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Abstract

The PageRank algorithm, used in the Google seangine, greatly
improves the results of Web search by taking intooaint the link
structure of the Web. PageRank assigns to a paggore propor-
tional to the number of times a random surfer wouikit that page,
if it surfed indefinitely from page to page, follavg all outlinks

from a page with equal probability. We propose ngprove Page-
Rank by using a more intelligent surfer, one thatguided by a
probabilistic model of the relevance of a page tguary. Efficient

execution of our algorithm at query time is madesgible by pre-
computing at crawl time (and thus once for all qegy the neces-
sary terms. Experiments on two large subsets ofWsb indicate
that our algorithm significantly outperforms PageRan the (hu-

man-rated) quality of the pages returned, while ainimg efficient

enough to be used in today’s large search engines.

1 Introduction

Traditional information retrieval techniques carveipoor results on the Web, with
its vast scale and highly variable content qualRegcently, however, it was found
that Web search results can be much improved knygusie information contained in
the link structure between pages. The two best-knaigorithms which do this are
HITS [1] and PageRank [2]. The latter is used i@ bighly successful Google search
engine [3]. The heuristic underlying both of theggproaches is that pages with many
inlinks are more likely to be of high quality thaages with few inlinks, given that
the author of a page will presumably include itiriks to pages that s/he believes are
of high quality. Given a query (set of words or etlguery terms), HITS invokes a
traditional search engine to obtain a set of pagésvant to it, expands this set with
its inlinks and outlinks, and then attempts to fitweb types of pageshubs (pages
that point to many pages of high quality) amahorities(pages of high quality). Be-
cause this computation is carried out at query tiihdés not feasible for today's
search engines, which need to handle tens of maliof queries per day. In contrast,
PageRank computes a single measure of quality foage at crawl time. This meas-



ure is then combined with a traditional informatiogtrieval score at query time.
Compared with HITS, this has the advantage of nyretater efficiency, but the dis-
advantage that the PageRank score of a page igadrether or not the page is rele-
vant to the query at hand.

Traditional information retrieval measures like TH [4] rate a document highly if
the query terms occur frequently in it. PageRanksa page highly if it is at the cen-
ter of a large sub-web (i.e., if many pages pomntitt many other pages point to
those, etc.). Intuitively, however, the best paglesuld be those that are at the center
of a large sub-webelevant to the querylf one issues a query containing the word
"jaguar," pages containing the word "jaguar" theg also pointed to by many other
pages containing "jaguar" are more likely to be gy@boices than pages that contain
"Jaguar" but have no inlinks from pages containihgpages that have many inlinks
but neither they nor the inlinks contain "jaguany'even pages that contain "jaguar”
and have many inlinks, but the inlinking pages @t contain the term. This paper
proposes a search algorithm that formalizes thisition while, like PageRank, do-
ing most of its computations at crawl time. The &Rgnk score of a page can be
viewed as the rate at which a surfer would visétthage, if it surfed the Web indefi-
nitely, blindly jumping from page to page. Our algbm does something closer to
what a human surfer would, jumping preferentialty gages containing the query
terms.

A problem common to both PageRank and HITS is tajpift. Because they give the
same weight to all edges, the pages with the mstks in the network being con-
sidered (either at crawl or query time) tend to dwabe, whether or not they are the
most relevant to the query. Chakrabarti et al.gbfl Bharat and Henzinger [6] pro-
pose heuristic methods for differentially weightinigks. Our algorithm can be
viewed as a more principled approach to the samblpm. It can also be viewed as
an analog for PageRank of Cohn and Hofman’s [7jateom of HITS. Rafiei and
Mendelzors [8] algorithm, which biases PageRank towards pages containing a spe-
cific word, is a predecessor of our work. Haveliwala [9] proposes applying an opti-
mized version of PageRank to the subset of pages containing the query terms, and
suggests that users do this on their own machines.

We first describe PageRank. We then introduce our query-dependent, content-
sensitive version of PageRank, and demonstrate how it can be implemented effi-
ciently. Finally, we present and discuss experimental results.

