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Abstract

Over the past several years, a number of information discovery and access tools have been

introduced in the Internet, including Archie, Gopher, Net�nd, and WAIS. These tools have

become quite popular, and are helping to rede�ne how people think about wide-area network

applications. Yet, they are not well suited to supporting the future information infrastructure,

which will be characterized by enormous data volume, rapid growth in the user base, and

burgeoning data diversity. In this paper we indicate trends in these three dimensions and survey

problems these trends will create for current approaches. We then suggest several promising

directions of future resource discovery research, along with some initial results from projects

carried out by members of the Internet Research Task Force Research Group on Resource

Discovery and Directory Service.

1 Introduction

In its roots as the ARPANET, the Internet was conceived primarily as a means of remote login
and experimentation with data communication protocols. However, the predominate usage quickly
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became electronic mail in support of collaboration. This trend continues into the present incarna-
tion of the Internet, but with increasingly diverse support for collaborative data sharing activities.
Electronic mail has been supplemented by a variety of wide-area �ling, information retrieval, pub-
lishing and library access systems. At present, the Internet provides access to hundreds of gigabytes
each of software, documents, sounds, images, and other �le system data; library catalog and user
directory data; weather, geography, telemetry, and other physical science data; and many other
types of information.

To make e�ective use of this wealth of information, users need ways to locate information
of interest. In the past few years, a number of such resource discovery tools have been created,
and have gained wide popular acceptance in the Internet [4, 17, 18,27, 31, 35,44].1 Our goal in the
current paper is to examine the impact of scale on resource discovery tools, and place these problems
into a coherent framework. We focus on three scalability dimensions: the burgeoning diversity of
information systems, the growing user base, and the increasing volume of data available to users.

Table 1 summarizes these dimensions, suggests a set of corresponding conceptual layers, and
indicates problems being explored by the authors, who comprise the Internet Research Task Force
(IRTF) Research Group on Resource Discovery and Directory Service. Users perceive the available
information at the information interface layer. This layer must support scalable means of orga-
nizing, browsing, and searching. The information dispersion layer is responsible for replicating,
distributing, and caching information. This layer must support access to information by a large,
widely distributed user populace. The information gathering layer is responsible for collecting and
correlating the information from many incomplete, inconsistent, and heterogeneous repositories.

The remainder of this paper covers these layers from the bottom up. Section 2 discusses
problems of information system diversity. Section 3 discusses the problems brought about by
growth in the user base. Section 4 discusses problems caused by increasing information volume.
Finally, in Section 5 we o�er a summary.

2 Information System Diversity

An important goal for resource discovery systems is providing a consistent, organized view of
information. Since information about a resource exists in many repositories|within the object

1The reader interested in an overview of resource discovery systems and their approaches is referred to [43].

Scalability Dimension Conceptual Layer Problems Research Focus

Data Volume Information Interface Information Overload Topic Specialization;

Scalable Content-

Indexing;

User Base Information Dispersion Insu�cient Replication;

Manual Distribution

Topology

Massive Replication;

Access Measurements;

Object Caching

Data Diversity Information Gathering Data Extraction;

Low Data Quality

Operation Mapping;

Data Mapping

Table 1: Dimensions of Scalability and Associated Research Problems
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itself and within other information systems|resource discovery systems need to identify a resource,
collect information about it from several sources, and convert the representation to a format that
can be indexed for e�cient searching.

As an example, consider the problem of constructing a user directory. In a typical environment,
several existing systems contain information about users. The Sun NIS database [50] usually has
information about a user's account name, personal name, address, group memberships, password,
and home directory. The ruserd [32] server has information about a user's workstation and its idle
time. In addition, users often place information in a \.plan" �le that might list the user's travel
schedule, home address, o�ce hours, and research interests.

As this example illustrates, information in existing Internet repositories has the following char-
acteristics:

� It is heterogeneous.

Each repository maintains the information it needs about resources. For example, the pri-
mary purpose of the NIS database is to maintain information about user accounts, while a
user's \.plan" �le often contains more personal information. In addition, the two repositories
represent the information di�erently: records in an NIS database have a �xed format, but a
\.plan" �le contains unstructured text.

� It is inconsistent.

Most information contained in Internet repositories is dynamic. Certain properties change
frequently, such as which workstations a person is using. Other properties change more slowly,
such as a user's mail address. Because information is maintained by several repositories that
perform updates at di�erent times using di�erent algorithms, there will often be conicts
between information in the various repositories. For example, information about account
name, address, and phone number may be maintained by both the NIS database and an
X.500 [26] server. When a user's address or phone number changes, the X.500 service will
probably be updated �rst. However, if the account changes, the NIS database will usually be
the �rst to reect the change.

