
A Nested-Graph Model for the Representation and Manipulation of Complex
Objects

ALEXANDRA POULOVASSILIS

Department of Computer Science, King’s College London, Strand, London, WC2R 2LS, U.K.

E-mail:alex@uk.ac.kcl.dcs

MARK LEVENE

Department of Computer Science, University College London, Gower Street, London, WC1E 6BT,

U.K.

E-mail:M.Levene@uk.ac.ucl.cs

Three recent trends in database research have been object-oriented and deductive databases, and graph-based user inter-

faces. We draw together these trends in a data model we call the Hypernode Model. The single data structure of this

model is the hypernode, a graph whose nodes can themselves be graphs. Hypernodes are typed, and types, too, are

nested graphs. We give the theoretical foundations of hypernodes and types, and we show that type checking is tract-

able. We also show how conventional type-forming operators can be simulated by our graph types, including cyclic

types. The Hypernode Model comes equipped with a rule-based query language called Hyperlog which is complete

with respect to computation and update. We define the operational semantics of Hyperlog and show that the evaluation

of Hyperlog programs is intractable in the general case - we identify cases when evaluation can be performed

efficiently. We also discuss the use of Hyperlog for supporting database browsing, an essential feature of Hypertext

databases. We compare our work with other graph-based data models - unlike previous graph-based models, the

Hypernode Model provides inherent support for data abstraction via its nesting of graphs. Finally, we briefly discuss

the implementation of a DBMS based upon the Hypernode Model.

Categories and Subject Descriptors : E.1[Data Structures]:Graphs. H.2.1[Database Management]:Logical Design-

data models. H.2.3[Database Management]:Languages-query languages.

General Terms : Design, Languages

Additional Key Words and Phrases : Nested graph, complex object, types, rule-based query and update language,

object store.

2

1. INTRODUCTION

Recent database research has focussed on deductive [7, 14, 26] and object-oriented [5, 22] databases. Deductive

databases extend the relational data model with rule-based computation. Rules enable the derivation of further,

intentional, tuples from the stored, extensional, tuples. These derived tuples can be used purely for querying purposes

or can be inserted into the database. Conversely, object-oriented databases start off with a semantic data model [16, 20,

31], which typically supports object identity, inheritance and complex objects, and extend it with features such as

methods and encapsulation from object-oriented programming [32, 37].

Thus, deductive and object-oriented database are largely complementary. The former support extensionally and inten-

tionally defined relations, but not fundamental data abstraction concepts such as classification, identification, inheri-

tance and encapsulation. Conversely, the latter do support these abstraction concepts but do not support relations natur-

ally. Hence, recent research has aimed at integrating the two paradigms. The integration has generally taken the route

of extending logic-based deductive database languages with features such as object identity, sets, functions, methods

and inheritance [1, 2, 3, 14]. In contrast, in this paper we report upon a graph-based approach to such an integration.

Our use of graphs has two key advantages : firstly, graphs are formally defined, well-understood structures; secondly, it

is widely accepted that graph-based formalisms considerably enhance the usability of complex systems [19]. Graphs

have been used in conjunction with a number of conventional data models, for example the hierarchical and network

models [35], the entity-relationship model [9] and a recent extension thereof for complex objects [27], and various

semantic data models [16, 20, 31]. Graphs or hypergraphs [6] have also been used more recently in [12, 17, 23, 25, 33,

36] as a data modelling tool in their own right. We give a comparison between this recent work and our own approach

in Section 4 of the paper.

Directed graphs have also been the foundation of Hypertext databases [11, 33]. Such databases are graphs consisting of

nodes which refer to units of stored information (typically text) and of named links. Each link connects two nodes, the

"source" and the "destination". Links are traversed either forwards (from source to destination) or backwards (from

destination to source). The process of traversing named links and examining the text associated with nodes is called

browsing. Typically, a simple query facility consisting of string-based search is provided which can be used to identify

an initial set of nodes prior to browsing. A further feature of Hypertext is the dynamic creation of new nodes and links.

Motivated by the previous research outlined above, we have developed a graph-based data model called the Hypernode

Model which supports object identity and arbitrarily complex objects, and which is well-suited to the implementation of

Hypertext databases. In contrast to other graph-based models, we use nested, possibly recursively defined, graphs

termed hypernodes. A hypernode is a pair (N,E) of nodes and directed edges such that the nodes can themselves be

hypernodes. Thus, unlike other graph-based models, the Hypernode Model provides inherent support for the nesting of

information. The labels of hypernodes are unique and serve as object identifiers. We illustrate a hypernode in Figure 1.

It represents a couple, C, consisting of two people, PER1 and PER2, whose children are nested within further hyper-

nodes. In Figure 2 we show the children of person PER1, which would become visible if we "exposed" the hypernodes

labelled PER3 and PER4. We observe from these figures that hypernodes differ from hypergraphs in that they

3

generalise nodes to hypernodes as opposed to generalising edges to hyperedges.

name "Bob"

surname "Smith"

child PER3PERSON

PER1PERSON

name "Mary"

surname "Jones"

child PER3PERSON

PER4PERSON

PER2PERSON

CCOUPLE

Fig. 1. An example hypernode.

name "Jill"

surname "Smith"

child nonePERSON

PER3PERSON

name "Jack"

surname "Jones"

child nonePERSON

PER4PERSON

Fig. 2. Further hypernodes.

We note that the labels C and PER1-PER4 in Figure 1 are superscripted with the tags COUPLE and PERSON, respec-

tively. As we explain in the sequel, these tags indicate the types of their associated hypernodes. Types give us a means

of defining database schemas and of enforcing constraints on the structure and content of hypernodes. Types, too, are

represented by nested graphs and can be queried and updated using the same formalism as for hypernodes. We also

note the use of the node nonePERSON in Figure 2 - it denotes "not present".

The Hypernode Model comes equipped with a computationally powerful declarative language called Hyperlog. The

model and language share features with both deductive and object-oriented databases. In common with other deductive

database languages, Hyperlog is rule-based and supports derivations and database updates. In common with object-

oriented databases the Hypernode Model supports arbitrarily complex objects and the data abstraction concepts of

classification (via types), identification (via unique labels) and encapsulation (via the nesting of graphs). In [25] we

showed how structural inheritance is also supported naturally by nested graph structures (in that paper, we used nested

hypergraphs but our treatment is equally applicable to the simpler nested graphs of the Hypernode Model). In [24] we

also showed how methods can be supported as parametrised Hyperlog programs.

The Hypernode Model supports the main features of Hypertext databases : Strings of arbitrary length are supported as

a primitive type and so unstructured text can be represented. Such text can be a node of a hypernode which is itself

encapsulated within a number of further hypernodes - hence text can be shared. Sets of text fragments are easily

represented - as the nodes of a hypernode. Annotated links can be represented by a hypernode with a single incoming

edge from the source node and a single outgoing edge to the destination node; this hypernode can encapsulate the anno-

tation information, for example, the actual link label, a description of the semantics of the link, the creator of the link

and its date of creation. The nesting of hypernodes is an abstraction tool which greatly facilitates the design and brows-

ing of densely connected database graphs and which is unique to our model. Finally, Hyperlog can support both

4

database browsing and general-purpose declarative querying. The latter facility can be used to create contexts for

browsing.

We first introduced the Hypernode Model in [24]. In the present paper we expand upon that work in several directions,

including expressiveness of representation and computation, efficiency of inference, support of Hypertext, and imple-

mentation issues. We also describe recent work in extending the model to include types and extending Hyperlog to per-

form deletions as well as insertions. The outline of this paper is as follows. In Section 2 we discuss the fundamentals

of the Hypernode Model, namely hypernodes and types. We also discuss representational expressiveness and type

checking complexity. In Section 3 we give the syntax and semantics of Hyperlog. We discuss the complexity of

evaluating Hyperlog programs, and their computational and update expressiveness. We also show how Hyperlog can

be used for database browsing. In Section 4 we compare our work with other graph-based languages and models. In

Section 5 we briefly describe a prototype implementation. We conclude in Section 6 with a summary of our results.

2. THE HYPERNODE MODEL

In this section we discuss the fundamentals of our model, namely hypernodes and types. We define hypernodes and

repositories for them in Section 2.1. We define types and type repositories in Section 2.2, where we also examine the

efficiency of type checking. In Section 2.3 we illustrate the use of types via an extended example based upon a flights

bookings database. Finally, in Section 2.4 we discuss the representational expressiveness of our model.

2.1 Hypernodes and Hypernode Repositories

In this section we introduce the underlying data structure of the hypernode model, namely the hypernode. We define a

hypernode repository to be a set of graph-defining equations. We then define hypernodes to be the values assigned to

the indeterminates when such a set of equations is solved.

We begin by recalling the definition of a directed graph - a directed graph is an ordered pair (N, E), where N is a finite

set of nodes and E ⊆ (N × N) is a finite set of directed edges. For simplicity, we use the terms "graph" and "directed

graph" interchangeably. Similarly for the terms "edge" and "directed edge". We also use the notation n1→n2 inter-

changeably with (n1, n2) for edges. For the purposes of the Hypernode Model we need two disjoint sets of constants, a

finite set of primitive nodes, P, and a countably infinite set of labels, L. We assume that the set P includes

alphanumeric strings. Other elements of P are denoted by identifiers which start with a lowercase letter. Elements of L

are denoted by identifiers which start with an uppercase letter.

