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Abstract

Many agent-environment interactions can be framed as dynamical systems inwhich agents take

actions and receive observations. These dynamical systems are diverse, representing such things as

a biped walking, a stock price changing over time, the trajectory of a missile, orthe shifting fish

population in a lake.

Often, interacting successfully with the environment requires the use of a model, which allows the

agent to predict something about the future by summarizing the past. Two of the basic problems

in modeling partially observable dynamical systems are selecting a representation of state and se-

lecting a mechanism for maintaining that state. This thesis explores both problemsfrom a learning

perspective: we are interested in learning a predictive model directly from the data that arises as an

agent interacts with its environment.

This thesis develops models for dynamical systems which represent state asa set of statistics about

the short-term future, as opposed to treating state as a latent, unobservable quantity. In other words,

the agent summarizes the past into predictions about the short-term future,which allow the agent to

make further predictions about the infinite future. Because all parametersin the model are defined

using only observable quantities, the learning algorithms for such models areoften straightforward

and have attractive theoretical properties. We examine in depth the case where state is represented

as the parameters of an exponential family distribution over a short-term window of future observa-

tions. We unify a number of different existing models under this umbrella, andpredict and analyze

new models derived from the generalization.

One goal of this research is to push models with predictively defined state towards real-world ap-

plications. We contribute models and companion learning algorithms for domains with partial ob-

servability, continuous observations, structured observations, high-dimensional observations, and/or

continuous actions. Our models successfully capture standard POMDPs and benchmark nonlinear

timeseries problems with performance comparable to state-of-the-art models. They also allow us

to perform well on novel domains which are larger than those captured byother models with pre-

dictively defined state, including traffic prediction problems and domains analogous to autonomous

mobile robots with camera sensors.

ix



Chapter 1

Introduction

In a dynamical system, an agent interacts with its environment by taking actionsand receiving ob-

servations. Such an agent is often interested in predicting the distribution of future observations,

given a history of past actions and observations. For example, in reinforcement learning, one ob-

servation is a reward signal, which the agent attempts to maximize by taking appropriate actions.

In order to accomplish this, the agent must be able to predict something aboutthe future: if the

agent is a stock-broker, it must be able to predict future price trends to know whether to buy or sell.

If the agent is a baseball player, it must be able to predict the trajectory ofthe baseball in order

to hit it. If the agent is a chess player, it must be able to predict his opponent’s future moves in

order to outmaneuver him. The actions that an agent takes now will influencethe distribution of

future observations, so an agent would like to predict them as accuratelyas possible in order to act

optimally.

Models of dynamical systems allow an agent to predict the distribution of future observations. These

models can be built by hand, or they can be learned from data, but in eithercase there are two

important components to them. The first component in a model is some representation of state,

which we will define formally momentarily. For now, we informally define state as asummary of

an agent’s knowledge about the state of affairs in the environment. This thesis examines different

classes of state representations, comparing their computational and representational characteristics

and focusing on how a good representation can be learned directly fromdata captured from agent-

environment interactions.

The second component in a model is an algorithm formaintainingstate as the agent interacts with

the environment. The agent must be able to update its internal knowledge about the state of affairs

in the environment in response to new actions and observations. In some cases, the mechanisms for

accomplishing this are easily defined once a state representation is defined:in probabilistic models,

for example, Bayes law will often arise as part of the natural optimal updatealgorithm. In other

cases, however, the choice of state update algorithm helps define the class of systems which can be

captured with the model.

This thesis is concerned primarily with learning models of dynamical systems from data, with the

goal of allowing the agent to predict the distribution of future interactions, given a string of past

1



interactions. There is an important restriction that we will place on all of the models we develop: we

stipulate that in every model, state must be defined using nothing but statistics offuture observable

quantities – that is, state must be composed ofpredictions about the future.The restriction is self-

imposed and represents part of the central question that this thesis addresses: how far can we push

such models? Is anything lost with this restriction? Is anything gained? This thesis describes

a trajectory of work which develops increasingly sophisticated models, andgenerally concludes

that this restriction does not limit the capacity of the models. This conclusion is described more

thoroughly in Chapter11.

The idea of representing state as predictions about the future will be made precise later. We now

turn our attention to defining the problem setting more formally.

1.1 Modeling Dynamical Systems
The problem of modeling dynamical systems has been widely studied. We lay thegroundwork for

the models we will build by describing what we mean by an agent, its environment,the decisions it

may have to make and the way it represents its knowledge about the world.

1.1.1 The Agent and Its Environment

For all of the dynamical systems we consider, we adopt the perspective that we have an agent who

is interacting with an environment by taking actions and receiving observations in discrete time

steps. Roughly speaking, the agent is the thing which we are creating or which we are interested in

controlling, and the environment is everything external to it. In our examples, the agents are things

like stock brokers, chess players, and baseball batters, while the environments are the systems which

govern the range of their dynamics – the stock market, the playing room, the baseball game. All

of these examples are anthropomorphic, but more abstract kinds of agents and environments are

included in our framework: perhaps the environment is the solar system, and the agent is a software

program predicting sun-spots; perhaps the environment is a website, and the agent is an algorithm

deciding how much to charge for displaying an advertisement.

From the perspective of the agent, the environment is a black box: at each timestept, the agent

executes some actionat from a (possibly infinite) set of candidate actionsA, and receives an obser-

vationot from a (possibly infinite) set of candidate observationsO. In all of our examples, the agent

cares about what happens inside the black box only to the extent that it aids him in predicting the

future. Throughout this thesis, we explicitly do not adopt the perspective that we are attempting to

accurately discover or describe the contents of the black box; we are interested solely in predicting

the distributions of future interactions given past interactions.

Should every learning problem be considered a dynamical system? Our framework is general

enough that it might be possible, but to keep the definition of a dynamical system clean, we an-

swer no. Classification, for example, is a widely studied machine learning problem, and it may be

2



tempting to try to reduce it to a dynamical system: the agent is the classifier, the history of inter-

actions is the training data, and the actions that the agent can take are possible classifications. The

difference is precisely where we draw the line between dynamical and non-dynamical systems: in a

dynamical system, the temporal component is essential, and cannot be neglected. In classification,

the training data can be arbitrarily rearranged, and the results are typicallythe same.1 In a dynamical

system, thesequence itselfof actions and observations is essential: rearranging them fundamentally

changes the nature of the system.

1.1.2 Properties of Dynamical Systems

Dynamical systems can be categorized according to a few standard properties. We outline the most

important ones to situate this work and delineate the boundaries of the systems we consider.

• Controlled vs. uncontrolled

In a controlled dynamical system, we assume that actions taken now will influence the dis-

tribution of future observations. In an uncontrolled system, the agent still makes predictions,

but they do not affect the system: a weatherman may predict the chance ofrain tomorrow,

and may be rewarded for better predictions, but he does not affect theweather. Controlled

dynamical systems include domains that arise in reinforcement learning, control theory, and

operations research, while uncontrolled systems include problems such astimeseries predic-

tion. We will consider both types of systems.

• Finite vs. continuous environments

How many configurations can the environment be in? Is the environment like agame of

checkers, with a finite number of possibilities, or more like the stock market, with an infinite

space of real-valued prices? We will consider both, although we emphasize that our goal

is not necessarily to identify the environment and its possible configurations, but rather to

predict distributions over future observations.

• Finite vs. continuous observations

Are the agent’s observations continuous (like the position and velocity of a car) or discrete

(like the letters in an alphabet)? We will consider both. Part of the goal of thisthesis is to

expand previously contributed models which are capable of dealing with discrete observations

to the case of continuous observations. In some of our models, we will add an additional

property, which is the presence or absence of structurewithin individual observations. We

will therefore consider discrete-and-structured observations and continuous-and-structured

observations. For example, a camera image has discrete elements (each pixel can only occupy

255 distinct colors), and so the set of all possible images is finite. However, the set is so large

that for practical purposes, structure within the observation must be exploited.

1And if they are not, as might be the case for an online classifier, there is a dynamical component to the model which
plays an important role, and the result is a dynamical system.
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• Fully observable vs. partially observable

How much information do observations convey about the environment? In a fully observable

domain, the current observation conveys all possible information about the environment to the

agent – it does not need to remember anything in order to predict the future. The observability

of the system is related to whether the system isMarkov (Markov, 1913): in a Markovian

domain the distribution of future observations is conditionally independent ofthe past, given

the current observationo:

p(future|o,history) = p(future|o).

Thus, in a Markovian domain, the agent only needs the current observation to predict the

future perfectly. In a non-Markovian (or “partially observable”) domain, this property does

not hold. This thesis is concerned explicitly with partially observable domains,and does

not consider Markovian domains. One of our goals is to learn ways to represent knowledge

about the system, which is summarized from the history of interactions. In a fully observable

domain, this is not necessary.

• Deterministic vs. stochastic

How does the environment change over time? Is it deterministic, like a state machine, or

stochastic, like the weather? How do the actions of the agent affect the environment? Are

the effects deterministic, like the results of the voters in an election, or stochastic, like the

wheels of a robot turning on a sandy beach? How are observations generated? Even in a

deterministic environment, observations may be stochastically generated: a camera image of

a checkerboard may be corrupted with salt-and-pepper noise, for instance. We will consider

domains with any combination of the above possibilities.

• Finite vs. continuous actions

Are the actions available to the agent continuous, like the decisions of a driver in a car (who

can smoothly decide between turning left and turning right), or discrete, likethe decisions

of a temperature regulating agent (who can decide only whether or not to turn on the air

conditioner)? We will consider both.

• Episodic vs. sequential

In an episodic domain, the agent is repeatedly reset to a known initial configuration, or faces

the same task again and again. For example, a baseball batter warms up, steps up to the

plate, and swings, and later does the same again. In a sequential domain, theagent simply

lives forever, with no a priori bound on how long the agent can expectto interact with the

environment. We consider sequential domains, although many of the concepts apply directly

to the case of episodic domains.

• Stationary vs. non-stationary
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Do the laws governing the environment change over time? Here, we are notreferring to how

the specific configurations of the environment evolve, but rather whether or not the mecha-

nisms that govern that evolution change. To see the difference, consider the example of the

weather: the weather may evolve in a complicated, stochastic way, which results in a complex

dynamical system. However, the laws governing weather do not change from moment to mo-

ment: temperature, pressure, humidity, evaporation and precipitation are allgoverned by the

laws of physics, which are constant. This means that if we were somehow able to formulate

a good model of the weather, it would be just as good today as it is 100 years from now. We

say that a domain is stationary when the laws governing the environment do not change, and

that it is non-stationary otherwise.

It is always theoretically possible to transform a non-stationary environment into a stationary

one by broadening our definition of “environment,” but from a theoretical and practical per-

spective, it is often more useful to think of certain domains as non-stationary. For example,

in a multi-agent setting, the fact that other agents are learning and evolving effectively results

in a non-stationary environment, even though it would be stationary if we somehow had a

perfect model of their learning mechanisms. We will only consider stationaryenvironments.

• Domains with reward

In some controlled dynamical systems, the environment defines a notion ofreward. Reward

is a special observation that helps the agent know what it is supposed to accomplish in the

environment: a stock broker might be rewarded based on profit gained from good trades; a

baseball player might be rewarded for hitting the ball, and a chess-playermight be rewarded

for winning the game. Learning how to act such that reward is maximized is the purview of

reinforcement learning.

This thesisis related to reinforcement learningSutton and Barto(1998) because many of

our algorithms learn in domains that are the hallmark of reinforcement learningresearch, but

is more about learning how to model an environment than about how tousethat model to

behave optimally. Even so, the existence of a reward signal may impact the model building

process. For example, instead of predicting the entire distribution of future observations,

perhaps the agent only needs to predict a subset sufficient to act optimally, which may simplify

the model building process. In any case, the representation of state should be adequate for a

reinforcement learning algorithm to function properly.

In summary, this thesis is concerned with environments which are sequential, stationary and par-

tially observable; which may or may not have a reward signal; and which may have any mix of

stochasticity or determinism and any mix of discreteness or continuity.
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1.1.3 State

This thesis is intimately concerned with the idea of state and how it can be represented. Throughout

this introduction, we have referenced the idea of “state,” relying on an intuitive definition. We now

define state more precisely, with emphasis on the fact that there are multiple acceptable representa-

tions of state. Throughout this thesis, we will always discuss state from theperspective of the agent,

as opposed to that of an omniscient observer.

What exactly is “state?” Informally, state is the current situation that the agent finds itself in: for

a robot, state might be the position and angle of all its actuators, as well as its mapcoordinates,

battery status, the goal it is trying to achieve, etc. However, in a partially observable system the

agent may not have immediate access to all of the information that it would like to know about its

situation. For example, a robot with a broken sensor may not know the exact position of its arm;

a stock trader may not know exactly what the long-term strategies are of allthe companies he is

investing in; and a baseball batter may not know exactly how fast the baseball is approaching.

In partially observable domains, there is a more formal definition of state: stateis a summary of all

of the information that an agentcould haveabout its current situation, which is a summary of the

history it has experienced. Usually, an agent will want to compress this history, because otherwise

it must store an increasingly large amount of information as it interacts with the environment longer

and longer. This motivates the canonical formal definition of state:state is any finite-dimensional

statistic of history which is sufficient2 to predict the distribution of the future.We will sometimes

abbreviate this by simply saying that “state is a sufficient statistic for history.”

Defining state in this way implies the following conditional independence assertion: that the distri-

bution of the future is conditionally independent of the past, given state:

p(future|state, past) = p(future|state).

This means that since state has summarized all of the information in a history whichis relevant for

predicting the future, we may discard the history itself. As it turns out, this summary of history

is also sufficient for the agent to act optimally (Astrom, 1965). Thus there is a close connection

between representing state, maintaining state, summarizing the past, predicting the future and acting

optimally.

Unfortunately, there are some conflicting uses for the word “state.” In many models of dynamical

systems, such as a Partially Observable Markov Decision Process (or POMDP; Monahan, 1982),

the model posits underlying “states” which are assumed to represent the “true” state of the process,

which is unobserved by the agent (when necessary, we will refer to these underlying states as “latent

states.”) In a POMDP, the agent summarizes a history with abelief state, which is a distribution over

latent states. According to our definition, it is the belief state which is the sufficient statistic for his-

2Sufficiency is precisely defined in Section3.2.
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tory. However, latent states are not essential for sufficiency; as we shall see, one of the contributions

of this thesis is the introduction of numerous concepts of state which make no reference to any sort

of latent state.

There are many acceptable summaries of history. To illustrate this, consider the example of a robot

localization problem. A small robot wanders through a building, and must trackits position, but it

is given only a camera sensor. There are many possible representationsfor the robot’s position. Its

pose could be captured in terms of a distribution overx, y coordinates, for example. However, it

could also be described in terms of, say, a distribution over polar coordinates. Cartesian and polar

coordinates are different representations of state which are equally expressive, butbothare internal

to the agent. Neither is more accurate, or more correct, or more useful, andwe have said nothing

about how either Cartesian or polar coordinates could be accurately maintained given nothing but

camera images. It is easy to see that there are an infinite number of such staterepresentations: any

one-to-one transformation of state is still state, and adding redundant information to state is still

state.

The realization that there are multiple satisfactory representations of state begs the question: among

all possible concepts of state, why should one be preferred over another? There are many possible

criteria that could be used to compare competing representations. For example, a representation

might be preferred if:

• It is easier for a human (designing an agent) to understand and use.

• It somehow “matches” another agent’s notion of state.

• It has favorable computational properties.

Not every statistic of history will be sufficient for predicting the future, which means that some

representations may only constitute approximate state. If an approximately sufficient statistic is

acceptable, a state representation might be preferred if:

• It is more expressive than another representation.

• It is less expressive than another, but is still sufficient to do what we want to do with it (for

example, control the system optimally).

Thus, even among state representations which are equally expressive,there might be reasons to

prefer one over another.

Because we are interested in learning agents, we are interested inlearnablerepresentation of state

– those for which effective learning algorithms are available. The idea thatone representation of

state may be more learnable than another motivates our first distinction betweendifferent represen-

tations of state:grounded3 representations of state are those in which every component of the state

3Some disciplines may have other definitions of the word “grounded” whichare specific and technical; we avoid them.
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is defined using only statistics about observable quantities (which could be either observables in the

future, or the past), andlatent representations of state refer to everything else. In our robot local-

ization example, both Cartesian and polar coordinates are latent representations of state, because

neither is explicitly observed by the robot; only a state representation defined in terms of features of

camera images could be defined as grounded.

Within the class of grounded representations of state, we will make further distinctions. Some

grounded representations may be defined in terms of past observations,as in the case ofk-th order

Markov models (where the pastk observations constitute state), and others could be defined in terms

of the current observation (as in Markovian domains, or domains where some feature of the current

observation is state).

There is also a third class of grounded representations, which is the classof predictively defined rep-

resentations of state.In a predictively defined representation of state, state is represented asstatistics

about features offutureobservations. These statistics are flexible: they may be the parameters of a

distribution over the short-term future, represent the expectations of random variables in the future,

represent the densities of specific futures, represent statements about future strings of observations

given possible future actions, etc. It is this class of state representationswhich we will investigate

throughout the thesis, along with algorithms for maintaining that state.

1.2 Why Predictions About the Future?
Why limit our investigation to the class of models with predictively defined representations of state?

We are motivated for three reasons:

• Learnability . The central problem this thesis addresses is learning models of dynamicalsys-

tems from data. The fact that all of the parameters of predictively definedmodels have direct,

statistical relationships with observable quantities suggests that predictivelydefined models

may be more learnable than classical counterparts. As an example of this, theparameter esti-

mation algorithm ofRudary et al.(2005) for the Predictive Linear Gaussian (PLG) model (the

predictively defined version of the Kalman filter, which is discussed in Chapter4) was shown

to be statistically consistent, which is a strong learning guarantee (Rudary et al., 2005).

• Representational Ability. To date, most models with predictively defined state have been

shown to be at least as expressive as their classical counterpart. Forexample, PLGs are as

expressive as Kalman filters (Rudary et al., 2005), and linear PSRs (discussed in Chapter

2) are strictly more expressive than POMDPs (James, 2005). That is, there are domains

which can be modeled by a finite PSR which cannot be modeled by any finite POMDP, but

every finite POMDP can be modeled by a finite PSR. This representational ability is achieved

without sacrificing compactness: linear PSRs are never larger than their equivalent POMDPs,

PLGs are never larger than their equivalent Kalman filters, and there areexamples of PSRs

which are exponentially smaller (in terms of the number of parameters) than theirequivalent
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POMDP (Littman et al., 2002). For a given data set, a model with fewer parameters is likely

to have greater statistical efficiency, which is useful for learnability.

• Generalization. As a knowledge representation, predictions about the future may have at-

tractive properties from the perspective of function approximation and generalization. For

example,Rafols et al.(2005) have provided some preliminary evidence that predictive repre-

sentations provide a better basis for generalization than latent ones. To see the intuition for

this, consider the problem of assigning values to states for a domain in which an agent must

navigate a maze. Using a predictively defined representation, two states are “near” each other

when their distributions over the future are similar; if that is true, it is likely that they should

be assigned similar values. But if the agent uses, say, Cartesian coordinates as a state repre-

sentation, two states which are nearby in Euclidean space may not necessarily have similar

values. The classic example is two states on either side of a wall: although the twostates

appear to be close, an agent may have to travel long distances through themaze to reach one

from the other, and they should be assigned different values, which maybe difficult to do with

a smooth function approximator.Littman et al.(2002) have also suggested that in composi-

tional domains, predictions could also be useful in learning to make other predictions, stating

that in many cases “the solutions to earlier [prediction] problems have been shown to provide

features that generalize particularly well to subsequent [prediction] problems.”

Learnable, flexible knowledge representations are important for creating autonomous agents capable

of learning in real-world domains, which are characterized by rich percepts (such as camera images),

highly structured, nonlinear dynamics (perhaps consisting of objects, their material properties, and

dynamical relations), and factored, high-dimensional actions. Models withpredictively defined state

have shown promise with a combination of theoretical results on representational ability, empirical

success, and intuitions regarding learnability and generalization. This suggests that exploring the

limits and possibilities of such models is important and potentially rewarding.

1.3 Outline and Summary of Contributions
To summarize the setting for this work, the two basic problems in learning a model of a partially

observable dynamical system are selecting a representation of state and selecting an algorithm for

maintaining that state. The theme of this research is to create models with predictively defined

representations of state that are useful in domains with continuous actions,continuous observa-

tions, and in some cases, structured and/or high dimensional observations. The contributions are

theoretical (proposing new models which expand on previously proposed model classes), algorith-

mic (proposing new algorithms to learn the parameters of the models) and computational (finding

efficient approximations to make the algorithms practical).

• As background, Chapter2 introduces basic concepts of modeling dynamical systems and

presents the PSR model, which is one of the original models with predictively defined state.
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This chapter serves to present many ideas which we subsequently generalize.

• Chapter3 begins with the “Continuous PSR.” The PSR model is defined for domains with

discrete actions and observations, and the Continuous PSR extends PSRsto handle continu-

ous actions and observations. We examine the basic questions of sufficiency that arise when

extending to continuous actions and observations. We contribute the systemdynamics distri-

butions and a generic information-theoretic approach to optimizing state representations. To

complete a learning algorithm, we present a mathematically elegant set of designdecisions

which results in a gradient-based learning algorithm, and a set of Nystrom approximations

that allows the algorithm to scale well.

• In Chapter4 we describe the “Predictive Linear-Gaussian” model (PLG)4, which deals with

linear dynamics and simple scalar observations. The PLG defines state as theparameters of

a Gaussian distribution over a window of the short-term future, and is formally equivalent in

modeling capacity to the Kalman filter.

• In Chapter5 we extend the PLG to handle nonlinear dynamics by considering linear dynamics

in a nonlinear feature space. We show that a nonlinear extension functionsuffices to capture

nonlinear dynamics. We contribute a learning algorithm based on sample statistics and re-

gressions, and an efficient approximate inference algorithm based on sigma-points to track

state (which yields an algorithm related to the unscented Kalman filter).

• In Chapter6, we present an alternative extension to the PLG, named the Mixture of PLGs,

which is based on the idea of modeling dynamics in a piecewise linear way. We again con-

tribute a learning algorithm (which can be considered a mixture version of thestandard PLG

learning algorithm), and we begin to consider exogenous variables in the context of a traffic

modeling problem.

• In Chapter7, we present the “Exponential Family Predictive Representation of State” (EF-

PSR) model, which was conceived as the natural generalization of our previous models. The

EFPSR represents state as the time-varying parameters of an exponential family distribution

over a window ofn observations in the future. Its close connection to graphical models

and maximum entropy modeling allow us to deal with multivariate, high-dimensional, and/or

structured observations, and also provably unifies much of the work: wepresent theorems

which unify the PLG, KPLG, MPLG, and PSRs into the umbrella of the EFPSR family.

• In Chapter8, we specialize the EFPSR with a specific set of features and extension function,

and show that the resulting model is an information form of the PLG, in the same way that

the information Kalman filter is an information form of the Kalman filter.

• In Chapters9 and 10 we predict and analyze a new specialization of the EFPSR, named

the Linear-Linear EFPSR. We show how this model is well-suited to approximations which

4The PLG is largely the work of Matthew Rudary.
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allow it to scale to large domains. We contribute a learning algorithm based on maximum

likelihood, and an efficient approximation based on stationary distributions.

For each model and learning algorithm, we also contribute empirical evaluations comparing their

performance to other models. The models, learning algorithms and approximations allow us to

experiment with new domains that are simply not feasible under other models withpredictively

defined state. From nonlinear time series problems to bouncing balls to domains with robots and

cameras, we begin to consider a larger class of interesting domains.

We finish with concluding remarks in Chapter11.
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Chapter 2

Discrete Observations, PSRs and POMDPs

To begin our exposition of models with predictively defined representationsof state, this chapter

introduces basic concepts of modeling dynamical systems – including learningsuch models from

data and what it means to control them optimally – and briefly reviews severalpopular models.

We will describe in detail a classic model of controlled, partially observable systems with discrete

observations called aPartially Observable Markov Decision Process, or POMDP. This will allow

us to discuss many of the concepts of predictively defined representations of state by contrasting the

POMDP with a different model known as aPredictive State Representation(or PSR) which uses a

predictively defined representation of state.

The PSR model is important historically because it was one of the first models to use a predictively

defined representation of state. Analysis of the PSR model was responsible for the definition of

many of the theoretical, notational and algorithmic tools used in describing dynamical systems with

predictively defined representations of state. In the context of this thesis, the model is also a natural

starting point to introduce a variety of modeling concepts, which we will generalize in subsequent

chapters.

2.1 Models of Dynamical Systems with Discrete Observations
To arrive at our exposition of POMDPs and PSRs, we will now specialize tothe case of dynamical

systems with discrete observations, deferring a discussion of dynamical systems with continuous

observations until Chapter4. We will briefly review several popular classes of dynamical systems,

with a few notes on learning and controlling them.

The simplest models of discrete observation dynamical systems are known asMarkov Chains

(Markov, 1913), which are uncontrolled processes in which the observation constitutes state (be-

cause of this, the word “observation” and “state” are often used interchangeably). At each timestep,

the agent transitions from one state to another, in a possibly stochastic manner. It is straightfor-

ward to learn a model of such domains: a consistent maximum likelihood estimator of the transition

probabilities can be easily derived from the empirically observed counts ofeach transition. In

some partially observable dynamical systems, the current observation does not constitute state, but

a memory of the pastk observationsdoesconstitute state. We term thesehistory-window models,

but they are also known ask-th order Markov models, or autoregressive models. These models are
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simple to use and are theoretically comparable to Markov Chains and MDPs (defined next). There

is flexibility in defining the window; for example, in some models,k is allowed to vary depending

on the current observation (McCallum, 1995).

The controlled counterpart of the Markov Chain is known as aMarkov Decision Process, or MDP

(Puterman, 1994). Like a Markov chain, the learning problem is not complicated, but in addition to

states and transitions, the MDP adds actions and rewards. That is, in every state the agent receives a

(possibly stochastic) reward, and transition probabilities now depend on the action the agent selects

at each timestep. Theplanning problemis to find apolicy, or a mapping from states to actions,

that maximizes some optimality criteria defined on the rewards. For example, the agent may seek

a policy which maximizes the reward over a finite window into the future, the expected discounted

reward over the infinite future, or the long-term average reward (Blackwell, 1962)(see alsoLittman,

1996; Mahadevan, 1996, and references therein). The planning problem is theoretically tractable(it

is known to be P-complete;Papadimitriou and Tsitsiklis, 1987), and considerable research has gone

into making it practical (see, for example,Wingate and Seppi, 2005, and references therein).

Some of the most widely used models of partially observable dynamical systems posit the existence

of latent states, which are not observed but which are assumed to be generating the observations.

These latent states are sufficient for history: if they could be observed, they would render the future

independent of the past. The most popular uncontrolled model in this class istheHidden Markov

Model, or HMM (Rabiner and Juang, 1986). This model is well-studied and has enjoyed wide ac-

ceptance, partly due to its performance on real-world problems and partly due to theoretically sound

learning algorithms. It has been applied to a variety of applications, such asspeech recognition (Ra-

biner, 1989) and protein classification and alignment (Haussler et al., 1993). Learning HMMs is

typically done with the Baum-Welch algorithm (Baum et al., 1970), which is a specialized ver-

sion of the more general EM algorithm (Dempster et al., 1977), but there are many variations on

this basic theme (see, for example, the Bayesian approaches ofStolcke and Omohundro, 1993).

The difficulty in learning a model with EM is the existence of several shallow local maxima in the

likelihood surface which can result in useless models (Nikovski, 2002).

The controlled counterpart of the HMM is known as aPartially Observable Markov Decision Pro-

cess, or POMDP (Monahan, 1982). The POMDP posits the same latent states as the HMM, but like

an MDP, adds actions and rewards. The next section is fully devoted to POMDPs, so we defer our

discussion of this model until then.

There have also been several recent attempts to define models of partially observable systems which

capture state through the use of predictions about the future. Section2.4discusses these thoroughly,

after we have presented the PSR and POMDP models.
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2.2 POMDPs
POMDPs are a popular class of dynamical system models that have been used in applications as

diverse as simultaneous localization and mapping in mines (Thrun et al., 2005) to cognitive assistive

technologies (Hoey et al., 2007) to modeling the fishery industry (Lane, 1989). For a thorough

survey, seeCassandra(1998b).

A POMDP is described by a tuple〈S,A,O, T, O, R, b0〉, whereS is a finite set of latent states,A is

a finite set of actions, andO is a set of observations. The setT is a set of transition matrices, where

Ta is a matrix represents the probability of transitioning from states to states′ given that actiona

was taken. The setO is a set of observation matrices, whereOo is a diagonal matrix where(Oo)ii

specifies the probability that observationo will be observed in statesi. The functionR is a reward

function, whereR(s, a) specifies the reward for taking actiona in states. The vectorb0 represents

the initial belief state, which is a distribution over latent states.

At each time stepi, the agent executes an actionai ∈ A and receives an observationoi ∈ O. An

agent’s internal state in a POMDP is captured as a “belief state,” which is the set statistics of a multi-

nomial distribution over latent statesp(s). Because a belief state has a probabilistic interpretation,

it can be efficiently updated in a recursive way using Bayes law. Given abelief stateb, an actiona,

and an observationo, state can be updated as

p(s′|s, a, o) =
p(s′, o|s, a)

p(o|s, a)
=

p(s′, o|s, a)∑
s′ p(s′, o|s, a)

=
OoTab

~1⊤OoTab

where~1 is an appropriately sized vector of 1’s.

2.2.1 Optimal Control of a POMDP

The problem of optimal planning in a POMDP has been addressed by a number of authors. A

policy is a (possibly stochastic) mapping from a belief state to an action (because the belief state is

a sufficient statistic for history, it contains all of the information necessaryfor optimal control of the

agent). The goal in optimal planning is to find anoptimalpolicy – that is, a policy which maximizes

some measure of performance, such as average reward or expected discounted reward.

The problem of planning in a POMDP is provably difficult, and is known to be PSPACE-complete

(Papadimitriou and Tsitsiklis, 1987). Numerous algorithms (both exact and approximate) have been

proposed, such as value iteration (Smallwood and Sondik, 1973), finite policy trees (Sondik, 1971),

the Witness algorithm (Littman, 1994), point-based value iteration (Pineau et al., 2003), recurrent

nets (Bakker, 2004) finite policy graphs (Meuleau et al., 1999), utile distinction Hidden Markov

models (Wierstra and Wiering, 2004), finite-state controllers (Hansen, 1998), and policy gradient

methods (Baxter and Bartlett, 2001; Aberdeen and Baxter, 2002). For surveys, seeLovejoy (1991)

or Cassandra(1998a).
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Some authors do not attempt to estimate a model, and try to find instead “reactive”or memoryless

policies which map observations (not states) directly to actions (Jaakkola et al., 1995; Loch and

Singh, 1998). It is known that the optimal reactive policy may be stochastic (whereas theoptimal

policy for POMDPs and MDPs is always deterministic), and it is known that thebest memoryless

policy can be arbitrarily suboptimal in the worst case (Singh et al., 1994).

2.2.2 Learning a POMDP Model

Often, the model parameters (T, O, R) are not given, and must be learned from data. While not as

well studied as the basic problem of planning, many learning algorithms for POMDPs have been

proposed. There are two different classes of learning scenarios: inthe first, the number of states

is given, along with the observation probabilities from each state, but the transitions between states

must be estimated. For example,Russell et al.(1994) proposed an algorithm based on steepest

gradient ascent in the space of transition probabilities, whileChrisman(1992) and Koenig and

Simmons(1998) adapted HMM learning algorithms to learn the transition probabilities.

The more general class of algorithms assume no prior knowledge and attemptto learn everything

about the dynamical system: the number of states, the observation probabilities and the transition

probabilities must all be estimated. Many approaches have been proposed: Basye et al.(1995)

present a learning algorithm which constructs deterministic finite automata under perceptual alias-

ing. This was later generalized in the work ofShalizi and Shalizi(2004), who has proposed the

Causal State Splitting Reconstruction algorithm, which constructs states explicitlybased on the

distribution over the future they induce.Shatkay and Kaelbling(2002) have shown how domain

knowledge may be incorporated into the process of learning a model, with applications to robot

localization.Nikovski (2002) has proposed learning algorithms based on state aggregation.Holmes

and Isbell(2006) have proposed the looping suffix tree algorithm, which is based on the ideaof

excising non-informative portions of a history to determine states.

2.3 PSRs
The POMDP model described in the previous section has latent states at its heart – it begins by

describing a state space, transitions between those states, the observations that they generate; it

defines its sufficient statistic for history as a distribution over these latent states, etc. This model is

convenient in several situations, such as when a human designer knowsthat there reallyare latent

states in the system and knows something about their relationships. However, numerous authors

have pointed out that while a POMDP is easy to write down, it is notoriously hard to learn from

data (Nikovski, 2002; Shatkay and Kaelbling, 2002), which is the central concern of this thesis.

In this section, we turn to alternative model of controlled dynamical systems withdiscrete observa-

tions, called a “Predictive State Representation” (or PSR)1. The PSR was introduced byLittman

et al.(2002), and is one of the first models with a predictively defined representation of state. A PSR

1Unfortunately, this name would be more appropriate as a name for an entire class of models.
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Figure 2.1: An example of state as predictions about the future. Latent statemight bex, y coordi-
nates, but predictively defined state is defined in terms of future possibilities.

is a model capable of capturing dynamical systems that have discrete actionsand discrete observa-

tions, like a POMDP. The important contrast is that while POMDPs are built around latent states,

PSRs never make any reference to a latent state. Instead, a PSR represents state as a set of statistics

about the future. This will have positive consequences for learning, as we will see, but importantly,

we will lose nothing in terms of modeling capacity: we will see that PSRs can modelany system

that a finite-state POMDP can, and that many POMDP planning algorithms are directly applicable

to PSRs.

We will now introduce the terminology needed to explain PSRs.

Histories and tests: Recall that a history is defined as a sequence of actions and observations in

the pasta1o1a2o2 · · · amom, and that a test is defined as a possible sequence of future actions and

observationsa1o1a2o2 · · · anon. A test is a possible future from a given history, and specifies both a

sequence of actions and observations. An agent is not obligated to take the actions defined in a test

– it merely represents one possible future.

Figure2.1 illustrates the idea of tests. The figure shows two robots in a brightly colored maze. For

the robot on the left, there is a certain action-conditional distribution over thefuture: if it moves left,

it will bump into a pink (light gray) wall; if it goes to the right then up, it will bump intoa blue (dark

gray) wall, and if it goes to the right and then down, it will bump into a green (medium gray) wall.

In this example, the actions include “move-left,” “move-right,” etc., and the observations include

“bump,” “blue wall,” etc. Tests are strings of these atomic actions and observations. If there is non-

determinism in the world (perhaps due to slippage in wheels, noise in actuators, etc.) these possible

futures might not be certain: perhaps if the agent moves right and then moves up, there is some

probability that it will see the blue wall, but there is also some possibility that it will overshoot, run

into the yellow (very light gray) wall, and the bump sensor will be actuated.
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The robot on the right is in a different position in the maze, and therefore there is a different distri-

bution over future possibilities: for him, going left results in bumping into a yellowwall, instead of

a blue wall. In this simple example, we can imagine that a sufficiently detailed set ofsufficiently

long predictions could disambiguate any two positions in the maze. This is precisely the intuition

behind the state representation in PSRs, as we will discuss momentarily.

Prediction of a test: From a particular history, there are many possible future sequences of actions

and observations, and because of non-determinism in the world, there is some distribution over

these possible futures. This distribution can be captured through the use of tests: each possible

future corresponds to a different test, and there is some probability that each test will occur from

every history.

To formalize the idea of predictions about tests, we say that a testsucceedsif the observations of the

test are obtained, given that the test’s actions are taken. Apredictionfor a testt = a1o1a2o2 · · · anon

starting in historyh is the probability thatt will succeed when its actions are executed immediately

following h. We define the prediction for a test from historyh of lengthm to be

p(t|h) = Pr(om+1 = o1, om+2 = o2, · · · , om+n = on|h, am+1 = a1, · · · , am+n = an).

For ease of notation, we use the following shorthand: for a set of testsT = {t1, t2, · · · tn}, p(T |h) =

[p(t1|h), p(t2|h), · · · p(tn|h)]⊤ is a column vector of predictions.

The idea of tests and their predictions forms a central part of the state representation used by PSRs.

They are also central to the mathematical objects that PSRs rely on for theoretical results, as well as

most learning algorithms for PSRs.

The system dynamics vector:The systems dynamics vector(Singh et al., 2004) is a conceptual

construct introduced to define PSRs. This vector describes the evolutionof a dynamical system over

time: every possible testt has an entry in this vector, which representsp(t|∅) (that is, the prediction

of t from the null history), which are conventionally arranged in length-lexicographic order, from

shortest to longest. This will be an infinitely long vector, but will still be useful from a theoretical

perspective. Here, we will the notationam
t on

t to denote them-th action and then-th observation at

time t:

V =
[
p(a1

1o
1
1|∅), p(a1

1o
2
1|∅), · · · , p(am

1 on
1 |∅), p(a1

1o
1
1a

1
2o

1
2|∅), · · ·

]

Importantly, the system dynamics vector is representation-independent – that is, everydynamical

system with discrete observations can be completely described by its system dynamics vector. It

makes no reference to latent states of any sort, but still completely characterizes the dynamics of the

system. This will be a key part of learning a model of the system.

The system dynamics matrix: The system dynamics matrixD (shown in Figure2.2) is obtained

by conditioning the system dynamics vectorV on all possible histories. In this matrix, the first row
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Figure 2.2: The system dynamics matrix.

is the system dynamics vector, which corresponds to the null history. Every possible history has

a row in the matrix, and the entries in that row are obtained by conditioning the system dynamics

vector on that particular history. An entry in the matrix is the prediction of a particular test from a

particular history:

Dij = p(tj |hi) =
p(hitj |∅)

p(hi|∅)
.

Tests and histories are arranged length-lexicographically, with ever increasing test and history lengths.

The matrix has an infinite number of rows and columns, and like the system dynamics vector, it is a

complete description of a dynamical system.

Sufficient statistics: The system dynamics matrix inherently defines a notion of sufficient statistic,

and suggests several possible learning algorithms and state update mechanisms. For example, even

though the system dynamics matrix has an infinite number of columns and rows, ifit has finite

rank, there must be a finite set of linearly independent columns. Recall that columns correspond

to different tests. We call the tests associated with these linearly independent columnscore tests.

Similarly, there must be a set of linearly independent rows. Recall that rows correspond to different

histories. We call the histories associated with these linearly independent rowscore histories.

In fact, the rank of the system dynamics matrix has been shown to be finite forinteresting cases, such

as POMDPs (Singh et al., 2004)): a POMDP withn latent states will generate a system dynamics

matrix with rank at mostn. Furthermore, a set ofn linearly independent columns can be found

using tests that are all shorter than lengthn. The set of core tests is not necessarily unique, because

any linearly independent set of columns satisfies the definition of a core set of tests.

State: We are now prepared to discuss the key idea of PSRs: PSRs representstate as a set of

predictions about core tests, which represent the probabilities of possible future observations given

possible future actions. Core tests are at the heart of PSRs, because by definition, every other
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column can be computed as a weighted combination of these columns.

To see how the predictions of a set of core tests can constitute state, consider a particular history

ht. Suppose that an agent knows which tests are core tests. We will call this set Q, and suppose

furthermore that the agent has access to a vector containing their predictions from historyht:

p(Q|ht) = [p(q1|ht), p(q2|ht), · · · , p(qn|ht)] .

Every other columnc in the row corresponding toht can be computed as some weighted combina-

tion of the entries inp(Q|ht):

p(c|ht) = m⊤
c p(Q|ht).

Because columns correspond to possible futures, this agent can predict anything about the future

that it needs to, assuming it has the appropriate weight vectormc. Importantly, these weight vectors

are independent of history, which will be critical to maintaining state, as we willsee in a moment.

Because an agent can predict anything it needs to as a weighted combination of the entries in

p(Q|ht), we say that the predictions of these core tests area linearly sufficient statisticfor the

system. It is, of course, possible to go through the same line of reasoning toarrive at nonlinearly

sufficient statistics for history, although we will not discuss that in this section.

State update: Given a set of core testsQ, their predictionsp(Q|h) (which constitute state), an

actiona and an observationo, the updated prediction for a core testqi ∈ Q is given by

p(qi|hao) =
p(aoqi|h)

p(ao|h)
.

This means that to maintain state, we only need to compute the predictions of theone step tests(ao)

and theone-step extensions(aoqi) to the core tests as a function ofp(Q|h).

This formula is general to all PSRs, whether they use linearly sufficient statistics or nonlinearly

sufficient statistics. In the case of linearly sufficient statistics like those discussed previously, the

state update takes on a particularly convenient form, as discussed next.

Linear PSRs: Linear PSRs are built around the idea of linearly sufficient statistics. In a linear PSR,

for every testc, there is a weight vectormc ∈ R|Q| independent of historyh such that the prediction

p(c|h) = m⊤
c p(Q|h) for all h. This means that updating the prediction of a single core testqi ∈ Q

can be done efficiently in closed-form. From historyh, after taking actiona and seeing observation

o:

p(qi|hao) =
p(aoqi|h)

p(ao|h)
=

m⊤
aoqi

p(Q|h)

m⊤
aop(Q|h)

. (2.1)

This equation shows how a single test can be recursively updated in an elegant, closed-form way.

Previously, we said that given the predictions of a set of core tests for acertain historyh, any other
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column in the same row could be computed as a weighted sum ofp(Q|h). Here, we see that in order

to update state, only two predictions are needed: the prediction of theone-step testp(ao|h), and the

prediction of theone-step extensionp(aoqi|h). Thus, the agent only needs to know the weight

vectorsmao, which are the weights for the one-step tests, and themaoqi
, which are the weights for

the one-step extensions. We can combine the updates for all the core tests into a single update:

p(Q|hao) =
Maop(Q|h)

m⊤
aop(Q|h)

which allows us to recursively update state.

An agent does not need to learn a weight vector for every possible testin the system that it ever

wishes to predict. If it has learned the weights for the one-step tests and theone-step extensions,

these are sufficient to create a prediction foranyarbitrary test. This is accomplished by rolling the

model forward into the future. The prediction of an arbitrary testt = a1o1 · · · anon can be computed

as:

p(t|h) = m⊤
anonMan−1on−1 · · ·Ma1o1p(Q|h).

This derivation can be arrived at by considering the system dynamics matrix (Singh et al., 2004), or

by directly considering the parameters of an equivalent POMDP (Littman et al., 2002).

2.3.1 Learning a PSR Model

Numerous algorithms have been proposed to learn PSRs, but they all address the two key problems

which need to be solved in order to learn a model of a dynamical system: thediscovery problemand

the learning problem(James and Singh, 2004). The discovery problem is defined as the problem of

finding a set of core tests, and is essentially the problem of discovering a state representation. The

learning problem is defined as the problem of finding the parameters of the model needed to update

state, and is essentially the problem of learning the dynamical aspect of the system. In the case of

linear PSRs, this is themqi
weight vectors for all of the one-step tests and the one-step extensions.

The discovery problem: The idea of linear sufficiency suggests procedures for discovering suffi-

cient statistics: a set of core tests corresponds to a set of linearly independent columns of the system

dynamics matrix, and so techniques from linear algebra can be brought to bear on empirical esti-

mates of portions of the system dynamics matrix. Existing discovery algorithms search for linearly

independent columns, which is a challenging task because the columns of thematrix are estimated

from data, and noisy columns are often linearly independent (Jaeger, 2004). Thus, thenumerical

rank of the matrix must be estimated using a statistical test based on the singular values of the ma-

trix. The entire procedure typically relies on repeated singular value decompositions of the matrix,

which is costly. For example,James and Singh(2004) learns a “history-test matrix,” which is the

predecessor to the systems dynamics matrix. Their algorithm repeatedly estimates larger and larger

portions of the matrix, until a stopping criterion is reached.
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The learning problem: Once the core tests have been found, the update parameters must be learnt.

Singh et al.(2003) presented the first algorithm for the learning algorithm, which assumes thatthe

core tests are given and uses a gradient algorithm to solve the learning problem. The more common

approach is with regression and sample statistics (see, for example,James and Singh, 2004). In

these methods, once a set of core tests is given, the update parameters can be solved by regressing

the appropriate entries of the estimated system dynamics matrix.

Some authors combine both problems into a single algorithm. For example,Wiewiora (2005)

presents a method for learning regular form PSRs with an iterative extend-and-regress method,

while McCracken and Bowling(2006) propose an online discovery and learning algorithm based

on gradient descent.Rosencrantz et al.(2004) present TPSRs, which are like PSRs, but which find

an uninterpretable basis for the systems dynamics matrix, as opposed to a basis composed strictly

of columns.

Estimating the system dynamics matrix: Many learning and discovery algorithms involve esti-

mating the system dynamics matrix. Generally, these algorithms estimate entries in a small subset

of the matrix using sample statistics. In systems with a reset action, the agent may actively reset to

the empty history in order to repeatedly sample entries (James and Singh, 2004). In systems without

a reset, most researchers use the suffix-history algorithm (Wolfe et al., 2005) to generate samples:

given a trajectory of the system, we slice the trajectory into all possible histories and futures (see

the discussion of the suffix-history algorithm in Section3.4 for more detail). Active exploration is

also possible, as proposed byBowling et al.(2006).

