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Abstract This paper investigates the use and exten-
sion of text retrieval and clustering techniques for event
detection. The task 1s to automatically detect novel
events from a temporally-ordered stream of news stories,
either retrospectively or as the stories arrive. We applied
hierarchical and non-hierarchical document clustering al-
gorithms to a corpus of 15,836 stories, focusing on the
exploitation of both content and temporal information.
We found the resulting cluster hierarchies highly infor-
mative for retrospective detection of previously uniden-
tified events, effectively supporting both query-free and
query-driven retrieval. We also found that temporal dis-
tribution patterns of document clusters provide useful
information for improvement in both retrospective de-
tection and on-line detection of novel events. In an
evaluation using manually labelled events to judge the
system-detected events, we obtained a result of 82% in
the F)} measure for retrospective detection, and a F}
value of 42% for on-line detection.

1 Introduction

The rapidly-growing amount of electronically available
information threatens to overwhelm human attention,
raising new challenges for information retrieval technol-
ogy. Although traditional query-driven retrieval is use-
ful for content-focused queries, it is deficient for generic
queries such as “What happened?” or “What’s new?”.
Browsing without guidance or a conceptual structure of
the search space is useful only in miniscule information
spaces.

Consider a person who returns from an extended va-
cation and needs to find out quickly what happened in the
world during her absence. Reading the entire news col-
lection i1s a daunting task, and generating specific queries
about unknown facts is rather unrealistic. Thus, intel-
ligent assistance from the computer is clearly desirable.
Such assistance could take the form of a content summary
of a corpus for a quick review, the temporal evolution of
past events of interest, or a listing of automatically de-
tected new events which demonstrate a significant con-
tent shift from any previously known events. It would
also be useful to have structured guidelines for naviga-
tion through document clusters. Table 1 shows a sample
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Table 1. Corpus summary using keywords of
automatically generated clusters of news stories

Size* Top-ranking Words (stemmed)
330  republ clinton congress hous amend
217  simpson o prosecut trial jury
98 israel palestin gaza peac arafat
97 japan kobe earthquak quak toky
93 russian chech chechny grozn yeltsin
56 somal u mogadishu iraq marin
55 flood rain californ malibu rive
48 serb bosnian bosnia croat u
35 game leagu play basebal season
33 crash airlin flight airport passeng
28 chinic sav abort massachuset norfolk
27 shuttl spac astronaut mir discov
26 patient drug virus holtz infect
24 chin beij deng trad copyright

* Size means the number of documents included.

summary of a corpus obtained by applying our hierarchi-
cal content-based clustering algorithm to a few thousand
news stories (CNN news and Reuters articles from Jan-
uary to February in 1995) and presenting each cluster
using a few (statistically significant) key terms. As the
table shows, domestic politics reigns supreme as usual,
the OJ trial still receives media attention, etc. How-
ever, the table also reveals that disasters struck Kobe
Japan and Malibu California, and Chechnia has flared up
again, events which were not present the month before.
The key terms provide content information, and the story
counts imply significance, as measured by media atten-
tion. If further detail is desired, the sub-clusters can be
examined via query-driven retrieval, browsing individual
documents or synthetic summaries across documents [2].
The utility of such computer assistance is evident even
though some clusters may be imperfect and the current
user interface i1s rudimentary.

This paper reports our work in event detection, a
new research topic initiated by the Topic Detection and
Tracking (TDT) project'. The objective is to identify
stories in several continuous news streams that pertain
to new or previously unidentified events. To be more
precise, detection consists of two tasks: retrospective de-
tection and on-line detection. The former entails the dis-
covery of previously unidentified events in an accumu-
lated collection, and the latter strives to identify the on-
set of new events from live news feeds in real-time. Both

!The TDT project is supported by the U.S. Government, con-
sisting of segmentation of stories in a continuous news-stream,
temporal event tracking and event detection. Our event tracking
work will be reported in a separate paper.



forms of detection intentionally lack advance knowledge
of novel events, but do have access to (unlabelled) his-
torical news-stories for use as contrast sets.