The graphs of the Hypernode Model are defined by equations of the form

G = (N, E)

where G ∈ L and (N,E) is graph such that N ⊆ (P ∪ L). We term such equations hypernode equations. Examples are

the following, where P1, P2, N1, N2 are labels and name, spouse, title, "Ms", "Mr", "A", "B", "Floyd", "Tring" are

primitive nodes :

5

P1 = ({name,spouse,N1,P2},{name→N1,spouse→P2})
P2 = ({name,spouse,N2,P1},{name→N2,spouse→P1})
N1 = ({title,initial,surname,"Ms","A","Floyd"},{title→"Ms",initial→"A",surname→"Floyd"})
N2 = ({title,initial,surname,"Mr","B","Tring"},{title→"Mr",initial→"B",surname→"Tring"})

A hypernode repository (or simply a repository) is a finite set of hypernode equations satisfying the following two con-

ditions :

(H1) no two equations have the same left hand side;

(H2) for any label appearing in the right hand side of an equation, there exists an equation with that label on its left

hand side.

Given a hypernode repository, HR, we denote by LABELS(HR) the set of labels appearing in the equations of HR and

by PRIM(HR) the set of primitive nodes appearing in the equations of HR.

For example, the four equations above satisfy the criteria for a hypernode repository. We note that condition H1 above

corresponds to the entity integrity requirement of [10] since each equation can viewed as representing a real-world

entity. Similarly, condition H2 corresponds to the referential integrity requirement of [10] since it requires that only

existing entities be referenced.

Hypernode repositories can be viewed as storing a set of graphs which may reference other graphs via their labels.

Alternatively, since hypernode repositories are just sets of equations, we would like them to have a unique solution for

the indeterminates (i.e. for the labels G ∈ L) in some well-defined domain. This domain cannot be the universe of

well-founded sets since hypernode equations may be cyclicly defined (for example, the equations defining P1 and P2

above). However, we can appeal to Aczel’s theory of non-well-founded sets [4] to solve hypernode repositories. Non-

well-founded sets subsume well-founded sets by including circular sets i.e. sets that may contain themselves. It is

shown in [4] that a set of set-defining equations (of which a hypernode repository is a special case) has a unique solu-

tion in the universe of non-well-founded sets.

Thus, a hypernode repository HR has a unique solution in the universe of non-well-founded sets. This solution assigns

to each label G on the left hand side of an equation a non-well-founded set. We term such a set a hypernode and denote

it by HYPHR(G), or simply HYP(G) if HR is understood from the context. The hypernode HYP(G) is an ordered pair

(N,E), where N is a set of primitive nodes and further hypernodes, and E ⊆ (N × N) (we note that any ordered pair (a,b)

can be viewed as the set {a,{a,b}}). For example, given a hypernode repository consisting of the four equations for

P1,P2,N1 and N2 above, we have (ignoring the node sets of the graphs for simplicity) :

6

HYP(N1) = {title→"Ms",initial→"A",surname→"Floyd"}
HYP(N2) = {title→"Mr",initial→"B",surname→"Tring"}
HYP(P1) = {name→HYP(N1),spouse→HYP(P2)}

= {name→{title→"Ms",initial→"A",surname→"Floyd"},
spouse→{name→HYP(N2),spouse→HYP(P1)}}

= {name→{title→"Ms",initial→"A",surname→"Floyd"},
spouse→{name→{title→"Mr",initial→"B",surname→"Tring"},spouse→{ ...}}}

HYP(P2) = {name→HYP(N2),spouse→HYP(P1)}
= {name→{title→"Mr",initial→"B",surname→"Tring"},

spouse→{name→HYP(N1),spouse→HYP(P2)}}
= {name→{title→"Mr",initial→"B",surname→"Tring"},

spouse→{name→{title→"Ms",initial→"A",surname→"Floyd"},spouse→{ ... }}}

We note that the sets HYP(N1) and HYP(N2) are well-founded ones while the sets HYP(P1) and HYP(P2) are non-

well-founded ones since they contain themselves.

2.2 Types and Type Repositories

In this and the next two sections we extend our model to incorporate types, which are also graphs. We define type

equations, type repositories and types by analogy to hypernode equations, hypernode repositories and hypernodes. We

then define what it means for a hypernode to be of a particular type, and we show that testing a hypernode repository

for well-typedness can be performed in polynomial time with respect to the size of the repository. In Section 2.3 we

illustrate types via an extended example based upon a flights bookings database.

For the purpose of defining types, we assume the availability of two disjoint sets of constants : a finite set of primitive

types, TP, such that every primitive node n ∈ P is of some unique primitive type T ∈ TP, and a countably infinite set of

type labels, TL, such that every label in a hypernode repository is tagged by a unique type label T ∈ TL (c.f. the types

of object identifiers in object-oriented databases). By analogy to primitive nodes and labels, we distinguish between

primitive types and type labels by using identifiers which start with a lowercase letter for the former and identifiers

which start with an uppercase letter for the latter. We assume that for every type T, primitive or otherwise, there is a

distinguished primitive node, noneT, denoting "not present". As we will see below, this node is used to model missing

or incomplete information. Finally, we assume that the set of primitive types includes the type "string".

Types are defined by means of equations of the form

T = (M, F)

where T ∈ TL and (M,F) is graph such that M ⊆ (TP ∪ TL). We call such equations type equations. A type reposi-

tory, TR, is a finite set of type equations satisfying conditions H1 and H2 for hypernode repositories in Section 2.1.

Again, we can appeal to the theory of non-well-founded sets to solve type repositories i.e. to assign values to the T ∈

TL from the universe of non-well-founded sets. We call such values types and denote them by HYPTR(T), or HYP(T)

when TR is understood from context. These values take the form of a pair (M,F), where M is a set of primitive types

and further types, and F ⊆ (M × M). We also make the reasonable assumption that primitive nodes and labels are dis-

tinct from primitive types and type labels i.e. (P ∪ L) ∩ (TP ∪ TL) = ∅ . Thus, there is no overlap between the data

(hypernodes) and the meta data (types) and the hypernode and type repositories can be merged into one repository. As

well as a uniform storage of data and meta data, this means that the meta data can be queried and updated using the

7

same formalism as the data, namely Hyperlog.

Typings of hypernodes are defined recursively as follows. Given a hypernode (N,E) and a type (M,F) we say that (N,E)

is of type (M,F) if there exists a homomorphism φ : N → M which preserves the types and which satisfies the follow-

ing conditions :

(T1) if n ∈ N, then φ(n) ∈ M;

(T2) if (n1, n2) ∈ E then (φ(n1),φ(n2)) ∈ F;

(T3) if m ∈ M then ∃ n ∈ N such that m = φ(n);

(T4) if (m1, m2) ∈ M then ∃ (n1, n2) ∈ F such that m1 = φ(n1) and m2 = φ(n2).

Conditions T1 and T2 stipulate that a hypernode must contain only nodes and edges which conform to the nodes and

edges of the intended type, while conditions T3 and T4 stipulate that a hypernode must contain at least one instance of

every node and edge in its intended type. These last two conditions are not restrictive since the primitive nodes noneT

can be used in place of missing information.

Typings of individual hypernodes are generalised to typings of hypernode repositories as follows. A hypernode reposi-

tory, HR, is well-typed with respect to a type repository, TR, if for every label GT in LABELS(HR), HYPHR(GT) is of

type HYPTR(T). The following theorem states that testing a hypernode repository for well-typedness is tractable. The

result follows by observing that in order to test a hypernode repository for well-typedness, we can fix the homomor-

phism φ to map primitive nodes and labels to their types and then check the criteria T1 - T4 above for each equation of

HR. If there are m equations in HR to be checked and a maximum of n nodes and e edges in the right hand side of any

hypernode or type equation, the test is achieved in a time proportional to mn2e2.

THEOREM 1. Testing whether a hypernode repository, HR, is well-typed with respect to a type repository, TR, can be

performed in a time polynomial in the number of equations in HR and the maximum size of individual equations.

2.3 The Flights Bookings Database Example

To illustrate types we now consider a database that stores information about bookings of flights by passengers. The

schema of our database is specified by the type FLIGHT_BOOKINGS_SCHEMA in Figure 3. From now on we use

equation-based and pictorial representations of graphs interchangeably. We also omit the type tags of labels if these are

understood from context.

Fig. 3. The example schema.

RF
FC

TC
PT

FLIGHT_BOOKINGS_SCHEMA

AIRLINES AIRPORTS

FLIGHT_BOOKINGS_SCHEMA contains six further types :

8

(i) RF, shown in Figure 4, which represents ROUTEs and the FLIGHTs that fly them (each route is followed by a

number of flights).

(ii) PT, shown in Figure 5, which represents PASSENGERs and their TICKETs (each passenger has bought one or

more tickets).

(iii) TC, shown in Figure 6, which represents TICKETs and their COUPONs (each ticket consists of a number of

coupons). We notice the sharing of the graph TICKET by the graphs TC and PT.