2.3.2 Other Results on PSRs

A variety of other results about PSRs have been obtained. For example,Rudary and Singh(2004)

showed that more compact models can be created when nonlinearly sufficient statistics are allowed.

James et al.(2005b) showed that memory and predictions can be combined to yield smaller models

than can be obtained strictly with predictions;James and Singh(2005a) then showed that effective

planning is possible with the resulting model. The idea of tests has been generalized to include

options (Wolfe and Singh, 2006), set-tests and indexical tests (Wingate et al., 2007). Predictive

representations have also been shown to be good bases for generalization (Rafols et al., 2005), and

(Tanner et al., 2007) presented a method to learn high-level abstract features from low-level state

representations.

There has been comparatively little work on planning in PSRs.James(2005) shows how several

POMDP planning algorithms (such as exact value iteration and incremental pruning) can be trans-

lated directly into PSR terms, with equivalent computational complexity and optimality guarantees.

It is generally believed among PSR researchers that any POMDP planningalgorithm can be directly

applied to PSRs, although there is no formal proof of this.

A variety of theoretical results have been obtained about PSRs. For example, it was shown early that
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every POMDP can be equivalently expressed by a PSR using a constructive proof translating from

POMDPs directly to PSRs (Littman et al., 2002). In fact, the resulting PSR is just as compact as the

POMDP: a POMDP withn latent states can be captured by a linear PSR withn core tests, and an

equivalent number of parameters. In fact, PSRs are strictly more expressive than POMDPs: it has

been shown that “there exist finite PSRs which cannot be modeled by any finite POMDP, Hidden

Markov Model, MDP, Markov chain, history-window, diversity representation, interpretable OOM,

or interpretable IO-OOM” (James, 2005).

2.4 Other Models with Predictively Defined State
There are other models of dynamical systems which capture state through theuse of predictions

about the future.

2.4.1 Diversity Automaton

The diversity automaton ofRivest and Schapire(1987) is a model based on predictions about the

future, although with some severe restrictions. Like the PSR model, diversitymodels represent state

as a vector of predictions about the future. However, these predictionsare not as flexible as the usual

tests used by PSRs, but rather are limited to be like the e-tests used byRudary and Singh(2004).

Each testti is the probability that a certain observation will occur inni steps, given a string ofni

actions butnotgiven any observations between timet+1 andt+ni. Each of these tests corresponds

to an equivalence class over the distribution of future observations.

Rivest and Schapire(1987) showed tight bounds on the number of tests needed by a diversity model

relative to the number of nominal states a minimal POMDP would need to model the same system.

Diversity models can either compress or inflate a system: in the best case, a logarithmic number of

tests are needed, but in the worst case, an exponential number of tests are needed. This contrasts with

PSRs, where onlyn tests to model any domain modeled by ann-state POMDP. Another significant

restriction for diversity models is that they are limited to systems with deterministic transitions and

deterministic observations. This is partly due to the state update mechanism usedby the model, as

well as the need to restrict the model to a finite number of tests by restricting it to afinite number of

equivalence classes of future distributions.

2.4.2 Observable Operator Models

Observable Operator Models (OOMs) were introduced and studied byJaeger(2000). Like PSRs,

there are several variants on the same basic theme, making it more of a framework than a single

model. Within the family of OOMs are models which are designed to deal with different versions

of dynamical systems: the basic OOM models uncontrolled dynamical systems, while the IO-OOM

models controlled dynamical systems. OOMs have several similarities to PSRs. For example, there

are analogous constructs to core tests (“characteristic events”), corehistories (“indicative events”)

and the system dynamics matrix. State in an OOM is represented as a vector of predictions about
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the future, but the predictions do not correspond to a single test. Instead, each entry in the state

vector is the prediction of some set of tests of the same lengthk. There are constraints on these sets:

they must be disjoint, but their union must cover all tests of lengthk.

There is a significant restriction on IO-OOMs, which is that the action sequence used in tests must

be the same for all tests. This restriction is needed to satisfy some assumptions about the state

vector, but is severe enough thatJames(2005) gives an example of why this restriction results in

systems which the IO-OOM cannot model, but which PSRs can. There are also variants of OOMs

which do not use predictions as part of their state representation, which are called “uninterpretable

OOMs,” but there are no learning algorithms for these models (James, 2005). We refer the reader to

the technical report byJaeger(2004) for a detailed comparison of PSRs and OOMs.

2.4.3 Temporal-Difference Networks

The Temporal-Difference Network model ofSutton and Tanner(2005) is an important generaliza-

tion of PSRs. In a TD-Net, state is represented as a set of predictions about the future, like a PSR.

However, these predictions are explicitly allowed to depend on each other ina compositional, recur-

sive way. This suggests that temporal difference algorithms could be used to learn the predictions,

as opposed to the Monte-Carlo methods used by PSRs, and it is these algorithms which form the

basis of the model. The recursive nature of the tests and the use of temporaldifference methods in

learning naturally generalizes to include multi-step backups of learning by introducing eligibility

traces, to form TD(λ)-Nets (Tanner and Sutton, 2005a).

Although TD-Nets are theoretically attractive, they have not enjoyed the same rigorous analysis

which PSRs have. Little is known about their representational capacity or the optimality of their

state update mechanism. For example, published work on TD-Nets uses a general nonlinear state

update mechanism related to a single-layer neural network, although this is not a fundamental com-

ponent of the model. Other state updates could be used, and it is not clear how the state update

relates to, say, the statistically optimal update dictated by Bayes law. PSRs, in contrast, explicitly

begin with Bayes law as the foundation of their state update mechanism.

Empirically, TD-Nets have enjoyed about the same level of successes andfailures as PSRs, with

applications of the model being limited to rather small domains. While there has beenless work

done on TD-Nets in general, the development of learning algorithms for TD-Nets and PSRs have

in some ways paralleled each other. For example,Tanner and Sutton(2005b) proposed to include

some history in the state representation to aid learning in a manner that is reminiscent of the memory

PSRs proposed byJames and Singh(2005a), with improved learning results.

2.5 Conclusions
This chapter has introduced several of the concepts that will be essential to the development of our

algorithms in later chapters. The themes sketched here – tests, predictions ofthe future, distribu-
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tions over the future, and theoretical mathematical objects describing dynamical systems – will be

repeated and refined throughout the thesis.

We have introduced the core problem addressed by this thesis, which is learning dynamical system

models from data. We have briefly reviewed several models of dynamical systems with discrete ob-

servations, discussing PSRs in detail, and showing how they use predictively defined representations

of state (specifically, the idea of tests) to model dynamical systems with discreteobservations and

actions. On the theoretical side, we have briefly discussed the idea of the system dynamics matrix,

which will be a key inspiration to some of our later models. We have also surveyed some theoretical

results demonstrating that the idea of capturing state with predictions about thefuture is fundamen-

tally sound: PSRs are just as compact, and accurate as POMDPs, and strictly more expressive, and

it is possible to use many different planning algorithms to control them optimally. We have also

discussed the numerous learning algorithms for PSRs. Because the state and the model parameters

are defined in terms of observable quantities, the learning algorithms are straightforward, and many

of them use the system dynamics matrix in one form or another as the basis forlearning.

We will next turn our attention to dynamical systems with continuous observations.
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Chapter 3

Continuous PSRs

The models and learning algorithms of the previous chapter were all limited to discrete observations.

This chapter presents the “Continuous PSR” model, which extends PSRs to the case of continuous

observations. Chronologically, the Continuous PSR model was developedafter the PLG family of

algorithms (discussed in Chapters4 - 6), combining ideas from PSRs and the KPLG and MPLG

models. However, for the purposes of this thesis, we explain it now, because several of the ideas

presented here facilitate a clean explanation of subsequent algorithms. Portions of this chapter were

published inWingate and Singh(2007b).

While this chapter presents the specific Continuous PSR model and learning algorithm, some of the

fundamental questions it grapples with and the definitions it makes impact the entire thesis. For

example, the question of sufficiency is immediately raised. How can we ensurethat our state is

sufficient for history? The theory of discrete PSRs uses the system dynamics matrix and derives

the notion of predictive state as a sufficient statistic via the rank of the matrix. With continuous

observations and actions, such a matrix and its rank no longer exist. In this chapter, we show how to

define an analogous construct for the continuous case, called thesystem dynamics distributions, and

use information-theoretic notions to define a sufficient statistic and thus state.These distributions

describe the evolution of the system over time, exactly like the system dynamics matrix.

For the specific Continuous PSR model, we will also address the two basic problems of representing

state and updating state. We will represent state with the predictions of core tests, like discrete

PSRs, except that we replace all probabilities with densities. How do we finda good representation

of state? We will cast this as an optimization problem: we will select a class of staterepresentations,

which we will parameterize, and we will frame the problem of finding a good state representation

as a search problem over the parameter space, using tools from information theory to define an

objective function. How do we update state? We tackle this by estimating transitiondistributions.

Our entire algorithm will rely on estimating the system dynamics distributions from data.

These conceptual extensions require companion algorithmic extensions. We use four key ideas:

first, to estimate the system dynamics distributions, we use kernel density estimation. Second, to

measure sufficiency, we use a generalized form of mutual information based on quadratic Renyi en-

tropy (Renyi, 1976). Third, to discover sufficient statistics, we use random sampling combinedwith
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entropy optimization. Fourth, we show how Nystrom approximations and homotopy optimization

yield an efficient implementation. The final combination of ideas has several appealing properties,

one of which is a nice mathematical synergy among the elements.

We conclude with experiments showing that Continuous PSRs can be used to model agents in dy-

namical systems. We demonstrate the ideas on two example problems, one of which is a partially

observable dynamical world consisting of an autonomous mobile robot. The agent has realistic

perceptual and action models: features of camera images are observations, no a priori information

about the effect of actions is given, and no automatic state is given.

3.1 Moving to Continuous PSRs
We begin by comparing key ideas in discrete PSRs and Continuous PSRs. The first problem is that

when moving to continuous states and actions, it is no longer possible to orderall possible histories

and tests, simply because both observations and actions are real-valued.This means that we cannot

define the system dynamics matrix, and hence we cannot define sufficiency in terms of its rank.

Here, we outline our alternative. The reader may wish to compare these definitions with their PSR

counterparts in Section2.3.

Histories and tests: These are defined in exactly the same way as for discrete PSRs, except that

both actions and observations may be continuous and vector-valued. If observations are vectors in

R3 and actions are vectors inR2, for example, then a length three history is a vector inR15.

The continuous system dynamics vector:We define this somewhat differently than the discrete

system dynamics vector: each entry represents one timestep, and so then’th entry containsp(Fn|∅),

which is the full distribution representing densities of tests of lengthn, measured from the null

history (here,Fn is a mnemonic for “n-step future”). Like the system dynamics vector defined in

Section2.3, this vector is a complete description of a dynamical system.

The system dynamics distributions: The relationship between the discrete system dynamics vec-

tor and the discrete system dynamics matrix is analogous to the relationship between the continuous

system dynamics vector and the system dynamics distributions, except that since all possible histo-

ries and tests are no longer enumerable, we instead work with all possible combinations of history

length and future length.

The system dynamics distributions are defined by conditioning the continuoussystem dynamics

vector on histories of increasing length. There is one distribution for eachcombination of a history

length and a future length. We say thatp(Fn|hm) = p(Fn, hm)/p(hm) is the density of a length

n future from a lengthm history. These distributions play the same role as the system dynamics

matrix: they give the density of any given future from any given history.We will often drop the

superscriptsn andm when no ambiguity results.
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Figure 3.1: The system dynamics distributions. Each entry in the table represents a full distribution.
There is one distribution for every combination of future length and history length.

We arrange all of these distributions into a table, which we show graphically inFigure3.1. Like the

system dynamics matrix, there are an infinite number of rows and columns in this table. Also like

the system dynamics matrix, every dynamical system with continuous observations has a table of

system dynamics distributions, which is a complete characterization of the system.

State: We represent state with a vector of predictions, like a discrete PSR:

p(O1 = o1
1, O2 = o1

2, · · · |ht, A1 = a1
1, A2 = a1

2, · · ·).

The only difference is that we replace probabilities with densities. More specifically, given a history

ht, our state at timet is ann vector, thej’th component of which represents the prediction of a

specific test fromht: sj
t = p(tj |ht). This prediction is a single number representing the point

density of a particular future from the current history, and is not a full distribution. We collect all of

thetj ’s (which constitute our core tests) into the setT .

We have defined the form of our state representation, but how can we find the tests such that the

state representation is sufficient for history? Defining sufficiency is the subject of the next section,

and discovering a sufficient set of core tests is the subject of Section3.5.

3.2 Using Information-Theoretic Sufficiency
Because of the move to continuous observations, the idea of using the linearindependence of

columns in the system dynamics matrix to define sufficiency is no longer applicable. To find a

new concept of sufficiency, we turn to information theory. In discrete PSRs, the concept of linear

sufficiency lead to natural discovery and learning algorithms; likewise, our information-theoretic

view of sufficiency will aid us in discovering a good state representation.

Information theory was developed byShannon(1948) in his seminal work on channel coding the-

ory. Information theory is based on probability theory and statistics, and is intimately concerned
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with random variables, efficient coding of those random variables, andthe amount of information

that one random variable conveys about another. As an engineering tool, it has found application

in compression, cryptography, data communication over noisy channels, cybernetics, information

retrieval, statistics and even gambling.

The most basic quantity in information theory is entropy, which is a measure of the uncertainty

associated with a random variableX. Shannon entropy is defined as

H(X) = −
∑

x

p(x) log p(x),

where0 log 0 ≡ 0. This quantity is maximal whenX is maximally nondeterministic, which occurs

whenX is distributed uniformly. Conversely, whenX is deterministic, the entropy is minimal. The

natural generalization of entropy to the case of continuous densities is known as differential entropy,

and is defined in the obvious way.

The definition of entropy also generalizes to the case of multiple variables by summing over all

possible joint configurations:

H(X, Y ) = −
∑

x,y

p(x, y) log p(x, y),

and also generalizes to the case of conditional distributions in the natural way:

H(X|Y = y) = −
∑

x

p(x|y) log p(x|y).

For our purposes, we will be primarily interested inmutual information, denotedI(X; Y ), which

is the amount of information that can be obtained about one random variableby observing another.

Intuitively, mutual information quantifies the reduction in uncertainty aboutX whenY is known,

and vice-versa: ifI(X; Y ) is large, that means that knowingX will result in a Y that has low

entropy (that is, we know what value it will take with high probability), and conversely, ifI(X; Y )

is zero, it means that knowingX does not reduce the uncertainty inY at all.

There are several equivalent definitions of mutual information, but forour purposes, we will prefer

the interpretation of information as a sum of entropies:

I(X; Y ) = H(X) − H(X|Y )

= H(Y ) − H(Y |X)

= H(X) + H(Y ) − H(X, Y )

= I(Y ; X).

Information is symmetrical, and is defined additively in terms of entropies. Additionally, if it is the

28



case thep(X|Y ) is a function ofY only throughf(Y ), thenI(X, Y ) = I(X, f(Y )).

To introduce the concept of information in a dynamical system, we will start bytreating history

and the future as random variables, whose joint distribution is described by the system dynamics

distributionp(F, H). The idea behind our definition of sufficiency and the consequent algorithms is

that there is a certain amount of information conveyed by history about the future. That is, history

(as a random variable) disambiguates the future (as a random variable) toa certain extent, in exactly

the same any two non-dynamical random variables may convey information about each other.

This dynamical information has been called predictive information (Bialek et al., 2001), excess en-

tropy, effective measure complexity, stored information, and so on (Shalizi and Crutchfield, 2001).

Bialek also discusses theoretical characterizations of the limiting possibilities ofany possible state

representation in any dynamical system as a function of this predictive information, and showed

that a consequence of the definition is a natural measure of the dimension ofthe system. He also

demonstrates how predictive information can be used as a measure of the stochastic complexity of

the system, and provides interesting results on the relationship between information between the

past and the future as well as information between the future and the past. However, his work is

highly theoretical, and does not translate into models or learning algorithms. Based on these ideas,

Shalizi and Shalizi(2004) defined a learning algorithm for dynamical systems which measures the

information between history and the future, and attempts to find a state representation that conveys

the same information.

We will adopt a similar approach. We have defined state as a sufficient statistic for history, and in

fact, we can think of state as afunctionof history: given a particular historyhi and a dynamical

model, there is some functionf which summarizes that history into a state:

si = f(hi).

It may be unusual to think off as operating on an entire history; in most models, it may be more

natural to think off as a composition of a simpler functiong which operates on single action and

observation and a previous state:

si = f(hi) = g(atot, g(at−1ot−1, g(· · · , g(a1o1, s0)))).

However, we will only refer to the functionf . Notice that this function encapsulates the entire

model, including the state representation and any dynamical parameters.

It is well-known in information theory that no function of a random variable can increase the infor-

mation between that variable and another variable. This is known as thedata processing inequality,

which states that

I(X; Y ) ≥ I(X; f(Y ))
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with equality if and only if f(Y ) is sufficient for Y (Kullback, 1968; Cover and Thomas, 1991).

It is this fact that we will use as the basis for our measure of sufficiency,which we now define.

Sufficient statistics: We will say a functionf – which encapsulates a choice of state representation

and state update mechanism – captures state if

I(Fn; Hm) = I(Fn; S = f(Hm))

for all n, m. If f can be found such that equality is achieved, the state resulting fromf(ht) has

summarized all of the information about the past which is relevant for predicting the future. This

also gives a natural definition of approximate state: an approximate state representation is one for

whichI(Fn; Hm) > I(Fn; S = f(Hm)) for somen, m. In order words, state has failed to capture

all of the information in history relevant to disambiguating the future.

There are many choices which could be made for the mappingf – state could be summarized as

either latent variables or predictively defined variables. The above definition of sufficiency applies

to any state representation.

3.3 Measuring Information
How can we measure information between history and the future, or betweenstate and the future?

In Section3.5we will learn a model of a dynamical system by maximizing the mutual information

between stateS and the futureF . Recall that information can be expressed asI(F ; S) = H(F ) +

H(S)−H(F, S), which is a sum of entropies. When Shannon’s entropy measure is used tocompute

information, the result is known as Shannon information. Unfortunately, it istoo difficult to optimize

Shannon information directly – computing the needed entropies relies on knowing the underlying

densities, and for many densities, we cannot compute Shannon’s entropyeasily.

However,Kapur(1994) has argued that if the aim is not to compute an exact value of information,

but rather to extremize information, Shannon information does not need to beused. A generalized

measure of information can be optimized instead, and if this generalized measure has the same

maxima and minima as Shannon information, the same results will be obtained. Ideally, it will also

have more favorable properties (for example, it might be computationally cheaper).

Shannon information can be considered a divergence betweenp(X, Y ) andp(X)p(Y ), or it can be

considered a sum of individual entropies, minus a joint entropy. Thus, two different kinds of gen-

eralized measures have been proposed, based on each interpretation.Generalized divergences have

been the most popular.Kapur (1994) presents a number of possibilities; other proposals include a

divergence measure based on the Cauchy-Schwarz inequality (Principe et al., 1999); a divergence

based on the triangle inequality (Principe et al., 1999); a measure called “quadratic mutual infor-

mation” (Torkkola, 2003); and methods based on generalized KL information gain (Borland et al.,

1998). He et al.(2003) proposed the Jensen-Renyi divergence. Among generalized entropies, the
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Figure 3.2: A comparison of Shannon and Renyi entropies. The horizontal axis is p(X) for a binary
random variable, and the vertical axis is the corresponding entropy forboth measures.

most well-known is quadratic Renyi entropy (Renyi, 1976). Hild et al. (2001) proposed to use a

sum of Renyi entropies, minus a joint Renyi entropy. More recently, authors have begun to consider

measures based on Tsallis entropy (also known as Havrda-Chervat entropy;Borland et al., 1998).

Finding an easily optimizable, generalized information measure while making few assumptions

about the density is a problem that has been dealt with by the entropy optimization community. The

solution that has emerged in the literature has been to 1) use a generalized information measure

based on generalized entropies, and 2) use a kernel density estimate with aGaussian kernel to

model the underlying densities (Principe et al., 1999; Torkkola, 2003; Hild et al., 2001). In our later

learning algorithm, this is why we will choose to use Gaussian kernel density estimation.

A popular generalized entropy is Renyi’s entropy (Renyi, 1976), which is defined as:

HRα(X) =
1

α − 1
log

∫
p(X)αdX

This measure generalizes Shannon’s entropy, because in the limit asα approaches 1, Shannon’s

entropy is recovered. The choice ofα = 2 yields quadratic Renyi entropy:

HR2
(X) = − log

∫
p(X)2dX (3.1)

which we will write asH(X) when it is clear from context that Renyi entropy is intended.

Quadratic Renyi entropy has the same maxima and minima as Shannon entropy (as shown graph-

ically in Figure3.2), but importantly for our purposes, it has favorable computational properties.

In conjunction with kernel density estimation and a Gaussian kernel, Eq.3.1 can be evaluated in

closed form, as explained later.

Several authors have used the idea of information maximization to solve machinelearning problems;
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collectively, this field has become known as “entropy optimization.” Examples include image edge

detection (Hamza, 2006), classification (Torkkola, 2003), speech processing (Schraudolph, 2004),

image registration (He et al., 2003), and unsupervised learning (Principe et al., 1999). While other

authors have explicitly tried to maximize information about the future while building models of

dynamical systems (Shalizi and Shalizi, 2004), we are unaware of others who have used techniques

from entropy optimization to do so.

3.4 Estimating the System Dynamics Distributions
In the case of PSRs, many learning algorithms revolve around the system dynamics matrix and its

empirical estimate. Similarly, the learning algorithm we will present in Section3.5will revolve the

system dynamics distributions and their empirical estimates. In this section, we describe how we

estimate them, and how we collect the necessary data.

3.4.1 Collecting Data with the Suffix-History Method

To estimate the system dynamics distributions, we need samples from them. Wheredoes the data

come from? We will assume that we have been given one long trajectory of data, consisting ofT

actions and observationsa1o1, a2o2, · · · , aT oT .

To estimatep(F, H), we need samples of the joint distributions of history and future. We generate

these samples using the suffix-history algorithm (Wolfe et al., 2005). This process will be used

throughout the thesis, so we explain it in detail. The intuition is simple: given a long trajectory of

actions and observationsa1o1, · · · , aT oT , we slice the trajectory into all possible combinations of

history and future. For example, a length four trajectory is sliced into the following samples:

h0 = {} ; f1 = a1o1

h0 = {} ; f1 = a2o2

· · ·

h0 = {} ; f2 = a1o1a2o2

h0 = {} ; f2 = a2o2a3o3

· · ·

h0 = {} ; f4 = a1o1a2o2a3o3a4o4

· · ·

h1 = a1o1 ; f1 = a2o2

h1 = a2o2 ; f1 = a3o3

· · ·

h1 = a1o1 ; f2 = a2o2a3o3

h1 = a2o2 ; f2 = a3o3a4o4

· · ·

h4 = a1o1a2o2a3o3 ; f1 = a4o4.
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This results in samples from the distributionsp(F 1, H0), p(F 2, H0), p(F 3, H0), p(F 4, H0),

p(F 1, H1), p(F 2, H1), p(F 3, H1), p(F 1, H2), p(F 2, H2), andp(F 1, H3). Of course, these sam-

ples are not independent of each other.

We assume that the system is stationary and ergodic, and that the behavior policy used to generate

the samples explores sufficiently to cover the entire state space.

3.4.2 Kernel Density Estimation

We assume that we are given some samples fromp(F, H) andp(F, S), and that we wish to infer the

approximate distributions. This is a density estimation problem, which is well studied(Hastie et al.,

2001). We choose to use kernel density estimation with a Gaussian kernel, which isa choice that is

motivated by mathematical convenience: it will enable us to compute test predictions efficiently, as

well as derive closed-form, differentiable, and efficiently approximableexpressions for information

and its derivatives.

Given a set of samplesx1, · · · , xn ∈ Rd of the random variableX, our estimate ofp(X) is

p(X = x) =
1

n

n∑

j=1

K(x, xj ; σj)

with a Gaussian kernel:

K(x, xj ; σj) = G(x − xj ; σj)

= 1/(
√

(2πσj)d) exp
{
−(x − xj)

⊤(x − xj)/2σj

}

where we have assumed the use of a spherical covariance matrixσjI, and whered is the dimension

of the variableX. Because we are using spherical Gaussians, we can write similar expressions for

joint densities ofp(X, Y ), assuming we are given joint samples(xj , yj):

p(x, y) =
1

n

n∑

j=1

G(x − xj ; σ
X
j )G(y − yj ; σ

Y
j ).

We will estimate every needed distribution using this technique.

3.5 Learning Models of Continuous PSRs
We are now prepared to discuss our learning algorithm for Continuous PSRs. Our goal is to learn

a Continuous PSR directly from observed sequences of actions and observations. Like discrete

PSRs, the two key problems are the discovery problem (finding a good staterepresentation) and the

learning problem (learning how to update state). We discuss the discoveryproblem in Section3.5.1

and learning how to maintain state in Section3.5.3. We assume that we have been givenN samples

from the system dynamics distributions as discussed in Section3.4, which we denote(hi, fi).
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3.5.1 Discovering Core Tests

In the Continuous PSR model, selecting a state representation is equivalent topicking a set of core

tests, so we now address core test discovery. There are two elements to discovery: determining how

many tests are needed, and determining which actions and observations should comprise the tests. It

is possible for discovery algorithms to be concerned with discovering aminimalset of statistics. We

do not address the issue of minimality; rather, we supply many more tests than needed, and focus

on discovering the parameters of the tests.

We will frame discovery as an optimization problem by defining a search space and an objective

function. We will additionally show that we can compute the gradients of the objective function,

which means that a host of gradient-based optimization methods become available to help search

for a good state representation.

• The search space: In order to define the state representation for a Continuous PSR, a set

of core tests must be specified. Each core test is defined by the sequence of actions and

observations in it. To be more specific, let us expand the definition of the prediction vector:

p(T |ht) =




p(O1 = o1
1, O2 = o1

2, · · · |ht, A1 = a1
1, A2 = a1

2, · · ·)

p(O1 = o2
1, O2 = o2

2, · · · |ht, A1 = a2
1, A2 = a2

2, · · ·)

· · ·

p(O1 = on
1 , O2 = on

2 , · · · |ht, A1 = an
1 , A2 = an

2 , · · ·)




(not every test need to be at least length two, as shown in this example; this was only done to

clarify the pattern). Our goal is to find the actions and observations which comprise each test.

We will treat the actions and observations in each test as parameters. The first test, for exam-

ple, is defined asp(O1 = o1
1, O2 = o1

2, · · · |ht, A1 = a1
1, A2 = a1

2, · · ·), so the parameters of

this test area1
1, o1

1, etc. Each testt therefore haslength(t)(dim(O) + dim(A)) parameters.

We will collect all of the actions and observations which must be specified for all of our core

tests into the vectorθ. This means that changing entries inθ is equivalent to specifying a

different set of core tests, and therefore a different state representation. We do not constrain

the values ofθ in any way; in particular, we allow tests to refer to any possible future, whether

or not it is possible under the true dynamics.

• The objective function: To define an objective function, we return to the information

theoretic ideas of Section3.2. Section3.2 introduced the idea that we can treat state as a

function of history, and that we can measure information between state and the future, as

I(F ; S = f(H)).

We pointed out that the functionf encapsulates both the choice of state representation as well

as any dynamical parameters needed. In our case, the state representation is governed by the

vectorθ – any setting ofθ represents a choice of state representation. We therefore makef ’s
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dependence onθ explicit: state is a function of history and a specific state representation, as

si = f(hi; θ). The dependence of information on a state representation can be made similarly

explicit: I(F ; S = f(H; θ)). We will use this function as our objective function: our goal is

to maximize the information content of our state representation by tuning the entries in the

parameter vectorθ.

To summarize our strategy for solving the discovery problem: we will treat theactions and obser-

vations comprising our core tests as a vector of parametersθ, and we will attempt to find the best

setting of those parameters by maximizingI(F ; S = f(H; θ)). To solve the discovery problem,

then, we need three things:

1. We need to be able to compute the functionsi = f(hi; θ). That is, given a particular history

hi and a candidate state representationθ, we must be able to compute the predictions of the

tests defined byθ. This is also a learning problem, but because our state representation is

defined in terms of densities, it reduces to a density estimation problem. Our strategy will be

to explicitly estimate the system dynamics distributions to compute these predictions.

2. We need to be able to compute (or estimate)I(F ; S = f(H; θ)) for any choice ofθ. Since

I(F ; S) = H(F ) + H(S) − H(F, S), this implies that we need entropy estimates of the

distributions of the random variablesF andS, as well as their joint distribution. Our strategy

will be to generate joint samples fromp(F, S) by transforming our training samples(fi, hi).

For eachhi, we can compute a state samplesi = f(hi; θ), which can then be paired with

fi. Thus,(fi, si) become samples from the joint distributionp(F, S), which we can estimate

with kernel density estimation.

3. We need to be able to search the space of possible representations (that is, settings ofθ) to

find the maximal value of information. Our approach will be to compute the gradient of

information with respect to the parametersθ, and perform gradient ascent:

θ = θ + η
∂I

∂θ
= θ + η

∑

i

∂I

∂si

∂si

∂θ
(3.2)

whereη is a learning rate. In AppendixA, we show how to compute these derivatives.

At this point, we wish to highlight the fact that our choices of density estimate and information

measure have worked nicely together. By choosing to use kernel densityestimation with a Gaussian

kernel and quadratic Renyi entropy, we were able to compute closed-form expressions for informa-

tion. Furthermore, we were able to compute the derivatives of information simply.

This completes our approach to discovery. The algorithm is summarized in Figure3.3.
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Algorithm DISCOVER-CORE-TESTS

Input: samples fromp(F, H) as(fi, hi)

Initialize

• Estimatep(F, H)

• Select an initial set of core testsθ

Repeat

• Given a set of core testsθ

• For each(fi, hi), computesi = f(hi; θ)

• Using samples(si), estimatep(S)

• Using paired samples(fi, si), estimatep(F, S)

• MeasureI(F, S)

• Compute gradient∂I/∂θ by computing gradients∂I/∂si and∂si/∂θ.

• Improve representation with steepest ascent:θ = θ + η ∂I
∂θ

Until ( I(F, S) is maximized )

Figure 3.3: An algorithm for discovering core tests in Continuous PSRs. The algorithm maximizes
the information between state and the future.
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Figure 3.4: Example information landscape. A toy data distribution (top left), theresulting infor-
mation landscape as a function of test value (top right) and the trajectory taken by the gradient
optimizer (bottom).

3.5.2 Example: A Toy Data Set

Here we consider a toy data set to illustrate the concepts of information and gradients, and to clarify

exactly what the parameters are that we are trying to find. Consider one particular system dynamics

distributionp(F 1, H2) from an unspecified dynamical system. The system is uncontrolled, and ob-

servations are one-dimensional, so the distribution is three-dimensional, with two of the dimensions

corresponding to “history” dimensions and one dimension correspondingto a “future” dimension.

Samples from the distribution are shown in the top left panel of Figure3.4(we are only pretending

that this data comes from a dynamical system; in reality, the data is from six Gaussian clusters in

R3).

Suppose we decide to use two tests to summarize history. We will denote the prediction of test 1 as

p(F = l|H), and the prediction of test 2 asp(F = k|H). Thus, our state is two-dimensional, and

there are two parameters:l andk. Given particular values forl andk, we can compute the mutual

information betweenF andS.

We wish to find the two best parameters to maximizeI(F |h; S = f(h)). The top right panel of

Figure3.4 shows mutual information between state and the future as a function of the parameters.

This information landscape highlights a few points of interest: values forl andk which are very far

away from the high-density areas of the data (say,l = −1, k = −1) have low information content.

It also shows that whenl andk have the same value, no new information is added – in other words,

the predictions are redundant.
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The bottom element of Figure3.4 shows the results of the gradient optimization starting the tests

at [l = −1, k = −1.4], and ending at the star (it does not climb quite as one might expect because

of the use of homotopy optimization, as discussed later). The gradient optimizer indeed moves the

tests from regions of low information to regions of high information.

3.5.3 Updating State

We now address the question of learning how to update state. We assume thatwe have some statest,

which is defined as the the predictions of a set of core testsp(T |ht). Assume that we have received

a new action and observation, and that we must update state to computep(T |htao).

The natural way to do this is with Bayesian inversion. By direct analogy to Eq. 2.1, we can perform

the state update by updating each individual test:

p(tj |htao) =
p(aotj |ht)

p(ao|ht)
,

where, like the discrete PSR, the numerator represents the one-step extensions of the core tests and

the denominator represents the one-step tests. From any given history, we could compute these

densities estimates of the system dynamics distributions. The only problem is thatwe will only

have estimates of a finite number of distributions, and we need a state update mechanism which

works for arbitrarily long amounts of time. We therefore prefer to find a recursive solution: we wish

to update state in terms of previous state. Since state is sufficient for history,we can equally well

model

p(tj |htao) = p(tj |st, ao)

=
p(aotj |st)

p(ao|st)

=
p(st, aotj)

p(st, ao)
,

wherest is the state corresponding to historyht. This bears a strong resemblance to the discrete PSR

state update. Like discrete PSRs, we need to compute one-step tests, except that we model these

jointly with state asp(st, ao). Similarly, we need to compute the one-step extensions of the core

tests, which we also model jointly with the state, inp(st, aotj). To compute the needed densities,

we require estimates of bothp(st, F
1) andp(st, F

n+1), wheren is the length of the longest core

test.

Fortunately, we already have all of the needed information: in our discovery algorithm, we assumed

we were given samples(fi, hi), and that we computedsi = f(hi; θ) for each sample. This resulted

in joint samples of(fi, si), which we used to compute information. Here we see a pleasing effi-

ciency: the same estimate can be used to update state by explicitly estimatingp(F, S). This is a

consequence of the grounded nature of the state representation. Our discovery algorithm in Sec-
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Figure 3.5: The autonomous robot domain. Arrows on the map correspondto viewpoints.

tion 3.5.1and our method for learning how to update state presented here constitute thecomplete

learning algorithm.

3.6 Experiments and Results
We have introduced several new ideas and made many design choices as part of the Continuous PSR

algorithm. Here, we present some experiments designed to explore the decisions we have made. We

tested on two problems: a bouncing ball, and a simulated autonomous robot.

The Bouncing Ball. The first domain is an uncontrolled, nonlinear, two-dimensional dynamical

system consisting of a ball bouncing. The ball bounces vertically, with a damped restitution when it

strikes the floor. True hidden state is the position and velocity of the ball; only position is observed.

To model this system, we made an assumption: we use a suffix-history with a history of length 3

and a future of length 3 (we also model the one-step extended distribution witha history of length 3

and a future of length 4 for the Bayesian inversion state update). This is a choice based on intuition

and experimentation (in general, more sophisticated methods of selecting whichdistributions to use

are needed). Different experiments used different numbers of tests,as explained later.

We trained on 2,000 data points. We initialized the state of the system to a random position and

velocity, and ran the system for several timesteps; we then sliced the resulting trajectory into samples

using suffix-history.

The Autonomous Robot Domain. The second domain is more challenging: a simulated au-

tonomous mobile robot in a 2D maze. The domain is controlled, nonlinear, and partially observable;
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no a priori knowledge about the domain is given to the agent. The robot has two continuous actions

(the amount by which to rotate and amount by which to move forward/backward), and continuous

state coordinates (positionx, y and orientationθ). The robot is located in a maze with obstacles and

brightly colored walls. The observation is generated as follows: the agent’s camera initially samples

a 64x64 full color image, but the agent extracts a single feature from the image: the dominant color

in the center of the image (done by convolving with a Gaussian). Observations are therefore three

dimensional (consisting of RGB color values). With full camera images, about 80% of the states can

be disambiguated through an observation, but with the reduction to a single color, the observability

is severely reduced. Figure3.5 shows representative camera images, as well as the map used. All

actions are deterministic.

The training data is a single long trajectory of actions and observations (100,000 samples, generated

with a movement policy that was a smoothed version of random exploration). Again, we assumed

that length 3 histories and length 3 futures were sufficient. In this case, both history and future are

15-dimensional vectors (3 steps of history x (2 action dimensions + 3 observation dimensions)).

The gradient optimizer used a subset of 10,000 samples; testing used the full 100,000 (either size

data set is feasible with [andonlywith] the Nystrom approximations discussed in Section3.6.2).

Error measure. We evaluate based on mean-squared error of the one-step predictions.That is, at

each timestep, the agent is asked to predict the expected next observation. The true observation is

given; there is some error, which we square. The mean is taken over the length of the test sequence.

The absolute value of the MSE is not important; but rather the difference before and after application

of the gradient optimizer.

Implementation. We used the optimizations discussed in Section3.6.2. We used a Nystrom-based

gradient optimizer with 100 landmarks. We used the same homotopy schedule for both problems

(λ = [500, 200, 100, 60, 20, 5, 1]), and set stepsizes such that the norm of the gradient vector was

between0.5 and0.01 (depending onλ). All samples used the same covariances; this simplifies the

math further.

3.6.1 Results

In this chapter, we have made an implicit assumption: that if we could somehow maximize infor-

mation, we would have a better state representation, and that that representation would allow us to

make better models of the world. We first test that hypothesis directly.

Is there is a correlation between higher information (between state and the future) and lower MSE

of one-step predictions? To explore this, we sampled 1,000 random state representations in the ball

domain. Each state representation consists of two three-step tests. Since there are no actions in this

domain, each test requires three parameters to describe it, resulting in a totalof six parameters. For

each representation, we built a model by estimating the distributions needed to compute information

and update state. We then used the model to make one-step predictions, and measured the resulting
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Figure 3.6: Continuous PSR empirical results. Shown is information (horizontal axis) vs. one-
step MSEs (vertical axis) in the bouncing ball domain. Each point is a randomly sampled state
representation.

MSE. We also measured the information content of states with the future, againusing our estimates

of the system dynamics distributions.

Figure3.6 plots the resulting MSEs versus information (and is fit with a 3rd degree polynomial).

There is an obvious correlation: as information increases, MSE decreases. There is some variance

in the MSEs: with an information content of 0.8, for example, the MSE could be as low as 0.05

or as high as 0.1. This result suggests that the idea of using Renyi entropy to solve the discovery

problem is sound.

We next ask: does the information gradient optimizer work? We explored thisquestion for both

domains. For each domain, we fixed the number of core tests ton. We randomly sampled a set

of core tests by samplingn random sequences of actions and observations from the training data

(this effectively results in a randomθ). We then built a model, and computed the MSE of usingθ

to generate states. We then optimized the tests with the gradient method, used the improved tests to

generate states, and again computed the MSE. This was done for different numbers of core tests.

Figure3.7 shows results for the ball domain, while Figure3.8 shows results for the robot domain.

The number of tests used is the horizontal axis, while MSE of random and optimized representations

is shown on the vertical axis. For a given number of core tests, two box-and-whisker plot are drawn.

The one on the left represents the distribution (mean, 1st and 3rd quartilesas well as maximum

and minimum) of MSEs for the random representations. The one on the right represents the same

information for the optimized representations.

The results are very encouraging. Both figures demonstrate the same behavior: not only does the

optimizer consistently find tests which generate lower MSEs, it also reduces variance in the MSE.

Consider Figure3.7, for 4 core tests. The mean MSE of random representations is about 0.1,and the

minimum ever found is about 0.07. In contrast, the mean MSE for the optimized tests is about 0.06,

which is lower than any random representation. The optimized tests also showvery little variance.
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Figure3.8 suggests another conclusion as well, which is that using a large number of randomly

sampled tests often results in a reasonable model. Optimizing tests always helps,but not as much as

adding more tests. For example, two optimized tests performs consistently worsethan 15 randomly

sampled tests. It is unclear if this represents a general principle or not: onthe one hand, it becomes

more likely that a larger number of randomly sampled tests has the “right” tests inside of it. On the

other hand, this also increases the dimension of the state; since so many of our estimates are built

around Gaussian kernel density estimation, and Gaussians are known to be poor density estimates

in high-dimensional spaces, this may adversely affect the performance of the algorithm.

The extremely low variance in the MSE associated with the optimized representations is because

the homotopy optimizer was able to consistently locate almost the same points, regardless of initial

conditions. In the ball domain, the variance is particularly high for the randomly sampled tests.

Sometimes, a bad set of tests can result in a catastrophic run of the system, resulting in very high

MSE; the optimized tests never showed this behavior. Figure3.9 illustrates this behavior. The

random tests, with few exceptions, never performed as well as the optimizedtests. It is possible that

this is because the optimized tests are not constrained to lie on the manifold of observed trajectories,

but more research is needed to investigate that hypothesis.

Just how good are the reported MSEs? Figure3.10qualitatively answers this question in the robot

domain by showing the agent’s predictions before and after the application of the gradient opti-

mizer. We see that before optimization the predictions made by the model are flat, and bear little

resemblance to the actual observations. After optimization, there is a marked improvement, with

predictions qualitatively following the observations, although there is still room for improvement.

3.6.2 Practical Considerations

We found that learning from large datasets was impossible without the additionof additional com-

putational tools. We found the following techniques indispensable.

Homotopy optimization. As with all gradient methods, ours is guaranteed to only find a local

maximum. However, the local maximum can be improved by “smoothing” the information land-

scape, and finding a local optimum of the smoothed landscape, and then gradually unsmoothing

the landscape while continuing to optimize. This is known as homotopy optimization (or defor-

mation optimization) because it uses a homotopy, which is a continuous transformation of an easy

optimization problem into a hard one.

We accomplish this by smoothing test predictions: instead of computingp(T |h) =
∑

G(T −

fk|h, σT ), we computep(T |h) =
∑

G(T − fk|h, λσT ). Usingλ to scale the variance effectively

makes test predictions look more similar, which has the side effect of smoothingthe information

landscape. By gradually reducingλ while taking gradient steps, a much better optimum is achieved.

An example of the resulting information landscapes is shown in Figure3.11.
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Figure 3.7: Improving tests on the ball domain. The vertical axis shows MSE of one-step predic-
tions. The horizontal axis shows the number of tests used in the state representation. For each
number of tests, two bars are drawn: the one on the left is a box-and-whiskers plot representing the
distribution of randomly chosen test parameters. The right bar shows the distribution of the corre-
sponding optimized parameters. The optimized representations generate models with lower MSE,
and the representations do not have as much variance as the random ones.
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Figure 3.8: Improving tests on the robot domain. The interpretation is the same as in Figure3.7.
There is almost no variance in the optimized representations, which is a consequence of the homo-
topy optimizer.
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Figure 3.9: A catastrophic run with a Continuous PSR. The top panel showsa catastrophic run
resulting from using random tests to build a model. The state reaches a meta-stable state in which
incorrect predictions are made. The bottom panel shows the corresponding optimized tests, which
avoid catastrophe.
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Figure 3.10: Qualitative results in the autonomous robot domain. Shown are the improvements
resulting from the application of the gradient optimizer. Each graph compares one-step predictions
(shown in red dashed lines) to true values (shown in blue solid lines). The three rows represent the
RGB channels of the observation. The left column shows predictions usingthe best model obtained
with the randomly chosen tests. The right column shows predictions made with thebest model
obtained after application of the gradient optimizer. The predictions in the right column match
reality much more closely (see, in particular, the green channel). All figuresuse the same number
of tests.
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Nystrom approximations. The complexity of the gradient computations is quadratic in the number

of data points. AppendixB discusses how we can combine Nystrom approximations with our

information measure to obtain and computationally tractable gradient estimates.

Stochastic gradient descent. We used the chain rule to write the information gradient (Eq.3.2)

in terms of per-sample gradients. Instead of summing over alli, however, we can subsample, or

perhaps collect samples of the gradient on-line. This leads to a stochastic version of the descent

procedure. Although this is a viable method (especially for on-line use), experiments showed that

the Nystrom method was more accurate and computationally cheaper. We believe this is because

the Nystrom approximation uses some information from all of the samples in an approximate way,

whereas the stochastic gradient descent uses all of the information of only some of the samples.

3.7 Conclusions and Future Work
We have extended PSRs to the continuous case with two core ideas: we havereplaced the system

dynamics matrix with the system dynamics distributions, and we have replaced theidea of using

rank analysis to find sufficient statistics with ideas from information theory. We have argued that

mutual information can help quantify the sufficiency of a candidate state representation; because

information can be optimized, the representation can be improved.

We have also made several contributions on the algorithmic side, where thereis a nice synergy

between the elements: we started by using kernel density estimation to estimate the system dynam-

ics distributions. Not only is it a nonparametric estimator, but it leads to closed-form expressions

for mutual information. In addition, we can compute gradients of information withrespect to test

parameters in closed-form, which allows us to help solve the discovery problem. Both measuring

information and computing gradients can be approximated efficiently; the resulting algorithms can

handle tens or hundreds of thousands of data points. Empirically, our ideas seem viable. The model

makes reasonable one-step predictions, and there appears to be a correlation between mutual in-

formation and MSE which our optimization procedure exploits; experimentally, itreduces both the

MSE of one-step predictions and the variance of the MSE.