� It is incomplete.

Additional attributes of a resource can often be obtained by combining information from sev-
eral repositories. For example, a bibliographic database does not contain explicit information
about a person's research interests. However, keywords might be extracted from the person's
research papers, to infer research interests for a user directory.

There are two common approaches to these information gathering layer problems. The �rst
approach|data mapping|generates an aggregate repository from multiple information sources.
The second approach|operation mapping|constructs a \gateway" between existing systems, which
maps the functionality of one system into another without actually copying the data. Below we
discuss these approaches, and our research e�orts for each.

2.1 Data Mapping

The �rst approach for accommodating diversity is to collect data from a set of underlying reposito-
ries, and combine it into a homogeneous whole. Doing so involves two parts: mapping algorithms
for collecting information, and agreement algorithms for correlating information [7].
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A mapping algorithm is implemented as a function that collects information from a repository
and reformats it. There may be several implementations of mapping algorithms, each customized
for an existing repository. The most common mapping algorithms are implemented as clients of
an existing service. For example, Net�nd extracts user information from several common Internet
services [46], including the Domain Naming System (DNS) [33], the �nger service [53] and the
Simple Mail Transfer Protocol [40].

The agreement algorithm de�nes a method for handling conicts between di�erent repositories.
For example, Figure 1 illustrates data for the Enterprise [6] user directory system, which is built
on top of the Univers name service [7]. This �gure shows three mapping algorithms that gather
information from the NIS database, the ruserd server, and the user's electronic mail, respectively.
Several attributes can be generated by more than one mapping algorithm. For example, address
information potentially exists in both the NIS database and the information supplied by the user.
The agreement algorithm considers information gathered directly from the user as the most reliable.
Depending on the attribute, the agreement algorithm may permit some properties to have several
values, such as the two address attributes that describe the user in Figure 1.

GROUPS: cs576, univers, xkernel, csgrads
HOME:/home/curly/mjackson
SHELL:/bin/tcsh
ACCOUNT:mjackson

NAME:Mark Jackson
NAME:Mark Edward Jackson
ADDRESS:24B Whitmore
ADDRESS:156 Dendron Rd, State College 16801
PHONE:8641242
PHONE:8641242

RESEARCH:multicast and group communication

NIS Database

RUSERD

Email

GENERATED INFORMATION

WORKSTATION:itosu
IDLE:0:02

Figure 1: Example Mapping Algorithms for User Directory Information

Data mining represents a special form of agreement algorithm, which works by cross-correlating
information available from multiple repositories. This can have two bene�ts. First, it can ag
inconsistencies. For example, Enterprise could inform users if it detected conicts between the
electronic mail addresses listed in di�erent repositories. Second, data mining can deduce implicit
information by cross-correlating existing information. For example, Net�nd continuously collects
and cross-correlates data from a number of sources, to form a far-reaching database of Internet
sites. One source might discover a new host called \astro.columbia.edu" from DNS traversals, and
cross-correlate this information with the existing site database record for columbia.edu (\columbia
university, new york, new york"), its understanding of the nesting relationships of the Domain name
space, and a database of departmental abbreviations, to derive a new record for the Astronomy
Department at Columbia University.

Mapping and agreement algorithms generally operate best when they exploit the semantics of
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speci�c resource discovery applications. In the above Net�nd example this was possible because
the data were gathered from particular services, each with semantics that Net�nd understands.

More generally, data gathering depends on some data type structure to help select semantically-
speci�c gathering methods. We are exploring a variety of data typing approaches in the context of
gathering �le system data. We now briey consider the problems that arise in typing and gathering
this data.

To gather information e�ectively from �le system data, it is helpful to extract information in
di�erent ways depending on �le type. For example, while it is possible to index every token in
program source code, the index will be smaller and more useful if it distinguishes the variables and
procedures de�ned in the �le. In contrast, applying this data gathering algorithm to a program's
associated textual documentation will not yield the most useful information, as it has a di�erent
structure. By typing data, information can be extracted in whichever way is most appropriate for
each type of �le.

File data can be typed explicitly or implicitly. Explicitly typing �les has the advantage that
it simpli�es data gathering. An explicitly typed �le conforms to a well known structure, which
supports a set of conventions for what data should be extracted. Explicit typing is most naturally
performed by the user when a �le is exported into the resource discovery system. We are exploring
this approach in the Nebula �le system [16] and Indie discovery tool [12].

