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Abstract

Many agent-environment interactions can be framed as dynamical systemicim agents take
actions and receive observations. These dynamical systems argediapresenting such things as
a biped walking, a stock price changing over time, the trajectory of a missitbeoshifting fish
population in a lake.

Often, interacting successfully with the environment requires the use oflalmwhich allows the
agent to predict something about the future by summarizing the past. Twe bfgic problems
in modeling partially observable dynamical systems are selecting a represenfastate and se-
lecting a mechanism for maintaining that state. This thesis explores both prdiotema learning
perspective: we are interested in learning a predictive model directly thhe data that arises as an
agent interacts with its environment.

This thesis develops models for dynamical systems which represent stasetsf statistics about
the short-term future, as opposed to treating state as a latent, unolseuwailtity. In other words,
the agent summarizes the past into predictions about the short-term fuhich,allow the agent to
make further predictions about the infinite future. Because all paranietdrs model are defined
using only observable quantities, the learning algorithms for such modeddtanestraightforward
and have attractive theoretical properties. We examine in depth the case state is represented
as the parameters of an exponential family distribution over a short-ternowiafifuture observa-
tions. We unify a number of different existing models under this umbrellapagdict and analyze
new models derived from the generalization.

One goal of this research is to push models with predictively defined stasedsweal-world ap-
plications. We contribute models and companion learning algorithms for domémsgavtial ob-
servability, continuous observations, structured observations, lgérdional observations, and/or
continuous actions. Our models successfully capture standard POMidReachmark nonlinear
timeseries problems with performance comparable to state-of-the-art modwlg.alko allow us
to perform well on novel domains which are larger than those capturedhgy models with pre-
dictively defined state, including traffic prediction problems and domainsgoas to autonomous
mobile robots with camera sensors.



Chapter 1

Introduction

In a dynamical system, an agent interacts with its environment by taking aetohseceiving ob-
servations. Such an agent is often interested in predicting the distributiatuné fobservations,
given a history of past actions and observations. For example, in regmi@nt learning, one ob-
servation is a reward signal, which the agent attempts to maximize by takingpajapecactions.
In order to accomplish this, the agent must be able to predict something thieofuiture: if the
agent is a stock-broker, it must be able to predict future price trendsow Wwhether to buy or sell.
If the agent is a baseball player, it must be able to predict the trajectdhediaseball in order
to hit it. If the agent is a chess player, it must be able to predict his oppsrigture moves in
order to outmaneuver him. The actions that an agent takes now will influbaagdistribution of
future observations, so an agent would like to predict them as accuast@lyssible in order to act
optimally.

Models of dynamical systems allow an agent to predict the distribution offatoservations. These
models can be built by hand, or they can be learned from data, but in edberthere are two
important components to them. The first component in a model is some refataseif state
which we will define formally momentarily. For now, we informally define state aaramary of
an agent’'s knowledge about the state of affairs in the environment. Tlsis #weamines different
classes of state representations, comparing their computational ansergpteonal characteristics
and focusing on how a good representation can be learned directlydfrtarcaptured from agent-
environment interactions.

The second component in a model is an algorithrmfi@intainingstate as the agent interacts with
the environment. The agent must be able to update its internal knowledgethbstate of affairs
in the environment in response to new actions and observations. In sea® ttee mechanisms for
accomplishing this are easily defined once a state representation is défipeababilistic models,
for example, Bayes law will often arise as part of the natural optimal upglgt@ithm. In other
cases, however, the choice of state update algorithm helps define thefctgstems which can be
captured with the model.

This thesis is concerned primarily with learning models of dynamical systemsdeta, with the
goal of allowing the agent to predict the distribution of future interactiongnga string of past



interactions. There is an important restriction that we will place on all of thestsade develop: we
stipulate that in every model, state must be defined using nothing but statisfitaref observable
guantities — that is, state must be composepretlictions about the futurel he restriction is self-
imposed and represents part of the central question that this thesisseireow far can we push
such models? Is anything lost with this restriction? Is anything gained? Thssstbescribes
a trajectory of work which develops increasingly sophisticated modelsgandrally concludes
that this restriction does not limit the capacity of the models. This conclusiorsizided more
thoroughly in Chaptet 1.

The idea of representing state as predictions about the future will be meciselater. We now
turn our attention to defining the problem setting more formally.

1.1 Modeling Dynamical Systems

The problem of modeling dynamical systems has been widely studied. We lgyainedwork for
the models we will build by describing what we mean by an agent, its environtherdecisions it
may have to make and the way it represents its knowledge about the world.

1.1.1 The Agent and Its Environment

For all of the dynamical systems we consider, we adopt the perspedaive¢thave an agent who
is interacting with an environment by taking actions and receiving obsengtiodiscrete time
steps. Roughly speaking, the agent is the thing which we are creatingar wa are interested in
controlling, and the environment is everything external to it. In our examtilesagents are things
like stock brokers, chess players, and baseball batters, while themménts are the systems which
govern the range of their dynamics — the stock market, the playing room, siebdiagame. All
of these examples are anthropomorphic, but more abstract kinds dsagahenvironments are
included in our framework: perhaps the environment is the solar systehthamgent is a software
program predicting sun-spots; perhaps the environment is a webgitéheagent is an algorithm
deciding how much to charge for displaying an advertisement.

From the perspective of the agent, the environment is a black box: attieaestept, the agent
executes some actier from a (possibly infinite) set of candidate actiafsand receives an obser-
vationo, from a (possibly infinite) set of candidate observatiGhdn all of our examples, the agent
cares about what happens inside the black box only to the extent thas tiaidn predicting the
future. Throughout this thesis, we explicitly do not adopt the perspetiat we are attempting to
accurately discover or describe the contents of the black box; we arested solely in predicting
the distributions of future interactions given past interactions.

Should every learning problem be considered a dynamical system? @newiork is general
enough that it might be possible, but to keep the definition of a dynamicedmysean, we an-
swer no. Classification, for example, is a widely studied machine learnirddgono and it may be



tempting to try to reduce it to a dynamical system: the agent is the classifier, theyloginter-
actions is the training data, and the actions that the agent can take ardepdssbifications. The
difference is precisely where we draw the line between dynamical andymamical systems: in a
dynamical system, the temporal component is essential, and cannot beteggla classification,

the training data can be arbitrarily rearranged, and the results are typheagmeé. In a dynamical
system, thesequence itselbf actions and observations is essential: rearranging them fundamentally
changes the nature of the system.

1.1.2 Properties of Dynamical Systems

Dynamical systems can be categorized according to a few standardtmepé/e outline the most
important ones to situate this work and delineate the boundaries of the systecosisider.

e Controlled vs. uncontrolled

In a controlled dynamical system, we assume that actions taken now will in8uee dis-

tribution of future observations. In an uncontrolled system, the agent stiésnaredictions,
but they do not affect the system: a weatherman may predict the chamam admorrow,

and may be rewarded for better predictions, but he does not affeetagather. Controlled
dynamical systems include domains that arise in reinforcement learningolciveory, and
operations research, while uncontrolled systems include problems stioteasries predic-
tion. We will consider both types of systems.

e Finite vs. continuous environments

How many configurations can the environment be in? Is the environment Ijee e of
checkers, with a finite number of possibilities, or more like the stock market, withfaite
space of real-valued prices? We will consider both, although we empghtisir our goal
is not necessarily to identify the environment and its possible configurationgather to
predict distributions over future observations.

e Finite vs. continuous observations

Are the agent’s observations continuous (like the position and velocity af)aoc discrete
(like the letters in an alphabet)? We will consider both. Part of the goal othbiss is to
expand previously contributed models which are capable of dealing wittetksabservations
to the case of continuous observations. In some of our models, we will mddditional
property, which is the presence or absence of structutten individual observations. We
will therefore consider discrete-and-structured observations antincous-and-structured
observations. For example, a camera image has discrete elements (ebcarpom@y occupy
255 distinct colors), and so the set of all possible images is finite. Hoyntéeeset is so large
that for practical purposes, structure within the observation must deitq

1And if they are not, as might be the case for an online classifier, thereyisaardcal component to the model which
plays an important role, and the result is a dynamical system.



e Fully observable vs. partially observable

How much information do observations convey about the environment?uliyabservable
domain, the current observation conveys all possible information ab@etithironment to the
agent — it does not need to remember anything in order to predict the.flitveebservability
of the system is related to whether the systerivakov (Markov, 1913: in a Markovian
domain the distribution of future observations is conditionally independethiegbast, given
the current observation

p(future|o, history) = p(futurelo).

Thus, in a Markovian domain, the agent only needs the current obiserta predict the
future perfectly. In a non-Markovian (or “partially observable”) domadhis property does
not hold. This thesis is concerned explicitly with partially observable domaind,does
not consider Markovian domains. One of our goals is to learn ways tesept knowledge
about the system, which is summarized from the history of interactions. ltyahservable
domain, this is not necessary.

e Deterministic vs. stochastic

How does the environment change over time? Is it deterministic, like a state reachin
stochastic, like the weather? How do the actions of the agent affect tir@ermment? Are
the effects deterministic, like the results of the voters in an election, or staghdse the
wheels of a robot turning on a sandy beach? How are observatioesaged? Even in a
deterministic environment, observations may be stochastically generatetiesacanage of
a checkerboard may be corrupted with salt-and-pepper noise, fongestse will consider
domains with any combination of the above possibilities.

e Finite vs. continuous actions

Are the actions available to the agent continuous, like the decisions ofex dria car (who
can smoothly decide between turning left and turning right), or discretethii&elecisions
of a temperature regulating agent (who can decide only whether or notri@iuthe air
conditioner)? We will consider both.

e Episodic vs. sequential

In an episodic domain, the agent is repeatedly reset to a known initial costiign, or faces
the same task again and again. For example, a baseball batter warms sppstepthe
plate, and swings, and later does the same again. In a sequential domaigetheimply
lives forever, with no a priori bound on how long the agent can exjeutiteract with the
environment. We consider sequential domains, although many of the dsraqggby directly
to the case of episodic domains.

e Stationary vs. non-stationary



Do the laws governing the environment change over time? Here, we arefawotng to how
the specific configurations of the environment evolve, but rather whetheot the mecha-
nisms that govern that evolution change. To see the difference, cotisédexample of the
weather: the weather may evolve in a complicated, stochastic way, whidtsiiesucomplex
dynamical system. However, the laws governing weather do not chemgerioment to mo-
ment: temperature, pressure, humidity, evaporation and precipitation g@atnhed by the
laws of physics, which are constant. This means that if we were someHewoabrmulate
a good model of the weather, it would be just as good today as it is 108 frear now. We
say that a domain is stationary when the laws governing the environment dbargge, and
that it is non-stationary otherwise.

It is always theoretically possible to transform a non-stationary envirahin® a stationary
one by broadening our definition of “environment,” but from a theorética practical per-
spective, it is often more useful to think of certain domains as non-stagyioRar example,
in a multi-agent setting, the fact that other agents are learning and evofféstjely results
in a non-stationary environment, even though it would be stationary if we lsmmbéad a
perfect model of their learning mechanisms. We will only consider staticgrariyonments.

e Domains with reward

In some controlled dynamical systems, the environment defines a notrewafd Reward
is a special observation that helps the agent know what it is supposeddmaplish in the
environment: a stock broker might be rewarded based on profit gaiosddgood trades; a
baseball player might be rewarded for hitting the ball, and a chess-piagét be rewarded
for winning the game. Learning how to act such that reward is maximized isuttvéepy of
reinforcement learning.

This thesisis related to reinforcement learnir§utton and Bartq1998 because many of
our algorithms learn in domains that are the hallmark of reinforcement learesegrch, but
is more about learning how to model an environment than about hawethat model to
behave optimally. Even so, the existence of a reward signal may impact thed moldiing
process. For example, instead of predicting the entire distribution of futusereations,
perhaps the agent only needs to predict a subset sufficient to act ytiwmech may simplify
the model building process. In any case, the representation of state sleoadequate for a
reinforcement learning algorithm to function properly.

In summary, this thesis is concerned with environments which are sequetaiainary and par-
tially observable; which may or may not have a reward signal; and which raag any mix of
stochasticity or determinism and any mix of discreteness or continuity.



1.1.3 State

This thesis is intimately concerned with the idea of state and how it can beeaprds Throughout
this introduction, we have referenced the idea of “state,” relying on aitiigwlefinition. We now
define state more precisely, with emphasis on the fact that there are multipfeaue representa-
tions of state. Throughout this thesis, we will always discuss state fropetispective of the agent,
as opposed to that of an omniscient observer.

What exactly is “state?” Informally, state is the current situation that thetdipets itself in: for
a robot, state might be the position and angle of all its actuators, as well as itsaogpnates,
battery status, the goal it is trying to achieve, etc. However, in a partiallgrebisle system the
agent may not have immediate access to all of the information that it would likeot@ &bout its
situation. For example, a robot with a broken sensor may not know thé¢ gasition of its arm;
a stock trader may not know exactly what the long-term strategies are thieatiompanies he is
investing in; and a baseball batter may not know exactly how fast the &lhsedpproaching.

In partially observable domains, there is a more formal definition of state:istateummary of all

of the information that an agewobuld haveabout its current situation, which is a summary of the
history it has experienced. Usually, an agent will want to compress th@yidecause otherwise
it must store an increasingly large amount of information as it interacts witmtheement longer
and longer. This motivates the canonical formal definition of ststi#gte is any finite-dimensional
statistic of history which is sufficiehto predict the distribution of the futuréiVe will sometimes
abbreviate this by simply saying that “state is a sufficient statistic for history.”

Defining state in this way implies the following conditional independence assettiat the distri-
bution of the future is conditionally independent of the past, given state:

p(future|state, past) = p(future|state).

This means that since state has summarized all of the information in a history iwinétevant for
predicting the future, we may discard the history itself. As it turns out, this sugnofahistory

is also sufficient for the agent to act optimalkstrom, 1965. Thus there is a close connection
between representing state, maintaining state, summarizing the past, predefutgté and acting
optimally.

Unfortunately, there are some conflicting uses for the word “state.” Inymadels of dynamical
systems, such as a Partially Observable Markov Decision Process WDPMonahan 1982,
the model posits underlying “states” which are assumed to representuké State of the process,
which is unobserved by the agent (when necessary, we will referse tnederlying states as “latent
states.”) In a POMDP, the agent summarizes a history whihliaf statewhich is a distribution over
latent states. According to our definition, it is the belief state which is the muftistatistic for his-

2Sufficiency is precisely defined in Secti8r2



tory. However, latent states are not essential for sufficiency; adalesgee, one of the contributions
of this thesis is the introduction of numerous concepts of state which makéenerree to any sort
of latent state.

There are many acceptable summaries of history. To illustrate this, constdexdample of a robot
localization problem. A small robot wanders through a building, and must itagosition, but it
is given only a camera sensor. There are many possible representatitmesrobot’s position. Its
pose could be captured in terms of a distribution awgy coordinates, for example. However, it
could also be described in terms of, say, a distribution over polar cotedin€artesian and polar
coordinates are different representations of state which are equphlgssive, bubothare internal
to the agent. Neither is more accurate, or more correct, or more usefulyeahdve said nothing
about how either Cartesian or polar coordinates could be accurately math@ien nothing but
camera images. It is easy to see that there are an infinite number of sualegtasentations: any
one-to-one transformation of state is still state, and adding redundanmgifon to state is still
state.

The realization that there are multiple satisfactory representations of sggtéheequestion: among

all possible concepts of state, why should one be preferred overeafioiliere are many possible
criteria that could be used to compare competing representations. Forlexamppresentation

might be preferred if:

e Itis easier for a human (designing an agent) to understand and use.
e It somehow “matches” another agent’s notion of state.

¢ It has favorable computational properties.

Not every statistic of history will be sufficient for predicting the future,iethmeans that some
representations may only constitute approximate state. If an approximatétjesufstatistic is
acceptable, a state representation might be preferred if:

e Itis more expressive than another representation.

e It is less expressive than another, but is still sufficient to do what we Wado with it (for
example, control the system optimally).

Thus, even among state representations which are equally exprdbgire might be reasons to
prefer one over another.

Because we are interested in learning agents, we are intereseainablerepresentation of state
— those for which effective learning algorithms are available. The ideaotiatrepresentation of
state may be more learnable than another motivates our first distinction betiffeeznt represen-
tations of stategrounded representations of state are those in which every component of the state

3Some disciplines may have other definitions of the word “grounded” wanielspecific and technical; we avoid them.



is defined using only statistics about observable quantities (which coulthlee @bservables in the
future, or the past), anidtent representations of state refer to everything else. In our robot local-
ization example, both Cartesian and polar coordinates are latent refjatesenof state, because
neither is explicitly observed by the robot; only a state representation definerms of features of
camera images could be defined as grounded.

Within the class of grounded representations of state, we will make furisgnalions. Some
grounded representations may be defined in terms of past observasdnghe case of-th order
Markov models (where the palsbbservations constitute state), and others could be defined in terms
of the current observation (as in Markovian domains, or domains wiene geature of the current
observation is state).

There is also a third class of grounded representations, which is thetfasslictively defined rep-
resentations of statén a predictively defined representation of state, state is represergtdiascs

about features diuture observations. These statistics are flexible: they may be the parameters of a
distribution over the short-term future, represent the expectationsidbna variables in the future,
represent the densities of specific futures, represent statementduthos strings of observations
given possible future actions, etc. It is this class of state representativoals we will investigate
throughout the thesis, along with algorithms for maintaining that state.

1.2 Why Predictions About the Future?

Why limit our investigation to the class of models with predictively defined regmtadions of state?
We are motivated for three reasons:

e Learnability . The central problem this thesis addresses is learning models of dynagseal
tems from data. The fact that all of the parameters of predictively defiroetels have direct,
statistical relationships with observable quantities suggests that predide@hed models
may be more learnable than classical counterparts. As an example of thpayémeeter esti-
mation algorithm oRudary et al(2005 for the Predictive Linear Gaussian (PLG) model (the
predictively defined version of the Kalman filter, which is discussed in @ndpwas shown
to be statistically consistent, which is a strong learning guarafeddry et al.2005.

e Representational Ability. To date, most models with predictively defined state have been
shown to be at least as expressive as their classical counterpamexarople, PLGs are as
expressive as Kalman filter®@dary et al. 2005, and linear PSRs (discussed in Chapter
2) are strictly more expressive than POMDRBsirfies 2005. That is, there are domains
which can be modeled by a finite PSR which cannot be modeled by any finiteDPOIt
every finite POMDP can be modeled by a finite PSR. This representatidhig iskachieved
without sacrificing compactness: linear PSRs are never larger thand@iaknt POMDPS,
PLGs are never larger than their equivalent Kalman filters, and therexaraples of PSRs
which are exponentially smaller (in terms of the number of parameters) tharethéwalent



POMDP (ittman et al, 2002. For a given data set, a model with fewer parameters is likely
to have greater statistical efficiency, which is useful for learnability.

e Generalization. As a knowledge representation, predictions about the future may have a
tractive properties from the perspective of function approximation ameiglization. For
exampleRafols et al(2005 have provided some preliminary evidence that predictive repre-
sentations provide a better basis for generalization than latent onese Tloesimtuition for
this, consider the problem of assigning values to states for a domain in whiatpest must
navigate a maze. Using a predictively defined representation, two statesar” each other
when their distributions over the future are similar; if that is true, it is likely thay tsthould
be assigned similar values. But if the agent uses, say, Cartesian @ieslas a state repre-
sentation, two states which are nearby in Euclidean space may not négdssae similar
values. The classic example is two states on either side of a wall: although tretaiee
appear to be close, an agent may have to travel long distances throughzbdo reach one
from the other, and they should be assigned different values, whictbendifficult to do with
a smooth function approximatokittman et al.(2002 have also suggested that in composi-
tional domains, predictions could also be useful in learning to make othdictoms, stating
that in many cases “the solutions to earlier [prediction] problems have begmgo provide
features that generalize particularly well to subsequent [predictiaigigms.”

Learnable, flexible knowledge representations are important for cgemitonomous agents capable
of learning in real-world domains, which are characterized by rich pés¢euch as camera images),
highly structured, nonlinear dynamics (perhaps consisting of objectsntlaterial properties, and
dynamical relations), and factored, high-dimensional actions. Modelgwéttictively defined state
have shown promise with a combination of theoretical results on represealatlility, empirical
success, and intuitions regarding learnability and generalization. Thigestsgthat exploring the
limits and possibilities of such models is important and potentially rewarding.

1.3 Outline and Summary of Contributions

To summarize the setting for this work, the two basic problems in learning a mbdgpartially
observable dynamical system are selecting a representation of statelectthg an algorithm for
maintaining that state. The theme of this research is to create models with pedgidifined
representations of state that are useful in domains with continuous aatmm#uous observa-
tions, and in some cases, structured and/or high dimensional observaftomgontributions are
theoretical (proposing new models which expand on previously prdposelel classes), algorith-
mic (proposing new algorithms to learn the parameters of the models) and coiomaité&inding
efficient approximations to make the algorithms practical).

e As background, Chapte? introduces basic concepts of modeling dynamical systems and
presents the PSR model, which is one of the original models with predictivéfedestate.



This chapter serves to present many ideas which we subsequentlplganer

e Chapter3 begins with the “Continuous PSR.” The PSR model is defined for domains with
discrete actions and observations, and the Continuous PSR extendsoHtiRdle continu-
ous actions and observations. We examine the basic questions of saffithen arise when
extending to continuous actions and observations. We contribute the sygtemics distri-
butions and a generic information-theoretic approach to optimizing statesegppa¢ions. To
complete a learning algorithm, we present a mathematically elegant set of desigions
which results in a gradient-based learning algorithm, and a set of Nysippno»damations
that allows the algorithm to scale well.

e In Chapter4 we describe the “Predictive Linear-Gaussian” model (Pi.@hich deals with
linear dynamics and simple scalar observations. The PLG defines statepasahesters of
a Gaussian distribution over a window of the short-term future, and is fyreguivalent in
modeling capacity to the Kalman filter.

e In Chaptei5 we extend the PLG to handle nonlinear dynamics by considering linear dysiamic
in a nonlinear feature space. We show that a nonlinear extension fusdfiitces to capture
nonlinear dynamics. We contribute a learning algorithm based on sample stadistiae-
gressions, and an efficient approximate inference algorithm baseigroa-points to track
state (which yields an algorithm related to the unscented Kalman filter).

e In Chapter6, we present an alternative extension to the PLG, named the Mixture of,PLGs
which is based on the idea of modeling dynamics in a piecewise linear way. &ife @m-
tribute a learning algorithm (which can be considered a mixture version ctaimelard PLG
learning algorithm), and we begin to consider exogenous variables in thextof a traffic
modeling problem.

¢ In Chapter7, we present the “Exponential Family Predictive Representation of State” (
PSR) model, which was conceived as the natural generalization of exiops models. The
EFPSR represents state as the time-varying parameters of an exporanifialistribution
over a window ofn observations in the future. Its close connection to graphical models
and maximum entropy modeling allow us to deal with multivariate, high-dimensiomadlora
structured observations, and also provably unifies much of the workpresent theorems
which unify the PLG, KPLG, MPLG, and PSRs into the umbrella of the EFP&Rya

e In ChapterB, we specialize the EFPSR with a specific set of features and extensiiofyn
and show that the resulting model is an information form of the PLG, in the saaydhat
the information Kalman filter is an information form of the Kalman filter.

e In Chapters9 and 10 we predict and analyze a new specialization of the EFPSR, named
the Linear-Linear EFPSR. We show how this model is well-suited to approxinsatitich

“The PLG is largely the work of Matthew Rudary.
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allow it to scale to large domains. We contribute a learning algorithm based oimonax
likelihood, and an efficient approximation based on stationary distributions.

For each model and learning algorithm, we also contribute empirical evalgat@nparing their
performance to other models. The models, learning algorithms and approximatiow us to
experiment with new domains that are simply not feasible under other modelpneitictively
defined state. From nonlinear time series problems to bouncing balls to donitin®bots and
cameras, we begin to consider a larger class of interesting domains.

We finish with concluding remarks in Chaptet.
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Chapter 2

Discrete Observations, PSRs and POMDPs

To begin our exposition of models with predictively defined representatibstate, this chapter
introduces basic concepts of modeling dynamical systems — including leaundhgmodels from
data and what it means to control them optimally — and briefly reviews sepepailar models.
We will describe in detail a classic model of controlled, partially observalgtems with discrete
observations called Bartially Observable Markov Decision Process POMDP. This will allow
us to discuss many of the concepts of predictively defined represestafistate by contrasting the
POMDP with a different model known asRaedictive State Representati¢or PSR) which uses a
predictively defined representation of state.

The PSR model is important historically because it was one of the first modeds t predictively
defined representation of state. Analysis of the PSR model was reslgofwsilthe definition of
many of the theoretical, notational and algorithmic tools used in describingrdgaksystems with
predictively defined representations of state. In the context of this tllesimodel is also a natural
starting point to introduce a variety of modeling concepts, which we will gdizerin subsequent
chapters.

2.1 Models of Dynamical Systems with Discrete Observations

To arrive at our exposition of POMDPs and PSRs, we will now specialiliest@ase of dynamical
systems with discrete observations, deferring a discussion of dynarggtahss with continuous
observations until Chaptdr We will briefly review several popular classes of dynamical systems,
with a few notes on learning and controlling them.

The simplest models of discrete observation dynamical systems are knoMarkev Chains
(Markov, 1913, which are uncontrolled processes in which the observation constitiaties(se-
cause of this, the word “observation” and “state” are often used irdaggmbly). At each timestep,

the agent transitions from one state to another, in a possibly stochastic mménisestraightfor-

ward to learn a model of such domains: a consistent maximum likelihood estinfigtertcansition
probabilities can be easily derived from the empirically observed couneadih transition. In
some partially observable dynamical systems, the current observatismdbeonstitute state, but

a memory of the past observationgloesconstitute state. We term thekistory-window models

but they are also known a@sth order Markov models, or autoregressive models. These models are
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simple to use and are theoretically comparable to Markov Chains and MDftse@laext). There
is flexibility in defining the window; for example, in some modelss allowed to vary depending
on the current observatioMgCallum, 1995.