Estimating the system dynamics distributions is one of the central problems in the Continuous PSR

model. For the rest of thesis, we will no longer represent state as a vectorof densities. Instead,

subsequent chapters will focus instead on the estimation of these distributions, and will go one step

further: our next models will select parametric forms of the system dynamicsdistributions, and will

use the parameters of those distributions as state.
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Figure 3.11: Smoothing information landscapes for homotopy optimization. Shown are information
landscape as a function of the smoothing parameterλ (increasing from top to bottom, left to right).
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Chapter 4

The Predictive Linear-Gaussian Model

The previous chapter introduced the system dynamics distributions, which formed an important part

of learning a good model. In this chapter, we introduce the Predictive Linear-Gaussian (or PLG)

model. The PLG is the predictively defined equivalent of a linear dynamicalsystem, and also has

close connections to the system dynamics distributions: the PLG selects parametric forms for the

system dynamics distributions, and represents state as the parameters of those distributions. The

rest of this thesis builds upon the PLG model in many ways, so we explain it in detail here. The

PLG was introduced byRudary et al.(2005).

PSRs (both continuous and discrete) represent state as statistics about the future. The original PSR

models and the Continuous PSR model of Chapter3 used the prediction of tests as the statistics of

interest. Here, we introduce the more general notion of using parameters that model the distribution

of lengthn futures as the statistics of interest. To clarify this, consider an agent interacting with

the system. It observes a historyht of observationso1, · · · , ot. Given any history, there is some

distribution over the nextn observations:

p(Ot+1...Ot+n|ht) ≡ p(Fn|ht)

(whereOt+i is the random variable representing an observationi steps in the future, andFn is a

mnemonic forfuture). This is one of the system dynamics distributions defined in Section3.1. We

emphasize that this distribution directly models observable quantities in the system.

Our central assumption is that we can select a parametric form forp(Fn|ht), and that its parameters

– which are obviously sufficient to predict the short-term future – are also sufficient to predict the

infinite future, and therefore constitute state. As the agent interacts with the system,p(Fn|ht)

changes becauseht changes; therefore the parameters and hence state change. As an example of

this, the Predictive Gaussian models discussed in this chapter assume thatp(Fn|ht) is a multivariate

Gaussian; state therefore becomes its mean and covariance. In the case of the PLG model nothing

is lost by defining state in terms of observable quantities:Rudary et al.(2005) showed the PLG is

formally equivalent to the latent-variable approach in linear dynamical systems. In fact, there are

some advantages to defining state in observable quantities: for example, because the parameters are

grounded, statistically consistent parameter estimators become available for PLGs.
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Figure 4.1: A standard graphical model of state-space systems. Latent states generate observations,
and determine successor states.

Selecting the form ofp(Fn|ht) and estimating its parameters to capture state is only half of the

problem. We must also model the dynamical component, which describes the way that the param-

eters vary over time (that is, how the parameters ofp(Fn|ht) andp(Fn|ht+1) are related). In this

chapter, we describe a method called “extend-and-condition,” which is a generalization of many

state update mechanisms in PSRs, and which will be used for all of the algorithmsthroughout the

thesis.

In this chapter, we will review the important concepts associated with linear dynamical systems,

Kalman filters, and the PLG. This will prepare us to discuss the nonlinear versions in Chapter5 and

Chapter6, which are my main contributions to this line of work.

4.1 Linear Dynamical Systems
In this section, we review a popular model of dynamical systems with continuous observations

called alinear dynamical system(LDS). In the PSR model of dynamical systems, state was captured

as a set of predictions about the future. A more traditional approach is to introduce a set of internal

state variables which can be used to capture state. These state variables are not typically observed

directly, and so something about them must be inferred from actual observations. In the LDS model,

we will infer a distribution over possible latent states that the system could be in, and it is the

parameters of this distribution that are the sufficient statistic for history.

A discrete time LDS is defined by a state update equation

xt+1 = Axt + η

wherext ∈ Rn is the state at timet, A ∈ Rn×n is a transition matrix andη ∼ N (0, Q) is mean-

zero Gaussian noise (whereQ ∈ ℜn×n). These models are very well understood, and can model

a surprising variety of phenomena. Given a statext, the distribution of future states can be easily

computed and will be a Gaussian variable.
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Often, we are not be able to observe the state directly. Many LDSs define acompanion observation

process, in which observations are linear functions of the latent state:

ot = Hxt + N (0, R),

whereH ∈ Rd×n andR ∈ R. There are generally no restrictions onH; in particular, it may

collapse ann-dimensional state into a lower-dimensional (or even scalar) observation.

Figure4.1 shows a graphical model which is defined for such state space systems. The state vari-

ablesXt are unobserved, and are represented by capital letters. The conditional independence

assertion made by this graph is that the distribution of the future is conditionally independent of the

past, given the current state.

In the case of such a partially observable process, several problems arise. Thefiltering problem

is posed as follows: given a state estimatext−1 (which can be a Gaussian random variable), and

an observationot, what is the optimal estimate of the statext? This question is fully answered

by the Kalman filter, which has been shown to satisfy several different optimality criteria. The

Kalman filter also permits easy computation of the distribution of future states and observations

(the prediction problem). Thesmoothingproblem is defined as estimating a sequence of states

simultaneously, given a sequence of observations.

In some cases, the parameters of the LDS are not known, and must be estimated from data. There

are two principal methods for accomplishing this. Expectation-maximization (EM)algorithms (see,

for exampleGhahramani and Hinton, 1996) guess at parameters and improve an estimated state

sequence, and then hold the estimated state sequence constant and improvethe parameters. This

method hill-climbs in the space of likelihood, but because of its iterative nature,it suffers from

several problems: it can get stuck in local maxima or minima, and it is somewhat slow. The other

class of algorithms are subspace identification algorithms (van Overschee and Moor, 1996), where

an SVD is performed directly on a block Hankel matrix to determine the state sequence and theH

matrix, and then theA matrix is determined through regression. The method is non-iterative and

numerically robust, and has proven to be a popular alternative to EM approaches.

4.2 The Kalman Filter
Throughout this thesis, we will reference the Kalman filter because of its close connections to the

Predictive Linear-Gaussian model and the Exponential Family PSR. In this section, we review the

basic definitions of the Kalman filter and provide pointers to related work.

The Kalman Filter (Kalman, 1960; Kalman and Bucy, 1961) was introduced by Rudolph Kalman in

1960 as an elegant solution to the filtering problem, in which the state of the system can be optimally

estimated in an efficient, recursive way. Byoptimal, we mean that the state estimates generated by

the Kalman filter are both unbiased and have minimum mean-squared error (although the Kalman
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filter is optimal by other standards as well). Byrecursive, we mean that the state at timet can be

computing using nothing but knowledge of the state at timet − 1 and the observationot.

State representation: State in a Kalman Filter is defined as the parameters of a Gaussian distribu-

tion over the latent variableX. At time t − 1, the state will be the meanµt−1 and covarianceΣt−1

of a Gaussian overXt−1:

p(Xt−1|ht−1) = N (µt−1, Σt−1).

Dynamics: To model the dynamics of the system, our goal is to incorporate a new observation

Ot = ot and recursively update the statistics we use as state, to compute the parametersof the

distributionp(Xt|ht−1ot) = p(Xt|ht). There are many ways to derive the equations for the Kalman

filter. Here, we adopt a simple one in which we construct the joint distribution of Xt andOt (this is

known as theprediction phase), and then condition the resulting multivariate Gaussian on the actual

observationOt to obtain an improved estimate ofXt (theupdate phase):

(
Xt

Ot

)
∼ N

[(
Aµt−1

HAµt−1

)
,

(
Σ+

t−1 HΣ+
t−1

Σ+
t−1H

⊤ HΣ+
t−1H

⊤ + R

)]

where

Σ+
t−1 = AΣt−1A

⊤ + Q.

We now condition onOt = ot:

Kt = (HΣ+
t−1)(HΣ+

t−1H
⊤ + R)−1

µt = Aµt−1 + Kt(ot − HAµt−1)

Σt = (I − KtH)Σ+
t−1(I − KtH)⊤ + KtRK⊤

t

The simplicity of the Kalman filter update equations belie the utility and power of the model. The

Kalman filter is almost ubiquitous in control theory and a variety of engineeringapplications. There

are also numerous variants on it: the Extended Kalman Filter (EKF) (Zarchan and Musoff, 2005)

generalizes the ideas to nonlinear dynamical systems by linearizing a nonlinear transition function

around the current state, and is the defacto standard for nonlinear filtering. The Unscented Kalman

Filter (Julier and Uhlmann, 1996) improves upon the EKF by using an unscented transformation

instead of a linearization operator (we will have more to say about this in the chapters on the KPLG

and MPLG). The Information Kalman Filter (Maybeck, 1979) represents the Gaussians used in the

state representation with their natural parameterization instead of the mean parameterization, and

has found application in distributed sensor networks (we discuss this more thoroughly in the chapter

on Information PLGs). There are also square-root filters (Verhaegen and Dooren, 1986; Kaminski

et al., 1971) designed to improve numerical stability, the continuous-time Kalman-Bucy filter and

a practically infinite number of variations created by combining different ideas (for example, the

square-root unscented Kalman filter ofvan der Merwe and Wan, 2001). Recently, the Kalman filter
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has been unified with several other linear Gaussian models (Roweis and Ghahramani, 1999).

4.3 Predictive Gaussian Systems
The PLG is a predictively defined equivalent to an LDS. In the next two chapters, we will introduce

two additional models (the KPLG and MPLG) which generalize the PLG to the case of nonlinear

dynamics. Because the PLG, MPLG and KPLG all represent and update state in the same way, we

call any one of these three models aPredictive Gaussian System.Here, we will discuss the entire

family, and will then specialize back to the case of the PLG.

State: In Predictive Gaussian systems, we never refer to an unobservable orlatent statext. Instead,

we capture state as statistics about a random variableFn, which is defined as a vector of random

variables predictingfutureobservations. Recall that

Fn = [Ot+1 · · ·Ot+n]⊤,

as illustrated in Figure4.2. The vectorFn is therefore∈ Rd×n. We assume these variables are

jointly Gaussian, with meanµt and covarianceΣt:

Fn ∼ N (µt, Σt) .

Like the Kalman Filter, we will use the parametersµt andΣt as the state of the system. However,

these parameters refer to the Gaussian distribution overFn, not any sort of Gaussian distribution

over a latent variableXt.

Dynamics: The system dynamics are defined by a special equation:

Ot+n+1 = f(Fn, ηt+n+1) (4.1)

whereηt+n+1 ∈ Rd×d is a special noise term. The importance of modelingOt+n+1 as a function

of Fn will be explained in the next section. In the PLG,Ot+n+1 is a linear function ofFn, which

allows it to model linear dynamical systems. In the MPLG and the KPLG, however, Ot+n+1 is a

nonlinearfunction ofFn, which allows them to model nonlinear dynamics.

The noise term is mean-zero with a fixed variance:

ηt+n+1 ∼ N (0, σ2
η),

but is allowed to covary with the nextn observations in a way that is independent of history:

Cov[Fn, ηt+n+1] = Cη.

Thus, the noise terms are identical, but not independent.
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Figure 4.2: Timeline illustrating the random variables we use.

The representational power of Predictive Gaussian Systems comes fromthis noise term: the fact

that it covaries with future observations gives it the infinite memory of the LDS—an observation

can have an effect far in the future through the chain of influence created by the correlation in

the noise terms. Later, we will see that the differences in this noise term are one of the primary

differences between the MPLG and the KPLG.

4.4 Updating State: Extend and Condition
We will now discuss the general strategy of Predictive Gaussian Systems for updating state and

modeling dynamical systems, as well as whyOt+n+1 is modeled as a function ofFn. Modeling the

system dynamics requires determining how to update the state of the system. Theproblem can be

stated thus: given a state at timet, how can we incorporate an observationOt+1 = ot+1 to compute

our state at timet + 1? The strategy is toextend and condition, as follows.

We begin with state extension. We assume that we have the state at timet, represented byµt and

Σt. These statistics describeFn|ht ∼ N (µt, Σt), which is annd−dimensional Gaussian describing

the nextn observations. We will extend this variable to include the variableOt+n+1 (ensuring that

it is still jointly Gaussian), creating a temporary(n + 1)d-dimensional Gaussian, which we denote

Fn+1|ht. We will use the extension function defined in Eq.4.1:

Ot+n+1 = f(Fn, ηt+n+1) (4.2)

In order to extendFn to include the variableOt+n+1, we must compute three terms, which are

Et = E[Ot+n+1], Ct = Cov[Ot+n+1, F
n] andVt = Var[Ot+n+1]:

(
Fn

Ot+n+1

)
∼ N

[(
µt

Et

)
,

(
Σt Ct

C⊤
t Vt

)]
.

We will then condition on the observationot+1, which will result in anothernd−dimensional Gaus-

sian random variable describing[Ot+2 · · ·Ot+n+1]
⊤ = Fn|ht+1. Conditioning is done with stan-

dard techniques on multivariate Gaussians, for which it is well-known that the resulting random
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variable is Gaussian. This results inE[Ot+2 · · ·Ot+n+1] = E[Fn|ht+1] = µt+1, along with

Cov[Fn|ht+1] = Σt+1, which are precisely the statistics representing our new state. Figure4.2

illustratesFn|ht andFn|ht+1.

To condition on the observation at timet, we will repartition the mean and covariance matrices

to simplify notation. This is not a mathematical operation. We are simply re-labeling entries as

follows: (
Ot+1

Fn

)
∼ N

[(
µot+1

µfn

)
,

(
Σot+1ot+1

Σot+1fn

Σfnot+1
Σfnfn

)]

whereµot+1
is the firstd entries of the vector[µt; Et], andµf+1 is the remaining entries. Similarly,

Σot+1ot+1
is and × d matrix.

Conditioning is now done with standard formulae for multivariate Gaussians:

µt+1 = µfn + Σfnot+1
(Σot+1ot+1

)−1(ot+1 − µot+1
) (4.3)

Σt+1 = Σfnfn − Σfnot+1
(Σot+1ot+1

)−1Σot+1fn . (4.4)

ComputingEt, Ct and Vt in closed form for an arbitrary extension functionf (see Eq. 4.1) is

impossible, which motivates two different possibilities: the first is presented inthe next section,

which is to select a linearf . This makes the computations analytically tractable by virtue of the

statistical properties of linear operators. The second option is to adopt a general approximation.

Section5.1.1will present an approximation which can be used for anyf , and will form the backbone

of performing inference in both the KPLG and MPLG.

4.5 Dynamical Model of the PLG
We have now completed the development of the general state update mechanism for any Predictive

Gaussian system. We will now briefly show the specific modeling choices the PLG makes. Here, we

restrict ourselves to scalar observations, for two reasons: first, to make precise statements about the

representational capacity of the PLG in the next section, and second, sothat our exposition matches

the historical development of the PLG. We emphasize that the restriction to scalar observations

does not restrict the dimensionality of the underlying state space. The nextsection presents the

multivariate generalization.

The PLG uses a linearf to modelOt+n+1:

Ot+n+1 = f(Fn, ηt+n+1) = g⊤Fn + ηt+n+1

whereg ∈ Rn,1 is the linear trend of the system. The linearity inf allows simple closed-form

expressions of the state update equations, because the needed terms canbe computed easily:

Et = E[g⊤Fn + ηt+n+1] = g⊤µt
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Ct = E[O⊤
t+n+1F

n] − E[O⊤
t+n+1]E[Fn] = Σtg + Cη

Vt = E[O⊤
t+n+1Ot+n+1] − E[O⊤

t+n+1]E[Ot+n+1] = g⊤Σtg + 2g⊤Cη + σ2
η

These three equations, combined with the state update equations (Eq.4.3 and Eq.4.4) constitute

the complete PLG model.

Rolling together the construction of the temporary Gaussian and the conditioning yields the com-

plete state update:

µt+1 = µ−
t+1 + Kt(ot+1 − e⊤1 µt) (4.5)

Σt+1 = (I − Kte
⊤
1 )Σ−

t+1 (4.6)

where

Σ−
t+1 = I−ΣtI

−T + I−Ct + C⊤
t I−T + ene⊤n Vt,

Kt = Σ−
t+1e1(e

⊤
1 Σte1)

−1,

µ−
t+1 = I−µt + enEt,

I− =




0 In−1

0



 ,

andei is thei-th column of the identity matrix. These are the original update equations as found

in (Rudary et al., 2005). Note that these equations have a strong resemblance to those used by the

Kalman filter.

4.5.1 Properties of the PLG

The PLG has several advantages when compared to traditional state-space models. First, the entire

model is defined strictly in terms of statistics about future observable quantities. This means that

parameters of the model have definite meaning with respect to the observed data, which leads to

statistically consistent parameter estimation procedures: estimated parameters will asymptotically

converge to theirtruevalue, which is a stronger guarantee than those which accompany, for example,

EM algorithms used to learn state-space model parameters (Ghahramani and Hinton, 1996, which

we have empirically observed to be subject to local minima). Second, the PLG estimation procedure

works particularly well as the dimension of the system increases.

Third, the PLG model strictly subsumes two popular linear dynamical system models: the cele-

brated Kalman filter (Kalman, 1960), and autoregressive time-series (or ARMA) models (Pandit

and Wu, 1983). The relationship between the PLG and standard LDSs is roughly analogous to

the relationship between PSRs and POMDPs: every LDS has an equivalent PLG, which can be

proved by a constructive algorithm translating parameters; the resulting PLG is just as compact as

an equivalent LDS, requiring only ann-dimensional Gaussian to model ann-dimensional LDS; and

the resulting PLG actually uses fewer parameters than the equivalent LDS.
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Finally, we have also alluded to learning the parameters of a PLG:Rudary et al.(2005) showed that a

consistent parameter estimation algorithm exists, which consists of straightforward regressions and

sample statistics. This is a favorable consequence of the grounded natureof the state representation.

As presented here, there are two restrictions on what the PLG can model: thesystem must 1)

have linear dynamics, and 2) be uncontrolled. The original PLG model foruncontrolled systems

with scalar observations was introduced byRudary et al.(2005). Rudary and Singh(2006) have

subsequently extended the PLG presented here to allow for control actions, multi-dimensional ob-

servations and have done some work on planning.

4.5.2 Extension to Vector-valued Observations

The math for the PLG is not dependent on the fact that the observationsot are scalars. In fact, the

same techniques used to derive the scalar PLG can be easily extended to thecase ofd−dimensional

vector-valued observations. Here, we present the “naive” multivariate extension, and discuss why it

is naive below.

We define the extension to be

Ot+n+1 = FnG + ηt+n+1

whereG ∈ Rn×d andηt+n+1 ∈ Rd×d, and let

Cov[Fn, ηt+n+1] = Cη

whereCη ∈ Rnd×d. This easily results in the following closed-form expressions for the extension,

which are simply the multivariate generalizations of the scalar equations in the previous section:

Et = Gµt

Ct = ΣtG
⊤ + C⊤

η

Vt = G⊤ΣtG + GC⊤
η + CηG

⊤ + σ2
η.

While extending the PLG from the case of scalar observations to multivariate observations in this

way seems straightforward, there are a few technical subtleties. Specifically, Rudary et al.(2005)

proved that every LDS with scalar-valued observations has an equivalent PLG with scalar-valued

observations. Furthermore, the resulting PLG is just as compact, in the sense that a window ofn

future observations is all that is needed to model ann-dimensional LDS. This means that both the

LDS and PLG will track ann-dimensional mean and ann × n-dimensional covariance matrix as

state. Additionally, the number of parameters in the PLG is actually fewer than thenumber in the

corresponding LDS.

Further work by Rudary (unpublished) has extended the equivalences to the case of vector-valued
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observations, but with a small twist. While everyn-dimensional LDS with vector-valued observa-

tions can be modeled by then dimensional PLG presented above, the reduction is not necessarily

minimal in terms of the size of the resulting state or the number of parameters.

To see this, consider the example of an LDS with ann > 2 dimensional state space, and a two

dimensional observation space. The LDS would have a state defined as ann−dimensional mean

and ann × n-dimensional covariance matrix. However, the naive PLG would have a state that is

a 2n-dimensional mean and an2n × 2n-dimensional covariance matrix – a two-fold increase in

the dimension of the state space and a four-fold increase in the number of parameters. Rudary has

shown that the PLG does not need to track all2n of these variables, and that it can in fact select

a subset of onlyn of them. We defer to his work for the proof of this, as well as proof of the

equivalence to vector-valued LDSs.

4.6 Conclusions
We have described the Predictive Linear-Gaussian model, which is a goodexample of the advan-

tages of models with predictively defined representations of state. It losesnothing by defining state

predictively, and actually gains something: the PLG is formally equivalent to the Kalman Filter,

and has a statistically consistent parameter estimation algorithm. While the PLG itself will form

the foundation for the models we will present in the next two chapters, the key ideas introduced

here will play important roles throughout the thesis: first, the idea of capturing state as the pa-

rameters of the system dynamics distributions, and second, the idea of modelingdynamics with an

extend-and-condition algorithm.

As mentioned, there are two drawbacks to the PLG: it is only capable of modeling uncontrolled,

linear dynamical systems, and it is limited to the case of scalar observations.Rudary and Singh

(2006) have done work on extending the PLG to the controlled, vector-valued case, but the resulting

model is still limited to linear dynamics. The next two chapters attack the alternate direction: we

extend to the case of nonlinear dynamics.

57



Algorithm PLG-UPDATE

Input: Current state, represented byµt andΣt and an observationot.

Given: dynamical parametersG, Cη, andσ2
η.

Compute: (construct extended distribution)

• Et = Gµt

• Ct = ΣtG
⊤ + C⊤

η

• Vt = G⊤ΣtG + GC⊤
η + CηG

⊤ + σ2
η

Repartition:

N

[(
µt

Et

)
,

(
Σt Ct

C⊤
t Vt

)]
=

[(
µot+1

µfn

)
,

(
Σot+1ot+1

Σot+1fn

Σfnot+1
Σfnfn

)]

Compute: (condition on observationot+1)

• µt+1 = µfn + Σfnot+1
(Σot+1ot+1

)−1(ot+1 − µot+1
)

• Σt+1 = Σfnfn − Σfnot+1
(Σot+1ot+1

)−1Σot+1fn

Return: µt+1, Σt+1 .

Figure 4.3: The state update equations for the PLG.
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Chapter 5

The Kernel PLG

The PLG is only capable of capturing linear dynamical systems. In this chapter we extend the PLG

to model nonlinear dynamical systems by using kernel methods. We name the result the “Ker-

nel Predictive Linear-Gaussian” model, or KPLG. We first present thegeneral model, analyzing in

depth the special case of the Gaussian kernel; with a Gaussian kernel, themodel admits closed form

solutions to the state update equations due to conjugacy between the dynamics and the state rep-

resentation. For general kernels, closed-form solutions are not possible, so we explore an efficient

sigma-point approximation. We show how all of the model parameters can be learned directly from

data, either off-line or on-line (with the Kernel Recursive Least-Squares algorithm). We empirically

compare the model and its approximation to the original PLG and discuss their relative advantages.

Portions of this chapter were published inWingate and Singh(2006a).

5.1 The Kernel PLG Model
We extend the PLG model to handle nonlinear dynamics by allowingOt+n+1 to be a nonlinear

function of Fn, which we accomplish by invoking the kernel trick. As discussed in Section4.4,

all that is needed to maintain state is the statistics of the extended Gaussian[Fn, Ot+n+1], which

requires the expectationEt = E[Ot+n+1], covarianceCt = Cov[Fn, Ot+n+1] and varianceVt =

Var[Ot+n+1]. Computing these three quantities, combined with the extension and conditioning

equations (4.3) and (4.4), constitutes the complete model.

The KPLG defines the state extension as

Ot+n+1 =
J∑

j=1

αjK(ξj , F
n) + ηt+n+1, (5.1)

whereK() is our kernel. Theξj ∈ Rn are points that could come from a number of sources: they

may come from training data, be derived analytically, or be randomly generated. These will be

discussed later.

This is the most obvious way to kernelize the original PLG algorithm, because we have employed

the standard technique of rewriting the linear trendg as a weighted combination of data points (this
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is justified by the Representer Theorem ofKimeldorf and Wahba, 1971):

Ot+n+1 = g⊤Fn + ηt+n+1

= (
∑

j

αjξj)
⊤Fn + ηt+n+1

=
∑

j

αj(ξ
⊤
j Fn) + ηt+n+1

=
∑

j

αjK(ξj , F
n) + ηt+n+1

Since this is a linear basis function model (with the kernelsK(ξj , ·) acting as the basis functions),

we will refer to theξj ’s as basis function centers. The model strictly generalizes the PLG, since

using the linear kernel recovers it. The variableηt+n+1 has the same properties as in the PLG.

With a Gaussian kernel, we can analytically derive expressions forEt, Ct andVt. AppendixC

contains the lemmas and identities needed for their derivation, and a summary ofwhat the terms

mean:

Et =
J∑

j=1

αjK
′
tj

Ct =
J∑

j=1

αjK
′
tj(µ

′
tj − µt)

⊤ + C⊤

Vt =
J∑

i=1

J∑

j=1

K†
tijαiαj − E2

t + σ2
η + 2(

J∑

j=1

αjK
′
tj(µ

′
tj − µt)

⊤)Σ−1
t C. (5.2)

The parameters of this model are therefore theξj ’s, theαj ’s, C, andσ2
η. In the case of a Gaussian

kernel, we allow an additional parameterφj (which is the covariance matrix of the Gaussian) and

write the kernel asK(ξj , F
n; φj). We use a fully normalized Gaussian for analytical purposes.

5.1.1 A Sigma-Point Approximation

With Gaussian kernels, the KPLG model is analytically tractable. While this is appealing, there are

some computational liabilities. In particular, computingVt is a O(J2) operation (whereJ is the

number of basis functions; see the double summation of Eq.5.2), which is prohibitively complex,

especially sinceJ typically scales exponentially with the dimensionn. This motivates some sort of

fast approximation. We would also like the approximation to relax the restriction toGaussians, and

free us to use arbitrary kernels. The following method accomplishes both goals (although exploring

arbitrary kernels is left for future research).

Sigma-point approximations, or “unscented transformations” (Julier and Uhlmann, 1996), are a

general method of propagating an arbitrary distribution through a nonlinear function. The method
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is conceptually simple, and should be thought of as a deterministic sampling approach. Suppose we

are given a random variableO = f(F, η) that is a nonlinear function of another random variableF

and a mean-zero Gaussian noise termη. Instead of recording the distribution information ofF in

terms of a mean and covariance, we represent the same information with a small,carefully chosen

number ofsigma points. These points are selected so that they have the same mean and covariance

as F (in fact, they are the minimal such set), but the advantage is that they can be propagated

directly through the functionf(). We then compute the posterior statistics of the propagated points

to approximateO. This process is demonstrated in Figure5.1.

There are many advantages to sigma-point approximations. First, they are agood match for our

needs: we only want first and second-order moments of the posterior (which they are designed to

provide), and their strongest optimality guarantees are whenF is normally distributed (as it is in our

case). They are provably accurate to at least a second order approximation of the dynamics for any

distribution onF and any nonlinearity, and are accurate to third order for a Gaussian distribution

on F and any nonlinearity, while fourth order terms can sometimes be corrected aswell. They can

flexibly incorporate noise and other constraints intof(). They are simple to implement because

no analytical derivatives (such as Jacobians or Hessians) are required. They are also efficient: they

require2(n + 1)J kernel evaluations at each timestep, which is far smaller than theO(J2) matrix

operations required by the KPLG.

Sigma-point approximations should not be confused with particle filters. Whilethey are similar in

spirit, there are several important differences. Particle filters typically allow a multi-modal distribu-

tion over states, while sigma-point approximations require a Gaussian; it is theGaussian assumption

which gives the sigma-point approximation its strong theoretical guaranteeswith a small number

of points. Also, where particle filters use random sampling, sigma-point approximations use deter-

ministic sampling.

The algorithm is shown in Figure5.2. If we let f() be the state extension defined by the KPLG

model (Eq. 5.1), then the final terms computed may be used in place of the analytical values of

Et, Vt, andCt.

5.1.2 Complexity and Generalization

The KPLG model has high complexity: computingEt and Ct is O(Jn3), but computingVt is

O(J2n3) (and can be numerically unstable). There are other ways to estimate these terms, besides

the sigma-point approximations. Nearest-neighbor style methods, such as the Fast Gauss Transform

(Yang et al., 2003), are one possibility, and would also allowO(Jn3) computations, although these

methods only work well for smalln.

In the case of Gaussian kernels, the model can suffer from generalization problems. Because the

Gaussians have local receptive fields, the state extension equation (Eq.5.1) will return something

close to zero for all states outside the training region. As we will see in the next chapter, renormal-
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yi = g(xi) �y = g(�x)Py =rgPx(rg)T
g(�x)

rgPx(rg)T

Yj = g(X j)

Actual (sampling) Linearized (EKF)

sigma points

true mean

SP mean

    and covariance
weighted sample mean

mean

SP covariance

covariance

true covariance

transformed
sigma points

Sigma−Point

Figure 5.1: Sigma-point approximations. The left side shows how random samples of the variable
X could be propagated through the nonlinear functiong to estimate posterior statistics ofY . The
middle panel shows an approach whereg is linearized (this is the approach taken by the Extended
Kalman Filter [EKF]). The mean ofX is propagated through the originalg, but the covariance is
propagated through the linearized function. The right side shows the sigma-point approach, which
deterministically samples points fromX and propagates each throughg to compute posterior statis-
tics ofY . Figure courtesy of Eric Wan (used with permission).
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Algorithm KPLG-SIGMA-POINT-APPROXIMATION

Input: µt, Σt

Given: f, Cη, σ
2
η

Compute:

• Construct a random variable relating predictions and noise:

P =

(
Fn

ηt+n+1

)
∼ N

[(
µt

0

)
,

(
Σt C
C⊤ σ2

η

)]

• Ensure thatCov[P ] is symmetric positive definite.

• Construct a set of2(n + 1) sigma points:

[fn
t

(2i−1), η
(2i−1)
t+n+1]

⊤ = E[P ] + (
√

(n + 1)Cov[P ])i

[fn
t

(2i), η
(2i)
t+n+1]

⊤ = E[P ] − (
√

(n + 1)Cov[P ])i

• Propagate each point:o(i)
t+n+1 = f(fn

t
(i), η

(i)
t+n+1)

• Compute the empirical mean and covariance:

Et =
1

2(n + 1)

2(n+1)∑

i=1

o
(i)
t+n+1

Vt =
1

2(n + 1)

2(n+1)∑

i=1

(o
(i)
t+n+1 − E[Ot+n+1])

2

Ct =
1

2(n + 1)

2(n+1)∑

i=1

(fn
t

(i) − µt)(o
(i)
t+n+1 − E[Ot+n+1])

⊤

Return: Et, Ct, Vt

Figure 5.2: The sigma-point approximation algorithm.
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ized kernels combined with linear models will improve this generalization.

5.1.3 Comparison to Nonlinear Autoregression

There is a significant difference between the KPLG model and ann-th order kernel autoregressive

(KAR) model. The KAR model is

E[Ot+1] =
∑

j

αjK(ξj , [ot−n−1, · · · , ot]),

which states that the next observation is predicted to be a nonlinear functionof thepastn observa-

tions [ot−n−1, · · · , ot]. It has a similar functional form to our predictive model: the same kernels,

basis function centers, and coefficients are used, and it can be trainedusing similar methods as the

KPLG (see Section5.2). However, their differences are as important as their similarities. The KAR

model can only predict a point estimate for the future, whereas the KPLG predicts an entire distri-

bution. KAR implicitly assumes thatn past observations constitute state, which is effectively a k-th

order Markov assumption, while the KPLG can summarize a potentially infinite amount of history

into its predictions. These differences are what accounts for the empirical improvement of KPLG

over KAR reported in Section5.3.

5.2 Model Learning
Having defined the form of the model and the state update, we now addressthe question of learning

a good model from data. The KPLG model requires several parameters:the dimensionn of the

system, the basis function centersξj and weightsαj , as well as the noise statisticsC andσ2
η. In

the case of a Gaussian kernel, the covariance matrixφj is also required. The next two sections

discuss off-line and on-line methods of estimating these parameters, with emphasis on relating the

procedures to general techniques.

5.2.1 The Off-Line Case

In the off-line case, the data for learning will be given as a set of trajectories from the system, with

each trajectory consisting of at leastn + 1 sequential observations. We will slice these trajectories

into training pairs(fn
t

(i), ot+n+1) wherefn
t

(i) ∈ Rn is a vector ofn successive observations (rep-

resenting a noisy sample of someFn), andot+n+1 ∈ R is the(n + 1)-th observation (a sample of

the correspondingOt+n+1, or the state extension). Each trajectory is sliced into all such pairs and

collected into a setS (this is somewhat like using the suffix-history algorithm to generate samples

from the corresponding system dynamics distributions; see Section3.4 ). Figure5.3 graphically

illustrates the process.

Model Order Selection. We must first estimate the order of the model, which includes the system

dimensionn and the number of basis functionsJ . For our experiments, we use cross-validation

to select parameters from a set of likely candidates. However, there is nothing unusual about our
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Figure 5.3: Extracting training pairs from a training trajectory.

model or estimation needs, meaning that many existing techniques are also suitable. These include

growing and pruning methods, stacked generalization, regularized complexity criteria, or statistical

tests such as Z tests (Bishop, 1995; Pandit and Wu, 1983).

Finding Basis Function Parameters. Next, we must determine the basis function centersξj

and covariance matricesφj . We tested three methods: random selection, dictionary-based selection

(explained in Section5.2.2), and expectation maximization. For random selection, we set eachξj

to be a random training samplefn
t

(i), we setφj = σ2
φI, and we used cross-validation to select

σ2
φ. Expectation maximization (EM) is a well-known method for estimating mixture of Gaussian

parameters. We will here summarize our experiments with EM by saying that it didnot appear to

offer any advantage over the other two methods, and since it was computationally more intensive, it

was dropped. Again, many other methods are also suitable. These include nonlinear gradient meth-

ods (such as Gauss-Newton or Marquardt-Levenburg), re-estimationmethods (such as expectation

maximization), adaptivek-means clustering, stochastic sequential estimation, or cross-validation

(generalized, leave one out, ork-fold) (Hastie et al., 2001; Bishop, 1995).

Estimating Coefficients. Given ξj andφj , finding theαj ’s can be viewed as a simple kernel

regression problem. It can be solved with a linear least squares approach, or more sophisticated

methods such as support-vector regression (Shawe-Taylor and Cristianini, 2004). We chose regu-

larized least-squares. We construct a regression matrixA + λI, whereAij = K(ξj , f
n
t

(i); φj) and

λ is the regularization coefficient. LetO be a vector collecting all theot+n+1’s. Then, the optimal

coefficientsα are given byα = A†O, where† denotes the pseudo-inverse (giving a minimum-norm

solution to an underconstrained system, and a least-squares solution to an overconstrained system).

5.2.2 The On-Line Case: KRLS

The previous section discussed the selection of the basis function centersξj and their weightsαj

as two separate problems. However, both steps may be combined into a single step by using the

Kernel Recursive Least-Squares (KRLS) algorithm ofEngel et al.(2004). Finding the weights is

a least-squares kernel regression problem, which KRLS is designed to solve, but it does so in a
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recursiveway: instead of presenting all of the training pairs simultaneously, they are presented one

at a time, and the algorithm updates the resulting weights with complexity that is independent of the

total number of pairs used (in our case, it is equivalently independent oftime).

The idea of the KRLS algorithm is to automatically selectdictionarypoints from the training sam-

ples which are presented on-line. These dictionary points are selected such that the features of

other training samples can be expressed as an approximate linear combinationof the features of

the dictionary points (where “approximate” is a tunable threshold). The setof dictionary points ap-

proximately linearize the feature space, and can be thought of as points which are spread “evenly”

throughout the feature space.

It is these dictionary points that we use as the basis function centersξj , and the corresponding

weights as theαj ’s. This gives even coverage to the feature space, and can be controlled by only

a single additional parameter. KRLS is an instance of the KAR model in Section5.1.3, and that

the on-line dictionary creation process is actually an on-line version of the Nystrom approximations

discussed in AppendixB.

5.2.3 Learning Noise Parameters

Either the off-line or the on-line techniques provide basis function centers, covariances and weights,

allowing us to now estimate the noise parameters. For these, we can use sample statistics. Assume

we have a setS of training pairs(fn
t

(i), ot+n+1). In the off-line case, this may be the training set;

in the on-line case, this set may be collected during training, or once the basisfunction parameters

have been fixed. Let

ηi = ot+n+1 −
∑

j

αjK(ξj , f
n
t

(i); φj).

Then, the estimated noise term is

σ̂2
η =

1

|S| − 1

∑

i

(ηi)
2.

To estimateC, we run the algorithm on the training data (or run it online) withC = 0 and collect

an estimate ofµt at eacht. We then compute

Cov[Fnηt+n+1] = E[(Fn − µt)(ηt+n+1)],

which is simply

Ĉk =
1

|S| − 1

∑

i

(fn
t

(i) − µi)kηi.

Extending these estimators to be fully on-line is left as future work.
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5.3 Experiments and Results
Our experiments were designed to assess the performance of the PLG, KPLG and KPLG-SP (the

sigma-point approximation) algorithms across a variety of problems. For completeness, we also

tested the KAR algorithm. We tested on five linear and nonlinear dynamical systems (the Rotation,

Biped, Peanut, NB3, and Spring problems), where the underlying generative model was known.

Since the models are limited to scalar observations, we also tested on three timeseries benchmarks

(Santa Fe Laser, Mackey-Glass, and K.U. Leuven). The problems aredescribed in Section5.3.1.

We ran two types of experiments. The first type was a short-term predictionproblem, in which the

algorithms were run as explained in the text. This tested the algorithms’ state update mechanisms

and prediction performance. The second type was a far-horizon prediction test, where the algorithms

predicted hundreds of steps into the future, without correcting state based on any observations. This

tested modeling capacity and parameter estimation methods.

Parameters were selected by 10-fold cross-validation. Algorithms were judged on the mean-squared

error (MSE) of their predictions. All data sets were normalized to be in[0, 1]. For the initial state, we

setΣ0 = σ̂2
ηI +

∑n
i=1(I

−)iĈ + ((I−)iĈ)⊤ andµ0 to be the lastn values of the training sequence,

and then rolled it forwardn timesteps (the test data was structured to be a continuation of the last

sequence of training data). All algorithms were tested onn = 2, 3, 4, 5, 6, σ2
φ = 0.1, 0.4, 0.8, 1.2,

λ = 0.00001, 0.001, 0.01, andν = 0.0001, 0.001, 0.01 (the dictionary threshold).

5.3.1 Problem Descriptions

All problems except Laser were trained on 2000 sequential observations and tested on a 200 obser-

vation continuation; the “Laser” series had 1000 training and 100 testing observations.

Rotation, Peanut, Biped, NB3:These are all two-dimensional dynamical systems. Rotation is a

linear dynamical system consisting of a simple rotation matrix. Peanut is similar, except that points

are rotated around a peanut shape. Biped is a non-linear dynamical system inspired by a foot striking

the ground. The system has the same underlying dynamics as the linear rotation problem, except

that there is a strict minimum value for the second coordinatex2 of -0.5 – any timex2 goes below

-0.5, it is clipped to be -0.5, representing the discontinuity of the ground. The resulting system is

piecewise linear. NB3 is like biped, except with more noise. For all four, observations and dynamics

were noisy. NB3 had about an order of magnitude more noise than the otherproblems.

Spring: A two-dimensional system with a mass oscillating between damped springs. The springs

had nonlinear forcing functions. Only the position of the mass was observed. This problem has

deterministic dynamics and noise-free observations.

Mackey-Glass: The Mackey-Glass time series (Mackey and Glass, 1977) is a popular choice for

time series benchmarks because it is deterministic but chaotic. It is generatedfrom a delay differ-

ential equation that can display a wide variety of behaviors as function of the delay termτ . The
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Problem Best (10-CV) Best (5-CV) Best (direct)

LDSs

Rotation KPLG-SP KPLG-SP KPLG/KPLG-SP
Biped KPLG/KAR KPLG-SP KPLG/KPLG-SP/KAR
Peanut KAR/PLG KPLG-SP KPLG/KPLG-SP
NB3 KAR/PLG KAR/PLG KPLG-SP/KAR/PLG
Spring KAR KAR KAR

Time Series
M.G. KAR KAR KAR
Leuven KAR KAR KAR
Laser KPLG KPLG-SP KAR

Figure 5.4: KPLG empirical results on the short-term prediction problem. Thebest performing
algorithm(s) for each problem is shown.

dynamics are given by
dx(t)

dt
=

ax(t − τ)

1 + x(t − τ)10
− bx(t).

Two common parameter settings areτ = 17 andτ = 30. With a = 0.2, b = 0.1, τ = 17, the

equations give rise to a chaotic, deterministic time series concentrated arounda strange attractor of

fractal dimension 2.1; the apparent chaos is due to the fact that the value of the series at any point

may depend upon the entire history of values. We useda = 0.2, b = 0.1, andτ = 30, which are

standard settings.

K. U. Leuven: This data set comes from a time series prediction competition, held as part of the

International Workshop onAdvanced Black-Box Techniques for Nonlinear Modeling, K.U. Leuven

Belgium, 1998 (Suykens and Vandewalle, 1998). The data set consists of 2000 data points. Con-

testants were asked to predict an additional 200 beyond the end of the set,and were then ranked

based on mean squared error. A wide variety of techniques were used,including several based on

dynamical system identification and neural-network style modeling. One of theprimary advantages

of this series is that it allows us to compare against a number of other advanced techniques, without

having to implement them all. Results of the competition can be found inWeigend and Gershenfeld

(1994).

Santa Fe Laser:Data from the Santa Fe timeseries competition, which was also used in the K.U.

Leuven competition. The series was recorded from a laser in a chaotic state, whose pulsations more

or less follow the theoretical Lorenz model of a two-level system.

5.3.2 Short-Term Prediction

For these experiments, we measured 1-step prediction MSEs. It is important tonote that the measure

of success is the difference between actual and predicted observations. This means that we are not

attempting to estimate latent state, but we are allowed tousestate to make our predictions. Basis

function centers were selected with a dictionary, andαj ’s were computed using regularized least-

squares; this method was superior to selecting basis functions randomly or with EM.
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The results are shown in Figure5.4. Three columns are presented, the first of which shows the best

algorithms on each problem when parameters are selected using cross-validation (all algorithms

with an MSE within 5% of the lowest are considered equal). The results are mixed but encouraging.

In particular, it seems that KPLG(-SP) generally performed well on the dynamical systems, where

there reallyis an opportunity to leverage infinite memory via state. In contrast, KAR has performed

well on the timeseries problems; in particular, it wins on the Mackey-Glass series, which reallyis

an autoregressive model.

This trend is more pronounced when only the best 5 out of the 10 cross-validation runs are used to

select parameters, as shown in the second column. The point of doing this isto tell a more complete

story: the KPLG model is actuallycapableof doing a better job than the results for the 10-fold

CV suggest, if only the correct parameters can be chosen. By using onlythe best 5 out of the 10

cross-validation runs, we have eliminated outliers in the cross-validation runs, which has given us

better parameters. We see that KPLG-SP has won in four out of eight trials, and in the situations we

expect it to.

The final column of Figure5.4 shows best performers when testeddirectly against the test set

(that is, without cross-validation). While it doesn’t change the fundamental results, there are some

noteworthy points: KAR does better on Laser, and KPLG is now competitive on the LDSs. These

results should be taken with a grain of salt: there are enough parameters in the algorithms (and

the test sequences are short enough) that they may be overfitting on the test data. However, the

results show that all of the algorithms have the capacity to model the test data well. We also note

that KAR still wins on the Spring problem. This is expected: Spring is deterministicwith noiseless

observations, so the uncertainty the KPLG(-SP) uses is unneeded.

Together, these results can be interpreted as preliminary evidence that each algorithm is winning

when it is supposed to be, although it also appears that the test problems are not as discriminative

as we would like. The results suggest three conclusions: first, that the nonlinear models are outper-

forming their linear counterparts; second, that the sigma-point approximation is competitive with

the exact KPLG; and third, that our models are indeed capturing state, which results in an advantage

over a simple autoregressive model, especially in noisy cases. Not reflected in these results is the

fact that KAR seemed to give more consistent MSEs across parameter settings than the KPLG(-

SP). The results also suggest that a better method than cross-validation is needed to select the model

parameters.

5.3.3 Long-Term Prediction

For this set of experiments, each algorithm was asked to predict hundreds of timesteps into the

future. This was done to assess the models’ raw capacity, especially as compared to other methods.