(iv) FC, shown in Figure 7, which represents FLIGHTs and their COUPONs (each flight is booked by a number of

coupons).

(v) AIRLINES and AIRPORTS, shown in Figure 8, which contain the known airlines and airports, respectively.

Fig. 4. Routes and flights that fly them.

RF

AIRPORT

AIRLINE

NAT

to_att

from_att

airline_att

flight_no_att

ROUTE

DATE

FLIGHT

date_of_dep_att

time_of_dep_att TIME

Fig. 5. Passengers and their tickets.

PASSENGERdependents_att

NAMEname_att

PASSENGER

PT

TICKET

date_of_issue_att

fare_att

DATE

FARE

Fig. 6. Tickets and their coupons.

STATUS

CLASS

status_att

class_att

FARE

DATE

fare_att

date_of_issue_att

COUPONTICKET

TC

9

Fig. 7. Flights and their coupons.

TIMEtime_of_dep_att

date_of_dep_att

FLIGHT

FC

STATUS

CLASS

status_att

class_attDATE

COUPON

Fig. 8. The set types AIRLINES and AIRPORTS.

AIRPORTS

AIRPORTAIRLINE

AIRLINES

The remaining types needed to fully specify the FLIGHT_BOOKINGS_SCHEMA are AIRLINE and AIRPORT,

shown in Figure 9, TIME, DATE, FARE and NAME, shown in Figure 10, and finally NAT, shown in Figure 11.

Fig. 9. The types AIRPORT and AIRLINE.

AIRLINEAIRPORT

name_att

code_att
string

name_att

code_att
string

Fig. 10. The types DATE, FARE, TIME and NAME.

string

string

NAT

hours_att

minutes_att

TIME

surname_att

initial_att

title_att

NATamount_att

currency_att

NAT

year_att

month_att

day_att

NAME
FARE

DATE

We can make several observations from the above types :

10

Fig. 11. The natural numbers type.

NAT

NAT

(i) Edges in types can be used to represent attributes, for example flight_no_att→NAT in ROUTE. We adopt the

convention that primitive types which end in "_att" represent the attribute names. There is one primitive node of

each such primitive type and it is this node which appears in instances. For example, the primitive nodes

flight_no and airline appearing in Figure 12 are assumed to be of type flight_no_att and airline_att, respectively.

In practice, the user can introduce new primitive types into the set TP at any time, and can populate these types

by introducing new primitive nodes into the set P.

(ii) Edges in types can also be used to represent binary relationships, for example ROUTE→FLIGHT in RF. In gen-

eral, these relationships are many-to-many due to the fact that instances are defined as being homomorphic to

their type. However, cardinality constraints can be enforced within update programs - we give an example in

Section 3.3 below.

(iii) It is possible to define recursive types, for example PASSENGER, whose dependents are also of type

PASSENGER, and NAT, which contains itself.

(iv) The type NAT is used to represent the natural numbers in the Hypernode Model. 0 is represented by a hyper-

node which contains the primitive node noneNAT, and successive natural numbers are successive nestings of 0

(see Figure 13). We describe how calculations are performed with these numbers in Section 3.6.

(v) Each hypernode of type FLIGHT_BOOKINGS_SCHEMA will be a Flight Bookings database. A typical

instance will have one node of each of the types RF, PT, TC, FC, AIRLINES, AIRPORTS, representing the

ROUTE-FLIGHTs, PASSENGER-TICKETs, TICKET-COUPONs and FLIGHT-COUPONs relations, and also

the airlines and airports.

We note from FLIGHT_BOOKINGS_SCHEMA that schema design using the Hypernode Model is comparable with

the Entity-Relationship (ER) approach [9]. There are however two fundamental differences between the two modelling

approaches which should be stressed. Firstly, our types can directly model complex objects, which may be hierarchical

or cyclic, while these cannot be modelled directly using ER diagrams. Secondly, our types can encapsulate further

types, for example FLIGHT_BOOKINGS_SCHEMA encapsulates RF, TC, FC, PT, AIRLINES and AIRPORTS, while

TICKET encapsulates DATE and FARE. Such encapsulation encourages a step-wise schema design and, in cases

where the schema is large or has many interconnections, it renders the schema much easier to display and comprehend.

We now illustrate some specific instances of the above types. In Figure 12 we show four hypernodes, R1, R2 and two

versions of R3. We note that R1 and R2 are of type ROUTE, while the first version of R3 is not since conditions T1,

T2, T3 and T4 of Section 2.2 are all violated. R3.1 can be amended to be of the type ROUTE by replacing name by

flight_no, adding an edge from airline to AIR2, and specifying edges for the attributes from_att and to_att, resulting in

11

R3.2.

R1 R2

R3.1 R3.2

Fig. 12. The routes R1, R2 and R3.

PARIS

LONDON

AIR1

605

to

from

airline

flight_no

LONDON

ATHENS

AIR2

201flight_no

airline

from

to

AIR2

400

airline

name

noneAIRPORT

AIR2

400flight_no

airline

from

to

In Figure 13 we show the first three natural numbers. In Figure 14 we show the hypernodes AIR1 and AIR2, which are

both of type AIRLINE. We note that AIR2 has two codes.

Fig. 13. The first three natural numbers.

10
NATnone

210

Fig. 14. Two airlines.

AIR1

"BA"

"British Airways"name

code code
"OA"

"Olympic"

AIR2

"Olympic Airways"namename

In Figure 15 we show the hypernodes EUROPEAN, AMERICAN and ASIAN. EUROPEAN and AMERICAN are

both of type AIRLINES, while ASIAN violates condition T3 of this type - it can be corrected by adding to it the primi-

tive node noneAIRLINE.

Fig. 15. The sets of airlines, EUROPEAN ans AMERICAN and the incorrectly typed ASIAN.

AIR2

AIR1

ASIANAMERICANEUROPEAN

noneAIRLINE

In Figure 16 we show the hypernodes PT1 and PT2 of type PT. We note that the dependents can be nested to any finite

depth. Finally, in Figure 17 we show the hypernodes N1 and N2 of type NAME, F1 of type FARE and D1 of type

DATE. The enforcement of meaningful dates can either be achieved by defining appropriate primitive types for day,

12

Fig. 16. Two instances of the passenger-ticket relationship.

PASSENGER
F1

D1
N2

N1

none

F1

D1

P2

PT1

PT2

T2P2

T1P1

fare

date_of_issue
name

dependents

dependents

name
date_of_issue

fare

month and year or via the update programs.

Fig. 17. The names N1 and N2, the fare F1, and the date D1.

"Smith"

"A."

"Mr."

"Smith"

"M."

"Mr."

"sterling"

240

F1

N2

amount

currency

N1

title

initial

surname
surname

initial

title

1991year

4day

month 6

D1

2.4 Expressiveness of Representation

Types and type checking constitute a powerful data modelling and integrity checking tool since they allow database

schemas to be represented and enforced. Also, storage-level optimisations can be carried out based on type informa-

tion. The Hypernode Model is type-complete in the sense that the only allowed type-forming operator (graph

definition) can be applied arbitrarily many times. Also, cyclic types, such as PASSENGER in Figure 5, and cyclic

13

hypernodes, such as P1 and P2 of Section 2.1 are supported. Bearing these two points in mind, we show below how

some conventional type-forming operators can be simulated using graph definition.

Given a type T, we can represent a set type S = set(T) by

S = ({T}, ∅)

Hypernodes of type S contain one or more nodes of type T and the empty set of type S can be represented by a hyper-

node, EMPTYT = ({noneT}, ∅). The types AIRLINES and AIRPORTS in Figure 8 and the instances EUROPEAN and

AMERICAN in Figure 15 illustrate set types.

Given types T1, T2, ..., Tn and attribute names A1, A2, ..., An (such as flight_no_att, airline_att, from_att and to_att) we

can represent a record type T = [A1:T1,A2:T2,...,An:Tn] as

T = ({A1, A2, ..., An, T1, T2, ..., Tn}, {A1→T1, A2→T2, ..., An→Tn})

The types ROUTE and FLIGHT of Figure 4, and TIME, DATE, FARE and NAME shown in Figure 10, illustrate

record types. We note that a record type T is a bipartite graph. We also note that this construction differs from the

usual idea of a record since the attributes Ai can be multi-valued i.e. there may be more than one edge emanating from

each Ai in an instance of type T. The enforcement of single values can be encoded in the update programs in Hyperlog.

Given a record type T, we can represent a relation type as set(T). The component types of a record type may them-

selves be record types and so nested relations [30] can also be represented. The types FLIGHT of Figure 4 and

TICKET of Figure 5 illustrate nested relation types.

Given types T1 and T2, we can represent a mapping type T = T1→T2 as

T = ({T1, T2}, {T1→T2})

The types, RF, PT, TC and FC shown in Figures 4, 5, 6 and 7 illustrate mapping types. A further example is the type

NAT_to_NAT = ({NAT},{NAT→NAT}). Example instances of NAT_to_NAT are the identity function ID, which

maps each natural number to itself, and the mapping GREATER, which maps each natural number to all smaller natural

numbers :

ID = ({0,1,2,...,MAXNUM},{0→0, 1→1, 2→2, ..., MAXNUM→MAXNUM})
GREATER = ({0,1,2,...,MAXNUM},{1→0, 2→1, 2→0, ..., MAXNUM→2, MAXNUM→1, MAXNUM→0})

We note that partial mappings can be represented without violating type correctness (so long as there is at least one

edge in the mapping). For example, in the mapping GREATER, the element 0 is not the source of any edge and the

maximal number MAXNUM is not the sink of any edge.