The controlled counterpart of the Markov Chain is known &gaakov Decision Proces®r MDP
(Putermanl1994). Like a Markov chain, the learning problem is not complicated, but in addito
states and transitions, the MDP adds actions and rewards. That is,yrstaerthe agent receives a
(possibly stochastic) reward, and transition probabilities now dependeaction the agent selects
at each timestep. Thalanning problemis to find apolicy, or a mapping from states to actions,
that maximizes some optimality criteria defined on the rewards. For example,géheragy seek
a policy which maximizes the reward over a finite window into the future, theaggaliscounted
reward over the infinite future, or the long-term average rewBlaickwell, 1962 (see alsd.ittman,
1996 Mahadevan1996 and references therein). The planning problem is theoretically tragitble
is known to be P-complet®apadimitriou and Tsitsikljg987), and considerable research has gone
into making it practical (see, for exampMingate and SeppR005 and references therein).

Some of the most widely used models of partially observable dynamical systesihghe existence
of latent states, which are not observed but which are assumed to eetjeg the observations.
These latent states are sufficient for history: if they could be obsgtivegwould render the future
independent of the past. The most popular uncontrolled model in this cléssHsdden Markov
Model or HMM (Rabiner and Juand 986. This model is well-studied and has enjoyed wide ac-
ceptance, partly due to its performance on real-world problems and paetlpdheoretically sound
learning algorithms. It has been applied to a variety of applications, sugeash recognitiorRa-
biner, 1989 and protein classification and alignmertaussler et al.1993. Learning HMMs is
typically done with the Baum-Welch algorithnB&um et al. 1970, which is a specialized ver-
sion of the more general EM algorithrDémpster et al.1977), but there are many variations on
this basic theme (see, for example, the Bayesian approacta®loke and Omohundrd 993.
The difficulty in learning a model with EM is the existence of several shalloallow@xima in the
likelihood surface which can result in useless modili&gvski, 2002).

The controlled counterpart of the HMM is known aPartially Observable Markov Decision Pro-
cessor POMDP Monahan1982. The POMDP posits the same latent states as the HMM, but like
an MDP, adds actions and rewards. The next section is fully devoted MMDIRS, so we defer our
discussion of this model until then.

There have also been several recent attempts to define models of palisdtyable systems which
capture state through the use of predictions about the future. S@didiscusses these thoroughly,
after we have presented the PSR and POMDP models.
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2.2 POMDPs

POMDPs are a popular class of dynamical system models that have besbimuspplications as
diverse as simultaneous localization and mapping in mifilesuf et al, 2005 to cognitive assistive
technologies Kloey et al, 2007 to modeling the fishery industnténe 1989. For a thorough
survey, se€assandrél998h.

A POMDP is described by a tuple, A, O, T, O, R, by), wheresS is a finite set of latent stateg, is

a finite set of actions, an@ is a set of observations. The geis a set of transition matrices, where
T, is a matrix represents the probability of transitioning from statie states’ given that actioru
was taken. The s is a set of observation matrices, whébg is a diagonal matrix wheré),);;
specifies the probability that observatiowill be observed in state;. The functionR is a reward
function, whereR(s, a) specifies the reward for taking actierin states. The vectot, represents
the initial belief state, which is a distribution over latent states.

At each time step, the agent executes an actionc A and receives an observatione O. An
agent’s internal state in a POMDP is captured as a “belief state,” which isteasistics of a multi-
nomial distribution over latent stateés). Because a belief state has a probabilistic interpretation,
it can be efficiently updated in a recursive way using Bayes law. Givelief stateh, an actiom,
and an observation, state can be updated as

p(s',ols, a) p(s’,0ls,a) 0,T,b

s'|s,a,0) = = =S
Pl a0) = 2 ) = S p(ols.a)  TTOLTb

wherel is an appropriately sized vector of 1's.

2.2.1 Optimal Control of a POMDP

The problem of optimal planning in a POMDP has been addressed by a nafaethors. A
policy is a (possibly stochastic) mapping from a belief state to an action (bethe belief state is
a sufficient statistic for history, it contains all of the information necesfargptimal control of the
agent). The goal in optimal planning is to find@gtimalpolicy — that is, a policy which maximizes
some measure of performance, such as average reward or expisctathted reward.

The problem of planning in a POMDP is provably difficult, and is known to 88ACE-complete
(Papadimitriou and Tsitsiklj9987). Numerous algorithms (both exact and approximate) have been
proposed, such as value iterati@nfallwood and SondjkL973, finite policy trees $ondik 1971,

the Witness algorithmL{ttman, 1994, point-based value iteratiofineau et aJ.2003, recurrent
nets Bakker, 2009 finite policy graphs Meuleau et al.1999, utile distinction Hidden Markov
models Wierstra and Wiering2004), finite-state controllersHansen 1998, and policy gradient
methods Baxter and Bartlett2001; Aberdeen and BaxteR002. For surveys, sekeovejoy (1991

or Cassandr§l9983.
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Some authors do not attempt to estimate a model, and try to find instead “reactiv@moryless
policies which map observations (not states) directly to actidaakkola et al.1995 Loch and
Singh 1998. It is known that the optimal reactive policy may be stochastic (whereasptimal
policy for POMDPs and MDPs is always deterministic), and it is known thab#s memoryless
policy can be arbitrarily suboptimal in the worst caSengh et al, 1994).

2.2.2 Learning a POMDP Model

Often, the model parameter$,(O, R) are not given, and must be learned from data. While not as
well studied as the basic problem of planning, many learning algorithms fMP®3 have been
proposed. There are two different classes of learning scenaridke ifirst, the number of states

is given, along with the observation probabilities from each state, but theiticms between states
must be estimated. For exampRussell et al(1994 proposed an algorithm based on steepest
gradient ascent in the space of transition probabilities, w@heisman(1992 and Koenig and
Simmong(1998 adapted HMM learning algorithms to learn the transition probabilities.

The more general class of algorithms assume no prior knowledge and attelagin everything
about the dynamical system: the number of states, the observation prolmhititighe transition
probabilities must all be estimated. Many approaches have been profBasge et al(1995
present a learning algorithm which constructs deterministic finite automata ped®ptual alias-
ing. This was later generalized in the work 8halizi and Shaliz{2004), who has proposed the
Causal State Splitting Reconstruction algorithm, which constructs states exgdbaggd on the
distribution over the future they induc&hatkay and Kaelbling2002 have shown how domain
knowledge may be incorporated into the process of learning a model, witlcatmms to robot
localization.Nikovski (2002 has proposed learning algorithms based on state aggregdttmes
and Isbell(2006 have proposed the looping suffix tree algorithm, which is based on theoidea
excising non-informative portions of a history to determine states.

2.3 PSRs

The POMDP model described in the previous section has latent states aarits-hiebegins by
describing a state space, transitions between those states, the obseetiahey generate; it
defines its sufficient statistic for history as a distribution over these latedessttc. This model is
convenient in several situations, such as when a human designer kraiviisere reallyare latent
states in the system and knows something about their relationships. Howekegrous authors
have pointed out that while a POMDP is easy to write down, it is notoriously tealearn from
data (Nikovski, 2002 Shatkay and Kaelblind2002, which is the central concern of this thesis.

In this section, we turn to alternative model of controlled dynamical systemdigithete observa-
tions, called a “Predictive State Representation” (or PSR)he PSR was introduced tyttman
et al.(2002, and is one of the first models with a predictively defined representdtsiate. A PSR

tUnfortunately, this name would be more appropriate as a name for aa elatis of models.
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Figure 2.1: An example of state as predictions about the future. Latennhsigitée bex, y coordi-
nates, but predictively defined state is defined in terms of future possibilities

is a model capable of capturing dynamical systems that have discrete antdsscrete observa-
tions, like a POMDP. The important contrast is that while POMDPs are builinartatent states,
PSRs never make any reference to a latent state. Instead, a PSRmepstste as a set of statistics
about the future. This will have positive consequences for learngwyeawill see, but importantly,
we will lose nothing in terms of modeling capacity: we will see that PSRs can namge$ystem
that a finite-state POMDP can, and that many POMDP planning algorithms actlylapplicable
to PSRs.

We will now introduce the terminology needed to explain PSRs.

Histories and tests: Recall that a history is defined as a sequence of actions and obsesvation
the pasiui01a209 - - - amom, and that a test is defined as a possible sequence of future actions and
observationa'o'a?0? - - - a™o". Atest is a possible future from a given history, and specifies both a
sequence of actions and observations. An agent is not obligated to éa&etibns defined in a test

— it merely represents one possible future.

Figure2.1lillustrates the idea of tests. The figure shows two robots in a brightly colored.rfar
the robot on the left, there is a certain action-conditional distribution ovduthee: if it moves left,
it will bump into a pink (light gray) wall; if it goes to the right then up, it will bump iradlue (dark
gray) wall, and if it goes to the right and then down, it will bump into a greerd{ore gray) wall.
In this example, the actions include “move-left,” “move-right,” etc., and theeokations include
“bump,” “blue wall,” etc. Tests are strings of these atomic actions and ed$ens. If there is non-
determinism in the world (perhaps due to slippage in wheels, noise in actlettojshese possible
futures might not be certain: perhaps if the agent moves right and theasnupy there is some
probability that it will see the blue wall, but there is also some possibility that it wérshoot, run
into the yellow (very light gray) wall, and the bump sensor will be actuated.

16



The robot on the right is in a different position in the maze, and therefere ik a different distri-
bution over future possibilities: for him, going left results in bumping into a yellail, instead of
a blue wall. In this simple example, we can imagine that a sufficiently detailed seffafiently
long predictions could disambiguate any two positions in the maze. This is pyettisgntuition
behind the state representation in PSRs, as we will discuss momentarily.

Prediction of a test: From a particular history, there are many possible future sequencesmfa

and observations, and because of non-determinism in the world, thevenes distribution over

these possible futures. This distribution can be captured through thef tsst0 each possible
future corresponds to a different test, and there is some probability dbhttest will occur from

every history.

To formalize the idea of predictions about tests, we say that auesteds the observations of the
test are obtained, given that the test’s actions are tak@nedictionfor atest = a'o'a?0? - - - ao"
starting in historyh is the probability that will succeed when its actions are executed immediately
following h. We define the prediction for a test from histdryf lengthm to be

P(ﬂh) = Pr(om—i-l = 0170m+2 = 027 © s Omtn = OH‘ha Am+1 = ala s Omdn = an)'

For ease of notation, we use the following shorthand: for a set offestq 1, to, - - t,, }, p(T|h) =
[p(t1|h), p(talh), - - - p(t,|h)] " is a column vector of predictions.

The idea of tests and their predictions forms a central part of the statsespation used by PSRs.
They are also central to the mathematical objects that PSRs rely on forttbaloresults, as well as
most learning algorithms for PSRs.

The system dynamics vector: The systems dynamics vect(8ingh et al. 2004 is a conceptual

construct introduced to define PSRs. This vector describes the evadfiaaitynamical system over
time: every possible testhas an entry in this vector, which represents§() (that is, the prediction

of ¢ from the null history), which are conventionally arranged in length-lexiaphic order, from

shortest to longest. This will be an infinitely long vector, but will still be us&fom a theoretical

perspective. Here, we will the notatiafl'o}’ to denote then-th action and the:-th observation at
time¢:

V= [p(a%Oi!@)m(a%O?!@), p(af"ot|0), p(ajoiazo3]0), - }

Importantly, the system dynamics vector is representation-independeat is,tverydynamical
system with discrete observations can be completely described by its sygtamids vector. It
makes no reference to latent states of any sort, but still completely chaastine dynamics of the
system. This will be a key part of learning a model of the system.

The system dynamics matrix: The system dynamics matri® (shown in Figure2.2) is obtained
by conditioning the system dynamics vecioon all possible histories. In this matrix, the first row
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Figure 2.2: The system dynamics matrix.

is the system dynamics vector, which corresponds to the null history.y pessible history has
a row in the matrix, and the entries in that row are obtained by conditioning 8tersydynamics
vector on that particular history. An entry in the matrix is the prediction of dquaar test from a
particular history:

By =iy = 200
Tests and histories are arranged length-lexicographically, with evesasicig test and history lengths.
The matrix has an infinite number of rows and columns, and like the systermilygyaector, it is a

complete description of a dynamical system.

Sufficient statistics: The system dynamics matrix inherently defines a notion of sufficient statistic,
and suggests several possible learning algorithms and state update isrash&or example, even
though the system dynamics matrix has an infinite number of columns and roivbag finite
rank, there must be a finite set of linearly independent columns. Recaltghanns correspond

to different tests. We call the tests associated with these linearly indepgeralemnscore tests
Similarly, there must be a set of linearly independent rows. Recall that cowespond to different
histories. We call the histories associated with these linearly independentaoce histories

In fact, the rank of the system dynamics matrix has been shown to be finiteédogsting cases, such

as POMDPs&ingh et al. 2004): a POMDP withn latent states will generate a system dynamics
matrix with rank at most.. Furthermore, a set of linearly independent columns can be found
using tests that are all shorter than lengthThe set of core tests is not necessarily unique, because
any linearly independent set of columns satisfies the definition of a cooé tests.

State: We are now prepared to discuss the key idea of PSRs: PSRs repstenas a set of
predictions about core testa/hich represent the probabilities of possible future observations give
possible future actions. Core tests are at the heart of PSRs, begadsdirition, every other
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column can be computed as a weighted combination of these columns.

To see how the predictions of a set of core tests can constitute state,ezcagdrticular history
h:. Suppose that an agent knows which tests are core tests. We will caletli)s and suppose
furthermore that the agent has access to a vector containing their preslicben historyh,:

p(Qlht) = [p(q1lhe), p(g2|ha), - - p(gn|he)] -

Every other columr in the row corresponding th; can be computed as some weighted combina-
tion of the entries in(Q|h):
plclhe) = md p(Q|hy).

Because columns correspond to possible futures, this agent cant@meglicing about the future
that it needs to, assuming it has the appropriate weight vectormportantly, these weight vectors
are independent of history, which will be critical to maintaining state, as wesadlin a moment.

Because an agent can predict anything it needs to as a weighted combiofatiee entries in
p(Q|h:), we say that the predictions of these core testsaalieearly sufficient statistidor the
system. It is, of course, possible to go through the same line of reasonamg\vi® at nonlinearly
sufficient statistics for history, although we will not discuss that in this sectio

State update: Given a set of core test3, their predictiong(Q|h) (which constitute state), an
actiona and an observation, the updated prediction for a core teste (@ is given by

p(aog;|h)

Paha0) = aolh)

This means that to maintain state, we only need to compute the predictionsooiglséep testgio)
and theone-step extensiorfgog;) to the core tests as a function i) |h).

This formula is general to all PSRs, whether they use linearly sufficietiststa or nonlinearly
sufficient statistics. In the case of linearly sufficient statistics like thoseistssa previously, the
state update takes on a particularly convenient form, as discussed next.

Linear PSRs: Linear PSRs are built around the idea of linearly sufficient statistics. lreardiRSR,
for every test, there is a weight vecton, € RI?l independent of histork such that the prediction
p(c|h) = m/ p(Q|h) for all h. This means that updating the prediction of a single coregestQ
can be done efficiently in closed-form. From histaryafter taking actiorm and seeing observation

o:
p(ao%‘h) m;roq'p(Q‘h)
i|hao) = = : . 2.1
Plailha0) =" o) = mp(QIh) @
This equation shows how a single test can be recursively updated ingantlelosed-form way.

Previously, we said that given the predictions of a set of core testsdentain historyh, any other
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column in the same row could be computed as a weighted suiitf). Here, we see that in order
to update state, only two predictions are needed: the prediction ofhstep test(ao|h), and the
prediction of theone-step extensiop(aog;|h). Thus, the agent only needs to know the weight
vectorsm,,, which are the weights for the one-step tests, andithg,, which are the weights for
the one-step extensions. We can combine the updates for all the coretiestsimgle update:

Maop(Qlh)

p(Qlhao) = o QIR

which allows us to recursively update state.

An agent does not need to learn a weight vector for every possiblentdst system that it ever
wishes to predict. If it has learned the weights for the one-step tests aomdéhstep extensions,
these are sufficient to create a predictionday arbitrary test. This is accomplished by rolling the
model forward into the future. The prediction of an arbitrary testa'o! - - - a™0™ can be computed
as:

P(t1h) = M Jngn Myn—1gn-1 -+ My 1 p(Q ).

This derivation can be arrived at by considering the system dynamici{@itngh et al.2004), or
by directly considering the parameters of an equivalent POMItEBr(an et al, 2002.

2.3.1 Learning a PSR Model

Numerous algorithms have been proposed to learn PSRs, but they &adde two key problems
which need to be solved in order to learn a model of a dynamical systemisttwvery problenand
thelearning problem(James and Sing2004). The discovery problem is defined as the problem of
finding a set of core tests, and is essentially the problem of discoveritagearspresentation. The
learning problem is defined as the problem of finding the parameters of ttiel meeded to update
state, and is essentially the problem of learning the dynamical aspect ofstieens In the case of
linear PSRs, this is the,, weight vectors for all of the one-step tests and the one-step extensions.

The discovery problem: The idea of linear sufficiency suggests procedures for discovetifig s
cient statistics: a set of core tests corresponds to a set of linearly mdkpecolumns of the system
dynamics matrix, and so techniques from linear algebra can be brougbaatmh empirical esti-
mates of portions of the system dynamics matrix. Existing discovery algorithemshstor linearly
independent columns, which is a challenging task because the columnsnadtitve are estimated
from data, and noisy columns are often linearly independiaeder2004. Thus, thenumerical
rank of the matrix must be estimated using a statistical test based on the siragjuks of the ma-
trix. The entire procedure typically relies on repeated singular valuengigasitions of the matrix,
which is costly. For examplelames and Singf2004) learns a “history-test matrix,” which is the
predecessor to the systems dynamics matrix. Their algorithm repeatedly estiangée and larger
portions of the matrix, until a stopping criterion is reached.
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The learning problem: Once the core tests have been found, the update parameters mustte learn
Singh et al(2003 presented the first algorithm for the learning algorithm, which assumeththat
core tests are given and uses a gradient algorithm to solve the learoliigmr The more common
approach is with regression and sample statistics (see, for exalaphes and Singl2004. In

these methods, once a set of core tests is given, the update parameteesscdved by regressing

the appropriate entries of the estimated system dynamics matrix.

Some authors combine both problems into a single algorithm. For exaiWpsyiora (2005
presents a method for learning regular form PSRs with an iterative ertahdegress method,
while McCracken and Bowling2006 propose an online discovery and learning algorithm based
on gradient descenRosencrantz et af2004) present TPSRs, which are like PSRs, but which find
an uninterpretable basis for the systems dynamics matrix, as opposed ie admgosed strictly

of columns.

Estimating the system dynamics matrix Many learning and discovery algorithms involve esti-
mating the system dynamics matrix. Generally, these algorithms estimate entries ith subset
of the matrix using sample statistics. In systems with a reset action, the agenttivalyaeset to
the empty history in order to repeatedly sample entdasies and SingR004). In systems without

a reset, most researchers use the suffix-history algoritNatfé et al, 2005 to generate samples:
given a trajectory of the system, we slice the trajectory into all possible histané futures (see
the discussion of the suffix-history algorithm in Sect®d for more detail). Active exploration is
also possible, as proposed Bgwling et al.(2006.

2.3.2 Other Results on PSRs

A variety of other results about PSRs have been obtained. For exaRydary and Singli2004
showed that more compact models can be created when nonlinearly stifiteiestics are allowed.
James et al2005h showed that memory and predictions can be combined to yield smaller models
than can be obtained strictly with predictiodsimes and Sing{20053 then showed that effective
planning is possible with the resulting model. The idea of tests has been lgmtketa include
options Wolfe and Singh2006, set-tests and indexical test/ifigate et al.2007). Predictive
representations have also been shown to be good bases for getiera(Rafols et al. 2009, and
(Tanner et a].2007) presented a method to learn high-level abstract features from lowsiate
representations.

There has been comparatively little work on planning in PSReneg2005 shows how several
POMDP planning algorithms (such as exact value iteration and incremeantahgy can be trans-
lated directly into PSR terms, with equivalent computational complexity and optimalkitsagtees.
Itis generally believed among PSR researchers that any POMDP plaaigorighm can be directly
applied to PSRs, although there is no formal proof of this.

A variety of theoretical results have been obtained about PSRs. Fopéxdt was shown early that
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every POMDP can be equivalently expressed by a PSR using a cdivetiuoof translating from
POMDPs directly to PSR4 {ttman et al, 2002. In fact, the resulting PSR is just as compact as the
POMDP: a POMDP with latent states can be captured by a linear PSR withbre tests, and an
equivalent number of parameters. In fact, PSRs are strictly more exmeésan POMDPS: it has
been shown that “there exist finite PSRs which cannot be modeled byraigyRIOMDP, Hidden
Markov Model, MDP, Markov chain, history-window, diversity repeagation, interpretable OOM,
or interpretable 10-OOM” James2005.

2.4 Other Models with Predictively Defined State

There are other models of dynamical systems which capture state throughetlué predictions
about the future.

2.4.1 Diversity Automaton

The diversity automaton dRivest and Schapir€l987) is a model based on predictions about the
future, although with some severe restrictions. Like the PSR model, diversilgls represent state
as a vector of predictions about the future. However, these predietiemst as flexible as the usual
tests used by PSRs, but rather are limited to be like the e-tests udeddayy and Singl§2004).
Each test; is the probability that a certain observation will occuminsteps, given a string of;
actions bunotgiven any observations between timge1 andt +n,. Each of these tests corresponds
to an equivalence class over the distribution of future observations.

Rivest and Schapire 987 showed tight bounds on the number of tests needed by a diversity model
relative to the number of nominal states a minimal POMDP would need to modelrtieessestem.
Diversity models can either compress or inflate a system: in the best cageyighimic number of
tests are needed, but in the worst case, an exponential number oféaseded. This contrasts with
PSRs, where only tests to model any domain modeled byrastate POMDP. Another significant
restriction for diversity models is that they are limited to systems with deterministisitirs and
deterministic observations. This is partly due to the state update mechanistyubedmodel, as

well as the need to restrict the model to a finite number of tests by restrictingfiriteanumber of
equivalence classes of future distributions.

2.4.2 Observable Operator Models

Observable Operator Models (OOMs) were introduced and studigadyer(2000. Like PSRs,

there are several variants on the same basic theme, making it more of a trdniban a single
model. Within the family of OOMs are models which are designed to deal with difterersions
of dynamical systems: the basic OOM models uncontrolled dynamical systémes e I0-OOM

models controlled dynamical systems. OOMs have several similarities to P8Rsxdmple, there
are analogous constructs to core tests (“characteristic events”)histoeies (“indicative events”)
and the system dynamics matrix. State in an OOM is represented as a vecatediofipns about
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the future, but the predictions do not correspond to a single test. Instaald entry in the state
vector is the prediction of some set of tests of the same ldndiihere are constraints on these sets:
they must be disjoint, but their union must cover all tests of legth

There is a significant restriction on 10-OOMs, which is that the action sesguesed in tests must
be the same for all tests. This restriction is needed to satisfy some assumjpoutghe state
vector, but is severe enough thiEtmeg2005 gives an example of why this restriction results in
systems which the I0-OOM cannot model, but which PSRs can. Therdsargaaiants of OOMs
which do not use predictions as part of their state representation, wigiactakled “uninterpretable
OOMs,” but there are no learning algorithms for these modelmgs2005. We refer the reader to
the technical report byaegef2004) for a detailed comparison of PSRs and OOMs.

2.4.3 Temporal-Difference Networks

The Temporal-Difference Network model 8titton and Tanng2009 is an important generaliza-
tion of PSRs. In a TD-Net, state is represented as a set of predictionsthbduture, like a PSR.
However, these predictions are explicitly allowed to depend on each otaeoimpositional, recur-
sive way. This suggests that temporal difference algorithms could lgetoadearn the predictions,
as opposed to the Monte-Carlo methods used by PSRs, and it is these algaxitich form the
basis of the model. The recursive nature of the tests and the use of tewifferaihce methods in
learning naturally generalizes to include multi-step backups of learning lydinting eligibility
traces, to form TDX)-Nets (Tanner and Suttqr20053.

Although TD-Nets are theoretically attractive, they have not enjoyed time s@orous analysis
which PSRs have. Little is known about their representational capacityeargtimality of their
state update mechanism. For example, published work on TD-Nets usesralgemlinear state
update mechanism related to a single-layer neural network, although tisagundamental com-
ponent of the model. Other state updates could be used, and it is not oledahd state update
relates to, say, the statistically optimal update dictated by Bayes law. PSRsitiastpexplicitly
begin with Bayes law as the foundation of their state update mechanism.

Empirically, TD-Nets have enjoyed about the same level of successemifurds as PSRs, with
applications of the model being limited to rather small domains. While there haddmework
done on TD-Nets in general, the development of learning algorithms foN&f3-and PSRs have
in some ways paralleled each other. For exampdaner and Sutto(20050 proposed to include
some history in the state representation to aid learning in a manner that is remtioistte memory
PSRs proposed hiames and Singf20053, with improved learning results.

2.5 Conclusions

This chapter has introduced several of the concepts that will be edderttia development of our
algorithms in later chapters. The themes sketched here — tests, predictitesfoture, distribu-
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tions over the future, and theoretical mathematical objects describing dyadaystems — will be
repeated and refined throughout the thesis.

We have introduced the core problem addressed by this thesis, whichnimgedynamical system
models from data. We have briefly reviewed several models of dynanyistalines with discrete ob-
servations, discussing PSRs in detail, and showing how they use prelyickdfined representations
of state (specifically, the idea of tests) to model dynamical systems with distre¢evations and
actions. On the theoretical side, we have briefly discussed the idea gfstieensdynamics matrix,
which will be a key inspiration to some of our later models. We have also seav&yme theoretical
results demonstrating that the idea of capturing state with predictions abdutureis fundamen-
tally sound: PSRs are just as compact, and accurate as POMDPs, ahdreie expressive, and
it is possible to use many different planning algorithms to control them optimally.h¥ve also
discussed the numerous learning algorithms for PSRs. Because the dtfie arodel parameters
are defined in terms of observable quantities, the learning algorithms aghteward, and many
of them use the system dynamics matrix in one form or another as the bagiarfung.