Many �les exist without explicit type information, as in most current anonymous FTP2 �les.
An implicit typing mechanism can help in this case. For example, Essence [24] uses a variety of
heuristics to recognize �les as �tting into certain common classes, such as word processor source
text or binary executables. These heuristics include common naming conventions or identifying
features in the data. The MIT Semantic File System uses similar techniques [22].

Given a typed �le, the next step is to extract indexing information. This can most easily
be accomplished through automatic content extraction, using a grammar that describes how to
extract information from each type of �le. For example, given a TeX word processing document,
the grammar could describe where to extract author, title, and abstract information. For cases
where more complex data extraction methods are needed, one can provide an \escape" mechanism
that allows arbitrary data extraction programs to be run.

Automatic extraction methods have the advantage that they can provide an immediate base of
usable information, but in general will generate some inappropriate keywords and miss generating
other, desirable keywords. For this reason, it is prudent to augment these methods with means by
which people can manually override the automatically extracted data.

In many cases �le indexing information can be extracted from each �le in isolation. In some
cases, however, it is useful to apply extraction procedures based on the relationships between �les.
For example, binary executable �les can sometimes be indexed by gathering keywords from their
corresponding documentation. One can use heuristics to exploit such implicit inter-�le relationships
for common cases, augmented by means of specifying explicit relationships. For example, we
are exploring an approach that allows users to create �les in the �le system tree that specify
relationships among groups of �les.

One �nal observation about data type structure is that the index should preserve type infor-
mation to help identify context during searches. For example, keywords extracted from document

2FTP is an Internet standard protocol that supports transferring �les between interconnected hosts [39]. Anony-

mous FTP is a convention for allowing Internet users to transfer �les to and from machines on which they do not

have accounts, for example to support distribution of public domain software.
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titles can be tagged in the index so that a query will be able to specify that only data extracted from
document titles should match the query. This stands in contrast to the common approach (used
by WAIS [27], for example) of allowing a free association between query keywords and extracted
data.

We discuss indexing schemes further in Section 4.2.

2.2 Operation Mapping

A gateway between two resource discovery systems translates operations from one system into
operations in another system. Ideally, the systems interoperate seamlessly, without the need for
users to learn the details of each system. Sometimes, however, users must learn how to use each
system separately.

Building seamless gateways can be hindered if one system lacks operations needed by another
system's user interface [43]. For example, if would be di�cult to provide a seamless gateway from
a system (like WAIS) that provides a search interface to users, to a system (like Prospero [35]) that
only support browsing. Even if two systems support similar operations, building seamless gateways
may be hindered by another problem: providing appropriate mappings between operations in the
two systems. To illustrate the problem, consider the current interim gateway from Gopher [31] to
Net�nd, illustrated in Figure 2.3 Because the gateway simply opens a telnet window to a UNIX
program that provides the Net�nd service, users perceive the boundaries between the two systems.

In contrast, we have built a system called Dynamic WAIS [25], which extends the WAIS
paradigm to support information from remote search systems (as opposed to the usual collec-
tion of static documents). The prototype supports gateways from WAIS to Archie and to Net�nd,
using the Z39.50 information retrieval protocol [2] to seamlessly integrate the information spaces.
The Dynamic WAIS interface to Net�nd is shown in Figure 3.

The key behind the Dynamic WAIS gateways is the conceptual work of constructing the map-
pings between the WAIS search-and-retrieve operations, and the underlying Archie and Net�nd
operations. In the case of Net�nd, for example, when the Dynamic WAIS user requests a search
using the \dynamic-net�nd.src" WAIS database, the search is translated to a lookup in the Net�nd
site database, to determine potential domains to search. The Net�nd domain selection request
is then mapped into a WAIS database selection request (the highlighted selection in the XWAIS
Question window). Once the user selects one of the domains to search, the WAIS retrieval phase
is mapped into an actual domain search in Net�nd (the uppermost window).

We are developing these techniques further, to support gateways to complex forms of data, such
as scienti�c databases.

3 User Base Scale

New constituencies of users will make the Internet grow signi�cantly beyond its present size of 2
million nodes. This growth will overburden the network's resource discovery services unless we
address four problems of scale. First, discovery services should monitor data access patterns to de-
termine how best to replicate themselves, to determine whether to create specialized services that
manage hot subsets of their data, and to diagnose accidentally looping clients. Second, discovery

3E�orts are under way to improve this gateway.
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Figure 2: Gopher Menu-Level Gateway to Net�nd

services should support signi�cantly higher levels of replication, using algorithms speci�cally de-
signed to function in the Internet's dynamic patchwork of autonomous systems. Third, the range of
user expertise and needs require that user interfaces and search strategies be highly customizable.
Fourth, the Internet will need a hierarchically structured, extensible, object caching service through
which clients can retrieve data objects, once they're discovered. We consider these issues below.