Finally, given types T1, T2, ..., Tn we can represent a tuple type T = T1 × T2 × ... × Tn as a record type

[I1:T1,I2:T2,...,In:Tn] where the attribute types I1, I2, ..., In contain the primitive constants first, second, ..., nth, respec-

tively.

In general then, given types T1, T2, ..., Tn, the type T defined by

14

T = ({T1, T2, ..., Tn}, {Ti1 →Ti2 ... Tir−1
→Tir })

has instances which are heterogeneous sets of isolated nodes (arising from the Ti which do not participate in any edge

in T) and edges (arising from the edges of T).

3. MANIPULATION OF HYPERNODES

In this section we introduce Hyperlog, a declarative query and update language for the Hypernode Model. Hyperlog

programs consist of sets of rules. The body of a rule consists of a number of graphs, called queries, which may contain

variables and which act as templates to be matched against the equations in the hypernode repository. The head of a

rule is also a query and indicates the updates (if any) to be undertaken for each match of the graphs in the body. The

evaluation of a program comprises a repeated matching of its set of rules against the hypernode repository until no more

updates can be inferred. In Section 3.1 below we describe syntax of Hyperlog. In Section 3.2 we define the matching

of queries in rule bodies against a hypernode repository and in Section 3.3 we describe the inference of updates from

queries in the heads of rules. In Section 3.4 we define the operational semantics of a Hyperlog program via a fixpoint

operator. We then address efficiency and expressiveness issues of Hyperlog in Sections 3.5 and 3.6 : in 3.5 we address

the efficiency of inference and in 3.6 computational and update expressiveness. We conclude in Section 3.7 with a

brief discussion on how database browsing can be supported by Hyperlog.

We have chosen a rule-based language for the Hypernode Model for two main reasons. Firstly, the high-level, declara-

tive nature of the language blends in well with the graph-based data model. Secondly, the language is very expressive :

as we will see below, it is in fact complete with respect to computation and database update. As a consequence, pro-

grams which are frequently invoked can be optimised by being built-in without compromising the semantics of the

language. Candidates for optimisation are the arithmetic functions and the database browsing functions.

3.1. Syntax of Hyperlog

For the purposes of Hyperlog, we assume that a countably infinite set of variables, V, is available. We denote elements

of V by uppercase identifiers from the end of the alphabet. We assume that the set of variables V and the set of labels L

are disjoint. We also assume that all variables are typed, that is superscripted with a type T ∈ TP ∪ TL. However, we

often omit these superscripts if they are understood from context.

Each Hyperlog rule has a, possibly empty, set of graphs in its body and a single graph in its head. We call these graphs

queries. A query may have a variable as its label and may have variables in its node set. Also, its nodes and edges may

be negated (meaning "absent", intuitively). More formally, a query is an equation of the form

Q = (N, E)

where Q ∈ L ∪ V and (N,E) is a graph such that :

15

(i) N ⊆ (P ∪ L ∪ V).

(ii) N is the disjoint union of two sets, N+ and N-. N+ contains "positive" nodes and N- contains "negative" nodes.

(iii) E is the disjoint union of two sets, E+ and E-. E+ contains "positive" edges and E- contains "negative" edges.

(iv) (n1, n2) ∈ E+ ∪ E- implies n1, n2 ∈ N+.

Condition (iv) restricts all edges to be between positive nodes : clearly, a positive edge containing a negative (i.e.

absent) node is impossible; also, since no edge can contain a negative node, negative edges containing negative nodes

are meaningless.

For simplicity, we denote a node n ∈ N- as ¬n and an edge n1→n2 ∈ E- as n1→/ n2. Three examples of queries are

XROUTE = ({flight_no,YNAT,¬AIR1AIRLINE},{flight_no→YNAT})

which, informally, finds the route and flight number for routes not with airline AIR1,

R2ROUTE =({flight_no,301NAT},{flight_no→301NAT})

which, informally, checks whether route R2 has flight number 301, and

GREATERNAT_TO_NAT =({10,XNAT}, {10→/ X})

which finds all the numbers greater or equal to 10, using the GREATER mapping of Section 2.4.

A Hyperlog program is a finite set of rules, a rule being an expression of the form

q0 ←← q1, q2, ..., qn

where n ≥ 0, and q0, q1, ..., qn are queries. For example, we give below a program (ignoring the node sets of graphs for

simplicity) which generates all transitive dependents of passengers and places this information into the mapping

TRANS_DEPS from PASSENGERs to PASSENGERs :

TRANS_DEPS = {Y→X} ←← YPASSENGER = {dependents→XPASSENGER}
TRANS_DEPS = {Y→X} ←← TRANS_DEPSPASS_TO_PASS = {YPASSENGER→ZPASSENGER}, Z = {dependents→XPASSENGER}

A Hyperlog program, P, can be represented as a labelled graph P = (N,E) as follows. For each rule

q0 ←← q1, q2, ..., qn

in P add to the node set N the two graphs q0 and Rbody = ({q1, q2, ..., qn},∅) and add to the edge set E the edge

Rbody→q0. We assume that the labels P and Rbody are drawn from a set of program and rule names, PROG, whose

members are distinct from the set of hypernode labels, L, and the set of type labels, TL. For example, the program

above is represented by the graph shown in Figure 18, where DEPS_PROG, BODY1 and BODY2 are unique identifiers

drawn from PROG (in subsequent figures of programs we often dispense with the outer program label).

We note from Figure 18 that rule heads can be shared between rules in the graphical representation of programs. In

Figure 23 we give an example where rule bodies are also shared. The semantics of a shared rule head are those of dis-

junction, the head being inferred if any of the bodies are true. Conversely, the semantics of a shared rule body are those

16

of conjunction, all the rule heads being inferred if the rule body is true. We finally note that our graphical representa-

tions of programs are not hypernodes : they are not typed, and the graphs encapsulated within them are not required to

have unique labels (for example, two graphs have label TRANS_DEPS in Figure 18).

3.2. Queries in Rule Bodies

The queries in the bodies of rules act as templates which are matched against the equations in the hypernode repository.

Before defining this matching process, we need the concept of a substitution of variables by constants of the appropriate

type. A substitution, θ, is a set of assignments {X1
T1 /C1

T1 , X2
T2 /C2

T2 , ..., Xn
Tn /Cn

Tn }, where each Xi is a distinct vari-

able in V and each Ci is a distinct element in L ∪ P of the same type, Ti , as Xi . The application of a substitution θ to a

query Q = (N, E) is the equation Qθ = (N, E)θ resulting from the substitution of each Xi in the left hand side and right

hand side of the query by Ci . Given a hypernode repository, HR, and a query, Q = (N+ ∪ N-, E+ ∪ E-), a match for the

query with respect to the repository is a substitution, θ, for all the variables in the query by constants drawn from

LABELS(HR) ∪ PRIM(HR) such that there exists an equation Qθ = (N´, E´) ∈ HR satisfying

(i) ∀ n ∈ N+, nθ ∈ N´.

(ii) ∀ n ∈ N-, nθ ∉ N´.

(iii) ∀ e ∈ E+, eθ ∈ E´.

(iv) ∀ e ∈ E-, eθ ∉ E´.

We can extend this definition to a set of queries {q1, q2, ..., qn} : a substitution θ is a match for this set of queries if it is

a match for each query qi taken separately. We note that in the above definition we are assuming a Herbrand Universe

and the Closed World Assumption [29]. This allows us to infer the negation of a node or edge in the absence of a posi-

tive match c.f. other non-monotonic formalisms [28].

For example, given a hypernode repository containing the following routes :

R1 = ({flight_no,605,airline,AIR1,from,to ... }, {flight_no→605, airline→AIR1 ... })
R2 = ({flight_no,301,airline,AIR2,from,to ... }, {flight_no→301, airline→AIR2 ... })
R3 = ({flight_no,400,airline,AIR1,from,to ... }, {flight_no→400, airline→AIR1 ... })

the sets of possible matches for the four queries

XROUTE = ({flight_no,airline,YNAT,AIR1},{flight_no→Y,airline→AIR1})
R2ROUTE = ({flight_no,301},{flight_no→301})
R2ROUTE = ({flight_no,302},{flight_no→302})
XROUTE = ({¬AIR1},∅)

are {{X/R1, Y/605}, {X/R3, Y/400}}, {{}}, {} and {{X/R2}}, respectively.

3.3. Queries in Rule Heads

The query in the head of a rule indicates the updates to be undertaken for each match of the queries in the body of the

rule. A rule, R, in a program, P, may thus modify some of the equations in the hypernode repository by adding or delet-

ing nodes and edges in their right hand side according to positive or negative nodes and edges in the head of R.