We will next turn our attention to dynamical systems with continuous obsenrgation
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Chapter 3

Continuous PSRs

The models and learning algorithms of the previous chapter were all limited tegisibservations.
This chapter presents the “Continuous PSR” model, which extends PSRsdagh of continuous
observations. Chronologically, the Continuous PSR model was devetdfgedhe PLG family of
algorithms (discussed in Chaptets 6), combining ideas from PSRs and the KPLG and MPLG
models. However, for the purposes of this thesis, we explain it now,usecseveral of the ideas
presented here facilitate a clean explanation of subsequent algorithrtisnBof this chapter were
published inwWingate and Sing20078.

While this chapter presents the specific Continuous PSR model and lealgonighen, some of the
fundamental questions it grapples with and the definitions it makes impact the #mgis. For
example, the question of sufficiency is immediately raised. How can we etigtreur state is
sufficient for history? The theory of discrete PSRs uses the systeammdgs matrix and derives
the notion of predictive state as a sufficient statistic via the rank of the matrith avntinuous
observations and actions, such a matrix and its rank no longer exist. Im#pger, we show how to
define an analogous construct for the continuous case, callsgittean dynamics distributioreand
use information-theoretic notions to define a sufficient statistic and thus Sta¢se distributions
describe the evolution of the system over time, exactly like the system dynamtiés. ma

For the specific Continuous PSR model, we will also address the two bablemp®of representing
state and updating state. We will represent state with the predictions of ctse ltke discrete
PSRs, except that we replace all probabilities with densities. How do we fijodbd representation
of state? We will cast this as an optimization problem: we will select a class ofstasentations,
which we will parameterize, and we will frame the problem of finding a goot stpresentation
as a search problem over the parameter space, using tools from inforrttegimry to define an
objective function. How do we update state? We tackle this by estimating trangisisibutions.
Our entire algorithm will rely on estimating the system dynamics distributions frata. d

These conceptual extensions require companion algorithmic extensiomsis&\four key ideas:
first, to estimate the system dynamics distributions, we use kernel density estim@&oond, to
measure sufficiency, we use a generalized form of mutual informaticdlmasquadratic Renyi en-
tropy (Renyi 1976. Third, to discover sufficient statistics, we use random sampling comkiitked
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entropy optimization. Fourth, we show how Nystrom approximations and h@yaiotimization
yield an efficient implementation. The final combination of ideas has sevgpabiing properties,
one of which is a nice mathematical synergy among the elements.

We conclude with experiments showing that Continuous PSRs can be used&bagents in dy-
namical systems. We demonstrate the ideas on two example problems, one lofsadojgartially
observable dynamical world consisting of an autonomous mobile robot. Jéw has realistic
perceptual and action models: features of camera images are obsexyvatiapriori information
about the effect of actions is given, and no automatic state is given.

3.1 Moving to Continuous PSRs

We begin by comparing key ideas in discrete PSRs and Continuous PS&Btstproblem is that
when moving to continuous states and actions, it is no longer possible toadirgessible histories
and tests, simply because both observations and actions are real-Vidiigecheans that we cannot
define the system dynamics matrix, and hence we cannot define sufficieterms of its rank.
Here, we outline our alternative. The reader may wish to compare theséidae$ with their PSR
counterparts in Sectica 3.

Histories and tests: These are defined in exactly the same way as for discrete PSRs, exatept th
both actions and observations may be continuous and vector-valudsseifvations are vectors in
R3 and actions are vectors R?, for example, then a length three history is a vectdRin.

The continuous system dynamics vector:We define this somewhat differently than the discrete
system dynamics vector: each entry represents one timestep, anc:&b #ery containg(F"(0),
which is the full distribution representing densities of tests of lengtimeasured from the null
history (here /"™ is a mnemonic for #i-step future”). Like the system dynamics vector defined in
Section2.3, this vector is a complete description of a dynamical system.

The system dynamics distributions: The relationship between the discrete system dynamics vec-
tor and the discrete system dynamics matrix is analogous to the relationshigbédhg&eontinuous
system dynamics vector and the system dynamics distributions, excepghtteatl possible histo-
ries and tests are no longer enumerable, we instead work with all possiblaradions of history
length and future length.

The system dynamics distributions are defined by conditioning the contirsystsm dynamics
vector on histories of increasing length. There is one distribution for eactbination of a history
length and a future length. We say th&f™" |h,,,) = p(F™, h™)/p(h™) is the density of a length

n future from a lengthn history. These distributions play the same role as the system dynamics
matrix: they give the density of any given future from any given histdwe will often drop the
superscripts andm when no ambiguity results.
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Longer futures

p(F1]0) p(F>|0) p(Fs|0)

p(Fi|hy) p(Fa|h1) p(F3|h1)

Longer histories

p(Fi|hs) p(Falhs) p(F3|hs)

Figure 3.1: The system dynamics distributions. Each entry in the table espsesfull distribution.
There is one distribution for every combination of future length and historytke

We arrange all of these distributions into a table, which we show graphicdHigime3.1. Like the
system dynamics matrix, there are an infinite number of rows and columns inlitgs #eso like
the system dynamics matrix, every dynamical system with continuous oliees/has a table of
system dynamics distributions, which is a complete characterization of thensyste

State: We represent state with a vector of predictions, like a discrete PSR:
p(Ol - 0%702 - 0%7 e |htaA1 - aiAQ - CL%, o )

The only difference is that we replace probabilities with densities. Morefsgedly, given a history

h:, our state at time is ann vector, thej’th component of which represents the prediction of a
specific test fromhy: s{ = p(t;|he). This prediction is a single number representing the point
density of a particular future from the current history, and is not a fattithution. We collect all of
thet;’s (which constitute our core tests) into the get

We have defined the form of our state representation, but how can évéhiintests such that the
state representation is sufficient for history? Defining sufficiency isubgest of the next section,
and discovering a sufficient set of core tests is the subject of S&&fon

3.2 Using Information-Theoretic Sufficiency

Because of the move to continuous observations, the idea of using the ilwegpendence of
columns in the system dynamics matrix to define sufficiency is no longer applicabléind a
new concept of sufficiency, we turn to information theory. In discretB$?$he concept of linear
sufficiency lead to natural discovery and learning algorithms; likewisejrdarmation-theoretic
view of sufficiency will aid us in discovering a good state representation.

Information theory was developed IBhannorn(1948 in his seminal work on channel coding the-
ory. Information theory is based on probability theory and statistics, andimately concerned
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with random variables, efficient coding of those random variablestf@dmount of information
that one random variable conveys about another. As an engineeoigt teas found application
in compression, cryptography, data communication over noisy changbkstnetics, information
retrieval, statistics and even gambling.

The most basic quantity in information theory is entropy, which is a measuresairbertainty
associated with a random variabte Shannon entropy is defined as

Zp ) log p(x

where0 log 0 = 0. This quantity is maximal wheX is maximally nondeterministic, which occurs
when X is distributed uniformly. Conversely, wheXi is deterministic, the entropy is minimal. The
natural generalization of entropy to the case of continuous densitieswsikamdifferential entropy,
and is defined in the obvious way.

The definition of entropy also generalizes to the case of multiple variablesrhyngg over all
possible joint configurations:

H(X,Y) ==Y plx,y)logp(x,y),

z,y

and also generalizes to the case of conditional distributions in the natuyral wa
H(X|Y =y) ZP zly) log p(z|y).

For our purposes, we will be primarily interestednmutual information denoted/ (X; Y"), which
is the amount of information that can be obtained about one random vabiablaserving another.
Intuitively, mutual information quantifies the reduction in uncertainty abowhenY” is known,
and vice-versa: iff (X;Y) is large, that means that knowing will result in aY that has low
entropy (that is, we know what value it will take with high probability), andwarsely, if/(X;Y)
is zero, it means that knowin§ does not reduce the uncertaintyYnat all.

There are several equivalent definitions of mutual information, butdopurposes, we will prefer
the interpretation of information as a sum of entropies:

I(X;Y) = H(X)-

= HY)-H( \ )
(X)
= I(Y;X).

Information is symmetrical, and is defined additively in terms of entropies. Addilig if it is the
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case ther(XY) is a function ofY” only throughf(Y), thenl(X,Y) = I(X, f(Y)).

To introduce the concept of information in a dynamical system, we will stattdating history
and the future as random variables, whose joint distribution is descripétebsystem dynamics
distributionp(F, H). The idea behind our definition of sufficiency and the consequentitidgw is
that there is a certain amount of information conveyed by history aboutitheef That is, history
(as arandom variable) disambiguates the future (as a random variablegittain extent, in exactly
the same any two non-dynamical random variables may convey informatiah @ach other.

This dynamical information has been called predictive informatRialék et al, 2001), excess en-
tropy, effective measure complexity, stored information, and s&tal(zi and Crutchfield2001).
Bialek also discusses theoretical characterizations of the limiting possibilitesygiossible state
representation in any dynamical system as a function of this predictivemaf@mn, and showed
that a consequence of the definition is a natural measure of the dimendiom ©fstem. He also
demonstrates how predictive information can be used as a measure ofdh@ssimcomplexity of
the system, and provides interesting results on the relationship betweemaitifom between the
past and the future as well as information between the future and the pastver, his work is
highly theoretical, and does not translate into models or learning algorithrsedRe these ideas,
Shalizi and Shaliz{2004) defined a learning algorithm for dynamical systems which measures the
information between history and the future, and attempts to find a state nefatése that conveys
the same information.

We will adopt a similar approach. We have defined state as a sufficientistdishistory, and in
fact, we can think of state asfanctionof history: given a particular historf; and a dynamical
model, there is some functioghiwhich summarizes that history into a state:

s; = f(hi).

It may be unusual to think of as operating on an entire history; in most models, it may be more
natural to think off as a composition of a simpler functignwhich operates on single action and
observation and a previous state:

si = f(hi) = g(ator, g(at—100-1,9(- -, g(a101, 50))))-

However, we will only refer to the functiorf. Notice that this function encapsulates the entire
model, including the state representation and any dynamical parameters.

It is well-known in information theory that no function of a random varialgle ;crease the infor-
mation between that variable and another variable. This is known astagrocessing inequality,
which states that

I(X;Y) > I(X; f(Y))
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with equality if and only if f(Y") is sufficient for Y (Kullback, 1968 Cover and Thomad991).
It is this fact that we will use as the basis for our measure of sufficientizh we now define.

Sufficient statistics: We will say a functionf — which encapsulates a choice of state representation
and state update mechanism — captures state if

I(F";H™) = I(F"; 5 = f(H™))

for all n,m. If f can be found such that equality is achieved, the state resulting f(@m has
summarized all of the information about the past which is relevant for gredithe future. This
also gives a natural definition of approximate state: an approximate sta¢seagation is one for
which I(F™; H™) > I(F™; S = f(H™)) for somen, m. In order words, state has failed to capture
all of the information in history relevant to disambiguating the future.

There are many choices which could be made for the mappirgtate could be summarized as
either latent variables or predictively defined variables. The abovaiti@fi of sufficiency applies
to any state representation.

3.3 Measuring Information

How can we measure information between history and the future, or bestaterand the future?

In Section3.5we will learn a model of a dynamical system by maximizing the mutual information
between stat& and the future’. Recall that information can be expressed @8;S) = H(F) +
H(S)—H(F,S),which is a sum of entropies. When Shannon’s entropy measure is usehpaite
information, the result is known as Shannon information. Unfortunatelytaviglifficult to optimize
Shannon information directly — computing the needed entropies relies origutine underlying
densities, and for many densities, we cannot compute Shannon’s eaasiby

However,Kapur(1994 has argued that if the aim is not to compute an exact value of information,
but rather to extremize information, Shannon information does not needusedoke A generalized
measure of information can be optimized instead, and if this generalized red@ssithe same
maxima and minima as Shannon information, the same results will be obtained.,ldedllyalso

have more favorable properties (for example, it might be computationalbpeine

Shannon information can be considered a divergence betweéért”) andp(X)p(Y'), or it can be
considered a sum of individual entropies, minus a joint entropy. Thusdifferent kinds of gen-
eralized measures have been proposed, based on each interpr@atienalized divergences have
been the most populaKapur (1999 presents a number of possibilities; other proposals include a
divergence measure based on the Cauchy-Schwarz inequriiitgipe et al. 1999; a divergence
based on the triangle inequalitPrincipe et al. 1999; a measure called “quadratic mutual infor-
mation” (Torkkola 2003; and methods based on generalized KL information gaorlénd et al.
1998. He et al.(2003 proposed the Jensen-Renyi divergence. Among generalizegp@sirthe
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Figure 3.2: A comparison of Shannon and Renyi entropies. The haaizaxis is p(X) for a binary
random variable, and the vertical axis is the corresponding entrofpotbrmeasures.

most well-known is quadratic Renyi entropRényi 1976. Hild et al. (2001) proposed to use a
sum of Renyi entropies, minus a joint Renyi entropy. More recentlycastiiave begun to consider
measures based on Tsallis entropy (also known as Havrda-ChemaiyeBorland et al. 1998.

Finding an easily optimizable, generalized information measure while making $sumgtions
about the density is a problem that has been dealt with by the entropy optimizatianunity. The
solution that has emerged in the literature has been to 1) use a general@®eaaitidn measure
based on generalized entropies, and 2) use a kernel density estimate @athssian kernel to
model the underlying densitieBiincipe et al.1999 Torkkola, 2003 Hild et al., 200J). In our later

learning algorithm, this is why we will choose to use Gaussian kernel derssitgagion.

A popular generalized entropy is Renyi’s entroRefyi 1976, which is defined as:

1
a—1

Hi, (X) = = log [ p(x)°dx

This measure generalizes Shannon’s entropy, because in the limiapproaches 1, Shannon’s
entropy is recovered. The choice®f= 2 yields quadratic Renyi entropy:

Hiy(X) = ~log [ p(0)Pdx (3.1)

which we will write asH (X') when it is clear from context that Renyi entropy is intended.

Quadratic Renyi entropy has the same maxima and minima as Shannon ensreapp\a graph-
ically in Figure 3.2), but importantly for our purposes, it has favorable computational gitigs.
In conjunction with kernel density estimation and a Gaussian kernel3Hgcan be evaluated in
closed form, as explained later.

Several authors have used the idea of information maximization to solve mésdinimg problems;
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collectively, this field has become known as “entropy optimization.” Exampldade image edge
detection Hamza 20086, classification Torkkola 2003, speech processing¢hraudolph2004),
image registrationHe et al, 2003, and unsupervised learningrincipe et al.1999. While other
authors have explicitly tried to maximize information about the future while buildingetsoof
dynamical systemsShalizi and Shalizi2004), we are unaware of others who have used techniques
from entropy optimization to do so.

3.4 Estimating the System Dynamics Distributions

In the case of PSRs, many learning algorithms revolve around the systeamiyg matrix and its
empirical estimate. Similarly, the learning algorithm we will present in Se@&ibmill revolve the
system dynamics distributions and their empirical estimates. In this section,segbdehow we
estimate them, and how we collect the necessary data.

3.4.1 Collecting Data with the Suffix-History Method

To estimate the system dynamics distributions, we need samples from them. #dékerthe data
come from? We will assume that we have been given one long trajectorytayfatasisting ofl”
actions and observatioasor, a09, - - -, aror.

To estimatep(F, H), we need samples of the joint distributions of history and future. We genera
these samples using the suffix-history algorititwo(fe et al, 2005. This process will be used
throughout the thesis, so we explain it in detail. The intuition is simple: givengti@jectory of
actions and observationso, - - -, aror, we slice the trajectory into all possible combinations of
history and future. For example, a length four trajectory is sliced into theWoilpsamples:

h ={} N

ho = {} ; f1 = a202

ho = {} ; f2 = a101G202

h ={} i f? = ag00a303

h ={} ;i fY = a101a202a303a404

ht = ajo; N

h' = aso9 i fl=aso3

ht = ajo ;i f? = ag0za303

h = as09 ; f? = agozas04

h4 _ . 1 _
aj01a202a303 ;[ = a404.
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This results in samples from the distributigng™, H°), p(F?, H°), p(F3, H°), p(F*, H?),
p(FL HY), p(F?, HY), p(F3, HY), p(F, H?), p(F?, H?), andp(F!, H3). Of course, these sam-
ples are not independent of each other.

We assume that the system is stationary and ergodic, and that the belwdizpiuped to generate
the samples explores sufficiently to cover the entire state space.

3.4.2 Kernel Density Estimation

We assume that we are given some samples frafh H ) andp(F, S), and that we wish to infer the
approximate distributions. This is a density estimation problem, which is well st(idastie et al.
2007). We choose to use kernel density estimation with a Gaussian kernel, wiaichgce that is
motivated by mathematical convenience: it will enable us to compute test prediefiiciently, as
well as derive closed-form, differentiable, and efficiently approximakf@essions for information
and its derivatives.

Given a set of samples, - - -, 2, € R? of the random variablé(, our estimate of(X) is
1 n
X = = — .. .
p( z) n]§:1 K(z,zj;05)

with a Gaussian kernel:

K(z,z505) = Gz —xj;0))
= 1/ (27mj)d)exp{—($—ﬂfj)T(x_xj)/zaj}

where we have assumed the use of a spherical covariance mattyiand wherel is the dimension
of the variableX. Because we are using spherical Gaussians, we can write similar srpisefor
joint densities op(X,Y"), assuming we are given joint samples, y;):

n

1
plz,y) ==Y Gz — ;505 )Gy —ys;0)).
j=1

We will estimate every needed distribution using this technique.

3.5 Learning Models of Continuous PSRs

We are now prepared to discuss our learning algorithm for ContinuoRs.PSur goal is to learn
a Continuous PSR directly from observed sequences of actions ardvatiens. Like discrete
PSRs, the two key problems are the discovery problem (finding a goodepagsentation) and the
learning problem (learning how to update state). We discuss the disqaadriem in Sectior3.5.1
and learning how to maintain state in Sect®f.3 We assume that we have been givésamples
from the system dynamics distributions as discussed in Se8#bwhich we denotéh;, f;).
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3.5.1 Discovering Core Tests

In the Continuous PSR model, selecting a state representation is equivgh@iting a set of core
tests, so we now address core test discovery. There are two elemeistotcedy: determining how
many tests are needed, and determining which actions and observatialtsaimprise the tests. It
is possible for discovery algorithms to be concerned with discoverinipenalset of statistics. We
do not address the issue of minimality; rather, we supply many more tests tedechend focus
on discovering the parameters of the tests.

We will frame discovery as an optimization problem by defining a searchespiad an objective
function. We will additionally show that we can compute the gradients of thectiigefunction,
which means that a host of gradient-based optimization methods become laviailablp search
for a good state representation.

e The search space: In order to define the state representation for a Continuous PSR, a set
of core tests must be specified. Each core test is defined by the seqofeactions and
observations in it. To be more specific, let us expand the definition of thiéctios vector:

p(Ol20%7022037"'|ht7"41:a%)AQ:a’%7”‘)
O1=07,00=03,-- |y, A1 = a2, Ay = a3, -
p(T|hy) = p(O1 1, V2 2 e, Ay 1,412 5000)
p(O1 =01,00 =05, |hy, Ay = al, Aa = dff,- )

(not every test need to be at least length two, as shown in this exampleathisnly done to
clarify the pattern). Our goal is to find the actions and observations wbitipdse each test.

We will treat the actions and observations in each test as parameterstst lesfi, for exam-
ple, is defined ap(O1 = 01,09 = 0l - - |hy, Ay = al, Ay = al,- ), so the parameters of
this test areul, o1, etc. Each testtherefore hatength(t)(dim(O) + dim(.A)) parameters.

We will collect all of the actions and observations which must be specifieaifof our core
tests into the vectof. This means that changing entrieséins equivalent to specifying a
different set of core tests, and therefore a different state rameggm. We do not constrain
the values ofl in any way; in particular, we allow tests to refer to any possible future, veneth
or not it is possible under the true dynamics.

e The objective function: To define an objective function, we return to the information
theoretic ideas of SectioB.2 Section3.2 introduced the idea that we can treat state as a
function of history, and that we can measure information between state arfdttine, as
I(F; S = f(H)).

We pointed out that the functiofiencapsulates both the choice of state representation as well
as any dynamical parameters needed. In our case, the state refir@sengoverned by the
vectord — any setting of represents a choice of state representation. We therefore fizake
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dependence oft explicit: state is a function of history and a specific state representation, as
s; = f(hi;0). The dependence of information on a state representation can be maddysimilar
explicit: I(F; S = f(H;#0)). We will use this function as our objective function: our goal is
to maximize the information content of our state representation by tuning theseinttiee
parameter vectot.

To summarize our strategy for solving the discovery problem: we will treaattiens and obser-
vations comprising our core tests as a vector of paramétersd we will attempt to find the best
setting of those parameters by maximizihg”; S = f(H;60)). To solve the discovery problem,
then, we need three things:

1. We need to be able to compute the functipe= f(h;;6). That is, given a particular history
h; and a candidate state representatipwe must be able to compute the predictions of the
tests defined by. This is also a learning problem, but because our state representation is
defined in terms of densities, it reduces to a density estimation problem. Ceggtveill be
to explicitly estimate the system dynamics distributions to compute these predictions.

2. We need to be able to compute (or estimdid); S = f(H;0)) for any choice of). Since
I(F;S) = H(F)+ H(S) — H(F,S), this implies that we need entropy estimates of the
distributions of the random variablésand.S, as well as their joint distribution. Our strategy
will be to generate joint samples fropt F, S) by transforming our training samplég;, h; ).

For eachh;, we can compute a state sample= f(h;;6), which can then be paired with
fi- Thus,(f;, s;) become samples from the joint distributip(?, S), which we can estimate
with kernel density estimation.

3. We need to be able to search the space of possible representations, @petings o) to
find the maximal value of information. Our approach will be to compute the gradie
information with respect to the parametérsand perform gradient ascent:

ol 0l 0s;
0=0+n—=20 —— 3.2
+n +n % " (3.2)
wheren is a learning rate. In Appendik, we show how to compute these derivatives.

At this point, we wish to highlight the fact that our choices of density estimatei@iormation
measure have worked nicely together. By choosing to use kernel deasityation with a Gaussian
kernel and quadratic Renyi entropy, we were able to compute closedeipressions for informa-
tion. Furthermore, we were able to compute the derivatives of informatiorlysimp

This completes our approach to discovery. The algorithm is summarized ireR3gu
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Algorithm DISCOVER-CORE-TESTS
Input: samples fronp(F, H) as(f;, hi)

Initialize
e Estimatep(F, H)

e Select an initial set of core tedis

Repeat

e Given a set of core tests

For each(f;, h;), computes; = f(h;; )

Using samples$s;), estimatep(S)

Using paired sample;, s;), estimatep(F, S)

Measurel (F, S)

Compute gradien? /00 by computing gradient8/ /Js; andds; /6.

Improve representation with steepest ascént. 0 + 77%

Until ( I(F,S)is maximized)

Figure 3.3: An algorithm for discovering core tests in Continuous PSRs algorithm maximizes
the information between state and the future.
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Future
Information

Test1

Figure 3.4: Example information landscape. A toy data distribution (top left);ehelting infor-
mation landscape as a function of test value (top right) and the trajectony akéhe gradient
optimizer (bottom).

3.5.2 Example: A Toy Data Set

Here we consider a toy data set to illustrate the concepts of information adiggts, and to clarify
exactly what the parameters are that we are trying to find. Consider oz system dynamics
distributionp(F, H?) from an unspecified dynamical system. The system is uncontrolled, and ob
servations are one-dimensional, so the distribution is three-dimensional, withf the dimensions
corresponding to “history” dimensions and one dimension correspondiadfuture” dimension.
Samples from the distribution are shown in the top left panel of Fi§utéwe are only pretending
that this data comes from a dynamical system; in reality, the data is from sixsi@awgusters in
R3).

Suppose we decide to use two tests to summarize history. We will denote thetipredf test 1 as
p(F = l|H), and the prediction of test 2 a§F' = k|H). Thus, our state is two-dimensional, and
there are two parametersandk. Given particular values fdrandk, we can compute the mutual
information betweerf” andS.

We wish to find the two best parameters to maximiz&'|h; S = f(h)). The top right panel of
Figure3.4 shows mutual information between state and the future as a function of thegiars.
This information landscape highlights a few points of interest: valuesdodk which are very far
away from the high-density areas of the data ($ay,—1, kK = —1) have low information content.

It also shows that whehandk have the same value, no new information is added — in other words,
the predictions are redundant.
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The bottom element of Figur&.4 shows the results of the gradient optimization starting the tests
at[l = —1,k = —1.4], and ending at the star (it does not climb quite as one might expect because
of the use of homotopy optimization, as discussed later). The gradient optimitzed moves the
tests from regions of low information to regions of high information.

3.5.3 Updating State

We now address the question of learning how to update state. We assumie tfeate some state,
which is defined as the the predictions of a set of core j€§t§:;). Assume that we have received
a new action and observation, and that we must update state to copipiieeo).

The natural way to do this is with Bayesian inversion. By direct analogy t@HBgwe can perform
the state update by updating each individual test:

p(aot;|hy)

tilhtao) = ,
PO =7 o)

where, like the discrete PSR, the numerator represents the one-stegiandasf the core tests and
the denominator represents the one-step tests. From any given histoocguld compute these
densities estimates of the system dynamics distributions. The only problem isehaill only
have estimates of a finite number of distributions, and we need a state upddtanimset which
works for arbitrarily long amounts of time. We therefore prefer to find argge solution: we wish
to update state in terms of previous state. Since state is sufficient for histogan equally well
model

p(tj|hiao) = p(tj|se, ao)
p(aot;|s;)
p(aolst)
p(s¢, aot;)
p(s¢,a0) ’

wheres; is the state corresponding to histdry This bears a strong resemblance to the discrete PSR
state update. Like discrete PSRs, we need to compute one-step tests tieace@ model these
jointly with state ag(s;, ao). Similarly, we need to compute the one-step extensions of the core
tests, which we also model jointly with the state pif¥,, aot;). To compute the needed densities,
we require estimates of bofi{s;, F'!) andp(s;, F"1), wheren is the length of the longest core
test.