We trained KPLG(-SP) using the KRLS algorithm, incorporating the more sophisticated training

method suggested byEngel et al.(2004). We setΣt = 0 for all t, making KPLG(-SP) and KAR
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Figure 5.5: KPLG long-term prediction results. Top: the results of predicting the Mackey-Glass
series. Bottom: the results of predicting the Santa Fe Laser series.
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equivalent; we merely wanted to compare PLG and KPLG. Figure5.5 shows results on Laser and

Mackey-Glass, both of which demonstrate a clear advantage of KPLG over PLG. The Laser result

almost exactly reproduces the result obtained by Engel; as noted by him, theMSE incurred here

(0.00120; equivalent to their NMSE of 0.026) would have been just enough to place first in the

Santa Fe competition. This suggests that the model is capable of competing successfully with other

methods.

5.4 Related Approaches
Here, we briefly survey other nonlinear methods that are similar in spirit andapplication to ours,

focusing on nonlinear extensions to the Kalman filter. The first is the Extended Kalman filter (EKF),

which updates state by linearizing the system dynamics, and propagating information through this

first-order approximation. Unfortunately, it requires that analytical derivatives of the dynamics be

available, and cannot capture discontinuities in the dynamics. The Unscented Kalman Filter (Wan

and van der Merwe, 2000) improves on the EKF with a sigma-point approximation. It is the closest

competitor to our method, except that it posits latent state and provides no parameter estimation

methods; our method is also simpler because our observation and transition models are combined.

Rudary and Singh(2004) proposed a nonlinear PSR based on “e-tests,” but it is restricted to domains

with discrete observations. Local modeling methods (such as local linear regression) could also be

used (Fan and Gijbels, 1996; Hastie et al., 2001), at the cost of retaining the training data as part of

the model.

5.5 Conclusions and Future Work
In this chapter, we set out to extend the PLG to be able to model dynamical systems with continuous

observations and nonlinear dynamics. More broadly, we have investigated the question of whether

such a model can be learned, and if so, whether or not it is competitive with other models.

Based on our empirical results, the broadest conclusion is that both the idea and our specific model

are viable. While more work remains to be done, the KPLG has successfully modeled the real-

world and synthetic problems presented here – while learning its parameters directly from data –

and appears to provide competitive results to other methods. One of the advantages of the model is

the straightforward method of parameter estimation. Only standard regressions and sample statistics

are required, which is a direct consequence of the predictive nature of the state. This also lead us

easily to an on-line version of the algorithm with KRLS.

An important practical conclusion is the success of the sigma-point approximations, which have

provided results close to those of the KPLG for a fraction of the computational effort. We originally

picked the Gaussian form of the kernels for analytical tractability, but the success of the approxi-

mations suggests that this is unnecessary. In addition to accuracy and speed, they provide freedom:

future applications of the KPLG can use other kernels in more flexible models.
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We have not focused on raw empirical success, which leaves the door open for several obvious

extensions. In particular, combining the strengths of KPLG and KAR into quasi-predictive models

(which use history and predictions together) is an open and interesting avenue. It is also important to

address the difficulties in parameter estimation and cross-validation, and to improve the algorithm’s

stability and generalization, but even with these problems, the algorithm is learning reasonable and

competitive models.

Picking model parameters is still challenging. In the next section, we will improve on the KPLG by

improving the model’s generalization and stability with respect to parameter choices.

72



Chapter 6

Mixtures of PLGs

Chapter5 introduced a kernelized version of the PLG which was capable of capturing nonlinear

dynamics and which successfully modeled several timeseries problems. However, there are a few

deficiencies in the model which we seek now to remedy: first, the model tendednot to generalize

well as a result of the local support of the Gaussian kernel. This is in stark contrast to the origi-

nal PLG, which automatically generalizes well throughout the entire state space, simply due to its

linearity. The other troubling factor of the KPLG is the fact that the parameters of the noise term

ηt+n+1 are constant throughout the state space. It is easy to imagine situations where this is not

the desired property. Finally, we noted empirically that the performance of the KPLG was not very

consistent across different parameter settings, even for small perturbations in the parameter values.

All three of these flaws can be simultaneously improved with a nonlinear mixture technique. This

chapter contributes a probabilistic, generative model of dynamical systems, which we have named

the “Mixture of PLGs” (or MPLG). Like the PLG and KPLG, the MPLG assumes thatp(Fn|ht) ∼

N (µt, Σt), and that state is the parameters of that Gaussian. Like the KPLG, the MPLG captures

nonlinear dynamics by modelingOt+n+1 as a nonlinear function ofFn. However, there is a sig-

nificant difference between the way that the KPLG and the MPLG accomplishthis, with a nice

interpretation of the relationship between the two: while the KPLG models linear dynamics in a

nonlinear feature space, the MPLG models dynamics which are piecewise linear. In the MPLG

model, interpolation between training points is nonlinear (as in the KPLG), but generalization is

linear, and it is this linear generalization that will be the key to improved modeling accuracy and

parameter stability. Portions of this chapter were published inWingate and Singh(2006b).

We also develop a novel technique to perform inference in the model. Like the KPLG, the model

is defined in terms of random variables, and like the KPLG, certain statistics ofthese variables

must be computed to update state. Because the needed functions are nonlinear, exact analytical

inference is generally impossible. This motivates some sort of approximation technique, so like

the KPLG, we have chosen sigma-point approximations. However, to reduce the computational

complexity of the method, and to improve the accuracy of the estimates, we develop a method

we call “hybrid particle-analytical inference,” which is a form of Rao-Blackwellisation. Standard

sigma-point approximations sample from all of the random variables in a modelsimultaneously,

but sampling only a subset of variables can lead to significant computationaladvantage: part of our
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model is approximated with sigma-points, butgiventhose sigma-points, exact analytical inference is

possible on the rest of the model. This is an application of the smoothing properties of expectations,

and is general enough to be applied in other contexts.

After introducing the model and our hybrid inference technique, we showhow the model’s mixture

perspective leads to natural parameter estimators which are kernel-weighted versions of the original

PLG estimators. We empirically compare the proposed model to two nonlinear alternatives, and

conclude that our proposed model exhibits an advantage over all of them,and in particular, over

n-th order autoregressive models.

During our initial exposition of the MPLG we will assume, like we did in the KPLG model, that

every variable in our observation vector must be modeled. However, in Section 6.5 we will relax

this assumption in the context of a traffic modeling problem. This allows the MPLG touse exoge-

nous variables (that is, variables [like actions] which are given at every timestep, but which do not

necessarily need to be modeled) to help define the piecewise linear regions.We will demonstrate

that using this technique we can obtain improved performance over the PLG.

6.1 The MPLG: A Mixture of PLGs
We now present the MPLG, or Mixture of PLGs model. To see the intuitive justification for the

MPLG model, consider the following scenario. Suppose that at timet, we haveJ PLGs, each with

different parameters, and each specifying a different distribution over Ot+n+1. How should should

we modelOt+n+1? A sensible approach is to combine the estimates of allJ PLGs in some way,

and ideally, we would combine them based on some estimate of the confidence thateach PLG has in

its prediction. Since this is a dynamical model, it might also make sense to allow that confidence to

vary as a function of the state space, which would allow each PLG to become an expert in a certain

region of the state space.

This is closely related to a mixture of experts model (Jacobs et al., 1991; Nowlan and Hinton,

1991). A natural way to simultaneously define confidences and mix predictions is with weighted

sum, where the weights represent the confidence of each PLG:

Ot+n+1 =
J∑

j=1

w(Fn)j

(
gj⊤Fn + bj + ηj

t+n+1

)
. (6.1)

Here, thew(Fn)j ’s are the mixing weights. It is important that they be a nonlinear function ofFn,

because if they were linear they could simply be absorbed into thegj ’s, resulting in a linear model.

Here,Var[ηj
t+n+1] = (σ2

η)
j andCov[ηj

t+n+1, F
n] = Cj

η .

In general, these weights may be positive or negative. However, if we additionally impose the

restriction that they are positive and sum to one, the model takes on a new interpretation as a proba-

bilistic mixture model: it becomes a generative model of the dynamics, because we can consider the
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weights the distribution of a discrete multinomial variable. The generative procedure is what one

would naturally expect: we first pick one of theJ PLGs according to the distribution specified by

the weights, and then generate a value forOt+n+1 by sampling fromFn, multiplying by the trend,

adding the bias, and then corrupting with another sample from mean-zero Gaussian noise. In fact,

positive weights that sum to one is exactly what we obtain if we derive the MPLG in a slightly more

principled way, as we now explain.

6.1.1 A Distribution Over PLGs

Eq. (6.1) is the general form of the MPLG. We will now make specific choices aboutthe function

w(). We start by creating a new random variableOt that describes a distribution over possible

Ot+n+1’s; eachOt+n+1 is itself a Gaussian random variable describing distributions over actual

observationsot+n+1. We then specify a joint distribution overOt andFn, and use conditional

expectation and a density over possible models to arrive at the final mixture of PLGs.

Suppose we use a Parzen kernel estimator to represent the joint density of Ot andFn; suppose

further that we use Gaussian kernels. Such an estimator would take the form:

p(Ot, F
n) =

1

J

J∑

j=1

1

cj
K(Ot, ξOt

; φj)
1

cj
K(Fn, ξj ; φj) (6.2)

where1/cj is a standard Gaussian normalizer andK(x, y; φ) is a Gaussian function with covariance

matrixφ. Theξj ∈ Rn are points that could come from a number of sources: they may come from

training data, be derived analytically, or be randomly generated. TheξOt
variables will disappear in

the following derivation.

We can use this estimator to derive the MPLG as shown below (derivation adapted from Bishop,

1995; pg. 178). In the fourth line, we will use the Parzen estimator of the joint probabilities (several

terms cancel); this resembles the well-known Nadaraya-Watson estimator. Inthe fifth line, we

replace eachOj
t+n+1 with a PLG that generates it, and in the final line, we summarize the kernel

renormalization into a vector of weightsw(Fn). As required, these weights are a nonlinear function

of Fn and sum to one:

Ot+n+1 = E[Ot|F
n]

=

∫
Otp(Ot|F

n)dOt

=

∫
Otp(Ot, F

n)dOt∫
p(Ot, Fn)dOt

=

∑J
j=1 K(ξj , F

n; φj)O
j
t+n+1∑J

j=1 K(ξj , Fn; φj)
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Figure 6.1: Flow chart of MPLG mixing. Shown are the effects of combining kernel renormalization
with constant models (top) and linear models (bottom).

=
J∑

j=1

K(ξj , F
n; φj)∑J

k=1 K(ξk, Fn; φk)

(
gj⊤Fn + bj + ηj

t+n+1

)

=
J∑

j=1

w(Fn)j

(
gj⊤Fn + bj + ηj

t+n+1

)

This leads us to the final MPLG model:

Ot+n+1 =
J∑

j=1

w(Fn)j

(
gj⊤Fn + bj + ηj

t+n+1

)
(6.3)

with the mixing weights

w(Fn)j =
K(ξj , F

n; φj)∑J
k=1 K(ξk, Fn; φk)

. (6.4)

We can think of this asJ PLGs, each centered at someξj and responsible for some part of the space

defined byFn. The kernels act as a distance metric betweenFn andξj , and help define the regions

of responsibility. Within each region, a single PLG is responsible for predicting Ot+n+1, and close

to the boundaries of the regions, the predictions of multiple PLGs are smoothly mixed together.

Figure6.1 illustrates the process.

How might such a model generalize across the state space? The example of Figure 6.2 (and the

lower-right corner of Figure6.1) builds some intuition: near the Gaussian centers, the individual

PLGs are nonlinearly mixed. Further away from the centers, a single PLG becomes responsible for

the space, resulting in a linear function. Thus, the model interpolates nonlinearly, but extrapolates
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linearly. This contrasts sharply with a mixture of un-renormalized Gaussians(also shown in Figure

6.2): as we go further away fromtheir centers, the function definingOt+n+1 would go to zero.

The kernels are the mechanism we use to define the regions of responsibility, and so the parameters

of the kernels (in this case, the mean and variance of the Gaussian) becomea parameterization of the

regions. In this context, our choice of Gaussian kernels was not arbitrary. One advantage to them

is that changing their parameters allows us to specify in a natural way exactlyhow the individual

PLGs will be mixed together. The left-hand side of Figure6.1 demonstrates one aspect of this: as

the Gaussians overlap less and less, the transition between mixture components becomes sharper

and sharper, and approaches a sort of soft Voronoi tessellation ofthe space. Of course, the distances

used to define the Voronoi tessellation are skewed by the covariance matrices in the Gaussians.

6.1.2 Comparison to the KPLG

In the introduction we partly motivated the MPLG with three reasons that the KPLG is insufficient

to replace the PLG: generalization, the noise terms, and parameter stability. The first two issues

are theoretical, and we now briefly discuss how the MPLG addresses them,but the final issue is

empirical, and so a discussion of it is deferred until Section6.4.

First, the MPLG is expected to generalize the dynamics better outside of the training region than

the KPLG, especially when the KPLG uses Gaussian kernels. Figure6.2 illustrates the difference

between the two by illustrating a training set (left panel) and the trained models (middle and right

panels). Both models interpolate nonlinearly in the region of the training data, but asFn goes

further away from the training region, the behavior diverges. The leftpanel illustrates this for the

KPLG. Because the magnitude of the Gaussians tends to zero, the model in Eq. (5.1) will always

return something close to zero as a prediction forOt+n+1. We expect a priori that this is not the

correct behavior for a dynamical model. The right panel shows the behavior for the MPLG: far

away from the training data (and from theξj ’s) the MPLG generalizes linearly, because a single

PLG ends up with all of the weight.

The other insufficiency is more subtle. The termηt+n+1 in the KPLG has the same properties as in

the PLG, and in particularCov[ηt+n+1, F
n] = Cη. The value ofCη does not depend onFn. Recall

that the representational power of the PLG comes from this property of thenoise term, and while

a constant value over all ofFn might be fine in a linear system, it is easy to construct nonlinear

examples whereCη should vary withFn. Rewriting the PLG in the dual form to derive the KPLG

has failed to capture this. For an example of this, consider again Figure6.2on the left. The figure

showsOt+n+1 as a function ofFn, with dynamics that are piecewise linear. Each piece can be

perfectly modeled with with a different PLG: on the right, the parameters areg = 1, Cη = −0.1,

andb = 0. On the left, everything flips signs: the trend isg = −1, and the noise term isCη = 0.1.

We see that in this case, we wantCη to vary as a function ofFn, which is impossible with the

KPLG. In contrast, the MPLG usesJ noise terms, each with different properties. Since these are

77



−0.5 0 0.5
−0.5

0

0.5

1

1.5

F
t

O
t+

n+
1

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

F
t

O
t+

n+
1

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

F
t

O
t+

n+
1

Figure 6.2: A simple piecewise linear dynamical system. The training data is shown on the left
panel. The middle panel shows the results of training the KPLG on the data, witha Gaussian kernel
(kernel weights are shown on the bottom). Note the poor generalization outside the training region.
The right panel shows the MPLG, with two centers (renormalized weights are shown on the bottom).
Note the linear generalization.

combined with weights that are a function ofFn, there is effectively acompositenoise term which

indirectly depends onFn.

6.2 Hybrid Particle-Analytical Inference
We have been discussing how to modelOt+n+1 as a function ofFn, but this is only part of the

total state update mechanism. Recall that the state update (Eqs.4.3 and4.4) requires three terms:

Et = E[Ot+n+1], Ct = Cov[Ot+n+1, F
n] andVt = Var[Ot+n+1]. ComputingEt, Ct andVt in

closed form is usually impossible for complicated extension functions. Not only is the extension

function of the MPLG nonlinear, it involves far more random variables: bymixing J PLGs together,

we now haveJ noise terms, each of which is a random variable which must be propagated through

the extension function.

This section discusses our hybrid inference algorithm, which elegantly sidesteps the difficulties

using a form of Rao-Blackwellisation. The discussion relies on an understanding of the sigma-

point approximations presented in Section5.1.1. Given ak-dimensional multivariate Gaussian, a

sigma-point approximation instantiates2k sigma-points, each of which is propagated through the

nonlinear functionf(). A naive use of sigma-point approximations in the context of the MPLG

would be to construct2(n + J) points, based on the joint Gaussian:

P =




Fn

η1
t+n+1

...

ηJ
t+n+1




∼ N







µt

0
...

0




,




Σt C1
η · · · CJ

η

C1T
η σ21

η · · · 0
...

...
.. .

...

CJT
η 0 · · · σ2J

η







.

This is particularly inefficient ifJ is large (say, hundreds or thousands), because it results in2(n+J)

distinct values forFn, and thus inO(J2) kernel evaluations.

There is a much better way, which is based on the following crucial observation: that although there
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aren + J random variables, the nonlinearities in the model which arise because of theweight-

ing function only involve then variables in the vectorFn. We can combine this insight with the

smoothing properties of conditional expectations (also called the conditionalexpectation identity),

which in the case of the MPLG states that

Et = EF n

[
E[Ot+n+1|F

n = f i]
]

Ct = EF n

[
E[Ot+n+1F

n⊤|Fn = f i]
]
− E[Ot+n+1]E[Fn⊤]

Vt = EF n

[
E[Ot+n+1O

⊤
t+n+1|F

n = f i]
]
− E[Ot+n+1]E[O⊤

t+n+1].

Our strategy is to combine these facts bypartially instantiating sigma-points – in particular, we only

instantiate2n + 1 sigma-points describingFn. Giventhose sigma-points, the interior expectations

are analytically tractable, and we compute the exterior expectationsover those sigma-points.

We will begin by computing the “interior expectations,” which are the termsEt, Ct andVt given

Fn = f (i), which we will denoteE(i)
t , C

(i)
t , andV

(i)
t , respectively.

We start withE(i)
t . Letf (i) be thei’th sigma-point, of which there are2n+1. For each sigma point,

we can use the mixing weight equation Eq.6.4to compute a vector ofJ weights:

wi = w(f (i))

with wi ∈ RJ×1. Now

E
(i)
t = E

[
Ot+n+1|F

n = f (i)
]

= E




J∑

j=1

(wi)j(g
jT f (i) + bj + ηj

t+n+1)|F
n = f (i)





=
J∑

j=1

(wi)j

(
gjT f (i) + bj + E

[
ηj

t+n+1|F
n = f (i)

] )

=
J∑

j=1

(wi)j

(
gjT f (i) + bj + CjT

η (Σ−1
t )(f (i) − µt)

)
. (6.5)

This looks almost like a standard PLG, except for the additional termCjT
η (Σ−1

t )(f (i) − µt). This

comes from the noise terms, because even though they are mean-zero, they covary withFn.

It is now convenient to re-express this equation in a matrix-vector form to clarify the rest of the

equations. We will start with the noise terms, which we treat specially to simplify therest of

the equations. LetL ∈ RJ×n be a matrix whosej-th row is CjT
η and letQ be a vector with
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Qj = ηj
t+n+1. Then:

Fi = E
[
Q|Fn = f (i)

]
= LΣ−1

t (f (i) − µt).

Fi is a vector∈ RJ×1 which captures the effects of how the sigma point covaries with each of the

J noise terms.

We can now re-express Eq.6.5 in matrix-vector form. LetG ∈ RJ×n be a matrix whosej-th row

is gjT , and define vectorB with Bj = bj . Then

E
(i)
t = E

[
w⊤

i (Gf (i) + B + Q)|Fn = f (i)
]

= w⊤
i (Gf (i) + B) + Fi

= Hi + Fi.

Here, we have split the result into two parts: theHi part captures the trend and bias, while theFi

captures the noise terms. Now, we can efficiently computeC
(i)
t andV

(i)
t . Let M ∈ RJ×J be a

diagonal matrix whereMj,j = (σ2
η)

j . Then:

E
(i)
t = E

[
Ot+n+1|F

n = f (i)
]

= Hi + Fi (6.6)

C
(i)
t = E

[
Ot+n+1F

n⊤|Fn = f (i)
]

= (Hi + Fi)f
iT (6.7)

V
(i)
t = E

[
O⊤

t+n+1Ot+n+1|F
n = f (i)

]

= HiH
⊤
i + HiF

⊤
i + FiH

⊤
i +

w⊤
i (D − diag(diag(LΣ−1

t L⊤)) + FiF
⊤
i )wi (6.8)

We compute Eqs. (6.6)-(6.8) for each sigma-point, and then use expectations over them to compute

the final terms:

Et =
1

2n + 1

2n+1∑

i=1

E
(i)
t (6.9)

Ct =
1

2n + 1

2n+1∑

i=1

C
(i)
t (6.10)

Vt =
1

2n + 1

2n+1∑

i=1

V
(i)
t . (6.11)

This completes our development of the hybrid-particle analytical inferencemethod.
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The general method is summarized as follows:

• Instantiate sigma-points for the minimum number of variables needed to make the
model tractable.

• Analytically compute terms based on the model given the sigma-points.

• Compute posterior statistics using expectation smoothing over the sigma-points.

The final algorithm is shown in Figure6.3.

6.3 Model Learning
The MPLG requires several parameters. First, the dimensionn of the system, and the parameters

describing the mixing weights. In the case of renormalized Gaussian kernels, these are the basis

function centersξj , weightsαj , and the covariance matricesφj . For each PLG, the individual PLG

parametersgj and noise statisticsCj
η and(σ2

η)
j are also needed.

We are interested in learning the parameters from training data. This data will be given as a set of

trajectories from the system, with each trajectory consisting of at leastn + 1 sequential observa-

tions. As in previous algorithms, we will use the suffix history method (which is explained in detail

in Section3.4, and which we briefly recap here). We will slice these trajectories into all possible

training pairs(fn
t

(i), ot+n+1) wherefn
t

(i) ∈ Rn is a vector ofn successive observations (represent-

ing a noisy sample of someOt), andot+n+1 ∈ R is the(n + 1)-th observation (a sample of the

correspondingOt+n+1, or the state extension). We then collect the pairs into the setS. Figure5.3

graphically illustrates the process.

Model Order Selection. We must first estimate the order of the model, which includes the system

dimensionn and the number of basis functionsJ . For our experiments, we use cross-validation to

select parameters from a set of likely candidates. More detail on this step can be found in Section

5.2, where the same problem is discussed in the context of the KPLG.

Finding Basis Function Parameters. Next, we must determine the basis function centersξj

and covariance matricesφj . As in the KPLG (Section5.2), we used the dictionary-based selection

method ofEngel et al.(2004). Specifically, we setφj = σ2
φI and then constructed a set offn

t
(i)’s

whose features are almost linearly independent.

Estimating Individual PLG Parameters. We can now determine the mixing weights for each

PLG at any point, so we estimate the parameters of each PLG individually, using weighted versions

of the regressions and sample statistics needed. To start, we collect eachot+n+1 into a vector

O ∈ R|S|, and collect eachfn
t

(i)⊤ into a matrixF ∈ R|S|×n. We then compute the weights for each
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Algorithm MPLG-HYBRID-PARTICLE-ANALYTICAL-INFERENCE

Input: µt, Σt

Given: f, K, ξ1, · · · , ξJ , φ1, · · · , φJ

Compute:
• Construct a set of2n sigma points describingFn:

fn
t

(2i−1) = µt + (
√

nΣt)i

fn
t

(2i) = µt − (
√

nΣt)i

• Compute a weight vector for each sigma point:

w(fn
t

(i))j =
K(ξj , f

n
t

(i); φj)∑J
k=1 K(ξk, f

n
t

(i); φk)

• For eachfn
t

(i), compute

E
(i)
t (Eq. 6.6),

C
(i)
t (Eq. 6.7) and

V
(i)
t (Eq. 6.8).

• Compute empirical posterior statistics:

Et =
1

2n

2n∑

i=1

E
(i)
t

Ct =
1

2n

2n∑

i=1

C
(i)
t − Etµt

Vt =
1

2n

2n∑

i=1

V
(i)
t − E2

t

Return: Et, Ct, Vt

Figure 6.3: Hybrid particle-analytical MPLG inference.
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training point using the renormalized kernels:

w(fn
t

(i))j =
K(ξj , f

n
t

(i); φj)∑J
j=1 K(ξj , fn

t
(i); φj)

.

We also define a normalizing constant as the sum of all of the weights for each PLG:

Nj =

|S|∑

i=1

w(fn
t

(i))j .

For each PLG, collect the weightsw(fn
t

(i))j into a diagonal weight matrixWj ∈ R|S|×|S|.

Now, we can estimate the linear trend for each PLGj using weighted least-squares:

ĝj = (F⊤WjF )−1F⊤WjY.

To estimate the noise statistics, we first compute the noise term for each training point from the

perspective of each PLG, which is

ηij = ot+n+1 − ĝj
⊤
fn

t
(i).

Then, the estimated variance ofηj
t+n+1 is

(̂σ2
η)

j = 1
Nj−1

∑|S|
i=1w(fn

t
(i))j(ηij)

2.

To estimateCj
η , we run the algorithm on the training data withCj

η = 0 and record our estimate of

µt at eacht, calledµi. We then compute

Cov[Fn, ηt+n+1] = E[(Fn − µt)(ηt+n+1)],

which is simply

Ĉj
η = 1

Nj−1

∑|S|
i=1w(fn

t
(i))j(f

n
t

(i) − µi)ηij .

While estimating both(σ2
η)

j andCj
η we have used the fact thatE[ηj

t+n+1] = 0 for all t.

Estimating KPLG and KAR Parameters. Parameters for the KPLG and KAR algorithms were

estimated similarly to those of the MPLG. Theξj ’s were selected with a dictionary, and theα’s were

computed using regularized least-squares kernel regression, withλ the regularization coefficient.

6.4 Experiments and Results
We tested the PLG, MPLG, KPLG and KAR algorithms on the same problems described in Sec-

tion 5.3.1. There was one linear dynamical system (the “Rotation” problem) and fournonlinear
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Figure 6.4: Qualitative comparison of parameter stability. Shown is the density of all MSEs gener-
ated. Curves that are more tightly peaked indicate greater parameter stability,while curves that are
farther to the left indicate better MSE.

dynamical systems (the “Biped,” “Peanut,” “NB3,” and “Spring” problems), where the underlying

generative model was known. We also tested on three well-known timeseriesbenchmarks (Santa Fe

Laser, Mackey-Glass, and K.U. Leuven). A sigma-point approximation was used for the KPLG.

Parameters were selected by 10-fold cross-validation. Algorithms were judged on the mean-squared

error (MSE) of their predictions, meaning we are not attempting to estimate latentstate (but we

are allowed tousestate). All data sets were normalized to be in[0, 1]. All algorithms used the

Gaussian kernel. For the initial state, we setΣ0=1e−5I andµ0 to be the firstn values of the test

sequence. Algorithms were tested onn=2, · · · , 6, σ2
φ=0.1, 0.4, 0.8, 1.2, λ=0.00001, 0.001, 0.01, and

ν=0.0001, 0.001, 0.01 (ν is the dictionary threshold). All problems except Laser were trained on

2000 sequential observations and tested on a 200 observation continuation; Laser had 1000 training

and 100 testing observations.

6.4.1 Results

Figures6.4and6.5summarize our results, which are very encouraging. Figure6.4shows the results

qualitatively. Each parameter setting for each algorithm generated a MSE; the figure plots their log

distribution. This examines the expected performance for any given parameter setting; a sharply

peaked distribution on the left side is desired (implying low expected MSE). Outliers are lumped on

the right-hand side.
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Problem Best Problem Best

Rotation PLG Spring KAR
Biped MPLG M.G. KAR
Peanut MPLG Leuven MPLG/PLG
NB3 MPLG/PLG/KAR Laser KAR

Figure 6.5: MPLG empirical results on the short-term prediction problem. Shown are the best
performing algorithm(s) for each test problem.

From Figure6.4, three results are evident. First, the MPLG’s density curve is often stacked on the

left-hand side, as desired. The curve is also more peaked than that of other algorithms, indicating

that its performance is less sensitive to the exact choice of parameter. It also shows fewer outliers

than the KPLG.

Figure6.5shows our results quantitatively. Here, we have used 10-fold cross-validation to select pa-

rameters; all algorithms with an MSE within 5% of the lowest are reported as “Best.” The MPLG is

among the best performing algorithms on four out of eight problems, and in particular, it performed

well on the nonlinear dynamical systems, where there reallyis an opportunity to leverage infinite

memory via state. In contrast, KAR has performed well on the timeseries problems; in particular, it

wins on the Mackey-Glass series, which reallyis an autoregressive model. The exception is Spring,

but this is expected: it is deterministic and noiseless, son past observations andn predictions are

equivalent; the uncertainty the MPLG/KPLG models is unhelpful. PLG won on the linear problem,

which is also unsurprising.

Together, the quantitative and qualitative results suggest several conclusions. First, that not only are

the very best MSEs often obtained with the MPLG, but for any given parameter setting, the MPLG is

likely to outperform other models. Second, that the nonlinear models are outperforming their linear

counterparts. Third, that the MPLG is superior to the alternative nonlinearversion of the PLG, the

KPLG. Fourth, that the MPLG is indeed capturing state, and is therefore superior to autoregressive

models in situations where state can be leveraged. Not reflected in these results is the fact that the

best parameters were rarely selected for KPLG because of outliers in thecross-validation runs, but

this is part of the point: MPLG is more stable than KPLG.

6.5 Application to a Traffic Prediction Problem
We now present an application of MPLGs to a traffic prediction problem. Thegoal of this section

is threefold: first, we wish to apply the MPLG to a richer domain than the timeseriesproblems we

have dealt with so far, by investigating the hypothesis that driving behavior can be captured more

accurately with the MPLG than the PLG. The second goal of the section is to generalize the MPLG

mixing equations to allowanyvariable to be used to define mixing weights, including unmodeled

“context variables”. Third, we present a mechanism to help optimize the choice of mixing regions.

The problem statement for this application is to model the dynamics of traffic flowbased on the
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NGSim traffic data set from the Federal Highway Administration1. The data consists of approxi-

mately 15 minutes of traffic data on Interstate 80. About 3,000 cars are individually tracked, and

variables such as their position, velocity, acceleration, and distance to other cars is reported every

1/10th of a second. At one level of abstraction, the problem is trivial: a PLG trained naively on

position, velocity and acceleration variables will recover basic Newtonian dynamics. However, it

seems clear that driving behavior is context sensitive: predicting actionssuch as braking or lane

changes for a given car depends on the cars around it.

To use the MPLG in such a problem, the key problem is determining how to split theproblem space

into regions such that the dynamics are linear within each region. We examine different splitting

variables, experimenting with both continuous and discrete splitting variables.The general idea is

to define some sort of splitting criteria which divides the problem space into different regions. The

splitting criteria can be based on state variables (such as the position and velocity of a car), context

variables (such as the relative velocity of a neighboring car), binary variables (presence/absence of

a neighboring car), or even more abstract variables (is the driver of the car to my right crazy?).

We ran two sets of experiments, which used two different kinds of contextvariables in order to define

mixing weights. We discuss the choices below, and then present the results,generally concluding

that many different choices of context variables could improve the model’squality.

6.5.1 Generalized Mixing Variables

In the previous exposition of the MPLG, we used solely the variableFn to define our mixing

weights. Here, we introduce the idea thatanyvariable could be used to compute the mixing weights.

Importantly, these variables may or may not be modeled – they may be state variables, control

variables, other exogenous variables or any combination of the above. To clarify this, consider the

original MPLG extension equation, defined as:

Ot+n+1 =
J∑

j=1

w(Fn)j

(
gj⊤Fn + bj + ηj

t+n+1

)
.

These weightsw(·)j are a function solely ofFn. Here, we generalize this such that

Ot+n+1 =
J∑

j=1

w(Ct)j

(
gj⊤Fn + bj + ηj

t+n+1

)
.

whereCt is any variable which is available at timet (Ct is a mnemonic for “context variable”).

To see the importance of allowing contextual variables to help define dynamicswithout modeling

those variables, consider the example of weather and driving. We may achieve better accuracy if

we have different models depending on the weather: one model might be appropriate for rainy

1Available from http://ngsim.fhwa.dot.gov/
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weather, and another might be appropriate for dry weather. A mixture of the two models might

be appropriate for misty or drizzling weather – but under no circumstancesdo we wish to have to

predict the weather in order to create a good driving model!

Another subtle difference between using context variables to define mixingweights and using the

variableFn is the fact that the context variables are not considered random variables. That is, they

are simply given at each timet. This means that, unlike the case of usingFn, we do not have to

propagate a random variable through the mixing weight equations, meaning that the sigma-point

approximations are not necessary. Thus, at each timet, we observe the context variable, compute

the mixing weights, and then compute an “aggregate PLG,” which is defined through a weighted

combination of parameters. For example, the termEt is computed as:

Et = E[Ot+n+1]

= E[
J∑

j=1

w(Ct)j

(
gj⊤Fn + bj + ηj

t+n+1

)

=
J∑

j=1

w(Ct)j

(
gj⊤E[Fn] + bj + E[ηj

t+n+1]
)

= Ew[g]⊤E[Fn] + Ew[b]

= Ew[g]⊤µt + Ew[b]

where we have definedEw[·] to be the expectation with respect to the weights. Similar expressions

hold forCt andVt.

We see that this equation looks just like an ordinary PLG extension equation (cf. Eq. 4.5), except

the trend parameterEw[g] of this PLG is an aggregate ofJ other PLGs’ trend parameters. The same

is true for the bias term isEw[b]. The important point is that although these parameters vary with

time, at any given time they are fixed, so the variableFn can be propagated normally through the

resulting equations.

6.5.2 Continuous Contextual Variables

The first contextual variables we used were the quantitiesy-velocity, y-acceleration, headwayand

change-in-headway. They variables represent the velocity and acceleration of the car in the direc-

tion of travel. The headway variable represents the distance from the current car to the car directly

in front of it, in the same lane (measured in feet). The variable change-in-headway is a derived

quantity, which effectively representing the relative velocity of the car in front of the current car.

For this experiment,J “centers” were sampled from the training data, andJ corresponding PLGs

were created. The mixing weights were defined in the ordinary way, except that they are a function
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Figure 6.6: A Voronoi diagram plotting the tessellation of context variables.Shown is the tessella-
tion of “Headway” and “Change-in-headway”. The centersξj are shown as circles, and the regions
are shown with lines.

of the current context variableCt, instead ofFn:

w(Ct)j =
G(Ct; ξj ; σ

2)∑
k G(Ct; ξk; σ2)

. (6.12)

Here, theξj ’s are the randomly sampled centers,G() is a spherical Gaussian kernel andσ2 is the

variance. Context variables were scaled to have approximately unit variance.

Using the context variables in this way effectively creates a soft Voronoi tessellation of the dynam-

ics. Figure6.6shows a diagram representing a scatter plot of samples of two of the context variables

(“headway” and “change-in-headway”) as well as the centers and their respective Voronoi regions.

A PLG was then learnt for the set of samples corresponding to each region, using the weighted

learning algorithms of Section6.3.

6.5.3 Binary Contextual Variables

The second set of experiments examined the effect of splitting on “radar variables.” Radar variables

were derived from the cars around the current car by discretizing theregion around the car into a

31 x 21 grid. Inside of each grid square is a binary random variable representing the presence or

absence of a car at that location. The grid extended approximately 80 feet in front of the car, and

about 20 feet behind and to either side. The gridding was done uniformly.This is shown in Figure

6.7, left and middle panels. Thus, in the case, the context variableCt is a binary vector∈ R651.

We ran a slightly different kind of experiment using these variables. Mostof the weighting schemes

we have previously used rely on Gaussians or other kernels and definesoft mixing weights. Here,
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we use binary weights, which define hard regions. We experimented with each radar variable to

determine its quality as a context variable. For a given radar variablei, we assigned training samples

one of two sets, depending on whether the variableCti was on or off for that sample.

w(Ct; i)0 = δ(Cti, 1)

w(Ct; i)1 = δ(Cti, 0) (6.13)

whereδ(i, j) is the Kronecker delta. Thus, each variable split the training set into two regions (not

necessarily of the same size). PLGs were then learnt for each region.

6.5.4 Experiments

The general experimental procedure is simple. Given a weight equation (either Eq. 6.12 or Eq.

6.13), PLGs are learned from data using the weighted regressions and samplestatistics of Section

6.3, and the resulting models are combined together to form a composite dynamical system. At each

timestep, the aggregate PLG was formed, and we used the standard PLG update equations.

It is important to note that when learning a PLG, we only used two variables from the NGSim data:

x position andy position. Because the PLG is capable of modeling linear dynamical systems, and

because of the linear relationship between position, velocity, and acceleration, these were sufficient

to account for the vast majority of vehicle dynamics. For all experiments, wesetn (the length of

the window into the future) to 3. There were about 12 million data points.

We tested all algorithms on a set of data for about 300 cars, asking them to make one-step predictions

at each timestep. We judged all algorithms on both MSE and log-likelihood of the predictions. We

used steady-state filtering to help alleviate numerical problems with the covariance matrices. For

comparison, we trained a 3rd order AR model, as well as a standard PLG withn = 3. The overall

results are shown in Figure6.11, but we will present numerous other results first.

Figure6.8 shows the results of our first experiment using the continuous contextualvariables. For

this experiment, we tested whether or not using randomly sampledξj ’s would be beneficial. There

are two parameters to choose: the number of basis functionsJ , and the width of the Gaussiansσ2.

We experimented withJ = 2, 4, 8, 16, 32, 64 and100, and withσ2 = 0.01, 0.1, and1.0.

The figure shows a number of interesting phenomena. Consider the top row, corresponding to

σ2 = 0.01. Here, adding more basis functions generally had two effects: first, the log-likelihood of

the data went up, and second the MSE went down. In addition, the variance of the likelihood was

much lower for larger numbers of basis functions, which is to be expected:the context variables are

4 dimensional, so it is easy to imagine that 100 regions will more or less capture allof the interesting

behavior there is, while having only2 regions could capture very different behavior depending on

the exact split between the regions (for a pictorial example of this, see Figure6.9).
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Figure 6.7: Results of using radar variables for splitting. On the left, the road context of a car. The
filled square is the current car, and the large box around it is the radar extent. In the middle: the
resulting binary radar image. On the right: results of splitting on radar variables. Color represents
the norm of the error term, which is related to MSE. Lower is better.

One might wonder why the likelihood went up so dramatically, while the error was only reduced

slightly. Higher likelihood results from making more confident predictions, indicating that the

learned PLGs generally has smaller noise terms. This is probably due to smallerlearnt noise terms,

and may be a consequence of eliminating outliers / noisy samples from the data set (since those

will tend to be associated with outlying regions). On the other hand, it is difficult to improve upon

the basic Newtonian physics of position, velocity and acceleration at the short timescales used here

(recall thatn = 3, and that each timestep represents 1/10th of a second). It is likely that we are

not capturing large-scale driving behaviors, but rather more subtle effects. For example, cars might

tend to brake more if there is another car close (the headway variable is small)and the distance is

decreasing (change in headway is negative).

Another interesting effect is related to the Gaussian’s variance. The top row has the smallest Gaus-

sian width, while the bottom row has the largest. With the smallest Gaussian, thereis a pronounced

difference between smallJ and largeJ . With the wider Gaussians, adding more regions does not

help as much. This is probably because with very flat Gaussians, the weights don’t change very

much depending on the number or positions of the Gaussians – effectively,every Gaussian is as-

signed to cover the entire space, and the result is roughly equivalent to using a single PLG.

Similar results, although not as strong, were obtained when splitting on the radar variables. Figure

6.7 shows a thermal image of each radar variable. The color of each variablerepresents the norm

of the noise term (a rough indicator of MSE) which resulted from splitting the dynamics on that

variable. The car is shown as a black box in the middle of the radar image.

Here, it is clear that splitting on variables directly in front of the car tend to yield the best composite
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Figure 6.8: Results of sampling random centers on the traffic prediction problem. The left column
shows log-likelihood and the right shows MSE. The top row usesσ2 = 0.01, the middle row
σ2 = 0.1, and the bottom rowσ2 = 1.0.
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models. We hypothesize that this is due to the same braking behaviors: if thereis a car very close

to the front-center of the current car, it is likely that the dynamics will be slightly different than the

dynamics of when there are no cars around. A more detailed investigation is needed to validate this

hypothesis.

6.5.5 Optimizing Choice of Centers

The results in the previous section indicate that a larger number of regions generally result in higher

accuracy and increased confidence. However, especially for small numbers of regions, the variance

in both MSE and log-likelihood was fairly large. In this section, we adopt a different modeling

strategy: instead of randomly sampling centers, weoptimizethe choice of centers. While such an

optimization process would be possible in the context of the more general MPLG (with mixing

weights defined as a function ofFn), it is particularly easy in the case of context variables because

they are not considered random variables.

In this section we develop a simple gradient based optimizer. In both the PLG and the MPLG,

parameter estimation is a straightforward linear regression and sample statistics. Our approach to

optimization will be to measure the sum-squared error of the regression, andthen take its gradient

with respect to theξj ’s. We will assume that we have a training set which consists of samples from

Zt andOt+n+1. We will denote these sampleszi andoi. We define the residual of each datapoint as

ri =
∑

j

w(Ci; ξj)(g
j⊤zi + bj) − oi (6.14)

where the weights are defined in Eq.6.12 (we only consider the case of soft weights). The sum

squared error for the entire dataset is:

SSE =
T∑

i=1

r⊤i ri. (6.15)

In Eq. 6.12, eachξj is the basis function center. These are the variables we wish to optimize, but we

are also looking for the regression parameters at the same time. Because there are effectively two

sets of variables we are optimizing, we adopt an EM-style optimization algorithm (Dempster et al.,

1977). We will begin by fixing the basis function centers, computing the weights, regressing and

computing the residuals. We will then compute the gradient of the sum squarederror with respect

to our basis function centers, holding the regression parameters constant.

The gradient of SSE with respect toξl is given by:

∂SSE

∂ξl
=

∂

∂ξl

[
T∑

i=1

r⊤i ri

]
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=
T∑

i=1

2r⊤i
∂

∂ξl




∑

j

w(Ci; ξj)(g
j⊤zi + bj) − oi





=
T∑

i=1

2r⊤i
∑

j

(gj⊤zi + bj)
∂

∂ξl
[w(Ci; ξj)] (6.16)

where the third line follows by the fact that we are holding the parameters of PLG constant. We now

must compute how the weights change as the basis function centersξl change. In general, this will

depend on the kernel used to define the mixing weights. We assume, as we have assumed before,

that the kernel is a Gaussian, and thatξl is the mean of that Gaussian. The only trickery in this

derivative is to notice that the renormalization step means that every weight depends on every basis

function center. We will therefore split this derivation into two parts: the first is for whenl = j, and

the second is for whenl 6= j.

Case 1(l = j):

∂w(Ci; ξj)

∂ξl
=

∂

∂ξl

G(Ci; ξl; Σl)∑
k G(Ci; ξk; Σk)

(6.17)

= (N − G(Ci; ξl; Σl))G(Ci; ξl; Σl)(−Ci − ξl)(Σ
−1
l )/N2 (6.18)

whereN =
∑

k G(Ci; ξk; Σk) is the normalizing constant.

Case 2(l 6= j):

∂w(Ci; ξj)

∂ξl
=

∂

∂ξl

G(Ci; ξj ; Σl)∑
k G(Ci; ξk; Σk)

= −G(Ci; ξj ; Σj)G(Ci; ξj ; Σj)(−Ci − ξj)(Σ
−1
j )/N2 (6.19)

whereN =
∑

k G(Ci; ξk; Σk) is the normalizing constant.

The optimization procedure is now simple. We can compute the gradients of the sum-squared

error in Eq. 6.15, by computing Eq.6.16, Eq. 6.17, and Eq.6.19. We then use those gradients

in any gradient based optimizer we wish, such as steepest descent, LBFGS, etc. In general, this

optimization problem is non-convex, which means that more advanced optimization methods (such

as homotopy optimization, momentum-assisted gradient descent, etc.) may improve the solution.

6.5.6 Results of the Center Optimizer

To validate the idea of the center optimizer and to build intuition, we first presenta small toy

data set. Figure6.9 shows an example of the use of the gradient optimizer. The figure shows

data which resembles a standard broken-stick dataset (Toms and Lesperance, 2003), which could

be well modeled with two mixture components (if they were known). The left-sideshows the

results of using two randomly sampled basis functions to define the mixing weightsand hence the
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regions. Unsurprisingly, the resulting regions do not respect the natural break in the data, and the

result is a poor model. The right-hand side shows the results after optimizing the choice of basis

function center using a naive steepest descent optimizer with a simple line search, after 10 iterations.

We see that the resulting Gaussians define weights which divide the data almost perfectly into the

appropriate halves, and the overall model fits much better: the error is lower, and the variance is

also lower.

Figure6.10shows the results of the center optimizer on the traffic data. There are several points

worth noticing in each panel, so we deal with each in turn and then draw a fewgeneral conclusions.

The panel in the upper-left shows the change in the objective function before and after optimization.

For example, when using 32 basis functions, the average SSE was about4.2e4 before optimization,

and about 4.1e4 after optimization. Both numbers had fairly low variance. This implies that the

gradient optimizer was able to successfully reduce the objective function,and that the effect was

more pronounced as the number of basis functions increased.

But did this translate into actual gains in modeling accuracy for the MPLG? Theresults are mixed.

The panel in the upper-right shows the log-likelihood of the data before and after optimization. In

general, the optimizer was able to produce an increase in likelihood, and the increase was more

statistically significant as the number of basis functions increased. However, the data suggests

a stronger conclusion, which is that adding more basis functions has a muchgreater effect than

optimizing a fixed number of them. The move from 4 basis functions to 32 basis functions results

in a much greater gain in likelihood than the move from 32 unoptimized basis functions to 32 basis

functions.

