
Physica D, 97:335-352, 1996. Copyright Elsevier Science B.V. 1996. All rights reserved.
Toward a Viable, Self-ReproducingUniversal ComputerJean-Yves Perrier Moshe Sipper Jacques ZahndLogic Systems LaboratorySwiss Federal Institute of TechnologyIN-Ecublens, CH-1015 Lausanne, Switzerlande-mail: fJean-Yves.Perrier, Moshe.Sipper, Jacques.Zahndg@di.ep.chvi.a.ble n'vi--*-b*ln n-ble-n aj [F, fr. MF, fr. vie life, fr. L vita - more at VITAL] 1: capableof living; esp : born alive with such form and development of organs as to be normally capableof living 2: capable of growing or developing f~ seeds ~ eggsg 3: WORKABLE - vi.a.bly avWebster dictionary

AbstractSelf-reproducing, cellular automata-based systems developed to datebroadly fall under two categories; the �rst consists of machines which are ca-pable of performing elaborate tasks, yet are too complex to simulate, whilethe second consists of extremely simple machines which can be entirely im-plemented, yet lack any additional functionality aside from self-reproduction.In this paper we present a self-reproducing system which is completely re-alizable, while capable of executing any desired program, thereby exhibitinguniversal computation. Our starting point is a simple self-reproducing loopstructure onto which we \attach" an executable program (Turing machine)along with its data. The three parts of our system (loop, program, data)are all reproduced, after which the program is run on the given data. Thesystem reported in this paper has been simulated in its entirety; thus, weattain a viable, self-reproducing machine with programmable capabilities.1 IntroductionThe study of arti�cial self-reproducing structures or \machines" has been taking place foralmost half a century. Much of this work is motivated by the desire to understand the fun-damental information-processing principles and algorithms involved in self-reproduction,independent of their physical realization [Reggia et al., 1993, von Neumann, 1966]. An1

understanding of these principles could prove useful in a number of ways. It may ad-vance our knowledge of biological mechanisms of reproduction by clarifying the conditionsthat any self-reproducing system must satisfy and by providing alternative explanationsfor empirically observed phenomena. Work in this area can shed light on issues regardingorigin of life theories [Reggia et al., 1993]. The fabrication of arti�cial self-reproducingmachines can also have diverse applications, ranging from nanotechnology [Drexler, 1992,Drexler, 1989] to space exploration [Freitas, Jr. and Gilbreath, 1980]. Ultimately, we wishto produce machines that display an array of desirable biological characteristics, includingself-reproduction, self-repair, growth and evolution [Mange and Stau�er, 1994].One of the central models used to study self-reproduction is that of cellular automata(CA). CAs are dynamical systems in which space and time are discrete. They consist ofan array of cells, each of which can be in one of a �nite number of possible states, updatedsynchronously in discrete time steps according to a local, identical interaction rule. Thestate of a cell at the next time step is determined by the previous states of a surroundingneighborhood of cells; this is usually speci�ed in the form of a rule table (also referred toas the transition function), delineating the cell's next state for each possible neighborhoodcon�guration [Wolfram, 1984, To�oli and Margolus, 1987]. The cellular array (grid) is n-dimensional, where n = 1; 2; 3 is used in practice; in this work we shall concentrate onn = 2, i.e., two-dimensional grids.The self-reproducing systems developed to date broadly fall under two categories. The�rst consists of universal constructor-computers, which are capable of performing elaboratetasks beyond mere self-reproduction, yet are highly complex machines of prohibitive size,thereby preventing their realization or simulation. The second category consists of extremelysimple machines which are completely realizable, yet lack any additional functionality asidefrom self-reproduction.Our goal in this paper is to present a self-reproducing system which is completely real-izable, while capable of executing any desired program, thereby exhibiting universal com-putation. Thus, we attain the advantages of both aforementioned categories. Our startingpoint is a simple self-reproducing structure (a loop) onto which we \attach" an executableprogram along with its data. The three parts of our system (loop, program, data) areall reproduced, after which the program (Turing machine) is run on the given data. It isimportant to note that the self-reproducing system reported in this paper has been simu-lated in its entirety. Indeed, this is a crucial requirement since our aim is to attain viable,self-reproducing systems with programmable capabilities.In the next section we provide an account of the study of self-reproduction in cellularautomata. In Section 3 we describe the basic design of our automaton. Section 4 delineates2

the functioning of our system, including the self-reproduction process and the execution ofthe attached program. In Section 5 we describe an example of a self-reproducing machinewhose program consists of a parenthesis checker. A discussion of our results follows inSection 61.2 Self-reproduction in cellular automataIn this section we provide a short survey of previous work on self-reproduction in cellularautomata, concentrating mainly on those works that are relevant to our own. Von Neumannis credited with being the �rst to conduct a formal investigation of self-reproduction by ma-chines; in particular he asked whether we can use purely mathematical-logical considerationsto discover the speci�c features of biological automata that make them self-reproducing. Toconduct a formal investigation of this issue, von Neumann used the cellular automatonmodel, conceived by Ulam [von Neumann, 1966].Von Neumann used two-dimensional CAs with 29 states per cell and a neighborhoodconsisting of 5 cells2. He showed that a universal computer can be embedded in such cellularspace, namely a device whose computational power is equivalent to that of a universal Turingmachine. He also described how a universal constructor may be built, namely a machinecapable of constructing, through the use of a \constructing arm", any con�guration whosedescription can be stored on its input tape. This universal constructor is therefore capable,given its own description, of constructing a copy of itself, i.e., self-reproduce (Figure 1).The terms `machine' and `tape' refer to con�gurations, i.e., assignments of states to gridcells (for formal de�nitions see [Codd, 1968]). It has been noted that the basic mechanismsvon Neumann proposed for attaining self-reproduction in cellular automata bear strongresemblance to those employed by biological life, discovered during the following decade.Von Neumann's universal constructor-computer was simpli�ed by Codd who used an8-state, 5-neighbor cellular space [Codd, 1968]; self-reproduction is obtained as a specialcase of universal construction, just as with von Neumann's work. The major problem withboth these systems is their prohibitive size, due mainly to the property of constructionuniversality; this has prevented simulating them in their entirety.A di�erent route was taken by Langton who observed that the above systems displaysu�cient capacity for self-reproduction, and asked, conversely, what kind of logical or-ganization is necessary for an automaton to be able to reproduce itself [Langton, 1984,Langton, 1986]. He distinguished between trivial self-reproduction, which is entirely coded1For those readers who are familiar with previous work on self-reproduction in CAs we suggest a quicktour of the �gures, by which a basic comprehension of our system may be gained.2The neighborhood consists of the cell itself together with its four immediate nondiagonal neighbors.3