Event detection is essentially a discovery problem,
i.e., mening the data stream for new patterns in docu-
ment content. Bottom-up document clustering appears
to be a natural solution for the discovery of natural clus-
ters without introducing any assumptions about the do-
main or down-stream applications. Moreover, bottom-up
clustering can result in a cluster hierarchy, thus allowing
observation at any level of abstraction in the information
space. Higher levels of clusters give progressively coarse-
grain overviews of the content of document groups, while
lower levels provide tighter clusters corresponding to spe-
cific events, temporal phases of events, or sub-events.
We have applied both hierarchical and incremental non-
hierarchical clustering algorithms to explore the nature
of the problem and the solution space, focusing on the
combined use of context information and temporal pat-
terns of event distribution.

Directly related to our work is the on-going research in
the other TDT-member groups: the UMass information
retrieval group and the Dragon Systems speech recogni-
tion group. These groups also use document clustering
as their basic approach. UMass focuses on the detec-
tion of “disaster” events by monitoring sudden changes
in term frequencies in news streams, and using the sto-
ries that contain disaster-related terms to construct clus-
ter centroids. Dragon adapts unigram (and later bi-
gram) language models to document/cluster representa-
tion, and uses k-means clustering algorithms for docu-
ment grouping[10]. We compare the results of the ap-
proaches of these two groups with the results of our ap-
proaches in the evaluation section.

Other related work in the IR literature includes:

e the Scatter/Gather cluster-based approach to cor-
pus navigation[3, 4];

o the studies on clustering algorithms and their ap-
plications in the context of query-driven retrieval
[7, 6,09, 3].

Our detection methods are inspired by the Scatter and
Gather paper[3], including the choice of the basic group-
average clustering (GAC) algorithm. However clustering
algorithms per se are not the major focus of this study,
nor are the applications or evaluations in a query-driven
retrieval paradigm. Instead, the primary contributions
of this paper are applications of clustering techniques for
event detection. Specifically, we investigated:

e semantic and temporal properties of events;

e document clustering based on content and temporal
adjacency (rather than just content);

e event detection based on similarity versus novelty;
e evaluation methods for retrospective and on-line

detection.

2 Event Analysis

In order to investigate the nature of events and to eval-
uate the effectiveness of detection algorithms, the TDT
project prepared a collection of 15,836 news stories, in
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Figure 2: Histograms of bombing-related events

which 25 events were identified by the TDT researchers®.
The only guideline explicitly given for event definition
was that an event should identify something (non-trivial)
happening in a certain place at a certain time. This prop-
erty makes events differ from topics. For example, the
TWA-800 airplane crashis an event but not a topic, and
airplane accidents is a topic but not an event. This dis-
tinction gives rise to reporting patterns of events and
their evolution over time. Since selecting the events from
the TDT corpus entailed an initial random sampling of
that corpus, a bias towards larger events (those reported
more often) was evident. The 25 events selected contain
different numbers of stories, ranging from 2 stories for
Cuban riot in Panama to 273 stories for OK City bomb-
ing. The entire corpus of stories was manually labelled;
each story was assigned a label of YES, NO or BRIEF
with respect to each of the 25 events. The corpus con-
tains stories about more events than the 25 labeled ones;
unlabeled events were not used in the evaluation.

An interesting characteristic of news stories is that
events are often associated with news bursts. Figures 1
and 2 illustrate the temporal histograms of a few events,
where the X-axis of each graph is time (numbered from
day 1 to 365), and the Y-axis is the story count per day.
Several patterns emerged from our observations of tem-
poral event distributions:

o News stories discussing the same event tend to be
temporally proximate, suggesting the use of a com-
bined measure of lexical similarity and temporal
proximity as a criterion for document clustering.

o A time gap between bursts of topically similar sto-
ries is often an indication of different events (e.g.,
different earthquakes, airplane accidents, political

?The TDT corpus consists of 15,836 news stories in the time
period from July 1, 1994 to June 30, 1995. Roughly a half of these
stories are Reuters articles, and the other half are from multiple
programs of CNN broadcast news. This corpus is available via
CMU web site to members of the Linguistic Data Consortium —
email: yiming@cs.cmu.edu.



crises, etc.), suggesting a need for monitoring clus-
ter evolution over time, and a benefit from using a
time windows for event scoping.

e A significant vocabulary shift and rapid changes in
term frequency distribution are typical of stories re-
porting a new event, indicating the importance of
dynamically updating the corpus vocabulary and
statistical term weights. A timely recognition of
new patterns, including previously unseen proper
names and proximity phrases, in the streams of sto-
ries 1s potentially useful for detection of the onset
of a new event.