The story is about the same for MSE (shown in the bottom panel of Figure6.10), although here the

trend is less clear. For small numbers of basis functions, the mean MSE actually went up as a result

of applying the optimizer, although the error bars are so large it is unlikely thiseffect is statistically

significant. At higher numbers of basis functions, the MSE looks like it is reduced, but again the

effect may not be significant. In any case, the change in MSE is very minor:about a 2% reduction

when using 32 basis functions.

There are two general conclusions here: first, the optimizer generally appears to successfully re-

duce the SSE, and second, this reduction does generally translate into the gains we are expecting

(increased likelihood and reduced MSE). None of the effects are verypronounced, however, which

suggests two things: first, it is difficult to improve on basic Newtonian dynamicsat the timescale

the data is operating at. Larger windows of time may reveal more interesting effects that could be

picked up by different regions, but at 3/10’ths of a second, there isn’t much variation. Second, the

context variables we have selected may not be the best ones. While they diddemonstrate some

effect, it is possible that other variables would have a much greater effect. It seems likely that the

gradient optimizer would have more pronounced effects with higher dimensional context variables.
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Figure 6.9: Optimizing MPLG centers. Choosing the appropriate centers forthe Gaussians defining
the mixture components of the MPLG can make a large difference in the quality ofthe regressions.
Shown on the left: the bottom figure shows the Gaussians used, and the middlefigure shows the
renormalized weights. The top figure shows data points (in green) which representOt+n+1 as a
function ofFn. The regression is poor because the weights do not respect the actualbreak in the
data. On the right: the equivalent figures for a different set of centers. These centers define regions
aligned much more closely with the natural break in the data, and the resulting function is a much
better approximation. The Gaussians on the right were obtained by using theoptimization routine
discussed in Section6.5.5.
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Figure 6.10: Optimization results on traffic prediction problem. Each plot represents a different
measure of the data: the upper-left is the sum-squared error objective function, the upper-right is
the log-likelihood on the test set, and the bottom is the MSE on the test set. The blue bars represent
the distribution before optimization, and the green bars represent the distribution after optimization.
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Algorithm Log-likelihood MSE

AR(3) 0.9098 0.0951
PLG 1.3489 0.00483
MPLG 1.4083 0.00475

Figure 6.11: A comparison of accuracies on the traffic prediction problem.

6.5.7 Observations

These results appear to validate our hypothesis: by treating traffic prediction as a nonlinear dynam-

ical system, more accurate models can be learnt. We have also investigated theidea of capturing

nonlinearities by modeling the dynamics in a piecewise linear way, where the pieces are defined

based on exogenous variables. The idea is simple, and seems to be moderately effective.

We have shown that a few simple splitting choices has resulted in models that are better than

naive linear models. However, these choices were largely ad-hoc, andmore sophisticated versions

would likely result in still better models. For example, when splitting on radar variables, the pres-

ence/absence of a car about 10-20 feet in front of the current carseems to be important. However,

this variable only incorporates first-order information. Higher-order features may help here: it may

be useful, for example, to know if there is a car in frontandwhether or not it is getting closer. For the

case of continuous context variables, it appears that using more basis functions has a much greater

marginal effect than optimizing the choice of centers, but it is possible that this would change in

higher dimensional spaces.

The difficulty in identifying both the appropriate splitting variables, as well as the regions used in the

splits suggests that more automated ways of searching for good regions is important. Our gradient

optimizer is an example of such an approach, but other techniques are possible. This problem can

be viewed as a sort of dynamical clustering problem, which means that many different machine

learning techniques could be applied to it. For example, dynamical versions of k-means clustering,

decision tree clustering, or spectral clustering could all be considered.

We conclude this section with a summary of the different algorithms. Figure6.11shows a summary

of three different algorithms trained and tested on the traffic data: a 3rd order autoregressive model

(AR), the linear PLG, and the best variant of the MPLG (32 optimized basis functions). We see

that the MPLG shows the best results, with the most pronounced difference being the increased

likelihood.

6.6 Conclusions and Future Work
We set out in this chapter to improve the KPLG by proposing a generative probabilistic model,

which we can interpret as a mixture of PLGs. We have also contributed a general hybrid particle-

analytical inference method, which appears to be accurate and which makes our model tractable. It

improves sigma-point approximations in general, and could find application in other contexts.
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The MPLG has experimentally demonstrated good, stable performance on almost all of the problems

tested here. On the timeseries problems of Section5.3, the MPLG outperformed the KPLG in every

test, and often outperformed the KAR algorithm. On the traffic domain, the MPLGoutperformed

both the PLG and an autoregressive model by using context variables to define linear regions.

In addition to empirical stability of parameter estimates, the MPLG seems to be a more flexible and

naturally interpretable model class than the KPLG, and allows us to easily extend the model. We

demonstrated this in the context of the traffic modeling problem, where it was easy to incorporate

domain knowledge into the creation of mixing weights. The idea of piecewise linear dynamics is

simple to grasp, to deal with, and to extend. In contrast, it can often be challenging to design an ap-

propriate kernel which flexibly incorporates domain knowledge and satisfies the Mercer conditions.

Perhaps the most significant drawback to the KPLG and MPLG models is the assumption that the

future is Gaussian. While this has worked well for the low-dimensional problems considered here,

it seems unlikely that the Gaussian will be an appropriate density estimate of the distribution of

future observations in the case of high-dimensional and/or highly structured observations. In those

cases, a more appropriate density estimate needs to exploit structure. In other words, a reasonable

next step would be to replace the Gaussian with some sort of graphical model.

In the next section we do exactly that by generalizing the Gaussian to a generic exponential family

distribution, to create the Exponential Family PSR.
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Chapter 7

Exponential Family Predictive Representations of State

Chapters4 - 6 presented the PLG family of models, which all assume thatp(Fn|ht) is Gaussian and

represent state as the parameters of that Gaussian. However, it is generally accepted that Gaussians

and mixtures of Gaussians are poor models in high-dimensional spaces (Hinton, 2002; Aggarwal

et al., 2001). This has motivated research into graphical models which are able to exploit structure

in high-dimensional spaces.

We now present the Exponential Family PSR (or EFPSR). Like the PLG family,the EFPSR model

represents state as the parameters of the distributionp(Fn|ht), but it modelsp(Fn|ht) using a

general exponential family distribution. Also like the PLG family of algorithms, theEFPSR model

updates state with an extend-and-condition algorithm. The model is more general than either the

PLG family or PSRs: because of the flexible nature of the exponential family of distributions, the

EFPSR is capable of modeling domains with discrete or continuous observations (or a mixture of

both), and the extend-and-condition mechanism turns out to be quite general. As a consequence, we

show in Section7.2 that the EFPSR can represent any system which can be modeled by a PSR,a

PLG, or a KPLG/MPLG. From that perspective, the EFPSR is an important unification of the work

in the rest of this thesis.

Like other models in this thesis, the EFPSR has no hidden variables, which setsit apart from other

graphical models of sequential data. It is not directly comparable in terms ofstate representation to

latent-variable models such as HMMs, CRFs (Lafferty et al., 2001), or Maximum-entropy Markov

Models (MEMMs) (McCallum et al., 2000), for example. In particular, EM-based procedures used

in the latent-variable models for parameter learning are unnecessary, andindeed, impossible. This

is a consequence of the fact that the statistics of interest are always related directly to observable

quantities.

This chapter presents the EFPSR in its most general form. It lays the groundwork for two different

specializations of the general model: in Chapter8 we specialize the general EFPSR to create the

Information PLG, and in Chapters9 and10 we specialize it to create the “Linear-Linear EFPSR,”

which is a model designed to function with high dimensional distributions and large data sets.
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7.1 The General EFPSR Model
We define an EFPSR model as a model with the following two properties: 1) it represents state as

the natural parameters of an exponential family distribution overFn|ht; and 2) it maintains state by

extending and conditioning. We now discuss each aspect in detail, but would like to point out that

this is a very general definition. In order to create a specific model in EFPSR form, three things

need to be selected: the features used by the exponential family distribution, the extension function,

and the conditioning mechanism.

7.1.1 State Representation

The EFPSR defines state as the parameters of an exponential family distribution modelingp(Fn|ht).

To emphasize that these parameters represent state, we will refer to them as st|ht, or simply st

(instead ofλt):

p(Fn = fn|ht; st) = exp
{

s⊤t φ(fn) − log Z(st)
}

, (7.1)

whereφ(fn) andst are both∈ Rl×1. Recall that at each timestep,Fn|ht is the random variable

representing the nextn observations, given history until timet: Fn|ht = [Ot+1 · · ·Ot+n|ht], where

eachOt ∈ Rd; thus, eachFn ∈ Rnd.

In AppendixD, we present background on the exponential family of distributions, as well as the

reasons motivating their use in the EFPSR. We recap them here: 1) the exponential family is the

natural generalization of the Gaussian used by the PLG family of algorithms, and is expected to

be a more accurate model of high-dimensional densities; 2) it is the maximum entropy distribution

subject to empirically determined constraints (and is therefore a reasonablyprincipled way to select

a distribution when learning from data); 3) it is the maximum likelihood distribution under reason-

able assumptions; and 4) it is capable of exploiting graphical structure by selecting the sufficient

statistics of the distribution carefully, as discussed in SectionD.3.

Representing state in this way implies that the EFPSR inherits both the advantagesand disadvan-

tages of graphical exponential family models: it is possible to describe conditional independencies

that exist between variables, but inference and parameter learning in themodel is generally hard.

Fortunately, all existing research on exponential family distributions is applicable, and in particular,

work on approximate inference.

7.1.2 Maintaining State

Selecting the form ofp(Fn|ht) is the density estimation component of the model. However, there

is also a dynamical component: given the parameters ofp(Fn|ht), how can we incorporate a new

observation to find the parameters ofp(Fn|ht, ot+1)? Our strategy is to extend and condition, in

exactly the same way as the PLG family of algorithms.

We assume that we have the parameters ofp(Fn|ht), which we denotest. We extend the distri-
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bution of Fn|ht to includeOt+n+1, which forms a new variableFn+1|ht, and we assume it has

the distributionp(Fn, Ot+n+1|ht) = p(Fn+1|ht). This is a temporary distribution with(n + 1)d

random variables.

In order to add the new variableOt+n+1, we must add new features which describeOt+n+1 and its

relationship toFn, which we capture with a new feature vectorφ+(fn+1). We define the vector

s+
t to be the parameters associated with this feature vector. Bothφ+(fn+1) ands+

t are vectors

∈ Rk×1. In general, when we add new features, the parameters associated with the original features

may change in order to retain the same properties of the distribution (for example, the parameters

may need to be adjusted to ensure that the marginals defined byp(Fn|ht) are the same as the

corresponding marginals defined byp(Fn+1|ht)). We will refer to the function which maps the

current state vector to the parameters of the extended distribution asthe extension function:

s+
t = extend(st; θ)

whereθ is a vector of parameters governing the extension function (and hence, the transition dy-

namics). Putting this all together, we arrive at the following form for the extended distribution:

p(Fn+1 = fn+1|ht; s
+
t ) = exp

{
s+⊤
t φ+(fn+) − log Z(s+

t )
}

. (7.2)

Once we have extended the distribution to model then + 1’st observation in the future, we then

condition on theactual observationot+1, which results in the parameters of a distribution over

observations fromt + 1 throught + n + 1:

st+1 = condition(s+
t , ot+1)

which are precisely the statistics representingp(Fn|ht+1), which is our state at timet + 1. Using

this method, we can maintain state for arbitrarily long periods, extending and conditioning for every

newao.

Although the sequence of state vectorsst are the parameters defining the distributionp(Fn|ht), they

arenot the model parameters – that is, we cannot freely select them. Instead, the model parameters

are the parametersθ which govern the extension function. This is a significant difference from

standard maximum entropy models, and stems from the fact that our overall problem is that of

modeling a dynamical system, rather than just density estimation.

There is only one restriction on the extension function: we must ensure thatafter extending and

conditioning the distribution, the resulting distribution can be expressed as:

p(Fn = fn|ht+1; st+1) = exp
{

s⊤t+1φ(fn) − log Z(st+1)
}

. (7.3)

This looks like exactly like Eq.7.1, which is the point: the feature vectorφ did not change between
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timesteps. From a graphical model perspective, this is equivalent to saying that the structure of the

graph does not change between state updates.

For many choices of extension function and conditioning function, the overall extend-and-condition

operation does not involve any inference. Thus, given an EFPSR model,tracking state can be

computationally efficient, and could be (for example) a simple linear operation.

Defining the state representation and state update mechanism completes the definition of the general

EFPSR model. We now examine what dynamical systems can be captured by models in this class.

7.2 Representational Capacity
When introducing a new model class, it is natural to wonder about how it relates to other well-

known models. In this section, we investigate which other classes of dynamical systems the EFPSR

can capture. We show that 1) every domain that can be modeled by a (linearor nonlinear) PSR with

a finite number of core tests can be modeled by an EFPSR; 2) every uncontrolled linear dynamical

system with scalar observations can be modeled by an EFPSR; and 3) some nonlinear dynamical

systems can be modeled by an EFPSR (specifically, those captured by the KPLG/MPLG). The

first claim implies that EFPSRs can also model every finite-state MDP, finite-state POMDP, finite-

state Hidden Markov Model, finite-state Markov chain, history-window (k-th order Markov) model,

diversity representation, interpretable OOM, or interpretable IO-OOM (see Chapter2).

The EFPSR requires three things in order to be a complete model: features, an extension function,

and a conditioning mechanism. For the proofs, we will present all three. Inall of our proofs, the

features and conditioning mechanisms are straightforward, although the extension functions are not

necessarily practical. Efficiency is not the point of this section: to explorerepresentational capacity,

we simply need to demonstrate thatsomesuitable extension function exists.

7.2.1 EFPSRs and PSRs

To prove that every PSR can be represented by an EFPSR, we present a constructive algorithm. The

goal of the proof is to show that given a PSR, we can construct an EFPSR which makes equivalent

predictions about the distribution of one-step future observations, and which can be updated such

that this equivalence holds for the infinitely long future. We will describe theconstruction of the

EFPSR in Section7.2.1and then present the theorem and final proof in Section7.2.1.

Constructing an EFPSR from a PSR

To define an EFPSR, we must define features, an extension function, and a conditioning mechanism.

We assume that we are given a fully specified PSR with two things:

1. Assume we have a set of core testsQ, and that the longest core test has lengthn. This set of

core tests does not have to be minimal.

102



2. Assume we have two functions which are used for a state update. Thesetwo functions are

a slight generalization of the Linear PSRs described in Section2.3, and are used so that

the proof accounts for both linear and nonlinear PSRs. To update state, PSRs require some

function to compute the probabilities of one-step tests and one-step extensions as a function

of the current state:

p(aoQ|ht) = gaoQ(p(Q|ht))

p(ao|ht) = gao(p(Q|ht)).

In the case of linear PSRs, these functions are matrix multiplications, as shownin Eq. 2.1.

Recall from Section2.3 that these two functions are sufficient to make any prediction about

the future by rolling the model forward.

We now construct the EFPSR by specifying features, and extension andconditioning functions.

• Features: We first describe how we can use tests as features. Given a window intothe future

of lengthn, the variableFn is composed of the2n atomic random variablesA1O1 · · ·AnOn.

Now let qi be a lengthk test, withk ≤ n. We can think of this as a feature of the future as

φ(Fn)i = δ(F k, qi).

In other words, featurei is binary indicator variable, returning 1 if the firstk actions and

observations inFn are equal to testqi, and zero otherwise.

The state at timet for a PSR is given byp(Q|ht), where theith entry of the state vector is the

prediction of core testqi, or p(qi|ht). Because the probability of a binary variable is also its

expected valued, we can reinterpretp(Q|ht) as a vector of expectations:

p(Q|ht) =




E[q1|ht]

E[q2|ht]

· · ·

E[q|Q||ht]




= E [φ(Fn|ht)] .

According to this interpretation, this is a vector of mean parameters. This factwill be used in

the extension function.

• State at timet: State at timet is the parameters of the exponential family distribution mod-

elingp(Fn|ht). The features that we use are the core testsQ of the given PSR, as well as all

possible one-step tests:

p(Fn|ht) = exp

{
∑

l

(λt)lql +
∑

mn

(λt)mnamon − log Zn(λt)

}
. (7.4)
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Note that the domain used to compute the log partition function isFn|ht, which includes

the nextn actions and observations. We have made this explicit by naming the partition

functionZn. To foreshadow things a bit, we state now that we will select the parameters of

this distribution such that its marginals match the predictions of the core testsp(Q|ht).

• The extension function: To define the extension function, we need to define a mapping

from the state vectorst to the vectors+
t , which are the parameters describing the extended

distributionp(Fn+1|ht).

Given an EFPSR statest, we use inference to compute the corresponding vector of mean

parameters, which we denoteµt. By construction, this vector contains expectations which

are the predictions of the core testsQ. We extract these to form the vectorp(Q|ht). We

then compute the one-step extensions to all of the core tests, where each core test is extended

by each possible action and observationaioj . We accomplish this by using the mappings

provided as part of the given PSR:p(aiojQ|ht) = gaiojQ(p(Q|ht)). Note that the longest

core test is now lengthn+1. We also compute the predictions of all one-step testsp(aioj |ht)

and two-step testsp(aiojakol|ht).

We now form a new vector of mean parameters, consisting of the expectations for one-step

tests, two-step tests, and one-step extended core tests. We can interpretthese new proba-

bilities as a mean parameterizationµ+
t overFn+1|ht, and is a vector which is realizable by

construction. We now translate from mean parameters back to natural parameters, to create

λ+
t . If the features defined by the core testsQ are linearly dependent, we may pick anyλ+

t in

the appropriate affine subspace of the image.

Note that both the mapping fromst to µt, and then fromµ+
t back toλ+

t are always possible

by the mean-value mapping theorems ofWainwright and Jordan(2003).

The vectorλ+
t now represents the natural parameters of a distribution overFn+1|ht, with

features defined by one-step tests, two-step tests and one-step extensions to core tests:

p(Fn+1|ht) = exp





∑

ijl

(λ+
t )laiojql +

∑

mn

(λ+
t )mnamon

+
∑

ijkl

(λ+
t )ijklaiojakol − log Zn+1(λ+

t )






Note that the domain used to compute the log partition function isFn+1|ht, which includes

the nextn + 1 actions and observations. We have made this explicit by naming the partition

functionZn+1.

• Conditioning: We now condition on the given action and observationamon. To do this, we

simply freezeamon to its given value, which is1 (because they are binary indicator variables).

Every term that involves an action and observation which is notamon drops out, because they
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are observed to have a value of0. This results in the following distribution:

p(Fn|htao) = exp

{
∑

l

(λ+
t )lamonql + (λ+

t )mnamon

+
∑

kl

(λ+
t )ijklamonakol − log Zn(λ+

t )

}

= exp

{
∑

l

(λ+
t )lql + (λ+

t )mn +
∑

kl

(λ+
t )ijklakol − log Zn(λ+

t )

}

= exp

{
∑

l

(λ+
t )lql +

∑

kl

(λ+
t )ijklakol − log Zn(λ+

t )

}

There are several effects that conditioning has had. Notice that this distribution specifies

features for each of the core testsql. It also specifies features for all of the one-step testsakol

– in other words, the conditioned distribution has exactly the same form as Eq.7.4. The term

(λ+
t )mn cancels with a similar term in the normalizing constant. In addition, the domain used

to compute the normalizing constant is nowFn|htao, which only includes then actions and

observations followinghtao.

This completes the construction of an EFPSR given a PSR. The idea is that weuse core tests as

features, and we set up the extended and conditioned distributions such that they have appropriate

marginals at every point. This will be the key to our theorem statement, which wepresent next.

Theorem Statement

Theorem 7.2.1.For every PSR (linear or nonlinear) with a finite number of core tests, an EFPSR

can be constructed such that the EFPSR makes equivalent one-step predictions to the PSR at every

timestep.

Proof. We prove this by induction. For the base case, we assume that we have a PSR statep(Q|ht),

and that we have an EFPSR statest modelingp(Fn|ht). We assume that the marginals ofp(Fn|ht)

are equivalent top(Q|ht), and that the marginals corresponding to the one-step features are equal to

the predictionp(ao|ht) that the PSR would make. We call theseequivalent states, in the sense that

both states can be used to make equivalent predictions for both core tests and one-step tests. Such

an EFPSR state always exists by virtue of the mean-parameter mapping theorems of Wainwright

and Jordan(2003).

The proof follows directly by the equivalences established in the constructive algorithm:

• We have shown that an EFPSR state which is equivalent to a PSR state may be extended to

form a distribution with marginals that are equal to the PSR predictions of the one-step tests
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p(ao|ht), two-step testsp(aoao|ht) and the one-step extensions to core testsp(aoQ|ht).

• We have shown that this EFPSR may be conditioned, and that the form of distribution is a

distribution over core testsp(Q|htao) and one-step testsp(ao|htao).

• By construction, the conditioned distribution must therefore have marginals which are equal

to p(Q|htao) = p(aoQ|ht)/p(ao|ht), which is exactly the distribution we would have ob-

tained with the PSR update. Because we have explicitly constrained both the one-step and

two-step predictions to have the same values as the corresponding PSR predictions, it must

also have marginals equal top(ao|htao) = p(aoao|ht)/p(ao|ht).

The final state has the same properties as the state we began with: it makes equivalent predictions

for one-step tests and core tests as the corresponding PSR, but fromht+1 instead ofht. We may

repeat the process infinitely long, and thus we conclude that the complete distributions over future

observations that the two models compute are identical.

Action-Conditional Distributions

There are a few minor points worth noting at this point. First, there is a subtle technicality to the way

we structured the proof. Recall that the prediction of a test in a PSR is actually action-conditional:

p(qi|ht) ≡ Pr(observations in test |ht, actions in test).

However, the EFPSR does not deal with conditional distributions like this. When the PSR talks

about the distribution of a one-step testp(ao|ht), no distribution over the action is implied, but in

the EFPSR,p(ao|ht) implies a distribution over both the action and observation.

This is not a problem for the proof, which is why we have delayed discussing it until now. To

get around this, we can impose a distribution upon the actions, which is independent of history

and observations:p(a|ht) ≡ p(a). This distribution is for convenience only, and does not rep-

resent any statements about possible policies, nor does it affect the abilityof the model to make

PSR-style predictions. For example, the EFPSR will capture a one-step testao asPr(ao|ht), but

can still make the PSR-style predictionPr(o|ht, a) by computing two marginals:Pr(o|ht, a) =

Pr(ao|ht)/Pr(a|ht) = Pr(ao|ht)/Pr(a). Thus, this distribution over actions will drop out any-

time we make a prediction, and effectively serves only to weight predictions such that they can be

considered entries in a very large multinomial distribution. To simplify the proof flow, we did not

mention this; instead, it should be understood that the appropriate conditioning happens whenever

it needs to.

Different Predictions

While the EFPSR and the PSR make the same predictions for all one-step tests, the state used by

the EFPSR is larger than the state for the PSR, because it includes a parameter for every possible
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one-step test. The corresponding PSR may or may not include every one-step test in the core set.

This was necessary to ensure that the models make equivalent one-step predictions, and highlights

the following interesting fact about the final EFPSR. Specifically, the state at time t of the EFPSR

can be used to make any prediction about the the nextn observations, without rolling the state

forward. For core tests and one-step tests, these will be equal to the PSRpredictions, by con-

struction. However, the EFPSR can also make predictions about non-core tests, and in general,

these predictions may be different than the corresponding PSR predictions, because they are the

maximum-entropy predictions. However, it is able to make those predictionswithoutany additional

parameters (a linear PSR would need to learn or compute the appropriatemt weight vector in order

to predict a non-core test) and without referencing the functionsgao or gaoQ. It is interesting that

there are two different ways to use the state to compute predictions, and thatthey will give different

results.

It would have been possible to not include all possible one-step tests in the state representation.

In that case, we could have claimed that the EFPSR state was sufficient forhistory and just as

compact as the corresponding PSR state. However, it might have given different results for one-

step predictions than the corresponding PSR, depending on how the state was used to make the

prediction.

7.2.2 EFPSRs and (Non)Linear Dynamical Systems

We now present the relationships between EFPSRs and (non)linear dynamical systems. We will

proceed in the same vein as the PSR proof, relying on the mapping between mean and natural

parameters and constructing extension functions based on reductions to other models. We will

again present an inductive argument, but will spend less time setting up the base case equivalences.

Theorem 7.2.2.EFPSRs are capable of modeling every uncontrolled linear dynamical system with

a scalar observation (as defined in Section4.1). Furthermore, the model is just as compact as the

equivalent LDS.

Proof. The proof follows directly from two theorems:

1. In Chapter8, we prove that every uncontrolled PLG can modeled by an EFPSR (Theorem

8.3.1), which we call the “Information PLG.”

2. Theorem 1 inRudary et al.(2005) proves that every uncontrolledn-dimensional LDS with a

scalar observation has an equivalent representation as a PLG.

Based on these two theorems, we conclude that EFPSRs are capable of modeling every uncontrolled

linear dynamical system with scalar observations. Because both proofs are quite involved, we defer

(1) to Chapter8, and (2) toRudary et al.(2005). In addition, Chapter8 shows that the Information
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PLG and the PLG are equally compact – both use ann-dimensional state vector. Rudary showed that

the PLG requires ann-dimensional state vector to model ann-dimensional LDS, so we conclude

that the state vector of the Information PLG is just as compact as the equivalent LDS. In addition, the

Information PLG uses exactly the same parameters as the PLG, and the PLG is at least as compact

parameter-wise as the equivalent LDS.

To cover the case of linear dynamical systems with vector-valued observations, we would need

to prove that PLGs are capable of capturing every LDS with vector-valued observations. Rudary

has done some (unpublished) work to this effect. We defer our proof ofthis, as well as proofs

about the controlled case, until his work is complete, although it is likely that theproofs will be

straightforward.

Theorem 7.2.3.EFPSRs are capable of modeling any dynamical system modeled by the KPLG and

MPLG. Furthermore, the model is just as compact as the equivalent KPLG or MPLG.

Proof. As part of the proof that PLGs have an EFPSR representation, Eq.8.1 demonstrates that

there is a one-to-one correspondence between mean and natural parameters in the Gaussian used by

the PLG. Additionally, it shows that theextendeddistribution will always have equivalent mean and

natural parameters.

The proof is a combination of those facts and a simple constructive algorithm. Given a KPLG or

MPLG, we will build an EFPSR model by defining features, an extension function, and a condition-

ing mechanism:

1. Let the features be all singleton and pairwise features ofFn|ht, as in the Information PLG.

2. At every timestep, the KPLG/MPLG defines state as the parameters of a Gaussian distribution

overp(Fn|ht). Let the EFPSR state be the information form of that Gaussian.

3. Let the extension function be the following:

(a) Assume we are given an EFPSR statest.

(b) This state is the natural parameters of the distributionp(Fn|ht) ∼ N−1(λµt , λΣt)

(c) Translate these natural parameters to their equivalent mean parameters to findp(Fn|ht) ∼

N (µt, Σt).

(d) Use the KPLG/MPLG extension function to computeEt, Ct andVt.

(e) Construct an extended Gaussian describingp(Fn+1|ht) ∼ N (µ+
t , Σ+

t ) using the mean

parameters: (
Fn

Ot+n+1

)
∼ N

[(
µt

Et

)
,

(
Σt Ct

C⊤
t Vt

)]
.
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(f) Translatep(Fn+1|ht) ∼ N (µ+
t , Σ+

t ) back to information form. This is now the distribu-

tion p(Fn+1|ht) ∼ N−1(λµ+
t
, λΣ+

t
), which is the extended distribution in information

form, and the parameters of this distribution represents+
t .

4. Condition on the observation in exactly the same way as the Information PLG.

The compactness arguments follow the same pattern as those for the PLG,mutatis mutandi.

7.2.3 EFPSRs and MDPs

We now turn to a proof that EFPSRs can model finite-state Markov Decision Processes, or MDPs.

From the point of view of investigating the representational capacity of the EFPSR, this proof is

unnecessary, since every finite-state MDP can be modeled with a PSR. However, we wish to make

an additional point in this section, which is that the extension function is a strictlylinear function of

state. This is part of the justification for the Linear-Linear EFPSR in Chapter9.

An MDP is described by a tuple〈X ,A, T 〉, whereX is a finite set of states andA is a finite set of

actions.T is a set of transition matrices, whereT a is a matrix which represents the probability of

transitioning from statexi to statexj given that actiona was taken:T a
ij = p(xi|xj , a).

We prepare for the proof by associating a binary random variablexi
t with each state∈ X and for

each timet (only one of these binary variables will be 1 at each timet). We also associate a binary

random variableai
t with each action∈ A.

Theorem 7.2.4.The EFPSR can model every finite-state MDP with discrete actions. Furthermore,

the model uses a strictly linear extension function.

Proof. The proof is by construction, and largely follows the same pattern as the PSRproof, with

several simplifications. However, to arrive at the desired linearity result,it is necessary to stipulate

an unchanging distribution over actions, as we now explain.

We will represent state as a multinomial distribution over MDP states one step in thefuture, and we

useF 1|ht to denote the random variable of the state one step in the future. To give this variable a

well-defined distribution, we must have some distribution over actionsp(a) (as in the PSR proof,

this distribution does not impact the capacity of the model, and drops out whenpredictions are

made). We will additionally impose the restriction that this distribution is independent of state and

history. At timet, we assume that we are in a known MDP statext. Then:

p(F 1|ht) = p(axt+1|ht) = p(a)p(xt+1|a, ht) = p(a)T axt ≡ E[φ(F 1|ht)].
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We let our EFPSR state be the natural parameters of this distribution (compareto Eq.D.6):

p(F 1|ht; st) = exp





∑

ij

(st)ija
i
t+1x

j
t+1 − log Z(st)




 .

We define the extended distribution overF 2|ht as

p(F 2|ht; s
+
t , st) = exp





∑

ij

(st)ija
i
t+1x

j
t+1 +

∑

ijkl

(s+
t )ijkla

i
t+1x

t+1
j ak

t+1x
l
t+2 − log Z([st; s

+
t ])






where we have included quartets consisting of an action, observation, action and observation. Notice

that the multipliers associated with the pairwise featuresai
t+1x

j
t+1 are the entries ofst, nots+

t . This

is because we use a special extension function, defined as:

s+
t =

[
I

0

]
st +

[
0

B

]

That is, the extension leaves every element of the current state vector unchanged, and adds new

multipliers for each quartet, in a way that does not depend on the current state (B is a constant).

The entries ofB are given as

Bijkl = log p(ai)T
k
jl

which are just the logs of the transition probabilities, as defined in Eq.D.7.

The observation at timet + 1 is xj
t+1, and the action isai

t+1 After conditioning, every term with

an action and observation at timet + 1 which is not equal toai
t+1 andxj

t+1 drops out (since they

are binary indicator variables, and are set to zero since they did not occur). This results in the final

distribution overF 1|htao:

p(F 1|ht, a
t+1xt+1; s+

t , st) = exp

{
(st)ij +

∑

kl

(s+
t )ijkla

k
t+2x

l
t+2 − log Z([st; s

+
t ])

}

= exp

{
∑

kl

(st+1)kla
k
t+2x

l
t+2 − log Z(st+1)

}

where the constant term(st)ij cancels with the same term in the normalizer.

To complete the proof, note that this is the natural parameterization of a multinomialdistribu-

tion overp(F 1|ht, a
t+1xt+1, and furthermore, note that(st+1)kla

k
t+2x

l
t+2 = (s+

t )ijkla
k
t+1x

l
t+1 =

(s+
t )ijkl, which is is equal toBijkl = log p(ai)T

k
jl. This is exactly the same multinomial distribution

we would have obtained if we had rolled the MDP forward throughT ai
t+1xj

t+1.
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7.3 Conclusions
In this chapter, we have introduced the Exponential Family PSR (EFPSR), which generalizes the

state representation used by the PLG family of algorithms. It replaces the Gaussian with a more

general exponential family distribution, although it uses the same extend-and-condition mechanism

to capture the dynamics.

The EFPSR is a very general framework for modeling dynamical systems. We have briefly inves-

tigated its representational capacity, and shown that it is capable of capturing a variety of different

dynamical systems: the EFPSR can model domains captured by PSRs, POMDPs, linear dynamical

systems, and some nonlinear dynamical systems. From this perspective, theEFPSR is a general-

ization of many of the models presented in earlier chapters of this thesis. This islargely due to the

flexibility of the exponential family of distributions, as well as the genericity of the state update

mechanism.

In the next chapters, we will specialize the EFPSR to create two different models. Chapter8 presents

the Information PLG, which is the PLG rewritten with a different form of the state representation

and update. Chapters9 and10present the Linear-Linear EFPSR, which is a different specialization

designed to cope with domains having large numbers of features and large amounts of training data.
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Chapter 8

The Information Predictive Linear-Gaussian Model

In this chapter, we connect the Predictive Linear-Gaussian model of Chapter4 and the EFPSR

model of Chapter7 together by relating both of them to theInformation Kalman Filter.Recall that

the PLG is the predictively defined version of the Kalman filter, and that results by Rudary et al.

(2005) prove that every Kalman filter has an equivalent form in terms of the PLG.The difference is

that the Kalman filter maintains state as the parameters of a Gaussian distribution over hidden states,

while the PLG maintains state as the parameters of a Gaussian distribution over future observations.

The parameterization of the Gaussian is not unique. Like the other members ofthe exponential

family of distributions discussed in SectionD.2, the Gaussian can be represented with either mean

parameters or natural parameters. The standard Kalman filter and the PLG both use the mean pa-

rameterization of their respective Gaussian distributions. In filter theory, itwas proposed as early as

1979 that the Kalman filter could be represented using natural parameters instead of mean parame-

ters (Maybeck, 1979). The resulting filter became known as theInformation Kalman Filterbecause

the parameterization relies on the inverse of the covariance matrix, which is sometimes called the

information matrixdue to its straightforward interpretation as a Fisher information matrix.

It is therefore intriguing to ask: is it possible to write the PLG in information formas well? This

chapter answers that question affirmatively. We show how we can transform the parameterization of

the PLG into an equivalent natural form, and how state can be recursively updated for approximately

the same computational cost as the PLG.

Importantly for our purposes, the final model fits the EFPSR framework. That is, given appropri-

ate choices of features, the state representation used by the Information PLG is in EFPSR form,

and there exist choices of extension and conditioning functions which map onto the extend-and-

condition method used by the EFPSR. For these choices, then, the EFPSRis the information form

of the PLG. These results are shown graphically in Figure8.1. There may some advantages to think-

ing about the Information PLG as an EFPSR model, beyond the theoretical elegance of reducing

one model to another. For example, the EFPSR is capable of imposing graphical structure on the

network of variables used. This means that it is likely that the EFPSR could begeneralized to cope

with a Gaussian Markov Random field instead of a simple Gaussian.

The equivalence of the PLG and the Information PLG is somewhat unsurprising, and so is the
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Figure 8.1: The relationship between the Kalman Filter, the Information Kalman Filter, the PLG,
and the EFPSR.

road we will take to prove that equivalence. The proof is by construction. We will first show

that at every timet, the Gaussian distribution overp(Fn|ht) defined by the PLG parameters can

be transformed into an equivalent natural parameterization. This implies thatthe representational

capacity of the two are equivalent, and that the distribution over observable quantities computed

by both are equivalent. We will then show that the state of the Information PLGcan be recursively

updated – using the same parameters as the PLG – without reference to the PLG state representation,

which makes it a standalone model. The proof is rather long, and so the statement of the theorem

(Theorem8.3.1) is delayed until Section8.3.

From a filtering point of view, there are several potential advantages to working in the information

parameterization. The Information Kalman Filter overcomes some problems with initialization, for

example, and can have computational advantages in case the state vector is of greater dimension

than the observation vector (Manyika and Durrant-Whyte, 1995). One well-known advantage is

that multiple measurements can be incorporated by simply summing their information vectors and

matrices, which is appealing for distributed sensory networks (Manyika and Durrant-Whyte, 1995).

Recently,Thrun et al.(2002) observed that the information matrix used in simultaneous localization

and mapping (SLAM) applications has a very sparse form, which has motivated the Sparse Infor-

mation Filter. This has been motivated more formally byFrese(2005), who proved that information

decays exponentially, and byEustice(2005), who showed that significant computational benefits

can be achieved with exactly sparse delayed information filters. This can also perhaps be justified

by the results ofBoyen and Koller(1998), who also proposed trimming weak information links.

It is possible that these advantages will transfer to the Information PLG as well, although quantifying

them is left for future research.

113



8.1 The Information Parameterization of the Gaussian
As discussed previously, while the Kalman filter maintains state using the mean parameterization,

the Information Kalman Filter represents state with the natural parameters. Theinformation param-

eterization can be obtained by expanding the quadratic in the exponential and regrouping terms:

p(x) = N (µ,Σ)

=
1

Z
exp

{
−0.5(x − µ)⊤Σ−1(x − µ)

}

= exp
{
−0.5(x⊤Σ−1x − 2µ⊤Σ−1x + µ⊤Σ−1µ) − log Z

}

= exp





∑

ij

Σ−1
ij xixj +

∑

i

(µ⊤Σ−1)ixi − log Z ′




 (8.1)

≡ N−1(λµ, λΣ).

whereZ ′ = exp{−0.5µ⊤Σ−1µZ. The two forms are related by

λµ = Σ−1µ

λΣ = −
1

2
Σ−1.

To relate this more directly to the standard exponential family form discussed previously, we observe

that Eq.8.1can be written using vector notation:

p(x) = exp





∑

ij

Σ−1
ij xixj +

∑

i

(µ⊤Σ−1)ixi − log Z ′






= exp
{

λ⊤φ(x) − log Z ′
}

(8.2)

whereφ(x) = {xi} ∪ {xixj} – that is, the feature vectorφ(x) contains all singleton features as

well as all pairwise features. Eq.8.2 is exactly the form that the EFPSR distribution takes, except

that instead of representing the distribution over hidden statesX, it represents the distribution over

future observationsFn.

Computationally, the covariance form and the information form have complementary strengths and

weaknesses, which are summarized in Figure8.2. The operation of marginalization in the covari-

ance form, for example, simply involves selecting a subset of the mean vectorand the covariance

matrix, but the operation of conditioning is more involved, involving a matrix inverse. Conversely,

in the information form, conditioning is easy, but marginalization is hard.

8.2 Deriving the Information PLG
We now show how every PLG can be written in information form, and derive the state update

equations necessary. We begin by reviewing the basics of the PLG.
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p(α, β) = N (

[
µα

µβ

]
,

[
Σαα Σαβ

Σβα Σββ

]
) = N−1(

[
ηα

ηβ

]
,

[
Λαα Λαβ

Λβα Λββ

]
)

Marginalization Conditioning

p(α) =
∫

p(α, β)dβ p(α|β) = p(α, β)/p(β)

Covariance Form µ = µα

Σ = Σαα

µ′ = µα + ΣαβΣ−1
ββ (β − µβ)

Σ′ = Σαα − ΣαβΣ−1
ββΣβα

Information Form η = ηα − ΛαβΛ−1
ββηβ

Λ = Λαα − ΛαβΛ−1
ββΛβα

η′ = ηα − Λαββ

Λ′ = Λαα

Figure 8.2: Information and covariance forms of marginalization and conditioning. A multivariate
Gaussian distribution can be parameterized with either mean or natural parameters. Shown are
marginalization and conditioning operations on a multivariate Gaussian randomvariable, expressed
in both covariance form (mean parameters) and information form (naturalparameters). Adapted
from Eustice(2005).

The PLG represents state as the parameters of a Gaussian distribution overp(Fn|ht):

Fn|ht ∼ N (µt, Σt).

Theorem 8.2.1.At every timet, the distributionFn|ht ∼ N (µt, Σt) has an equivalent information

formFn|ht ∼ N−1(λµt , λΣt).

Proof. The proof follows directly from Eq.8.1.

This implies that at everyt there exists natural parameters which imply an equivalent distribution

overFn|ht. The rest of our derivation will be devoted to finding those parameters.

We therefore assume that the Information PLG also represents state as the natural parameters of the

distributionp(Fn|ht):

Fn|ht ∼ N−1(λµt , λΣt).

We now turn our attention to the extended joint distribution of[Fn; Ot+n+1]. Since the extended

joint distribution is also a Gaussian, it also has a mean and natural parameterization by Eq.8.1. We

wish to additionally show that the extended joint distribution can be recursivelycomputed without

reference to the PLG state, and using only the PLG parameters.
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The PLG extends the distribution using a linear trendG and noise termηt+n+1:

Ot+n+1 = GFn + ηt+n+1 (8.3)

Using Eq.8.3 we can easily compute the terms needed to compute the joint extended distribution

in covariance form: (
Fn

Ot+n+1

)
∼ N

[(
µt

Et

)
,

(
Σt Ct

C⊤
t Vt

)]
.

which are

Et = E[GFn + ηt+n+1] = Gµt

Ct = E[O⊤
t+n+1F

n] − E[O⊤
t+n+1]E[Fn] = ΣtG

⊤ + C⊤
η

Vt = E[O⊤
t+n+1Ot+n+1] − E[Ot+n+1]

⊤E[Ot+n+1] = G⊤ΣtG + GC⊤
η + CηG

⊤ + σ2
η.

Recall thatG is the linear trend,Cη = Cov[ηt+n+1F
n], andσ2

η = Var[ηt+n+1], which are the

parameters of the PLG.

We now compute the information form of the extended distribution:

(
Fn

Ot+n+1

)
∼ N

[(
µt

Et

)
,

(
Σt Ct

C⊤
t Vt

)]
= N−1

[(
λ+

µt

λEt

)
,

(
λ+

Σt
λCt

λ⊤
Ct

λVt

)]

Note that, in general,λ+
Σt

6= λΣt andλ+
µt

6= λµt .

Our goal is to find a recursively updateable expression for the information form on the right-side of

this equation, which can be expressed using nothing but the standard PLGdynamical parameters.

We begin by noting that the following relationships hold between the mean parameters and the

natural parameters:
λµt = Σ−1

t µt = −2λΣtµt

µt = Σtλµt = −1
2λ−1

Σt
λµt

and

λΣt = −
1

2
Σ−1

t

Σt = −
1

2
λ−1

Σt

Σ−1
t = −2λΣt .

We will use these identities below as we translate between parameterizations.
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8.2.1 Computing the Information Matrix Terms

We will begin by computing the terms in the information matrix. We start with a standardidentity

on block matrix inversion, which allows us to compute the blocks of a inverted block matrix (Golub

and Loan, 1996): [
A B

B⊤ C

]−1

=

[
D E

E⊤ F

]

where

D = (A − BC−1B⊤)−1 = A−1 + A−1B(C − B⊤A−1B)−1B⊤A−1

E = −DBC−1 = A−1B(B⊤A−1B + C)−1 = −FB⊤A−1

F = (C − B⊤A−1B)−1 = C−1 + C−1B⊤(A − BC−1B⊤)−1BC−1

Here, we have shown the several equivalent forms forD, E, andF . However, as we will show, one

of these forms will be particularly convenient.

Recall thatλΣt = Σ−1
t . The same is true for the extended distribution: the information matrix is

the inverse of the covariance matrix. We now solve for the components of theextended informa-

tion matrix. Using this inversion lemma, we can express the joint information matrix in terms of

elements of the joint covariance as:

λ+
Σt

= Σ−1
t + Σ−1

t Ct(Vt − C⊤
t Σ−1

t Ct)
−1C⊤

t Σ−1
t

λCt = −Σ−1
t Ct(Vt − C⊤

t Σ−1
t Ct)

−1

λVt = (Vt − C⊤
t Σ−1

t Ct)
−1

As they stand, these expressions are not useful. While this allows us to express the joint extended

information matrix in terms of pieces of the joint extended covariance matrix, ourgoal is to express

the extended information matrix only in terms of information parameters.

Fortunately, these expressions can be greatly simplified. We notice that in each of the three expres-

sions, the term(Vt − C⊤
t Σ−1

t Ct)
−1 appears. We therefore begin with this expression:

λVt = (Vt − C⊤
t Σ−1

t Ct)
−1

=
(
G⊤ΣtG + GC⊤

η + CηG
⊤ + σ2

η − (GΣt + Cη)Σ
−1
t (ΣtG

⊤ + C⊤
η )
)−1

=
(
σ2

η − CηΣ
−1
t C⊤

η

)−1

=
(
σ2

η + 2CηλΣtC
⊤
η

)−1

Here, we see that we have achieved our goal: the termλVt can be computed using nothing but the

PLG model parametersCη, σ
2
η and the currentλΣt . Notice that, like the PLG, computing this term

will require inverting a matrix.
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A similar derivation is possible forλCt :

λCt = −Σ−1
t CtλVt

= −(−2λΣt)(ΣtG
⊤ + C⊤

η )λVt

= −(−2λΣt)(−
1

2
λ−1

Σt
G⊤ + C⊤

η )λVt

= −(G⊤ − 2λΣtC
⊤
η )λVt .

