compilation, also called dynamic translation or
Just-in-time compilation, has been a key ingredient in a num-
ber of previous implementations of object-oriented languages.
Deutsch and Schiffman’s high performance implementation
of Smalltalk-80 dynamically translated Smalltalk bytecodes
to native code [16]; their compiler was quite similar to our
baseline compiler. Implementations of the Self language
also relied on dynamic compilation to achieve high perfor-
mance [8]. All three generations of Self compilers utilized
register-based intermediate representations that are roughly
equivalent to the one used by the Jalapefio Optimizing Com-
piler. Recently, a number of just-in-time compilers have been
developed for the Java language [2]. Some of these compilers
translate bytecodes to a three-address code, perform simple
optimizations and register allocation, and then generate tar-
get machine code.

A number of previous systems have utilized more spe-
cialized forms of dynamic compilation to selectively optimize
program hot spots by exploiting “run-time constants” [13,
5, 31, 19]. In general, these systems emphasize extremely
fast dynamic compilation, often performing extensive off-line
precomputations to avoid constructing any explicit represen-
tation of the program fragment being compiled at dynamic
compile-time.

Implementing a Java virtual machine and its related sub-
system (including the optimizer) in Java opens several chal-
lenges. Taivalsaari [36] also describes a “Java in Java” imple-
mentation to examine the feasibility of a high quality virtual
machine written in Java. One drawback of this approach is
that it runs on another Java virtual machine, which adds
performance overhead because of the two-level interpretation
process. Qur approach avoids the need for another JVM
by bootstrapping the system. Compared to Taivalsaari’s
system we have also implemented several optimizations to
improve the performance of the overall system and Java
applications.

A large collection of work addresses optimizations spe-
cific to object-oriented languages, such as class analysis,
both intraprocedural [10] and interprocedural (see related
work in [20]), class hierarchy analysis and optimizations [37,
35], receiver class prediction [16, 21, 9], method special-

ization [37], and call graph construction (see related work



in [20]). Other optimizations relevant to Java include bounds

check elimination [30] and semantic inlining [39].

12 Conclusions and Future Work

The use of Java in many important server applications de-
pends on the availability of a JVM that supports efficient
execution of such applications on server machines. Jalapefio
is one such JVM. Our ability to correctly execute a wide
range of large Java programs has validated the soundness
of Jalapefio’s compile-only approach to program execution.
In addition, our preliminary performance results show that,
even with its current limited set of optimizations, the Jalapefio

Optimizing Compiler is capable of delivering performance

that is comparable to the performance delivered by a production-

strength JIT compiler. The fact that the Jalapefio run-time
system (and the rest of the JVM) is implemented in Java
To the
best of our knowledge, the Jalapefio Optimizing Compiler is

makes this achievement all the more remarkable.

the first dynamic optimizing compiler for Java that is being
used in a JVM with a compile-only approach to program
execution.

There are many challenging directions for future research
based on the Jalapefio Optimizing Compiler. In the area
of optimizations, we already described two interprocedural
optimizations in Section 10 that are currently in progress.
In addition, we have begun work on flow-sensitive optimiza-
tions using Array SSA form [27, 28] and context-sensitive
profile-directed inlining of method calls based on the Calling
Context Graph.
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