Fortunately, we already have all of the needed information: in our disg@agorithm, we assumed
we were given sampld;, h;), and that we computed = f(h;; #) for each sample. This resulted

in joint samples of(f;, s;), which we used to compute information. Here we see a pleasing effi-
ciency: the same estimate can be used to update state by explicitly estim@irg). This is a
consequence of the grounded nature of the state representation.is@awedy algorithm in Sec-
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Figure 3.5: The autonomous robot domain. Arrows on the map correspatelvpoints.

tion 3.5.1and our method for learning how to update state presented here constitatartpkete
learning algorithm.

3.6 Experiments and Results

We have introduced several new ideas and made many design choieesatthpe Continuous PSR
algorithm. Here, we present some experiments designed to explore thienleeis have made. We
tested on two problems: a bouncing ball, and a simulated autonomous robot.

The Bouncing Ball. The first domain is an uncontrolled, nonlinear, two-dimensional dynamical
system consisting of a ball bouncing. The ball bounces vertically, wittmgpdd restitution when it
strikes the floor. True hidden state is the position and velocity of the ball; adiipn is observed.

To model this system, we made an assumption: we use a suffix-history with eylosiength 3
and a future of length 3 (we also model the one-step extended distributioa Wistory of length 3
and a future of length 4 for the Bayesian inversion state update). Thisisieedbased on intuition
and experimentation (in general, more sophisticated methods of selectingdigtidbutions to use
are needed). Different experiments used different numbers of éssexplained later.

We trained on 2,000 data points. We initialized the state of the system to a rara$itiorpand
velocity, and ran the system for several timesteps; we then sliced the rgs$djactory into samples
using suffix-history.

The Autonomous Robot Domain. The second domain is more challenging: a simulated au-
tonomous mobile robot in a 2D maze. The domain is controlled, nonlinear, atiallgabservable;



no a priori knowledge about the domain is given to the agent. The robdtacontinuous actions

(the amount by which to rotate and amount by which to move forward/baciwemnd continuous
state coordinates (positianh y and orientatior®). The robot is located in a maze with obstacles and
brightly colored walls. The observation is generated as follows: the agsartiera initially samples

a 64x64 full color image, but the agent extracts a single feature from thgeintlae dominant color

in the center of the image (done by convolving with a Gaussian). Obsersatrertherefore three
dimensional (consisting of RGB color values). With full camera images,té@888 of the states can

be disambiguated through an observation, but with the reduction to a sirigtetbe observability

is severely reduced. FiguBe5shows representative camera images, as well as the map used. All
actions are deterministic.

The training data is a single long trajectory of actions and observation®@®8amples, generated
with a movement policy that was a smoothed version of random exploratigginAwe assumed
that length 3 histories and length 3 futures were sufficient. In this cafie hisiory and future are
15-dimensional vectors (3 steps of history x (2 action dimensions + 3\@igaT dimensions)).
The gradient optimizer used a subset of 10,000 samples; testing used @000 (either size
data set is feasible with [ar@hly with] the Nystrom approximations discussed in Sec8dh 2.

Error measure. We evaluate based on mean-squared error of the one-step predittanss, at
each timestep, the agent is asked to predict the expected next obserVétgotmue observation is
given; there is some error, which we square. The mean is taken oventjtb & the test sequence.
The absolute value of the MSE is not important; but rather the differerfoesond after application
of the gradient optimizer.

Implementation. We used the optimizations discussed in Secldh2 We used a Nystrom-based
gradient optimizer with 100 landmarks. We used the same homotopy schedbiattioproblems

(A = [500, 200, 100, 60, 20, 5, 1]), and set stepsizes such that the norm of the gradient vector was
betweer.5 and0.01 (depending om\). All samples used the same covariances; this simplifies the
math further.

3.6.1 Results

In this chapter, we have made an implicit assumption: that if we could somehoimirexnfor-
mation, we would have a better state representation, and that that reptiesewould allow us to
make better models of the world. We first test that hypothesis directly.

Is there is a correlation between higher information (between state andttine)fand lower MSE
of one-step predictions? To explore this, we sampled 1,000 random giegeantations in the ball
domain. Each state representation consists of two three-step tests. Siecar¢heo actions in this
domain, each test requires three parameters to describe it, resulting inaf toxgbarameters. For
each representation, we built a model by estimating the distributions neededpoie information
and update state. We then used the model to make one-step predictions asudetehe resulting
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MSE of one-step predictions
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Information

Figure 3.6: Continuous PSR empirical results. Shown is information (hddkexis) vs. one-
step MSEs (vertical axis) in the bouncing ball domain. Each point is a ralydsampled state
representation.

MSE. We also measured the information content of states with the future, @&agour estimates
of the system dynamics distributions.

Figure 3.6 plots the resulting MSEs versus information (and is fit with a 3rd degree puliat).
There is an obvious correlation: as information increases, MSE desre@kere is some variance
in the MSEs: with an information content of 0.8, for example, the MSE couldsbeva as 0.05
or as high as 0.1. This result suggests that the idea of using Renyi gtdreplve the discovery
problem is sound.

We next ask: does the information gradient optimizer work? We exploredjti@stion for both
domains. For each domain, we fixed the number of core tests e randomly sampled a set

of core tests by sampling random sequences of actions and observations from the training data
(this effectively results in a rando#ft). We then built a model, and computed the MSE of uging

to generate states. We then optimized the tests with the gradient method, usedrtvedhtpsts to
generate states, and again computed the MSE. This was done for diffarebers of core tests.

Figure 3.7 shows results for the ball domain, while Figu8& shows results for the robot domain.
The number of tests used is the horizontal axis, while MSE of random amdingd representations
is shown on the vertical axis. For a given number of core tests, two bdxadisker plot are drawn.
The one on the left represents the distribution (mean, 1st and 3rd quadil@sll as maximum
and minimum) of MSEs for the random representations. The one on the ejglesents the same
information for the optimized representations.

The results are very encouraging. Both figures demonstrate the saanadseimot only does the
optimizer consistently find tests which generate lower MSEs, it also redaciesge in the MSE.
Consider Figur®.7, for 4 core tests. The mean MSE of random representations is aboah@.the
minimum ever found is about 0.07. In contrast, the mean MSE for the optimizisddedout 0.06,
which is lower than any random representation. The optimized tests alsovsiglittle variance.
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Figure 3.8 suggests another conclusion as well, which is that using a large humbanddmly
sampled tests often results in a reasonable model. Optimizing tests alwaydhbelhps,as much as
adding more tests. For example, two optimized tests performs consistentlythanskEs randomly
sampled tests. It is unclear if this represents a general principle or ntiteamne hand, it becomes
more likely that a larger number of randomly sampled tests has the “right” tegtes iofsit. On the
other hand, this also increases the dimension of the state; since so mamyestimates are built
around Gaussian kernel density estimation, and Gaussians are knoepdoobdensity estimates
in high-dimensional spaces, this may adversely affect the performértice algorithm.

The extremely low variance in the MSE associated with the optimized represastetibecause
the homotopy optimizer was able to consistently locate almost the same pointd)esgaf initial
conditions. In the ball domain, the variance is particularly high for the ramigl@ampled tests.
Sometimes, a bad set of tests can result in a catastrophic run of the systeltingan very high
MSE; the optimized tests never showed this behavior. Fi@uellustrates this behavior. The
random tests, with few exceptions, never performed as well as the optiteitsd|t is possible that
this is because the optimized tests are not constrained to lie on the manifolc&ofexdbtajectories,
but more research is needed to investigate that hypothesis.

Just how good are the reported MSEs? Fiddifed qualitatively answers this question in the robot
domain by showing the agent’s predictions before and after the applicdtithre gradient opti-
mizer. We see that before optimization the predictions made by the model areddigar little
resemblance to the actual observations. After optimization, there is a markealvanent, with
predictions qualitatively following the observations, although there is stithréar improvement.

3.6.2 Practical Considerations

We found that learning from large datasets was impossible without the additadditional com-
putational tools. We found the following techniques indispensable.

Homotopy optimization. As with all gradient methods, ours is guaranteed to only find a local
maximum. However, the local maximum can be improved by “smoothing” the informédind-
scape, and finding a local optimum of the smoothed landscape, and thlrallyaunsmoothing
the landscape while continuing to optimize. This is known as homotopy optimizaticte{or-
mation optimization) because it uses a homotopy, which is a continuous tnaasimn of an easy
optimization problem into a hard one.

We accomplish this by smoothing test predictions: instead of computifigh) = > G(T —
fxlh,oT), we computep(T'|h) = >° G(T — fx|h, A\oT). Using\ to scale the variance effectively
makes test predictions look more similar, which has the side effect of smodtierigformation
landscape. By gradually reducingvhile taking gradient steps, a much better optimum is achieved.
An example of the resulting information landscapes is shown in Figure
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Figure 3.7: Improving tests on the ball domain. The vertical axis shows M$®BEestep predic-
tions. The horizontal axis shows the number of tests used in the stateerjaten. For each
number of tests, two bars are drawn: the one on the left is a box-an#étexhislot representing the
distribution of randomly chosen test parameters. The right bar showsstinidution of the corre-
sponding optimized parameters. The optimized representations generats mitkdéower MSE,
and the representations do not have as much variance as the random one
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Figure 3.9: A catastrophic run with a Continuous PSR. The top panel saaasastrophic run
resulting from using random tests to build a model. The state reaches a nid¢assade in which
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avoid catastrophe.
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Figure 3.10: Qualitative results in the autonomous robot domain. Showneimpgiovements
resulting from the application of the gradient optimizer. Each graph corsjpare-step predictions
(shown in red dashed lines) to true values (shown in blue solid lines). Tée tows represent the
RGB channels of the observation. The left column shows predictions thergest model obtained
with the randomly chosen tests. The right column shows predictions made witieghenodel
obtained after application of the gradient optimizer. The predictions in thé cighmn match
reality much more closely (see, in particular, the green channel). All figtseshe same number
of tests.
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Nystrom approximations. The complexity of the gradient computations is quadratic in the number
of data points. AppendiB discusses how we can combine Nystrom approximations with our
information measure to obtain and computationally tractable gradient estimates.

Stochastic gradient descent. We used the chain rule to write the information gradient (B®)

in terms of per-sample gradients. Instead of summing ovei, albwever, we can subsample, or
perhaps collect samples of the gradient on-line. This leads to a stochaistionvof the descent
procedure. Although this is a viable method (especially for on-line uspgrerents showed that
the Nystrom method was more accurate and computationally cheaper. Weeliblgeis because
the Nystrom approximation uses some information from all of the samples inproxamate way,
whereas the stochastic gradient descent uses all of the informatiotyafarne of the samples.

3.7 Conclusions and Future Work

We have extended PSRs to the continuous case with two core ideas: wespkaged the system
dynamics matrix with the system dynamics distributions, and we have replac@tkethef using
rank analysis to find sufficient statistics with ideas from information theorg. e argued that
mutual information can help quantify the sufficiency of a candidate stateseptation; because
information can be optimized, the representation can be improved.

We have also made several contributions on the algorithmic side, whereish@neice synergy

between the elements: we started by using kernel density estimation to estimatetene dynam-

ics distributions. Not only is it a nonparametric estimator, but it leads to climsed-expressions
for mutual information. In addition, we can compute gradients of information weispect to test
parameters in closed-form, which allows us to help solve the discoverygpnolBoth measuring
information and computing gradients can be approximated efficiently; thiingsalgorithms can

handle tens or hundreds of thousands of data points. Empirically, o sgéean viable. The model
makes reasonable one-step predictions, and there appears to belaticorbetween mutual in-
formation and MSE which our optimization procedure exploits; experimentahgdiices both the
MSE of one-step predictions and the variance of the MSE.

Estimating the system dynamics distributions is one of the central problems in thi@@ms PSR
model. For the rest of thesis, we will no longer represent state as a \@faensities. Instead,
subsequent chapters will focus instead on the estimation of these distriyw@i@hwill go one step
further: our next models will select parametric forms of the system dynatigtriibutions, and will

use the parameters of those distributions as state.
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Chapter 4

The Predictive Linear-Gaussian Model

The previous chapter introduced the system dynamics distributions, vdricled an important part
of learning a good model. In this chapter, we introduce the Predictive t-tBaassian (or PLG)
model. The PLG is the predictively defined equivalent of a linear dynamyiem, and also has
close connections to the system dynamics distributions: the PLG selects pardarens for the
system dynamics distributions, and represents state as the parameterseadiidiobutions. The
rest of this thesis builds upon the PLG model in many ways, so we explain itail dere. The
PLG was introduced biRudary et al(2005.

PSRs (both continuous and discrete) represent state as statistics afotith. The original PSR
models and the Continuous PSR model of Chaptesed the prediction of tests as the statistics of
interest. Here, we introduce the more general notion of using paramedemddel the distribution

of lengthn futures as the statistics of interest. To clarify this, consider an agentdctiteyavith

the system. It observes a histadiy of observations;, - - -, 0;. Given any history, there is some
distribution over the next observations:

P(Ot41.--Orynlhe) = p(F™ |ht)

(whereOy.; is the random variable representing an observatisteps in the future, anfi” is a
mnemonic forfuture). This is one of the system dynamics distributions defined in Se8tibrive
emphasize that this distribution directly models observable quantities in the system.

Our central assumption is that we can select a parametric forp{ f6t|h;), and that its parameters
— which are obviously sufficient to predict the short-term future — are suéficient to predict the
infinite future, and therefore constitute state. As the agent interacts withystens p(F"|h)
changes becauge changes; therefore the parameters and hence state change. Asrguecsh
this, the Predictive Gaussian models discussed in this chapter assumdth@, ) is a multivariate
Gaussian; state therefore becomes its mean and covariance. In thé tesIoG model nothing
is lost by defining state in terms of observable quantitRsdary et al(2005 showed the PLG is
formally equivalent to the latent-variable approach in linear dynamical mgstén fact, there are
some advantages to defining state in observable quantities: for exampasédice parameters are
grounded, statistically consistent parameter estimators become availableéSer P
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Figure 4.1: A standard graphical model of state-space systems. Ltttrs generate observations,
and determine successor states.

Selecting the form op(F"|h;) and estimating its parameters to capture state is only half of the
problem. We must also model the dynamical component, which describes yitbatdhe param-
eters vary over time (that is, how the parameters(df”|h;) andp(F"|h.+1) are related). In this
chapter, we describe a method called “extend-and-condition,” which enarglization of many
state update mechanisms in PSRs, and which will be used for all of the algothihmnghout the
thesis.

In this chapter, we will review the important concepts associated with lingzardical systems,
Kalman filters, and the PLG. This will prepare us to discuss the nonlinesionsrin Chapteb and
Chapters, which are my main contributions to this line of work.

4.1 Linear Dynamical Systems

In this section, we review a popular model of dynamical systems with continabservations
called dinear dynamical systetfi.DS). In the PSR model of dynamical systems, state was captured
as a set of predictions about the future. A more traditional approach igr¢éalute a set of internal
state variables which can be used to capture state. These state varialiiestgpically observed
directly, and so something about them must be inferred from actuah@tses. In the LDS model,

we will infer a distribution over possible latent states that the system could,@ndhit is the
parameters of this distribution that are the sufficient statistic for history.

A discrete time LDS is defined by a state update equation
1 = Az +

wherez; € R" is the state at time, A € R"*" s a transition matrix ang ~ A (0, Q) is mean-
zero Gaussian noise (whefg € R"*™). These models are very well understood, and can model
a surprising variety of phenomena. Given a statethe distribution of future states can be easily
computed and will be a Gaussian variable.
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Often, we are not be able to observe the state directly. Many LDSs defmmpanion observation
process, in which observations are linear functions of the latent state:

O¢ :H$t+N(O,R),

where H € R andR € R. There are generally no restrictions &f; in particular, it may
collapse am-dimensional state into a lower-dimensional (or even scalar) observation.

Figure4.1shows a graphical model which is defined for such state space systbestale vari-
ables X; are unobserved, and are represented by capital letters. The coalditidependence
assertion made by this graph is that the distribution of the future is conditiondip@ndent of the
past, given the current state.

In the case of such a partially observable process, several probtesas @hefiltering problem

is posed as follows: given a state estimate; (which can be a Gaussian random variable), and
an observatior;, what is the optimal estimate of the statg? This question is fully answered
by the Kalman filter, which has been shown to satisfy several differetinality criteria. The
Kalman filter also permits easy computation of the distribution of future states lzs@tvations
(the prediction problem). Thesmoothingproblem is defined as estimating a sequence of states
simultaneously, given a sequence of observations.

In some cases, the parameters of the LDS are not known, and must beedtirom data. There

are two principal methods for accomplishing this. Expectation-maximization gddyithms (see,

for exampleGhahramani and Hintori996 guess at parameters and improve an estimated state
sequence, and then hold the estimated state sequence constant and timpme@ameters. This
method hill-climbs in the space of likelihood, but because of its iterative naituseffers from
several problems: it can get stuck in local maxima or minima, and it is somevValat Ehe other
class of algorithms are subspace identification algorithras Qverschee and Moat996, where

an SVD is performed directly on a block Hankel matrix to determine the stateseguand thél
matrix, and then thel matrix is determined through regression. The method is non-iterative and
numerically robust, and has proven to be a popular alternative to EM aqimes.

4.2 The Kalman Filter

Throughout this thesis, we will reference the Kalman filter because of is& donnections to the
Predictive Linear-Gaussian model and the Exponential Family PSR. Inetii®s, we review the
basic definitions of the Kalman filter and provide pointers to related work.

The Kalman Filter Kalman 1960 Kalman and Bucy1961) was introduced by Rudolph Kalman in
1960 as an elegant solution to the filtering problem, in which the state of thersgatebe optimally
estimated in an efficient, recursive way. Bgtimal we mean that the state estimates generated by
the Kalman filter are both unbiased and have minimum mean-squared erroufgitthe Kalman
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filter is optimal by other standards as well). Bycursive we mean that the state at timean be
computing using nothing but knowledge of the state at timel and the observatiooy.

State representation: State in a Kalman Filter is defined as the parameters of a Gaussian distribu-
tion over the latent variabl&’. At timet¢ — 1, the state will be the mea_, and covarianc&;
of a Gaussian oveK;_:

P(Xi—1]he—1) = N(pe—1,3-1).

Dynamics: To model the dynamics of the system, our goal is to incorporate a new aliserv

O, = o, and recursively update the statistics we use as state, to compute the parah#iers
distributionp(X¢|h:—10¢) = p(X¢|ht). There are many ways to derive the equations for the Kalman
filter. Here, we adopt a simple one in which we construct the joint distributioX,@andO; (this is
known as theprediction phasg and then condition the resulting multivariate Gaussian on the actual
observatiorO, to obtain an improved estimate &f, (theupdate phase

Xy ~ N Ape—1 Ef_l H2t+—1
Oy HAp—y )\ % H' HYS H'+R

SP =A% AT + Q.
We now condition orO; = o;:

where

K, = (HSL)HZHT +R)™
pe = Ap1+ Ki(or — HApg—1)
Y = (I-KH)Y (I-KH)'" +KRK/

The simplicity of the Kalman filter update equations belie the utility and power of theemadtie
Kalman filter is almost ubiquitous in control theory and a variety of engineaipdjcations. There
are also numerous variants on it: the Extended Kalman Filter (EK&)chan and Musoff2005
generalizes the ideas to nonlinear dynamical systems by linearizing a noniaresition function
around the current state, and is the defacto standard for nonlineangjltdihe Unscented Kalman
Filter (Julier and Uhlmann1996 improves upon the EKF by using an unscented transformation
instead of a linearization operator (we will have more to say about this in Hygefs on the KPLG
and MPLG). The Information Kalman FilteMaybeck 1979 represents the Gaussians used in the
state representation with their natural parameterization instead of the meaneparization, and
has found application in distributed sensor networks (we discuss this nowcaighly in the chapter
on Information PLGS). There are also square-root filt¥eslfaegen and Dooreth986 Kaminski

et al, 1977 designed to improve numerical stability, the continuous-time Kalman-Bucy filter a
a practically infinite number of variations created by combining differentsdéa example, the
square-root unscented Kalman filtervain der Merwe and War2001). Recently, the Kalman filter
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has been unified with several other linear Gaussian moBelwéis and Ghahramarii999.

4.3 Predictive Gaussian Systems

The PLG is a predictively defined equivalent to an LDS. In the next tveptdrs, we will introduce
two additional models (the KPLG and MPLG) which generalize the PLG to the afsonlinear
dynamics. Because the PLG, MPLG and KPLG all represent and upd#tdrsthe same way, we
call any one of these three model®eedictive Gaussian Systerflere, we will discuss the entire
family, and will then specialize back to the case of the PLG.

State: In Predictive Gaussian systems, we never refer to an unobservdatemrstate:;. Instead,
we capture state as statistics about a random varigblevhich is defined as a vector of random
variables predictinguture observations. Recall that

F" = [Op11- Ogyn)

as illustrated in Figurd.2 The vectorF™ is thereforec R?*™. We assume these variables are
jointly Gaussian, with mean; and covariance;:

FnNN(,LLt,Et).

Like the Kalman Filter, we will use the parametessandy; as the state of the system. However,
these parameters refer to the Gaussian distribution B{emnot any sort of Gaussian distribution
over a latent variabl&;.

Dynamics: The system dynamics are defined by a special equation:
Opnt1 = [(F", Nitn+1) (4.1)

wheren;, .1 € R?? is a special noise term. The importance of modelihg,, 1 as a function
of F™ will be explained in the next section. In the PLG,,,+1 is alinear function of £, which
allows it to model linear dynamical systems. In the MPLG and the KPLG, hawéxeg,,; is a
nonlinearfunction of £, which allows them to model nonlinear dynamics.

The noise term is mean-zero with a fixed variance:
Netnt1 ~ N (0, 072;)7
but is allowed to covary with the nextobservations in a way that is independent of history:
Cov[F", Nignt1] = Cy.

Thus, the noise terms are identical, but not independent.

52



\j

< Past Present Future

O'[+1 Ot+2 Ot+n Ot+n+1 Ot+n+2

\1/ =T

Observations F) Mes

o
1l o

Figure 4.2: Timeline illustrating the random variables we use.

The representational power of Predictive Gaussian Systems comeshionoise term: the fact
that it covaries with future observations gives it the infinite memory of the-Ha8 observation
can have an effect far in the future through the chain of influenceiextday the correlation in
the noise terms. Later, we will see that the differences in this noise terrmarefahe primary
differences between the MPLG and the KPLG.

4.4 Updating State: Extend and Condition

We will now discuss the general strategy of Predictive Gaussian Systanupdating state and
modeling dynamical systems, as well as vy, .1 is modeled as a function df". Modeling the
system dynamics requires determining how to update the state of the systemproblen can be
stated thus: given a state at tihdnow can we incorporate an observation ; = 0,1 to compute
our state at time + 1? The strategy is textend and conditigras follows.

We begin with state extension. We assume that we have the state &t tiepeesented by, and
¥;. These statistics descritd&'|h; ~ N (ut, Xt ), which is annd—dimensional Gaussian describing
the nextn observations. We will extend this variable to include the varidhle, ; (ensuring that

it is still jointly Gaussian), creating a temporany + 1)d-dimensional Gaussian, which we denote
F™+1|h;. We will use the extension function defined in Bql

Otvny1 = f(F"™ Mint1) (4.2)

In order to extendF™ to include the variabl&); ,,, 1, we must compute three terms, which are
E; = E[Ot+n+1], Cy = COV[Ot+n+1, Fn] andV; = Var[OtJrnJrl]:

Fm N Lt X Gy
~Y 5 T
Ottnt1 E; Cy Vi

We will then condition on the observatiopn, 1, which will result in another.d—dimensional Gaus-
sian random variable describif@;. 2 - -- Ot1ni1] = F"|hiy1. Conditioning is done with stan-
dard techniques on multivariate Gaussians, for which it is well-known tleatdgulting random
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variable is Gaussian. This results B|O;y2 - Opynt1] = E[F"|hit1] = w1, along with
Cov[F"|hiy1] = X441, Which are precisely the statistics representing our new state. Fg2re
illustratesF™|h, and F™ | hyy 1.

To condition on the observation at tiniewe will repartition the mean and covariance matrices
to simplify notation. This is not a mathematical operation. We are simply re-labetitngge as

follows:
( Ot11 ~N ( Hoyiq ( Yorr10001  Hogir 1
Fn /,Lfn Ef"0t+1 Efnfn

wherey,, . , is the firstd entries of the vectdj; £;], anduy is the remaining entries. Similarly,
Yios10041 1S AN X d matrix.

Conditioning is now done with standard formulae for multivariate Gaussians:

Ht41 = ffn + Ef”0t+1 (20t+10t+1)71(0t+1 - H0t+1) (43)

Et—f—l = Efnfn — Ef"0t+1 (20t+1ot+1)7120t+1f”- (44)

Computing Fy, Cy andV; in closed form for an arbitrary extension functign(see Eq. 4.1 is
impossible, which motivates two different possibilities: the first is presentdédeimext section,
which is to select a lineaf. This makes the computations analytically tractable by virtue of the
statistical properties of linear operators. The second option is to adogtexa approximation.
Sections.1.1will present an approximation which can be used for angnd will form the backbone

of performing inference in both the KPLG and MPLG.

4.5 Dynamical Model of the PLG

We have now completed the development of the general state update mecf@rasy Predictive
Gaussian system. We will now briefly show the specific modeling choices tBeidkes. Here, we
restrict ourselves to scalar observations, for two reasons: first, te prakise statements about the
representational capacity of the PLG in the next section, and secoti@tsmur exposition matches
the historical development of the PLG. We emphasize that the restriction ler steservations
does not restrict the dimensionality of the underlying state space. Theseetkbn presents the
multivariate generalization.

The PLG uses a linegfto modelOy,,+1:

Otins1 = f(F™ isnt1) = 9 F™ + M

whereg € R™! is the linear trend of the system. The linearity firallows simple closed-form
expressions of the state update equations, because the needed tebmsaaputed easily:

E, = Elg' F"+ 1) = 9
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Gt = E[OtTJrnJran] - E[OLH+1]E[FH] =Yg+ 0y
Vi = E[0/),410t4n11] = B[O/, 1]E[Otnia] = ¢ Sig + 29" Cy + 07

These three equations, combined with the state update equationd.@and Eq.4.4) constitute
the complete PLG model.