2 PageRank : The Random Surfer

Imagine a web surfer who jumps from web page to web page, choosing with uniform
probability which link to follow at each step. In order to reduce the effect of dead-
ends or endless cycles the surfer will occasionally jump to a random page with some
small probability, or when on a page with no out-links. To reformulate this in graph
terms, consider the web as a directed graph, where nodes represent web pages, and
edges between nodes represent links between web pages. Let W be the set of nodes,
N=|W|, F; be the set of pages page i links to, and B; be the set pages which link to
page i. For pages which have no outlinks we add a link to all pages in the graph®. In
this way, rank which is lost due to pages with no outlinks is redistributed uniformly
to all pages. If averaged over a sufficient number of steps, the probability the surfer
ison pagej at some point in time is given by the formula:

! For each page with no outlinks, we seff<={all N nodes}, and for all other nodes aug-
mentB; with s. (B; O {s})
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wheref3 is some small constankf<1. The PageRank score for nodis defined as
this probability: PRj)=P(). Because equation (1) is recursive, it must beatively

evaluated until B} converges. Typically, the initial distributionrf®(j) is uniform.
PageRank is equivalent to the primary eigenvectdhe transition matrix Z:
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One iteration of equation (1) is equivalent to camipg x"'=Zx', wherex;'=P() at

iteration t. After convergence, we hawe "'=x", or x'=Zx", which means<' is an

eigenvector of Z. Furthermore, since the columnZ agfre normalizedx has an ei-
genvalue of 1.

3 Directed Surfer Model

We propose a more intelligent surfer, who probatitially hops from page to page,
depending on the content of the pages and the geemys the surfer is looking for.
The resulting probability distribution over pagss i

Pq(j):(1_ﬁ)Pé(j)+ﬂ'%Pq(i)Pq(i - ) 3)

wherePy(i - ) is the probability that the surfer transitionsgagej given that he is
on page and is searching for the quegyP,'(j) specifies where the surfer chooses to
jump when not following linksPg(j) is the resulting probability distribution over
pages and corresponds to tgery-dependent PageRaskore(QD-PageRankj) =
Pq()). As with PageRank, QD-PageRank is determined tbsaiive evaluation of
equation 3 from some initial distribution, and iguévalent to the primary eigenvec-
tor of the transition matrix  where qui =1-B)R(i)+B 3 Ry(i - j). Although
i0B;
Pq(i—]j) andPy'(j) are arbitrary distributions, we will focus on tbase where both
probability distributions are derived froR(j), a measure ofelevanceof pagej to
queryq:

o Ry(D) . Ry(D)
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In other words, when choosing among multiple ookdi from a page, the directed
surfer tends to follow those which lead to pagesseéhcontent has been deemed
relevant to the query (according Ry). Similarly to PageRank, when a page’s out-
links all have zero relevance, or has no outlinks, we add links from that page to all
other pages in the network. On such a page, the surfer thus chooses a new page to
jump to according to the distribution Pg'(j) .

When given a multiple-term query, Qef0,,...}, the surfer selects a q according to
some probability distribution, P(q) and uses that term to guide its behavior (accord-
ing to equation 3) for alarge number of steps’. It then selects another term according

! However many steps are needed to reach converggremguation 3.



to the distribution to determine its behavior, asml on. The resulting distribution
over visited web pages is QD-PageRaakd is given by

QD-PageRank(j) = Ry(j) = gQP(Q)Pq(J') ©)
q

For standard PageRank, the PageRank vector is @guivto the primary eigenvector
of the matrix Z. The vector of single-term QD-PRg@&k, is again equivalent to the
primary eigenvector of the matrix,ZAn interesting question that arises is whether
the QD-PageRank vector is equivalent to the primary eigenvector adfmatrix

Zg = ng(q)ZGI (corresponding to the combination performed by ¢iguma5). In
g

fact, this is not the case. Instead, the primagervector ofZ5 corresponds to the
QD-PageRank obtained by a random surfer wdtoeach stepselects a new query
according to the distributioR(q). However, QD-PageRagks approximately equal
to the PageRank that results from this single-stafer, for the following reason.

Let x4 be the L2-normalized primary eigenvector for maij, (note element of x,
is QD-PageRanj)), thus satisfying(=T'x". Sincex, is the primary eigenvector for

Z, we have [10]:Dq,rDQ:"quq"z”qur . Thus, to a first degree of approxima-
tion, Z, ngr =KZ Xq. Suppose P(q)=1/|Q|. Consideg = gQP(q)xq(see equation
r q

5). Then
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and thusxq is approximately an eigenvector fdg. Sincexq is equivalent to QD-
PageRank andZq describes the behavior of the single-step su@®;PageRank
is approximately the same PageRank that would baimédd by using the single-step
surfer. The approximation has the least error wthenindividual random surfers de-
fined byZ, are very similar, or are very dissimilar.

The choice of relevance functid®,(j) is arbitrary. In the simplest casi,(j)=R is
independent of the query term and the document,IbePageRank reduces to Page-
Rank. One simple content-dependent function coel®J§j)=1 if the term g appears
on pagg, and 0 otherwise. Much more complex functions ddué used, such as the
well-known TFIDF information retrieval metric, a@® obtained by latent semantic
indexing, or any heuristic measureingstext size, positioning, etc.... It is important

to note that most current text ranking functions could be easily incorporated into the
directed surfer model.

