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A primary goal of the Jalape~no JVM is to deliver highperformance and scalability of Java applications on SMPserver machines. Some previous high performance imple-mentations of Java (e.g., [9, 25, 22, 18]) have relied on staticcompilation, and have therefore disallowed certain featuressuch as dynamic class loading. In contrast, the Jalape~noJVM supports all features of Java [29], and the Jalape~noOptimizing Compiler is a fully integrated dynamic compiler2in the Jalape~no JVM.The Jalape~no project was initiated in December 1997 atthe IBM T. J. Watson Research Center and is still work-in-progress. This paper describes the design of the Jalape~noOptimizing Compiler and the implementation results thatwe have obtained thus far. To the best of our knowledge,this is the �rst dynamic optimizing compiler for Java thatis being used in a JVM with a compile-only approach toprogram execution.The rest of the paper is organized as follows. Section 2provides the context for this work by describing key featuresof the Jalape~no Virtual Machine. Section 3 outlines the high-level structure of the Jalape~no Optimizing Compiler and howit is invoked within the Jalape~no Virtual Machine. Section 4describes the intermediate representation (IR) used in theJalape~no Optimizing Compiler. Sections 5 and 6 describethe \front-end" and \back-end" respectively of the Jalape~noOptimizing Compiler; the front-end describes a (mostly)single-pass translation of Java bytecodes to an optimizedhigh-level IR (HIR), and the back-end describes how HIR islowered and translated into optimized machine code accom-panied by exception tables and GC stack-maps. Section 7summarizes our framework for e�cient ow-insensitive op-timizations for single-assignment variables. Section 8 de-scribes our framework for inlining method calls. Section 9presents performance results obtained from the current im-2Though dynamic compilation is the default mode for the Jalape~noOptimizing Compiler, the same infrastructure can be used to supporta hybrid of static and dynamic compilation, as discussed in Section 2.



plementation of the Jalape~no Optimizing Compiler (as ofMarch 1999). Section 10 describes two interprocedural op-timizations that are in progress as extensions to the currentimplementation | interprocedural optimization of registersaves and restores, and interprocedural escape analysis. Fi-nally, Section 11 discusses related work and Section 12 con-tains our conclusions.2 The Jalape~no Virtual MachineThe subsystems of the Jalape~no JVM include a dynamicclass loader, dynamic linker, object allocator, garbage col-lector, thread scheduler, pro�ler (on-line measurements sys-tem), three dynamic compilers, and support for other run-time features, such as exception handling and type testing.Among the three dynamic compilers, the baseline compilerwas implemented �rst. It is used to validate the other com-pilers, for debugging, and as the default compiler until thequick compiler is fully functional. The class loader sup-ports dynamic linking via backpatching for classes that wereloaded after compilation.Memory management in the Jalape~no JVM consists ofan object allocator and a garbage collector. The Jalape~noJVM supports type-accurate garbage collection. With aview to future experimentation to determine which garbagecollection algorithm will be best suited for SMP execution ofmultithreaded Java programs, the Jalape~no JVM contains avariety of type-accurate garbage collectors (generational andnon-generational, copying and non-copying) [24].In the Jalape~no JVM, each object has a two-word header:a pointer to a type information block, and a status word forhashing, locking, and garbage collection. Since threads inJava are objects, the Jalape~no JVM creates a distinct objectfor each Java thread. One of the �elds of this thread objectholds a reference to the thread's stack, which contains acontiguous sequence of variable-size stack frames, one permethod invocation. These stack frames are chained togetherby \dynamic links".Another distinguishing feature of the Jalape~no JVM isthat all its subsystems (including the compilers, run-timeroutines, and garbage collector) are implemented in Java andrun alongside the Java application. Although it is writtenin Java, the Jalape~no JVM is self-bootstrapping; i.e., it doesnot need to run on top of another JVM. One of the manyadvantages of a pure Java implementation is that we candynamically self-optimize the Jalape~no JVM.
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Figure 1: Context for Jalape~no Optimizing Compiler3 Structure of the Jalape~no Optimizing CompilerThe Jalape~no Optimizing Compiler is adaptive and dynamic.It is invoked on an automatically selected set of methodswhile an application is running. The goal of the Jalape~noOptimizing Compiler is to generate the best possible codefor the selected methods for a given compile-time budget.In addition, its optimizations must deliver signi�cant per-formance improvements while correctly preserving Java se-mantics with respect to exceptions, garbage collection, andthreads. Reducing the cost of synchronization and otherthread primitives is especially important for achieving scal-able performance on SMP servers. Finally, it should bepossible to retarget the Jalape~no Optimizing Compiler toa variety of hardware platforms. Building a dynamic op-timizing compiler that achieves all these goals is a majorchallenge.Figure 1 shows the overall design for how the Jalape~noOptimizing Compiler is used in the Jalape~no Virtual Ma-chine. The Optimizing Compiler is the key component ofJalape~no's Adaptive Optimization System, which also in-cludes an On-Line Measurements (OLM) subsystem and aController subsystem. (The OLM and Controller subsys-tems are currently under development.) The OLM systemis designed to monitor the performance of individual meth-ods in the application by using software sampling and pro-�ling techniques combined with a collection of hardwareperformance monitor information, and to maintain context-sensitive pro�le information for method calls in a CallingContext Graph (CCG) similar to the Calling Context Treeintroduced in [3]. The Controller subsystem will be invokedwhen the OLM subsystem detects that a certain performancethreshold is reached. The controller uses the CCG and itsassociated pro�ling information to build an \optimization
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Figure 3: Internal structure of Jalape~no Optimizing Com-piler for compiling a single methodplan" that describes which methods the optimizing compilershould compile and with what optimization levels. The OLMsubsystem will continue monitoring individual methods, in-cluding those already optimized by the optimizing compiler,to trigger further optimization passes as needed.The optimizing compiler can also work as a static com-piler by saving the generated binary code in a �le for later