PARENT

OFFSPRING

UC

UCCONSTRUCTING

ARM

TAPE

TAPE

Figure 1: A schematic diagram of von Neumann's self-reproducing CA.within the \physics" (cellular rule) of the system (e.g., the xor rule), and non-trivial repro-duction in which the construction of the copy is actively directed by the con�guration itself.The structure may take advantage of certain properties of the transition function \physics"of the cellular space, but not to the extent that the structure is merely passively copied bymechanisms built into the transition rule. We note in passing that the issue of trivial versusnon-trivial self-reproduction is far from settled; as a simple counter-argument to Langton'sviewpoint consider the observation that essentially any behavior of a CA ultimately resultsfrom application of the cellular rule. It is beyond our scope to delve into this issue and weshall content ourselves to Langton's de�nition, non-formal as it is (an interesting discussionon trivial versus non-trivial self-reproduction is given by [Ludwig, 1993]).Langton's self-reproducing structure is a loop constructed in 8-state, 5-neighbor cellularspace, based on Codd's periodic emitter; while not claiming to be construction-universalnor computation-universal it displays non-trivial self-reproduction. The loop is basically aclosed data path, consisting of a string of \core" cells in state 1, surrounded by \sheath"cells in state 2 (Figure 2a). Data paths are capable of transmitting data in the form of\signals", which are packets of two co-traveling states; the signal state itself (state 4, 5, 6,or 7) followed by the state 0 (see Section 3.3).The signals contained within the loop cycle through it, comprising the instructions forreproduction, i.e., the \genome". As each such signal encounters the \arm" junction itis duplicated, with one copy propagating back around the loop again and the other copy4

 . 1 7 0 1 4 0 1 4 .
 . 0 0 .
 . 7 . . 1 .
 . 1 . . 1 .
 . 0 . . 1 .
 . 7 . . 1 .
 . 1 1
 . 0 7 1 0 7 1 0 7 1 1 1 1 1 .

 . 7 0 1 7 0 1 7 0 . . 1 4 0 1 4 0 1 1 .
 . 1 1 . . 0 1 .
 . 1 . . 7 . . 7 . . 1 .
 . 1 . . 0 . . 1 . . 1 .
 . 1 . . 1 . . 0 . . 7 .
 . 1 . . 7 . . 7 . . 0 .
 . 0 0 . . . 1 1 .
 . 4 1 0 4 1 0 7 1 0 7 5 0 6 1 0 7 1 0 7 .
 (a) (b)Figure 2: Langton's self-reproducing loop. (a) Time step 0. (b) Time step 126. Sheathcells are denoted by dots. Cells in the quiescent state (zero) are shown as spaces.propagating down the arm, where it is translated as an instruction when it reaches theend of the arm. In executing the instructions the arm extends itself and folds, ultimatelyresulting in a \daughter" loop, also containing the genome needed to reproduce (Figure 2b.for a full description see [Langton, 1984]).A primary characteristic emphasized by Langton is the two di�erent modes in which in-formation is used, interpreted and uninterpreted, which also occur in natural self-reproduction,the former being the process of translation, and the latter transcription. In Langton's loop,translation is accomplished when the instruction signals are \executed" as they reach theend of the construction arm, and upon collision of signals with other signals. Transcriptionis accomplished by the duplication of signals at the arm junctions [Langton, 1984].Following in Langton's footsteps, smaller (non-trivial) self-reproducing loops, embeddedin cellular spaces with fewer states, were demonstrated by [Byl, 1989] and later by [Reggiaet al., 1993]. The latter constructed several such loops, sheathed as well as unsheathed,also studying the issue of rotational symmetry (see Section 3.3); the smallest demonstratedloop is unsheathed, consisting of 5 cells, embedded in 6-state cellular space [Reggia et al.,1993].The loop structures discussed above display only one functionality, namely self-reproduction;while simple enough to simulate in their entirety they represent an extreme opposite of theworks of von Neumann and Codd. As put forward by Langton, one can imagine a scale ofcomplexity of self-reproducing entities, with one end representing simple, marginally non-5

trivial, self-reproducing structures, and the other end representing highly complex mecha-nisms such as the universal constructor-computer [Langton, 1984]. The above loops occupyan intermediate position, albeit close to the low complexity end.The systems designed by von Neumann and Codd are highly complex and do not yieldthemselves easily to implementation. Taking a di�erent approach we ask whether onecan start at the low end of the complexity spectrum, namely with simple self-reproducingstructures, and add functionalities to these entities, ultimately attaining highly complexmachines, that are nonetheless completely realizable. A �rst step in this direction wasrecently taken by [Tempesti, 1995]. His self-reproducing system resembles that of Langton's,with the added capability of attaching to the automaton an executable program which isduplicated and executed in each of its copies. The program is stored within the loop,interlaced with the reproduction code and is therefore somewhat limited (see Section 3.2).Our work takes an additional step forward, by demonstrating a self-reproducing loopthat is capable of implementing any program, written in a simple yet universal programminglanguage. The program and its data are reproduced along with the loop, after whichprogram execution takes place.Before ending this short exposition, we briey mention a number of recent researchthemes, which, though not bearing directly on our work, are interesting nonetheless. [Ib�anezet al., 1995] present a cellular reproduction model based on self-inspection, in which the de-scription of the object to be reproduced (the \genome") is dynamically constructed concomi-tantly with its interpretation3. This entails a more robust reproduction scheme, which alsoa�ords the possibility of inheritance of phenotypical variations in a Lamarckian manner. Theembryonics (embryological electronics) project is a CA-based approach in which three prin-ciples of natural organization are employed: multi-cellular organization, cellular di�erentia-tion and cellular division [Mange et al., 1996, Mange et al., 1995, Mange and Stau�er, 1994,Marchal et al., 1994]. Their intent is to create an architecture which is complex enough for(quasi) universal computation yet simple enough for physical implementation; among theproperties demonstrated by this group is a form of \multi-cellular" reproduction. Finally,we mention the work of [Sipper, 1994, Sipper, 1995], in which a non-uniform, CA-derivedmodel is presented, and used to implement various systems, among them a self-reproducing,multi-cellular loop.3Self-inspection based methods were �rst introduced by [Laing, 1975, Laing, 1976, Laing, 1977] using adi�erent model than that of the CA.
6

3 Designing a new automatonIn this section we describe the overall design of our automaton. Note that we do notwish to attain construction universality, a property which stood as the main reason for theprohibitive size of the machines designed by von Neumann and Codd; our aim is to attaina self-reproducing system exhibiting universal computation, which is completely realizable.Our starting point is Langton's self-reproducing loop to which we add the capability ofuniversal computation. Toward this end we must choose a suitable Turing machine model,decide upon the storage method of program and data, and realize the capacity for signaltransmission. These issues are discussed ahead.3.1 The Turing machine modelThe Turing machine model chosen for our work is the W-machine, introduced by [Wang,1957] and named for him by [Lee, 1960], who explored its relation with �nite automata(see also [Arbib, 1969]). A W-machine is like a Turing machine with two symbols 0 and1, save that its operation at each time step is guided not by a Turing quintuple but by aninstruction from the following list [Arbib, 1969]:� PRINT 0: print the symbol 0 on the square under scan.� PRINT 1: print the symbol 1 on the square under scan.� MOVE DOWN: move the read-write head one square down4.� MOVE UP: move the read-write head one square up.� IF 1 THEN (n) ELSE (next instruction): conditional jump.� STOP.The complete program for a particular machine is a �nite ordered list of instructions withposition in the program corresponding to the state of a Turing machine. After executionof an instruction of the �rst four types, control is automatically transferred to the nextinstruction. The conditional jump transfers control to the n-th instruction if the squareunder scan contains a 1 symbol, otherwise it transfers control to the next instruction. Notethat this is a program jump, not a move on the tape. If control is transferred to the STOPinstruction, or to an instruction outside the program, the computation halts [Arbib, 1969].4In our system the tape is vertically oriented.
7