17

Furthermore, there may be variables appearing in the head of R which do not appear in its body - we denote the set of

such variables by NEWR. In this case, if the head of R does not match any exising equation in the repository, a set of

new equations is generated, one for each positive variable in NEWR. The labels on the left hand sides of these new

equations are hitherto unused in the hypernode repository and in the program P and are chosen non-deterministically.

Also, if P consists of a number of rules, R1,... Rr , the sets of new labels generated for the sets of variables NEWR1
...

NEWRr
are pairwise disjoint. Clearly, new labels may be left as dangling references after the execution of the program

P. Thus, we relax condition H2 of our definition of hypernode repositories in Section 2.1 to assume an equation

GT = null(T)

for any dangling label GT, where the null graph null(T) is defined as follows for any type T = ({T1, T2, ..., Tn},

{Ti1 →Ti2 , ...}) :

null(T) = ({noneT1 ,noneT2 , ... noneTn }, {none
Ti1 →none

Ti2 , ...})

We now illustrate some hypernode programs. The program DEPS_PROG in Figure 18 generates all transitive depen-

dents of passengers and places this information into the mapping TRANS_DEPS.

Y

Y
PASS_TO_PASSTRANS_DEPS

TRANS_DEPS

Fig. 18. Program to generate all dependents.

DEPS_PROG

X

PASSENGERdependents

PASSENGER

YPASSENGER

PASSENGERdependents X

BODY1

BODY2

Z

Z

X

The program in Figure 19 generates the GREATER relation between natural numbers. It assumes that all the natural

numbers are contained in the node set of a distinguished hypernode with the label NUMBERS. The program in Figure

20 places into a RESULT hypernode the passengers who are paying a fare of more than $200 on some ticket. The pro-

gram in Figure 21 adds passenger P3 to the dependents of passenger P1, deleting any null value that might be there if

18

Fig. 19. Program to generate the GREATER relation.

NAT

NAT_TO_NAT

NAT

NAT

NATNAT

NAT

BODY2

BODY1

NAT_TO_NATGREATER

XY

NUMBERS

Y
X

Y

GREATER

ZX

X

Y

Y Z

GREATER

Y

NUMBERSNAT

Fig. 20. Program to find passengers paying more than $200.

"USdollars"

PASSENGER

BODY

amount Z
NAT

W
TICKETPASSENGER

X

V PT

FAREYfare

W

GREATER

200Z

Y NAT

currency

PASSENGERSRESULT

X

BODY

amount Z
NAT

W
TICKETPASSENGER

X

V PT

FAREYfare

W

GREATER

200Z

Y NAT

currency

PASSENGERSRESULT

P3 is the first recorded dependent of P1. We note that any edge from P1 to nonePASSENGER will also be deleted. We

also note that, by the semantics of this update program, a passenger can have any number of dependents.

Fig. 21. Program to add P3 to the dependents of P1.

PASSENGERnone

PASSENGERP1

dependents

PASSENGER
P3

19

The program in Figure 22 replaces the old time of departure of the flight FL1FLIGHT by the new time T1TIME (by the

type-correctness of FL1, there must be some old time in FL1). This program illustrates how the cardinality of the

time_of_dep attribute can be limited to 1.

Fig. 22. Program to replace time of departure of flight FL1 by T1.

TIMEXtime_of_dep

FLIGHTFL1
FL1

time_of_dep
X

TIMET1
T1

Our final program in Figure 23 restructures the information about passengers so that it is stored in a number of map-

pings (c.f. functional data modelling [31]) rather than in one hypernode per passenger (c.f. relational data modelling).

Fig. 23. Program to restructure passenger information into a number of mappings.

PASS_TO_string

PASS_TO_string

PASS_TO_string

PASS_TO_PASS
BODY

SURNAMES

TITLES

VX

P2X

DEPS

string

string

string

Z

W

V

surname

initial

title

Y

P2
PASSENGER

NAMEY

PASSENGERX

name

dependents

X Z

WX

INITIALS

We conclude this section by noting that it is not possible to write a Hyperlog rule which deletes an equation. Thus, in

practice, garbage collection has to be achieved outside Hyperlog.

3.4. Operational Semantics of Hyperlog Programs

In this section we specify the operational semantics of Hyperlog via a 2-ary operator INFER(P,HR) where P is a

Hyperlog program and HR is a hypernode repository. INFER(P,HR) returns a new hypernode repository which differs

from HR by the insertions and deletions which are inferred from HR by firing in parallel all the rules in P. A further

operator, FIX(P,HR), computes the fixpoint of P with respect to HR by successive application of INFER(P,HR).

We begin by defining two binary operators on sets of equations, ⊕ and b−. Given two sets of equations HR and HR´,

HR ⊕ HR´ consists of

20

(i) every equation G = (N,E) in HR or HR´ such that G ∉ LABELS(HR) ∩ LABELS(HR´), and

(ii) for every pair of equations G = (N,E) in HR and G = (N´,E´) in HR´ with the same left hand side, G, the equation

G = (N ∪ N´, E ∪ E´);

and HR b− HR´ consists of

(i) every equation G = (N,E) in HR such that G ∉ LABELS(HR´), and

(ii) for every pair of equations G = (N,E) in HR and G = (N´,E´) in HR´ with the same left hand side, G, the equation

G = (N − N´, E − (E´ ∪ {(n1, n2) ∈ E c n1 ∈ N´ or n2 ∈ N´})).

Now, let R be a rule q0 ←← q1, q2, ..., qn in a program P, where the head, q0, is the query Q = (N+ ∪ N-, E+ ∪ E-). Let

θ be a match for the set of queries {q1, q2, ..., qn}. Given θ, let θnew be a substitution for NEWR defined as follows :

(i) If NEWR = ∅ , θnew = ∅ .

(ii) If there are one or more matches for q0θ, let θnew be an arbitrary one of these matches.

(iii) Otherwise θnew = {Y1/G1, Y2/G2, ..., Yk/Gk} where NEWR = {Y1, Y2, ..., Yk} and G1,..., Gk are new labels

superscripted with the appropriate type.

We denote the singleton set {Qθθnew = (N+, E+)θ} by POSR(θ) and the singleton set {Qθθnew = (N-, E-)θ} by

NEGR(θ). We note that the equation in a NEGR(θ) may have a right hand side which is not a graph since it may be the

case that there is an edge (n1, n2) in E- in which case n1 ∉ N- and n2 ∉ N-.

Finally, we define our main operator INFER(P,HR) to be

HR ⊕ (∪ R∈ P ∪ θ POSR(θ)) b− (∪ R∈ P ∪ θ NEGR(θ))

provided the set of inferred insertions and the set of inferred deletions do not intersect i.e. provided

(∪ R∈ P ∪ θ POSR(θ)) b− (∪ R∈ P ∪ θ NEGR(θ)) = ∪ R∈ P ∪ θ POSR(θ)

We do not wish any inferences to be made in the presence of such conflicts since we want a declarative semantics. So

if the above equality does not hold we define INFER(P,HR) to be the old hypernode repository, HR.

We conclude by defining the operator FIX(P,HR) which computes the fixpoint of a hypernode program P with respect

to a hypernode repository HR :

(i) FIX0(P,HR) = HR;

(ii) FIXi+1(P,HR) = INFER(P,(FIXi(P,HR));

(iii) FIX(P,HR) = FIXk(P,HR) where

(a) FIXk+1(P,HR) = FIXk(P,HR), and

(b) ∀ j < k FIXj(P,HR) ≠ FIXk(P,HR).

The following proposition states that FIX(P,HR) is indeed a hypernode repository i.e. it satisfies conditions H1 and H2

of Section 2.1. The proof of the proposition follows easily from the definition of INFER(P,HR), ⊕ and b−.

21

PROPOSITION 1. FIX(P,HR) is a hypernode repository.

Of course the computation of the fixpoint might not terminate. For example, the following program generates the suc-

cessor YNAT of each natural number XNAT, assuming the representation of the natural numbers we have used above and

assuming that 0NAT = ({noneNAT}, ∅) is already in the repository. Clearly, this program will carry on generating suc-

cessors ad infinitum.

YNAT = ({XNAT}, ∅) ←← XNAT = ({ZNAT}, ∅)

The above rule contains a variable in its head that is not in its body but this is not the only way in which non-

termination can arise. For example, the following program inserts and deletes PER1 into C ad infinitum :

CCOUPLE = ({¬PER1,nonePERSON},∅) ←← C = ({PER1PERSON},∅)
CCOUPLE = ({PER1, ¬nonePERSON},∅) ←← C = ({¬PER1PERSON},∅)

The following proposition states that, if the computation of FIX(P,HR) does terminate, the resulting repository is unique

up to the generation of new labels and the choice of the substitutions θnew. The proof follows from the observation that

these are the only non-deterministic steps in INFER(P,HR).

PROPOSITION 2. FIX(P,HR) is unique, up to the drawing of new labels from L and the choice of θnew.

We conclude this section by noting that FIX(P,HR) as defined above ignores the type-correctness of the new repository.

In fact, a static type checking of programs can be performed before the fixpoint is computed : a program P is type-

correct if each rule R ∈ P is type-correct; a rule q0 ←← q1, q2, ..., qn is type-correct if each query qi is partially typed;

finally, a query QT = (N+ ∪ N-, E+ ∪ E-) is partially typed if the graph (N+ ∪ N-, E+ ∪ E-) satisfies conditions T1 and

T2 of Section 2.2 with respect to the type T.