Rolling together the construction of the temporary Gaussian and the conditigieilds the com-
plete state update:

i1 = pypg + Ki(om — ef ) (4.5)
Y= - Kteir)zt__f_]_ (4.6)

where
S =T S I T+ TG+ G T +ene) Vi,

Ky =X e1(ef er)

Hypq = I py + en By,

ande; is thei-th column of the identity matrix. These are the original update equations ad fou
in (Rudary et al.2005. Note that these equations have a strong resemblance to those used by the
Kalman filter.

4.5.1 Properties of the PLG

The PLG has several advantages when compared to traditional staterspdels. First, the entire
model is defined strictly in terms of statistics about future observable quanfiittés means that
parameters of the model have definite meaning with respect to the obsetegduttich leads to
statistically consistent parameter estimation procedures: estimated paramkt@sgmptotically
converge to theitruevalue, which is a stronger guarantee than those which accompanyafopé
EM algorithms used to learn state-space model paraméirahfamani and Hinteri996 which
we have empirically observed to be subject to local minima). Second, the §lrtagion procedure
works particularly well as the dimension of the system increases.

Third, the PLG model strictly subsumes two popular linear dynamical systenelmothe cele-
brated Kalman filter Kalman 1960, and autoregressive time-series (or ARMA) mod&ar(dit
and Wy 1983. The relationship between the PLG and standard LDSs is roughly ansldgo
the relationship between PSRs and POMDPs: every LDS has an eqtiR&lén which can be
proved by a constructive algorithm translating parameters; the resultiGgisjust as compact as
an equivalent LDS, requiring only arrdimensional Gaussian to modelardimensional LDS; and
the resulting PLG actually uses fewer parameters than the equivalent LDS.
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Finally, we have also alluded to learning the parameters of a Ru@ary et al(2005 showed that a
consistent parameter estimation algorithm exists, which consists of straigattbregressions and
sample statistics. This is a favorable consequence of the grounded oidheestate representation.

As presented here, there are two restrictions on what the PLG can modedysieen must 1)
have linear dynamics, and 2) be uncontrolled. The original PLG modelrfoontrolled systems
with scalar observations was introduced Rydary et al(2005. Rudary and Singlf2006 have
subsequently extended the PLG presented here to allow for control @atmoitti-dimensional ob-
servations and have done some work on planning.

4. 5.2 Extension to Vector-valued Observations

The math for the PLG is not dependent on the fact that the observati@mne scalars. In fact, the
same techniques used to derive the scalar PLG can be easily extendedasdtogl—dimensional
vector-valued observations. Here, we present the “naive” multieagigension, and discuss why it
is naive below.

We define the extension to be
Otn+1 = F"G + Ngns1

whereG € R™*% andn; ;1 € R™?, and let
Cov[F", Neint1] = Cy

whereC;, € R™¥xd_This easily results in the following closed-form expressions for the sidan
which are simply the multivariate generalizations of the scalar equations indgtieps section:

Ey = Gu
G = %G +C,
Vi = G'SG+GC,) +CGT + 2.

While extending the PLG from the case of scalar observations to multivatiatnations in this
way seems straightforward, there are a few technical subtleties. SplgifRudary et al(2005
proved that every LDS with scalar-valued observations has an égpivaLG with scalar-valued
observations. Furthermore, the resulting PLG is just as compact, in the thertsa window ofr
future observations is all that is needed to modehatimensional LDS. This means that both the
LDS and PLG will track am-dimensional mean and anx n-dimensional covariance matrix as
state. Additionally, the number of parameters in the PLG is actually fewer thamuthber in the
corresponding LDS.

Further work by Rudary (unpublished) has extended the equivadndbe case of vector-valued
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observations, but with a small twist. While everydimensional LDS with vector-valued observa-
tions can be modeled by thedimensional PLG presented above, the reduction is not necessarily
minimal in terms of the size of the resulting state or the number of parameters.

To see this, consider the example of an LDS withran- 2 dimensional state space, and a two
dimensional observation space. The LDS would have a state definedrasdamensional mean
and ann x n-dimensional covariance matrix. However, the naive PLG would haveta thtat is

a 2n-dimensional mean and &n x 2n-dimensional covariance matrix — a two-fold increase in
the dimension of the state space and a four-fold increase in the numbeaaaigiars. Rudary has
shown that the PLG does not need to trackallof these variables, and that it can in fact select
a subset of onlyr of them. We defer to his work for the proof of this, as well as proof of the
equivalence to vector-valued LDSs.

4.6 Conclusions

We have described the Predictive Linear-Gaussian model, which is asg@odple of the advan-
tages of models with predictively defined representations of state. Ithaglesg by defining state
predictively, and actually gains something: the PLG is formally equivalentedKdiman Filter,
and has a statistically consistent parameter estimation algorithm. While the PLG iilédirmu
the foundation for the models we will present in the next two chapters, thedkas introduced
here will play important roles throughout the thesis: first, the idea of cagtstate as the pa-
rameters of the system dynamics distributions, and second, the idea of matigiangics with an
extend-and-condition algorithm.

As mentioned, there are two drawbacks to the PLG: it is only capable of mgdaficontrolled,

linear dynamical systems, and it is limited to the case of scalar observatturdary and Singh
(2006 have done work on extending the PLG to the controlled, vector-valwsa bat the resulting
model is still limited to linear dynamics. The next two chapters attack the alternatidir: we

extend to the case of nonlinear dynamics.
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Algorithm PLG-UPDATE
Input: Current state, represented jpyand:; and an observatiosy.
Given: dynamical parametels, C,, anda,%.
Compute: (construct extended distribution)
o By =Gy
o C; =G +C,

o Vi=G'SG+GC,) +C,G" +07

Repartition:

[(5)( )10 oz 0]
Et Ct ‘/t IU/fn Efn0t+1 anfn

Compute: (condition on observatiooy 1)

® [ity]1 = [fn + Efn0t+1 (20t+10t+1)71(0t+1 - M0t+1)

b EtJrl = Ef"f” - Efn0t+1(20t+10t+1)_120t+1fn

Return: py1, Y41 -

Figure 4.3: The state update equations for the PLG.
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Chapter 5

The Kernel PLG

The PLG is only capable of capturing linear dynamical systems. In this ahaptextend the PLG
to model nonlinear dynamical systems by using kernel methods. We namestitethe “Ker-
nel Predictive Linear-Gaussian” model, or KPLG. We first presengéreeral model, analyzing in
depth the special case of the Gaussian kernel; with a Gaussian kermebdeéadmits closed form
solutions to the state update equations due to conjugacy between the dynathtbe atate rep-
resentation. For general kernels, closed-form solutions are nsibp@sso we explore an efficient
sigma-point approximation. We show how all of the model parameters caafmetedirectly from
data, either off-line or on-line (with the Kernel Recursive Least-Segiatgorithm). We empirically
compare the model and its approximation to the original PLG and discuss tlagive@dvantages.
Portions of this chapter were publishedWingate and Sing(20063.

5.1 The Kernel PLG Model

We extend the PLG model to handle nonlinear dynamics by allowing, 1 to be a nonlinear
function of £, which we accomplish by invoking the kernel trick. As discussed in Seetidn

all that is needed to maintain state is the statistics of the extended GaliS8i&w 1], which
requires the expectatioB; = E[Oy4,+1], covariancel; = Cov[F", O;y,+1] and variancd/, =
Var[Os4+n+1]. Computing these three quantities, combined with the extension and conditioning
equations4.3) and @.4), constitutes the complete model.

The KPLG defines the state extension as
Otynt1 = Z o K (&5, F™) + Mtnta, (5.1)

whereK () is our kernel. The; € R™ are points that could come from a number of sources: they
may come from training data, be derived analytically, or be randomly genera hese will be
discussed later.

This is the most obvious way to kernelize the original PLG algorithm, becaadsawe employed
the standard technique of rewriting the linear trgrats a weighted combination of data points (this
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is justified by the Representer TheorenkKafeldorf and Wahbal971):

Otint1 = g F"+Nin
= Z ;&) F" + iynta

= Z a;(§ ) 4 Netntt

= ZO‘J (&> F™) + Nttnt1

Since this is a linear basis function model (with the kerf€lg;, -) acting as the basis functions),
we will refer to the;’s as basis function centers. The model strictly generalizes the PLG, since
using the linear kernel recovers it. The variable, ., has the same properties as in the PLG.

With a Gaussian kernel, we can analytically derive expression&fof; and V;. AppendixC
contains the lemmas and identities needed for their derivation, and a summahathe terms
mean:

J
E, = ) oK
j=1
J
Cr = Y aKf(uty— )" +C7
7=1
J J
Vi = 20D Khyeias - E2+U+2Z% iy —m)EC. (5.2)

i=1 j=1 J=1

The parameters of this model are thereforedfig, thea's, C, ando;. In the case of a Gaussian
kernel, we allow an additional parametgy (which is the covariance matrix of the Gaussian) and
write the kernel ag< (¢;, F; ¢;). We use a fully normalized Gaussian for analytical purposes.

5.1.1 A Sigma-Point Approximation

With Gaussian kernels, the KPLG model is analytically tractable. While this isadipgethere are
some computational liabilities. In particular, computiiigis a O(J?) operation (whereJ is the
number of basis functions; see the double summation of5E2), which is prohibitively complex,
especially since typically scales exponentially with the dimensionThis motivates some sort of
fast approximation. We would also like the approximation to relax the restricti@atssians, and
free us to use arbitrary kernels. The following method accomplishes batk @dthough exploring
arbitrary kernels is left for future research).

Sigma-point approximationor “unscented transformationsdylier and Uhlmannl1996, are a
general method of propagating an arbitrary distribution through a nonlffioeation. The method
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is conceptually simple, and should be thought of as a deterministic samplinggappSuppose we

are given a random variabi@ = f(F,n) that is a nonlinear function of another random variable

and a mean-zero Gaussian noise terninstead of recording the distribution information Bfin

terms of a mean and covariance, we represent the same information with acswedll]ly chosen
number ofsigma points These points are selected so that they have the same mean and covariance
as I’ (in fact, they are the minimal such set), but the advantage is that they carojpegpted
directly through the functiory (). We then compute the posterior statistics of the propagated points
to approximate). This process is demonstrated in Figbré

There are many advantages to sigma-point approximations. First, theygaadanatch for our
needs: we only want first and second-order moments of the postefigzh(they are designed to
provide), and their strongest optimality guarantees are whismormally distributed (as itis in our
case). They are provably accurate to at least a second ordexapation of the dynamics for any
distribution onF" and any nonlinearity, and are accurate to third order for a Gaussiaibulign

on I and any nonlinearity, while fourth order terms can sometimes be correcteellag hey can
flexibly incorporate noise and other constraints ifit9. They are simple to implement because
no analytical derivatives (such as Jacobians or Hessians) alieegkqlihey are also efficient: they
require2(n + 1).J kernel evaluations at each timestep, which is far smaller thaw{bié) matrix
operations required by the KPLG.

Sigma-point approximations should not be confused with particle filters. Witgheare similar in
spirit, there are several important differences. Particle filters typicallwallmulti-modal distribu-
tion over states, while sigma-point approximations require a Gaussian; it@Galigsian assumption
which gives the sigma-point approximation its strong theoretical guaraniies small number
of points. Also, where particle filters use random sampling, sigma-poimbajppations use deter-
ministic sampling.

The algorithm is shown in Figurg.2 If we let f() be the state extension defined by the KPLG
model (Eg. 5.1), then the final terms computed may be used in place of the analytical values of
Et, Vi, andCt.

5.1.2 Complexity and Generalization

The KPLG model has high complexity: computitg and C; is O(Jn?), but computingV; is
O(J%n?) (and can be numerically unstable). There are other ways to estimate thesgliesides
the sigma-point approximations. Nearest-neighbor style methods, suahkastiGauss Transform
(Yang et al, 2003, are one possibility, and would also all@./»*) computations, although these
methods only work well for smat.

In the case of Gaussian kernels, the model can suffer from gendi@iizaoblems. Because the
Gaussians have local receptive fields, the state extension equatioB.Ewill return something
close to zero for all states outside the training region. As we will see in thtechapter, renormal-
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Figure 5.1: Sigma-point approximations. The left side shows how randomples of the variable

X could be propagated through the nonlinear functjdo estimate posterior statistics Bf. The
middle panel shows an approach wheris linearized (this is the approach taken by the Extended
Kalman Filter [EKF]). The mean oKX is propagated through the origingl but the covariance is
propagated through the linearized function. The right side shows the gigmaapproach, which
deterministically samples points from and propagates each througto compute posterior statis-
tics of Y. Figure courtesy of Eric Wan (used with permission).
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Algorithm KPLG-SIGMA-POINT-APPROXIMATION
Input: e, 3

Given: f,Cy, 07

Compute:

e Construct a random variable relating predictions and noise:

P= (e )~ (5) (e )]

e Ensure thaCov[P] is symmetric positive definite.

e Construct a set df(n + 1) sigma points:
D BT = BIPL+ (v + DCov [P

720 ) T = E[P] - (/(n + 1)Cov[P]);

e Propagate each p0|rr15t+nJrl = f(fr€ ,nt+n+1)

e Compute the empirical mean and covariance:
1 2(n+1)

B — (1)
T ey 1_21 Otn+1

+
E[Otin+1])?

2(

+
Z - 0££n+1 [Ot+n+1])T

Return: E;, Cy, V4

Figure 5.2: The sigma-point approximation algorithm.

63




ized kernels combined with linear models will improve this generalization.

5.1.3 Comparison to Nonlinear Autoregression

There is a significant difference between the KPLG model and-t#morder kernel autoregressive
(KAR) model. The KAR model is

Ot—l—l Zaj 5]7 Ot—n—1,"" 7Ot])7

which states that the next observation is predicted to be a nonlinear fuottioepastn observa-
tions [o;—n—1,- -+, 0. It has a similar functional form to our predictive model: the same kernels,
basis function centers, and coefficients are used, and it can be tremegsimilar methods as the
KPLG (see Sectiob.2). However, their differences are as important as their similarities. The KAR
model can only predict a point estimate for the future, whereas the KPedaqbs an entire distri-
bution. KAR implicitly assumes that past observations constitute state, which is effectively a k-th
order Markov assumption, while the KPLG can summarize a potentially infinite ahodtistory

into its predictions. These differences are what accounts for the emjpimpeovement of KPLG
over KAR reported in Sectioh.3

5.2 Model Learning

Having defined the form of the model and the state update, we now adldessgsestion of learning
a good model from data. The KPLG model requires several paramderstimensiom of the
system, the basis function centérsand weightsy;, as well as the noise statistiééandafi. In
the case of a Gaussian kernel, the covariance matrils also required. The next two sections
discuss off-line and on-line methods of estimating these parameters, with gismphaelating the
procedures to general techniques.

5.2.1 The Off-Line Case

In the off-line case, the data for learning will be given as a set of trajestérom the system, with
each trajectory consisting of at least+ 1 sequential observations. We will slice these trajectories
into training pairs(f*”), 0, ,+1) wheref/) € R” is a vector ofn successive observations (rep-
resenting a noisy sample of sori#), ando.,+1 € R is the(n + 1)-th observation (a sample of
the corresponding@; .. 1, or the state extension). Each trajectory is sliced into all such pairs and
collected into a se$ (this is somewhat like using the suffix-history algorithm to generate samples
from the corresponding system dynamics distributions; see Se8#bn Figure5.3 graphically
illustrates the process.

Model Order Selection. We must first estimate the order of the model, which includes the system
dimensionn and the number of basis functiods For our experiments, we use cross-validation
to select parameters from a set of likely candidates. However, therehimgainusual about our
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Figure 5.3: Extracting training pairs from a training trajectory.

model or estimation needs, meaning that many existing techniques are alstesUitase include
growing and pruning methods, stacked generalization, regularized cdtyeteria, or statistical
tests such as Z testBi6hop 1995 Pandit and Wu1983.

Finding Basis Function Parameters. Next, we must determine the basis function centgrs
and covariance matrices. We tested three methods: random selection, dictionary-based selection
(explained in Sectio®.2.2), and expectation maximization. For random selection, we setgach

to be a random training sampﬁf(i), we setp; = ai[, and we used cross-validation to select
aé. Expectation maximization (EM) is a well-known method for estimating mixture of &ans
parameters. We will here summarize our experiments with EM by saying thatiitodidppear to
offer any advantage over the other two methods, and since it was compattimore intensive, it

was dropped. Again, many other methods are also suitable. These inchlileear gradient meth-

ods (such as Gauss-Newton or Marquardt-Levenburg), re-estinragtimods (such as expectation
maximization), adaptivé-means clustering, stochastic sequential estimation, or cross-validation
(generalized, leave one out, kifold) (Hastie et al.200% Bishop 1995.

Estimating Coefficients. Given¢; and ¢;, finding thea;’s can be viewed as a simple kernel
regression problem. It can be solved with a linear least squares appramore sophisticated
methods such as support-vector regressigimgve-Taylor and Cristianin2004. We chose regu-
larized least-squares. We construct a regression matrix\/, whereA;; = K (¢;, t"(i); ¢;) and

A is the regularization coefficient. L& be a vector collecting all the;,,.1’s. Then, the optimal
coefficientsa are given by = ATO, wheret denotes the pseudo-inverse (giving a minimum-norm
solution to an underconstrained system, and a least-squares solutionviereonstrained system).

5.2.2 The On-Line Case: KRLS

The previous section discussed the selection of the basis function cénsterd their weightsy;

as two separate problems. However, both steps may be combined into a s#pgley s1sing the
Kernel Recursive Least-Squares (KRLS) algorithnEofQel et al.(2004. Finding the weights is
a least-squares kernel regression problem, which KRLS is designexvi®y but it does so in a
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recursiveway: instead of presenting all of the training pairs simultaneously, theyrasepted one
at atime, and the algorithm updates the resulting weights with complexity that issindespt of the
total number of pairs used (in our case, it is equivalently independdimey.

The idea of the KRLS algorithm is to automatically seleéictionary points from the training sam-
ples which are presented on-line. These dictionary points are seleaedhau the features of
other training samples can be expressed as an approximate linear combafdtierfeatures of
the dictionary points (where “approximate” is a tunable threshold). Thefskttionary points ap-
proximately linearize the feature space, and can be thought of as poiitts avl spread “evenly”
throughout the feature space.

It is these dictionary points that we use as the basis function cefiteesd the corresponding
weights as they;’s. This gives even coverage to the feature space, and can bel=zhby only
a single additional parameter. KRLS is an instance of the KAR model in Segtiog and that
the on-line dictionary creation process is actually an on-line version of ylse®in approximations
discussed in AppendiR.

5.2.3 Learning Noise Parameters

Either the off-line or the on-line techniques provide basis function certevariances and weights,
allowing us to now estimate the noise parameters. For these, we can use datigiless Assume
we have a sef of training pairs(f*("), 0,,41). In the off-line case, this may be the training set;
in the on-line case, this set may be collected during training, or once thefbasi®on parameters
have been fixed. Let
i =ormi1 — »_ K&, 175 ¢5).
J

Then, the estimated noise term is
= o Y
TS| -14 v

To estimate”, we run the algorithm on the training data (or run it online) with= 0 and collect
an estimate ofi; at eacht. We then compute

CoV[F™ tns1] = BI(F™ = 1) (1),

which is simply
— 1 )
- n(i) _ Y ns
Ck ST-1 > (Y = i)

i

Extending these estimators to be fully on-line is left as future work.
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5.3 Experiments and Results

Our experiments were designed to assess the performance of the PLG, d¢d KPLG-SP (the
sigma-point approximation) algorithms across a variety of problems. Forletenpss, we also
tested the KAR algorithm. We tested on five linear and nonlinear dynamicahsystiee Rotation,
Biped, Peanut, NB3, and Spring problems), where the underlying giireemodel was known.
Since the models are limited to scalar observations, we also tested on threeiémbsachmarks
(Santa Fe Laser, Mackey-Glass, and K.U. Leuven). The problenteaceibed in Sectioh.3.1

We ran two types of experiments. The first type was a short-term predjotadilem, in which the

algorithms were run as explained in the text. This tested the algorithms’ stateeupdahanisms
and prediction performance. The second type was a far-horizoitpoedest, where the algorithms
predicted hundreds of steps into the future, without correcting statel basany observations. This
tested modeling capacity and parameter estimation methods.

Parameters were selected by 10-fold cross-validation. Algorithms wegeduzh the mean-squared
error (MSE) of their predictions. All data sets were normalized to b, itj. For the initial state, we
setyy = UA%I + Z?ZI(I—)’CA* + ((I")'C)T andyy to be the last values of the training sequence,
and then rolled it forwarch timesteps (the test data was structured to be a continuation of the last
sequence of training data). All algorithms were testedvoa 2, 3,4, 5, 6, 035 = 0.1,0.4,0.8,1.2,

A = 0.00001,0.001,0.01, andr = 0.0001,0.001, 0.01 (the dictionary threshold).

5.3.1 Problem Descriptions

All problems except Laser were trained on 2000 sequential obsersatimhtested on a 200 obser-
vation continuation; the “Laser” series had 1000 training and 100 testisgraditions.

Rotation, Peanut, Biped, NB3: These are all two-dimensional dynamical systems. Rotation is a
linear dynamical system consisting of a simple rotation matrix. Peanut is simitapethat points

are rotated around a peanut shape. Biped is a non-linear dynamieahsgspired by a foot striking

the ground. The system has the same underlying dynamics as the lineamrptatitem, except
that there is a strict minimum value for the second coordimatef -0.5 — any timezs goes below
-0.5, it is clipped to be -0.5, representing the discontinuity of the groune. ré&bulting system is
piecewise linear. NB3 is like biped, except with more noise. For all folgeplations and dynamics
were noisy. NB3 had about an order of magnitude more noise than thepotiems.

Spring: A two-dimensional system with a mass oscillating between damped springs piihgss
had nonlinear forcing functions. Only the position of the mass was olieriis problem has
deterministic dynamics and noise-free observations.

Mackey-Glass: The Mackey-Glass time seriesléckey and Glassl977) is a popular choice for
time series benchmarks because it is deterministic but chaotic. It is gengrated delay differ-
ential equation that can display a wide variety of behaviors as functioneodekay termr. The
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| Problem || Best (10-CV)] Best (5-C\) Best (direct) |
Rotation || KPLG-SP KPLG-SP KPLG/KPLG-SP
Biped KPLG/KAR | KPLG-SP KPLG/KPLG-SP/KAR
LDSs Peanut KAR/PLG KPLG-SP KPLG/KPLG-SP
NB3 KAR/PLG KAR/PLG KPLG-SP/KAR/PLG
Spring KAR KAR KAR
M.G. KAR KAR KAR
Time Series| Leuven KAR KAR KAR
Laser KPLG KPLG-SP KAR

Figure 5.4: KPLG empirical results on the short-term prediction problem. bEsé performing
algorithm(s) for each problem is shown.

dynamics are given by
de(t) ax(t—71)
dt 1+t —7)0

bx(t).

Two common parameter settings are= 17 andr = 30. Witha = 0.2,b = 0.1,7 = 17, the
equations give rise to a chaotic, deterministic time series concentrated astnachge attractor of
fractal dimension 2.1; the apparent chaos is due to the fact that the Jahee series at any point
may depend upon the entire history of values. We used0.2,b = 0.1, andr = 30, which are
standard settings.

K. U. Leuven: This data set comes from a time series prediction competition, held as part of the
International Workshop oAdvanced Black-Box Techniques for Nonlinear Modelkgd). Leuven
Belgium, 1998 Suykens and Vandewa)l&998. The data set consists of 2000 data points. Con-
testants were asked to predict an additional 200 beyond the end of tlandetiere then ranked
based on mean squared error. A wide variety of techniques wereioskdling several based on
dynamical system identification and neural-network style modeling. One gfitmary advantages

of this series is that it allows us to compare against a number of other agl/geahniques, without
having to implement them all. Results of the competition can be foukdeigend and Gershenfeld
(1994.

Santa Fe Laser: Data from the Santa Fe timeseries competition, which was also used in the K.U.
Leuven competition. The series was recorded from a laser in a chaotiogtaise pulsations more
or less follow the theoretical Lorenz model of a two-level system.

5.3.2 Short-Term Prediction

For these experiments, we measured 1-step prediction MSESs. It is impontexétihat the measure

of success is the difference between actual and predicted obsesvaliois means that we are not
attempting to estimate latent state, but we are allowads&state to make our predictions. Basis
function centers were selected with a dictionary, ans were computed using regularized least-
squares; this method was superior to selecting basis functions randomily d&M.
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The results are shown in Figused. Three columns are presented, the first of which shows the best
algorithms on each problem when parameters are selected using clidasesa (all algorithms
with an MSE within 5% of the lowest are considered equal). The results aezrhix encouraging.

In particular, it seems that KPLG(-SP) generally performed well on tmaahycal systems, where
there reallyis an opportunity to leverage infinite memory via state. In contrast, KAR hasipeefd

well on the timeseries problems; in particular, it wins on the Mackey-Glagsssevhich reallyis

an autoregressive model.

This trend is more pronounced when only the best 5 out of the 10 cadisktion runs are used to
select parameters, as shown in the second column. The point of doingtthislisa more complete
story: the KPLG model is actuallgapableof doing a better job than the results for the 10-fold
CV suggest, if only the correct parameters can be chosen. By usinghenbest 5 out of the 10
cross-validation runs, we have eliminated outliers in the cross-validatian wirich has given us
better parameters. We see that KPLG-SP has won in four out of eight #&malsn the situations we
expect it to.

The final column of Figures.4 shows best performers when tesidicectly against the test set
(that is, without cross-validation). While it doesn’t change the funddaheesults, there are some
noteworthy points: KAR does better on Laser, and KPLG is now competitivia® LDSs. These
results should be taken with a grain of salt: there are enough parameteesatgthmithms (and
the test sequences are short enough) that they may be overfitting orstiliatiee However, the
results show that all of the algorithms have the capacity to model the test dataNeealso note
that KAR still wins on the Spring problem. This is expected: Spring is deterministitnoiseless
observations, so the uncertainty the KPLG(-SP) uses is unneeded.