The W-machine is similar to the Turing machine model in that it uses an in�nite, cellulartape, however the program consists of more easily manipulable high level instructions ratherthan a state transition diagram.3.2 Representing program and dataThe W-machine consists of a program operating on an in�nite data tape. We must nowconsider how these two elements are to be represented within the framework of our self-reproducing computer. We �rst turn our attention to the data tape, noting that a semi-in�nite tape is su�cient for computation universality [Minsky, 1967].There are three possibilities for storing data in our case. The �rst is to use the interiorof the loop for this purpose, the second is to store the data within the loop itself, and thethird possibility is to store the data externally with respect to the loop (Figure 3).

. 1 7 0 1 4 0 1 4 .
. 0 0 .
. 7 . D D D D . 1 .
. 1 . D D D D . 1 .
. 0 . D D D D . 1 .
. 7 . D D D D . 1 .
. 1 1
. 0 7 1 0 7 1 0 7 1 1 1 1 1 .

. 1 7 0 1 4 0 1 4 .
. 0 0 .
. 7 . . 1 .
. 1 . . D .
. 0 . . D .
. 7 . . 1 .
. 1 1
. 0 7 1 0 7 1 0 7 1 1 1 1 1 .

. 1 7 0 1 4 0 1 4 .
. 0 0 .
. 7 . . 1 .
. 1 . . 7 .
. 0 . . 0 .
. 7 . . 1 .
. 1 1
. 0 7 1 0 7 1 0 7 1 1 1 1 1 .

 . D .
 . D .
 . D .
 . D .
 .(a) (b) (c)Figure 3: Three possibilities for data storage. (a) Within the interior of the loop. (b)Within the loop itself. (c) Externally with respect to the loop.The �rst two options lack an essential element necessary for the construction of a uni-versal computer, namely an in�nitely expandable memory. One can obviously \tailor" theloop a-priori to any desirable size, however, once the system begins its operation, memorysize is essentially �xed, i.e., �nite. Designing such a loop to actually change its size dynam-ically during operation would be an arduous task; moreover, this creates another problemsince we end up with a multitude of loops, dynamically growing in all directions, mutuallyinterfering with each other5.5The loop of [Tempesti, 1995], discussed in Section 2, takes the second approach, i.e., the program and8

Our choice for data representation lies therefore in the third possibility, which a�ordsdynamic adaptation of tape size. As the tape can grow unchecked in one direction (down)we must limit our reproduction to one dimension (the remaining one). Thus, while previousloops reproduced in two dimensions, ours will be a linear reproduction, the other dimensionreserved for tape \growth" 6.As opposed to the data tape whose size cannot be limited at the outset, program sizeis �xed in advance; therefore any of the above three options can be used for its storage.We have chosen the third option, so that the program is represented in an identical mannerto that of the data tape. This is more convenient in practice; the �rst option would entaila novel mechanism for reading and reproducing the enclosed program, while the secondoption presents some synchronization problems due to the mobility of the program withinthe loop7. Using the third option, in which the program is stored externally, eschews theseproblems; no novel reproduction nor reading mechanism is required, and synchronization isfacilitated since the program is essentially immobile.3.3 SignalsIn Section 2 we noted that the process of reproduction involves signals which are transmittedbetween the mother structure and the daughter one. In this section we take a look at somepossible signal implementations, choosing the most appropriate one for our case.Von Neumann's transition function satis�es weak rotational symmetry; some cell statesare directionally oriented [von Neumann, 1966]. The oriented cell states are such that theypermute among one another consistently under successive 90� rotations of the underlyingtwo-dimensional coordinate system [Reggia et al., 1993] (for a formal de�nition of rotationalsymmetry in cellular automata see [Codd, 1968]). For example, the cell state designated" is oriented and thus permutes to di�erent cell states !, #, and under successive 90�rotations; it represents one oriented component that can exist in four di�erent states ororientations. A major problem with this approach is the large number of states required;for each direction two di�erent states are needed, an active one, denoting the presence of asignal, and an inactive one. This also entails a highly complicated implementation of signalsintersection.Codd's simpli�ed version of von Neumann's self-reproducing universal constructor-computer[Codd, 1968] and the simpler sheathed loops that followed [Langton, 1984, Langton, 1986,data are stored within the loop itself.6Another possibility would be to use a three dimensional cellular space with reproduction occurring, asbefore, in two dimensions, and tape growth taking place in the third.7These concern the maintaining of the current instruction \pointer", and especially the execution of theIF instruction, which entails a break in sequential execution.9

Byl, 1989] are all based on a more stringent criterion called strong rotational symmetry[Codd, 1968]; all cell states are viewed as being unoriented or rotationally symmetric. Inthis case, the \wire", i.e., signal path, is bi-directional, and the direction of the signal isindicated by a trailing state. For example, in Codd's model the two adjoined states f0; 7grepresent a value of 7 moving right, while f7; 0g represents the same value moving left.Langton simpli�ed Codd's construction, making the individual signals more \powerful", byaltering the transition function; for example, one signal is su�cient to cause the loop armto extend, rather than the two used by Codd. He also added a special signal, which travelswithin the sheath, and upon arriving at the next corner initiates the construction of a newconstruction arm. In [Reggia et al., 1993] both types of rotational symmetry are studied.Our choice of signals lies with the latter approach, i.e., that of Codd and Langton, dueto their simpli�ed form. Our system consists of three parts: loop, program, and data, withCodd-type signals used for the �rst part, and Langton-type signals used for the latter two.Essentially, Codd-type signals are used to store the loop's \genome", i.e., the instructionsnecessary for its reproduction, while Langton-type signals are used for handling informationpertaining to the program and data.3.4 The automaton structureUpon examining the di�erent issues above we arrive at our basic automaton design, shown inFigure 4. The system consists of a self-reproducing loop onto which we attach the programand data, both of which are reproduced (along with the loop). In the next section wedescribe in detail the functioning of our self-reproducing computer.4 Description of the automaton's functioningIn this section we delineate the workings of our system, explicating its two main function-alities: reproduction and program execution. The 5-neighbor cellular space consists of 63states, theoretically entailing a huge rule table of size 635; however, the number of tableentries actually used, i.e., those which do not transform a state to itself (identity trans-formations), is only 8503. This renders our automaton completely realizable. Note thatwe did not attempt to minimize the number of states, though it is most likely that such areduction is possible, aided by novel CA design tools (see Section 6). In the �gures belowwe denote states by illustrative symbols rather than by their actual values.
10