4 Scalability

The difficulty with calculating a query dependent PageRank is that a search engine
cannot perform the computation, which can take hours, at query time, when it is ex-
pected to return results in seconds (or less). We surmount this problem by precom-
puting the individual term rankings QD-PageRank,, and combining them at query
time according to equation 5. We show that the computation and storage require-
ments for QD-PageRank, for hundreds of thousands of words is only approximately
100 times that of a single query independent PageRank.

Let W={qy, O, ..., Qm} be the set of words in our lexicon. That is, we assume all
search queries contain terms in W, or we are willing to use plain PageRank for those
terms not in W. Let dy be the number of documents which contain the term g. Then

S= 3 dq isthe number of unique document-term pairs.
qw



4.1 Disk Storage

For each terng, we must store the results of the computation. atlé the minor re-
striction that a search query will only return demnts containing all of the terfhs
Thus, when merging QD-PageRgrds we need only to know the QD-PageRank, for
documents that contain the term. Each QD-PageRank, is a vector of d, values. Thus,
the space required to store all of the pageranksis S, a factor of S/N times the query
independent PageRank alone (recall N is the number of web pages). Further, note
that the storage space is still considerably less than that required for the search en-
gine’s reverse index, which must store information about all document-term pairs, as
opposed to our need to store information about every uniquedocument term pair.

4.2 Time Requirements

If Ry(j)=0 for some document j, the directed surfer will never arrive at that page. In
this case, we know QD-PageRank,(j)=0, and thus when calculating QD-PageRank,
we need only consider the subset of nodes for which R,(j)>0. We add the reasonable
constraint that Ry(j)=0 if term g does not appear in document j, which is common for
most information retrieval relevance metrics, such as TFIDF. The computation for
term q then only needs to consider d, documents. Because it is proportional to the
number of documents in the graph, the computation of QD-PageRank, for all qin W
will require O(S) time, a factor of S/N times the computation of the query independ-
ent PageRank alone. Furthermore, we have noticed in our experiments that the com-
putation converges in fewer iterations on these smaller sub-graphs, empirically re-
ducing the computational requirements to 0.75* S/N. Additional speedup may be de-
rived from the fact that for most words, the sub-graph will completely fit in memory,
unlike PageRank which (for any large corpus) must repeatedly read the graph struc-
ture from disk during computation.

4.3 Empirical Scalability

The fraction S/N is critical to determining the scalability of QD-PageRank. If every
document contained vastly different words, S/N would be proportional to the number
of search terms, m. However, thisis not the case. Instead, there are a very few words
that are found in almost every document, and many words which are found in very
few documents?; in both cases the contribution to Sis small.

In our database of 1.7 million pages (see section 5), we let W be the set of all unique
words, and removed the 100 most common words®. This results in [W|=2.3 million
words, and the raio S/N was found to be 165. We expect that this ratio will remain
relatively constant even for much larger sets of web pages. This means QD-
PageRank requires approximately 165 times the storage space and 124 times the
computation time to allow for arbitrary queries over any of the 2.3 million words.

5 Results

We give results on two data sets: educraw| and WebBaseEducrawlis a crawl of the
web, restricted to .edu domains. The crawler was seeded with the first 18 results of a

! Google has this “feature” as well. See http://www.google.com/technol ogy/whyuse.html.

2 This is because the distribution of words in text tends to follow an inverse power law
[11]. We also verified experimentally that the same holds true for the distribution of the
number of documents aword is found in.

31t is common to remove “ stop” words such as the, is, etc... asthey don't affect the search



Table 1: Results on educrawl Table 2: Results on WebBase

Query QD-PR PR Query QD-PR PR

chinese association| 10.75 6.50 al coholism 11.50 11.88
computer labs 9.50 13.25 architecture 8.45 2.93
financial aid 8.00 12.38 bicycling 8.45 6.88
intramural 16.5 10.25 rock climbing 8.43 5.75
maternity 12.5 6.75 shakespeare 11.53 5.03
president office 5.00 11.38 stamp collecting  9.13 10.68
sororities 13.75 7.38 \vintage car 13.15 8.68
student housing 14.13 10.75 Thailand tourism  16.90 9.75
visitor visa 19.25 12.50 Zen Buddhism 8.63 10.38
Average 12.15 10.13 Average 10.68 7.99

search for “University” on Google (www.google.com). Links containing “?” or “cgi-
bin” were ignored, and links were only followed if they ended with “.html”. The
crawl contains 1.76 million pages over 32,000 different domains. WebBasés the first
15 million pages of the Stanford WebBase repository [12], which contains over 120
million pages. For both datasets, HTML tags were removed before processing.