These points will be addressed further in the next
section where the design of our document-clustering al-
gorithms for event detection are described.

3 Detection Methods

Retrospective event detection is the task of grouping sto-
ries in a corpus where each group uniquely identifies an
event. On-line event detection is the problem of labeling
each document as it arrives in sequence with a New or
Old flag, indicating whether or not the current document
is the first story discussing a novel event at that time.
We investigated two clustering methods: an agglomera-
tive (hierarchical) algorithm based on group-average clus-
tering (GAC), and a single-pass algorithm (incremental
clustering or INCR) which generates a non-hierarchical
partition of the input collection. GAC is designed for
batch processing, and is used for retrospective detection.
INCR is designed for sequential processing, and is used
for both retrospective detection and on-line detection.

3.1 Cluster representation

We share a common representation for documents and
clusters in our detection and tracking algorithms. We
employ the conventional vector space model[5] which uses
the bag-of-terms representation. A document (story) is
represented using a vector of weighted terms (words or
phrases). The normalized vector sum of documents in
a cluster is used to represent the cluster, and called the
prototype or centroid of the cluster. Terms in a document
vector or a cluster prototype are statistically weighted us-
ing the term frequency (TF) and the Inverse Document
Frequency (IDF) and are appropriately normalized. We
only keep the k top-ranking terms (at the most) per vec-
tor, and ignore the remaining terms. The value of k is
empirically chosen to optimize detection or tracking per-
formance. We use the standard cosine similarity, i.e.,
the cosine value between document and cluster prototype
vectors to measure their similarity.

We employ the SMART 11.0 system (developed at
Cornell)[5] for document preprocessing, including the re-
moval of stop words, stemming, and term weighting.
SMART also provides several term weighting schemes,
of which we found the ltc option yielded in the best
detection results in our experiments. Given term ¢ in
document d, the ltc weight is defined as:

w(t,d) = (1 4log, TFs.a)) x IDFyy/|d])-

The denominator ||ci|| is the 2-norm of vector d, i.e. the
square root of the squared sum of all the elements in that
vector. IDF, standing for Inverse Document Frequency,
is a corpus-level statistic, defined to be N/n; where N

is the total number of training documents, and n; is the
number of training documents which contain term ¢.

3.2 GAC-based hierarchical clustering

Basic GAC algorithm

Group Average Clustering (GAC) is an agglomerative al-
gorithm which maximizes the average similarity between
document pairs in the resulting clusters [7, 9]. Straight-
forward GAC algorithms typically have a complexity in
time and space quadratic to the number of input docu-
ments [3], which is less economical or tractable for large
applications than simpler methods, such as single-link
clustering. Cutting et al. presented an iterative bottom-
up algorithm aiming for a compromise between cluster
quality and computational efficiency[3]. In each iteration,
it divides the current set of active clusters/documents
into buckets, and does local clustering within each bucket.
The process repeats and generates clusters at higher and
higher levels, until a pre-determined number of top-level
clusters are obtained. This algorithm has a time com-
plexity of O(mn) where n is the number of documents in
the input corpus, m is the bucket size, and m < n.

Bucketing and reclustering

When applying the above algorithm to event detection,
we based the bucketing of documents/clusters on the
temporal order of the documents. Our motivation is not
just computational efficiency, but the exploitation of tem-
poral proximity of news stories discussing a given event.
Most of the manually labelled events in the TDT corpus
last no longer than 2 months. The fact that events tend
to appear in news bursts makes it reasonable to bucket
stories according to their order in time. In other words,
our strategy gives a higher priority to grouping consecu-
tive stories rather than temporally disparate ones.