. 7 0 1 7 0 1 7 0 .
. 1 1 .
. 1 . . 7 .
. 1 . . 0 .
. 1 . . 1 .
. 1 . . 7 .
. 0 0
. 4 1 0 4 1 0 7 1 0 7 1 1 .
. A
. P . . D .
. P . . D .
. P . . D .
. P . . D .
. P . .
. P .
. P .
 .Figure 4: The automaton structure. P denotes a state belonging to the set of programstates, D denotes a state belonging to the set of data states, and A is a state which indicatesthe position of the program.4.1 ReproductionOur system consists of three parts: loop, program, and data, each of which is reproduced (inthis order) as described ahead. In what follows we use the terms mother unit and daughterunit to denote the respective systems, consisting of all three parts.4.1.1 Reproduction of the loopThe loop reproduces in an identical manner to Langton's loop [Langton, 1984], with the ex-ception that specialized signals are incorporated within the sheath for handling informationpertaining to the program and data (these are explained in the sections ahead).4.1.2 Reproduction of the programOnce the loop's reproduction ends, i.e., a daughter loop has been created, three special statesare generated; the �rst, traveling toward the mother unit, starts the reproduction of theprogram, the second creates a \marker" for the program position within the daughter unit(signifying the top of the program structure), and the third creates a marker for the dataposition (signifying the top of the data structure, see Figure 5). This last signal will alsoeventually serve to initiate the reproduction of the daughter unit, once the data structure11

(tape) has been reproduced in its entirety (thereby ending the reproductive process).

. 7 0 1 7 0 1 7 0 . . 1 4 0 1 4 0 1 1 .
. 1 1 . . 0 1 .
. 1 . . 7 . . 7 . . 1 .
. 1 . . 0 . . 1 . . 1 .
. 1 . . 1 . . 0 . . 7 .
. 1 . . 7 . . 7 . . 0 .
. 0 0 . . . 1 1 .
. 4 1 0 4 1 0 7 1 0 7 5 0 6 1 0 7 1 0 7 .
. A 8
. P . . D .
. P . . D .
. P . . D .
. P . . D .
. P . .
. P .
. P .
 .Figure 5: Program reproduction: 1. Daughter loop has been created. Three signals are gen-erated, a left-moving signal which will initiate program reproduction (boxed 5), a program-top marker (boxed 8), and a right-moving signal which will create the data-top marker(boxed 6).The signal transmitted to the mother unit �rst acts to cut part of the \umbilical cord"connecting both systems. It then generates a special state at the top of the mother datastructure, which blocks \undesirable" signals from entering during program reproduction;this state will also serve to eventually initiate data reproduction (Figure 6).The signal continues to propagate until arriving at the top of the mother programstructure, where it proceeds to travel down the length of the program, acting as a \read"head. For each program state encountered, a corresponding mobile \traveling" state isgenerated within the sheath, which travels upward (Figure 7).These upward-traveling signals propagate to the daughter unit. There, upon encounter-ing the program-top marker, they travel down the length of the daughter structure underconstruction; once at the bottom, the newly arrived state is inserted into the growing pro-gram structure.When the read head arrives at the bottom of the mother program structure, a signalis generated which erases the program-top marker within the daughter unit, and also endsthe construction of the daughter program structure (Figure 8).

12

. 7 0 1 7 0 1 7 0 . . 4 0 1 1 1 1 1 7 .
. 1 1 . . 1 0 .
. 1 . . 7 . . 0 . . 1 .
. 1 . . 0 . . 4 . . 7 .
. 1 . . 1 . . 1 . . 0 .
. 1 . . 7 . . 0 . . 1 .
. 0 0 . . 7 7 .
. 4 1 0 4 1 0 7 1 0 . 1 0 7 1 0 6 1 0 .
. A 5 . . . 8
. P . . D Z 9
. P . . D .
. P . . D .
. P . . D .
. P . .
. P .
. P .
 .Figure 6: Program reproduction: 2. \Umbilical cord" is partially severed. The left moving5 signal, that ultimately initiates program reproduction, creates the blocker signal at thetop of the mother data structure (Z). Meanwhile, the program-top marker in the daughterunit has been completed (states 8,9), and the 6 signal continues traveling right to createthe data-top marker.4.1.3 Reproduction of the dataThe signal that ended program reproduction also serves a second purpose; once arriving atthe blocker state, at the top of the mother data structure, it activates the data reproductionprocess (Figure 9).This process is similar to program reproduction. A read \head" (signal) transformseach data state to a corresponding traveling state that travels to the daughter unit. Eachsuch signal arrives at the (daughter) data-top marker, travels down the length of the datastructure, and is added to it at the bottom.The signal that had initiated the entire reproductive process, upon arriving at the endof the mother data structure, generates a signal that signi�es the end of reproduction. Thiswill cut the remainder of the umbilical cord, and complete the construction of the daughterdata structure. Once this process ends, the entire daughter unit has been formed and cancommence its own reproduction.

13

. 7 0 1 7 0 1 7 0 . . 1 7 0 1 6 0 1 7 .
. 1 1 . . 0 0 .
. 1 . . 7 . . 7 . . 1 .
. 1 . . 0 . . 1 . . 7 .
. 1 . . 1 . . 0 . . 0 .
. 1 . . 7 . . 7 . . 1 .
. 0 0 . . 1 4 .
. 4 1 0 4 1 0 7 1 0 . 1 1 1 1 0 4 1 0 .
. A T . T 8 8
. P . . D Z 9 9
. P T . D .
. P . . D .
. P T . D .
. P 5 .
. P .
. P .
 .Figure 7: Program reproduction: 3. Actual program reproduction has started. As the 5signal moves down the mother structure it generates for each program state a correspondingupward-traveling state within the sheath (boxed T), which travels to the daughter unit. Notethat the data-top marker of the daughter unit has been completed.4.2 Program executionWe have described above the reproductive process by which a mother unit, composed ofloop, program, and data, creates an identical daughter unit. Once this process is over, themother unit can \ful�ll" its function by executing the program (Turing machine).In this section we explicate the manner by which programs are executed. This beginswith an initialization phase which occurs immediately after reproduction has terminated,followed by execution of instructions from the instruction set of Section 3.1: PRINT, MOVE,IF, and STOP.4.2.1 InitializationAs described above, after reproduction of the mother data structure (tape), a signal is sentto the daughter unit to indicate end of reproduction. A second signal is concomitantlygenerated, that propagates in the opposite direction, toward the (mother) program in orderto initiate its execution. On its way this signal creates the data read-write head (henceforthdata head) at the sheath's exterior, and upon arriving at the program top, it generates theprogram read head (henceforth program head. see Figure 10). These heads are signals that14