Together, these results can be interpreted as preliminary evidence ¢hatlgarithm is winning
when it is supposed to be, although it also appears that the test problemstas discriminative
as we would like. The results suggest three conclusions: first, that thi@@ar models are outper-
forming their linear counterparts; second, that the sigma-point approximiaticompetitive with
the exact KPLG; and third, that our models are indeed capturing state) vésialts in an advantage
over a simple autoregressive model, especially in noisy cases. Notedfiachese results is the
fact that KAR seemed to give more consistent MSEs across parametegsdiiam the KPLG(-
SP). The results also suggest that a better method than cross-validaged&io select the model
parameters.

5.3.3 Long-Term Prediction

For this set of experiments, each algorithm was asked to predict hundfdadnesteps into the
future. This was done to assess the models’ raw capacity, especiallynaai@ to other methods.
We trained KPLG(-SP) using the KRLS algorithm, incorporating the moreistgéted training
method suggested tingel et al(2004. We setX; = 0 for all ¢, making KPLG(-SP) and KAR
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Figure 5.5: KPLG long-term prediction results. Top: the results of predjdtie Mackey-Glass
series. Bottom: the results of predicting the Santa Fe Laser series.
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equivalent; we merely wanted to compare PLG and KPLG. Figuseshows results on Laser and
Mackey-Glass, both of which demonstrate a clear advantage of KPLGPh&. The Laser result
almost exactly reproduces the result obtained by Engel; as noted by hiflSEencurred here
(0.00120; equivalent to their NMSE of 0.026) would have been just gimoo place first in the
Santa Fe competition. This suggests that the model is capable of competingstultgevith other
methods.

5.4 Related Approaches

Here, we briefly survey other nonlinear methods that are similar in spiribgptication to ours,
focusing on nonlinear extensions to the Kalman filter. The first is the ExtEikdienan filter (EKF),
which updates state by linearizing the system dynamics, and propagatingation through this
first-order approximation. Unfortunately, it requires that analyticailvdéves of the dynamics be
available, and cannot capture discontinuities in the dynamics. The Undd€alt@an Filter (Wan
and van der Merwg000 improves on the EKF with a sigma-point approximation. It is the closest
competitor to our method, except that it posits latent state and provides amgi@r estimation
methods; our method is also simpler because our observation and transitiets mecombined.
Rudary and SingfR004 proposed a nonlinear PSR based on “e-tests,” but it is restricted tamk®ma
with discrete observations. Local modeling methods (such as local lingraisseon) could also be
used Fan and Gijbels1996 Hastie et al.2001J), at the cost of retaining the training data as part of
the model.

5.5 Conclusions and Future Work

In this chapter, we set out to extend the PLG to be able to model dynamitafrs/@ith continuous
observations and nonlinear dynamics. More broadly, we have investitieeuestion of whether
such a model can be learned, and if so, whether or not it is competitive thigh models.

Based on our empirical results, the broadest conclusion is that both thandeour specific model
are viable. While more work remains to be done, the KPLG has successfutlgletbthe real-
world and synthetic problems presented here — while learning its parametsatydrom data —
and appears to provide competitive results to other methods. One of thetagks of the model is
the straightforward method of parameter estimation. Only standard regressid sample statistics
are required, which is a direct consequence of the predictive nattine gtate. This also lead us
easily to an on-line version of the algorithm with KRLS.

An important practical conclusion is the success of the sigma-point appatans, which have
provided results close to those of the KPLG for a fraction of the computadedioat. \We originally
picked the Gaussian form of the kernels for analytical tractability, but tlceess of the approxi-
mations suggests that this is unnecessary. In addition to accuracy amut] gy provide freedom:
future applications of the KPLG can use other kernels in more flexible models.
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We have not focused on raw empirical success, which leaves the gearfor several obvious
extensions. In particular, combining the strengths of KPLG and KAR intsigudictive models
(which use history and predictions together) is an open and interestingevieis also important to
address the difficulties in parameter estimation and cross-validation, and wvertpe algorithm’s
stability and generalization, but even with these problems, the algorithm isrigasasonable and
competitive models.

Picking model parameters is still challenging. In the next section, we will ingpoovthe KPLG by
improving the model’s generalization and stability with respect to parameterashoic
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Chapter 6

Mixtures of PLGs

Chapter5 introduced a kernelized version of the PLG which was capable of cagtnonlinear
dynamics and which successfully modeled several timeseries problemsveioiwhere are a few
deficiencies in the model which we seek now to remedy: first, the model tetatdd generalize
well as a result of the local support of the Gaussian kernel. This is ik startrast to the origi-
nal PLG, which automatically generalizes well throughout the entire state spanply due to its
linearity. The other troubling factor of the KPLG is the fact that the pararsetethe noise term
N+n+1 @re constant throughout the state space. It is easy to imagine situatiores thvisels not
the desired property. Finally, we noted empirically that the performancesdf®LG was not very
consistent across different parameter settings, even for small prtunin the parameter values.

All three of these flaws can be simultaneously improved with a nonlinear mixtcinaitpie. This
chapter contributes a probabilistic, generative model of dynamical systamth we have named
the “Mixture of PLGSs” (or MPLG). Like the PLG and KPLG, the MPLG asswtieatp(F™|h;) ~
N (ut, ¥t), and that state is the parameters of that Gaussian. Like the KPLG, the Mé&itGres
nonlinear dynamics by modeling;,,+1 as a nonlinear function of™. However, there is a sig-
nificant difference between the way that the KPLG and the MPLG accomiblishwith a nice
interpretation of the relationship between the two: while the KPLG models lineamnaigs in a
nonlinear feature space, the MPLG models dynamics which are piecewiae liilmethe MPLG
model, interpolation between training points is nonlinear (as in the KPLG), dnerglization is
linear, and it is this linear generalization that will be the key to improved modetingracy and
parameter stability. Portions of this chapter were publishaffimgate and Sing20068.

We also develop a novel technique to perform inference in the model. Le&kEPL.G, the model
is defined in terms of random variables, and like the KPLG, certain statistitsesé variables
must be computed to update state. Because the needed functions areampehaet analytical
inference is generally impossible. This motivates some sort of approximatbnitgie, so like
the KPLG, we have chosen sigma-point approximations. However, tceetthe computational
complexity of the method, and to improve the accuracy of the estimates, we plevetethod
we call “hybrid particle-analytical inference,” which is a form of Rata&kwellisation. Standard
sigma-point approximations sample from all of the random variables in a nsadeltaneously,
but sampling only a subset of variables can lead to significant computatidvahtage: part of our
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model is approximated with sigma-points, itenthose sigma-points, exact analytical inference is
possible on the rest of the model. This is an application of the smoothing pespefrexpectations,
and is general enough to be applied in other contexts.

After introducing the model and our hybrid inference technique, we stmwthe model’'s mixture
perspective leads to natural parameter estimators which are kernelt@kighisions of the original
PLG estimators. We empirically compare the proposed model to two nonlinearagives, and
conclude that our proposed model exhibits an advantage over all of #raiin particular, over
n-th order autoregressive models.

During our initial exposition of the MPLG we will assume, like we did in the KPLG mlpthat
every variable in our observation vector must be modeled. However,ditio8&.5 we will relax
this assumption in the context of a traffic modeling problem. This allows the MPLGeaa@xoge-
nous variables (that is, variables [like actions] which are given alydirmestep, but which do not
necessarily need to be modeled) to help define the piecewise linear reg¥ensill demonstrate
that using this technigue we can obtain improved performance over the PLG.

6.1 The MPLG: A Mixture of PLGs

We now present the MPLG, or Mixture of PLGs model. To see the intuitive justidic for the

MPLG model, consider the following scenario. Suppose that attjme have/ PLGs, each with
different parameters, and each specifying a different distribution@ye, ;. How should should
we modelO,,+1? A sensible approach is to combine the estimates of &LGs in some way,
and ideally, we would combine them based on some estimate of the confideneadh&®LG has in
its prediction. Since this is a dynamical model, it might also make sense to allowotifatence to
vary as a function of the state space, which would allow each PLG to beaoeart in a certain
region of the state space.

This is closely related to a mixture of experts mod#gobs et al.1991 Nowlan and Hinton
1991). A natural way to simultaneously define confidences and mix predictionghsweighted
sum, where the weights represent the confidence of each PLG:

Ot+n+1 =

M~

n iT j j
w(F™); (gﬂ Froy b +77i+n+1)- (6.1)
j=1
Here, thew(F™),’s are the mixing weights. It is important that they be a nonlinear functiafi"of

because if they were linear they could simply be absorbed intg’thgresulting in a linear model.
Here,Var[n{+n+1] = (07)! andCov[anrnH, Fr = C%.

In general, these weights may be positive or negative. However, if wWii@thlly impose the
restriction that they are positive and sum to one, the model takes on a negvétddion as a proba-
bilistic mixture model: it becomes a generative model of the dynamics, becausanconsider the
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weights the distribution of a discrete multinomial variable. The generativeegtoe is what one
would naturally expect: we first pick one of thlePLGs according to the distribution specified by
the weights, and then generate a valuedgr,, 1 by sampling fromF™, multiplying by the trend,
adding the bias, and then corrupting with another sample from mean-zessi@a noise. In fact,
positive weights that sum to one is exactly what we obtain if we derive the®iRla slightly more
principled way, as we now explain.

6.1.1 A Distribution Over PLGs

Eq. 6.1) is the general form of the MPLG. We will now make specific choices atimifunction

w(). We start by creating a new random variafile that describes a distribution over possible
Ot¢4n+1'S; €achO;,41 is itself a Gaussian random variable describing distributions over actual
observationsy,,+1. We then specify a joint distribution ovéd, and F*, and use conditional
expectation and a density over possible models to arrive at the final miXtEnte3s.

Suppose we use a Parzen kernel estimator to represent the joint ddnBityaad F'™*; suppose
further that we use Gaussian kernels. Such an estimator would take e for

J
1 1 1
(O, F") = 5 ; & K (O €0 0) - K (™. 85:6)) (6.2)
wherel/c; is a standard Gaussian normalizer &g, y; ¢) is a Gaussian function with covariance
matrix ¢. The¢; € R™ are points that could come from a number of sources: they may come from
training data, be derived analytically, or be randomly generatedéd heariables will disappear in
the following derivation.

We can use this estimator to derive the MPLG as shown below (derivatigrieatiitom Bishop,
1995; pg. 178). In the fourth line, we will use the Parzen estimator of thegoatabilities (several
terms cancel)' this resembles the well-known Nadaraya-Watson estimatae fifth line, we
replace eacl®;, ,, , with a PLG that generates it, and in the final line, we summarize the kernel
renormalization into a vector of weights ). As required, these weights are a nonlinear function
of F" and sum to one:

Ot4n+1 = E[O|F™"]
= /@tp(@t|Fn)d©t
_ f@tp(@t,Fn)d@t
J p(Oy, F)dOy
- Z}']:1 K(fjaFn§¢j)Og+n+1
YL K(&, P e))
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Figure 6.1: Flow chart of MPLG mixing. Shown are the effects of combinarg&l renormalization
with constant models (top) and linear models (bottom).
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This leads us to the final MPLG model:

J
n iT o j ]
Otini1 =Y w(F"); (gj F'+ v +77§+n+1> (6.3)
j=1
with the mixing weights

LS K (&, Fr )

We can think of this ag PLGs, each centered at sofjeand responsible for some part of the space
defined byF™. The kernels act as a distance metric betwE€rand¢;, and help define the regions
of responsibility. Within each region, a single PLG is responsible for ptiedi©;. ,, 1, and close

to the boundaries of the regions, the predictions of multiple PLGs are smoothgdrtogether.
Figure6.1illustrates the process.

How might such a model generalize across the state space? The examearefei2 (and the
lower-right corner of Figuré.1) builds some intuition: near the Gaussian centers, the individual
PLGs are nonlinearly mixed. Further away from the centers, a single RcGntes responsible for
the space, resulting in a linear function. Thus, the model interpolates nartjinieut extrapolates

76



linearly. This contrasts sharply with a mixture of un-renormalized Gaus&dstsshown in Figure
6.2): as we go further away frottheir centers, the function defining;.,, 1 would go to zero.

The kernels are the mechanism we use to define the regions of responsibdityo the parameters
of the kernels (in this case, the mean and variance of the Gaussian) bapamnseneterization of the
regions. In this context, our choice of Gaussian kernels was not aybittme advantage to them
is that changing their parameters allows us to specify in a natural way ekeaetlyhe individual
PLGs will be mixed together. The left-hand side of Figar& demonstrates one aspect of this: as
the Gaussians overlap less and less, the transition between mixture comspoe@ymes sharper
and sharper, and approaches a sort of soft Voronoi tessellatibe space. Of course, the distances
used to define the Voronoi tessellation are skewed by the covarianceenatrithe Gaussians.

6.1.2 Comparison to the KPLG

In the introduction we partly motivated the MPLG with three reasons that the3d<iBlinsufficient
to replace the PLG: generalization, the noise terms, and parameter stabil@yfir§thwo issues
are theoretical, and we now briefly discuss how the MPLG addresses tlitine final issue is
empirical, and so a discussion of it is deferred until Secfigh

First, the MPLG is expected to generalize the dynamics better outside of thagradégion than
the KPLG, especially when the KPLG uses Gaussian kernels. F@Ribustrates the difference
between the two by illustrating a training set (left panel) and the trained madalsglé and right
panels). Both models interpolate nonlinearly in the region of the training dataad¥™ goes
further away from the training region, the behavior diverges. Theplafiel illustrates this for the
KPLG. Because the magnitude of the Gaussians tends to zero, the model @. Bqvill always
return something close to zero as a prediction@er,, ;. We expect a priori that this is not the
correct behavior for a dynamical model. The right panel shows thaviehfor the MPLG: far
away from the training data (and from tligs) the MPLG generalizes linearly, because a single
PLG ends up with all of the weight.

The other insufficiency is more subtle. The tegm,, .1 in the KPLG has the same properties as in
the PLG, and in particula@ov|n;n11, F"] = C,,. The value ofC;, does not depend aR™. Recall

that the representational power of the PLG comes from this property afdise term, and while

a constant value over all af"* might be fine in a linear system, it is easy to construct nonlinear
examples wher€;, should vary withF". Rewriting the PLG in the dual form to derive the KPLG
has failed to capture this. For an example of this, consider again Fég2om the left. The figure
showsO,,,+1 as a function off™, with dynamics that are piecewise linear. Each piece can be
perfectly modeled with with a different PLG: on the right, the parameterg afel, C,, = —0.1,
andb = 0. On the left, everything flips signs: the trengjis= —1, and the noise term iS,, = 0.1.

We see that in this case, we wafl} to vary as a function of™, which is impossible with the
KPLG. In contrast, the MPLG uses noise terms, each with different properties. Since these are
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t+n+1

Figure 6.2: A simple piecewise linear dynamical system. The training data isnsbowhe left
panel. The middle panel shows the results of training the KPLG on the datea @i#tlussian kernel
(kernel weights are shown on the bottom). Note the poor generalizaticid@thg training region.
The right panel shows the MPLG, with two centers (renormalized weigatsheown on the bottom).
Note the linear generalization.

combined with weights that are a functionBf, there is effectively @ompositenoise term which
indirectly depends oi™.

6.2 Hybrid Particle-Analytical Inference

We have been discussing how to modgl, ,,; as a function ofF"™, but this is only part of the
total state update mechanism. Recall that the state update 4Emd4.4) requires three terms:
E; = E[Ot4n+1], Ct = Cov[Opyny1, F] @andV; = Var[Oy4,41]. ComputingE;, Cy andV; in
closed form is usually impossible for complicated extension functions. Ngtisrthe extension
function of the MPLG nonlinear, it involves far more random variablesmiying J PLGs together,
we now haveJ noise terms, each of which is a random variable which must be propagadedthr
the extension function.

This section discusses our hybrid inference algorithm, which elegantlgtsjte the difficulties
using a form of Rao-Blackwellisation. The discussion relies on an utaelisig of the sigma-
point approximations presented in Sectmi.1l Given ak-dimensional multivariate Gaussian, a
sigma-point approximation instantiate® sigma-points, each of which is propagated through the
nonlinear functionf(). A naive use of sigma-point approximations in the context of the MPLG
would be to construc(n + J) points, based on the joint Gaussian:

Fr i % Ol o ¢l

1 1T 21
P 77t+'n+1 N 0 7 077 oy 0
77£]+n+1 0 Cﬁ]T U U?yJ

This is particularly inefficient if/ is large (say, hundreds or thousands), because it resals in.J)
distinct values for", and thus irO(.J?) kernel evaluations.

There is a much better way, which is based on the following crucial oksemvahat although there
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aren + J random variables, the nonlinearities in the model which arise because wofeilyat-
ing function only involve the: variables in the vectoF™. We can combine this insight with the
smoothing properties of conditional expectations (also called the condiggpakttation identity),
which in the case of the MPLG states that

Ey =Epn [E[Oprns1|F" = £7]]
Ci = Bpn [ElOrni1 F"T[F" = f]| = E[Ossnia JE[F"]

Vi = Epn B0t Ofpnial F" = £1] = El0ws1JEIO/; 1)

Our strategy is to combine these factsdaytially instantiating sigma-points — in particular, we only
instantiate2n + 1 sigma-points describing™. Giventhose sigma-points, the interior expectations
are analytically tractable, and we compute the exterior expectatimrshose sigma-points.

We will begin by computing the “interior expectations,” which are the teffp”; andV; given
Fr = £, which we will denotel”, ¢”), andV;,'”), respectively.

We startwithE2\”. Let £(©) be thei'th sigma-point, of which there ate+ 1. For each sigma point,
we can use the mixing weight equation B4 to compute a vector of weights:

wi = w(f)
with w; € R7*!. Now
Et(i) = E [Ot+n+1’Fn = f(i)]

= E

J

(wi); (ngf(i) + + 77?+n+1)‘Fn = f(i)

J
=1

J
Z(wi)j (9ij(i) +0 +E [775+n+1|Fn = f(i)} )
j=1

J
> (wi); (g7 FD + 7+ T (T — ) ) (6.5)

=1

This looks almost like a standard PLG, except for the additional €fM(>; 1) (@ — 1;). This
comes from the noise terms, because even though they are mean-z2eooving with F.

It is now convenient to re-express this equation in a matrix-vector forntatifcthe rest of the
equations. We will start with the noise terms, which we treat specially to simplifyrebeof
the equations. Lef. € R/*" be a matrix whosg-th row is C’%T and let@ be a vector with
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Q) = W41 Then:
F=E[QIF" = f0] = 13" (/9 - ).

F; is a vectore R7*! which captures the effects of how the sigma point covaries with each of the

J noise terms.

We can now re-express E@.5in matrix-vector form. LelG € R7*" be a matrix whosg-th row
is ¢’T, and define vectoB with B; = /. Then

B = E[w](GfY+B+QIF" = ]
= w/ (GIY+B)+F,
= H;+F,.

Here, we have split the result into two parts: tHe part captures the trend and bias, while the
captures the noise terms. Now, we can efficiently comprﬁé and Vt(l). Let M € R7*’ be a
diagonal matrix wheré/; ; = (o2)’. Then:

B = E [Ot+n+1|Fn = f(i)}
= H,+F (6.6)
Ct(i) = E [Ot+n+1FnT|Fn = f(i)}

= (H; + F)fiT (6.7)

v = B [O;n+10t+n+1’Fn = f(i)}
= H;H] + H;F,' + F;H; +
w, (D — diag(diag(LY;1LT)) + FiF, w; (6.8)

We compute Eqs.6(6)-(6.8) for each sigma-point, and then use expectations over them to compute
the final terms:

1 2n+1 Q)
E, = E;" 6.9
t H; t (6.9)

2n

1 2n+1 0
C, = i ;ct (6.10)

2n

1 2n+1 0
V, = +1;V;. (6.11)

2n

This completes our development of the hybrid-particle analytical infersmathod.
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The general method is summarized as follows:

e Instantiate sigma-points for the minimum number of variables needed to make the
model tractable.

e Analytically compute terms based on the model given the sigma-points.
e Compute posterior statistics using expectation smoothing over the sigma-points.

The final algorithm is shown in Figui@3.

6.3 Model Learning

The MPLG requires several parameters. First, the dimensiohthe system, and the parameters
describing the mixing weights. In the case of renormalized Gaussian ketinete are the basis
function centers;, weightsa;, and the covariance matrices. For each PLG, the individual PLG
parameterg’ and noise statistioS and(c7)/ are also needed.

We are interested in learning the parameters from training data. This datewjién as a set of
trajectories from the system, with each trajectory consisting of at teasti sequential observa-
tions. As in previous algorithms, we will use the suffix history method (whiclagned in detail

in Section3.4, and which we briefly recap here). We will slice these trajectories into alipte
training pairs(f7"), o,1n41) wheref7*() € R is a vector ofn successive observations (represent-
ing a noisy sample of som@;), ando;;,+1 € R is the(n + 1)-th observation (a sample of the
corresponding); 1,11, Or the state extension). We then collect the pairs into thé s€igure5.3
graphically illustrates the process.

Model Order Selection. We must first estimate the order of the model, which includes the system
dimensionn and the number of basis functiods For our experiments, we use cross-validation to
select parameters from a set of likely candidates. More detail on this atepecfound in Section

5.2 where the same problem is discussed in the context of the KPLG.

Finding Basis Function Parameters. Next, we must determine the basis function centers
and covariance matrices;. As in the KPLG (Sectiors.2), we used the dictionary-based selection
method ofEngel et al(2004. Specifically, we sep; = 0(%] and then constructed a set ff(")’s
whose features are almost linearly independent.

Estimating Individual PLG Parameters. We can now determine the mixing weights for each
PLG at any point, so we estimate the parameters of each PLG individuallg, weighted versions
of the regressions and sample statistics needed. To start, we collecv,gach into a vector
O € RISl and collect each” ™ into a matrixE” € RI*!*™, We then compute the weights for each
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Algorithm MPLG-HYBRID-PARTICLE-ANALYTICAL-INFERENCE
Input: Lot hI

Given: faK7£17"'7§J7¢17"'7¢J

Compute:
e Construct a set din sigma points describing™:

FPE = gy (Vs
£ = iy — (VnEy);

e Compute a weight vector for each sigma point:

Gy K& 70 ¢
WU, S K (s 179 61)

e For eachf”"), compute
E" (Eq.6.6),
¢ (Eq.6.7) and
V") (Eq.6.9).

e Compute empirical posterior statistics:
PR ST
=5 2; ;
Cr = inj c - E
t m < t 7547

2n
1 i
W—%Z;%“—E?

Return: E;, Ct, V4

Figure 6.3: Hybrid particle-analytical MPLG inference.
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training point using the renormalized kernels:

_ K& rYe)
S K (&, 7195 05)

w( V),

We also define a normalizing constant as the sum of all of the weights forRia@:

[S]
N =Y w(ir®),.
1=1

For each PLG, collect the weighis( f;*(*)), into a diagonal weight matrik/; € RISIxI51,

Now, we can estimate the linear trend for each PLi&ing weighted least-squares:
g = (FTW,F)"'FTW,Y.

To estimate the noise statistics, we first compute the noise term for each traoimdgrpm the
perspective of each PLG, which is

~T (i)
Nij = Otyni1 — g7 [,

Then, the estimated variance@jrn RS

(U%)j = N,-l—1 ¢:17~U(f?(i))j(mj)2.

To estimateC’j, we run the algorithm on the training data witt = 0 and record our estimate of
1 at eacht, calledy;. We then compute

Cov[F", npnta] = B[(F™ — pue) (Me4nt1)];

which is simply

P S n(? n (2
C7j7 = le—l ZL:‘ﬂU(ft ()>j(ft @ 14 )i
While estimating bottio2)? andC} we have used the fact th&fn/, ., ] = 0 for all ¢.
Estimating KPLG and KAR Parameters. Parameters for the KPLG and KAR algorithms were

estimated similarly to those of the MPLG. Thgs were selected with a dictionary, and s were
computed using regularized least-squares kernel regression) withregularization coefficient.

6.4 Experiments and Results

We tested the PLG, MPLG, KPLG and KAR algorithms on the same problemsilusddn Sec-
tion 5.3.1 There was one linear dynamical system (the “Rotation” problem) andrfonlinear
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Figure 6.4: Qualitative comparison of parameter stability. Shown is the deffisityMSESs gener-
ated. Curves that are more tightly peaked indicate greater parameter stailitycurves that are
farther to the left indicate better MSE.

dynamical systems (the “Biped,” “Peanut,” “NB3,” and “Spring” prablg), where the underlying
generative model was known. We also tested on three well-known timeberieemarks (Santa Fe
Laser, Mackey-Glass, and K.U. Leuven). A sigma-point approximatas wsed for the KPLG.

Parameters were selected by 10-fold cross-validation. Algorithms wegeduzh the mean-squared
error (MSE) of their predictions, meaning we are not attempting to estimate kttgnt(but we
are allowed tausestate). All data sets were normalized to bef(inl]. All algorithms used the
Gaussian kernel. For the initial state, we Sgtle=°1 andy to be the first, values of the test
sequence. Algorithms were testedior2, - - - , 6, 0(275:0.1, 0.4,0.8,1.2, A=0.00001, 0.001, 0.01, and
=0.0001,0.001,0.01 (v is the dictionary threshold). All problems except Laser were trained on
2000 sequential observations and tested on a 200 observation continuaser had 1000 training
and 100 testing observations.

6.4.1 Results

Figuresb.4and6.5summarize our results, which are very encouraging. Fi§utshows the results
gualitatively. Each parameter setting for each algorithm generated a M&fgtine plots their log

distribution. This examines the expected performance for any givemedea setting; a sharply
peaked distribution on the left side is desired (implying low expected MSE)ietgiare lumped on

the right-hand side.
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| Problem| Best | Problem Best |

Rotation| PLG Spring KAR

Biped MPLG M.G. KAR
Peanut MPLG Leuven| MPLG/PLG
NB3 MPLG/PLG/KAR || Laser KAR

Figure 6.5: MPLG empirical results on the short-term prediction problem.wSlere the best
performing algorithm(s) for each test problem.