The input to the GAC algorithm is a document col-
lection, and the output is a forest of cluster trees with the
number of trees specified by the user. Clusters are pro-
duced by growing a binary tree in a bottom-up fashion:
the leaf nodes of the tree are single-document clusters; a
middle-level node is the merged cluster of the two most
similar lower-level clusters. By default, the bottom-up
clustering continues until the root node is created, which
represents the universal cluster containing all clusters and
therefore all the stories. If the desired number of clus-
ters is pre-specified, then the algorithm stops when that
number of clusters is reached rather than proceeding to
the root. The algorithm consists of the following steps:

1. Sort the stories in chronological order, and use this
as the initial partition of the corpus where each
cluster consists of a single document.

2. Divide the current partition into non-overlapping
and consecutive buckets of fixed size.

3. Apply GAC to each bucket by combining lower-
level clusters into higher-level ones in a bottom-up
fashion until the bucket size (number of clusters in
it) is reduced by a factor of p, called the reduction
factor.

4. Remove the bucket boundaries (assemble all the
GAC clusters) while preserving the time order of
the clusters. Use the resulting cluster series as the
updated partition of the corpus.



5. Repeat steps 2-4, until a pre-determined number of
top-level clusters is obtained in the final partition.

6. Periodically (once per k iterations in Step 5) re-
cluster the stories within each of the top-level clus-
ters, by flattening the component clusters and re-

growing GAC clusters internally from the leaf nodes.

The re-clustering step is our augmentation to Cut-
ting’s algorithm. This step is useful when events straddle
the initial temporal-bucket boundaries; subsets of stories
discussing the event within different buckets are often
clustered together with somewhat similar stories at a low
level, and are only later assembled in a higher level node
of the cluster tree. Subsequent re-clustering reduces the
systematic bias of the initial bucketing, and therefore re-
sults in tighter clusters than those obtained without re-
clustering.

Tunable parameters

Several tunable parameters are used in our algorithm,
including:

1. the bucket size (number of clusters) which limits
the scope of the GAC clustering in each iteration;

2. the reduction factor p in each iteration;

3. the minimum similarity threshold for two clusters
to be combined;

4. the number of terms to keep in each cluster proto-
type;

5. the term weighting scheme;

6. the number of iterations between re-clustering.

Parameter tuning is an empirical issue. Table 2 shows
parameter values typical of those used in our retrospec-
tive detection experiments.

Table 2. Typical parameters used in retrospective GAC

bucket size = 400
clustering threshold = .2
terms per vector = 100
term weighting = ltc
reduction factor p = 0.5
# of iterations b/w re-clustering =5

3.3 Single-pass clustering

The incremental clustering algorithm is quite simple. [t
sequentially processes the input documents, one at a
time, and grows clusters incrementally. A new document
is absorbed by the most similar cluster generated previ-
ously, if the similarity between this document and the
prototype of that cluster is above a pre-selected thresh-
old; otherwise, the document is treated as the seed of a
new cluster. By adjusting the threshold, one can obtain
clusters at different levels of granularity. We made addi-
tional efforts to exploit the dynamic nature of the input
data and the temporal properties of events; these efforts
are described in the following sections.

Incremental IDF

A task-specific constraint in on-line detection is the pro-
hibited use of any information about future stories, i.e.,
documents posterior to the current point of processing.
This raises the issue about how to deal with the growing
vocabulary from incoming documents and the dynamic
updating of corpus-level statistics such as IDF, which im-
pact term weighting and vector normalization and thus
affect document clustering.

Two possible approaches to the above problems would
be to:

1. Obtain a fixed vocabulary and static IDF statistics
using a retrospective corpus in a similar application
domain (e.g., CNN or WSJ news stories prior to the
period of the TDT stories), and use this vocabulary
and IDF values for term weighting in newly coming
documents/clusters. Assign a constant weight to
the out-of-vocabulary (OOV) terms, or use some
other kind of smoothing of term weights.

2. Incrementally update the document vocabulary and
recompute IDF each time a new document is pro-
cessed. An empirical analysis shows that an incre-
mental IDF approach can be effective in document
retrieval after a sufficient number of “past” docu-
ments have been processed[1].

We chose to combine both approaches, starting with
IDF statistics of a retrospective corpus, and updating
the IDF with each incoming document. The incremental
Inverted Document Frequency (IDF) is defined to be:

IDF ) =logy (N /ngep))

where p is the current time, ¢ is a term, N(;) is the num-
ber of accumulated documents up to the current point
(including the retrospective corpus if used), and n( ;) is
the number of documents which contain term ¢ up to the
current, point.