. 7 0 1 7 0 1 7 0 . . 1 7 0 1 6 0 1 7 .
. 1 1 . . 0 0 .
. 1 . . 7 . . 7 . . 1 .
. 1 . . 0 . . 1 . . 7 .
. 1 . . 1 . . 0 . . 0 .
. 1 . . 7 . . 7 . . 1 .
. 0 0 . . 1 4 .
. 4 1 0 4 1 0 7 1 0 . 1 1 1 1 0 4 1 0 .
. A . $ T . T . T . T . 8 8
. P . . D Z T P . 9
. P . . D . . P .
. P . . D . T 9
. P . . D .
. P . .
. P .
. P .
 .Figure 8: Program reproduction: 4. Final steps of program reproduction. The last \trav-eling" program states are followed by the �nal $ signal. This signal will complete the con-struction of the daughter program structure, and activate the data reproduction process.control the execution of the program; once in place, program execution begins.4.2.2 The PRINT instructionsWhen the program head encounters an instruction PRINT 0 or PRINT 1, it implements it bygenerating a signal which propagates within the sheath toward the data structure8. Whenthe signal arrives at the position of the data head, it is transformed to the appropriate datastate (i.e., 0 or 1), and placed in the respective position of the data structure (tape). Theprocess is demonstrated in Figure 11.4.2.3 The MOVE instructionsThe MOVE DOWN instruction is implemented similarly to the PRINT instructions. When theprogram head encounters this command, a signal is propagated to the data tape, whichmoves the data head one position down (note that the data itself is left unchanged). Theprocess is demonstrated in Figure 12.8Note that the program can continue executing without waiting for such an instruction to end; we mustonly insure that successive instructions terminate after this one.

15

. 7 0 1 7 0 1 7 0 . . 1 7 0 1 6 0 1 7 .
. 1 1 . . 0 0 .
. 1 . . 7 . . 7 . . 1 .
. 1 . . 0 . . 1 . . 7 .
. 1 . . 1 . . 0 . . 0 .
. 1 . . 7 . . 7 . . 1 .
. 0 0 . . 1 4 .
. 4 1 0 4 1 0 7 1 0 . 1 1 1 1 0 4 1 0 .
. A $. 8 8
. P . . D % T P . 9
. P . . D . . P .
. P . . D . T P .
. P . . D . . P .
. P . . T 9
. P .
. P .
 .Figure 9: Data reproduction: The $ signal, which ends program reproduction, also activatesthe data reproduction process by creating a read head (%). This head passes down the lengthof the mother data structure, generating the corresponding traveling states (as with programreproduction).Whereas in theory the data tape is in�nite, in practice we cannot simulate an in�nitenumber of cells in a computer. We therefore start o� with a �nite-size data tape, assumingall other cells beyond it are in state zero; if the data head arrives at the tape's end, and aMOVE DOWN instruction is executed, the tape is dynamically extended by one cell.The MOVE UP instruction is similar to MOVE DOWN, causing a signal to be generated thatmoves the data head one position up. However, as the data tape is essentially in�nite in bothdirections, we must consider what happens when the data head reaches the top position,and a MOVE UP is executed. As noted in Section 3.2, a semi-in�nite tape is su�cient forcomputation universality, however, the programming of such a machine is more di�cult; wetherefore automatically augment the size of the data tape. In order to accomplish this, asignal is sent to the bottom of the structure, increasing its size by one cell; upon returningupward the data is shifted one position down, and once this signal arrives at the top thedata head can assume its new position.Note that while the tape increase process takes place, the program must be suspended,i.e., the signals sent by the program head must be blocked. This is accomplished by ablocking signal, which is essentially transparent to the program, i.e., it does not \know"that a certain instruction takes longer than usual to execute (Figure 13).16

. 7 0 1 7 0 1 7 0 .
. 1 1 .
. 1 . . 7 .
. 1 . . 0 .
. 1 . . 1 .
. 1 . . 7 .
. 0 0 .
. 4 1 0 4 1 0 7 1 .
. A
. P H H . D .
. P . . D .
. P . . D .
. P . . D .
. P . .
. P .
. P .
 .Figure 10: Program execution: End of initialization phase. Program head and data headare in place (boxed H).4.2.4 The IF instructionThis instruction is the most complex one; in contrast to the others whose execution isindependent of the data tape contents, the IF instruction must read some data value, andpossibly engender a break in sequential program execution as a function of this value.Upon encountering an IF, the program head waits for the response of the data head; thisconsists of one of two possible signals, signifying whether the current data cell under scanis in state 0 or 1. The response \retro"-propagates back through the sheath, and activatesthe awaiting program head (Figure 14).The returned data state (i.e., condition value) may be either 0 or 1. In the former case,the program continues executing sequentially, i.e., the program head must position itself atthe next instruction. It must therefore skip over the following cells which represent the IF'sjump address; this is easily accomplished since it must simply ignore the cells in jump-states0 or 1 (these are speci�c states that only appear as jump addresses. see Figure 15).If the condition value is 1, the program head must jump to the appropriate address; thisis coded by the following cells, representing a relative positive or negative displacement.The cell immediately following the IF instruction is the sign bit, with a value of 1 denotinga forward (downward) jump and a value of 0 denoting a backward (upward) jump.The forward (downward) jump is accomplished by moving x instructions forward, where17

. 7 0 1 7 0 1 7 0 .
. 1 1 .
. 1 . . 7 .
. 1 . . 0 .
. 1 . . 1 .
. 1 . . 7 .
. 0 0 .
. 4 1 0 4 1 0 7 1 .
. A C . C . C . . .
. P . H C - .
. P C . + .
. P . . + .
. P . . - .
. P . .
. P H
. P .
 .

. 7 0 1 7 0 1 7 0 .
. 1 1 .
. 1 . . 7 .
. 1 . . 0 .
. 1 . . 1 .
. 1 . . 7 .
. 0 0 .
. 4 1 0 4 1 0 7 1 .
. A . C . C . C . .
. P C H . + .
. P . . + .
. P . . + .
. P . . - .
. P . .
. P H
. P .
 .(a) (b)Figure 11: Program execution: The PRINT instruction (shown for PRINT 1). Data states areshown as - (0) and + (1). C denotes an instruction (command) on its way to being executed.(a) Before execution: Data state at current position of data head is 0 (-). Command (C)at current position of data head is PRINT 1. (b) After execution: Data state is 1 (+).x is speci�ed by the number of 1s immediately following the sign bit9. The program headenters a special state, moving along these 1s, generating for each one an `advancement'signal. When the head reaches the next instruction (i.e., �nishes reading the jump address),it enters a state in which it waits for the advancement signals; as each one of these arrives,the program head advances one instruction forward. When the \ow" of advancementsignals ceases, the program head changes from the waiting state to its normal state, andresumes program execution. Note that the program head and the advancement signals mustbe synchronized; if the head is not in the `receiving-advancement-signals' mode, these latterwill have no e�ect. The process is demonstrated in Figure 16.For a backward (upward) jump the relative displacement must be read in the followingcells (as before), however the jump is in the opposite direction of normal execution. Thisis carried out be having the program head \split" into two; the �rst head rests in its9We assume that x � 2 since using an IF for a one-instruction jump is unnecessary; therefore, the numberof 1s needed to specify the displacement is actually x� 1. Note that x speci�es the number of instructionsto jump and not the number of cells. 18

. 7 0 1 7 0 1 7 0 .
. 1 1 .
. 1 . . 7 .
. 1 . . 0 .
. 1 . . 1 .
. 1 . . 7 .
. 0 0 .
. 4 1 0 4 1 0 7 1 .
. A C . C
. P . H . - .
. P C . + .
. P . . + .
. P C . - .
. P H .
. P .
. P .
 .