3.1 Server Instrumentation

The designers of new information systems can never fully anticipate how their systems will be used.
For this reason, we believe that new Internet services should instrument their query streams.

Self-instrumented servers could help determine where to place additional replicas of an entire
service: If some X.500 server in Europe �nds that half of its clients are in the United States, the
server itself could suggest that a strategically located replica be created.

Self-instrumented servers could also identify the access rate of items in their databases for
use by more specialized services. For example, an instrumented Archie server would note that
properly formed user queries only touch about 16% of Archie's database. Such instrumentation
would enable the creation of a complementary service that reported only popular, duplicate free,
or nearby objects. We discuss these ideas more in Section 4.2.

Self-instrumented servers could also identify server-client or server-server communication run
amok. Large distributed systems frequently su�er from undiagnosed, endless cycle of requests. For

7



Figure 3: Dynamic WAIS Information-Level Gateway to Net�nd

example, self-instrumented Internet name servers show that DNS tra�c consumes 20 times more
bandwidth than it should, because of unanticipated interactions between clients and servers [13].
Self-instrumentation could identify problem speci�cations and implementations before they become
widespread and di�cult to correct.

3.2 Server Replication

Name servers scale well because their data are typically partitioned hierarchically. Because resource
discovery tools search at, rather than hierarchical or otherwise partitionable views of data, the
only way to make these tools scale is by replicating them. To gain an appreciation for the degree
of replication required, consider the Archie �le location service.

The global collection of Archie servers currently process approximately 100,000 queries per day,
generated by a few thousand users worldwide. Every month or two of Internet growth requires
yet another replica of Archie. Thirty Archie servers now replicate a continuously evolving 150 MB
database of 2.1 million records. While a query posed on a Saturday night receives a response in
seconds, it can take several hours to answer the same query on a Thursday afternoon. Even with
no new Internet growth, for the current implementation of Archie to yield �ve second response
times during peak hours we would need at least sixty times more Archie servers - i.e., 1800 servers.
Because of its success and the continual rapid growth of the Internet, in time Archie will require
thousands of replicas. Other successful tools that cannot easily partition their data will also require
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massive replication.
We believe massive replication requires additional research. On the one hand, without doubt

we know how to replicate and cache data that partitions easily, as in the case of name servers
[5, 33]. Primary copy replication works well because name servers do not perform associative access,
and organizational boundaries limit the size of a domain, allowing a handful of servers to meet
performance demands.4 We have learned many lessons to arrive at this understanding [13, 34,42].
On the other hand, we have little experience deploying replication and caching algorithms to support
massively replicated, at, yet autonomously managed databases.

What do existing replication schemes for wide-area services lack? First, existing replication
systems ignore network topology. They do not route their updates in a manner that makes e�cient
use of the Internet. One day, some nascent, streaming reliable multicast protocol might serve this
purpose. Today, we believe, it is necessary to calculate the topology over which updates traverse
and to manage replication groups that exploit the Internet's partitioning into autonomous domains.

Second, existing schemes do not guarantee timely and e�cient updates in the face of frequent
changes in physical topology, network partition, and temporary or permanent node failure. In
essence, they treat all physical links as having equal bandwidth, delay, and reliability, and do not
recognize administrative domains.

We believe that ooding-based replication algorithms can be extended to work well in the
Internet environment. Both Archie and network news [41] replicate using ooding algorithms.
However, for lack of good tools, administrators of both Archie and network news manually con�gure
the ooding topology over which updates travel, and manually recon�gure this topology when the
physical network changes. This is not an easy task because Internet topology changes often, and
manually composed maps are never current. While we are developing tools to map the Internet [51],
even full network maps will not automate topology-update calculation.

Avoiding topology knowledge by using today's multicast protocols [3, 15] for data distribution
fails for other reasons. First, these protocols are limited to single routing domains or require
manually placed tunnels between such domains. Second, Internet multicast attempts to minimize
message delay, which is the wrong metric for bulk transport. At the very least, we see the need
for di�erent routing metrics. Third, more research is needed into reliable, bulk transport multicast
that e�ciently deals with site failure, network partition, and changes in the replication group.