execution. In fact, as part of Jalape~no's bootstrapping pro-cedure, the optimizing compiler currently compiles selectedmethods from the Jalape~no JVM, and stores the resultingbinary code in a \boot image". Similarly, the optimizingcompiler could also compile selected methods from a userapplication and store them in a custom boot image tailoredto the application. When doing so, the optimizing compilerwould essentially function as a static compiler (as shown inFigure 2).When the Jalape~no Optimizing Compiler functions asa pure dynamic compiler, it must generate the best pos-sible code for a given compile-time budget. The compile-time budget is less important when the Jalape~no Optimiz-ing Compiler functions as a static compiler or as a staticbytecode-to-bytecode optimizer.3Figure 3 shows the internal structure of the Jalape~noOptimizing Compiler when compiling a single method. Atthe highest level, the Jalape~no Optimizing Compiler consistsof an optimizer front-end (described in Section 5) and anoptimizer back-end (described in Section 6).4 Intermediate RepresentationThis section outlines some essential features of the register-based intermediate representation (IR) used by the Jalape~noOptimizing Compiler. Compared to a stack-based IR, aregister-based IR better matches the load-store architecturesthat we target. Thus, it enables more e�ective machine-speci�c optimizations, as well as greater exibility in codemotion and code transformation.An instruction in our IR is an n-tuple (a generalizationof quadruples and three-address code [1]) consisting of anoperator and some number of operands. The most commontype of operand is the register operand, which representsa symbolic register. There are also operands to representconstants, branch targets, method signatures, types, etc. Akey di�erence between the Jalape~no HIR and Java byte-codes is the addition of separate operators to implementexplicit checks for several common run-time exceptions, e.g.,null check and bounds check operators to test for nullpointer dereferences and out-of-bounds array accesses re-spectively. These additional operators facilitate optimiza-tion.Instructions are grouped into basic blocks, delimited inthe instruction stream by label and end bblock instruc-tions. In our IR, method calls and potential trap sites donot end basic blocks. The basic blocks and the control3Another project at IBM is using the front-end of the Jalape~noOptimizing Compiler as the foundation for building a static bytecodeoptimizer.



ow graph (CFG) of the procedure are constructed as abyproduct of BC2IR's generating the HIR instruction stream(see Section 5.1). The IR also includes space for the cachingof optional auxiliary information, such as reaching de�ni-tion sets, a data dependence graph, or an encoding of theprocedure's loop nesting structure.5 Jalape~no Optimizing Compiler Front-endThe front-end contains two parts: (1) the BC2IR algorithmthat translates bytecodes to HIR and performs on-the-yoptimizations during the translation, and (2) additional op-timizations performed on the HIR after BC2IR. This sectioncontains a description of the BC2IR algorithm with bytecodeto HIR translation outlined in Section 5.1, and on-the-yoptimizations summarized in Section 5.2. Examples of opti-mizations that are performed on the HIR can be found laterin Section 7.5.1 The BC2IR AlgorithmFigure 4 shows an overview of the BC2IR algorithm. Thealgorithm contains two parts: (1) the Main Loop that se-lects a basic block (BB) from a worklist, called the basicblock set (BBSet) and (2) the Abstract Interpretation Loopthat interprets bytecodes within a BB. The algorithm main-tains a symbolic state during the translation process, whichcorresponds to abstract values of stack operands and localvariables.4 The initial state of a BB is the symbolic stateof the machine at the start of the BB. Initially, certaincandidate BBs that can be put in the BBSet are identi�ed(for example, the BB beginning at bytecode 0 with an emptyinitial stack or exception handler blocks).After the initial BBSet is identi�ed, BC2IR enters themain loop, and selects a BB such that its initial state isfully known and no HIR has been generated for it. For eachBB, the bytecode in it is abstractly interpreted, the currentstate is updated, and new BBs may be generated. The BBsthus generated will be added to the BBSet. During thisphase the compiler constructs the CFG and performs otheranalyses and optimizations. The abstract interpretation pro-cess essentially interprets the bytecodes based on the Javabytecode speci�cation de�ned in [29].Bytecodes that pass Java veri�cation have an importantproperty that we exploit: \When there are two executionpaths into the same point, they must arrive there with ex-actly the same type state" [4]. At a control ow join, thevalues of stack operands may di�er on di�erent incomingedges, but the types of these operands must match. An4Abstract values of local variables are needed during on-the-yoptimizations.