. 7 0 1 7 0 1 7 0 .
. 1 1 .
. 1 . . 7 .
. 1 . . 0 .
. 1 . . 1 .
. 1 . . 7 .
. 0 0 .
. 4 1 0 4 1 0 7 1 .
. A . . C . C . . .
. P . C - .
. P . H . + .
. P . . + .
. P . . - .
. P H .
. P .
. P .
 .(a) (b)Figure 12: Program execution: The MOVE DOWN instruction. (a) Before execution. (b) Afterexecution. Note that the data head has moved one position down.place, while the second goes on (down) to generate an advancement signal for each of thedisplacement bits (J cells), as for the forward jump. This second head will ultimatelydisappear upon arriving at the end of the jump address. Meanwhile, the �rst head, which isin a `backward-move' state, travels upward as it encounters the upward-moving advancementsignals. When these cease to arrive, the program head changes from the backward-movestate to its normal forward state, and resumes program execution.4.2.5 The STOP instructionWhen the program head passes the last instruction or carries out a backward jump beyondthe �rst instruction, it disappears. Thus, the STOP instruction can easily be implemented byinserting a GOTO instruction (see next section) whose target lies before the �rst instructionor after the last one, causing the program head to disappear, and the program to terminate.Note that a \terminated" program can easily be detected by the presence of a data headcoupled with the absence of a program head.

19

. 7 0 1 7 0 1 7 0 .
. 1 1 .
. 1 . . 7 .
. 1 . . 0 .
. 1 . . 1 .
. 1 . . 7 .
. 0 0 .
. 4 1 0 4 1 0 7 1 .
. A . . C C C C . .
. P . H B - .
. P . . + .
. P . . + .
. P . S - .
. P . .
. P H
. P .
 .

. 7 0 1 7 0 1 7 0 .
. 1 1 .
. 1 . . 7 .
. 1 . . 0 .
. 1 . . 1 .
. 1 . . 7 .
. 0 0 .
. 4 1 0 4 1 0 7 1 .
. A . . C C C C . .
. P . H B - .
. P . . + .
. P . . S .
. P . . + .
. P . . - .
. P H .
. P .
 .

. 7 0 1 7 0 1 7 0 .
. 1 1 .
. 1 . . 7 .
. 1 . . 0 .
. 1 . . 1 .
. 1 . . 7 .
. 0 0 .
. 4 1 0 4 1 0 7 1 .
. A . . C C C C . .
. P . H . - .
. P . . - .
. P . . + .
. P . . + .
. P . . - .
. P H .
. P .
 .(a) (b) (c)Figure 13: Program execution: Increasing the data tape when the data head is at thetop and a MOVE UP is executed. (a) Increase signal sent to bottom of data tape (S), whileinstruction execution is blocked by signal B. (b) Tape has been increased by one cell. Asthe extension signal returns upward the data is shifted one cell down. Note that programexecution is still halted. (c) End of tape increase. Data head is at the (new) top; tape hasbeen extended by one cell, and all data shifted downwards. The program resumes execution.4.3 Enhancing the instruction setIn this section we describe one possible addition to the instruction set of Section 3.1, namelya GOTO instruction. This is not necessary for computation universality, but is convenient inpractice for carrying out unconditional jumps.The instruction GOTO (n), denoting an unconditional jump n instructions forward, isimplemented using the IF instruction in the following manner:

20

. 7 0 1 7 0 1 7 0 .
. 1 1 .
. 1 . . 7 .
. 1 . . 0 .
. 1 . . 1 .
. 1 . . 7 .
. 0 0 .
. 4 1 0 4 1 0 7 1 .
. A
. P . H . - .
. P C . + .
. P . . - .
. J W . + .
. J . . - .
. P . .
. P .
 .

. 7 0 1 7 0 1 7 0 .
. 1 1 .
. 1 . . 7 .
. 1 . . 0 .
. 1 . . 1 .
. 1 . . 7 .
. 0 0 .
. 4 1 0 4 1 0 7 1 .
. A . . R
. P . H . - .
. P . . + .
. P . . - .
. J W . + .
. J . . - .
. P . .
. P .
 .(a) (b)Figure 14: Program execution: The IF instruction; 1. Testing the condition. (a) A signal issent to the data head to obtain the current data state. Program head enters a waiting state(W). (b) The current data state, i.e., result of test, is returned (R) to activate the awaitingprogram head (W). J denotes cells containing the jump address.i : IF 1 THEN (n) ELSE (next instruction) f n is the relative displacement to gi+ 1 : PRINT 1 f instruction j gi+ 2 : IF 1 THEN (n-3) ELSE (next instruction) fn� 3 is the relative displacement gi+ 3 : Continuation of program. f to instruction j � 1 g:::j � 2 : IF 1 THEN (2) ELSE (next instruction)j � 1 : PRINT 0 f restore previous data state to tape gj : Continuation of program.where i and j denote instruction numbers, with the relative displacement between thembeing n. Note that instruction j � 2 is essentially a simpli�ed jump, that skips the PRINT0 instruction, used in the GOTO implementation; this is necessary so as not to alter the21

. 7 0 1 7 0 1 7 0 .
. 1 1 .
. 1 . . 7 .
. 1 . . 0 .
. 1 . . 1 .
. 1 . . 7 .
. 0 0 .
. 4 1 0 4 1 0 7 1 .
. A
. P . H . - .
. P . . + .
. P . . - .
. J O . + .
. J . . - .
. P . .
. P .
 .

. 7 0 1 7 0 1 7 0 .
. 1 1 .
. 1 . . 7 .
. 1 . . 0 .
. 1 . . 1 .
. 1 . . 7 .
. 0 0 .
. 4 1 0 4 1 0 7 1 .
. A
. P . H . - .
. P . . + .
. P . . - .
. J . . + .
. J . . - .
. P H .
. P .
 .(a) (b)Figure 15: Program execution: The IF instruction; 2. Condition is false (0). (a) A 0 arrivesat the program head, signifying that the condition is false. (b) The program head skipsover the cells containing the jump address (denoted by J) and positions itself at the nextinstruction.program's semantics10. We note in passing that in certain cases the GOTO implementationcan be simpli�ed; for example, if we know that the current data state is 1 then we caneliminate steps i+ 1, i+ 2, j � 2, and j � 1 (other optimizations are also possible).5 Example: A parenthesis checkerIn this section we demonstrate the operation of our automaton, by implementing a programthat performs parenthesis checking. This problem is to decide whether a sequence of leftand right parentheses is well-formed, i.e., whether they can be paired o� from inside tooutside so that each left parenthesis has a right-hand mate. The problem was discussed atlength by [Minsky, 1967]; note that the computation involved corresponds to recognition ofa non-regular language.A good procedure for checking parentheses consists of searching to the right for a rightparenthesis and then searching to the left for its mate and removing both. One keeps doing10Note that this instruction is reached only if a jump is made to an instruction between i+ 3 and j � 3.22

. 7 0 1 7 0 1 7 0 .
. 1 1 .
. 1 . . 7 .
. 1 . . 0 .
. 1 . . 1 .
. 1 . . 7 .
. 0 0 .
. 4 1 0 4 1 0 7 1 .
. A
. P . H . - .
. J ⇓⇓ . + .
. J ⇓⇓ . - .
. P M . + .
. P . . - .
. P . .
. P .
 .