We are exploring an approach to providing massively replicated, loosely consistent services [12,
37]. This approach extends ideas presented in Lampson's Global name service [28] to operate in the
Internet. Briey, our approach organizes the replicas of a service into groups, imitating the idea
behind the Internet's autonomous routing domains. Group replicas estimate the physical topology,
and then create an update topology between the group members. The left hand side of Figure
4 shows three replication domains. Inside each replication domain, a logical update topology is
established that best uses the physical topology connecting the replicas. Whenever the algorithm
detects a meaningful change in physical topology between members of a replication domain, it
modi�es the logical update topology accordingly. Because it does not require a separate recovery
algorithm, it is simpler than solutions based on Internet multicast.

4Because it is both a name service and a discovery tool, X.500 could bene�t from massive replication.
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Physical Topology

Logical Topology

 Group 2 member  Group 3 member  Non−group memberGroup 1 member

Figure 4: Replication domains and physical versus logical update topology

3.3 Data Object Caching

We believe that the Internet needs an object caching service, through which search clients can
retrieve the data objects they discover. We say this for two reasons.

First, people currently use FTP and electronic mail as a cacheless, distributed �le system [14,38].
Since the quantity and size of read-mostly data objects grows as we add new information services,
an object cache would improve user response times and decrease network load (e.g., we found that
one �fth of all NSFNET backbone tra�c could be avoided by caching FTP data). Second, caches
protect the network from looping client programs that repeatedly retrieve the same object. While
the cache does not �x the faulty components, it does isolate the fault. A caching service would
obviate the need for every new client and Internet service to implement its own data cache.

We believe the object cache should be hierarchically organized, as illustrated in Figure 5. The
dark ovals in this �gure represent �le caches residing on secure machines placed near the entry
points to regional networks and near the core of backbone networks. The organization of these
caches could be similar to the organization of the Domain Name System. Clients would send their
requests to one of their default cache servers. If the request missed the cache, the cache would
recursively resolve the request with one of its parent caches, or directly from the FTP archive.

3.4 Client Customization

As the number of Internet information systems users gets larger, it naturally becomes more diverse.
Allowing users exible customization can be a great help, because people have di�erent search styles
and needs. To see how this can be done, consider the analogy of a newcomer to a town. One �rst
establishes general acquaintance with the town layout and major services. One then learns about
services close to one's heart - for example, clubs, specialized stores, and recreation facilities - usually
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Figure 5: File caches organized hierarchically by network topology

by word of mouth, the media, or advertizing. After a while, one develops networks of friends, better
knowledge of di�erent services, and experience based on habits and interests. This is a continuing
process, because new facilities appear, and one's interests evolve. The same process occurs on a
much larger scale in the Internet, and suggests ways that interactions between users and discovery
services can be made exible. Below we discuss three types of customization that can be addressed
in discovery tools, based on some of our experimental systems.

The �rst type of customization involves tracking a person's search history. For example, recently
one of this paper's authors discovered that the New Republic magazine was available online while
browsing Gopherspace via Mosaic [1]. But only two days later it took him 15 minutes to navigate
back to the same place. To address this problem, the user interface can keep track of previous
successful and unsuccessful queries, comments a user made on past queries, and browsing paths.
Existing systems record some of this information (e.g., the ability to set \bookmarks" in Gopher
and "Hotlists" in Mosaic); saving the whole history can help further. For example, we built a system
that records the paths users traverse when browsing FTP directories, and allows this information
to be searched [45]. It is also helpful to record search history, and allow the searches themselves
to be searched. For example, the X-windows interface to agrep [52] translates every command into
the corresponding agrep statement, and allows exible retrieval of this information. This type of
history can support queries such as \What was the name of the service that allowed me to search
for XYZ that I used about a year ago?"

The second type of customization is the ability to choose not only according to topic but also
according to context and other attributes. If the search is for papers on induction, for example,
knowledge of whether the searcher is a mathematician or an electrical engineer can be very useful.
When one looks for a program named ZYX using Archie, for example, it would be useful to specify
a preference for, say, a UNIX implementation of the program.

The third type of customization is ranking. WAIS provides one form of ranking, in which
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matched documents are ordered by frequency of occurrence of the speci�ed keywords. However, it
would be useful to allow users to customize their notion of ranking, so that they could choose to
rank information by quality or reliability. Clearly, these notions are very subjective. If we are naive
users, we may want information from someone who knows how to build easy-to-use systems; if we
are academics, we may want information from someone with deep understanding; if we absolutely
positively need it by tomorrow, we want someone who can deliver, and so on. We believe that in
time the Internet will support many types of commercial and non-pro�t review services, and people
will subscribe and follow recommendations from reviewers they trust (just like they go to movies
or buy refrigerators based on reviews).