Initialize state

Main loop:

Abstract
interpretation Loop: Parse bytecode

Update state

Rectify state with

Successor basic blocks

Main Initialization

Choose basic block from set

Figure 4: Overview of BC2IR algorithmclass t1 {static float foo(A a, B b, float c1, float c3){ float c2 = c1/c3;return(c1*a.f1 + c2*a.f2 + c3*b.f1);}} Figure 5: An example Java programelement-wise meet operation is used on the stack operandsto update the symbolic state [38]. When a backward branchwhose target is the middle of an already-generated basicblock is encountered, the basic block is split at that point. Ifthe stack is not empty at the start of the split BB, the basicblock must be regenerated because the initial states may beincorrect. The initial state of a BB may also be incorrectdue to as-of-yet-unseen control ow joins. To minimize thenumber of a times HIR is generated for a BB a simple greedyalgorithm is used for selecting BBs in the main loop. Whenselecting a BB to generate the HIR, the BB with the loweststarting bytecode index is chosen. This simple heuristicrelies on the fact that, except for loops, all control-owconstructs are generated in topological order, and that thecontrol ow graph is reducible. Surprisingly, for programscompiled with current Java compilers, the greedy algorithmcan always �nd the optimal ordering in practice.55The optimal order for basic block generation that minimizesnumber of regeneration is a topological order (ignoring the backedges). However, because BC2IR computes the control ow graphin the same pass, it cannot compute the optimal order a priori.



Example: Figure 5 shows an example Java source pro-gram of class t1, and Figure 6 shows the HIR for methodfoo of the example. The number on the �rst column of eachHIR instruction is the index of the bytecode from whichthe instruction is generated. Before compiling class t1, wecompiled and loaded class B, but not class A. As a result,the HIR instructions for accessing �elds of class A, bytecodeindices 7 and 14 in Figure 6, are getfield unresolved, whilethe HIR instruction accessing a �eld of class B, bytecodeindex 21, is a regular getfield instruction.Also notice that there is only one null check instructionthat covers both getfield unresolved instructions; this isa result of BC2IR's on-the-y optimizations.0 LABEL0 B0@02 float_div l4(float) = l2(float), l3(float)7 null_check l0(A, NonNull)7 getfield_unresolved t5(float) = l0(A), < A.f1>10 float_mul t6(float) = l2(float), t5(float)14 getfield_unresolved t7(float) = l0(A, NonNull), < A.f2>17 float_mul t8(float) = l4(float), t7(float)18 float_add t9(float) = t6(float), t8(float)21 null_check l1(B, NonNull)21 getfield t10(float) = l1(B), < B.f1>24 float_mul t11(float) = l3(float), t10(float)25 float_add t12(float) = t9(float), t11(float)26 float_return t12(float)END_BBLOCK B0@0Figure 6: HIR of method foo(). l and t are virtual registersfor local variables and temporary operands, respectively.5.2 On-the-Fly Analyses and OptimizationsTo illustrate our approach to on-the-y optimizations weconsider copy propagation as an example. Java bytecodeoften contains sequences that perform a calculation and storethe result into a local variable (see Figure 7). A simple copypropagation can eliminate most of the unnecessary tempo-raries. When storing from a temporary into a local variable,BC2IR inspects the most recently generated instruction. Ifits result is the same temporary, the instruction is modi�edto write the value directly to the local variable instead.Other optimizations such as constant propagation, deadJava bytecode Generated IR Generated IR(optimization off) (optimization on)------------- ------------------ -----------------iload x INT_ADD tint, xint, 5 INT_ADD yint, xint, 5iconst 5 INT_MOVE yint, tintiaddistore yFigure 7: Example of limited copy propagation and deadcode elimination