We can make a number of observations. Firstly, verifying that the queries in the body of each rule are partially typed

prevents the evaluation of programs which are a priori type-incorrect. Secondly, if the queries in the heads of rule are

partially typed and contain only insertions, the hypernode repository FIX(P,HR) must be well typed (we recall from

Section 3.3 that the null graph null(T), is assumed for dangling labels of type T). Thirdly, deletions in rule heads may

cause conditions (T3) and (T4) of Section 2.2 to be violated. This situation should not be allowed to occur, either by

signaling a run-time error or by inserting (as part of the b− operator) into partially typed graphs the appropriate nodes

and edges from null(T). In order to simplify program specification, we have adopted the latter solution.

3.5. Efficiency of Inference

In this section we examine the efficiency of the INFER(P,HR) operator. We begin by observing that INFER(P,HR) is

decidable since, given a repository HR, there are only a finite number of matches θ for a query q with respect to HR

(due to the fact that there are only a finite number of constants that can be drawn from HR). Furthermore, for each rule

R ∈ P and each match θ for the body of R, θnew is either chosen arbitrarily from a finite number of existing substitutions

or obtained from a finite number of new labels. We now consider two aspects of the efficiency of INFER(P,HR) : the

complexity of finding a match for a query with respect to a hypernode repository, and the potential number of matches

22

for a query.

The next theorem states that finding a match for a query with respect to a hypernode repository is in general NP-

complete.

THEOREM 2. Finding a substitution, θ, which is a match for a query, q, with respect to a repository, HR, is NP-

complete.

PROOF. We first show NP-Hardness by showing that this problem contains sub-graph isomorphism, which is known

to be NP-Complete [15], as a sub-problem. Let Q be a positive query of the form G = (N+, E+), where the elements of

N+ are all variables of the same type, and let there be an equation G = (N´, E´) in HR. The result follows since θ is the

required one-to-one mapping from (N+,E+) to (N´,E´).

We next show that the problem is in NP. Given a query Q = (N,E), we first guess a substitution θ for the query with

respect to HR. If there is no equation in HR with left hand side Qθ we are done. It remains to show that testing

whether the equation Qθ = (N´,E´) ∈ HR is a match for the query Q = (N,E) can be performed in a time polynomial in

the size of (N,E) and (N´,E´). The result follows since, on examining the definition of a match given in Section 3.2, we

see that the testing can performed in a time proportional to |N||N´| + |E||E´|. `

Despite this negative result, finding a match is less expensive in the case of certain graphs. For example, in the case

that the graphs in the repository and the graphs in queries are trees, the problem can be solved in polynomial time in the

size of the repository [15]. In practice, much data is record-based and so the corresponding graphs in the repository are

forests (see, for example, the graphs in previous examples). Each such forest is equivalent to one tree whose root is the

label of the graph, and so matching queries is tractable.

With respect to the number of matches for a query, there may exist an exponential number of matches : for example,

given a query G = (N+,∅) such that the elements of N+ are variables of the same type and an equation G = (N,∅), the

number of matches is |N|!/(|N| − |N+|)!. Negated nodes in queries can also lead to complexity. Consider for example

matching the following rule body :

←← PER1PERSON = ({¬Ystring}, ∅)

Clearly, there may be a large number of matches for Y (all the string constants in the database which are not the name

of person PER1). This problem can be avoided by not allowing variables to appear negatively in the body of a rule

without also appearing positively there. Then, given a rule q0 ←← q1, q2, ..., qn, if any variable appearing in some Ni-

also appears in some Nj+, we can construct substitutions θ for {q1, q2, ..., qn} by matching all positive information first

(this technique is commonly known as range restriction [2]). For example, we can range restrict the strings in the

above rule body to be names of people thus :

←← PER1PERSON = ({¬Ystring}, ∅), XPERSON = ({name,Y},{name→Y})

Negative variables are not the only problem with negative information : negative constant nodes can also lead to addi-

tional complexity when they occur within a query with a variable label. Consider for example matching the following

23

rule body :

←← XPERSON = ({¬ "Jim"}, ∅)

In such cases the Hyperlog evaluator can at least make use of the type information to search for matches only within

hypernodes of type PERSON.

Reducing the cost of finding all matches for positive information is more problematic. Clearly, given a query Q = (N+

∪ N-, E+ ∪ E-) the more variables there are in N+, the greater the number of possible substitutions for these variables.

Again, the type tags of the variables narrow down the number of choices. The edge information (if any) is also of help

here. In addition, for record-based data whose attribute values are polynomially bounded (e.g. single-valued attributes)

the number of matches for a query is polynomial in the size of the repository.

3.6 Expressiveness of Computation

Clearly, Hyperlog is a powerful language with respect to its expressiveness of computations and updates. In fact, it is

both computationally complete and update complete.

We first demonstrate the computational completeness of Hyperlog by showing that it can simulate counter programs,

which are known to be computationally complete [18]. Counter programs manipulate natural numbers which are stored

in variables called counters. Four operations are allowed on counters : X := 0, X := Y, X := X + 1 and X := X − 1,

where X and Y are counters and := denotes assignment. In addition, counter programs support sequential composition

and a goto statement conditional upon some counter variable being 0.

We can simulate counters in Hyperlog by equations with distinguished left hand side’s, CTRNAT, CTR1NAT, CTR2NAT,

... say. We recall that the natural numbers are represented as successive nestings of the primitive node noneNAT, where

0 = ({noneNAT},∅). We can sequence the firing of rules in a counter program by using a set of distinguished labels,

STEP1STEP, STEP2STEP, The current step is contained in the node set of a further hypernode with label SEQSTEPS,

where STEPS = ({STEP},∅). At the start of each program, this hypernode is assumed to be SEQ = ({noneSTEP},∅).

For example, assigning zero to the counter CTR is achieved by inserting 0 into its node set and deleting any non-zero

element already there :

CTR = ({¬X,0}, ∅) ←← CTR = ({XNAT}, ∅), X = ({¬noneNAT}, ∅)

Assigning the value of CTR to a counter CTR1 is achieved by the following rule :

CTR1 = ({¬X,Y},∅) ←← CTR1 = ({XNAT},∅), CTR = ({YNAT},∅)

Adding one to CTR is achieved by the following rules, which may generate a new natural number, YNAT :

YNAT = ({X}, ∅) ←← CTR = ({XNAT}, ∅)
CTR = ({Y,¬X}, ∅) ←← CTR = ({XNAT}, ∅), YNAT = ({X}, ∅)

Subtracting one from CTR is achieved by the following rule :

24

CTR = ({X, ¬Y}, ∅) ←← CTR = ({YNAT}, ∅), Y = ({XNAT}, ∅)

Testing CTR for zero is achieved by using the query CTR = ({0}, ∅) in the body of a rule. Finally, sequential firing of

rules and conditional goto are achieved by associating STEPs with rules and by updating the SEQ hypernode with the

current STEP. For example, assuming a program with four steps :

STEP1 : CTR := 0
STEP2 : goto STEP4 if CTR = 0
STEP3 : ...
STEP4 : ...

the goto statement at STEP2 is simulated by the following rule :

SEQ = ({STEP4,¬STEP2}, ∅) ←← CTR = ({0},∅), SEQ = ({STEP2},∅)

We conclude this section by examining the expressiveness of Hyperlog with respect to database updates. We first

define what an update is in our context and then define the concept of update completeness, by analogy to previous

work in relational databases [1, 8].

Given a type repository TR, we define the set inst(TR) to contain all hypernode repositories which are well-typed with

respect to TR. We define an update to be a partial recursive mapping from inst(TR) to inst(TR) that is C-generic. C-

genericity was introduced in [21] and intuitively means that, apart from a set of distinguished constants C (which may

be the empty set), only the structure of a database is relevant to an update, not the values of the constants in the data-

base. In our case an update, U, is C-generic if the following holds : given a finite set C of constants whose types are

contained in PRIM(TR) ∪ LABELS(TR), for each HR ∈ inst(TR) and each isomorphism ρ that maps primitive nodes

to primitive nodes, labels to labels, and is invariant on C, ρ(U(HR)) is equal to U(ρ(HR)) up to a renaming of newly

generated labels. The set C may be thought of as the constants (primitive nodes or labels) which appear explicitly in

the update program.

Thus, a query language is update complete for the Hypernode Model if it precisely defines the set of updates as defined

above. The update completeness of Hyperlog in particular follows from similar results in [1, 2, 8, 21] for logic-based

languages of comparable semantics.

3.7 Using Hyperlog for Database Browsing

Up to now we have considered querying (and updating) the database by partially specifying the contents of hypernodes.

In contrast, browsing allows the user to navigate through the structure of the database independent of actual values. In

the case of the Hypernode Model, navigation can follow edges either forwards or backwards, it can descend into a node

from a parent graph, or it can ascend into a parent graph from a node. We show below how these navigational opera-

tors can be implemented in Hyperlog. In general, it will be difficult for the user to predict the types of the hypernodes

that will be encountered while browsing to the database. So in order to facilitate browsing we introduce the type ANY

as a super-type of every type i.e. we consider any hypernode or primitive node to be of type ANY.