Time window and decaying function

For on-line detection, we use a time window to limit prior
context to m previous stories. For each current document
in the sequential processing, the similarity score of each
document in the time window is computed. A flag of New
is assigned to the document if all the similarity scores in
the window are below a pre-determined threshold. The
confidence score for this decision is defined to be:

score(r)=1— max {sim(Z d;)}

d; Ewindow

where x 1s the current document, d; is the i-th document
in the window, and ¢+ = 1,2,...,m.

We also tested a decaying-weight function where doc-
uments further removed in time have progressively less
influence on the current decision. We use a modified for-
mula for the confidence score of document z:

T . L

score(z) =1 dler;l?;l)ilow{mszm(x, di)}.

This method provides a smoother way to use the tempo-
ral proximity than a uniformly-weighted window. Note
that for simplicity we define the time window over doc-
uments, rather than clusters or time periods; however, it
is easy to generalize these definitions from documents to
such larger groupings.



These windowing strategies yielded measurable im-
provements in our on-line detection experiments, enhanc-
ing precision with only a small sacrifice in recall. The i/m
linear-decay temporal window yielded consistently better
results than the uniformly-weighted window.

Similarly, we investigated time windowing in INCR
clustering for retrospective detection. In the experiments
with other parameters fixed, using a window of 2000 doc-
uments (covering about 1.5 months of time) improved the
performance score from 0.64 to 0.70 in the F; measure[7]
(defined in the evaluation section).

Detection thresholding

We use two user-specified thresholds to control the de-
tection decisions by the incremental algorithm: the clus-
tering threshold (t.), and the novelty threshold (t,,). The
former determines the granularity of the resulting clus-
ters, which 1s essential for retrospective event detection,
and the latter determines the sensitivity to novelty, which
is crucial for on-line detection.

Letting t. > tn, and stmpac(z) = 1 — score(z), our
on-line detection rules are defined to be:

o If stMmymas(x) > tc, then set the flag to OLD, and
add document z to the most similar cluster in the
window;

o if tc > siMmmaz(z) > &y, then set the flag to Old,
and treat document x as a new singleton cluster;

o if ¢y > simmaz(z), then set the flag to New, and
treat document & as a new singleton cluster.

Using both thresholds permits better empirical op-
timization for different tasks. For instance, t. = ¢, is
appropriate for retrospective clustering (i.e., t, is not
needed), but for on-line detection we found that not us-
ing clustering (¢. = 0o) is better. Tables 3 and 4 show the
parameter values typically used for in our retrospective
detection and on-line detection experiments with INCR.

Table 3. Typical parameter values in retro. INCR

window size = 2000
clustering threshold = .23
terms per doc vector = 125
term weighting = ltc

Table 4. Typical parameter values in on-line INCR
window size = 2500 linear decay
clustering threshold 00
novelty threshold .16
terms per doc vector = no limit
term weighting Itc
IDF = retro + on-line updating

4 Evaluation

Detection effectiveness was evaluated using the 25 human-
labeled events (about 7% of the total stories) in the
TDT corpus, although the detection systems were run
on the entire corpus and (presumably) detected many
more events outside these 25 on which they were not
evaluated.

4.1 Retrospective detection results

The official evaluation in the TDT project required each
retrospective detection system to generate a partition of
the corpus, i.e., non-overlapping clusters which together
span the entire TDT corpus. A system may generate
any number of clusters, but is only evaluated on the 25
reference events. After the partition is generated, the
cluster that best matches each of the 25 labeled events is
used for evaluation, via 25 contingency tables.

Table 5. A cluster-event contingency table

in event not in event
in cluster a b
not in cluster c d

Table 5 illustrates the two-by-two contingency table
for an cluster-event pair, where a, b, ¢ and d are document
counts in the corresponding cases. Five evaluation mea-
sures are defined using the contingency table, including
miss, false alarm (f), recall (r), precision (p) and the F}
measure (F):

o miss =c/(a+c)if a+ ¢ >0, otherwise undefined,;

f=b/(b+d)if b+d >0, otherwise undefined;

r=a/f(a+c)if a4+ ¢ > 0, otherwise undefined;

p=a/(a+b)if a+b > 0, otherwise undefined;

Fy = 2rp/(r+p) = 2a/(2a+b+c) if (2xa+b+c) > 0,

otherwise undefined.