From Figure6.4, three results are evident. First, the MPLG’s density curve is often stamké¢he
left-hand side, as desired. The curve is also more peaked than thaeofadgbrithms, indicating
that its performance is less sensitive to the exact choice of parametto Kreows fewer outliers
than the KPLG.

Figure6.5shows our results quantitatively. Here, we have used 10-fold ciad&tation to select pa-
rameters; all algorithms with an MSE within 5% of the lowest are reported ast."Behe MPLG is
among the best performing algorithms on four out of eight problems, aratiicplar, it performed
well on the nonlinear dynamical systems, where there résliyn opportunity to leverage infinite
memory via state. In contrast, KAR has performed well on the timeseries prspie particular, it
wins on the Mackey-Glass series, which re@lgn autoregressive model. The exception is Spring,
but this is expected: it is deterministic and noiseless; past observations andpredictions are
equivalent; the uncertainty the MPLG/KPLG models is unhelpful. PLG won ettirtlear problem,
which is also unsurprising.

Together, the quantitative and qualitative results suggest severdismms. First, that not only are
the very best MSEs often obtained with the MPLG, but for any givenmater setting, the MPLG is
likely to outperform other models. Second, that the nonlinear models arertartping their linear

counterparts. Third, that the MPLG is superior to the alternative nonlirexaion of the PLG, the
KPLG. Fourth, that the MPLG is indeed capturing state, and is therefpeisu to autoregressive
models in situations where state can be leveraged. Not reflected in theks iethe fact that the
best parameters were rarely selected for KPLG because of outliersénose validation runs, but
this is part of the point: MPLG is more stable than KPLG.

6.5 Application to a Traffic Prediction Problem

We now present an application of MPLGs to a traffic prediction problem. gba of this section

is threefold: first, we wish to apply the MPLG to a richer domain than the timegenésgems we
have dealt with so far, by investigating the hypothesis that driving beheasio be captured more
accurately with the MPLG than the PLG. The second goal of the section iswaize the MPLG
mixing equations to allovany variable to be used to define mixing weights, including unmodeled
“context variables”. Third, we present a mechanism to help optimize theebdmixing regions.

The problem statement for this application is to model the dynamics of trafficliased on the
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NGSim traffic data set from the Federal Highway AdministrafioiThe data consists of approxi-
mately 15 minutes of traffic data on Interstate 80. About 3,000 cars aredodly tracked, and
variables such as their position, velocity, acceleration, and distance toocatfseis reported every
1/10th of a second. At one level of abstraction, the problem is trivial: @ Rhined naively on
position, velocity and acceleration variables will recover basic Newtoryaardics. However, it
seems clear that driving behavior is context sensitive: predicting acdiaeis as braking or lane
changes for a given car depends on the cars around it.

To use the MPLG in such a problem, the key problem is determining how to spfittiidem space
into regions such that the dynamics are linear within each region. We exaifferemnt splitting
variables, experimenting with both continuous and discrete splitting variablesgeneral idea is
to define some sort of splitting criteria which divides the problem space irfereift regions. The
splitting criteria can be based on state variables (such as the position anityvel@ car), context
variables (such as the relative velocity of a neighboring car), binargblas (presence/absence of
a neighboring car), or even more abstract variables (is the driveeafaihto my right crazy?).

We ran two sets of experiments, which used two different kinds of condeiebles in order to define
mixing weights. We discuss the choices below, and then present the rgemé&sally concluding
that many different choices of context variables could improve the mogiedbty.

6.5.1 Generalized Mixing Variables

In the previous exposition of the MPLG, we used solely the varidfleto define our mixing
weights. Here, we introduce the idea thayvariable could be used to compute the mixing weights.
Importantly, these variables may or may not be modeled — they may be statdegriamtrol
variables, other exogenous variables or any combination of the abowdarTfy this, consider the
original MPLG extension equation, defined as:
J
Otini1 =Y w(F™); (9jTFn +0 + 77?+n+1) -

i=1

These weightsu(-); are a function solely of”. Here, we generalize this such that

Ot+n+1 =

Mk«

w(Cy); (g] F"+ v + 77§+n+1) .
j=1

whereC; is any variable which is available at timéC, is a mnemonic for “context variable”).

To see the importance of allowing contextual variables to help define dynariticsut modeling
those variables, consider the example of weather and driving. We m#vadbetter accuracy if
we have different models depending on the weather: one model mightdrepaiate for rainy

! Available from http://ngsim.fhwa.dot.gov/
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weather, and another might be appropriate for dry weather. A mixtureeoftb models might
be appropriate for misty or drizzling weather — but under no circumstatwege wish to have to
predict the weather in order to create a good driving model!

Another subtle difference between using context variables to define miéights and using the
variable F'" is the fact that the context variables are not considered random learidthat is, they
are simply given at each time This means that, unlike the case of usifiy, we do not have to
propagate a random variable through the mixing weight equations, measinthéhsigma-point
approximations are not necessary. Thus, at eacht#jme observe the context variable, compute
the mixing weights, and then compute an “aggregate PLG,” which is definedghra weighted
combination of parameters. For example, the téinis computed as:

Ey = E[Ot1n41]
J

— E[Z w(Ce);j (ngFn +0 + 77{+n+1)

j=

J
= > w(c); (¢ BIF 4V + Bl )
=1

—_

= Ey[g] E[F"] + E,[b]
Ey [Q]T#t + Ey (0]

where we have defindd,,[-] to be the expectation with respect to the weights. Similar expressions
hold for C; andV/.

We see that this equation looks just like an ordinary PLG extension equafioBd. 4.5), except

the trend parametét,, [¢] of this PLG is an aggregate dfother PLGs’ trend parameters. The same
is true for the bias term ik, [b]. The important point is that although these parameters vary with
time, at any given time they are fixed, so the variablecan be propagated normally through the
resulting equations.

6.5.2 Continuous Contextual Variables

The first contextual variables we used were the quantjtieslocity y-acceleration headwayand
change-in-headwayThey variables represent the velocity and acceleration of the car in the direc-
tion of travel. The headway variable represents the distance from thentear to the car directly

in front of it, in the same lane (measured in feet). The variable changeadwmay is a derived
guantity, which effectively representing the relative velocity of the carantfof the current car.

For this experiment/] “centers” were sampled from the training data, ahdorresponding PLGs
were created. The mixing weights were defined in the ordinary way, elttathey are a function
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&

Change in headway

Headway

Figure 6.6: A Voronoi diagram plotting the tessellation of context varial$&swn is the tessella-
tion of “Headway” and “Change-in-headway”. The centgrare shown as circles, and the regions

are shown with lines.

of the current context variabtg, instead ofF™:

GGy ¢5507)
w(C)s = S G o) 612

Here, theg,’s are the randomly sampled centet#|) is a spherical Gaussian kernel antlis the
variance. Context variables were scaled to have approximately unibgaria

Using the context variables in this way effectively creates a soft Vartassellation of the dynam-
ics. Figure6.6shows a diagram representing a scatter plot of samples of two of the teatiables
(“headway” and “change-in-headway”) as well as the centers agidrsspective Voronoi regions.
A PLG was then learnt for the set of samples corresponding to eacmraging the weighted
learning algorithms of Sectiof.3.

6.5.3 Binary Contextual Variables

The second set of experiments examined the effect of splitting on “radi@ables.” Radar variables
were derived from the cars around the current car by discretizingetiien around the car into a
31 x 21 grid. Inside of each grid square is a binary random variablesepting the presence or
absence of a car at that location. The grid extended approximately 8 fieent of the car, and
about 20 feet behind and to either side. The gridding was done unifoiiihig.is shown in Figure
6.7, left and middle panels. Thus, in the case, the context variabtea binary vectoe R5°!,

We ran a slightly different kind of experiment using these variables. Wiasie weighting schemes
we have previously used rely on Gaussians or other kernels and deftrmaixing weights. Here,
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we use binary weights, which define hard regions. We experimented withradar variable to
determine its quality as a context variable. For a given radar varighieassigned training samples
one of two sets, depending on whether the varighplevas on or off for that sample.

w(Ct7Z)0 = (5(6,}1,1)
w(Cii)1 = 6(Cy,0) (6.13)

whered(i, j) is the Kronecker delta. Thus, each variable split the training set into tvwongg¢not
necessarily of the same size). PLGs were then learnt for each region.

6.5.4 Experiments

The general experimental procedure is simple. Given a weight equaiihver( Eq. 6.12 or Eq.
6.13, PLGs are learned from data using the weighted regressions and sstatfgics of Section
6.3 and the resulting models are combined together to form a composite dynaysieashs At each
timestep, the aggregate PLG was formed, and we used the standard P4i€ egdations.

It is important to note that when learning a PLG, we only used two varialdes tfihe NGSim data:

2 position andy position. Because the PLG is capable of modeling linear dynamical systeths, an
because of the linear relationship between position, velocity, and adi@ahetaese were sufficient

to account for the vast majority of vehicle dynamics. For all experimentsete (the length of

the window into the future) to 3. There were about 12 million data points.

We tested all algorithms on a set of data for about 300 cars, asking thenkécome:step predictions
at each timestep. We judged all algorithms on both MSE and log-likelihood ofréuictions. We
used steady-state filtering to help alleviate numerical problems with the cosanaatrices. For
comparison, we trained a 3rd order AR model, as well as a standard PLG witB. The overall
results are shown in Figu11, but we will present numerous other results first.

Figure 6.8 shows the results of our first experiment using the continuous contesdriables. For
this experiment, we tested whether or not using randomly sangped/ould be beneficial. There
are two parameters to choose: the number of basis funcfipasd the width of the Gaussians.
We experimented withl = 2,4, 8, 16, 32, 64 and100, and witho? = 0.01, 0.1, and1.0.

The figure shows a number of interesting phenomena. Consider the tpmoowsponding to

0% = 0.01. Here, adding more basis functions generally had two effects: first, gakikiglinood of

the data went up, and second the MSE went down. In addition, the varddribe likelihood was
much lower for larger numbers of basis functions, which is to be expettiedtontext variables are

4 dimensional, soitis easy to imagine that 100 regions will more or less captoféla! interesting
behavior there is, while having on/regions could capture very different behavior depending on
the exact split between the regions (for a pictorial example of this, seegfadi).
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Figure 6.7: Results of using radar variables for splitting. On the left, the: coatext of a car. The
filled square is the current car, and the large box around it is the ratznte In the middle: the
resulting binary radar image. On the right: results of splitting on radar kasakolor represents
the norm of the error term, which is related to MSE. Lower is better.

One might wonder why the likelihood went up so dramatically, while the errcr vy reduced
slightly. Higher likelihood results from making more confident predictionsjcatihg that the
learned PLGs generally has smaller noise terms. This is probably due to dewliemoise terms,
and may be a consequence of eliminating outliers / noisy samples from theetldsanse those
will tend to be associated with outlying regions). On the other hand, it is difficumprove upon

the basic Newtonian physics of position, velocity and acceleration at tiietshescales used here
(recall thatn = 3, and that each timestep represents 1/10th of a second). It is likely thatwe a
not capturing large-scale driving behaviors, but rather more sulfletef For example, cars might
tend to brake more if there is another car close (the headway variable is anwlije distance is
decreasing (change in headway is negative).

Another interesting effect is related to the Gaussian’s variance. Thewpas the smallest Gaus-
sian width, while the bottom row has the largest. With the smallest Gaussianiglzgpeonounced
difference between small and largeJ. With the wider Gaussians, adding more regions does not
help as much. This is probably because with very flat Gaussians, thetsveigih't change very
much depending on the number or positions of the Gaussians — effectdvely, Gaussian is as-
signed to cover the entire space, and the result is roughly equivalesingaisingle PLG.

Similar results, although not as strong, were obtained when splitting on taevadables. Figure
6.7 shows a thermal image of each radar variable. The color of each vargirkesents the norm
of the noise term (a rough indicator of MSE) which resulted from splitting reachics on that
variable. The car is shown as a black box in the middle of the radar image.

Here, itis clear that splitting on variables directly in front of the car tend tlolylee best composite
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models. We hypothesize that this is due to the same braking behaviors: iidleeoar very close
to the front-center of the current car, it is likely that the dynamics will be 8iygtifferent than the

dynamics of when there are no cars around. A more detailed investigatieaded to validate this
hypothesis.

6.5.5 Optimizing Choice of Centers

The results in the previous section indicate that a larger number of reggoesadly result in higher
accuracy and increased confidence. However, especially for samabers of regions, the variance

in both MSE and log-likelihood was fairly large. In this section, we adopt it modeling
strategy: instead of randomly sampling centers,opmizethe choice of centers. While such an
optimization process would be possible in the context of the more generaGMRith mixing
weights defined as a function &), it is particularly easy in the case of context variables because
they are not considered random variables.

In this section we develop a simple gradient based optimizer. In both the PdGarMPLG,
parameter estimation is a straightforward linear regression and sample sta@aircapproach to
optimization will be to measure the sum-squared error of the regressioth@mdiake its gradient
with respect to thg;’s. We will assume that we have a training set which consists of samples from
Zy andOy4,+1. We will denote these samplesando;. We define the residual of each datapoint as

rio= > w(Ci&) g m V)~ o (6.14)
J

where the weights are defined in E.12 (we only consider the case of soft weights). The sum
squared error for the entire dataset is:

T
SSE = > r/m (6.15)
=1

In Eq. 6.12 each; is the basis function center. These are the variables we wish to optimizegbut w
are also looking for the regression parameters at the same time. Becaesaréheffectively two
sets of variables we are optimizing, we adopt an EM-style optimization algorDempster et al.
1977. We will begin by fixing the basis function centers, computing the weightgessing and
computing the residuals. We will then compute the gradient of the sum sgelaoedvith respect

to our basis function centers, holding the regression parameters donstan

The gradient of SSE with respectdpis given by:

OSSE 9 T
ok 0 [Z " ]

i=1
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= 232?;'—i Zw(Ci;gj)(ngZi + bj) — 0;

T
- ; 2r) Ejj(g”zi + bﬂ')% [w(Ci; &)] (6.16)
where the third line follows by the fact that we are holding the parameteris@fd@nstant. We now
must compute how the weights change as the basis function céntdrange. In general, this will
depend on the kernel used to define the mixing weights. We assume, ayvevassamed before,
that the kernel is a Gaussian, and thais the mean of that Gaussian. The only trickery in this
derivative is to notice that the renormalization step means that every weigbhds on every basis
function center. We will therefore split this derivation into two parts: the i&for whenl = j, and
the second is for wheh+# ;.

Case (I = j):
ow(Cis&) 9 GG &%)
o9& 04 Y, G(Cis &y k) (617
= (N = G(Ci;&:%0))G(Cis & ) (~Ci — &)(5; 1) /N? (6.18)
whereN = >, G(C;; &; Xi) is the normalizing constant.
Case 2(I # j):
dw(Ci; &) 9 G(Ci&j; %)
& 0& > 1 G(Ci3 &y X)
= —G(Ci; & E)G(Ci &5 55) (—Ci = &)(57 1) /N? (6.19)

whereN = >, G(C;; &; Xy) is the normalizing constant.

The optimization procedure is now simple. We can compute the gradients of iinscgiared
error in Eq. 6.15 by computing Eq.6.16 Eqg. 6.17, and Eq.6.19 We then use those gradients
in any gradient based optimizer we wish, such as steepest descentS,.BES In general, this
optimization problem is non-convex, which means that more advanced optiminagithods (such
as homotopy optimization, momentum-assisted gradient descent, etc.) may imgreotution.

6.5.6 Results of the Center Optimizer

To validate the idea of the center optimizer and to build intuition, we first premesmball toy
data set. Figur®.9 shows an example of the use of the gradient optimizer. The figure shows
data which resembles a standard broken-stick datdasetq and Lesperanc2003, which could

be well modeled with two mixture components (if they were known). The left-siu@vs the
results of using two randomly sampled basis functions to define the mixing weigtiteence the
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regions. Unsurprisingly, the resulting regions do not respect theaiditeak in the data, and the
result is a poor model. The right-hand side shows the results after optimiznghtice of basis
function center using a naive steepest descent optimizer with a simple Inch s&féer 10 iterations.
We see that the resulting Gaussians define weights which divide the datd perfestly into the
appropriate halves, and the overall model fits much better: the error is, lang the variance is
also lower.

Figure6.10shows the results of the center optimizer on the traffic data. There analpomts
worth noticing in each panel, so we deal with each in turn and then draw gefiearal conclusions.

The panel in the upper-left shows the change in the objective functiongo@nd after optimization.
For example, when using 32 basis functions, the average SSE waslabetibefore optimization,
and about 4.1e4 after optimization. Both numbers had fairly low variancés ifiplies that the

gradient optimizer was able to successfully reduce the objective funetimhthat the effect was
more pronounced as the number of basis functions increased.

But did this translate into actual gains in modeling accuracy for the MPLG1ddts are mixed.

The panel in the upper-right shows the log-likelihood of the data befuleaéter optimization. In

general, the optimizer was able to produce an increase in likelihood, andcilease was more
statistically significant as the number of basis functions increased. Howbeedata suggests
a stronger conclusion, which is that adding more basis functions has a gneater effect than
optimizing a fixed number of them. The move from 4 basis functions to 32 basitidus results

in a much greater gain in likelihood than the move from 32 unoptimized basis faed@B2 basis

functions.

The story is about the same for MSE (shown in the bottom panel of F&u@ although here the
trend is less clear. For small numbers of basis functions, the mean MSHyaateiat up as a result
of applying the optimizer, although the error bars are so large it is unlikeleffast is statistically
significant. At higher numbers of basis functions, the MSE looks like it isiced, but again the
effect may not be significant. In any case, the change in MSE is very mabout a 2% reduction
when using 32 basis functions.

There are two general conclusions here: first, the optimizer genergdgaepto successfully re-
duce the SSE, and second, this reduction does generally translate in@iritevg are expecting
(increased likelihood and reduced MSE). None of the effects areprenounced, however, which
suggests two things: first, it is difficult to improve on basic Newtonian dynaatitke timescale
the data is operating at. Larger windows of time may reveal more interestigjethat could be
picked up by different regions, but at 3/10'ths of a second, theferaich variation. Second, the
context variables we have selected may not be the best ones. While thdgrda@hstrate some
effect, it is possible that other variables would have a much greatet.effeszems likely that the
gradient optimizer would have more pronounced effects with higher dimsaisiontext variables.
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Figure 6.9: Optimizing MPLG centers. Choosing the appropriate centettsf@aussians defining
the mixture components of the MPLG can make a large difference in the quathg oégressions.
Shown on the left: the bottom figure shows the Gaussians used, and the figddéeshows the
renormalized weights. The top figure shows data points (in green) whichsentO,,, .1 as a
function of F. The regression is poor because the weights do not respect the laretalkalin the
data. On the right: the equivalent figures for a different set of cenfdrese centers define regions
aligned much more closely with the natural break in the data, and the resulticgoiu is a much
better approximation. The Gaussians on the right were obtained by usiogtihezation routine

discussed in Sectiof.5.5
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Figure 6.10: Optimization results on traffic prediction problem. Each ploessmts a different
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| Algorithm | Log-likelihood | MSE |

AR(3) 0.9098 0.0951
PLG 1.3489 0.0048:
MPLG | 1.4083 0.00475

Figure 6.11: A comparison of accuracies on the traffic prediction problem.

6.5.7 Observations

These results appear to validate our hypothesis: by treating traffic poedis a nonlinear dynam-
ical system, more accurate models can be learnt. We have also investigaigeétioé capturing

nonlinearities by modeling the dynamics in a piecewise linear way, where thespaee defined
based on exogenous variables. The idea is simple, and seems to be nhye#eattve.

We have shown that a few simple splitting choices has resulted in models thaetsee than
naive linear models. However, these choices were largely ad-hoenarelsophisticated versions
would likely result in still better models. For example, when splitting on radaabbss, the pres-
ence/absence of a car about 10-20 feet in front of the currersieesns to be important. However,
this variable only incorporates first-order information. Higher-ordatifiees may help here: it may
be useful, for example, to know if there is a car in frandwhether or not it is getting closer. For the
case of continuous context variables, it appears that using more basi®hs has a much greater
marginal effect than optimizing the choice of centers, but it is possible tigmtbuld change in
higher dimensional spaces.

The difficulty in identifying both the appropriate splitting variables, as well ase¢gions used in the
splits suggests that more automated ways of searching for good regioniganip Our gradient
optimizer is an example of such an approach, but other techniques @iblpod his problem can
be viewed as a sort of dynamical clustering problem, which means that niffenent machine

learning techniques could be applied to it. For example, dynamical versidasieans clustering,
decision tree clustering, or spectral clustering could all be considered.

We conclude this section with a summary of the different algorithms. Figuesshows a summary
of three different algorithms trained and tested on the traffic data: a 8ed autoregressive model
(AR), the linear PLG, and the best variant of the MPLG (32 optimized basistions). We see
that the MPLG shows the best results, with the most pronounced difietegiog the increased
likelihood.

6.6 Conclusions and Future Work

We set out in this chapter to improve the KPLG by proposing a generatokeapilistic model,

which we can interpret as a mixture of PLGs. We have also contributedeaalérybrid particle-

analytical inference method, which appears to be accurate and whicls makmodel tractable. It
improves sigma-point approximations in general, and could find applicaticinén contexts.
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The MPLG has experimentally demonstrated good, stable performance st alhod the problems
tested here. On the timeseries problems of Se&igrthe MPLG outperformed the KPLG in every
test, and often outperformed the KAR algorithm. On the traffic domain, the M8lLBerformed
both the PLG and an autoregressive model by using context variablefite tinear regions.

In addition to empirical stability of parameter estimates, the MPLG seems to be a mabéesfiand
naturally interpretable model class than the KPLG, and allows us to easilydetktermodel. We
demonstrated this in the context of the traffic modeling problem, where it vegsteancorporate
domain knowledge into the creation of mixing weights. The idea of piecewise ldygmmics is
simple to grasp, to deal with, and to extend. In contrast, it can often be rh@miteto design an ap-
propriate kernel which flexibly incorporates domain knowledge and sstigfe Mercer conditions.

Perhaps the most significant drawback to the KPLG and MPLG models isgsbmpton that the
future is Gaussian. While this has worked well for the low-dimensionallpnad considered here,
it seems unlikely that the Gaussian will be an appropriate density estimate oisthibution of
future observations in the case of high-dimensional and/or highly stecttlyservations. In those
cases, a more appropriate density estimate needs to exploit structureedmvotis, a reasonable
next step would be to replace the Gaussian with some sort of graphical model.

In the next section we do exactly that by generalizing the Gaussian to @gexgonential family
distribution, to create the Exponential Family PSR.
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Chapter 7

Exponential Family Predictive Representations of State

Chapterdg - 6 presented the PLG family of models, which all assumejhat’|h,) is Gaussian and
represent state as the parameters of that Gaussian. However, itiallyemecepted that Gaussians
and mixtures of Gaussians are poor models in high-dimensional sgdiceésn 2002 Aggarwal
et al, 200]). This has motivated research into graphical models which are able tdtestplature

in high-dimensional spaces.

We now present the Exponential Family PSR (or EFPSR). Like the PLG faimdyFPSR model
represents state as the parameters of the distribwt{iéit|,), but it modelsp(F"|h;) using a
general exponential family distribution. Also like the PLG family of algorithms,ER€SR model
updates state with an extend-and-condition algorithm. The model is more beraraither the
PLG family or PSRs: because of the flexible nature of the exponential fafhdistibutions, the
EFPSR is capable of modeling domains with discrete or continuous obsesvé&tioa mixture of
both), and the extend-and-condition mechanism turns out to be quiteafjeea consequence, we
show in Sectiorv.2 that the EFPSR can represent any system which can be modeled by a PSR,
PLG, or a KPLG/MPLG. From that perspective, the EFPSR is an importdfitation of the work

in the rest of this thesis.

Like other models in this thesis, the EFPSR has no hidden variables, whidhagedst from other
graphical models of sequential data. It is not directly comparable in terstatef representation to
latent-variable models such as HMMs, CREafferty et al, 2001), or Maximum-entropy Markov
Models (MEMMs) McCallum et al, 2000, for example. In particular, EM-based procedures used
in the latent-variable models for parameter learning are unnecessalindaed, impossible. This

is a consequence of the fact that the statistics of interest are alwaiedrdieectly to observable
guantities.

This chapter presents the EFPSR in its most general form. It lays thedyvrounfor two different
specializations of the general model: in Chaf@eve specialize the general EFPSR to create the
Information PLG, and in ChapteBand10 we specialize it to create the “Linear-Linear EFPSR,”
which is a model designed to function with high dimensional distributions and Gata sets.
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7.1 The General EFPSR Model

We define an EFPSR model as a model with the following two properties: Ipriégsents state as
the natural parameters of an exponential family distribution &Vgr.,; and 2) it maintains state by
extending and conditioning. We now discuss each aspect in detail, bid Vikeito point out that
this is a very general definition. In order to create a specific model in RFB®n, three things
need to be selected: the features used by the exponential family distribuga@xtémsion function,
and the conditioning mechanism.

7.1.1 State Representation

The EFPSR defines state as the parameters of an exponential family distrinotielingp(F™|h;).
To emphasize that these parameters represent state, we will refer to shefh,aor simply s;
(instead of)\;):

p(Fn = fn’ht, St) = eXp{StTgﬁ(fn) - log Z(St)}’ (71)

whereg(f") ands, are bothe R'*!. Recall that at each timestep!|h, is the random variable
representing the nextobservations, given history until timte F"|hy = [Oy41 - - - Opyn|he], where
eachO, € R%; thus, eactF™ € R",

In AppendixD, we present background on the exponential family of distributions, dsawé¢he

reasons motivating their use in the EFPSR. We recap them here: 1) theeetipd family is the

natural generalization of the Gaussian used by the PLG family of algorithmisiseexpected to
be a more accurate model of high-dimensional densities; 2) it is the maximuopgwistribution

subject to empirically determined constraints (and is therefore a reasqratuipled way to select
a distribution when learning from data); 3) it is the maximum likelihood distributiothen reason-
able assumptions; and 4) it is capable of exploiting graphical structurelbgting the sufficient
statistics of the distribution carefully, as discussed in Sedidh

Representing state in this way implies that the EFPSR inherits both the advaatabdisadvan-
tages of graphical exponential family models: it is possible to describatmmal independencies
that exist between variables, but inference and parameter learning inatthel is generally hard.
Fortunately, all existing research on exponential family distributions is agpécand in particular,
work on approximate inference.