25

We first define three types :

CONTEXT = ({CURRENT_HYP, CURRENT_NODE},∅)
CURRENT_HYP = ({ANY},∅)
CURRENT_NODE = ({ANY},∅)

Instances of type CONTEXT will typically contain two nodes, one of type CURRENT_HYP which contains a hyper-

node and the other of type CURRENT_NODE which contains a specific node within this hypernode. The current con-

text can thus be recorded in a hypernode

CUR_CONTEXTCONTEXT = ({CUR_HYPCURRENT_HYP , CUR_NODECURRENT_NODE}, ∅)

where CUR_HYP contains the current hypernode in the navigation and CUR_NODE contains the specific node within

the current hypernode currently being browsed.

The current hypernode can be updated from a hypernode OLD, say, to a hypernode NEW by the rule

CUR_HYP = ({NEW, ¬OLD}, ∅) ←←

Similarly, the current node can be updated from OLD to NEW by the rule

CUR_NODE = ({NEW, ¬OLD},∅) ←← CUR_HYP = ({X},∅), X = ({NEW},∅)

We observe that this rule verifies the new current node is indeed in the node set of the current hypernode.

In order to navigate forwards, we can store in a hypernode CUR_OUTCURRENT_NODE the nodes connected to the current

node by edges outgoing from it : we initialise the previous contents of CUR_OUT using the rule

CUR_OUT = ({¬X,noneANY},∅) ←← CUR_OUT = ({X},∅)

and we store the "next" nodes in CUR_OUT using the rule

CUR_OUT = ({Y,¬noneANY},∅) ←← CUR_NODE = ({X},∅), CUR_HYP = ({Z},∅), Z = ({X, Y},{X→Y})

Similarly, in order to navigate backwards, we can store in a hypernode CUR_INCURRENT_NODE the nodes connected to

the current node by edges incoming to it : we initialise the previous contents of CUR_IN as for CUR_OUT above and

we store the "previous" nodes in CUR_IN using the rule

CUR_IN = ({Y,¬noneANY},∅) ←← CUR_NODE = ({X},∅), CUR_HYP = ({Z},∅), Z = ({X, Y},{Y→X})

In order to navigate upwards, we store in a hypernode CUR_UPCURRENT_NODE all the hypernodes containing the current

hypernode : we initialise the previous contents of CUR_UP and use the rule

CUR_UP = ({Y,¬noneANY},∅) ←← CUR_HYP = ({X},∅), Y = ({X},∅)

Finally, in order to navigate downwards, we store in a hypernode CUR_DOWNCURRENT_NODE all the nodes contained in

the node set of the current node (if this is not a primitive node) : we initialise the previous contents of CUR_DOWN

and use the rule

26

CUR_DOWN = ({Y,¬noneANY},∅) ←← CUR_NODE = ({X},∅), X = ({Y},∅)

Browsing using Hyperlog was investigated further in [13]. In particular, it was shown that Hyperlog can support the

declarative querying of the content and structure of a Hypertext database. This database was constructed by associating

hypernodes with fragments of text and by using further hypernodes to store named links between these fragments. A

"history" hypernode records the user’s navigation through the database. A number of alternative "trails" can be set up

and stored. The navigational functions supported include display of a hypernode (and any associated text), and the four

operators described above.

4. COMPARISON WITH RELATED WORK

In this section we compare the Hypernode Model and Hyperlog with related languages and models. We begin with the

logic-based database language IQL [2] from which the semantics of Hyperlog are partly derived. We next consider

three recent graph-based data models [12, 17, 23]. Finally we consider recent work on hypergraph-based models [25,

33, 36].

IQL incorporates object-identities into a typed rule-based query language which is update complete. The fixpoint

semantics of Hyperlog are similar to those discussed in [2, 3], but our label generation semantics differ from IQL’s

invention of object identities in that we generate new labels as a necessary consequence of new graphs being inferred

whereas in IQL the generation of an object identity and the assignment of a value to it are independent events. Also,

IQL’s types are constructed using tuple, set, union and intersection constructors while Hyperlog has one general-

purpose graph constructor which can simulate all of these.

We next compare the Hypernode Model with three recent graph-based data models : the Logical Data Model (LDM)

[23], GOOD [17], and Graphlog [12]. In LDM only database schemas are directed graphs : instances consist of 2-

column tables each of which associates entities of a particular type with their values. Also, LDM’s schema graphs use

three types of node, basic (for primitive data types), composition (for tuple types) and collection (for set types),

whereas we can represent tuple types and set types by our one general-purpose graph constructor. Graphlog [12] is a

query language operating on a database which comprises a directed labelled graph (a semantic net). The edges in this

graph represent predicates. Unlike Hyperlog, Graphlog queries are formulated as graphs whose edges are annotated

with predicates, transitive closures thereof or, more generally, regular expressions. These query graphs are matched

against the database graph and return sub-graphs thereof. GOOD [17] is a graphically-represented functional data

model [31] with an associated transformation language. GOOD embeds semantics into the nodes and edges of this

graph, nodes being printable or non-printable and edges being single-valued or multi-valued. The queries of GOOD’s

transformation language are graphs called patterns, which match sub-graphs of the total instance graph c.f. our match-

ing of queries against a hypernode repository. In contrast to Hyperlog’s rule-based updates, GOOD’s instance graph is

updated by five graphically-represented primitive operations (add or delete a node or an edge, and an operation called

"abstraction") which can be incorporated into patterns.

27

In summary, a feature common to all these models is that the database consists of a single flat graph. This has the

drawback that, in practice, complex objects consisting of many inter-connected nodes are hard to present to the user in

a clear way. In contrast, a hypernode database consists of a set of nested graphs. This unique feature of our model pro-

vides inherent support for data abstraction and the ability to represent each real-world object as a separate database

entity. GOOD does allow for an "abstraction" operation but this generates a non-printable entity and connects it to

other, related, entities at the same level c.f. our nesting of a set of graphs within a graph. Unlike GOOD and Graphlog,

we do not label edges in the Hypernode Model. However, we can attain the same data modelling expressiveness by

encapsulating edges which would have the same label in GOOD or Graphlog within one hypernode with a similar label.

For example, we can represent the set of GOOD edges :

P1 →HAS_TICKET T1
P2 →HAS_TICKET T2
P3 →HAS_TICKET T3

by the hypernode :

HAS_TICKET = ({P1,T1,P2,T2,P3,T3}, {P1→T1, P2→T2, P3→T3})

We conclude this section with a review of recent work on hypergraph-based data models [25, 33, 36], and a comparison

of this work with our model. We first observe that hypergraphs can be modelled by hypernodes by encapsulating the

contents of each hyperedge within a further hypernode. In contrast, the multi-level nesting provided by hypernodes

cannot easily be captured by hypergraphs.

In [33], hypergraphs are used to model page-oriented Hypertext databases. The nodes of a hypergraph are associated

with pages of information. Each hyperedge consists of a related set of labelled directed edges. Nodes and directed

edges can be shared between hyperedges. Querying of a hypergraph is navigational and uses a number of predefined

operators : browsing forwards or backwards along directed edges from a set of marked nodes, marking a new set of

nodes, reading the set of pages associated with the current marked nodes, querying the current state, and saving and

resetting current states. Views can be created and the database hypergraph can be updated by a number of further prim-

itive operators. Unlike the Hypernode Model, hypergraphs are not typed and so updates are not semantically con-

strained. Also unlike Hyperlog, querying by database content is not supported.

In [36] a hypergraph-based model of data access is presented which aims to integrate browsing and querying. In this

model, entities are represented by nodes and relationships between them by hyperedges. The resulting hypergraph is

transient, lasting for the duration of a query session. It starts off consisting of one hyperedge containing all the database

entities and further hyperedges are added to it in response to user queries. At any stage, the hypergraph can be

traversed by moving within hyperedges, and from hyperedge to hyperedge via a common node. There are a number of

differences between this work and our own. Firstly, all the database entities are assumed to be of the same type and are

stored as tuples in a single, flat, relation. Secondly, the attributes of entities are not represented graphically within the

hypergraph and exist only in the underlying relation. Thirdly, although browsing is graph-based, querying is not - it

consists of specifying boolean-valued expressions in the values of attributes - hence, a hybrid model of browsing and

28

querying is obtained.

In [25] we described a data model called GROOVY (Graphically-Represented Object-Oriented data model with

Values). In GROOVY, real-world entities are represented by means of instances of object schemas. We showed that

the representation of object schemas by means of hypergraphs leads to a natural formalisation of the notions of sub-

object sharing and structural inheritance. We also showed how instances of object schemas can be represented by

hypergraphs labelled with object identifiers. GROOVY is a conceptual data model which influenced the development

of the Hypernode Model. It has been superseded by our more recent work on types, Hyperlog, and implementation.

5. SYSTEM ARCHITECTURE AND IMPLEMENTATION

We are currently coming to the end of a two-year project whose goal is to implement a prototype DBMS based on the

Hypernode Model and to tailor it to the needs of Hypertext databases. The architecture of our system is shown in Fig-

ure 24 below.