To measure global performance, two averaging meth-
ods are used. The micro-average is obtained by merging
the contingency tables of the 25 events (by summing the
corresponding cells), and then using the merged table
to produce global performance measures. The macro-
average is obtained by producing per-event performance
measures first, and then averaging the corresponding
measures.

Table 6 shows our best result by the incremental clus-
tering algorithm in the official TDT retrospective detec-
tion evaluation where each detection system is required
to produce a partition of the entire corpus. Table 7 shows
the improved results that are obtained when potentially-
overlapping clusters are permitted. The CMU results
correspond to the modified GAC method described ear-
lier. The (available) results by UMass and Dragon are
also included for comparison, according to their reports

at the TDT workshop[10].

Table 6. Retrospective detection results
— partition required

CMU UMass Dragon

(INCR) (no-dupl) (multi-pass)
Recall (%) 62 34 61
Precision (%) 82 53 69
Miss (%) 38 66 39
False Alarm (%) .04 .09 .08
micro-avg Fi 71 42 .65
macro-avg F 79 .60 .75




Table 7. Retrospective detection results
— cluster overlap and hierarchy allowed

not using clustering as the following: in order to pass the
novelty test, a story has to be sufficiently different from
all of the past stories; this is a stronger condition than

CMU UMass

(GAC) (dupl)
Recall (%) 75 73
Precision (%) 90 78
Miss (%) 25 27
False Alarm (%) .02 .06
micro-avg F .82 .75
macro-avg F .84 .81

being more novel than the average.

Table 9. On-line new event detection results

These results show that allowing cluster hierarchy
(CMU:GAC) and cluster overlap (UMass: dupl) yielded
better results than requiring a corpus partition. We be-
lieve the main reason for the better performance of GAC
is the multi-leveled clusters which enable the detection
of events at any degree of granularity. This representa-
tional power of GAC comes with a cost of resulting a
larger number of clusters (about 12,000 in this particular
run), than the number of clusters (5,907) in the partition
by INCR. This difference, however, may not have a sig-
nificant effect on the end-user, if the cluster hierarchies
will be used for a scatter-gather type of navigation or
query-driven retrieval, where the search steps needed are
much less than the total number of clusters.

In the results of the partition-producing algorithms,
we were surprised that the simplest approach — the single-
pass clustering by INCR (CMU) — worked as well as
the multi-pass k-means clustering method by Dragon.
This may be partly because of the temporal proximity
of events which simplifies the clustering problem.

4.2 On-line detection results

The required output of an on-line detection system is a
decision of New or Old for an incoming document with a
confidence score for that decision. Since there are only
25 events (containing 1131 stories) defined in the TDT
corpus, and each event has only one story as the first re-
port of that event, only 25 stories should have a flag of
New for the entire corpus. This is too small a number
for a statistically reliable estimation of performance. To
improve the reliability, an 11-pass detection evaluation
was conducted. After each pass, the first story of each
events is removed, and detection and evaluation are ap-
plied again to the corpus. The eleven passes are labeled
by Nekip = 0,1,...,10. For each pass, a contingency
table is constructed for evaluation, as shown in Table 8.

Table 8. On-line detection contingency table

New is true Old is true
Predicted New a b
Predicted Old c d

Table 9 and Figures 3 and 4 summarize the results
by CMU, UMass and Dragon. Both CMU and UMass
conducted multiple runs with different parameter set-
tings; here we present the best result for each site with
respect to the F} measure. CMU’s results correspond
to the parameters discussed earlier (Table 4). Note that
both CMU and UMass chose to use individual documents
instead of clusters to represent the past in on-line detec-
tion, while Dragon used a single pass of their k-means
clustering approach®. We interpret the better results of

3Multi-pass clustering is not allowed because, by the task def-
inition, future knowledge is not available at the decision making
point.