code elimination, register renaming for local variables, methodinlining, etc. are performed during the translation process.Further details are provided in [38].6 Jalape~no Optimizing Compiler Back-endIn this section, we describe the back-end of the Jalape~noOptimizing Compiler.6.1 Lowering of the IRAfter high-level analyses and optimizations are performed,HIR is lowered to low-level IR (LIR). In contrast to HIR,the LIR expands instructions into operations that are spe-ci�c to the Jalape~no JVM implementation, such as objectlayouts or parameter-passing mechanisms of the Jalape~noJVM. For example, operations in HIR to invoke methods ofan object or of a class consist of a single instruction, closelymatching the corresponding bytecode instructions such asinvokevirtual/invokestatic. These single-instruction HIRoperations are lowered (i.e., converted) into multiple-instructionLIR operations that invoke the methods based on the virtual-function-table layout. These multiple LIR operations exposemore opportunities for low-level optimizations.0 LABEL0 B0@02 float_div l4(float) = l2(float), l3(float) (n1)7 null_check l0(A, NonNull) (n2)7 getfield_unresolved t5(float) = l0(A), <A.f1> (n3)10 float_mul t6(float) = l2(float), t5(float) (n4)14 getfield_unresolved t7(float) = l0(A, NonNull), <A.f2>(n5)17 float_mul t8(float) = l4(float), t7(float) (n6)18 float_add t9(float) = t6(float), t8(float) (n7)21 null_check l1(B, NonNull) (n8)21 float_load t10(float) = @{ l1(B), -16 } (n9)24 float_mul t11(float) = l3(float), t10(float) (n10)25 float_add t12(float) = t9(float), t11(float) (n11)26 return t12(float) (n12)END_BBLOCK B0@0Figure 8: LIR of method foo()Example: Figure 8 shows the LIR for method foo of theexample in Figure 5. The labels (n1) through (n12) on thefar right of each instruction indicate the corresponding nodein the data dependence graph shown in Figure 9.6.2 Dependence Graph ConstructionWe construct an instruction-level dependence graph, usedduring BURS code generation (Section 6.3), for each basicblock that captures register true/anti/output dependences,
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LABEL0 B0@02 ppc_fdivs l4(float) = l2(float), l3(float)7 getfield_unresolved t5(float) = l0(A, NonNull), < A.f1>10 ppc_fmuls t6(float) = l2(float), t5(float)14 getfield_unresolved t7(float) = l0(A, NonNull), < A.f2>17 ppc_fmuls t8(float) = l4(float), t7(float)18 ppc_fadds t9(float) = t6(float), t8(float)21 ppc_lfs t10(float) = @{ -16, l1(B, NonNull) }24 ppc_fmuls t11(float) = l3(float), t10(float)25 ppc_fadds t12(float) = t9(float), t11(float)26 return t12(float)END_BBLOCK B0@0Figure 11: MIR of method foo() with virtual registers6.4 Register AllocationOur register allocator framework supports di�erent alloca-tion schemes, according to the available time that can bespent in optimizing a method. We currently employ a linearscan register allocator [32].The LIR that reaches the register allocator contains twotypes of symbolic registers: temporaries, obtained from con-verting stack simulation into registers, and locals, obtainedfrom Java locals speci�ed in the bytecode. We give higherpriority to allocating physical registers to those temporarieswhose live range does not span a basic block.The linear scan algorithm is not based on graph coloring,but allocates registers to variables in a single linear-timescan of the variables' live ranges in a greedy fashion. Thisalgorithm is several times faster than algorithms based ongraph coloring, and results in code that is almost as e�cientas that obtained using more complex allocators [32].Example: The virtual registers, used by MIR, will beconverted into physical registers by the register allocator, asshown in Figure 12. The output of the register allocatoralso includes prologues and epilogues at the beginning andend of each method, as shown in the �gure. Note that nonull check instructions appear in the MIR; this is becausethe Jalape~no JVM's object model allows null-pointer excep-tions to be caught without the need for explicit checking.6.5 Final AssemblyThe �nal phase of the Jalape~no Optimizing Compiler is theassembly phase that emits the binary executable code ofan opt-compiled method into an instruction array of int.The assembly phase also �nalizes the exception table andthe stack map of the instruction array, by converting o�setsin the IR to o�sets in the machine code. The handle ofthe optimized instruction array, a Java array reference, isstored into a �eld of the object instance for the method.In addition to the baseline compiled instruction array, the