Graph-based
User Interfacecc

c
hhhhhhhhhhhhhhhh

cc
chhhhhhhhhhhhhhhh

Hyperlog
Evaluatorcc

c
hhhhhhhhhhhhhhhh

cc
chhhhhhhhhhhhhhhh

Transient
Hypernode Storecc
c
hhhhhhhhhhhhhhhh

cc
chhhhhhhhhhhhhhhh

Storage Manager
cc
c
hhhhhhhhhhhhhhhh

cc
chhhhhhhhhhhhhhhh

Index Manager
cc
c
hhhhhhhhhhhhhhhh

cc
chhhhhhhhhhhhhhhh

Interface 1

Interface 0

..

..

Figure 24. The Hypernode Database System architecture.

In this architecture, the Storage Manager stores hypernodes, types and programs while the Index Manager supports

efficiently three operations :

(i) given a label, G, return the unique graph (N,E) such that G = (N,E),

(ii) given a primitive node, n, return the set of labels {G1, ..., Gr} such that for each equation Gi = (Ni ,Ei), n ∈ Ni ,

(iii) given a label, G, return the set of labels {G1, ..., Gr} such that for each equation Gi = (Ni ,Ei), G ∈ Ni .

A detailed description of the Storage Manager appears in [34]. Briefly, the Storage Manager supports a number of

object stores, each object store containing graphs of one type. Two object stores are reserved for the storage of types

and programs. Associated with each object store is a label table which maps labels to the physical addresses of the

graphs they define, thereby implementing operation (i) above. Operation (ii) is implemented using a simple prefix B-

tree and operation (iii) is implemented by an extendible hashing scheme.

These operations are invoked by the Hyperlog Evaluator during its matching of queries. The evaluator computes the

fixpoint of a program with respect to the repository, after verifying that the program is correctly typed. Updated hyper-

nodes are amassed in the Transient Hypernode Store during each inference step. The evaluator currently uses bottom-

29

up, naive [35] evaluation of Hyperlog programs although we are now looking at optimising the fixpoint computation by

drawing on existing optimisation techniques for logic database languages, such as semi-naive evaluation [35].

6. SUMMARY

We have presented the Hypernode Model, a graph-based data model which stores nested graphs in the form of

equations and manipulates them via a rule-based language. The key innovations of the model are :

− its formal foundation on graphs and set theory,

− its use of graphs throughout all levels, from the user interface down to the physical level,

− its inherent support for data modelling concepts such as object identity, complex objects, and encapsulation,

− its provision for types and type checking,

− its associated query language Hyperlog which can support both querying and browsing, and which allows both

derivations and database updates,

− its uniform storage of data (hypernodes), meta data (types), and procedural data (Hyperlog programs).

We have examined the efficiency of type checking and have shown it can be performed in polynomial time. We have

also examined the expressiveness of representation, computation and update of our model and have shown that Hyper-

log is computationally and update complete. Although the evaluation of Hyperlog programs is intractable in the general

case, we have discussed cases when evaluation becomes tractable. We have compared our model with other graph-

based models. Our comparison has highlighted the advantages of nested graphs, both at the type and the instance lev-

els. Finally, we have briefly discussed a prototype DBMS architecture and implementation. Our current research effort

is directed towards tailoring our hypernode DBMS to the needs of Hypertext. This includes optimisation of Hyperlog,

support for versioning, and provision of special-purpose access methods to implement more efficiently the browsing

and text retrieval operations.

ACKNOWLEDGEMENTS

The Hypernode Project is supported financially by the U.K. Science and Engineering Research Council (grant number

GR/G26662).

REFERENCES

1. Abiteboul S. and Vianu V. Procedural and declarative database update languages. Proceedings of ACM

Symposium on Principles of Database Systems, Austin, Texas (1988), 240-250.

2. Abiteboul S. and Kanellakis P.C. Object identity as a query language primitive. Proceedings of the ACM SIG-

MOD International Conference on the Management of Data, Portland, Oregon (1989), 159-173.

30

3. Abiteboul S. and Vianu V. Fixpoint extensions of first-order logic and Datalog-like languages. Proceedings of

Symposium of Logic in Computer Science, (1989), 71-79.

4. Aczel P. Non-well-founded Sets. Center for the Study of Language and Information (CSLI), Lecture notes no.

14, Stanford, Ca. (1988).

5. Beeri C. Formal models for object oriented databases. In [14], 370-395.

6. Berge C. Graphs and Hypergraphs. North-Holland, Amsterdam (1973).

7. Ceri S., Gottlob G. and Tanca L. Logic Programming and Databases, Surveys in Computer Science, Springer-

Verlag (1990).

8. Chandra A. K. and Harel D. Computable queries for relational data bases. Journal of Computer and System Sci-

ences 21 (1980), 156-178.

9. Chen P.P-S. The Entity-Relationship Model - towards a unified view of data. ACM Transactions on Database

Systems 1,1 (1976), 9-36.

10. Codd E. F. Extending the database relational model to capture more meaning. ACM Transactions on Database

Systems 4,1 (1979), 397-434.

11. Conklin J. Hypertext : An introduction and survey. IEEE Computer 20,9 (1987), 17-41.

12. Consens M.P. and Mendelzon A.O. Graphlog : a visual formalism for real life recursion. Proceedings of ACM

Symposium on Principles of Database Systems, Nashville, Tennessee (1990), 404-416.

13. Dearden A. A hypertext database implemented using the Hypernode Model. M.Sc. thesis, Dept. of Computer

Science, University College London (1990).

14. Proceedings of the International Conference on Deductive and Object-Oriented Databases (1989).

15. Garey R.G. and Johnson D.S. Computers and Intractability, a Guide to the Theory of NP-Completeness. W.H.

Freeman and Co., New York (1979).

16. Griffith R.L. Three principles of representation for semantic networks. ACM Transactions on Database Systems

7,3 (1982), 417-442.

17. Gyssens M., Paredaens J. and Van Gucht D.V. A graph-oriented object database model. Proceedings of ACM

Symposium on Principles of Database Systems, Nashville, Tennessee (1990), 417-424.

18. Harel D. Algorithmics - The Spirit of Computing, Addison-Wesley, Reading, Ma. (1987).

19. Harel D. On visual formalisms. Communications of the ACM 31,5 (1988), 514-530.

20. Hull R. and King R. Semantic database modelling : Survey, applications, and research issues. ACM Computing

Surveys 19,3 (1987), 201-260.

21. Hull R. and Su J. Untyped sets, invention, and computable queries. Proceedings of ACM Symposium on Princi-

ples of Database Systems, Philadelphia, Penn. (1989), 347-359.

31

22. Kim W. Object-oriented databases : definition and research directions. IEEE Transactions on Knowledge and

Data Engineering 2,3 (1990), 327-341.

23. Kuper G.M. and Vardi M.Y. A new approach to database logic. Proceedings of ACM Symposium on Principles

of Database Systems, Waterloo (1984), 86-96.

24. Levene M. and Poulovassilis A. The hypernode model and its associated query language. Proceedings of the 5th

JCIT, 520-530, IEEE Computer Society Press (1990).

25. Levene M. and Poulovassilis A. An object-oriented data model formalised through hypergraphs. Data and

Knowledge Engineering, 6, 3 (1991), 205-224.

26. Naqvi S. and Tsur S. A logical language for data and knowledge bases. Computer Science Press, New York

(1989).

27. Parent C. and Spaccapietra S. Complex object modelling : an entity-relationship approach, In Nested Relations

and Complex Objects in Databases, S. Abiteboul, P.C. Fischer and H.-J. Schek (Ed.), 272-296, Springer-Verlag,

Berlin (1989).

28. Przymusinska H. and Przymusinski T. Semantic issues in deductive databases and logic programs. In Formal

Techniques in Artificial Intelligence, a Sourcebook, Banerji R.B. (Ed.), 321-367, Elsevier Science, Amsterdam

(1990).

29. Reiter R. On closed world databases. In Logic and Databases, Gallaire H. and Minker J. (Ed.), 55-76, Plenum

Press, New York (1978).

30. Schek H.-J. and Scholl M. H. The relational model with relation-valued attributes. Information Systems 11,2

(1986), 137-147.

31. Shipman D. The functional data model and the data language DAPLEX. ACM Transactions on Database Sys-

tems 6,1 (1981), 140-173.

32. Shriver B. and Wegner P. (Ed.) Research Directions in Object-Oriented Programming. MIT Press, Cambridge,

Ma. (1987).

33. Tompa F.W. A data model for flexible hypertext database systems. ACM Transactions on Information Systems

7,1 (1989), 85-100.

34. Tuv E., Poulovassilis A. and Levene M. A storage manager for the Hypernode Model. Proceedings of BNCOD-

10 - Advances in Database Systems, Lecture Notes in Computer Science 618, Springer-Verlag (1992), 59-77.

35. Ullman J. D. Principles of Database and Knowledge-Base Systems. Computer Science Press, Rockville, Md.

(1988).

36. Watters C. and Shepherd M.A. A transient hypergraph-based model for data access. ACM Transactions on

Information Systems 8,2 (1990), 77-102.

32

37. Wong K. and Lochovsky F. (Ed.) Object-Oriented Languages, Applications, and Databases. ACM Press Fron-

tier Series, New York (1989).