We calculated QD-PageRank as described above, using Rq(j) = the fraction of words
equal to g in page j, and P(q)=1/|Q|. We compare our algorithm to the standard Pag-
eRank algorithm. For content ranking, we used the same Ry(j) function as for QD-
PageRank, but, similarly to TFIDF, weighted the contribution of each search term by
the log of its inverse document frequency. As there is nothing published about merg-
ing PageRank and content rank into one list, the approach we follow is to normalize
the two scores and add them. This implicitly assumes that PageRank and content rank
are equally important. This resulted in poor PageRank performance, which we found
was because the distribution of PageRanks is much more skewed than the distribution
of content ranks; normalizing the vectors resulted in PageRank primarily determining
the final ranking. To correct this problem, we scaled each vector to have the same
average value in its top ten terms before adding the two vectors. This drastically im-
proved PageRank.

5.1 Search Quality

For educraw] three volunteers were requested to provide a single word and two dou-
ble word search queries, resulting in a total of nine queries. For each query, the top
10 results from standard PageRank and the top 10 results from QD-PageRank were
randomly mixed and given to four volunteers, who were asked to rate each search
result as a 0 (not relevant), 1 (somewhat relevant, not very good), or 2 (good search
result) based on the contents of the page it pointed to. In Table 1, we show the results
of this experiment. A similar experiment for WebBases given in Table 2. For Web-
Base the queries were randomly selected from Bharat and Henzinger [6]; the four
volunteers for the WebBaseevaluation were independent from the four for the
educrawlevaluation, and none knew how the results they were asked to rank were
obtained.

QD-PageRank performs better than PageRank, accomplishing a relative improvement
in relevance of 20% on educrawland 34% on WebBaseThe results are statistically
significant (p<.03 for educrawl and p<.001 for WebBase using a two-tailed paired t-
test, one sample per person per query). Averaging over queries, every volunteer



found QD-PageRank to be an improvement over PageRaough not all differ-
ences were statistically significant.

6 Conclusions:

In this paper, we introduced a model that probatidally combines page content and
link structure in the form of an intelligent randosurfer. The model can accommo-
date essentially any query relevance function ia taglay, and produces high-quality
results than PageRank, while having time and swnmaguirements that are within
reason for today’ s large scal e search engines.

Acknowledgements

We would like to thank Gary Wesley and Taher Haveliwala for their help with Web-
Base, Frank McSherry for eigen-help, and our experi ment volunteers for their time.

References

[1] J. M. Kleinberg (1998)Authoritative sources in a hyperlinked environmdntProceed-
ings of the Ninth Annual ACM-SIAM Symposium on Diste Algorithms, pages 668-677.

[2] L. Page, S. Brin, R. Motwani, and T. Winograte PageRank citation ranking: Bringing
order to the webTechnical report, Stanford University, Stanfo@#, 1998.

[3] S. Brin and L. Page (1998)he anatomy of a large-scale hypertextual Web deangine
Proceedings of the Seventh International World Wideb Conference.

[4] G. Salton and M. J. McGillntroduction to Modern Information RetrievadicGraw-Hill,
New York, NY, 1983.

[5] S. Chakrabarti, B. Dom, D. Gibson, J. Kleinbeglr)g Raghavan, and S. Rajagopalan (1998).
Automatic resource compilation by analyzing hypedlstructure and associated texqro-
ceedings of the Seventh International World WidebV@®nference, pp.65-74.

[6] K. Bharat and M. R. Henzinger (1998mproved algorithms for topic distillation in a
hyperlinked environmenProceedings of the Twenty-First Annual InternaibACM SIGIR
Conference on Research and Development in InfoonaRetrieval.

[7] D. Cohn and T. Hofmann (2001The missing link - a probabilistic model of docurne
content and hypertext connectivitp. T. K. Leen, T. G. Dietterich, and V. Tresp, ed#, Ad-
vances in Neural Information Processing SystemsMI3. Press, Cambridge, MA.

[8] D. Rafiei and A. MendelzoklVhat is this page known for? Computing web pageitap
tions Proceedings of the Ninth International World WMeb Conference.

[9] T. Haveliwala (1999)Efficient computation of PageRarnkechnical report, Stanford Uni-
versity, Stanford, CA, 1999.

[10] G. H. Golub and C. F. Van Loan (1998)atrix ComputationsJohns Hopkins University
Press, Baltimore, MD, third edition.

[11] G. K. Zipf. Human Behavior and the Principle of Least Effokldison-Wesley, Cam-
bridge, MA, 1949.

[12] J. Hirai, S. Raghaven, H. Garcia-Molina, A.epake (1999)WebBase: a repository of
web pagesProceedings of the Ninth World Wide Web Conferenc