0 LABEL0 B0@00 ppc_stwu FP(int), @{-24, FP(int) }0 ppc_ldi R0(int) = 40210 ppc_stw R0(int), @{ 4, FP(int) }0 ppc_mfspr R0(int) = LR(int)0 ppc_stw R0(int), @{ 32, FP(int) }2 ppc_fdivs F3(float) = F1(float), F2(float)7 getfield_unresolved F4(float) = R3(A, NonNull), < A.f1>10 ppc_fmuls F1(float) = F1(float), F4(float)14 getfield_unresolved F4(float) = R3(A, NonNull), < A.f2>17 ppc_fmuls F3(float) = F3(float), F4(float)18 ppc_fadds F1(float) = F1(float), F3(float)21 ppc_lfs F3(float) = @{ -16, R4(B, NonNull) }24 ppc_fmuls F2(float) = F2(float), F3(float)25 ppc_fadds F1(float) = F1(float), F2(float)0 ppc_lwz R0(int) = @{ 32, FP(int) }0 ppc_mtspr LR(int) = R0(int)0 ppc_addi FP(int) = FP(int), 2426 ppc_blr LR(int)END_BBLOCK B0@0Figure 12: MIR of method foo() with physical registersobject instance of a method can concurrently hold multipleopt-compiled instruction arrays, each of which is specializedbased on factors such as the call-site contexts or the values ofthe parameters. Selection of a particular instruction arrayto be invoked at a particular invocation site can be madeduring compile-time when LIR is generated or at the actualinvocation time via back patching.6.6 Generation of Exception Tables and GC Stack-MapsAn exception table for an opt-compiled method is constructedduring BC2IR using the information in the class �le. Theentries in the table are in terms of the HIR instructions, andthe table is updated as high-level optimizations applied tothe HIR result in modi�cations in the HIR. The table is alsoupdated as the HIR is converted into LIR, as optimizationsare applied to the LIR, and as LIR is converted into MIR(machine-speci�c IR). Since di�erent activation records onthe run-time stack may be generated by methods compiledby di�erent compilers (baseline and optimizing), a commoninterface among compilers is used, making the Jalape~no ex-ception handler unaware of which compiler is providing thisexception table.When a garbage collection occurs, the type-accurate gar-bage collector needs mapping information describing whichregisters and stack locations (register spills) hold references(object pointers). As these locations vary among programpoints, a di�erent map could be generated for each programpoint. However, since garbage collection can only occur atcertain prede�ned points called GC points, maps are onlystored for these points. Jalape~no employs a common inter-face among compilers, analogous to the one for exception



tables, making the garbage collector unaware of which com-piler generates this stack map information.7 Flow-Insensitive OptimizationsBased on pro�ling feedback, a dynamic compiler can re-serve the most time-consuming optimizations for \hot spots"in the code, and rely on quicker optimizations for othersections. We focus on a few quick, ow-insensitive opti-mizations here. Fast and e�ective ow-sensitive algorithmsremain topics for future work.The optimizing compiler performs several types of ow-insensitive optimizations. Clearly, when optimizing the HIRor LIR, the compiler can quickly perform transformationslocal to a basic block, such as local common subexpressionelimination and elimination of redundant local exceptionchecks. Furthermore, some semantic expansion transforma-tions of standard Java library classes do not require ow-sensitive information [39].To optimize across basic blocks, we can exploit the JVMspeci�cation which ensures that \Every variable in a Javaprogram must have a value before it is used" [29]. Using thisrule, if any variable has only one de�nition, then that de�-nition reaches every use of the variable. For such variables,we can build def-use chains and perform copy propagationand dead code elimination, without any expensive analysis.This technique will conservatively catch many optimizationopportunities, but will miss some cases that ow-sensitiveanalysis would detect.Threads, exceptions, and garbage collection constraintransformations such as code motion, redundancy elimina-tion, loop optimizations, and locality-enhancing optimiza-tions. Our future ow-sensitive optimization algorithms mustconsider the semantics of these language features. Section 6.2addressed these issues for modeling exceptions and synchro-nization when building a data dependence graph.8 Inline Expansion of Method CallsOur current implementation performs inlining at two stagesduring the translation process: during front-end BC2IR trans-lation and during HIR optimization.8.1 Inlining in BC2IRThe optimizing compiler performs top-down inlining duringBC2IR. To inline a call site, the BC2IR implementationprocesses the basic blocks of the callee method as if theybelong to the caller. This approach has the advantage thatthe front-end's top-down optimizations, such as constantfolding and constant propagation, naturally extend into the