Customizations like the ones discussed here are missing from most current resource discovery
client programs because they were not designed to be extensible (like the Emacs text-editor[47]).

4 Data Volume

The amount of information freely available in the Internet is huge and growing rapidly. New
usage modes will contribute additional scale. For example, as multimedia applications begin to
proliferate, users will create and share voluminous audio, image, and video data, adding several
orders of magnitude of data. Many users already store voluminous data, but do not share it over the
Internet because of limited wide-area network bandwidths. For example, earth and space scientists
collect sensor data at rates as high as gigabytes per day [21]. To share data with colleagues, they
send magnetic tapes through the postal mail. As Internet link capacities increase, more scientists
will use the Internet to share data, adding several more orders of magnitude to the information
space.

While resource discovery tools must deal with this growth, the scaling problems are not quite
as bad as they may seem, because the number and size of \searchable items" need not grow as
fast. Resource discovery tools may be needed to �nd the existence and location of gigabytes or
terabytes of raw sensor data, but probably they will not search or otherwise process all this data.
A reasonably small-sized descriptor object will be su�cient to point anyone to this data. Only this
descriptor object will need to be searched and indexed. The same holds for sound, video, and many
other types of non-textual data. Searching image �les is desirable, but current pattern matching
techniques are still too slow to allow large-scale image processing on-the-y. Again, a descriptor
object can be associated with every image, describing it in words.

Below we discuss three aspects of data volume scalability: user interaction paradigms, indexing
schemes, and services specialized to support particular topics and user communities.

4.1 User Interaction Paradigms: Browsing vs. Searching

Loosely speaking, there are two resource discovery paradigms in common use in the Internet:
organizing/browsing, and searching. Organizing refers to the human-guided process of deciding how
to interrelate information, usually by placing it into some sort of a hierarchy (e.g., the hierarchy of
directories in an FTP �le system). Browsing refers to the corresponding human-guided activity of
exploring the organization and contents of a resource space. Searching is a process where the user
provides some description of the resources being sought, and a discovery system locates information
that matches the description.
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We believe that a general discovery system will have to employ a combination of both paradigms.
Let's analyze the strengths and weaknesses of each paradigm. The main weakness of organizing is
that it is typically done by \someone else" and it is not easy to change. For example the Library of
Congress Classi�cation System has Cavalry and Minor Services of Navies as two second level topics
(under \Military Science" and \Naval Science" respectively), each equal to all of Mathematical
Sciences (a second level topic under \Science"), of which computer science is but a small part.5

Ironically, this is also the main strength of organizing, because people prefer a �xed system that
they can get used to, even if it is not the most e�cient.

Browsing also su�ers from this problem because it typically depends heavily on the quality and
relevance of the organization. Keeping a large amount of data well organized is di�cult. In fact,
the notion of \well organized" is highly subjective and personal. What one user �nds clear and easy
to browse may be di�cult for users who have di�erent needs or backgrounds. Browsing can also
lead to navigation problems, and users can get disoriented [10,23]. To some extent this problem
can be alleviated by systems that support multiple views of information [9, 35]. Yet, doing so really
pushes the problem \up" a level|users must locate appropriate views, which in itself is another
discovery problem. Moreover, because there are few barriers to \publishing" information in the
Internet (and we strongly believe there should not be any), there is a great deal of information
that is useful to only very few users, and often for only a short period of time. To other users, this
information clutters the \information highway", making browsing di�cult.

Searching is much more exible and general than organizing/ browsing, but it is also harder for
the user. Forming good queries can be a di�cult task, especially in an information space unfamiliar
to the user. On the other hand, users are less prone to disorientation, the searching paradigm can
handle change much better, and di�erent services can be connected by searching more easily than
by interfacing their organizations.

Many current systems, such as WAIS, Gopher, and WorldWideWeb [4], employ an organization
that is typically based on the location of the data, with limited per-item or per-location searching
facilities. Browsing is the �rst paradigm that users see6, but once a server or an archive is located,
some type of searching is also provided. Searching can be comprehensive throughout the archive
(for example, WAIS servers provide full-text indexes), or limited to titles.

4.2 Indexing Schemes

The importance of searching can be seen by the recent emergence of �le system search tools [22,
24, 30,48] and the Veronica system [20] (a search facility for Gopher). Moreover, it is interesting to
note that while the Prospero model [36] focuses on organizing and browsing, Prospero has found
its most successful application as an interface to the Archie search system.