. 7 0 1 7 0 1 7 0 .
. 1 1 .
. 1 . . 7 .
. 1 . . 0 .
. 1 . . 1 .
. 1 . . 7 .
. 0 0 .
. 4 1 0 4 1 0 7 1 .
. A
. P . H . - .
. J . . + .
. J . . - .
. P . . + .
. P . . - .
. P . .
. P H
 .(a) (b)Figure 16: Program execution: The IF instruction; 3. Condition is true (1), forward jump.(a) Generating advancement signals. Program head is in a special `receiving-advancement-signals' mode (M). (b) Program head reaches jump destination. Note that two J's signify adisplacement of three instructions (see text).this until no more pairs are found. If any unmatched symbols remain, the expression isnot well-formed, and conversely. The input consists of left and right parentheses enclosedbetween the symbol A, e.g., A(()(())A [Minsky, 1967].To implement this procedure we need four input symbols: (,), A, and X (the removalsymbol). As our data tape consists of two symbols, we use the following two bit code:00 A01 X10 (11)The program's output is a data state of 1 or 0 placed in the uppermost data cell,signifying whether the input string is well-formed or not well-formed, respectively. Theprogram listing is given in the Appendix. Note that the self-reproducing parenthesis checkerhas been implemented in its entirety.

23

6 DiscussionIn this paper we presented a self-reproducing system, consisting of three parts: a loop, aprogram and data; the entire system is reproduced, after which the program is executed onthe given data. We remark that as the W-machine used is Turing-machine equivalent, wecan theoretically implement a universal Turing machine, i.e., a machine which accepts asinput the description of any program and its data, and then runs (or simulates) the programon the given data.One problem which as yet remains unresolved is that of dynamical input; currently, thedata tape is precisely reproduced, with each daughter unit containing the same data. Onepossibility is the use of randomly generated data, in cases where the program operates onrandom input sets; another option is to obtain data at grid boundaries or at speci�c regionsof the grid. These are only traces of ideas; in fact, the problem of data acquisition a�ectsmany systems, including CA-based ones, and will require continued research in order toarrive at satisfactory solutions.A number of possible improvements and extensions of our system are possible. Thenumber of CA states currently used is 63; as noted in Section 4, the actual number ofnon-identity rule table entries is small, thus rendering our system realizable. Still, it wouldbe interesting to reduce the number of states; indeed, automatic tools for the constructionof CA rule tables have recently made their appearance on the scene, e.g., that developedby [Tempesti, 1995] and used as a basis for our work.The program language we used (W-machine) is simple, consisting of a small instructionset, of which we have already seen one possible enhancement in Section 4.3. One canconceive of developing a high level language (or using an existing one), with a compilerfor our \machine" language. This could form the basis of a programming environment,allowing high level programming of self-reproducing, computing systems.Looking further into the future one can imagine a system comprising several inter-acting self-reproducing machines, each with a (possibly) di�erent functionality (i.e., pro-gram and data). These interactions could be of a cooperative or a competitive nature,the end result being a system displaying some global (worthwhile) functioning. An evo-lutionary component could also be added to such a system, increasing its adaptive ca-pabilities, and allowing us to control or \program" its behavior [Mitchell et al., 1994,Sipper, 1996].Self-reproducing, computing systems hold potential, both from an applicative standpointas well as from a theoretical one. This work has shed light on the possibility of constructingsuch systems, and demonstrated the feasibility of their practical implementation.24

... living organisms are very complicated aggregations of elementary parts, andby any reasonable theory of probability or thermodynamics highly improbable.That they should occur in the world at all is a miracle of the �rst magnitude;the only thing which removes, or mitigates, this miracle is that they reproducethemselves. Therefore, if by any peculiar accident there should ever be one ofthem, from there on the rules of probability do not apply, and there will bemany of them, at least if the milieu is reasonable.John von Neumann, Theory of Self-Reproducing Automata
AcknowledgmentsWe are grateful to Daniel Mange and Gianluca Tempesti for helpful discussions.

25

Appendix: Program listing of the parenthesis checkerThe program, written using the instruction set of Section 3.1, is based on Minsky's statetransition table detailed in [Minsky, 1967], pages 121-123.LABEL State_0 LABEL Case_1_1_?0 PRINT 0 37 MOVE DOWN1 MOVE DOWN 38 IF 1 THEN 44 (LABEL Case_1_1_1)2 IF 1 THEN 12 (LABEL Case_0_1_?) LABEL Case_1_1_0LABEL Case_0_0_? 39 MOVE UP3 MOVE DOWN 40 PRINT 04 IF 1 THEN 1 (LABEL State_0 + 1) 41 MOVE DOWN42 PRINT 1LABEL Case_0_0_0 43 IF 1 THEN 1 (LABEL State_0 + 1)5 MOVE UP6 MOVE UP LABEL Case_1_1_17 MOVE UP 44 MOVE UP8 MOVE UP 45 MOVE UP9 IF 1 THEN 50 (LABEL State_2 + 1) 46 MOVE UP10 PRINT 1 47 MOVE UP11 IF 1 THEN 49 (LABEL State_2) 48 IF 1 THEN 24 (LABEL State_1 + 1)LABEL Case_0_1_? LABEL State_212 MOVE DOWN 49 PRINT 013 IF 1 THEN 16 (LABEL Case_0_1_1) 50 MOVE DOWN51 IF 1 THEN 63 (LABEL Last)LABEL Case_0_1_014 PRINT 1 LABEL Case_2_0_?15 IF 1 THEN 0 (LABEL State_0) 52 MOVE DOWN53 IF 1 THEN 56 (LABEL Case_2_0_1)LABEL Case_0_1_116 MOVE UP LABEL Case_2_0_017 PRINT 0 54 PRINT 1 (Well-formed)18 MOVE UP 55 IF 1 THEN 64 (LABEL Last + 1)19 MOVE UP20 MOVE UP LABEL Case_2_0_121 IF 1 THEN 24 (LABEL State_1 + 1) 56 MOVE UP22 PRINT 1 57 MOVE UP58 MOVE UPLABEL State_1 59 MOVE UP23 PRINT 0 60 IF 1 THEN 50 (LABEL State_2 + 1)24 MOVE DOWN 61 PRINT 125 IF 1 THEN 37 (LABEL Case_1_1_?) 62 IF 1 THEN 49 (LABEL State_2)26 MOVE DOWN27 IF 1 THEN 30 (LABEL Case_1_0_1) LABEL Last63 PRINT 0 (NOT Well-formed)LABEL Case_1_0_028 PRINT 129 IF 1 THEN 63 (LABEL Last)LABEL Case_1_0_130 MOVE UP31 MOVE UP32 MOVE UP33 MOVE UP34 IF 1 THEN 24 (LABEL State_1 + 1)35 PRINT 136 IF 1 THEN 23 (LABEL State_1) 26