Again, note thatλCt can be computed using onlyG, Cη and the current stateλΣt , plusλVt , which

is a term we have already computed.

Finally, we can derive an expression forλ+
Σt

:

λ+
Σt

= Σ−1
t + Σ−1

t CηλVtC
⊤
η Σ−1

t

= −2λΣt +

(
−2λΣt(−

1

2
λ−1

Σt
+ C⊤

η )

)
λVt

(
−2λΣt(−

1

2
λ−1

Σt
+ C⊤

η )

)⊤

= −2λΣt − (G⊤ − 2λΣtC
⊤
η )λVt(G − 2CηλΣt)

which is similarly expressible in terms of PLG parameters and the current state.Together,λVt , λCt

andλ+
Σt

yield the final extended distribution in information form.

8.2.2 Computing the Information Vector Terms

We now turn out attention to the computation of the extended information vector, which is composed

of λ+
µt

andλEt . Like the terms in the extended information matrix, we can find simple, closed form

expressions for these vectors.

Recall that the vector:

[
λ+

µt

λEt

]
=

[
Σt Ct

C⊤
t Vt

]−1 [
µt

Et

]
= −2

[
λ+

Σt
λCt

λ⊤
Ct

λVt

][
µt

Et

]

This yields our first equation:

λ+
µt

= −2(λ+
Σt

µt + λCtGµt)

= −2(λΣt − λCt(G − 2CηλΣt))(−
1

2
λ−1

Σt
λµt) − 2λCtG(−

1

2
λ−1

Σt
λµt)

= λµt − λCtGλ−1
Σt

λµt + 2λCtCηλµt + λCtGλ−1
Σt

λµt

= λµt + 2λCtCηλµt

which, like the terms we have previously computed for the information matrix, relies only on PLG
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model parameters and previously computed values. Similarly:

λEt = −2(λ⊤
Ct

µt + λVtGµt)

= (λ⊤
Ct

λVtG)(λ−1
Σt

λµt)

= (λVt(−G + 2CηλΣt) + λVtG)(λ−1
Σt

λµt)

= (2λVtCηλΣt))(λ
−1
Σt

λµt)

= 2λVtCηλµt .

This completes the equations needed to compute the information parameters of theextended distri-

butionp(Fn, Ot+n+1|ht).

8.2.3 Conditioning the Distribution

Having completed the derivation of the extension part of the dynamics, we now turn our attention to

the problem of conditioning the distribution on an observationOt+1 = ot+1. As noted previously,

conditioning in the information form is an easy operation. To simplify notation, wewill now repar-

tition the state vector and information matrix. Like a similar step in the PLG algorithm discussed in

Chapter4, this is not a mathematical operation; rather, we are just re-labeling our matrixand vector

to simplify the explanation of the algorithm:

(
Fn

Ot+n+1

)
∼ N−1

[(
λ+

µt

λEt

)
,

(
λ+

Σt
λCt

λ⊤
Ct

λVt

)]

= N−1

[(
λot+1

λfn

)
,

(
λot+1ot+1

λot+1fn

λ⊤
ot+1fn λfnfn

)]

Recall that conditioning a Gaussian distribution in information form is easy (asshown in Figure

8.2). To condition onOt+1 = ot+1, we simply set:

λµt+1
= λfn + 2λ⊤

ot+1fnot+1

λΣt+1
= λΣfnfn

This completes the derivation of the Information PLG. The algorithm is summarized in Figure8.3.

8.3 Final Theorem
We are finally ready to state our central theorem.

Theorem 8.3.1.The Information PLG is equivalent to the PLG in two senses: first, it computesan

equivalent distribution over observations, and second, it uses exactly the same parameters.

Proof. The proof follows by the two equivalences established. First, Theorem8.2.1established that
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Algorithm INFORMATION-PLG-UPDATE

Input: Current state, represented byλµt andλΣt and an observationot.

Given: dynamical parametersG, Cη, andσ2
η.

Compute: (construct extended distribution)

• λVt = −0.5(σ2
η + 2CηλΣtC

⊤
η )−1

• λCt = −(G⊤ − 2λΣtC
⊤
η )λVt

• λ+
Σt

= λΣt − λCt(G − 2CηλΣt)

• λ+
µt

= λµt + 2λCtCηλµt

• λEt = 2λVtCηλµt

Repartition:

N−1

[(
λ+

µt

λEt

)
,

(
λ+

Σt
λCt

λ⊤
Ct

λVt

)]
= N−1

[(
λot+1

λfn

)
,

(
λot+1ot+1

λot+1fn

λ⊤
ot+1fn λfnfn

)]

Compute: (condition on observationot+1)

• λµt+1
= λfn + 2λ⊤

ot+1fnot+1

• λΣt+1
= λΣfnfn

Return: λµt+1
, λΣt+1

.

Figure 8.3: The state update equations for the Information PLG.
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for everyt there are equivalent natural and mean parameterizations for the distribution p(Fn|ht).

Second, the derivations in Section8.2 prove that given a natural parameterization at timet, the

parameters can be updated to find the parameters at timet + 1, which are exactly the natural pa-

rameters of the corresponding mean-parameterized Gaussian. By induction, the equivalence holds

for all t (assuming an appropriate initial base case). Furthermore, the equations used to update the

parameters at every timestep used only the standard PLG parameters.

8.4 Steady State Filtering
We will now briefly discuss an interesting relationship between the InformationPLG and steady

state filters. The goal of this section is modest: we simply wish to demonstrate that for a steady-

state filter, the state update is a completely linear function of the previous state and observation.

This observation is part of the justification of the Linear-Linear EFPSR in Chapter9.

The general Information PLG state update shown in Figure8.3 is nonlinear, primarily because of

the matrix inverse needed to computeλVt . The same thing is true of the Kalman Filter and the PLG:

each involves a matrix inverse performed on the covariance matrices at timet. However, a key

observation about the (Information) Kalman Filter and the (Information) PLGis that the sequence

of covariance / information matricesdoes not depend on the observed data sequence.That means

that the covariance matrix can reach a “steady-state,” which we define below, and that it will remain

in steady state, because no sequence of observations can affect it.

A filter that is insteady-stateis defined as (Sayed, 2003):

E[µt] = E[µt−1] = µc as t → ∞

and

E[Σt] = E[Σt−1] = Σc as t → ∞.

That is, the mean vector and covariance matrix have approached a constant value that does not

depend on time.

For the purposes of this chapter, we will assume that the covariance has approached a steady state,

but not necessarily that the mean vector has. IfΣt is constant, this implies thatλΣt is constant, and

therefore thatλVt is constant. Similarly, the fact thatλVt is constant implies that bothλCt andλ+
Σt

are constant.

Together, these facts simplify the state update of the Information PLG, and render the entire oper-

ation linear in the state vectorλµt and the observationot, as follows. We start by showing that the

extended state vector is a linear function of the current state:

λ+
µt

= λµt + 2λCtCηλµt
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= (I − 2λCtCη)λµt

= A1λµt

whereA1 = (I − 2λCtCη). Similarly,

λEt = 2λVtCλµt

= A2λµt

whereA2 = 2λVtCη. Together, these imply that

[
λot+1

λfn

]
=

[
λ+

µt

λEt

]
=

[
A1

A2

]
λµt

where we have rolled the extension and the relabeling into one step. Thus,λfn = P [A1; A2]λµt , for

an appropriate projection matrixP (this matrix simply selects the elements corresponding toλfn

out of the vector[λot+1
; λfn ]).

Finally, sinceλot+1fn is constant:

λµt+1
= λfn + 2λ⊤

ot+1fnot+1

= λfn + A3ot+1

= P [A1; A2]λµt + A3ot+1

which is a linear operation.

The point of the foregoing analysis is simply to demonstrate that in the case of asteady-state filter,

both the extension and conditioning operations are linear. This partly justifiesthe introduction of

the “Linear-Linear EFPSR” in Chapter9. The reason that this is important is because the linearity

of the state update will facilitate a dynamical analysis for future learning algorithms. For example,

in certain settings, the stationary distribution of states can be computed as the solution to a linear

system of equations. This will also make a variety of approximations possible,which we will

discuss in Chapter10.

8.5 Experiments
To validate the equations governing the Information PLG, we here presenta simple experiment. We

will define a linear dynamical system, and then convert the parameters directly to the equivalent

parameters of the PLG, using the technique explained inRudary et al.(2005). We will then track

the state of both the PLG and the Information PLG, and demonstrate that the two algorithms both

perform the same updates and make the same predictions.
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Let x0 = [0; 0] be our initial state. Letθ = 0.1, and let

A =

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

]
=

[
1.0 0.01

−0.01 1.0

]

be a simple rotation matrix which rotates a given vector byθ degrees around the origin. LetH =

[11] be our observation matrix, which simply adds both coordinates together. LetQ = 0.003 ∗ I

be the covariance matrix of our transition noise, and letR = 1 be the covariance matrix of our

observation noise.

The PLG parameters are given by

G = [−1.0 1.9999]

Cη = [1.0 2.0059]

σ2
η = 6.0116

The initial state of the PLG is

µ0 = [7.0000 6.9297]⊤

Σ0 =

[
1.0002 0.0002

0.0002 1.0062

]

and the initial state of the Information PLG is

λµ0
= [6.9972 6.8856]⊤

λΣ0
=

[
−4.9999 0.0001

0.0001 −4.999

]
.

To compare the PLG and Information PLG, we ran the above linear dynamicalsystem for 1,000

timesteps. We used the PLG and Information PLG state update equations, and asked both models

to generate one-step predictions at every timestep. Figure8.4 shows the results, which basically

demonstrate equivalence. On the left side of the figure, we see that thereis no discernible difference

in the predictions made (the green line, representing the PLG predictions, cannot be seen because it

is exactly obscured by the blue line, representing the Information PLG predictions). On the right,

we show the difference between the two predictions. In terms of the actual states, we can convert

λµt to µt and vice-versa, and we can convertλΣt to Σt. We did this after the 1,000 updates, and

compared the results.‖λµ1000
− µ1000‖ ≈ 1e − 11, and‖λΣ1000

− Σ1000‖ ≈ 1e − 12. These

differences, as well as the differences in predictions ( 1e-11), hover around machine precision.
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Figure 8.4: Comparing the predictions made by the PLG and the Information PLG. On the top:
the predictions made versus the actual observations. On the bottom: the difference in PLG and
Information PLG predictions.
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8.6 Conclusions and Future Work
We have presented the Information PLG, and demonstrated that it is formally equivalent to the

PLG: they use the same parameters; they compute equivalent distributions over the future, and

computationally, they have approximately equal complexity.

There are several natural directions for future research. As notedin the introduction to this chapter,

the Information Kalman Filter and the Extended Information Kalman Filter have enjoyed consider-

able success in real-world applications because of sparsity in the information form. This has made a

variety of approximations possible, and it is likely that similar results could hold for the Information

PLG. It is also possible to extend the Information PLG in all of the same ways that the PLG was

extended: a kernel Information PLG is conceivable, as are Mixtures ofInformation PLGs, or even

an Extended Information PLG.

It is interesting that the Information PLG uses exactly the same parameters as the PLG. This im-

plies that every learning algorithm for a PLG is also a learning algorithm for an Information PLG,

and vice-versa. One of the advantages of the PLG is the fact that its parameters can be learned

directly from data through simple regressions and sample statistics. Here, there is a close connec-

tion between the expectations arising from statistics of the data and the mean parameterization of

the Gaussian used as state. It would be interesting to know if similar statements were true about

the EFPSR in general: is it possible to find the dynamical parameters by regressions (which ex-

ploit expectations and are related to the mean parameters), but then operatethe model in the natural

parameter space? If so, this could simplify the learning algorithms for the EFPSR.
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Chapter 9

Exact Linear-Linear EFPSRs

In Chapter7 we have introduced the general EFPSR model, and have pointed out that there are two

design decisions which must be made to specialize the EFPSR to any particular model: features

must be selected, and an extension function must be selected. In Chapter8, we used singleton and

pairwise features and a special extension function, which resulted in the Information PLG.

In this chapter, we specialize the EFPSR in a different way, in preparationto handle domains with

large numbers of features and large data sets. We select a linear extensionfunction, and we care-

fully choose features so that conditioning is always a linear operation. The combination of a linear

extension and linear conditioning results in a state update that is a linear function, which will help

facilitate a dynamical analysis and make a variety of approximations possible. We name the result-

ing algorithm the “Linear-Linear EFPSR.” The word “Exact” in the title of the chapter refers to the

fact that we will present an exact maximum likelihood learning algorithm for the model. Portions

of this chapter were published byWingate and Singh(2007a).

The choice of a linear extension function is partly motivated by the steady-state filtering results of

Section8.4, and partly motivated by the proof that EFPSRs are capable of capturing MDPs (found

in Section7.2.3). In both of these cases, the state update is a linear function of the current state and

the observation, and suggests that a purely linear state update can model useful things. To obtain

linear conditioning, we stipulate that all features be conjunctions of atomic observation variables.

This is also partly motivated by broader graphical model research, where high order conjunctions

are a common type of feature (Pietra et al., 1997).

We present the specialized model in Section9.1, where we discuss in detail our choice of features

and extension function. We then address the question of model learning in Section9.2. We will

present an exact maximum likelihood learning algorithm in Section9.2.2, including notes on struc-

ture learning in Section9.2.1. We then present some experimental results in Section9.3.

9.1 The Linear-Linear EFPSR
We now discuss the specific choices that we make to create the Linear-Linear EFPSR. For the

purposes of simplifying the exposition, we will assume that we are working withbinary random

variables, as follows.
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In general, each multidimensional observationOt that the agent receives (and therefore, the resulting

histories and the domain of the futureFn|ht) may be discrete or continuous. In this chapter, we will

assume that a number of binary features have been extracted from the observations. We call these the

atomic features, to distinguish them from the features created by the functionφ. Hereafter, we will

treat these binary features as if they were the observations, and ignorethe underlying observations

from which they are generated. This will simplify some of the math, and will simplifythe problem

of inference in the model. Although we use binary features, we emphasize that almost all of the

concepts we develop apply equally well to real-valued and discrete-valued random variables.

9.1.1 Conjunctions of Features and Graphical Structure

Section7.1.2discussed the fact that there is a restriction on extension functions: the distribution

p(Fn|ht) is defined using a set of featuresφ(). After extending, the distributionp(Fn+1|ht) is

defined using a set of featuresφ+(). After conditioning top(Fn|ht+1), the distributionp(Fn|ht+1)

must be expressible with the same set of featuresφ() that were used inp(Fn|ht). In this section,

we discuss how we choose features so that this constraint on the extension function is satisfied. We

additionally choose features such that conditioning is a linear operation, and will simultaneously

show how to impose graphical structure on the model.

The featuresφ() andφ+() do not depend on time. This is equivalent to saying that the form of the

distribution does not vary over time. If the features impose graphical structure on the distribution,

it is also equivalent to saying that the form of the graph does not changeover time. Because of this

fact, we will now discuss how we can use a graph whose form is independent of time to help define

structure on our distributions.

First, we describe our observation variables more precisely. Let eachOt ∈ {0, 1}d; therefore, each

Fn|ht ∈ {0, 1}nd. Let (Fn)i be thei’th random variable inFn|ht. We construct the feature vectors

φ() andφ+() as follows. We assume that we have an undirected graphG which we will use to create

the features in the vectorφ(), and that we have another graphG+ which we will use to define the

features in the vectorφ+(). DefineG = (V, E) whereV = {1, ..., nd} are the nodes in the graph

(one for eachFn|ht
i), and(i, j) ∈ E are the edges. Similarly, we defineG+ = (V +, E+) where

V + = {1, ..., (n + 1)d} are the nodes in the graph (one for each(Fn+1|ht)
i), and(i, j) ∈ E+ are

the edges. As noted, neither graph depends on time.

Consider the following graphG defined over the variables inFn|ht. Here,n = 3 andd = 3, for a

total of nine atomic variables:

127



O O O

O1

2

O
3

t+2t+1 t+3

O

va
ria

bl
es

A
to

m
ic

 o
bs

er
va

tio
n

Next n observations

What is the structure that we want this graph to impose upon the distributionp(Fn|ht)? Like

any graphical model, we want this graph to mean that(Fn|ht)
i and (Fn|ht)

j are conditionally

independent of each other given all other variables in the graph, if there is no edge(i, j) ∈ E.

AppendixD.3 describes more examples of imposing graphical structure upon exponential family

distributions and how they can be interpreted.

To accomplish this, we will let features be conjunctions of atomic observation variables, like the

standard Ising model features discussed in SectionD.3. We create one feature inφ for each node

i ∈ V . Specifically, fori ∈ V , there will be some featurek in the vector such thatφ(ft)
k = f i

t . We

also create one feature for each edge. Specifically, if(i, j) ∈ E, then there will be some featurek in

the vector such thatφ(ft)
k = f i

tf
j
t . For ease of exposition, we will allow only pairwise interactions

between random variables, but the extension to higher order features isstraightforward. We will use

the graphG+ to define the vectorφ+() in the same way.

We have discussed how we can useG or G+ to define the featuresφ() andφ+(), but we must also

ensure that after conditioningG+, we recover the original graphG. NeitherG norG+ can therefore

be arbitrary. We will impose special structure on both so that their form does not change over time.

One way to do this is to ensure that temporally shifted copies of each feature exist in the graph,

and that conditioned versions of each feature exist in the graph. For example, if there is an edge

connectingo1
t+5 ando1

t+6, then there must also be edges connectingo1
t+4 to o1

t+5, o1
t+3 to o1

t+4, o1
t+2

to o1
t+3, ando1

t+1 to o1
t+2. This ensures that the structure of the graph does not change betweenstate

updates (we informally show this pictorially in Figure9.1).

9.1.2 Conditioning

Because we have stipulated that all features are either atomic variables or conjunctions of variables,

finding the parameters of the conditioned distribution is easy (we emphasize that this is true even if

the random variables are discrete or real-valued). When we condition onan observation, we freeze

the observed variables to their observed values, and then collect parameters.

To see this, consider the following example (to simplify notation, we will drop timescripts). Suppose

that we have a particular distribution over two binary random variablesO = [o1 o2]
⊤. We will define

128



G G+ G

t+2 t+nt+1 t+2 t+n+1t+nt+1

Extended distribution Conditioned distributionDistribution of next n observations

O
bs

er
va

tio
n 

fe
at

ur
es

t+1 t+2 t+n t+n+1O O O O O O O O O O O

...... ... ...

p(Fn|ht) p(Fn, Ot+n+1|ht) p(Fn|ht, ot+1)

Figure 9.1: Extending and conditioning the EFPSR distribution with graphical structure. The
structure of the graph must not change between state updates.

the features of these variables to be two singleton features and one conjunction:

φ(O) =




o1

o2

o1o2


 .

We will define a density over these random variables using an exponentialfamily distribution:

p(O = o; s) = exp
{
−s⊤φ(o) − log Z(s)

}

= exp {−(s1o1 + s2o2 + s3o1o2) − log Z(s)}

so that our state vectors ∈ R3.

Suppose we now extend this distribution to include a new variableo3. We now have three binary

random variables,O+ = [o1 o2 o3]
⊤. Suppose we define the feature vectorφ+(O+) to contain all

singletons, pairwise conjunctions, and third-order conjunctions (this satisfies the temporal invari-

ance property we discussed earlier: for every feature in the vector, temporally shifted copies are

also in the vector, as well as conditioned versions of each feature):

φ+(O+) =




o1

o2

o3

o1o2

o1o3

o2o3

o1o2o3




.

Our extended density will be

p(o+; s+) = exp
{
−s+⊤φ+(o+) − log Z(s)

}
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= exp {−(s1o1 + s2o2 + s3o3 + s4o1o2 + s5o1o3 + s6o2o3 + s7o1o2o3)

− log Z(s)}

so that now our state vectors+ ∈ R7.

Suppose now that we wish to condition on a particular observation variable –say,o1. To condition,

we freezeo1 to its observed value, and we notice that we can then collect terms into a new state

vector:

p(o+; s+, o1) = exp
{
−s+⊤φ+(o+) − log Z(s+)

}

= exp
{
−(s′1 + s2o2 + s3o3 + s′4o2 + s′5o3 + s6o2o3 + s′7o2o3) − log Z(s+)

}

= exp
{
−(s′1 + (s2 + s′4)o2 + (s3 + s′5)o3 + (s6 + s′7)o2o3) − log Z(s+)

}

= exp
{
−((s2 + s′4)o2 + (s3 + s′5)o3 + (s6 + s′7)o2o3) − log Z(s+)

}

= exp
{
−(s′⊤[o2; o3; o2o3] − log Z(s′)

}

= exp
{
−(s′⊤φ([o2, o3]) − log Z(s′)

}

Some terms in the state vector didn’t change because they did not depend ono1, but others have

changed, which we have denoted bys′x. We have grouped terms together that interact with the same

unobserved variables. Also, notice thats′1 does not interact with the observations at all, and so it

has been absorbed into the normalizing constant. We call the entire processof conditioning on an

observation and grouping like terms a “freeze-and-collect” operation, because we have frozen the

observed variable to a fixed value, and collected the multipliers together for the remaining variables.

Notice that after conditioning, we are now back to 3 parameters–the same number we started with.

However, they describe different variables: the state vectors we started with was defined as mul-

tipliers for features of[o1 o2], but the state vector we ended up with (s′) is defined for features of

the variables[o2 o3]. In a temporal model, we see thato2 is now playing the role ofo1, and that

o3 is now playing the role ofo2. We have also satisfied the constraint that the final features of the

extended-and-conditioned distribution be expressible in the same form as the original distribution.

This freeze-and-collect operation is linear in the state vectors. Because it is linear, we can define

the matrixG(o) to perform the operation, as follows:

G(o1) =




0 1 0 o1 0 0 0

0 0 1 0 o1 0 0

0 0 1 0 0 1 o1


 .

Note thats′ = G(o1)s
+. G(o) hasl rows, wherel is the number of features in the conditioned

distribution, andk columns, wherek is the number of features in the extended distribution. This

example also helps illustrate the importance of not allowing the structure of the graph to change
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between state updates.

We will apply the same logic of this example to conditioningp(Fn, Ot+n+1|ht) onot+1 by defining

the linear conditioning operatorG(ot+1) as a matrix which adds the appropriate parameters together.

This matrix will be used throughout the rest of the chapter.

9.1.3 Extending

We now address the extension function. The extension functionextend can take any form. In the

PLG family of work, for example, a linear extension allows the model to capturelinear dynamics

(Rudary et al., 2005), while a non-linear extension allows the model to capture non-linear dynamics

(Wingate and Singh, 2006b). Here, we focus on linear extensions:

s+
t = Ast + B

whereA ∈ Rk×l andB ∈ Rk×1 are our model parameters.

The combination of a linear extension and a linear conditioning operator can be rolled together into

a single operation. Without loss of generality, we can permute the indices in our state vector such

that

st+1 = G(ot+1) (Ast + B) .

Given model parametersA, B, an initial states0, and a sequence of observations, the sequence of

st’s is completely determined. This is analogous to the belief state update in, say, aPOMDP: the

belief state update is a deterministic function of a prior belief state and an observation.

9.2 Model Learning
We have defined the broad class of our features, as well as our extension function. However, we

have still not defined exactly which conjunctions of atomic features the modeluses. In addition, the

extension function is parameterized by the vectorsA andB, which we must determine as part of

the model. In this section, we address the question of learning the exact structure of the graph, as

well as the parametersA andB from data. We briefly address each in the next two subsections.

We assume that the data we are given is a single long sequence ofT observations,[o1, · · · , oT ]. We

will take this sequence of observations and stackn consecutive observations together to create a

sequence of samples from theFn|ht’s. So, we will letf1 = [o1, · · · , on] be a sample fromFn|∅,

f2 = [o2, · · · , on+1] be a sample fromFn|o1, etc. (this is somewhat like the suffix history algorithm

described in Section3.4). Figure5.3graphically illustrates the process.
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9.2.1 Structure Learning

There are two aspects to structure learning: first, selecting the lengthn of the window into the fu-

ture, and second, determining the graphical structure of the model – that is, deciding which edges

to include in our graph (and therefore, which feature conjunctions to include in the feature vector

φ(·)). For this part of learning, we make the approximation of ignoring the dynamical component of

the model. That is, we treat eachft as an observation, and try to estimate the density of the resulting

unordered set, ignoring thet subscripts (we appeal to density estimation because many good al-

gorithms have been developed for structure induction). We therefore ignore temporal relationships

acrosssamples, but we preserve temporal relationshipswithin samples. For example, if observation

a is always followed by observationb, this fact will be captured within theft’s.

The problem therefore becomes one of inducing graphical structure for a non-sequential data set,

which is a problem that has already received considerable attention. In all of our experiments, we

used the method of Della Pietra et. al (Pietra et al., 1997). Their method iteratively evaluates a set

of candidate features and adds the one with highest expected gain in log-likelihood. To enforce the

temporal invariance property, whenever we add a feature, we also addall of the temporally shifted

copies of that feature, as well as the conditioned versions of that feature. Other feature selection

methods are possible; for example,Chandrasekaran et al.(2007) suggest a feature selection method

based on a maximum-entropy relaxation which naturally favors sparse feature sets.

9.2.2 Maximum Likelihood Parameter Estimation

With the structure of the graph in place, we are left to learn the parametersA andB of the state

extension. It is now useful that our state is defined in terms of observablequantities, for two reasons:

first, because everything in our model is observed, EM-style procedures for estimating the parame-

ters of our model are not needed, simply because there are no unobserved variables over which to

take expectations. Second, when trying to learn a sequence of states (st’s) given a long trajectory

of futures (ft’s), eachft is a sample of information directly from the distribution we’re trying to

model. Given a parameter estimate, an initial states0, and a sequence of observations, the sequence

of st’s is completely determined. This will be a key element to our proposed maximum-likelihood

learning algorithm.

The likelihood of the training data isp(o1, o2...oT ) =
∏T

t=1 p(ot|ht). We will find it more con-

venient to measure the likelihood of the correspondingft’s: p(o1, o2...oT ) ≈ n
∏T

t=1 p(ft|ht) (the

likelihoods are not the same because the likelihood of theft’s counts a single observationn times;

the approximate equality is because the firstn and lastn are counted fewer thann times).

The expected log-likelihood of the trainingft’s under the model defined in Eq.7.1 is

LL =
1

T

(
T∑

t=1

−s⊤t φ(ft) − log Z(st)

)
(9.1)
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Our goal is to maximize this quantity. Any optimization method can be used to maximize the log-

likelihood. Two popular choices are gradient ascent and quasi-Newtonmethods, such as (L-)BFGS.

We use both, for different problems (as discussed later). However, both methods require the gradient

of the likelihood with respect to the parameters, which we will now compute.

Using the chain rule of derivatives, we can compute the derivative with respect to the parametersA:

∂LL

∂A
=

T∑

t=1

∂LL

∂st

⊤∂st

∂A
(9.2)

First, we compute the derivative of the log-likelihood with respect to each state:

∂LL

∂st
=

∂

∂st

[
−s⊤t φ(ft) − log Z(st)

]

= Est [φ(Fn|ht)] − φ(ft)

≡ δt (9.3)

whereEst [φ(Fn|ht)] ∈ Rl×1 is the vector of expected sufficient statistics at timet. Computing

these values is a standard inference problem in exponential family models, as discussed in Section

D.6.

This gradient tells us that we wish to adjust each state to make the expected features of the next

n observations closer to the observed features. This is similar to the result obtained in standard

maximum entropy gradients (discussed in Section9.2.2), where the gradient attempts to move the

expectation of features under the model such that it is equal to the empiricalexpectation. There are

two differences: first, we only have one sample for each timestep, and so the empirical expectation

is simply the observed sample at timet. Second: we cannot adjustst directly; instead, we must

adjust it implicitly by adjusting the transition parametersA andB.

We now compute the gradients of the state with respect to each parameter:

∂st

∂A
=

∂

∂A
G(ot+1) (Ast−1 + B)

= G(ot+1)

(
A

∂st−1

∂A
+ s⊤t−1 ⊗ I

)
.

where⊗ is the Kronecker product, andI is an identity matrix the same size asA.

The gradients of the state with respect toB are given by

∂st

∂B
=

∂

∂B
G(ot+1) (Ast−1 + B)

= G(ot+1)

(
A

∂st−1

∂B
+ I

)
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The gradients at timet are temporally recursive – they implicitly depend on gradients from all

previous timesteps. It might seem prohibitive to compute them: must an algorithm examine all past

t1 · · · tt−1 data points to compute the gradient at timet? This would scale asO(T 2), but fortunately,

the answer is no: the necessary statistics can be computed in a recursive fashion as the algorithm

walks through the data.

Even though the computation can be done recursively, we wish to make two points about the effi-

ciency of computing these gradients. For the discussion, assume that we have l features inφ(ft),

and that we havek features in the extended distribution. This means that the matrixA ∈ Rk×l, that

the vectorst ∈ Rl, and that there arekl total parameters describingA.

The term∂st

∂A
is a matrix, withl rows andkl columns. Given∂st−1

∂A
, part of computing∂st

∂A
involves

multiplying ∂st

∂A
by A. This is an expensive matrix-matrix multiplication, which scales poorly as the

number of features in the model grows. In addition, notice that this matrix-matrixmultiplication

must be performedT times to get the true gradient of the likelihood, which scales poorly as the size

of the training set grows.

9.3 Experiments and Results
Two sets of experiments were conducted to evaluate the quality of the Linear-Linear EFPSR and the

exact learning algorithm. The first set tested whether the model could capture exact state, given a

complete set of features and exact inference. We evaluated the learnedmodel using exact inference

to compute the likelihood of the data under the model, and compared to the true likelihood.

The second set tested larger models, for which exact inference is not possible. For the second set,

bounds can be provided for the likelihoods, but may be so loose as to be uninformative. How can

we assess the quality of the final model? One objective gauge is control performance: if the domain

has a reward signal, reinforcement learning can be used to determine an optimal policy. Evaluating

the reward achieved becomes an objective measure of model quality, eventhough approximate

likelihood is the learning signal.

9.3.1 First set: likelihood evaluations

For these experiments, we tested on three two-state problems, as well as three small, standard

POMDPs. For the two-state problems, training and test sets were generated(using a uniformly

random policy for controlled systems). We used 10,000 samples, setn = 3 and used all possible

features (a total of seven, plus an additional four features describingthe extended distribution). We

used exact inference to compute theE[φ(Fn|ht)] term needed for the gradients. We optimized the

likelihood using steepest descent with a line search.

Figure9.2 (a)-(c) shows the results for three small two-state POMDPs with binary observations.

Sub-figure (a) shows results for a two-state MDP (that is, the observation probabilities were set
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Figure 9.2: Empirical results for the EFPSR on two-state systems. Sub-figure (d) shows the generic
model used. By varying the transition and observation probabilities, three different POMDPs were
generated. Sub-figures (a)-(c) show learning performance on the three models. Likelihoods for
naive predictions are shown as a dash-dot line near the bottom; likelihoods for optimal predictions
are shown as a dotted line near the top.

# of # of # of Naive True Training set Test set
Problem states obs. actions LL LL LL % LL %

Easy 2 2 0 -2.08 -1.38 -1.3999.9 -1.39 99.1
Medium 2 2 0 -2.08 -1.74 -1.74 100.3 -1.76 93.5
Hard 2 2 0 -2.08 -2.07 -2.07 98.6 -2.07 98.6
Paint 16 2 4 -6.24 -4.66 -4.6799.7 -4.66 99.9
Network 7 2 4 -6.24 -4.49 -4.50 99.5 -4.52 98.0
Tiger 2 2 3 -6.24 -5.23 -5.24 92.4 -5.25 86.0

Figure 9.3: Empirical results for the EFPSR on benchmark POMDPs. See text for explanation.
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such that observation indicates state). The likelihood of the data under the learned model closely

approaches the likelihood under the true model – on both training and test sets – indicating that

the Linear-Linear EFPSR has learned a virtually perfect model. Sub-figure (b) shows results for a

moderately noisy POMDP; again, the learned model is almost perfect, although the generalization

is not as strong. Sub-figure (c) shows results for a very noisy POMDP, in which the naive and

true log-likelihoods are very close. This indicates that prediction is difficult,even with the true

model. Even so, we learn a virtually perfect model, which closely approaches optimal likelihood

and generalizes well to the test set. Notice that the optimizer starts to overfit onthe training set after

about 60 iterations. At this point, performance on the test set begins to decline (although this is

difficult to see in the figure).

Figure9.3 collects these results in a tabular form, and shows additional results for three standard

POMDPs, named Paint, Network and Tiger1. For these new problems, we also setn = 3, but used

structure learning as explained in Section9.2.1to learn the features. For each dataset, we computed

the log-likelihood of the data under the true model, as well as the log-likelihood of a “naive” model,

which simply assigns uniform probability to every possible observation. We then learned the best

model possible, and compared the final log-likelihood under the learned and true models, for both

training and test sets. To help interpret the results, we also report a percentage (highlighted in bold),

which indicates the amount of the likelihood gap (between the naive and true models) that was

captured by the learned model. Higher is better; again we see that the learned models are quite

accurate, and generalize well. Finally, we note that the number of latent states for these POMDPs

varies from two to sixteen. In every case, however, the EFPSR usedn = 3, which appears to be

largely sufficient.

9.3.2 Second set: control performance evaluations

We also tested on two standard POMDPs called “Cheesemaze” and “Maze 4x3”. We again used

n = 3 and 10,000 training points. We used “streamer features” for the high order conjunctions,

which are shown pictorially in Figure9.4. These features connect observations with their temporal

successors, but there are no connections between different observation variables. For Cheesemaze,

this resulted in a total of 66 features describingp(Fn|ht), plus an additional 33 features to describe

p(Fn+1|ht). For Maze 4x3, this resulted in 60 and 30 features, respectively. For comparison, the

Cheesemaze model had 6,534 parameters, while the true model has 561 (about 1/10 as many).

For both problems, exact inference is intractable, and so we used approximate methods. To compute

the E[φ(Fn|ht)] term needed for the gradients, we experimented with loopy belief propagation

(LBP) (Yedida et al., 2001), naive mean field (or variational mean field, VMF), and log-determinant

relaxations (LDR) (Wainwright and Jordan, 2006). Since the VMF and LDR bounds on the log-

likelihood were so loose (and LBP provides no bound), it was impossible to assess our model by an

appeal to likelihood. Instead, we opted to evaluate the models based on control performance.

1From Tony Cassandra’s POMDP repository at http://www.cs.brown.edu/research/ai/pomdp/index.html
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Figure 9.4: “Streamer features” used in the EFPSR feature extractor. Shown is the graph repre-
senting the features extracted, which are all possible conjunctions of temporally successive atomic
features. Notice that no features cross different atomic variables.

Using LSPI. Our initial experiments used the LSPI (Lagoudakis and Parr, 2003) planning algo-

rithm, which is a value function based algorithm. We generated a fixed sequence of actions and

observations using a random policy. After each step of optimization, we used the parameter es-

timate to generate a corresponding set of states. We fed the states, rewards, and actions to LSPI

to generate an approximate Q-function. We then ran the agent in the model using a greedy policy

based on the learned Q-function, and report the average reward over 1000 steps.

We found that this did not work well: the algorithm resulted in policy chatter, which gave very

poor performance. Roughly speaking, this happens because the error in the function approximation

is greater than the gradient in the values. Too often, the agent would get stuck repeatedly taking

alternating actions whose effects canceled (for example, alternating between moving forward and

backward), which resulted in low reward. This was true of similar experiments in other domains,

reported in Section10.3.2.

Using NAC. We also experimented with the Natural Actor Critic (NAC) algorithm ofPeters et al.

(2005), which gave better overall performance. NAC is a policy gradient method. Policy gradient

methods define a stochastic policy which is parameterized, and compute the gradient of the average

long-term reward with respect to the policy parameters. Thus, taking a stepin the gradient direction

should always increase the average reward. While NAC is a policy gradient algorithm at heart,

it combines policy gradients with several additional ideas: it uses control variates to reduce the

variance in the gradients, and adds ideas from linear value function approximation, eligibility traces

and information geometry.

The NAC algorithm requires two things: a stochastic, parameterized policy which operates as a

function of state, and the gradients of the log probability of that policy. A common representation

of the policy is to use a softmax function of a linear projection of the state, where the projection

operator becomes the parameter to be determined. This is the approach we adopt. We compute the
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Figure 9.5: EFPSR control performance on Cheesemaze. On the left: average reward results on
Cheesemaze for different approximate inference methods. On the right: progress of the optimizer
for different approximate inference methods (see text for explanations).

probability of taking actionai from statest given the policy parametersθ as:

p(ai; st, θ) =
exp

{
s⊤t θi

}
∑|A|

j=1 exp
{
s⊤t θj

} . (9.4)

Hereθi is a vector of the same dimension asst.

The NAC algorithm requires the gradient of the log of this probability, which iseasily computed:

∂ log p(ai; st, θ)

∂θj
=

{
(1 − p(ai; st, θ))st if i = j

−p(ai; st, θ)st if i 6= j

The NAC algorithm also requires a few additional parameters. We used a TDrate ofλ = 0.85, a

stepsizeα = 10.0, gradient termination testǫ = 0.001 and remembering factorβ = 0.0.

For comparison, we also ran the NAC planner with the POMDP belief state. That is, we used

the same form for the stochastic policy and the same gradients, but in Eq.9.4 we used the belief

state of the true POMDP in place of using thest from the Approximate Linear-Linear EFPSR. We

also tested against using nothing but the observation to plan with – we used theobservation vector

instead of usingst in Eq. 9.4. We also compared to a totally random policy.

Results. Figure9.5shows the results for Cheesemaze. The left panel shows the best control per-

formance obtained (measured as average reward per timestep) as a function of steps of optimization.

The “POMDP” line shows the best reward obtained using the true belief stateas computed under the

true model as the input to the NAC algorithm. The “Random” line shows the reward obtained with

a random policy, and the “Reactive” line shows the best reward obtainedby using the observation
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Figure 9.6: EFPSR control performance on Maze 4x3. On the left: average reward results on
Maze 4x3 for different approximate inference methods. On the right: progress of the optimizer for
different approximate inference methods.

as input to the NAC algorithm. The lines “VMF,” “LBP,” and “LDR” correspond to the different

inference methods discussed previously.

The EFPSR models all start out with performance equivalent to the randompolicy (reward of 0.01),

and quickly hop to an average reward of 0.176. This is close to the rewardof using the true POMDP

state, which achieves an average 0.187. The EFPSR policy closes about94% of the gap between a

random policy and the policy obtained with the true model. Surprisingly, only a few iterations of

optimization were necessary to generate a state representation that was conducive to good control

performance: best performance was obtained after two or three iterations.

The right panel in Figure9.5shows the progress of each inference method over time. We report the

lower bound provided by LDR, the upper bound from VMF, and a quantityderived from LBP (which

is not a bound). In all three cases, the curves largely match the performance curves, although LDR

has a sudden hop in the middle. This implies that better models (higher likelihoods)yield better

control performance, although the correspondence is not exact.

Figure9.6shows the results for Maze 4x3. Again, the left panel shows control performance, and the

right panel shows optimizer progression. In some ways, these results parallel those on Cheesemaze:

there was no significant difference between the different inference methods, and only a few steps of

optimization were needed to reach the best performing levels. As the optimizer increased likelihood,

control performance also improved to a point (with the LDR algorithm showingthe same bump

at the end of learning). However, the best performance obtained herewas not as good as in the

Cheesemaze domain: the EFPSR policies do better than simple random or reactive policies, but

they are only a little bit better than reactive. In this domain, the EFPSR policy closes about 77.8%

of the gap between a random policy and the policy obtained with the true model.
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This domain was very challenging: experiments with different sets of features resulted in substan-

tially similar results. The EFPSR was always able to win out over a reactive policy, but not by

as large of a margin as in the Cheesemaze domain. Determining why this difference exists is im-

portant. Is is the features? The extension function? A fundamental characteristic of the domain?

Determining exactly when the EFPSR is expected to work well is still an open question, but it is

evident that there are at least some domains for which the learning algorithmswork well.

We can draw two conclusions from these results. For both domains, we conclude that the EFPSR

has learned a model which successfully incorporates information from history into the state repre-

sentation, and that it is this information which the NAC algorithm uses to obtain better-than-reactive

control performance. This implies that the model and learning algorithm are useful even with ap-

proximate inference methods, and even in cases where we cannot compare to the exact likelihood.

We can also conclude that the combination of features and learning algorithmwork well for some

domains, and not as well for others. Characterizing this precisely is an important direction for future

research.

9.4 Conclusions and Future Work
In this chapter, we have presented a specialization of the EFPSR named the Linear-Linear EFPSR.

In this model, both the extension and conditioning functions are linear operators, which resulted

in attractive practical properties. Tracking state in the model is simple, consisting of matrix-vector

multiply at each timestep, and computing the gradients needed for maximum likelihoodlearning

was straightforward because the derivative operator is also linear. Empirically, the exact maximum

likelihood learning is able to learn almost perfect models of the small systems presented here, when

we had a gold standard to compare against. Even when we could not evaluate model quality by

comparing to exact likelihoods, we were able to use the NAC algorithm in conjunction with our

model to control the system successfully.

It is interesting that we were able to learn fairly accurate models of the systemsconsidered here

even with the simple linear state update we have proposed. There was no a priori guarantee that a

POMDP would be representable by the model class we have chosen, and indeed, it intuitively would

have seemed necessary to have some sort of nonlinearity in the state update, since many popular

models do: PSRs and POMDPs both require a nonlinear normalization operation to condition on the

observation, and PLGs and Kalman Filters require a matrix inverse to accomplish the same thing.

These results suggest that strictly linear state updates can work well.

However, the exact learning algorithm for the model is not expected to scale well, due to the re-

peated inference calls needed to computeE[φ(ft|ht)] and the expensive matrix-matrix multiplica-

tions needed to propagate the gradients (this was discussed in Section9.2.2). Chapter10 addresses

these issues with an approximate learning algorithm for domains with many features and large train-

ing sets.
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Chapter 10

Approximate Linear-Linear EFPSRs

In the previous chapter, we presented the Linear-Linear EFPSR and anexact maximum likelihood

learning algorithm. The model and learning algorithm were able to capture several small POMDP

style domains with high fidelity, which suggests that both are sound. However, not reflected in the

results is the fact that the exact learning algorithm is fundamentally unscalable to large numbers of

features and large training set sizes. Ideally, we would like to be able to compute a few sufficient

statistics of our training set – in the best case, from a single pass through the data – and then run a

gradient optimizer which requires only the sufficient statistics. We would alsolike to minimize the

number of inference calls per gradient step, since it is an expensive operation.

We will now present an approximate learning algorithm which achieves all ofthese desiderata: it

requires only a few sufficient statistics of a training set, which are computable in linear time, and

it only requires one inference call per gradient step. We accomplish this with two approximations:

the first, presented in Section10.1, allows the model to cope with large sets of training data. The

second, presented in Section10.2, allows the model to cope with large numbers of features and

parameters.

Together, the combination of the Linear-Linear EFPSR and the approximate maximum likelihood

learning algorithm allow the algorithm to work on domains with tens of thousands of features, which

is larger than any other model with a predictive representation of state. Section 10.3presents results

for the algorithms on our standard POMDPs, a discretized bouncing ball task, as well as on a visual

navigation task, where a robot must navigate a maze using nothing but features of camera images

as observations.

10.1 Approximation #1: Eliminate Dependence on Time
In order to achieve an efficient learning algorithm, we will first address the dependence of the exact

learning algorithm onT , the size of the training set. We will revisit the basic likelihood equation,

and examine what happens in the limit asT → ∞. We will present an approximate expression for

likelihood, and show that its gradient can be efficiently computed.

Recall that the exact expected log-likelihood of the trainingft’s under the model defined in Eq.7.1
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is

LL =
1

T

(
T∑

t=1

−s⊤t φ(ft) − log Z(st)

)

and that the gradient of the likelihood with respect to a statest is

∂LL

∂st
= Est [φ(Fn|ht)] − φ(ft)

This implies that some sort of inference method must be applied at each timestep inorder to compute

E[φ(Fn|ht)] – inference is repeatedT times (the length of the training trajectory) in order to get

one gradient, which is then used in an outer optimization loop. Most inferencemethods are slow

enough that this is simply not feasible ifT is large. Section9.2.2also discussed the computational

burdens of the matrix-matrix multiplications needed to compute exact gradients.

We will now make one central assumption:

Assumption 10.1.1.We assume thatCov[st, φ(ft)] = 0 and thatCov[st, ot] = 0, ∀t.

This assumption states that the state does not covary with observable quantities. In particular, it im-

plies thatE[s⊤t φ(ft)] = E[st]
⊤E[φ(ft)], which will be repeatedly used in the following derivation.

This is not as severe of an assumption as it may appear to be – in particular, that this does not imply

thatst andφ(ft) are independent.

We begin by introducing an approximate log-likelihood̂LL, which is be a lower bound on the exact

likelihood. It is derived using our assumption and a lower bound:

LL =
1

T

(
T∑

t=1

−s⊤t φ(ft) − log Z(st)

)

= ET

[
−s⊤t φ(ft) − log Z(st)

]

= ET

[
−s⊤t φ(ft)

]
− ET [log Z(st)]

≈ ET [−st]
⊤ ET [φ(ft)] − ET [log Z(st)]

≥ ET [−st]
⊤ ET [φ(ft)] − log Z(ET [st])

≡ L̂L

where we have defined the operator

ET [X] ≡
1

T

T∑

t=1

X.