To support e�cient searching, various means of indexing data are required. As illustrated in
Figure 6, Internet indexing tools can be placed on a spectrum of indexing space vs. represen-
tativeness. The upper left corner of this �gure is occupied by systems that achieve very space
e�cient indexes, but only represent the names of the �les or menus that they index. Archie and
Veronica, for example, index the �le and menu names of FTP and Gopher servers, respectively.
The compact nature of these indexes mean that a single index can support far-reaching searches.

5There was a time, of course, when the study of cavalry was much more important than the study of computers.
6WAIS supports searching at the top level via the directory of servers, but many users simply browse a local copy

of this server list.
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Figure 6: Indexing Space vs. Representativeness Spectrum

Yet, these indexes support very limited queries. For example, Archie supports only name-based
searches; searches based on content are possible only when the �le names happen to reect some
of the contents.

The lower right corner Figure 6, is occupied by systems that provide full-text indexing of the
data found at individual sites. For example, a WAIS index represents every keyword in a set of
documents located at a single site. Similar indexes are available for individual Gopher and WWW
servers. Some recent advances have lowered the space requirements for full-text indexing, with as
low as 2-4% for the index used in Glimpse [30]. There is usually (but not always) a time-space
tradeo�; systems that use less space require more time for searching.

The middle region of Figure 6 is occupied by systems that represent some of the contents of the
objects they index, based on selection procedures for including important keywords or excluding
less meaningful keywords. For example, Essence and MIT's Semantic File System (SFS) select
keys based on application-speci�c semantics of individual documents (e.g., locating the author
lines within TeX documents). The Net�nd site database includes keywords for each component
of a site's Domain name, plus each keyword included in an organizational description that was
constructed based on understanding the semantics of many information sources used to gather
that information [46]. Whois++ [49] indexes templates that were manually constructed by site
administrators wishing to describe the resources at their site.

By selecting relatively small but important information such as �le names, Archie quickly
became a popular search-based Internet resource discovery tool. But as we discussed in Section
3.2, Archie has scale problems. One way to overcome some of these problems is to introduce
some hierarchy into the indexing mechanism in Archie (and similar tools). In addition to one at
database of all �le names, it is possible to maintain much smaller slightly limited databases that
will be replicated widely. For example, we can detect duplicates (exact and/or similar, see [29]),
and keep only one copy (e.g., based on locality) in the smaller databases. Most queries will be
satis�ed with the smaller databases, and only few of them will have to go further.

The scale problems for full texts are much more di�cult. Full-text indexes are almost always
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inverted indexes, which store pointers to every occurrence of every word (possibly excluding some
very common words). The main problems with inverted indexes are their size { usually 50-150% of
the original text[19] { and the time it takes to build and/or update them. Therefore, maintaining
an inverted index of the whole Internet FTP space is probably out of the question. But separate
local indexes, which is what we have now, do not present a general enough view of much of the
available information. Users often need to perform a lengthy browsing session to �nd the right
indexes, and they often miss. This problem will only get worse with scale.

We envision a search system that connects local indexes and other pieces of information via
a multi-level indexing scheme. beyond the scope of this paper. The main principle behind such
a scheme is that the number of search terms is quite limited no matter how much data exists.
Search terms are mostly words, names, technical terms, etc, and the number of those is on the
order of 106 to 107, but more importantly, this number grows more slowly than the general growth
of information. Inverted indexes require enormous space because they catalog all occurrences of
all terms. But if we index, for each term, only pointers to places that may be relevant, we end up
with a much smaller index. Searching will be similar to browsing in the sense that the result of
each query may be a list of suggestions for further exploration.

A big advantage of such a scheme is that the index can be partitioned in several ways, which
makes it scalable. Specialized archives will, of course, keep their local indexes. Several local
indexes can be combined to form a two-level index, in which the top level can only �lter queries
to a subset of the local indexes. For example, separate collections of technical reports can form a
combined index. Indexes can also be combined according to topics or other shared attributes. The
directory of services could be another index (but more widely replicated), which contains pointers
to information about common terms and local information. There could also be a more detailed
directory maintained at some servers with knowledge about more terms. Users could navigate by
a combination of browsing and searching. In contrast with �xed browsing, this type of navigation
will allow users to skip many levels, to better customize their searches, and to more easily combine
information from di�erent sources. Of course, many issues need to be resolved, including ranking,
classi�cation, replication, consistency, data extraction, privacy, and more.