inlined method body. Additionally, the front-end translationprocess automatically links thrown exceptions in the inlinedmethod to catch blocks in the caller.We currently use static code size and depth heuristicsto decide whether or not to inline. The top-down on-the-y inlining hinders the e�cacy of static heuristics, since atthe time we must decide to inline, we have not yet seen thefull call graph. To bypass this limitation, in future work,the controller will make inlining decisions based on pro�linginformation, and pass an \inlining plan" to BC2IR.Inlining of Java static and �nal methods is always safe.Inlining virtual methods presents some complications, andis postponed until the HIR optimization phase, as describednext.8.2 Inlining in HIR Optimization phaseDuring HIR optimization, we wish to perform analysis andtransformations based on semantics of some special Javabytecodes, such as monitorenter and new. We preservethese bytecodes during HIR optimization, and expand theminto inlined method calls immediately prior to conversionfrom HIR to LIR. To inline at the HIR level, we generatea new HIR for the inlined call, and patch it into the callerHIR. The patching process updates the control ow graphas necessary, including setting up links from the callee toexception handlers in the caller.Inlining virtual methods is more complicated than inlin-ing static and �nal methods. We currently inline selectedvirtual methods during HIR optimization, predicting thereceiver of a virtual call to be the declared type of the object,and rely on static bytecode-size heuristics. We guard eachinlined virtual method with a run-time conditional test toverify that the receiver is predicted correctly, and default toa normal virtual method invocation if it is not. In futurework, we will examine guards with run-time trap instruc-tions, which may run faster on current processors for correctpredictions, but necessitate more complex and costly recov-ery for incorrectly predicted methods (see Section 10.3).9 Performance Results9.1 Implementation StatusAs shown in Figure 1, the Jalape~no Adaptive OptimizationSystem consists of three major subsystems: Online Mea-surements (OLM), Controller, and Optimizing Compiler. Todate, our main implementation focus has been the Optimiz-ing Compiler subsystem. Our initial implementation of theoptimizing compiler targets the PowerPC and correctly sup-ports all JVM bytecodes, including support for exceptions



and threads. For the experimental results reported below, aconservative non-copying garbage collector was used becausethe optimizing compiler's generation of GC stack-maps is notyet robust enough to run all of the larger benchmarks.Although a prototype version of the OLM subsystemhas been built, work on the controller subsystem is stillin the design phases. Therefore, the optimizing compilercan currently only be invoked as either a static compiler ordynamically by the Jalape~no JVM class loader to optimizeall methods of all dynamically loaded classes.9.2 Experimental MethodologyThe performance results in this section were obtained on anIBM F50 Model 7025 with four 166MHz PPC604e processorsrunning AIX v4.3. The system has 1GB of main memory.Each processor has split 32KB �rst-level instruction anddata caches and a 256KB second-level cache. Because ofthe incomplete implementation of the Controller and OLMsubsystems, in this paper we only present results for timespent in program execution; time spent in dynamic compi-lation was not instrumented or measured.In the next subsection, we compare results using thefollowing four Java environments:� JDK w/o JIT: The IBM enhanced port of the SunJDK 1.1.6 interpreter (without the JIT).� JDK w/ JIT: The IBM enhanced port of the SunJDK 1.1.6 with v3.0 of the IBM JIT compiler [23].This product compiler performs an extensive set ofoptimizations, including inlining of math library meth-ods, virtual methods, recursive calls, �eld privatiza-tion, constant propagation, dead store elimination, elim-ination of redundant numerical type-casts, eliminationof redundant exception checks, common subexpressionelimination, optimized loop generation, register alloca-tion, and instruction scheduling.� Jalape~no Baseline: The Jalape~no Virtual Machinecon�gured to use the Jalape~no Baseline Compiler as aJIT for all classes dynamically loaded by the applica-tion.� Jalape~no Optimizer: The Jalape~no Virtual Machinecon�gured to use the Jalape~no Optimizing Compiler asa JIT for all classes dynamically loaded by the applica-tion. The following optimizations were performed: in-lining of static and �nal methods, semantic inlining ofselected library routines, limited static class predictionto safely inline virtual methods, linear scan registerallocation, limited constant propagation, type prop-agation, unreachable code elimination, local common