CMU UMass Dragon
no clust no clust one-pass clust
Recall (%) 50 49 42
Precision (%) 37 45 21
Miss (%) 50 51 58
False Alarm (%) 1.89 1.31 3.47
micro-avg F 42 AT .28
macro-avg F 42 AT .28

Note that the scores in Table 9 only measure how well
each system did at a specific trade-off level of recall and
precision. In order to measure continuous trade-off be-
tween recall and precision, we present the recall-precision
curves (Figure 3) and the Decision Error Trade-off (DET)
curves ~. These curves were obtained by moving thresh-
olds on the confedence scores of detection decisions. We
used the DET software provided in the TDT project to
generate the DET curves, and converted each data point
(a pair of miss/false-alarm values) in these DET curves
to the corresponding recall and precision values (non-
interpolated) to obtain the recall-precision curves. The
CMU results are depicted by the solid lines, which show
better performance at the high precision area. Asis espe-
cially evident in Figure 3, the CMU, UMass and Dragon
approaches exhibit very different behaviors, inviting fur-
ther detailed investigation.

4.3 Behavior analysis

In order to compare the behavior of our algorithms to
human judgments, we contrast the temporal histograms
of system-generated clusters for retrospective detection
with corresponding histograms by human judgments.
Figures 5-8 show the pairwise histograms on two events
for GAC and INCR, respectively. Figure 9 shows the
GAC performance on all the 25 events. The upper half
of each graph is the histogram of human-labeled docu-
ments for an event; the lower half is the histogram of
the system-generated cluster for the same event. The
absolute value on the Y-axis is the story count for the
event or cluster in a particular day. If an event and a
cluster are a perfect match, then their histograms will be
completely symmetric, mirroring each other.

As the figures show, GAC and INCR have comple-
mentary strengths and weaknesses. GAC shows surpris-
ingly symmetric graphs for most events except those with
significant temporal extent, and GAC is particularly suit-
able for recognition of large news bursts. INCR, on the
other hand, has less symmetric performance compared to
GAC, but is better at tracking long-lasting events (DNA
in O.J. trail and Death of Kim Jong Il). The observed
behavior may come partly from the different biases in
these algorithms and partly from the parameter settings
in the particular experiments.

4The Decision Error curves, which plot miss and false alarm,
are analogous to precision-recall trade-off curves. Better per-
formance corresponds to proximity to the origin. The original
DET software was provided by the TDT project sponsor, and the
adapted version was implemented by the UMass group with richer
options.



Recall-Precision curves in online detection
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Figure 4: On-line detection DET curves

5 Concluding Remarks

Event detection, both retrospective and on-line, repre-
sents a new family of tasks for IR. The results of our
pilot study on these tasks (reinforced by the results of
UMass and Dragon) show that basic techniques such as
document clustering can be highly effective if the prob-
lems are well defined, and when content information and
temporal information are jointly and properly used.

For retrospective detection, when requiring a strict
partition of the document space, GAC, INCR and the k-
mean clustering algorithm by Dragon exhibit comparable
performance; when the partition requirement is relaxed,
the hierarchical GAC approach is the best.

On-line novel-event detection is somewhat more dif-
ficult than retrospective detection. Non-clustering tech-
niques have demonstrated better detection accuracy than
clustering approaches, although further investigation is
needed for a better understanding.

In spite of the reasonable results obtained by CMU,
Dragon and UMass, much work remains to be done. Re-
search questions for further investigation include:

e How can we exploit multiple input streams (e.g.
CNN, AP, UPI, ...) to reinforce each other, cross-

validating topical clusters?

e How can we better exploit the temporal patterns of
proper names or proximity phrases which appear to
be highly informative (to humans, at least) as event
indicators?
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Figure 6: Event OK City bombing vs INCR-cluster
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Figure 8: Event DNA in OJ trial vs INCR-cluster

e How can we provide a global view of the informa-
tion space of retrospectively clustered events and
emerging newly-detected ones?

e How can we make the user actively involved in
cluster-based navigation, e.g. by permitting zoon-
in and zoom-out options, and by providing sum-
maries at different degrees of granularity, i.e. at a
corpus level, a cluster level, a document level, and
a sub-document level?

e How can we evaluate and compare the usefulness of
a cluster hierarchy (or a cluster set) in assisting the
user in query-free or query-driven retrieval? Shall
we measure, for example, how quickly the user can
find the relevant cluster(s), and use the time as an
evaluation criterion?
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