An example (at a smaller scale) of the multi-level approach is Glimpse [30], an indexing and
searching scheme designed for �le systems. Glimpse divides the entire �le system into blocks,
and in contrast with inverted indexes, it stores for each word only the block numbers containing
it. The index size is typically only 2-4% of the text size (hence its position in Figure 6). The
search is done �rst on the index and then on the blocks that match the query. Glimpse supports
approximate matching, regular expression matching, and many other options. Other examples
of similar approaches include the scatter/gather browsing approach [11], the Alex �le system's
\archia" tool [8], and Veronica.

Essence and the MIT Semantic File System do selective indexing of documents, by selecting
keywords based on knowledge of the structure of the documents being indexed. For example,
Essence understands the structure of several common word processing systems (as well as most
other common �le types in UNIX environments), and uses this understanding to extract authors,
titles, and abstracts from text documents. In this way, it is able to select fewer keywords for the
index, yet retain many of the keywords that users would likely use to locate documents. Because
these types of systems exploit knowledge of the structure of the documents being indexed, it would
be possible to include document structure information in the index. (This idea was discussed in
Section 2.)
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4.3 Topic Specialization, Classi�cation and Information Quality

It is safe to say that at least 99% of the available data is of no interest to at least 99% of the users.
The obvious solution to this problem is to construct specialized archives for particular domains of
interest. We believe that new techniques are needed to simplify the process of managing specialized
archives.

Currently, specialized archives rely on 1) direct contributions from their communities, and 2)
administrators who contribute time and expertise to keep the collections well structured. Except
for replication (or mirrors as they are usually called in the Internet) of FTP �les, archives do not
cooperate among themselves.

We see the need for a discovery architecture and set of tools that easily let people create
specialized services and that automatically discover information from other services, summarize it,
keep it consistent, and present it to the archive administrator for his/her editorial decision. An
important component of any complete solution is a directory of services in which archives describe
their interest specialization and keep this de�nition current.

This approach essentially amounts to de�ning archives in terms of queries [6, 12]. A server
periodically uses its query to hunt throughout the Internet for relevant data objects. One type of
server could, for example, be specialized to scan FTP archives, summarizing �les and making these
summaries available to yet other services.

Such an architecture could greatly reduce the manual steps that archive administrators cur-
rently perform to incorporate users' contributions. This architecture would also help users discover
smaller, highly specialized archives.

To help support topic-specialized servers, we believe information must also be classi�ed ac-
cording to topic- or community-speci�c taxonomies. For example, an archive of Computer Science
technical reports might be classi�ed using the ACM Computing Reviews taxonomy. Taxonomies
allow a more uniform search space than possible solely by content-indexing documents. Because a
particular document may be of value to several communities, it should be possible to classify doc-
uments according to multiple taxonomies, and register classi�cation information for the document
in several specialized archives.

Classi�cation should also include some description of information quality. For example, scien-
tists often need to understand the methods by which data were gathered, what error controls were
used, etc. At this point it is not clear how to specify quality, because there are many associated
issues. At a minimum it would be useful to record the author, data collection process, and some-
thing about the review process to which the data were subjected before being published. Other
possibilities might include pointers to conicting points of view, support for \voting" by users who
have perused the data, etc.

We believe tools should be developed that allow authors to mark up their documents with
classi�cation terms from some selected set of taxonomies. In turn these classi�cation data should
be included in topic indexes, with attributes indicating that the source of the information was a
classi�cation process, rather than just a content-indexing process (since the latter tends to generate
many less well-focused or well-de�ned terms).
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5 Summary

The Internet's rapidly growing data volume, user base, and data diversity will create di�cult
problems for the current set of resource discovery tools. Future tools must scale with the diversity
of information systems, number of users, and size of the information space.

With growing information diversity, techniques are needed to gather data from heterogeneous
sources and sort through the inherent inconsistency and incompleteness. Internet Research Task
Force e�orts in this realm focus on application-speci�c means of extracting and cross-correlating
information, based on both explicit and implicit data typing schemes.

With a growing user base, signi�cantly more load will be placed on Internet links and servers.
This load will require much more heavily replicated servers and more signi�cant use of data caching;
highly customizable client interfaces; and self-instrumenting servers to help guide replication and
specialization. IRTF e�orts in this realm focus on ooding-based replication algorithms that adapt
to topology changes, and on customized clients.

As the volume of information continues to grow, organizing and browsing data break down as
primary means for supporting resource discovery. At this scale, discovery systems will need to
support scalable content-based search mechanisms. Current systems tend to strike a compromise
between index representativeness and space e�ciency. Future systems will need to support indexes
that are both representative and space e�cient. IRTF e�orts in this realm focus on scalable content-
based searching algorithms, and on servers specialized to support particular user communities.
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