Test JDK Jalapeno JDK Jalapenow/o JIT Baseline w/ JIT OptimizerBSort 77.19 34.26 3.20 3.94Bi BSort 67.93 30.49 2.32 3.10Qsort 15.27 6.10 1.11 0.78Sieve 11.47 4.74 0.34 0.42Hanoi 17.84 7.90 1.00 1.54Dhrystone 7.12 2.33 0.65 0.68Tree 9.87 14.49 2.44 3.40Fibonacchi 20.23 11.58 1.75 0.98Array 4.95 10.15 1.01 0.84Compress 85.67 46.08 5.86 7.23DB 7.18 3.89 1.73 2.94Javac 7.52 4.21 2.29 7.63Jack 31.36 23.46 7.06 10.54Table 1: Execution times (seconds)subexpression elimination, ow-insensitive copy propa-gation and dead code elimination, and local redundantbounds check elimination.In both Jalape~no con�gurations, the \boot image" contain-ing the Jalape~no JVM itself was created by using the Jalape~noOptimizing Compiler as a static compiler performing all theoptimizations listed above.9.3 Micro-benchmark ProgramsTo evaluate code quality, Figure 13 and Table 1 compare theperformance on these four Java environments for nine micro-benchmarks developed by Symantec Corporation. For themicro-benchmarks, we report the mean wall-clock executiontime for the last ten of eleven runs; standard deviations werenegligible.The results show that on three of the nine tests (QSort,Fibonacci, Array), the optimizing compiler delivers betterperformance than the product JIT compiler. This is en-couraging because the product JIT compiler performs manymore optimizations than the current implementation of theoptimizing compiler. Performance on Dhrystone is roughlyequivalent, and on the remaining �ve tests the optimizingcompiler performance is within a factor of 1.6 of the productJIT compiler.9.4 Macro-Benchmark ProgramsTo evaluate system performance on medium-sized bench-marks, we present performance results on several codes fromthe SPECjvm98 suite [14]. The system currently runs four ofthe seven tests ( 201 compress, 209 db, 213 javac, 228 jack);the others do not yet run due to incomplete library support.We ran the tests using the SPEC driver program, con-�gured to run each test between two and four times, andreport the best wall-clock time. This methodology factors
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Jalapeno OptimzingFigure 13: Execution time (in seconds) for micro and macro benchmarksout compile-time. We run the benchmarks using the SPECproblem size parameter set to 10, for medium-size inputparameters. Note that these results do not follow the o�cialSPEC reporting rules, and therefore should not be treatedas o�cial SPEC results.Figure 13 and Table 1 show the results in the four Javaenvironments enumerated above. The results show that thecurrent optimizing compiler runs these codes between 1.2 to3.3 times slower than the product JIT. We believe that theperformance inversion of the Jalape~no Baseline and Opti-mizing con�gurations for javac can be attributed to perfor-mance problems in the conservative GC subsystem. Giventhe current immature state of our JVM and compiler, weare encouraged that our performance is within an order ofmagnitude of the best current commercial technology. Theseresults suggest that with much more tuning and furtheroptimization, a JVM written entirely in Java may achieveperformance competitive with a state-of-the-art JVM im-plemented in C.10 Interprocedural Optimizations | Extensions to Cur-rent ImplementationThis section describes two interprocedural optimizations thatare in progress as extensions to the current implementa-tion | interprocedural optimization of register saves andrestores (Section 10.1), and interprocedural escape analysis(Section 10.2). In addition, Section 10.3 discusses issuesrelated to interprocedural optimization in the presence ofdynamic class loading.10.1 Interprocedural Optimization of Register Saves andRestoresTo optimize register saves and restores at call sites [12, 34],we �rst perform interprocedural register usage analysis. In-

terprocedural register usage is a backward analysis performedover the call graph of a program to determine the registerrequirements across method boundaries. Without interpro-cedural analysis, all caller save registers have to be savedand restored at call sites even if they are not used in calleemethods. For interprocedural analysis we �rst construct acall graph of all methods that are compiled by the optimizingcompiler. The call graph accommodates virtual methodcall sites. We then process the methods in the call graphin reverse topological order.7 The analysis assumes thatregisters are allocated contiguously, starting from the �rstavailable register. For each method we �rst compute thenumber of registers used intraprocedurally. This informationis propagated back to caller(s) of the method. The valueat each node gives the number of registers that have to besaved and restored at each call site which invokes that node.If the callee is compiled with the baseline compiler, then wepropagate ? to the caller (? indicates that all live caller saveregisters have to be saved and restored at that call site). Inthe presence of cycles, we can either compute a �xed pointor propagate ?.To illustrate our approach consider the call graph shownin Figure 14. The numbers on the left of each node corre-spond to the register requirements within each method (com-puted intraprocedurally). The numbers enclosed in squarebrackets are the register requirements computed during ourbackward interprocedural analysis. The meet of two valuesis the maximum value of the two values, and meet of a ?with any value is a ?.10.2 Escape AnalysisEscape analysis is a technique for determining whether anobject that is created in a method may escape a call to themethod. The most well-known application of escape analysis7We ignore the back edges while determining the topological order.
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[    ][3]Figure 14: An example for interprocedural register saves andrestoresis to allocate non-escaping objects on the stack instead of theheap. This leads to (i) reduced overheads of object allocationand deallocation (i.e., garbage collection, for languages thatsupport it), and (ii) usually, improved data locality [6]. Inthe context of Java, escape analysis can also be used to iden-tify objects that are local to a thread. This leads to anotherimportant bene�t { reduced synchronization overhead, as wecan eliminate the locking operations on thread-local objects.We have developed several algorithms for performing es-cape analysis. Among them, we have implemented an ap-proach based on a connection graph abstraction, in the con-text of a static compiler to evaluate its potential bene�ts.Our results are encouraging, especially for reducing syn-chronization overheads [11]. We are currently implementingescape analysis in the Jalape~no Optimizing Compiler.10.3 Handling Dynamic Class LoadingInterprocedural optimizations and those optimizations thatdepend on the structure of the class inheritance graph canbecome invalid in the presence of dynamic class loading.When an optimization applied to a method becomes invalidin this manner, all optimized versions of the method cur-rently on the call stack must be replaced. One option isto replace them by the unoptimized version of the method.We maintain a \resolution dependence graph" during theoptimization phase that indicates which methods could bea�ected when a new class is loaded.Consider the interprocedural optimization of register savesand restores described in Section 10.1. Assume, for example,that a new class can be loaded at the point where C is called(in Figure 14). Also, assume that we have a new call C'in place of C. Methods C', B, and A are a�ected. Nowassume that the intraprocedural register requirement for C'is 6. Only the register requirement of C' is a�ected, sincethe register requirement of B is already 6. In summary, we