The fourth line in the derivation follows because of Assumption10.1.1. The fifth line is obtained
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by a double application of Jensen’s inequality:

E[− log Z(st)] = E

[
− log(

∫
exp(−s⊤t φ(F ))dF )

]

≥ − log(E

[∫
exp(−s⊤t φ(F ))dF

]
)

≥ − log(

∫
exp(E

[
−s⊤t φ(F )

]
)dF )

≈ − log(

∫
exp(E [−st]

⊤ E [φ(F )])dF )

= − log Z(E[st])

The second and third lines follow because of the convexity of the functions− log andexp, and the

fourth line follows by Assumption10.1.1.

The approximate log-likelihood involves several new terms, which we now explain. Consider

ET [st]. Because this is an unconditional expectation, this can be interpreted as thestationary dis-

tribution of states induced by the parametersA andB, and will play a central role in the learning

algorithm to follow. At first glance, this term would appear to defeat the point of our approxima-

tions: it appears to depend onT and onA andB, which means that we would have to recompute it,

at costT , every timeA or B change (as they would inside any sort of optimization loop). However,

we will show that this can be efficiently computed as the solution to a linear systemof equations in

a way that does not depend onT .

The other terms have simple interpretations.ET [φ(ft)] is the mean of the empirically observed

features ofn-step trajectories, and can be considered a suffix-history estimate of the features of the

n-step system dynamics vector. It can be computed in a single pass through the data, and does not

depend on the parametersA or B; it can therefore be computed once at the beginning of learning.

The quantitylog Z(ET [st]) also has a simple interpretation: it is the partition functionZ computed

using the vectorET [st], and can be computed in the same way as the partition function associated

with any ordinary statest.

10.1.1 Algorithm Summary

Let us now pause to summarize what we have accomplished. The exact log-likelihoodLL defined

in Eq. 9.1 is intractable due to expensive matrix-matrix multiplications and the repeated inference

calls necessary to compute the expected sufficient statistics at each timestep.

To remedy this, we have defined an approximate log-likelihoodL̂L. AppendixE shows that both

L̂L and the derivative of̂LL with respect to the model parameters can be computed efficiently: at

each iteration of the parameter optimizer, we must only solve two sparse linear systems of equations

and perform inference on the graphical model once.
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Algorithm APPROX-LEARN-EFPSRS

Input: ET [ot], ET [φ(ft)]

Initialize: Let A = 0, B = 0.

Repeat:

• Compute the gradients and approximate log-likelihood:
(L̂L,∇AL̂L,∇BL̂L) =APPROX-LL-GRADS(ET [ot], ET [φ(ft)], A, B)

• Use the gradients to improve the parameters, using any optimization method. In the
case of steepest descent, setA = A + α∇AL̂L andB = B + α∇BL̂L, whereα is a
suitably chosen stepsize.

Until ( L̂L is maximized )

Return: A, B

Figure 10.1: Approximate Linear-Linear EFPSR learning algorithm. The complexity of this algo-
rithm does not depend onT (the number of training samples).

During the development of this approximate quantity, we have introduced several new terms. Putting

them all together, we see that this learning algorithm is attempting:

• to find a setting of the parametersA andB

• which generate a stationary distribution of statesET [st],

• based on a transition operator defined using the stationary distribution of observationsET [ot],

• which imply a stationary distribution of features of lengthn trajectoriesEET [st][φ(Fn|ht)] as

close as possible to the empirically observed stationary distribution of featuresof lengthn

trajectoriesET [φ(ft)].

With gradients in hand, any optimization method may be used to find the optimal settingsfor A and

B. The final gradient algorithm is shown in FigureE.1 (in AppendixE), and a simple companion

steepest descent optimizer is shown in Figure10.1.

10.2 Approximation #2: A Low-Rank Parameterization
We now turn our attention to the parameter matricesA andB. So far, we have implicitly assumed

that the matrixA is reasonably sized, but this assumption is false in the case of a large numberof

features. For the rest of this section we describe this problem in detail, butin the interests of clarity,

we defer a detailed description of our solution to SectionE.3.
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While the approximate maximum likelihood learning algorithm shown in Figure10.1has several

appealing properties, it is not yet suitable for very large problems, because thenaive parameteri-

zationof A yields too many parameters. To clarify this, recall that our statest is a vector∈ Rl×1,

where l is the number of features of the future. When we extend and condition, we implicitly

computes+
t , which is a vector of parameters describingn + 1 observations:

s+
t = Ast + B

If we assume that there arek extended features, theA matrix is∈ Rk×l.

One of the goals of EFPSRs is to be able to use many features in order to capture state. If the number

of featuresl is very large (say, tens of thousands, or even millions), the number of extended features

k will be even larger, and the matrixA will be too large to work with. For example, suppose that

there are 10,000 features, and that the extended distribution has 15,000 features. Naively, the matrix

A ∈ R15,000×10,000, which is simply too large to deal with.

There are two possible solutions to this problem: one is to enforce some sort of sparsity on the

matrixA, resulting in a manageable number of parameters. While appealing, it begs thequestions:

of all the possible parameters, which should be constrained to be zero? Analternative solution is to

forceA to be low-rank – that is,rank(A) = d ≪ min(l, k).

We adopt the low-rank approach. We will replace the matrixA with its low-rank decomposition

A = USV ⊤, which we will learn from data. We select this strategy for three complementary

reasons:

1. Recall that the algorithm in Figure10.1involves the solution of two sparse linear systems of

equations. Iterative solvers for such systems require only a function which can compute a

matrix-vector product, which can be done efficiently for a low-rank matrix.

2. The gradients∇AL̂L used for parameter updates have a natural rank-one form, and therefore

mesh well with singular value decomposition (SVD) update algorithms: given theSVD of a

matrix and a rank-one update, the parameters of the updated SVD can be efficiently computed.

3. An efficient optimization procedure based on line searches is possible.We will be using a

gradient based algorithm to optimize our parameters. The performance of such optimizers is

impacted by their stepsize parameters: if they are too large, the optimizer hops over solutions,

but if they are too small, convergence is unacceptably slow. A line search isa common way

to adaptively select a stepsize. We develop an optimizer which is rank-aware – that is, which

explicitly deals with low-rank updates to the parameter matrix.

SectionE.3in the appendix discusses these points in more detail, and presents a method for comput-

ing the gradients of̂LL with a candidate rank-one update. In addition, it presents Brand’s algorithm
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Algorithm LEARN-LOW-RANK-EFPSRS

Input: ET [ot], ET [φ(ft)], d

Initialize: Let U = 0, S = 0, V = 0, B = 0, x = 0, y = 0, b = 0.

Repeat:

• Compute the gradients and approximate log-likelihood:(L̂L, ΓG, ET [st] , ∆G) =
LOWRANK-APPROX-LL-GRADS(ET [ot], ET [φ(ft)], U, S, V, B, 0, 0, 0)

• Remark:∇AL̂L = ΓGET [st]
⊤, but is never explicitly formed.

• Remark:∇BL̂L = ∆G.

• Conduct a line search: Findα > 0 which maximizes
(L̂L) =LOWRANK-APPROX-LL-GRADS(ET [ot], ET [φ(ft)], U, S, V, B,

αΓG, ET [st] , ∆G)

• Update the parameterization ofA:
(U, S, V ) =UPDATE-SVD(d, U, S, V, αΓG, ET [st])

• UpdateB:
B = B + α∆G.

Until ( L̂L is maximized )

Return: U, S, V, B

Figure 10.2: Rank-aware EFPSR learning algorithm. The algorithm ensures thatA remains rankd.

for updating the SVD. Figure10.2shows a steepest descent optimizer which performs a rank-aware

line search, and then updates the parameter matrix while maintaining a low-rank decomposition.

The parameterd can be selected with cross-validation or more sophisticated methods; we found

that in all of our experiments, small values on the order of five or six worked well.

10.3 Experiments and Results
In this section, we present experimental results assessing the quality of theapproximations proposed

in Sections10.1and10.2. In Section10.3.1we present results on the small POMDP benchmark

domains used in Section9.3, and measure the performance of the algorithm with exact likelihoods.

For larger problems, exact likelihoods are not an option. Instead, we use reinforcement learning

to help measure the quality of the model. In Section10.3.2we discuss how we use the state of

the Approximate Linear-Linear EFPSR in the natural actor-critic planning algorithm, and present

results showing that in both of our test domains, the final performance is very close to that obtained

with the exact model learning algorithm.
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In Section10.3.3, we present results for a hand-crafted domain called the “Bouncing Ball.” This is a

domain where the observations are known to factor in a certain way and which should be amenable

to solution with our algorithm. Empirically, we demonstrate that in this domain the Approximate

Linear-Linear EFPSR indeed performs better than either a random or reactive policy.

Finally, in Section10.3.4we present results for the largest domain of all, which is the Robot Vision

domain. This domain is somewhat similar to the autonomous robot domain describedin Section

3.6, but there are significant differences. Both versions use the same underlying engine: the latent

state space, the actions, and the rendered camera images are all the same. However, in this version

of the domain, the agent observes about 800 binary features which areextracted from each image.

In Section3.6, the agent only received a vector of three real values, representingthe dominant color

in the image.

10.3.1 Testing on Small POMDPs

We first examine the effects of Approximation #1 from Section10.1, where we eliminated the

dependence onT , which is the number of samples in the training set. We refer to the gradients

computed by the algorithmtimeless gradients. We present the results of two sets of experiments

which are designed analogously to those reported for the Exact Linear-Linear EFPSR in Section

9.3.

The first set of experiments tested on the same benchmark POMDPs Paint Network and Tiger, as

well as the Easy, Medium and Hard two-state problems. Figure10.3shows the results by reporting

“Model Quality.” Two bars are reported for each problem; for now, wefocus on the bar labeled “Full

parameter matrix.” Like Figure9.3, the “Model Quality” number reports the amount by which the

gap between true and naive likelihoods was closed. For example, the naive LL on the Easy problem

is -2.08, and the true LL is -1.38. The timeless algorithm generated a model with aLL of -1.52,

which closes about 80% of the gap. The figure shows results that are comparable to those for the

exact learning algorithm: on the Paint and Medium problems, the models were almost perfect, with

a score of 99%. On the Network problem, the score was lower, at 92%, while the Easy and Hard

models scored about 80%.

There are a few points worth noting here. First, the algorithm is capable of generating models with

the same quality as the exact algorithm, as demonstrated by the Paint, Medium andTiger problems,

but it does not always work perfectly. It is interesting that among the two-state problems, the

algorithm performed best on the Medium problem, while exact algorithm performed equally well

on all three. The reason for this is unknown, but could be due to reaching different local minima.

The second set of experiments is reported in the same figure. The figure shows results testing the

quality of Approximation #2 presented in Section10.2. The figure reports a bar for “USV parameter

matrix,” which is the model quality using the USV approximation plus the rank-aware line search.

In every case, the dimensiond was limited to be no more than 5. The results suggest that this
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Figure 10.3: Learning with timeless gradients. Shown are results for the fullparameterization ofA
and the low-rank parameterization ofA.

approximation and the corresponding line search have virtually no impact onmodel quality when

compared to their exact counterparts, while reducing the number of parameters (see Fig.10.3). This

is a positive result: it suggests that the idea of using a low-rank decomposition for A is sound, that

the SVD update algorithm works well, and that the rank-aware line search works well. Of course,

it is likely that reducingd too far would have an adverse effect on model quality. Determining the

optimald is an interesting direction for future experiments.

10.3.2 Planning in the Approximate Linear-Linear EFPSR

To test the Approximate Linear-Linear EFPSR in larger domains, we cannotappeal to likelihood.

Instead, we measure model quality by using the states in a reinforcement learning algorithm, as we

did in Section9.3.2.

We tested on the same two domains used in the Exact Linear-Linear EFPSR: Cheesemaze and Maze

4x3. The observations, actions, and features are all described in Section 9.3.2. The only difference

is that in the Maze 4x3 domain we experimented with different settings forn. We learned models

for both domains with the Approximate Linear-Linear EFPSR, using both the timeless gradients

and the lowrank parameterization of theA matrix, withd constrained to be less than 20.

Figure10.4shows the results of running the NAC planner in the Cheesemaze domain for five differ-

ent algorithms. The best performing is the true POMDP model, which achievesan average reward

of 0.187 per timestep. The worst performing is the reactive model, which achieves an average

reward of 0.1 per timestep. Three different inference methods were used to learn models for the

EFPSR, with the VMF and LBP models performing just under the performanceof the true model at

an average reward of 0.177. Here, we see that the Approximate Linear-Linear EFPSR has learned a

good model of the system, with relatively few features and a rather small amount of training data.
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Figure 10.4: Planning results in the cheesemaze domain. Shown are NAC learning curves for five
different algorithms. There is one caveat to the results: the learning curve for the LDR inference
method has been compressed by a factor of 20 (that is, it ran for 1000 iterations instead of 20). For
some reason, the performance improved much more slowly under the model generated with LDR
than with other inference methods.

These results basically match exactly the results reported in Section9.3.2when using the Exact

Linear-Linear EFPSR learning algorithm, and imply that both learning algorithmshave learned

models that almost identical. We conclude that in this domain, the approximations have worked

very well.

Figure10.5shows the results of the NAC planner on the Maze 4x3 domain. The panel onthe left

shows the NAC learning curves for different window sizes, and indicates that for best performance,

a window of at leastn = 5 is necessary. The panel on the right compares the best EFPSR model

with using reactive and POMDP states. The performance of the best EFPSR model (average reward

of 0.1266) is slightly better than a reactive model (average reward of 0.1191), and is worse than the

results obtained using the POMDP state (average reward of 0.1615).

These results also basically match exactly the results reported in Section9.3.2when using the Exact

Linear-Linear EFPSR learning algorithm, with two caveats: first, the rewardobtained here is slightly

lower (the Exact algorithm obtained 0.1295, while the Approximate algorithm obtained 0.1266), and

second, we had to usen = 6 to obtain this result. Even though the performance in this domain is

not as good as the performance obtained with the true POMDP model, the performance is only

slightly worse than that obtained with the exact model. We therefore concludethat in this domain,

the approximations have worked very well.
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Figure 10.5: Planning results in the Maze 4x3 domain. The left figure showslearning curves for
the EFPSR with different window sizes into the future. The best model usesa window ofn = 6.
The right figure compares planning results using the best EFPSR model, thereactive model the true
POMDP model.

10.3.3 Bouncing Ball

The next domain we tested on is called the Bouncing Ball domain. In this domain, the observations

are factored in a way that is closely related to the dynamics of the system. This domain was hand-

crafted to be a larger domain in which the EFPSR would perform well: the domainhas significant

structure in the observation space, and basically requires the use of a model which is able to capture

that structure.

Figure10.6describes the domain pictorially. The upper-left figure shows the dynamicsof the ball

bouncing. At each timestep, the agent observes an 11x10 array of pixels which may be black or

white. One of these pixels represents the “ball,” which bounces diagonallyaround the box (shown

as a gray trail in the figure). The agent has a single action: an action of 0 means “do nothing,”

and an action of “1” means “reverse the direction of the ball.” The rewardsignal is shown in the

upper-right corner of Figure10.6. The highest reward is obtained by keeping the ball near the center

of the box. This domain is episodic: every 50 timesteps, the ball is reset to a random initial starting

configuration.

We define three different versions of the domain. In the noiseless version, the agent sees the exact

position of the ball. This domain is second-order Markov, because the position and direction of the

ball can be determined from two successive observations. Note that there are only11 × 10 = 110

possible observations in this domain. The second version of the domain addsobservation noise:

each white pixel has a 1% chance of becoming a black pixel. This has several interesting effects:

the new domain is no longer second-order Markov, and the observation space is now exponentially

large (there are2110 possible observations, although most of them are highly unlikely). The third

version is like the second, except that each pixel has a 10% chance of turning from white to black.
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Figure10.6also shows the features we used for the EFPSR. For this domain, we hand-coded the

features to correspond with the known dynamics. We setn = 2. To modelp(F 2|ht), we added sin-

gleton features for each observation. Pairwise features were added for each variable to its diagonal

neighbors in the next timestep (these features were designed to capture thediagonal motion of the

ball). The extended distributionp(F 3|ht) was modeled with quartets consisting of an action and

observation at timet, a diagonal observation at timet + 1, and a diagonal observation at timet + 2.

There were 584 features describingp(F 2|ht) and 1,292 features describingp(F 3|ht).

Given the features, we learned a model using the Approximate Linear-Linear EFPSR, with both

timeless gradients and the USV approximation ofA, and 100,000 training samples. We then used

the resulting states as the input to the NAC planning algorithm. Figure10.8shows a representative

learning curve for the planner in the 10% noise version of the domain. The horizontal axis represents

steps of NAC learning, while the vertical axis represents average reward obtained. Shown is the

performance of a uniformly random policy, the best performance obtained using the observation as

state in the NAC planner, and the performance of using the EFPSR state in the NAC planner. We

see that the EFPSR has a clear performance benefit over both a uniformlyrandom policy and the

best reactive policy.

These results hold for both the noiseless and 1% domains as well. Figure10.8collects the results

for these domains. Again, the EFPSR is able to consistently improve over the best reactive policy,

generating a policy with 30% higher reward in the noiseless version, a policywith 25% higher

reward in the 1% noisy domain, and a policy with 13% higher reward in the 10% noisy domain. It

is an open question as to whether different feature sets would improve these results further.

10.3.4 Robot Vision Domain

Together, the combination of the Linear-Linear EFPSR, the approximate maximum likelihood ob-

jective function, and the low-rank decomposition of the parameter matrix allow experimentation on

domains with hundreds of observation variables and tens of thousands offeatures, which is larger

than any other model with a predictive representation of state. Here, we apply the entire suite of

techniques to the task of visual navigation, where a robot must navigate a maze using nothing but

features of camera images as observations. The raw atomic features consist of binary random vari-

ables, such as edges, corners, and quantized colors, which are thenused by the EFPSR to construct

higher-order conjunctions. We also define a reward signal which rewards the agent for navigating

to a goal location, and attempt to find a good policy using the NAC planning algorithm.

Vision Domain Setup

Figure10.9explains many parts of the setup of the vision domain. The latent state space consists of

a positionx, y and orientationθ. The agent inhabits a maze with brightly colored walls. The initial

observations are 64x64 full color images, which are post-processed toextract binary features. The

agent has four actions: move forward, move backward, turn left and turn right.
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Figure 10.6: The setup of the bouncing ball problem. In the upper left: the dynamics of the ball
bouncing. The black square represents the current observation. The gray squares are not observed;
they represent the trajectory that the ball has taken. In the upper-right:the reward function. On the
bottom: the features used to describe the distribution of the future.
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Figure 10.7: A representative learning curve for the bouncing ball domain. This version had maxi-
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Figure 10.9: Setup of the vision domain. The upper left shows examples of the raw camera images
and the extracted 16x16 array of edge features. Color features and corner features are also extracted.
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robot for Map #1 (left) and Map #2 (right). Higher is better.
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The experiments used two different maps. A stylized version of Maze #1 is found in Figure3.5,

and the outline of each map can be seen in the diagrams representing the reward function in Figure

10.9(bottom row). Maze #1 had brightly colored walls, which is helpful for determining a location

in the maze. Maze #2 also had brightly colored walls, but was designed to have slightly stronger

perceptual aliasing than Maze #1.

The experiments used two different sets of binary features. The first set of features consisted of

edges, corners and colors. The edge features were extracted as a 16x16 array of binary variables,

representing presence or absence of an edge (shown in Figure10.9, upper-left corner). Corner fea-

tures were extracted as an 8x8 array of binary variables. Color features were extracted by convolving

different regions of the image with a localized Gaussian to extract the dominant color in that region,

and then quantizing the color to the nearest of 54 base colors. Each dominant color was encoded as

a vector of 54 binary variables, only one of which was active. This feature set resulted in 884 total

features.

The second feature set was a post-processed version of the first set. The idea of the second set of

features was to create higher-order features which represented things like walls and hallways. To

accomplish this, images from the Maze #1 were clustered according to the latent states from which

the images were captured, and then the binary features were averaged together to create a sort of

filter. New images were tested against each filter, and if the response exceeded an empirically

determined threshold, that particular feature was triggered. The images were clustered into 373

groups, meaning that there were 373 atomic features in this feature set. Whilethe images were all

taken from Maze #1, they were also used in Maze #2, where the colors, hall geometry, etc. were all

different.

We setn = 3. For the feature vectorφ(), we used “streamer features.” Streamer features connect

each observation variables to each of its temporal successors, but do not make any connections

across different observation variables. This essentially means that each variable is fully factored,

and without any dynamics, this would mean that we would be modeling the evolutionof each

observation variable through time independently. This is not as severe as itmay seem, because the

state update changes allows variables to depend on each other: the factored distribution of each

variable is updated based on the distributions of all of the other variables. Numerous experiments

not reported here were conducted with different feature sets, and these features seemed to work

as well as any other choice, while creating a relatively compact feature set. With the raw atomic

features and the streamer features, there were between 12,000 and 50,000 total features in the final

feature set.

Training was done on 200,000 data samples generated with a random policy.A different reward

function was defined for each maze, which are shown in Figure10.9. Both reward functions en-

courage the agent to navigate to a specific point in the maze, so the resulting problem can be viewed

as a shortest path problem.
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The experiments also used two different kinds of dynamics. In the “coarse” dynamics, the agent’s

actions had large effects: turns were 90 degrees, and steps forwardand backward moved a full maze

unit. This meant that, for example, the agent could navigate from any point tothe goal in about 15

steps. In the “fine” dynamics, the agent turned 15 degrees, and moved 0.1 maze units. This results

in much smoother looking movements. For both sets of dynamics,n was still set to 3.

After learning a model with the Approximate Linear-Linear EFPSR, we used the NAC algorithm to

find a good control policy (experiments with LSPI generally resulted in policychatter, as discussed

previously). For the NAC parameters, we used a TD rate ofλ = 0.85, a stepsizeα = 10.0, gradient

termination testǫ = 0.001 and remembering factorβ = 0.0. For comparison, we also used NAC to

learn a policy using the binary features as state (either feature set #1 or feature set #2, depending on

which set was used to train the EFPSR). We call this the “reactive” policy. Finally, we also tested

against a random policy.

Vision Domain Results

Learning the model was relatively easy, taking only about 30 seconds to compute the expected

feature vectors and optimize the approximate log-likelihood. It took longer to collect the raw data

(about five minutes) due to the intensive rendering and image processing.It took quite a long time to

learn a good control policy. In order to compute a gradient for the policy parameters, the agent needs

to estimate the gradient of the average reward, which is implicitly defined as an expectation over the

entire state space. Thus, the agent typically had to wander around the mazefor very long periods of

time before the gradients converged to a reasonable tolerance. Recall that we used 200,000 training

points to learn the model; each NAC step required about 1.5 million steps in the world, and for each

step, images must be rendered, features extracted, etc. For the results tobe reported, the policies

were obtained after about a day of computation.

Figure10.10shows the results. There are several points worth noticing in the graphs.As a baseline

observation, the random policy obtained approximately the same reward in both domains, regardless

of map or dynamics. Higher rewards were obtained in general with coarsedynamics, regardless of

map, feature set, or learning algorithm. Presumably, this is because the agent takes bigger steps,

and so it does not need to spend as much time traveling to regions of high reward.

It is the difference between the two feature sets that is most interesting, forseveral reasons. First,

note that using feature set #1, the EFPSR consistently performs just under the performance of the

reactive policy, regardless of map or dynamics. This could perhaps be explained if the EFPSR

was generally unable to capture any meaningful dynamics, and instead learned to predict the iden-

tity function, with some noise. This would mean that, for example, the predictions for the next

observation would be the same as the current observation, which would effectively result in a pol-

icy equivalent to the reactive policy. The story is different with feature set #2. Here, the EFPSR

consistently outperforms the reactive policy.
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Figure 10.10: Results on the vision domain. The bar charts show the average obtained for different
algorithms on different versions of the robot vision domain. Higher is better. The top chart is for
feature set #1, and the bottom set is for feature set #2. The performance of the random policy does
not depend on the features used, so the same bars are replicated on the top and bottom charts.
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Combined with knowledge of our experimental setup, these observations implya coherent story. It

is clear that the performance of the EFPSR is at the mercy of the high order feature conjunctions.

In the reported experiments, we used the same set of streamer features, regardless of what the

underlying feature set was. The highest order of conjunctions was between four or five.

One plausible explanation for the difference in performance is that low-order conjunctions of more

abstract features gives more modeling benefit than low-order conjunctions of granular, low-level

features. To see this, consider the following cases:

1. It is easy to imagine that low-order conjunctions of granular features isinsufficient to capture

useful abstract structure in the domain. For example, to represent the presence or absence

of an entire vertical edge, the agent might need a conjunction of 10 features. To represent

something hallway-like, the agent might need a conjunction on the order of 50 or so features.

Without high order conjunctions of low-level features, it is likely that the agent simply cannot

distinguish between a blue wall and a pink wall, because it cannot distinguishwalls from a

bag of edges. To create higher-order features, we experimented with streamer features, hand-

coded features, randomly sampled features, and all possible pairwise features. However, in

all of these cases, the highest-order conjunction obtained was four or five. It may be that this

is simply not high enough to be useful.

2. This was part of the motivation for feature set #2. Consider the way theclusters were gen-

erated, and how they might be capturing more abstract features. Because the camera images

were clustered according to latent states, they were typically images of the same thing, from

slightly different positions and angles. Imagine two clusters, one set of images which are all

looking at the corner of a pink hallway from different angles, and another which are all look-

ing out across an open courtyard. The features in feature set #2 areanalogous to asking if the

current image is more like cluster (1) or cluster (2). Using this feature set, the highest-order

conjunction was still four or five. However, these conjunctions may represent much more ab-

stract kinds of knowledge: if one feature represents “pink wall” and another represents “pink

corner,” perhaps a low-order conjunction could express “I’m looking at a pink wall, but if I

turn left, I’ll see a pink corner.”

The idea that low-order conjunctions of more abstract features gives more modeling benefit than

low-order conjunctions of granular, low-level features suggests several directions for future im-

provement of these results. It is possible that creating very high-orderconjunctions of the low-level

features would lead to the best model. To do this, better structure learning algorithms would be

needed, because the technique discussed in Section9.2.1 is difficult to scale well. However, it

seems more likely that clustering images as a preprocessing step and extracting more meaningful

features will yield better performance, which would encourage research into filters and clusters.
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10.4 Conclusions and Future Work
In this chapter, we have presented an approximate maximum likelihood learningalgorithm for the

Linear-Linear EFPSR model. In many ways, the algorithm has taken a good step towards the goal

of modeling large domains. One goal was to eliminate the dependence onT , the size of the training

set. Not reflected in these results is the computational savings over the exact algorithm: for all of the

models here (including the Robot Vision domain), learning the actual dynamical model only took a

few seconds. In contrast, preliminary experiments indicated that computing just one exact gradient

for the robot vision domain would have taken days.

The models resulting from this learning algorithm are not perfect. In everycase, the approximate

learning algorithm performed worse than its exact counterpart. Sometimes, the difference was no-

ticeable, but other times, the two models were virtually indistinguishable. This is perhaps to be

expected: it is an approximate algorithm, and is not expected to work perfectly on every domain.

While it has been pleasantly surprising how far the approximation has been able to take us, charac-

terizing the circumstances under which the algorithm is expected to work well isan important open

problem.

Even though the approximate models perform worse than the exact models, itis only by virtue of

these approximations that we were able to attempt at all domains like the BouncingBall or the Robot

Vision domain. In that sense, the most encouraging results came from the Robot Vision domain.

While not always better than a reactive policy, there are some combinations of features and dynam-

ics in which the EFPSR model and the approximate learning algorithms yield better-than-reactive

control policies, suggesting that information from history has successfully been incorporated into

the state representation. This is a positive result considering the size of thedata set and the number

of features involved.

Future work needs to address the problem of learning good atomic features and the graphical struc-

ture, since this seems to be one of the key factors affecting performance.Additional classes of

extension functions should also be considered, possibly with appropriatenonlinearities. Theoret-

ical work needs to be done to determine what types of extension functions are needed for best

performance, and algorithmic advances are still possible: for example, it would be nice to find an

algorithm with a finer-grained tradeoff between performingT inference calls and performing one

inference call per gradient step. It may be possible to use the approximations presented here to learn

a coarse model quickly and then refine it. Or models could be minimized by examinethe resulting

parameter matrix and pruning unused features.
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Chapter 11

Concluding Remarks

Models with predictively defined representations of state are still relativelyyoung. To date, there has

been little systematic research devoted to pushing these models towards domainswith continuous

observations, large data sets and/or structured observations. This thesis takes steps in all of those

directions. We now look back and summarize where we have been, and present some thoughts on

what the future might hold and some conclusions we can draw.

11.1 Review of Contributions
This thesis describes a trajectory of work that explores increasingly complex domains. Our goal at

the outset was to explore models with predictively defined representations of state, with the intent of

pushing such models towards practical applications. We take a moment to review the domains we

have examined, the models we have proposed for them, and their companion learning algorithms.

11.1.1 Continuous PSRs

The Continuous PSR algorithm of Chapter3 extended PSRs directly to the case of continuous

observations by generalizing many aspects of PSRs. One of the most important contributions of

this chapter was the introduction of thesystem dynamics distributions, which are a generalization

of the system dynamics matrix to the case of continuous observations. Estimatingthese distribu-

tions played a key role in the development of subsequent algorithms. This chapter also presents

an information-theoretic framework for addressing the question of findingan approximate repre-

sentation of state and how to determine the sufficiency of such a representation. Computationally,

we showed that the combination of kernel density estimation, quadratic Renyientropy and Nys-

trom approximations yields efficient, differentiable expressions for information, which results in a

gradient optimizer capable of optimizing state representations. Empirically, we demonstrated that

information and modelling error are correlated, and that the representation optimizer is capable of

improving randomly chosen state representations.

The Continuous PSR algorithm uses a vector of densities as a state representation. However, there

is a stage in the Continuous PSR algorithm where some of the system dynamics distributions (a

complete distribution over a window of future observations) must be modeled.This highlights

the fact that directly estimating these distributions appears to be the central problem of learning
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dynamical systems using predictive representations of state, which led to thedevelopment of the

Predictive Linear-Gaussian family of algorithms and their generalization, theExponential Family

PSR.

11.1.2 The Predictive Linear-Gaussian Model

Chapter4 presented the Predictive Linear-Gaussian model (or PLG). This model islargely the work

of Matthew Rudary (with some help from the present author), but has served as the jumping-off

point for much of the research presented here. The PLG uses a predictive representation of state,

defined as the statistics of a Gaussian distribution over a finite window of future observations – in

essence, the PLG assumes the system dynamics distributions are Gaussian.Importantly, the PLG is

formally equivalent to the Kalman Filter, in the sense that it has an equal number of parameters and

predicts the same distribution over future observations given any history.The learning algorithms

are simple, consisting largely of linear regressions and sample statistics, andin some cases have

attractive theoretical guarantees. Rudary’s empirical results demonstrated that when learning PLG

models from data, the PLG typically outperforms LDS models learned with the EM algorithm.

11.1.3 The Kernel PLG

The PLG is capable of modeling only linear domains. Chapter5 extended the PLG to model nonlin-

ear dynamical systems by using the kernel trick. The resulting Kernel PLGmodel can be interpreted

as performing linear dynamics in a high-dimensional, nonlinear feature space. We also contributed

a learning algorithm which, like the PLG, consists mainly of regressions and sample statistics. The

state update requires some inference on the model, which can be performedexactly (although not

efficiently) in the case of a Gaussian kernel. Computationally, we introduced sigma-point approx-

imations to perform the inference needed by the dynamics, which allowed the model to be easily

extended to any kernel, and which has the side effect of relating the KPLGto the Unscented Kalman

Filter. Empirically, this model outperformed the PLG and a kernel autoregressive model on several

nonlinear test problems, and is competitive on other problems.

11.1.4 Mixtures of PLGs

An alternative way to leverage the PLG framework to model nonlinear dynamical systems is to con-

sider dynamics that are piecewise linear. Chapter6 presented the MPLG (or “Mixture of PLGs”)

model, which uses a probabilistic generative model to mix different PLGs together to form a com-

posite dynamical system. Because the mixing method has probabilistic semantics, the learning

algorithm for the MPLG has a simple form which can be interpreted as a weighted version of the

PLG learning algorithm. Again, inference is needed during the state update,but no exact expres-

sions are available. Computationally, we contributed an extension of the sigma-point approximation

used by the KPLG to create a hybrid particle-analytical inference method, where nonlinear terms

of the state update are approximated using sigma-points, but linear portions are computed exactly.

Empirically, we demonstrated that the MPLG outperforms the KPLG on the test domains, and that
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it demonstrates more robustness to parameter perturbations.

11.1.5 The Exponential Family PSR

Chapters7 - 10 presented the Exponential Family PSR (EFPSR) model, which combines and gen-

eralizes many of the ideas from previous models. Instead of defining state as the parameters of

a Gaussian over a window of the future, it uses a general exponential family distribution. The

flexibility of the exponential family distribution and the genericity of the state update mechanism

permits the unification of the PSR, the PLG, the KPLG and the MPLG as specializations of the

EFPSR, which lead to theorems about the representational capacity of the EFPSR in Chapter7. It

additionally connects PSRs to graphical models.

Chapter8 presented the Information PLG, which unifies the PLG, the Information KalmanFilter

and the EFPSR. By choosing the features and extension equations carefully, we showed that the

EFPSRis the information form of the PLG. We also showed that state updates can be performed

efficiently using nothing but the ordinary PLG parameters.

Chapter9 presented the Exact Linear-Linear EFPSR, which is a special case of the EFPSR model

designed to be tractable. We presented an exact maximum likelihood learning algorithm, which is

intractable for all but the smallest domains. Even so, we demonstrated empirically that the model

can capture several benchmark POMDP domains, and that the state representation generated by the

EFPSR is useful for planning in a traditional reinforcement learning sense, in that it can be used to

learn almost optimal control policies for some domains.

Chapter10 presented the Approximate Linear-Linear EFPSR, which invoked several approxima-

tions to help the Exact Linear-Linear EFPSR scale to larger domains. Thesedomains had tens of

thousands of features (which is far larger than any other model with a predictive representation of

state) and large training data sets. Using this suite of techniques, and in conjunction with the natu-

ral actor-critic planning algorithm, we demonstrated that there are situations where the EFPSR can

successfully incorporate history into its state representation, which translates into improved control

performance. The largest such domain is a visual navigation task, wherea robot must navigate a

maze using nothing but camera images as observations.

11.2 Conclusions and Future Work
What broad conclusions can we draw from the work presented here? The first conclusion is that the

idea of predictively defined representations of state is a flexible one, andthat many variations seem

to result in learnable models which capture their domains well. We have considered a variety of

types within the umbrella of predictions about the future: we have used probabilities of specific tests

(the PSR model), densities of specific tests (the Continuous PSR model), expectations of features of

the short-term future (the PLG family of models), and the natural parametersof a distribution over

a window of short-term future observations (the EFPSR). These appear to have worked well, and
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there are likely many other possibilities.

What can we conclude about the idea of predictively defined state itself? We began this thesis by

noting that our restriction to models with predictively defined state was self-imposed, and we won-

dered: would this be a limitation? What would we gain? Our conclusion is that this restriction does

not appear to have limited the capacity of our models. Empirically, we have oftenoutperformed

other approaches, and even when we did not, we were competitive. There have been positive theo-

retical results as well. For example, the fact that PSRs are formally more expressive than POMDPs,

the fact that every LDS can be captured by a PLG, and the fact that EFPSRs can capture a variety of

models all give strong reasons to believe that we may never lose anything byrepresenting state as

statistics about the short-term future (although proving this in complete generality would be a sig-

nificant contribution). Our conclusion is this: so far, there is no known representational or empirical

limitation that has resulted from adopting a predictively defined representation of state. The future

for predictively defined state seems bright.

Where to from here? Further theoretical work is clearly needed: are there any unique advantages to

predictively defined state? Will there ever be a limitation? When are our approximations expected

to work well? Algorithmic advances are crucial: further approximations or computational improve-

ments are possible, and completely different learning strategies could also be fruitful (perhaps not

based on maximum likelihood, or designed to take advantage of domain-specific structure). And of

course, applications to ever larger domains are needed: richer, more structured domains than those

we have considered may influence models and learning algorithms.

Throughout this thesis, we have exercised discipline in never allowing ourrepresentations to use

latent variables. This is part of the theory of predictively defined state representations, and this

thesis is an attempt to take that theory seriously. However, for practical applications, where the goal

is to solve a problem rather than to investigate a theory, it makes sense to marryboth approaches.

This is a rich source of possibilities: for example, the ability to add structured domain knowledge

(possibly in the form of a prior in a Bayesian framework) seems important. Every model we have

presented could be combined with latent variables in one form or another, and the result would

sit somewhere in between classical state-space models and predictively defined models. How this

would change the models’ representational capacity, their learning algorithms, or their empirical

performance is an open question.
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Appendix A

Computing the Gradients of Information

In this appendix, we discuss how the Continuous PSR algorithm of Chapter3 computes the gradient

of information with respect to the parameters governing its state representation.

As discussed in Chapter3, we assume that we have been given data. This data comes in the form of

n triples(hi, si, fi). The sampleshi andfi are from the joint distributionp(F, H), andsi = f(hi; θ)

is the state corresponding to each history. Thus, the samplessi andfi are samples fromp(F, S).

Recall that using these samples, we will infer the distributions using kernel density estimation with

a Gaussian kernel:

p(X = x) =
1

n

n∑

j=1

G(x − xj ; σj).

The Continuous PSR algorithm frames the problem of discovering a good set of core tests as an

optimization problem. The objective function isI(F, S = f(H; θ)), which must be maximized

overθ. The algorithm searches the space of possibleθ by selecting an initialθ and then performing

gradient ascent:

θ = θ + η
∂I

∂θ
= θ + η

n∑

i

∂I

∂si

∂si

∂θ

In this appendix, we derive the two quantities necessary to compute the gradients: ∂I/∂si and

∂si/∂θ.

A.1 Information with Respect to State Samples
We begin by taking derivatives of information with respect to individual state samples:

∂I

∂si
=

∂H(F )

∂si
+

∂H(S)

∂si
−

∂H(F, S)

∂si

=
∂H(S)

∂si
−

∂H(F, S)

∂si

This will result in a vector describing which way samplei wishes to move in order to increase

information. The entropy measure that we will use is quadratic Renyi entropy:

H(X) = − log

∫
p(X)2dx
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= − log

∫ 

 1

n

n∑

j

G(X − xj ; σ
X
j )




2

dX

= − log
1

n2

n∑

ij

G(xi − xj ; σ
X
i + σX

j ) (A.1)

where the second line follows because we are using kernel density estimation with a Gaussian kernel

to estimatep(X), and where the third lines follows because we have used the identity

∫
G(X − xi; σi)G(X − xj ; σj)dX = G(xi − xj ; σi + σj).

Similarly, the entropy of a joint density can be written as:

H(X, Y ) = − log
1

n2

n∑

ij

G(xi − xj ; σ
X
i + σX

j )G(yi − yj ; σ
Y
i + σY

j ). (A.2)

Our choices of entropy and density estimator have yielded a closed-form expression for entropy

which has reduced to computing pairwise interactions between the data points used to construct the

density. There is no approximation in this integral, apart from the use of a kernel density estimate

to begin with.

Another useful identity involves the derivative of a Gaussian:

∂

∂xi
G(xi − xj ; Σ) = −G(xi − xj ; Σ)(Σ−1)(xi − xj)

which we use to find the gradients of information:

∂H(S)

∂si
=

∂

∂si



− log
1

n2

n∑

ij

G(si − sj ; σ
S
i + σS

j )





=
−1

H(S)

1

n2

∂

∂si




n∑

ij

G(si − sj ; σ
S
i + σS

j )





=
2

H(S)n2

n∑

j

G(si − sj ; σ
S
i + σS

j )(σS
i + σS

j )−1(si − sj).

The result is obtained because the samplesi appears twice in the double summation overi, j. Sim-

ilarly,

∂H(F, S)

∂si
=

2

H(F, S)n2

n∑

j

G(si − sj ; σ
S
i + σS

j )G(fi − fj ; σ
F
i + σF

j )(σS
i + σS

j )−1(si − sj).
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A.2 State Sample with Respect to Parameters
Finally, we need to compute the change in samplesi with respect to the parametersθ. Up to this

point, none of the math that we have laid out says anything about predictiverepresentations of state,

and applies equally well to any parametric mapping from past to state. We will now introduce the

choices that make this a PSR. Recall thatsi = f(hi; θ). si is a vector, thej’th component of which

is the prediction of testtj :

sj
i = p(tj |hi) =

p(hi, tj)

p(hi)

=
1
n

∑n
k G(hi − hk; σ

H
k )G(tj − fk; σ

F
k )

1
n

∑n
l G(hi − hl; σ

H
l )

=
n∑

k

N(hi)kG(tj − fk; σ
F
k )

where we have summarized the conditioning of the past into a functionN (which only depends on

hi, and not ontj).

The parametersθ are the actions and observations within the tests themselves. We can compute the

partial derivative of a given state variable with respect to the test valuesthat generated it:

∂sj
i

∂tj
= −

n∑

k

N(hi)kG(tj − fk; σ
F
k )(σF

k )−1(tj − fk).

This completes the derivation.
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Appendix B

Approximate Information Gradients Using Nystrom Approximations

The Continuous PSR algorithm requires the gradient of information with respect to the test param-

eters. Naively done, this operation is quadratic in the number of samples used. Here, we present

an approximation to the gradient calculations which uses Nystrom approximations to speed up the

gradient calculation. This approximation is tunable, meaning that we can trade-off computation

time for approximation accuracy, and allows us to scale up the procedure to large datasets.

This appendix is divided into two broad sections. First, in SectionB.1we review the assumptions of

the continuous PSR algorithm: that we are using a kernel density estimate with a Gaussian kernel,

and a measure of information based on quadratic Renyi entropy, and show how this leads to a closed

form expression for entropy.

We then discuss general Nystrom approximations in SectionB.2. In SectionB.3 we show how to

use Nystrom approximations to approximate entropy, and give formulae forthe derivative of entropy

with respect to one of the samples which composes the density estimate. Finally, inSectionB.4 we

combine everything together to show how to compute the full gradients of information which are

needed by the Continuous PSR algorithm.

B.1 Closed Form Entropy
First, we recall a few of the key definitions in the Continuous PSR model, but wewill do so in a

generic way. We wish to estimatep(X) given samplesx1, · · · , xn, with eachxi ∈ Rd×1. We choose

to use a kernel density estimate with a spherical Gaussian kernel:

p(X = x) =
1

n

n∑

j=1

G(x − xj ; σj)

where

G(x; σj) =
1√

(2πσj)d
exp

{
−x⊤x/2σj

}

is the kernel.

Ultimately, we will be interested in computing the information thatX conveys about another random

variable. This will involve computing an entropy term. Computing Shannon entropy in closed-form
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for our density estimate is not tractable, but wecancompute a generalized entropy quantity, known

as quadratic Renyi entropy, in closed form.

Quadratic Renyi entropy for a random variableX is defined as:

HR2
(X) = − log

∫
p(X)2dX (B.1)

Plugging in our kernel density estimate yields the following:

H(X) = − log

∫
p(X)2dx

= − log
1

n2

n∑

ij

G(xi − xj ; σi + σj). (B.2)

While this expression has a simple closed form, it unfortunately has quadraticsample complexity –

we must compute the Gaussian of every sample with every other sample. ThisO(n2) scaling makes

this approach infeasible for large datasets. However, this term may be approximated, as we discuss

next.

B.2 Nystrom Approximations
One of the keys to scalability is the observation that the Gaussian used in our kernel density esti-

mator is not only a kernel in the local modeling sense (Fan and Gijbels, 1996), it is also a Mercer

kernel. This means that it is a positive-definite quantity. We will now explain how a so-calledNys-

trom approximationcan be used to approximate any positive-definite quantity, and how its use leads

to several computational efficiencies for the Continuous PSR model.

Let G ∈ Rn×n be any symmetric, positive definite matrix. In our case,G results from the appli-

cation of a Gaussian kernel:Gij = G(xi − xj ; σ). Nystrom approximations work by selecting a

number oflandmarkpoints (sometimes known asdictionary points), and instead of computing a

Gaussian of every point with every other point (Gij), we only compute the Gaussians with respect

to a set of landmarks.