References[Arbib, 1969] M. A. Arbib. Theories of Abstract Automata. Prentice-Hall, Englewood Cli�s,N.J., 1969.[Byl, 1989] J. Byl. Self-reproduction in small cellular automata. Physica D, 34:295{299,1989.[Codd, 1968] E. F. Codd. Cellular Automata. Academic Press, New York, 1968.[Drexler, 1989] K. E. Drexler. Biological and nanomechanical systems: Contrasts in evolu-tionary capacity. In C. G. Langton, editor, Arti�cial Life, volume VI of SFI Studies inthe Sciences of Complexity, pages 501{519. Addison-Wesley, 1989.[Drexler, 1992] K. E. Drexler. Nanosystems: Molecular Machinery, Manufacturing andComputation. John Wiley, New York, 1992.[Freitas, Jr. and Gilbreath, 1980] R. A. Freitas, Jr. and W. P. Gilbreath, editors. Advancedautomation for space missions: proceedings of the 1980 NASA/ASEE summer study,chapter 5: Replicating Systems Concepts: Self-replicating Lunar Factory and Demonstra-tion. NASA, Scienti�c and Technical Information Branch (available from U.S. G.P.O.),Washington, D.C., 1980.[Ib�anez et al., 1995] J. Ib�anez, D. Anabitarte, I. Azpeitia, O. Barrera, A. Barrutieta,H. Blanco, and F. Echarte. Self-inspection based reproduction in cellular automata.In F. Mor�an, A. Moreno, J. J. Merelo, and P. Chac�on, editors, ECAL'95: Third Euro-pean Conference on Arti�cial Life, volume 929 of Lecture Notes in Computer Science,pages 564{576, Berlin, 1995. Springer-Verlag.[Laing, 1975] R. Laing. Some alternative reproductive strategies in arti�cial molecular ma-chines. Journal of Theoretical Biology, 54:63{84, 1975.[Laing, 1976] R. Laing. Automaton introspection. Journal of Computer and System Sci-ences, 13:172{183, 1976.[Laing, 1977] R. Laing. Automaton models of reproduction by self-inspection. Journal ofTheoretical Biology, 66:437{456, 1977.[Langton, 1984] C. G. Langton. Self-reproduction in cellular automata. Physica D, 10:135{144, 1984.[Langton, 1986] C. G. Langton. Studying arti�cial life with cellular automata. Physica D,22:120{140, 1986.[Lee, 1960] C. Y. Lee. Automata and �nite automata. Bell System Tech. Journal,XXXIX:1267{95, 1960. 27

[Ludwig, 1993] M. A. Ludwig. Computer Viruses, Arti�cial Life and Evolution. AmericanEagle Publications, Tucson, Arizona, 1993.[Mange and Stau�er, 1994] D. Mange and A. Stau�er. Introduction to embryonics: To-wards new self-repairing and self-reproducing hardware based on biological-like proper-ties. In N. M. Thalmann and D. Thalmann, editors, Arti�cial Life and Virtual Reality,pages 61{72, Chichester, England, 1994. John Wiley.[Mange et al., 1995] D. Mange, E. Sanchez, A. Stau�er, G. Tempesti, S. Durand, P. Mar-chal, and C. Piguet. Embryonics: A new methodology for designing �eld-programmablegate arrays with self-repair and self-reproducing properties. Technical Report 95/152, De-partment of Computer Science, Swiss Federal Institute of Technology, Lausanne, Switzer-land, October 1995.[Mange et al., 1996] D. Mange, M. Goeke, D. Madon, A. Stau�er, G. Tempesti, and S. Du-rand. Embryonics: A new family of coarse-grained �eld-programmable gate arrays withself-repair and self-reproducing properties. In E. Sanchez and M. Tomassini, editors,Towards Evolvable Hardware, volume 1062 of Lecture Notes in Computer Science, pages197{220. Springer-Verlag, Berlin, 1996. Also available as: Technical Report 95/154, De-partment of Computer Science, Swiss Federal Institute of Technology, Lausanne, Switzer-land, November, 1995.[Marchal et al., 1994] P. Marchal, C. Piguet, D. Mange, A. Stau�er, and S. Durand. Em-bryological development on silicon. In R. A. Brooks and P. Maes, editors, Arti�cial LifeIV, pages 365{370, Cambridge, Massachusetts, 1994. The MIT Press.[Minsky, 1967] M. L. Minsky. Computation: Finite and In�nite Machines. Prentice-Hall,Englewood Cli�s, New Jersey, 1967.[Mitchell et al., 1994] M. Mitchell, J. P. Crutch�eld, and P. T. Hraber. Evolving cellularautomata to perform computations: Mechanisms and impediments. Physica D, 75:361{391, 1994.[Reggia et al., 1993] J. A. Reggia, S. L. Armentrout, H.-H. Chou, and Y. Peng. Simplesystems that exhibit self-directed replication. Science, 259:1282{1287, February 1993.[Sipper, 1994] M. Sipper. Non-uniform cellular automata: Evolution in rule space andformation of complex structures. In R. A. Brooks and P. Maes, editors, Arti�cial LifeIV, pages 394{399, Cambridge, Massachusetts, 1994. The MIT Press.[Sipper, 1995] M. Sipper. Studying arti�cial life using a simple, general cellular model.Arti�cial Life Journal, 2(1):1{35, 1995. The MIT Press, Cambridge, MA.[Sipper, 1996] M. Sipper. Co-evolving non-uniform cellular automata to perform computa-tions. Physica D, 92:193{208, 1996. 28

[Tempesti, 1995] G. Tempesti. A new self-reproducing cellular automaton capable of con-struction and computation. In F. Mor�an, A. Moreno, J. J. Merelo, and P. Chac�on, editors,ECAL'95: Third European Conference on Arti�cial Life, volume 929 of Lecture Notes inComputer Science, pages 555{563, Berlin, 1995. Springer-Verlag.[To�oli and Margolus, 1987] T. To�oli and N. Margolus. Cellular Automata Machines. TheMIT Press, Cambridge, Massachusetts, 1987.[von Neumann, 1966] J. von Neumann. Theory of Self-Reproducing Automata. Universityof Illinois Press, Illinois, 1966. Edited and completed by A.W. Burks.[Wang, 1957] H. Wang. A variant to Turing's theory of computing machines. Journal ofthe ACM, IV:63{92, 1957.[Wolfram, 1984] S. Wolfram. Universality and complexity in cellular automata. Physica D,10:1{35, 1984.

29