essentially incrementally update only a�ected nodes. Forthis purpose we can use techniques from incremental dataow analysis and compilation [7, 26].The invalidation mechanism for dynamic class loadinghas not yet been implemented.11 Related WorkDynamic compilation, also called dynamic translation orjust-in-time compilation, has been a key ingredient in a num-ber of previous implementations of object-oriented languages.Deutsch and Schi�man's high performance implementationof Smalltalk-80 dynamically translated Smalltalk bytecodesto native code [16]; their compiler was quite similar to ourbaseline compiler. Implementations of the Self languagealso relied on dynamic compilation to achieve high perfor-mance [8]. All three generations of Self compilers utilizedregister-based intermediate representations that are roughlyequivalent to the one used by the Jalape~no Optimizing Com-piler. Recently, a number of just-in-time compilers have beendeveloped for the Java language [2]. Some of these compilerstranslate bytecodes to a three-address code, perform simpleoptimizations and register allocation, and then generate tar-get machine code.A number of previous systems have utilized more spe-cialized forms of dynamic compilation to selectively optimizeprogram hot spots by exploiting \run-time constants" [13,5, 31, 19]. In general, these systems emphasize extremelyfast dynamic compilation, often performing extensive o�-lineprecomputations to avoid constructing any explicit represen-tation of the program fragment being compiled at dynamiccompile-time.Implementing a Java virtual machine and its related sub-system (including the optimizer) in Java opens several chal-lenges. Taivalsaari [36] also describes a \Java in Java" imple-mentation to examine the feasibility of a high quality virtualmachine written in Java. One drawback of this approach isthat it runs on another Java virtual machine, which addsperformance overhead because of the two-level interpretationprocess. Our approach avoids the need for another JVMby bootstrapping the system. Compared to Taivalsaari'ssystem we have also implemented several optimizations toimprove the performance of the overall system and Javaapplications.A large collection of work addresses optimizations spe-ci�c to object-oriented languages, such as class analysis,both intraprocedural [10] and interprocedural (see relatedwork in [20]), class hierarchy analysis and optimizations [37,35], receiver class prediction [16, 21, 9], method special-ization [37], and call graph construction (see related work



in [20]). Other optimizations relevant to Java include boundscheck elimination [30] and semantic inlining [39].12 Conclusions and Future WorkThe use of Java in many important server applications de-pends on the availability of a JVM that supports e�cientexecution of such applications on server machines. Jalape~nois one such JVM. Our ability to correctly execute a widerange of large Java programs has validated the soundnessof Jalape~no's compile-only approach to program execution.In addition, our preliminary performance results show that,even with its current limited set of optimizations, the Jalape~noOptimizing Compiler is capable of delivering performancethat is comparable to the performance delivered by a production-strength JIT compiler. The fact that the Jalape~no run-timesystem (and the rest of the JVM) is implemented in Javamakes this achievement all the more remarkable. To thebest of our knowledge, the Jalape~no Optimizing Compiler isthe �rst dynamic optimizing compiler for Java that is beingused in a JVM with a compile-only approach to programexecution.There are many challenging directions for future researchbased on the Jalape~no Optimizing Compiler. In the areaof optimizations, we already described two interproceduraloptimizations in Section 10 that are currently in progress.In addition, we have begun work on ow-sensitive optimiza-tions using Array SSA form [27, 28] and context-sensitivepro�le-directed inlining of method calls based on the CallingContext Graph.AcknowledgmentsWe would like to thank other past and present members ofthe Jalape~no JVM team | Bowen Alpern, Dick Attanasio,John Barton, Perry Cheng, Anthony Cocchi, Brian Cooper,Susan Hummel, Derek Lieber, Vassily Litvinov, Mark Mer-gen, Ton Ngo, Igor Pechtchanski, Jim Russell, Janice Shep-herd, Steve Smith, Peter Sweeney | for their contributionsin building the rest of the JVM and for various suggestionsin the design of the Jalape~no Optimizing Compiler. We alsothank Laureen Treacy for her proofreading assistance.References[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles,Techniques, and Tools. Addison-Wesley, 1986.[2] Ali-Reza Ald-Tabatabai, Michal Cierniak, Guei-Yuan Lueh,Vishesh M. Parikh, and James M. Stichnoth. Fast, e�ectivecode generation in a just-in-timeJava compiler. In SIGPLAN
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