Selectm of thexi’s at random as landmarks, and without loss of generality, permute them to be the

first m data points. The Nystrom approximation ofG is given by:

G =

[
A B

B⊤ C

]

≈

[
A

B⊤

]
(
A−1

)
[AB]

=

[
A B

B⊤ B⊤A−1B

]
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whereA ∈ Rm×m is the kernel matrix associated with them landmarks. This is essentially a low-

rank approximation toG, where it is assumed that every non-landmark point can be expressed as a

linear combination of landmarks. This approximation is exact whenG is rankm or less; otherwise,

the quality of the approximation is proportional to‖C − B⊤A−1B‖ (Platt, 2004). The Gaussian

is an infinite-dimensional feature extractor: assuming that none of the pointsare equal, whenG

is derived from the Gaussian kernel, it will always have full rank. Nystrom approximations also

have an interpretation as an eigenvector approximation method, where the eigenvectors ofA are

extrapolated to approximate the eigenvectors ofG (Platt, 2004).

Using a Nystrom approximation, we can simplify expressions of the form

E =
n∑

ij

G(xi − xj ; Σ)

which have quadratic sample complexity as follows:

E =
n∑

ij

G(xi − xj ; σ)

= 1⊤G1

= 1⊤

[
A

B⊤

]
(
A−1

)
[AB] 1

=

(
1⊤

[
A

B⊤

])
(
A−1

)
([AB] 1)

=

m∑

kl

(
n∑

i

G(xi − lk; σ)

)
(
A−1

)
kl




n∑

j

G(ll − xj ; σ)



 (B.3)

where1 ∈ Rn×1 is a column vector of ones.

The essential insight is the fact that the operations can be grouped in a way that results in lower

overall complexity. The complexity of computingE using this method isO(m3 + nm), where

n is the total number of samples andm ≪ n is the number of landmark points. In contrast, the

complexity of the naive version isO(n2). For many of the robot experiments to be explained later

for example, aboutn = 100, 000 samples were used (which would be totally intractable), but for

which good results were obtained with as few asm = 100 landmark points.

Landmark points can be selected in a variety of ways. One particularly appealing way is the

dictionary-based methods ofEngel et al.(2003), which use a tunable “approximate linear depen-

dence threshold.” By changing the threshold, the number of landmarks can be tuned. The method

automatically ensures that the landmarks are linearly independent, and therefore thatA is invertible.
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B.3 Combining Entropy Gradients with Nystrom Approximations
With our Nystrom approximation in hand, we now turn to the calculation of the Renyi entropy of a

random variableX. We wish to compute Eq.A.1, which has quadratic sample complexity. Using

the Nystrom approximation in Eq.B.3, we may approximate the Renyi entropy as:

H(X) = − log
1

n2

n∑

ij

G(xi − xj ; σ)

≈ − log
1

n2

n∑

ij

m∑

kl

G(xi − lk; σ)
(
A−1

)
kl

G(ll − xj ; σ)

= − log
1

n2

m∑

kl

[
n∑

i

G(xi − lk; σ)

]
(
A−1

)
kl




n∑

j

G(ll − xj ; σ)





= − log
1

n2

m∑

kl

BkMklBl

= − log
1

n2
B⊤MB

whereB is a vector∈ Rm×1, and

Bk =
n∑

i

G(xi − lk; σ),

and the matrix

M = A−1

is ∈ Rm×m. The vectorB contains the kernel evaluation of every samplexi with every landmark,

while M is the inverse ofA, which contains the kernel evaluation of every landmark with every

other landmark.

We can now compute the derivative ofH(X) with respect to one of the samples composing it:

∂H(X)

∂xi
=

∂

∂xi

[
− log

1

n2
B⊤MB

]

= −
1

H(X)

1

n2

∂

∂xi

[
B⊤MB

]

= −
1

H(X)

1

n2

[
∂

∂xi
B

]⊤
(2M)B

= −
1

H(X)

1

n2
(Bi)(2M)B (B.4)
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where we defineBi to be a vector∈ Rd×m, representing the derivatives of eachBk with respect to

xi. Thekth column ofBi is defined as

Bi
k = −G(xi − lk; σ)2σ(xi − lk).

B.4 Specializing to the Case of Information Gradients
We now specialize the presentation of the previous two sections to the case offull information

gradients. Recall that information is defined as a sum of entropies:

I(F ; S = f(H; θ)) = H(F ) + H(S) − H(F, S).

The termH(F ) does not depend onθ, so we can ignore it. We can specialize Eq.B.4 to the case of

computingH(S) trivially, and so we focus on computing∂H(F, S)/∂si. To simplify the notation,

we will not show the variance parameters(σS
i + σS

j ) and(σF
i + σF

j ) for the Gaussian kernels:

∂H(F, S)

∂si
=

∂

∂si



− log
1

n2

n∑

ij

G(si − sj)G(fi − fj)



 (B.5)

≈
2

H(F, S)n2
BiMB. (B.6)

whereB is a vector∈ Rm×1 with

Bk =
n∑

i

G(si − lsk)G(fi − lfk).

The vectorBi is a matrix∈ Rd×m, with thek’th column defined as

Bi
k =

n∑

i

G(si − lsk)G(fi − lfk)(σS
i + σS

j )(si − lsk).

We arrive at this result by first approximating the Gaussians as

n∑

ij

G(si−sj)G(fi−fj) ≈
m∑

kl

(
n∑

i

G(si − lsk)G(fi − lfk)

)
(A−1)kl




n∑

j

G(sj − lsl )G(fj − lfl )





which is the usual Nystrom approximation, andM = A−1, andA is the kernel matrix of landmarks.

We have applied the Nystrom approximation based on the fact that a Gaussian multiplied by a

Gaussian is still a Gaussian. Conceptually, the actual Nystrom approximationpart of this equation

is exactly the same as treating samples of(si, fi) as higher-dimensional joint samples (that is, the

landmarks now exist in the joint space of(s, f)). However, because we are only taking derivatives

with respect to thesi component of the joint vectors, the result involves mores terms thanf terms.
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Appendix C

Derivation of the KPLG State Extension Equations

Here we present detailed derivations for the state extension equations ofthe KPLG with the Gaus-

sian kernel. Recall that we assume that the Gaussian kernel is fully normalized (meaning we can

use it as a PDF).

Before we begin we will present an important preliminary lemma, which is a standard result about

products of Gaussians:

(a− b)⊤(A)−1(a− b) + (b− c)⊤(B)−1(b− c) = (a− c)⊤(C)−1(b− c) + (b− d)⊤(D)−1(b− d)

where

C = A + B

D = A−1 + B−1 = A(A + B)−1B = B(A + B)−1A

d = A(A + B)−1b + B(A + B)−1c.

This fact, coupled with standard identities on determinants, yields the following important fact:

K(a, b; A)K(b, c; B) = K(a, c; C)K(b, d; D).

We use this identity to express the essence of the conjugacy between our state (which is a Gaussian

random variable) and our basis functions (which are also Gaussians) –it will effectively allow us

to factor out key terms from integrals, thus making their analysis tractable. Ittherefore forms the

backbone of all the following derivations.

We will now show in detail how to compute two of the key terms in the derivation of our models;

the rest of the terms are easily computed by analogy to them. The first term is perhaps the most

important, and gives the flavor of all the others. This result states that the expected value of the

kernel is the kernel of the expected value, with added variance:

E[K(ξj , F
n; φj)] =

∫
K(ξj , F

n; φj)p(Fn)dFn

=

∫
K(ξj , F

n; φj)K(Fn, µt; Σt)dFn
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= K(ξj , µt; φj + Σt)

∫
K(Fn, µ′

tj ; Σ
′
tj)dFn

= K(ξj , µt; φj + Σt) (C.1)

where

Σ′
tj = Σ−1

t + φ−1
j

µ′
tj = φj(Σt + φj)

−1µt + Σt(Σt + φj)
−1xj .

The last line of Eq.C.1 follows because the integral is over an entire PDF with unit volume. As a

corollary, it is easy to show that

E[K(ξj , F
n; φj)F

n] = K(ξj , µt; φj + Σt)µ
′
tj (C.2)

because the integral in the penultimate line of Eq.C.1will become the expected value ofFn.

At a later point, we will also need to be able to compute the covariance of the kernel with the noise

termηt+n+1. This is more complicated, and relies on a subtle insight. Recall that the noise term

andFn effectively form a jointly Gaussian random variable:

(
ηt+n+1

Fn

)
∼ N

[(
0

µt

)
,

(
σ2 C⊤

C Σt

)]

We immediately see thatE[ηt+n+1|Fn] = C⊤Σ−1
t (Fn−µt) due to standard results on multivariate

Gaussian random variables. This allows us to rewrite the following integral ina simpler way, and

thus to solve it simply (we drop the time subscripts in the following for clarity):

E[K(ξj , F ; φj)η] =

∫ ∫
K(ξj , F ; φj) η p(F, η) dη dF

=

∫ ∫
K(ξj , F ; φj) η p(F ) p(η|F ) dη dF

=

∫
K(ξj , F ; φj) p(F )

(∫
ηp(η|F )dη

)
dF

=

∫
K(ξj , F ; φj) p(F ) C⊤Σ−1

t (F − µ) dF

= C⊤Σ−1
t

∫
K(ξj , F ; φj)Fp(F )dF

−C⊤Σ−1
t

∫
K(ξj , F ; φj) p(F ) dF µ

= C⊤Σ−1
t K(ξj , µt; φj + Σ)(µ′

j − µ)

We can perform an analysis similar to the two preceding ones and generate many identities which

are necessary for the derivation of our model. These identities are summarized below, lettingKtj =
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K(ξj , F
n; φj):

E[Ktj ] = K ′
tj

E[Ktjηt+n+1] = K ′
tjC

⊤Σ−1
t (µ′

tj − µ)

E[KtjKti] = K†
tij

where

K ′
tj = K(ξj , µt; φj + Σt)

µ′
tj = φj(Σt + φj)

−1µt + Σt(Σt + φj)
−1ξj

K†
tij = K(µ†

tij , µt; Σt + Σ†
tij)K(ξi, ξj ; φi + φj)

µ†
tij = φi(φi + φj)

−1ξj + φj(φi + φj)
−1ξi

Σ†
tij = φi(φi + φj)

−1φj .

We are now ready to compute the three principal terms needed for the KPLG state update:

E[Ot+n+1] = E[
∑

j

αjK(ξj , F
n; φj) + ηt+n+1]

=
∑

j

αjE[K(ξj , F
n; φj)] + E[ηt+n+1]

=
∑

j

αjK
′
tj

becauseηt+n+1 is mean-zero. Similarly,

Cov[Ot+n+1, F
n] = E[Ot+n+1F

n⊤] − E[Ot+n+1]E[Fn⊤]

=
∑

j

αjE[K(ξj , F
n; φj)F

n⊤] + E[ηt+n+1F
n⊤]

−
∑

j

αjE[K(ξj , F
n; φj)]E[Fn⊤]

=
∑

j

αjK
′
tj(µ

′
tj − µt)

⊤ + C⊤.

The computation of the variance is only slightly harder. To clarify notation, wewill drop time

subscripts. LetS =
∑

j αjK(ξj , F ; φj). We have

E[(O − E[O])2] = E[(S + η − E[S])2]

= E[S2] − E[S]2 + 2E[Sη] + E[η2]

=
∑

i

∑

j

αiαjE[K(ξi, F ; φi)K(ξj , F ; φj)] − E[S]2
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+2
∑

j

αjE[K(ξj , F ; φj)η] + σ2

=
∑

i

∑

j

K†
tijαiαj − E2

t + σ2 + 2(
∑

j

αjK
′
tj(µ

′
tj − µt)

⊤)Σ−1C.

This completes the derivation.
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Appendix D

Exponential Family Distributions

This appendix is devoted to discussing the properties of general exponential family distributions. We

will discuss the motivation behind them (both for our purposes, and in general), touch upon their

representational abilities, and discuss some of important computational issues surrounding them.

To be able to model domains with structured and/or high-dimensional observations, the EFPSR

model generalizes the PLG family of models by replacing the Gaussian distribution representing

p(Fn|ht) with a more general exponential family distribution. The exponential family distribu-

tion can capture a wide range of distributions (including the Gaussian) and iscapable of capturing

graphical structure. This choice of state representation explicitly connects PSRs and PLGs to state-

of-the-art probabilistic modeling, which allows the model to take advantage ofcurrent efforts in

high-dimensional density estimation, graphical models and maximum entropy models.

This appendix discusses these general exponential family distributions. The material is background,

and can be skipped by the reader already familiar with the concepts. The sections of this appendix

are devoted to an explanation of maximum entropy models (SectionD.1), the exponential family

of distributions (SectionD.2), examples of graphical exponential family models (SectionD.3) the

relationship between mean and natural parameters (SectionD.4), density estimation with natural

exponential family models (SectionD.5), and inference in graphical exponential family models

(SectionD.6)

D.1 Maximum Entropy Models
In the introduction of this appendix, we motivated the choice of an exponential family distribution

from the perspective of generalizing the Gaussian used in the PLG family ofalgorithms. There is

an alternative justification which is tied more directly to the broader goal of learning dynamical sys-

tems from data: using an exponential family form forp(Fn|ht) has close connections to maximum

entropy modeling.

To introduce the concept of maximum entropy modeling, consider the followingexample. Suppose

that we are given samplesx1, ...xn from an unknown densityp(X), and we are asked to infer a

complete distribution̂p(X). Additionally, we will suppose that we are given severalfeatureswhich

we can extract from each samplexi. Each featureφ(x)i is some function of a data sample – if
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samples are simple scalars, a feature might beφ(x) = x2, for example. If samples are images, it

may extract an edge, or check for certain colors. There is virtually unlimitedflexibility in defining

these features.

Given the data and the feature set, it is easy to compute the empirical expectation of the features:

αi =
1

n

n∑

i=1

φi(xi).

It may not be reasonable to suppose that the samples or their features aresufficient to uniquely

determine the distribution̂p(X). However, itis reasonable to assume that the expectation of each

feature under the data set is close to the expectation under the unknown density, by the central limit

theorem and the Gaussian nature of the sampling distribution of the mean. We thus assume that:

1

n

n∑

i=1

φi(xi) ≈
∑

x

φi(x)p(x).

It therefore seems reasonable to ensure that the expectations of the features under our inferred

distribution match the empirically observed expectations:

∑

x

φi(x)p̂(x) = αi (D.1)

If, for example, the features are things likeφ1(x) = x andφ2(x) = x2, then we have effectively

placed mean and variance constraints on the distribution. However, these constraints still may not

be enough information to uniquely determine the distribution.

Theprinciple of maximum entropystates that among all candidate distributions with feature marginal

that agree with the empirically observed feature marginals, the one withmaximum entropyshould

be selected. We refer the reader toJaynes(1991) for detailed justification of this idea; briefly, he

states that the maximum entropy distribution “agrees with everything that is known, but carefully

avoids assuming anything that is not known,” which “is the fundamental property which justifies its

use for inference.”

There are several interpretations to the principle of maximum entropy modeling. Intuitively, the

maximum entropy distribution is as “flat” as possible, meaning that it assigns probability which is as

close to uniform as possible (indeed, the uniform distribution is the maximum entropy distribution

with no constraints). There are also information-theoretic interpretations: the maximum entropy

distribution minimizes the information which is assumed when constructing the distribution. In

other words, if any other form is selected, then additional external assumptions have been made

which are not explicitly justified by the data.

The standard exponential family is the form of the maximum entropy distribution under the marginal
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constraints in Eq.D.1, as we now show1. We begin with the constraints listed in Eq.D.1 and add

an additional constraint thatp(x) form a valid density:

∑

x

p̂(x) = 1. (D.2)

Our goal is to maximize the entropy of̂p(x), subject to the constraints in Eq.D.1 and Eq. D.2.

Recall that the entropy of a distribution is defined as

H(p(X)) = −
∑

x

p̂(x) log p̂(x). (D.3)

Maximizing Eq.D.3 subject to the constraints in Eq.D.1 and Eq.D.2 is a constrained optimization

problem. To transform it into an unconstrained optimization problem, we form the Lagrangian:

L = −
∑

x

p̂(x) log p̂(x) + λ0

(
1 −

∑

x

p̂(x)

)
+
∑

i

λi

(
αi −

∑

x

φi(x)p̂(x)

)

We can maximize this by differentiating with respect to the entries composing the vector p̂(x) and

setting to zero:
∂L

∂p̂(x)
= − log p̂(x) − 1 − λ0 +

∑

i

λiφi(x) = 0

Now, we solve for̂p(x):

p̂(x) = exp

{
∑

i

−λiφi(x) + λ0 − 1

}
. (D.4)

This is known as a Gibbs distribution, and is a member of the standard exponential family of distri-

butions. We have only specified the form of the distribution here; it still remains to find the actual

values of theλi’s. Ultimately, these values should be chosen to minimize the amount by which the

constraints are not satisfied, which means that the termλ0 − 1 will become the log partition func-

tion which ensures a valid distribution (this is discussed more in the next section). While we have

presented the derivation for the case of a discrete domain forX, these results extend to continuous

domains as well with virtually no change, although calculus of variations must be used to arrive at

the final form.

There are rich connections between the maximum entropy distribution and the maximum likelihood

distribution. For example, maximum entropy modeling and maximum likelihood estimation are

dual problems which yield the same optimum: if we assume the exponential distribution, it can be

shown that the empirical and model marginals must match at the maximum likelihood solution; if

we assume that the empirical and model marginals must match, the maximum likelihood distribution

must be an exponential family distribution (Jordan, Unpublished). Thus, the form of Eq.D.4 is also

1Apparently, this is originally due to a theorem by Boltzmann.
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the form of the distribution which maximizes the likelihood of the data, subject to theconstraints

listed in Eqs.D.1 andD.2. Moreover, theλi’s of both the maximum entropy distribution and the

maximum likelihood distribution are the same, and they are unique: the optimization problem is

convex, with a single global optima. In addition, maximizing the likelihood of the datahappens to

be equivalent to minimizing the KL divergence to the empirical distribution, and again, the same

distribution resultsJordan(Unpublished).

D.2 Standard Exponential Family Distributions
We now review the basic properties of exponential family distributions. For arandom variableX, a

member of the standard exponential family of probability distributions has the form

p(X = x; λ) = exp{λ⊤φ(x) − log Z(λ)} (D.5)

whereλ ∈ Rk is the canonical vector of parameters andφ(x) is a vector of features of variablex.

The vectorφ(x) also forms the sufficient statistics of the distribution. The termlog Z(λ) is known

as the log-partition function, and is the log of a normalizing constant which ensures thatp(x; λ)

defines a valid distribution:

log Z(λ) = log

∫
exp
{

λ⊤φ(x)
}

dx.

Figure D.1 shows a table with a few of the standard basic distributions in standard exponential

family form (adapted from (Wainwright and Jordan, 2003)). The normal, gamma, chi-square, beta,

Dirichlet, Bernoulli, binomial, multinomial, Poisson, negative binomial, geometric, inverse Gaus-

sian, lognormal and Weibull distributions are all exponential family distributions. Other distribu-

tions, such as the Cauchy, Laplace, and uniform families of distributions are not members of the

exponential family.

EquationD.5 is the general form of all exponential family distributions. In order to specify a partic-

ular member of the exponential family distribution is used, two things must be selected: thedomain

of X, andfeaturesof the variableX. For example, selecting the domain to beR and the features

to beφ1(x) = x, φ2(x) = x2, we recover a one-dimensional Gaussian. By carefully selecting the

featuresφ(x), graphical structure may be imposed on the resulting distribution. This will be an

important aspect of the way we use the distribution in our dynamical models, andwill be discussed

further in SectionD.3.

The examples in FigureD.1 can be deceptive: not every member of the exponential family of

distributions will have such simple closed-form expressions for the log partition function. We will

have more to say about this when discuss parameter estimation and inferencein later sections.
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Family Domain log p(x; λ) log Z(λ) Parameter domain

Bernoulli {0,1} λx − Z(λ) log(1 + exp(λ)) R

Gaussian R λ1x + λ2x
2 − Z(λ) 0.5(λ1 + log(2πe/ − λ2)) {λ ∈ R|λ2 < 0}

Exponential (0,+∞) λ(−x) − Z(λ) − log λ (0, +∞)

Poisson {0,1,2...} λx − Z(λ) exp(λ) R

Beta (0,1) λ1 log x + λ2 log(1 − x) − Z(λ)
∑2

i=1 log Γ(λi + 1) − log Γ(
∑2

i=1(λi + 1)) (−1, +∞)2

Figure D.1: A table of distributions in exponential family form.

181



X

X

X

Y

Y

Y

1 1

2

3 3

2

Figure D.2: Two example graphical models. On the left, the Ising model. On the right, a mixed-
variable model with a bipartite graph structure.

D.3 Graphical Models Using Exponential Family Distributions
We have mentioned that exponential family distributions can capture graphical structure. This is

accomplished by carefully selecting the featuresφ(x). To illustrate this, we present a few standard

examples of graphical exponential family distributions. The following examples are adapted from

Wainwright and Jordan(2003) andTaylor et al.(2007). For each example, we assume we are given

a graphG = (V, E), whereV denotes the set of vertices andE denotes the set of edges.

Example: Ising Model

The canonical example of an exponential family distribution with graphical structure is theIsing

Model from statistical physics. We associate with each vertex a binary random variable, and stip-

ulate that variables are only allowed to interact if they are connected by an edge. This model was

originally developed to study the phenomena of spontaneous magnetization in ferromagnetic ma-

terials. Each node represents a molecule, the two states represent different magnetic orientations,

and the links model the fact that molecules tend to affect their neighbors. The model is also used to

model some types of binary images in machine vision.

Given the nodes and edges, the resulting exponential model is of the form

p(x; λ) = exp





∑

i∈V

λixi +
∑

(i,j)∈E

λijxixj − log Z(λ)






where the domain of the variables is{0, 1}|V |. An example of a second-order Ising graph is shown

in the left-hand side of FigureD.2, in which the probability of a node is conditionally independent

of all the other nodes given its Markov blanket. While we have only demonstrated the model for

the case of pairwise interactions, it is trivial to extend to higher-order interactions. For example, to

extend to third-order interactions, we add triplets of the formxixjxk and a corresponding parameter

λijk.
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Example: Gaussian MRF

A Gaussian Markov Random Field is a Gaussian distribution that respects thestructure of a graph.

For the Gaussian MRF, the features used are{xi, x
2
i |s ∈ V } ∪ {xixj |(i, j) ∈ E}, with a corre-

sponding parameter for each feature. The density function is exactly the same as the Ising model:

p(x; λ) = exp





∑

i∈V

λixi + λiix
2
i +

∑

(i,j)∈E

λijxixj − log Z(λ)






except that the domain of the variables is nowR|V |. In this case, there are restrictions on the domain

of the parameter vectorλ: the integral definingZ(θ) is only finite if the matrix

A(λ) =




λ1,1 · · · λ1,n

...
. . .

...

λn,1 · · · λn,n




of parameters is negative definite (whereAij = 0 ∀(i, j) 6∈ E).

Example: Mixed Binary / Gaussian

As another example of a mixed distribution, consider the following energy function (from Taylor

et al., 2007):

p(x, y; λ) = exp




−
∑

i

(xi − λx
i )2 +

∑

j

yjλ
y
j +

∑

ij

xiyjλ
xy
ij − Z(λ)






which is associated with the bipartite graph in the right-hand side of FigureD.2. Here, they vari-

ables are binary random variables, while thex variables are continuous variables. While there are

interactions betweenx’s andy’s, there are no interactionswithin thex’s or y’s. The advantage of

this model is that the continuous variables have a simple Gaussian distribution when conditioned on

the binary variables, and the binary variables have a simple Bernoulli distribution when conditioned

on the continuous variables, with the probability determined by a sigmoidal function:

p(xi|y; λ) = N (λx
i +

∑

j

yjλ
xy
ij ; 1)

p(yi = 1|x; λ) = σ(λy
i +

∑

i

xiλ
xy
ij ).

This means that the model is particularly amenable to Gibbs sampling, because thex’s can easily

be sampled given they’s, and vice-versa. The point of this example is to illustrate two things: first,

there is a great deal of flexibility in setting up these distributions, and second, the correct graphical

structure can have significant consequences for the tractability of the model.
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D.4 Natural and Mean Parameters
It may not be common to think about some distributions in the form that is listed in FigureD.1. For

example, the multinomial distribution is usually written as

p(xi) = pi with 1 ≥ pi ≥ 0 such that
∑

i

pi = 1.

This is known as themean parameterizationof the distribution, becauseE[xi] = pi. However, the

multinomial distribution can also be written in exponential form as:

p(x; λ) = exp

{
k∑

i=1

λixi − log Z(λ)

}
(D.6)

where

λi = log pi (D.7)

and

log Z(λ) =
k∑

i=1

eλi

for suitable choice of measure space (Brown, 1986). Here, the parametersλi are known as the

natural parameters(or canonical parameters).

The idea that members of the exponential family of distributions can be parameterized in multiple

ways holds more generally. For example, the Gibbs distribution can use eithera mean parame-

terization or a natural parameterization, as can a Gaussian. For any standard exponential family

distribution, the mean parameters of the distribution are given by the expectation of their sufficient

statistics:

Eλ [φ(X)] =

∫
φ(x)p(x)dx

=

∫
φ(x) exp

{
λ⊤φ(x) − log Z(λ)

}
dx

= ∇λ log Z(λ).

This vector of expected sufficient statistics is of central interest in standard exponential families,

and has several interesting properties. Like the vectorλ, Eλ [φ(X)] uniquely defines the distribu-

tion p(X). The vectorEλ [φ(X)] also plays an important role when learning the parameters of an

exponential family from data, as discussed in SectionD.5.

The idea that mean and natural parameters are both sufficient to describea distribution will be a key

part of our proofs of representational capacity for the EFPSR model inSection7.2, and so we discuss

the idea in more detail. Translating between mean and natural parameters is non-trivial in a practical

sense (computing the mean parameters from a given set of natural parameters is a specific kind of
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inference problem, which we discuss in SectionD.6), but from a theoretical perspective, there are

many appealing relationships. For example, each possible set of canonical parametersλ induces one

set of mean parameters; assuming that the features are linearly independent (equivalently, that the

features form a minimal set), each set of valid mean parameters is uniquely determined by one set

of canonical parameters (Wainwright and Jordan, 2003). The mean parameters can also be arrived

at by taking derivatives of the termlog Z(λ), which is why it is sometimes known as thecumulant

generating function.

There are some technical conditions on which sets of mean and natural parameters give rise to valid

distributions. Not every vector inRd forms a valid set of mean parameters because of consistency

constraints between members of the set (valid mean parameter vectors are known asrealizable

parameters). However, for every realizable mean parameter vector, there exists some exponential

family distribution which has marginals equal to that vector. This is an important result, since the

exponential family describes a strict subset of all possible densities, whereas the definition of a

realizable mean parameter vector is not restricted to any particular form of adistribution.

D.5 Maximum Likelihood Learning
In SectionD.1 we motivated the form of the exponential family distribution through a connection

to maximum entropy modeling of a dataset. While we showed that both the maximum entropy

distribution and the maximum likelihood distribution had the same exponential family form, we did

not present any algorithm to actually find the parameters of the distribution. In this section, we

discuss maximum likelihood parameter estimation, with the specific goal of connecting the vector

of mean parameters to the problem of learning the parameters of the distribution.

The modelling problem is as follows: we are given samplesx1, ..., xN from an unknown density

p(X) and a feature extractorφ(x), and we are asked to infer a complete distributionp̂(X). We

assume that the final distribution will have an exponential family form:

p̂(X) = exp
{
−λ⊤φ(x) − log Z(λ)

}
,

so the task becomes finding the parameter vectorλ which maximizes the likelihood of the data.

The likelihood of the data isp(x1, x2, · · · , xN ). Assuming that the samples are independent, the

likelihood factors asp(x1)p(x2) · · · p(xN ). The expected log likelihood of the data is therefore

LL =
1

N

(
N∑

i=1

−λ⊤φ(xi) − log Z(λ)

)
(D.8)

This objective function is convex in the parameterλ, and therefore has a unique global maxima. We
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now compute the gradient ofLL with respect to the parametersλ:

∂LL

∂λ
=

∂

∂λ

[
1

N

(
N∑

i=1

−λ⊤φ(xi) − log Z(λ)

)]

=
1

N

(
N∑

i=1

∂

∂λ

[
−λ⊤φ(xi)

])
−

∂

∂λ
log Z(λ)

=
1

N

(
N∑

i=1

−φ(xi)

)
−

∂

∂λ
log Z(λ)

= Eλ[φ(X)] − Eempirical[φ(x)].

We see that the derivative is the difference between two terms:Eλ[φ(X)] is the expectation ofφ(X)

under the distribution defined by the currentλ, andEempirical[φ(X)] is the empirical expectation of

the features. Setting this derivative to zero implies that the model expectationsand the empiri-

cal expectations are equal when we have found the maximum likelihood parameters, which is the

constraint we imposed when introducing maximum entropy modeling.

Interestingly, the vectorEλ[φ(X)] is exactly the vector of mean parameters defined in SectionD.4.

This term arose when computing the gradient∂
∂λ

log Z(λ), and implicitly involves integrating over

the entire domain ofX. Computing this vector is an inference problem, as we now discuss.

D.6 Inference in Exponential Family Distributions
Inference is a general term which refers to any operation where a probabilistic query is made against

a graphical model. Typical inference problems include

• Computing the likelihood of observed data.

• Computing the marginal distribution over a particular subset of data.

• Computing a conditional distribution.

• Computing the mode of a distribution.

As discussed in SectionD.5, computing the vector of mean parameters is an inference problem. This

sort of inference needs to happen when using a gradient method to learnthe maximum likelihood

parameters of a distribution, or when translating between natural and mean parameters as discussed

in SectionD.4.

Exact inference in an exponential family graphical model is known to NP-Hard (Cooper, 1990). For

example, the problem of computing the density of a samplex is intractable because of the global

normalization constantZ: computingZ implicitly involves a sum over all possible configurations

of X, which scales exponentially with the domain ofX. In special cases, such as a fully factored
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distribution, or a distribution where the graph is tree-structured, the operations can be factored such

that inference is tractable. Efficient inference has been the subject ofintense research, and many ap-

proximate algorithms exist: there are variational methods such as naive mean-field, tree-reweighted

belief propagation, and log-determinant relaxations (Wainwright and Jordan, 2006); other meth-

ods include Bethe-Kikuchi approximations, expectation propagation (Minka, 2001), (loopy) belief

propagation (Yedida et al., 2001), MCMC methods (Neal, 1993), and approximate gradient methods

such as contrastive divergence (Hinton, 2002). However, even approximate inference is known to

be NP-Hard (Dagum and Luby, 1993).

Depending on the exact features used and the domain of the model, different inference methods

may be more or less useful. For example, in the Gaussian Markov Random Fieldof SectionD.3,

inference involves solving a large, sparse system of equations. In the mixed binary/Gaussian model

in SectionD.3, Gibbs sampling is a tractable choice because of the convenient conditionalforms of

the distribution. In graphs which are highly connected, naive mean field is agood choice, whereas

in domains with pairwise features, loopy belief propagation is a popular choice. Understanding

inference algorithms, their properties, and the graphical models with which they are compatible is

an entire area of expertise, of which we have only presented the most basic outline.

187



Appendix E

Approximate Log-Likelihood Derivations

In Chapter10, we presented an approximate learning algorithm for the Linear-Linear EFPSR. This

learning algorithm was based on a quantity we called the Approximate Log-Likelihood, which was

derived in Section10.1. For convenience, we repeat the definition here:

L̂L = ET [−st]
⊤ ET [φ(ft)] − log Z(ET [st]). (E.1)

This appendix discusses how to compute this quantity and its derivatives with respect to the model

parameters in a computationally efficient manner. In SectionE.3, we also include our method for

computing gradients when the parameter matrix is rank-constrained.

E.1 Computing the Approximate Log-Likelihood
To compute the approximate log-likelihood we must compute three terms:ET [st] (the stationary

distribution of states),ET [φ(ft)] (which is computed once from data), and the log partition function

log Z(ET [st]). We begin with the computation ofET [st]. Recall that our goal is to compute this

term in a way that is independent ofT , which is the length of the training trajectory. This will

be possible using Assumption10.1.1, the linearity of the state update, and an insight related to

stationary distributions:

ET [st] = ET [G(ot) (Ast−1 + B)]

≈ ET [G(ot)A] ET [st−1] + ET [G(ot)] B

= ET [G(ot)A] ET [st] + BG

= G(ET [ot])AET [st] + BG

= (I − G(ET [ot])A)−1 BG (E.2)

whereI is an appropriately sized identity matrix, and whereBG = G(ET [ot])B. The second line

follows by Assumption10.1.1.

The third and fourth lines are both interesting for different reasons. The fourth line follows by the

linearity of the operatorG(·). The matrixG(E[ot]) can be interpreted as the expected transition

operator, and is a simple function of the expected observationET [ot] – that is, we just compute the

empirical expectation of the observations, and generate a transition operator as we would with any
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other observation. Just asET [st] can be interpreted as the stationary distribution of states,E[ot]

is the empirical average of the observations, and in the limit of largeT can be interpreted as the

stationary distribution of observations induced byA andB.

The third line is interesting because it follows by the limiting properties of our expectations: we

assume thatET [st] = ET [st−1] because ast → ∞, the unconditional distribution of these states

approach the stationary distribution of states.

Taken together, the result is that the stationary distribution of states can be computed as the solution

to a linear system of equations. The fact that the solution can be obtained efficiently (in a variety

of manners) is key to making a practical learning algorithm. The inverse in Eq.E.2 should not be

computed explicitly. The quantity

I − G(ET [ot])A

is a large matrix with favorable computational properties. TheG(ET [ot]) part will typically be very

sparse, and a designer may force theA part to be sparse or low-rank (a low-rank parameterization

will be a critical factor in further efficiencies, as explained in Section10.2). In either case, a matrix-

vector product can be computed efficiently, so instead of computing the inverse, the linear system

of equations defined by

(I − G(ET [ot])A) x = BG (E.3)

should be solved using an iterative solver designed for the solution of large, sparse linear systems

of equations, such as conjugate gradients, GMRES, BiCGSTAB, TFQMR,etc. (Saad, 1996).

Once Eq.E.3is solved,ET [st] = x. With ET [st] in hand, we can compute the log partition function

log Z(ET [st]), using the vectorET [st] in place of an ordinary states.

E.2 Computing Derivatives of the Approximate Log-Likelihood
We now compute the derivatives of the approximate log-likelihood with respect to an arbitrary

parameterΘ:

∂L̂L

∂Θ
=

∂L̂L

∂ET [st]

⊤
∂ET [st]

∂Θ

We begin with the left-hand term:

∂L̂L

∂ET [st]
=

∂

∂ET [st]

[
ET [−st]

⊤ ET [φ(ft)] − log Z(ET [st])
]

= −ET [φ(ft)] −
∂

∂ET [st]
log Z(ET [st])

= EET [st] [φ(F )] − ET [φ(ft)]

≡ ∆
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This result has an appealing intuitive interpretation.EET [st][φ(F )] can be interpreted as the ex-

pected sufficient statistics that would be obtained if inference were performed using the stationary

distribution of statesET [st] as the state – in other words, it represents the stationary distribution of

features ofn-step trajectories, as computed by the model. Recall thatET [φ(ft)] represents the em-

pirically observed stationary distribution of features ofn-step trajectories. We see that the gradient

wishes to move the expected sufficient statistics as computed under the model’s distribution to more

closely match the expected sufficient statistics under the empirical distribution.

If we use a variational method to compute the log partition functionlog Z(ET [st]), which is needed

to determine the value of the log-likelihood, then the expected sufficient statisticsEET [st][φ(F )] are

available as a byproduct of the optimization. This is a pleasing efficiency.

However, we are not done. Because this is a dynamical system, we must find the transition parame-

ters which allow us to move the expected sufficient statistics closer. This is captured as we compute

the right-hand term. We will start by computing the derivative with respect to theA parameter:

∂ET [st]

∂A
=

∂

∂A
[G(E[ot])(AET [st] + B)]

= G(E[ot])A

(
∂

∂A
ET [st]

)
+

(
∂

∂A
G(E[ot])A

)
ET [st]

= (I − G(E[ot])A)−1

(
∂

∂A
G(E[ot])A

)
ET [st]

We now find it convenient to remember that the full derivative also includesthe term∂L̂L/∂ET [st] =

∆, which is a column vector:

∆⊤∂ET [st]

∂A
= ∆⊤ (I − G(E[ot])A)−1

(
∂

∂A
G(E[ot])A

)
ET [st]

= Γ⊤

(
∂

∂A
G(E[ot])A

)
ET [st]

=
∂

∂A
Γ⊤G(E[ot])AET [st]

=
∂

∂A
Γ⊤

GAET [st]

= ΓGET [st]
⊤ (E.4)

where we have definedΓ to be the solution to the linear system of equations:

∆ = (I − G(E[ot])A)⊤ Γ.

andΓG = Γ⊤G(E[ot]).
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Algorithm APPROX-LL-GRADS

Input: ET [ot], ET [φ(ft)], A, B

Compute:

• Compute the approximate log-likelihood:

– ComputeET [st] = (I − G(ET [ot])A)−1 B

– Use ET [st] as the weights on the graphical model, and compute, using the
inference method of choice:

∗ the expected sufficient statisticsEET [st][φ(F )].

∗ the log partition functionlog Z(ET [st]).

– Let L̂L = −ET [st]
⊤ EET [st][φ(F )] − log Z(ET [st]).

• Compute the gradient of the approximate log-likelihood with respect to the parame-
ters:

– Let ∆ = E[φ(ft)] − EET [st][φ(F )].

– Solve∆ = (I − G(E[ot])A)⊤ Γ for Γ.

– Let ΓG = G(E[ot])
⊤Γ.

– Let ∆G = G(E[ot])
⊤∆.

– Let∇AL̂L = ΓGET [st]
⊤.

– Let∇BL̂L = ∆G.

Return: L̂L,∇AL̂L,∇BL̂L

Figure E.1: Approximate maximum likelihood gradients for Linear-Linear EFPSRs.

The derivative with respect to theB parameter is computed similarly:

∆⊤∂ET [st]

∂B
= ∆⊤ ∂

∂B
[G(E[ot])(AET [st] + B)]

=
∂

∂B
∆⊤G(E[ot])B

=
∂

∂B
∆⊤

GB

= ∆G

where∆G is defined analogously toΓG.

This completes the derivation of the gradients of the approximate log-likelihood. The complete

algorithm is summarized in Figure10.1.
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E.3 Computing Gradients with a Low-Rank Parameter Matrix
In this section, we propose a method of learning a low-rank decomposition ofthe parameter matrix

A. We will discuss the four elements of our algorithm: 1) how we represent thelow-rank parame-

terization; 2) how we compute the gradients; 3) how the parameter matrix can can be updated given

a gradient and a stepsize; and 4) how the stepsize can be selected. We discuss each topic in turn.

1. Begin with a low-rank matrix: Instead of maintaining the full matrixA ∈ Rk×l, our

strategy is to maintain the thin SVD ofA, which is constrained to have rankd: A = USV ⊤,

whereU ∈ Rk×d is an orthonormal matrix,S ∈ Rd×d is a diagonal matrix of singular values,

andV ∈ Rl×d is another orthonormal matrix. We will constraind to be≪ min(k, l).

2. Rank-one gradients: A key property of the approximate log-likelihood parameter learning

algorithm is that the gradients of̂LL with respect toA are rank-one. Specifically, recall from

Eq. E.4that

∇AL̂L = ΓGET [st]
⊤

Note thatΓG ∈ Rk×1, andET [st] ∈ Rl×1. Thus, while∇AL̂L is ∈ Rk×l, the rank of this

matrix is one. That is, ∂ cLL
∂A(i,j) = (ΓG)i(ET [st])j . This is not true of the exact likelihood

gradients defined in Eq.9.2; they can have rank as large asmin(k, l, T ). Thus, the algorithm

we are about to develop will be unique to the learning algorithms defined withL̂L.

3. Updating the low-rank decomposition for a given stepsize: Given a low-rank decom-

position ofA = USV ⊤, and the rank-one decomposition of the gradient matrix, how can

we update the decomposition ofA? To answer this, let us be more specific about how the

gradients are used. We use the gradients in a steepest descent optimizer.Recall that our

goal is to maximizeL̂L, so to increasêLL, we take a small step in the gradient direction:

A = A + α∇AL̂L, whereα is a suitably chosen stepsize parameter.

Given the parametersA = USV ⊤, and a rank-one candidate updateab⊤, can we compute

the parameters ofA + ab⊤ = U ′S′V ′⊤, using nothing butU, S, V, a andb? Fortunately, the

answer is yes:Brand(2006) has an algorithm for doing exactly this. It operates inO(lkd3)

time, and never requires the matrixA to be formed explicitly. The algorithm is summarized

in FigureE.2. In other words, we can begin learning by choosing some initial guess forthe

matrix A – say,A = 0, which has a known low-rank decomposition. We can then compute

the gradients and update this low-rank decomposition without ever having to formA.

4. Selecting a stepsize adaptively: We can do better than a naive steepest descent algorithm,

which uses a fixed stepsize. Many modern optimization algorithms operate based on the

concept ofline searches. The idea is simple: suppose we have a functionf(θ) we wish to

maximize. We first select a search direction (perhaps a gradient [as in steepest descent], or

perhaps a direction which is a combination of previous gradients [as in the conjugate gradient
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approach]). Given a search direction, we loosely maximizef by finding a stepsize parameter

α which hops to a local maximum, as in the following stylized algorithm:

• Repeat

– Compute search direction∇θ

– Perform a line search: findα which maximizesf(θ + α∇θ)

– Update parameters:θ = θ + α∇θ

• Until ‖∇θ‖ < ǫ.

The line search can be done exactly, or we may simply ask for a sufficient increase in the

objective function using the Wolfe conditions (Nocedal and Wright, 1999).

Thus, as long as we can computêLL for a given parameter settingU, S, V, B plus a candidate

rank-one additionαab⊤, we can perform an efficient line search. Recall that the most com-

putationally intensive part of computinĝLL algorithm is the solution to two systems of linear

equations. However, we have emphasized that iterative solvers can andshould be used to

solve this equation. Most iterative solvers never require the explicit formation of a matrixA.

Instead, they require only matrix-vector products, so as long as the matrix-vector product can

be computed efficiently, the entire procedure will be efficient. In our case, the matrix-vector

product can be computed efficiently even with a candidate rank-one update, as long as the

operation is factored appropriately:

G(ot)Ax = G(ot)(USV ⊤ + ab⊤)x

= G(ot)
[
U(S(V ⊤x)) + a(b⊤x)

]

= G(ot)x
′.

The entire operation only involves low-rank matrix-vector products (line 2), followed by a

full-rank (but sparse) matrix-vector product.

We term this entire procedure arank-aware line search.

FigureE.3shows an algorithm for computing the gradients of̂LL with an optional rank-one modi-

fication, and returns the gradient components in factored form (that is, itnever explicitly formsA).

Using this algorithm and Brand’s SVD update algorithm in FigureE.2, Figure10.2shows a steepest

descent optimizer which performs a rank-aware line search, and then updates the parameter matrix

while maintaining a low-rank decomposition.

It is an open question as to whether this method can be extended to higher-order optimization meth-

ods, such as quasi-Newton methods or other iterative solvers with quadratic convergence.
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Algorithm UPDATE-SVD

Input: d, U, S, V, a, b

Remark:d is the maximum acceptable rank of the resulting matrix.

Compute:

m = U⊤a

p = a − Um

P = p/‖p‖

n = V ⊤b

q = b − V n

Q = q/‖q‖

Let K =

[
S 0
0 0

]
+

[
m
‖p‖

] [
n
‖q‖

]⊤

Compute the SVD ofK, restricting it to be rankd: K = U ′S′V ′⊤.

Now, X + ab⊤ = ([UP ]U ′)S′([V Q]V ′)⊤

Return: ([UP ]U ′), S′, ([V Q]V ′).

Figure E.2: An algorithm to update the SVD of a matrix. GivenX = USV ⊤, update it to be the
SVD of X + ab⊤.
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Algorithm LOWRANK-APPROX-LL-GRADS

Input: ET [ot], ET [φ(ft)], U , S, V , B, x, y, b

Remark:A = USV + xy⊤.

Compute:

• Compute the approximate log-likelihood:

– ComputeET [st] =
(
I − G(ET [ot])(USV ⊤ + xy⊤)

)−1
[B + b]

– Use ET [st] as the weights on the graphical model, and compute, using the
inference method of choice:

∗ the expected sufficient statisticsEET [st][φ(F )].

∗ the log partition functionlog Z(ET [st]).

– Let L̂L = −ET [st]
⊤ EET [st][φ(F )] − log Z(ET [st]).

• Compute the gradient of the approximate log-likelihood with respect to the parame-
ters:

– Let ∆ = E[φ(ft)] − EET [st][φ(F )].

– Solve∆ =
(
I − G(ET [ot])(USV ⊤ + xy⊤)

)⊤
Γ for Γ.

– Let ∆G = G(ET [ot])
⊤∆.

– Let ΓG = G(ET [ot])
⊤Γ.

– Remark:∇AL̂L = ΓGET [st]
⊤.

– Remark:∇BL̂L = ∆G.

Return: L̂L, ΓG, ET [st] , ∆G

Figure E.3: An algorithm for computing rank-aware approximate ML gradients for EFPSRs. As-
sumes thatA = USV ⊤, with an optional rank-one modificationxy⊤. The vectorB may have an
optional modificationb.
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