7.1.2 Maintaining State

Selecting the form op(F"™|h,) is the density estimation component of the model. However, there
is also a dynamical component: given the parametefg Bf'|h;), how can we incorporate a new
observation to find the parametersmdf™ |h;, 0,11)? Our strategy is to extend and condition, in
exactly the same way as the PLG family of algorithms.

We assume that we have the parameterg(éf*|h;), which we denotes;. We extend the distri-
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bution of F"|h; to includeO;,,. 1, which forms a new variablé”*!|h,;, and we assume it has
the distributionp(F™, Oy 1|ht) = p(F™*1|h;). This is a temporary distribution wittrn. 4 1)d
random variables.

In order to add the new variabte, . ,,, 1, we must add new features which descrihe,,, 1 and its
relationship tof™, which we capture with a new feature vectof (f"!). We define the vector
s to be the parameters associated with this feature vector. 8otii"*!) ands;” are vectors
€ R¥*1 In general, when we add new features, the parameters associatedendtigihal features
may change in order to retain the same properties of the distribution (for éxating@ parameters
may need to be adjusted to ensure that the marginals definedA3jh,) are the same as the
corresponding marginals defined pyF™*!|h;)). We will refer to the function which maps the
current state vector to the parameters of the extended distributibie astension function

s = extend(sy; 0)

wheref is a vector of parameters governing the extension function (and herctatisition dy-
namics). Putting this all together, we arrive at the following form for theredee distribution:

p(Fn+1 _ fnJrl’ht; S?_) — eXp{S?_TQﬁJr(fnJr) _ log Z(S?_)} (72)

Once we have extended the distribution to models/the 1'st observation in the future, we then
condition on theactual observationo;, 1, which results in the parameters of a distribution over
observations from + 1 throught + n + 1:

s¢+1 = condition(s;", 0441)

which are precisely the statistics representifi§™|h+1), which is our state at time+ 1. Using
this method, we can maintain state for arbitrarily long periods, extending artliticming for every
new ao.

Although the sequence of state vecterare the parameters defining the distributid@™ |k, ), they
arenot the model parameters — that is, we cannot freely select them. Instead, de€pacameters
are the parametei® which govern the extension function. This is a significant differencenfro
standard maximum entropy models, and stems from the fact that our oveshlem is that of
modeling a dynamical system, rather than just density estimation.

There is only one restriction on the extension function: we must ensurafteatextending and
conditioning the distribution, the resulting distribution can be expressed as:

P(F™ = f"hig1:si41) = eXp{StTH(b(fn) — log Z(5t+1)}- (7.3)

This looks like exactly like Eq7.1, which is the point: the feature vectordid not change between
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timesteps. From a graphical model perspective, this is equivalent tagsidwginthe structure of the
graph does not change between state updates.

For many choices of extension function and conditioning function, theathextend-and-condition
operation does not involve any inference. Thus, given an EFPSR mioaeking state can be
computationally efficient, and could be (for example) a simple linear operation.

Defining the state representation and state update mechanism completesiitierdefithe general
EFPSR model. We now examine what dynamical systems can be captured élg indtiis class.

7.2 Representational Capacity

When introducing a new model class, it is natural to wonder about hovaiteseto other well-
known models. In this section, we investigate which other classes of dynaystams the EFPSR
can capture. We show that 1) every domain that can be modeled by a @imeamlinear) PSR with
a finite number of core tests can be modeled by an EFPSR; 2) every wilhtinear dynamical
system with scalar observations can be modeled by an EFPSR; and 3) solimear dynamical
systems can be modeled by an EFPSR (specifically, those captured by ti&NMPLG). The
first claim implies that EFPSRs can also model every finite-state MDP, finiie8@MDP, finite-
state Hidden Markov Model, finite-state Markov chain, history-windowh(krder Markov) model,
diversity representation, interpretable OOM, or interpretable 10-OGd Ghaptep).

The EFPSR requires three things in order to be a complete model: featuesdeasion function,
and a conditioning mechanism. For the proofs, we will present all threall bf our proofs, the
features and conditioning mechanisms are straightforward, althoughtéresmn functions are not
necessarily practical. Efficiency is not the point of this section: to expepeesentational capacity,
we simply need to demonstrate tisamesuitable extension function exists.

7.2.1 EFPSRs and PSRs

To prove that every PSR can be represented by an EFPSR, wetmesarstructive algorithm. The
goal of the proof is to show that given a PSR, we can construct an ERMP&h makes equivalent
predictions about the distribution of one-step future observations, aichwan be updated such
that this equivalence holds for the infinitely long future. We will describecthrestruction of the
EFPSR in Sectiofd.2.1and then present the theorem and final proof in Sedti@rl

Constructing an EFPSR from a PSR

To define an EFPSR, we must define features, an extension functiba camditioning mechanism.
We assume that we are given a fully specified PSR with two things:

1. Assume we have a set of core tggtsand that the longest core test has lengtfThis set of
core tests does not have to be minimal.
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2. Assume we have two functions which are used for a state update. fi@$enctions are
a slight generalization of the Linear PSRs described in Se&@i8nand are used so that
the proof accounts for both linear and nonlinear PSRs. To update s&Rs, lequire some
function to compute the probabilities of one-step tests and one-step extgeasiarfunction
of the current state:

plaoQlhy) = gaOQ(p(Q‘ht))
plaolhy) = gao(p(Qlht)).

In the case of linear PSRs, these functions are matrix multiplications, as shdie 2.1
Recall from Sectior2.3that these two functions are sufficient to make any prediction about
the future by rolling the model forward.

We now construct the EFPSR by specifying features, and extensiotoad#ioning functions.

e Features We first describe how we can use tests as features. Given a windothétature
of lengthn, the variableF™ is composed of then atomic random variable4,0; - - - A,,0,,.
Now letg; be a lengthk test, withk < n. We can think of this as a feature of the future as

S(F™)i = 0(F*, q;)-

In other words, feature is binary indicator variable, returning 1 if the firktactions and
observations it are equal to tes};, and zero otherwise.

The state at timéfor a PSR is given by(Q|h:), where theth entry of the state vector is the
prediction of core tesy;, or p(q;|h:). Because the probability of a binary variable is also its
expected valued, we can reinterppé€)|h;) as a vector of expectations:

E[q1|hi]

Blealld 1 g g(rmpn).

p(Q’ht) =
E[Q|Q||ht]

According to this interpretation, this is a vector of mean parameters. Thiwilhbe used in
the extension function.

e State at timet: State at timé is the parameters of the exponential family distribution mod-
eling p(F"|h:). The features that we use are the core t€std the given PSR, as well as all
possible one-step tests:

p(F™|ht) = exp {Z(/\t)lql + Z(At)mnamon — log Z"(At)} ) (7.4)

l mn
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Note that the domain used to compute the log partition functioR"ig;, which includes

the nextn actions and observations. We have made this explicit by naming the partition
function Z™. To foreshadow things a bit, we state now that we will select the paramdters o
this distribution such that its marginals match the predictions of the corep@g|s; ).

The extension function: To define the extension function, we need to define a mapping
from the state vectos, to the vectors,”, which are the parameters describing the extended
distributionp(F" 1| hy).

Given an EFPSR state, we use inference to compute the corresponding vector of mean
parameters, which we denotg. By construction, this vector contains expectations which
are the predictions of the core tegps We extract these to form the vectp(Q|h:). We

then compute the one-step extensions to all of the core tests, where eatdstds extended

by each possible action and observatign;. We accomplish this by using the mappings
provided as part of the given PSR(a;0;Q|h:) = ga,0;0(p(Q|h:)). Note that the longest
core test is now length + 1. We also compute the predictions of all one-step te§is;|h;)

and two-step tests(a;o;jaro;|ht).

We now form a new vector of mean parameters, consisting of the expest&tioone-step
tests, two-step tests, and one-step extended core tests. We can irttezpechew proba-
bilities as a mean parameterizatippi over 1|k, and is a vector which is realizable by
construction. We now translate from mean parameters back to naturaigiera, to create
A/, If the features defined by the core te§tare linearly dependent, we may pick aky in
the appropriate affine subspace of the image.

Note that both the mapping from to 1;, and then fromy,” back to);” are always possible
by the mean-value mapping theoremd/gdinwright and Jorda(2003.

The vector\,” now represents the natural parameters of a distribution BYer|h;, with
features defined by one-step tests, two-step tests and one-step exdeogiore tests:

p(F"Hhy) = exp Z()\j)laiojcﬂ + Z(Aj)mnamon
ijl mn

+ > (ADijraiojaror —log Z"H(A])
ijkl

Note that the domain used to compute the log partition functidivis! |h;, which includes
the nextn + 1 actions and observations. We have made this explicit by naming the partition
function Zn+1.

Conditioning: We now condition on the given action and observatig,,. To do this, we
simply freezeu,, 0, to its given value, which i$ (because they are binary indicator variables).
Every term that involves an action and observation which isip@t, drops out, because they
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are observed to have a value(fThis results in the following distribution:

p(F”\htao) = €exp {Z()\?—)lamon(ﬂ + ()\j)mnamon
l

+) - (A)ijkiamonaro, — log Z”()\f)}
k.

= exp {Z(V)zqz + (A )mn + > (A ijmaror — log Z"(V)}
kl

l

= exp {Z()\Zr)lql + Z()\?—)z‘jklakol — log Zn()\j)}
] Kl

There are several effects that conditioning has had. Notice that thigodigin specifies
features for each of the core testslt also specifies features for all of the one-step tegts

—in other words, the conditioned distribution has exactly the same form a&4£&qd.he term

(A )mn cancels with a similar term in the normalizing constant. In addition, the domain used
to compute the normalizing constant is néW |h;ao, which only includes the actions and
observations followingd;ao.

This completes the construction of an EFPSR given a PSR. The idea is thetewsmre tests as
features, and we set up the extended and conditioned distributions sutichey have appropriate
marginals at every point. This will be the key to our theorem statement, whigitegent next.

Theorem Statement

Theorem 7.2.1.For every PSR (linear or nonlinear) with a finite number of core tests, BRER
can be constructed such that the EFPSR makes equivalent one-diggipre to the PSR at every
timestep.

Proof. We prove this by induction. For the base case, we assume that we halRestas(Q |h: ),

and that we have an EFPSR statenodelingp(F™|h;). We assume that the marginalspd#™ |h;)

are equivalent tp(Q|h:), and that the marginals corresponding to the one-step features atécequa
the predictiorp(ao|h;) that the PSR would make. We call thesguivalent statesn the sense that
both states can be used to make equivalent predictions for both corertésinexstep tests. Such
an EFPSR state always exists by virtue of the mean-parameter mappingrbleaufté/ainwright
and Jordarf2003.

The proof follows directly by the equivalences established in the conistewadgorithm:

e We have shown that an EFPSR state which is equivalent to a PSR state magrimed to
form a distribution with marginals that are equal to the PSR predictions of thetap tests
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p(aolhy), two-step testp(aoaolh;) and the one-step extensions to core te&i® Q| Ay ).

e We have shown that this EFPSR may be conditioned, and that the form dbutisin is a
distribution over core testg Q| h:ao0) and one-step tesigao|h.ao).

e By construction, the conditioned distribution must therefore have margirathvare equal
to p(Q|htao) = p(aoQ|hs)/p(aolh:), which is exactly the distribution we would have ob-
tained with the PSR update. Because we have explicitly constrained bothekstegmand
two-step predictions to have the same values as the corresponding REiqms, it must
also have marginals equal #¢ao|h.a0) = p(aoao|ht)/p(aolhy).

The final state has the same properties as the state we began with: it makeateatpredictions
for one-step tests and core tests as the corresponding PSR, butfrerimstead ofh;. We may
repeat the process infinitely long, and thus we conclude that the completbulisns over future
observations that the two models compute are identical. O

Action-Conditional Distributions

There are a few minor points worth noting at this point. First, there is a subtiritadity to the way
we structured the proof. Recall that the prediction of a test in a PSR idlgcation-conditional:

p(gilht) = Pr(observations in test |k, actions in test).

However, the EFPSR does not deal with conditional distributions like thisenthe PSR talks
about the distribution of a one-step tegt.o|h;), no distribution over the action is implied, but in
the EFPSRp(ao|h;) implies a distribution over both the action and observation.

This is not a problem for the proof, which is why we have delayed disogss until now. To
get around this, we can impose a distribution upon the actions, which is imdiepeof history
and observationsp(a|h;) = p(a). This distribution is for convenience only, and does not rep-
resent any statements about possible policies, nor does it affect the abilitg model to make
PSR-style predictions. For example, the EFPSR will capture a one-steptasPr(ao|h;), but
can still make the PSR-style predictié(o|h, a) by computing two marginalsPr(olhs,a) =
Pr(ao|h:)/Pr(alhy) = Pr(aolhy)/Pr(a). Thus, this distribution over actions will drop out any-
time we make a prediction, and effectively serves only to weight predictiocis that they can be
considered entries in a very large multinomial distribution. To simplify the prowf, flve did not
mention this; instead, it should be understood that the appropriate conditioappens whenever
it needs to.

Different Predictions

While the EFPSR and the PSR make the same predictions for all one-step estst¢hused by
the EFPSR is larger than the state for the PSR, because it includes a pafametery possible
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one-step test. The corresponding PSR may or may not include evestemeest in the core set.

This was necessary to ensure that the models make equivalent oneestipigns, and highlights
the following interesting fact about the final EFPSR. Specifically, the statmat of the EFPSR
can be used to make any prediction about the the nesbservations, without rolling the state
forward. For core tests and one-step tests, these will be equal to thefe8Rtions, by con-
struction. However, the EFPSR can also make predictions about nertesis, and in general,
these predictions may be different than the corresponding PSR predictiecause they are the
maximum-entropy predictions. However, it is able to make those prediatitheutany additional
parameters (a linear PSR would need to learn or compute the appropyiateight vector in order
to predict a non-core test) and without referencing the functiQn®r g..q. It is interesting that
there are two different ways to use the state to compute predictions, anldehatill give different
results.

It would have been possible to not include all possible one-step tests inatieerspresentation.
In that case, we could have claimed that the EFPSR state was sufficigmisfory and just as
compact as the corresponding PSR state. However, it might have gifemmt results for one-
step predictions than the corresponding PSR, depending on how the sttesed to make the
prediction.

7.2.2 EFPSRs and (Non)Linear Dynamical Systems

We now present the relationships between EFPSRs and (non)lineanidahaystems. We will
proceed in the same vein as the PSR proof, relying on the mapping betweanamegaatural
parameters and constructing extension functions based on reductiotieetommdels. We will
again present an inductive argument, but will spend less time setting upsbease equivalences.

Theorem 7.2.2. EFPSRs are capable of modeling every uncontrolled linear dynamistdisywith
a scalar observation (as defined in Sectbd). Furthermore, the model is just as compact as the
equivalent LDS.

Proof. The proof follows directly from two theorems:

1. In Chapter8, we prove that every uncontrolled PLG can modeled by an EFPSR (dimeor
8.3.1), which we call the “Information PLG.”

2. Theorem 1 irRudary et al(2005 proves that every uncontrollegddimensional LDS with a

scalar observation has an equivalent representation as a PLG.

Based on these two theorems, we conclude that EFPSRs are capable lig@adsy uncontrolled
linear dynamical system with scalar observations. Because both preajsige involved, we defer
(1) to ChapteB, and (2) toRudary et al(2005. In addition, Chapte8 shows that the Information
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PLG and the PLG are equally compact — both use-a@imensional state vector. Rudary showed that
the PLG requires an-dimensional state vector to model ardimensional LDS, so we conclude
that the state vector of the Information PLG is just as compact as the equikBI8. In addition, the
Information PLG uses exactly the same parameters as the PLG, and the Rl as compact
parameter-wise as the equivalent LDS. O

To cover the case of linear dynamical systems with vector-valued olisgrsawe would need
to prove that PLGs are capable of capturing every LDS with vector-dabbservations. Rudary
has done some (unpublished) work to this effect. We defer our protfisf as well as proofs
about the controlled case, until his work is complete, although it is likely thaptbefs will be
straightforward.

Theorem 7.2.3.EFPSRs are capable of modeling any dynamical system modeled by Itk (el
MPLG. Furthermore, the model is just as compact as the equivalenGKi?LMPLG.

Proof. As part of the proof that PLGs have an EFPSR representation3Hgdemonstrates that
there is a one-to-one correspondence between mean and natuna¢fssain the Gaussian used by
the PLG. Additionally, it shows that thextendedlistribution will always have equivalent mean and
natural parameters.

The proof is a combination of those facts and a simple constructive algoritliiven @ KPLG or
MPLG, we will build an EFPSR model by defining features, an extensioctifum and a condition-
ing mechanism:

1. Let the features be all singleton and pairwise featurdsd¢k;, as in the Information PLG.

2. Atevery timestep, the KPLG/MPLG defines state as the parameters osai@adistribution
overp(F"|h;). Let the EFPSR state be the information form of that Gaussian.

3. Let the extension function be the following:

(&) Assume we are given an EFPSR state
(b) This state is the natural parameters of the distribytidr*|h;) ~ N1 (A, As,)

(c) Translate these natural parameters to their equivalent mean pasiodiap(F" |h) ~
N (e, Ze).

(d) Use the KPLG/MPLG extension function to compiite C; andV;.

(e) Construct an extended Gaussian descrip{dd* ! |h;) ~ N (u;, 2;7) using the mean

parameters:
Fm o C
~ N ot ’ ; t
Otini1 E; Cy Vi
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() Translatep(F" k) ~ N (p;F, ;) back to information form. This is now the distribu-
tion p(F" 1 hy) ~ N*l()\uj,)\zj), which is the extended distribution in information
form, and the parameters of this distribution represgnt

4. Condition on the observation in exactly the same way as the Information PLG.

The compactness arguments follow the same pattern as those for thenBtadis mutandi O

7.2.3 EFPSRs and MDPs

We now turn to a proof that EFPSRs can model finite-state Markov Decismresses, or MDPs.
From the point of view of investigating the representational capacity of BRSR, this proof is
unnecessary, since every finite-state MDP can be modeled with a PSRvetowe wish to make
an additional point in this section, which is that the extension function is a stiio#igr function of
state. This is part of the justification for the Linear-Linear EFPSR in Ch&pter

An MDP is described by a tuplet', A, T'), whereX is a finite set of states and is a finite set of
actions.T is a set of transition matrices, whef¥ is a matrix which represents the probability of
transitioning from state; to statex; given that actiom was takenT;;. = p(zi|zj, a).

We prepare for the proof by associating a binary random varigjoleith each statec X and for
each time (only one of these binary variables will be 1 at each tiheNe also associate a binary
random variable:! with each actiore A.

Theorem 7.2.4.The EFPSR can model every finite-state MDP with discrete actions. Fortrer
the model uses a strictly linear extension function.

Proof. The proof is by construction, and largely follows the same pattern as thepR®IR with
several simplifications. However, to arrive at the desired linearity rasigtnecessary to stipulate
an unchanging distribution over actions, as we now explain.

We will represent state as a multinomial distribution over MDP states one stepfirttine, and we
useF!|h, to denote the random variable of the state one step in the future. To giveatidble a
well-defined distribution, we must have some distribution over actida$ (as in the PSR proof,
this distribution does not impact the capacity of the model, and drops out piteelictions are
made). We will additionally impose the restriction that this distribution is indepédrafestate and
history. At timet, we assume that we are in a known MDP stateThen:

P(F1|ht) = plarir1|he) = pla)p(zis1la, he) = pla)Tz = E[¢(F1|ht)]-
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We let our EFPSR state be the natural parameters of this distribution (cotofzgeD.6):

p(Flfht; St) = exp Z(St)z‘jaiﬂwgﬂ —log Z(s1)
ij

We define the extended distribution ovét|h; as

p(F2 (s sty s0) = exp§ > (s1)igaiaat oy + (s ) igmaial ™ af a0 — log Z([si; 7))

ij ijkl
where we have included quartets consisting of an action, observatiamm and observation. Notice
that the multipliers associated with the pairwise featuiigsfx{ .1 are the entries of;, nots;". This
is because we use a special extension function, defined as:

1
S;ZIO

0

s+
"I B

That is, the extension leaves every element of the current state vectoanged, and adds new
multipliers for each quartet, in a way that does not depend on the cuteget(8 is a constant).
The entries ofB are given as

Bijr = Ing(ai)Tjkl

which are just the logs of the transition probabilities, as defined irCEg.

The observation at time+ 1 is x{H, and the action is;, ; After conditioning, every term with
an action and observation at time- 1 which is not equal tcal%:+1 and:z:{Jr1 drops out (since they
are binary indicator variables, and are set to zero since they did nat)oddis results in the final
distribution overF! |h;ao:

p(FYhy, Mt s s) = exp {(st)l-j + Z(sj)ijklafﬁxéw —log Z([s¢; st*])}
kl

= exp {Z(St+1)k1af+2$fs+2 — log Z(3t+1)}

kl

where the constant ter(g; );; cancels with the same term in the normalizer.

To complete the proof, note that this is the natural parameterization of a multindisigbu-
tion overp(F*|hs, a' ™z, and furthermore, note thés, 1 )mal, o2t o, = (s;)ijmal 2l =
(sj)ijkl, which is is equal td3;1,; = logp(ai)Tfl. This is exactly the same multinomial distribution
we would have obtained if we had rolled the MDP forward thromjhlxiﬂ. O
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7.3 Conclusions

In this chapter, we have introduced the Exponential Family PSR (EFPS®R)h\generalizes the
state representation used by the PLG family of algorithms. It replaces th&si@awvith a more
general exponential family distribution, although it uses the same extafideardition mechanism
to capture the dynamics.

The EFPSR is a very general framework for modeling dynamical systerashawé briefly inves-
tigated its representational capacity, and shown that it is capable of icgpéuvariety of different

dynamical systems: the EFPSR can model domains captured by PSRs, BOIMB& dynamical

systems, and some nonlinear dynamical systems. From this perspectiz#;RISR is a general-
ization of many of the models presented in earlier chapters of this thesis. Taigedy due to the

flexibility of the exponential family of distributions, as well as the genericity & $ate update
mechanism.

In the next chapters, we will specialize the EFPSR to create two differesieincChapte8 presents
the Information PLG, which is the PLG rewritten with a different form of theestepresentation
and update. Chapte®sand10 present the Linear-Linear EFPSR, which is a different specialization
designed to cope with domains having large numbers of features and haog@&s of training data.
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Chapter 8

The Information Predictive Linear-Gaussian Model

In this chapter, we connect the Predictive Linear-Gaussian model apt€h4 and the EFPSR
model of Chapter together by relating both of them to th&formation Kalman Filter.Recall that
the PLG is the predictively defined version of the Kalman filter, and thaltseby Rudary et al.
(2009 prove that every Kalman filter has an equivalent form in terms of the HIb@ difference is
that the Kalman filter maintains state as the parameters of a Gaussian distribetitdolen states,
while the PLG maintains state as the parameters of a Gaussian distributiontaveoloservations.

The parameterization of the Gaussian is not unique. Like the other membrs exponential
family of distributions discussed in Secti@n2, the Gaussian can be represented with either mean
parameters or natural parameters. The standard Kalman filter and thed®h @de the mean pa-
rameterization of their respective Gaussian distributions. In filter theamadtproposed as early as
1979 that the Kalman filter could be represented using natural parametiersdrof mean parame-
ters Maybeck 1979. The resulting filter became known as théormation Kalman Filtetbecause

the parameterization relies on the inverse of the covariance matrix, whicmitisees called the
information matrixdue to its straightforward interpretation as a Fisher information matrix.

It is therefore intriguing to ask: is it possible to write the PLG in information fasnwell? This
chapter answers that question affirmatively. We show how we candram#fie parameterization of
the PLG into an equivalent natural form, and how state can be reclyrspgated for approximately
the same computational cost as the PLG.

Importantly for our purposes, the final model fits the EFPSR framewohlat 18, given appropri-
ate choices of features, the state representation used by the Informa@Gois fh EFPSR form,
and there exist choices of extension and conditioning functions which miaptioe extend-and-
condition method used by the EFPSR. For these choices, then, the B&B®Rnformation form

of the PLG. These results are shown graphically in FiguteThere may some advantages to think-
ing about the Information PLG as an EFPSR model, beyond the theoretigaheks of reducing
one model to another. For example, the EFPSR is capable of imposing @lagthiccture on the
network of variables used. This means that it is likely that the EFPSR coudrmralized to cope
with a Gaussian Markov Random field instead of a simple Gaussian.

The equivalence of the PLG and the Information PLG is somewhat urnisimgorand so is the
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Figure 8.1: The relationship between the Kalman Filter, the Information Kalmanm, Fiite PLG,
and the EFPSR.

road we will take to prove that equivalence. The proof is by constructie will first show
that at every time, the Gaussian distribution ove(F"|h,) defined by the PLG parameters can
be transformed into an equivalent natural parameterization. This implieghtha¢presentational
capacity of the two are equivalent, and that the distribution over obdergaiantities computed
by both are equivalent. We will then show that the state of the Information &loGe recursively
updated — using the same parameters as the PLG — without reference tétlsealRrepresentation,
which makes it a standalone model. The proof is rather long, and so the stattiee theorem
(Theorem8.3.7) is delayed until SectioB.3,

From a filtering point of view, there are several potential advantagesiking in the information
parameterization. The Information Kalman Filter overcomes some problems wittiZatiian, for
example, and can have computational advantages in case the state vetgmester dimension
than the observation vectoM@nyika and Durrant-Whytel995. One well-known advantage is
that multiple measurements can be incorporated by simply summing their informatitmmssand
matrices, which is appealing for distributed sensory netwdvlenfyika and Durrant-Whyte1995.
Recently,Thrun et al (2002 observed that the information matrix used in simultaneous localization
and mapping (SLAM) applications has a very sparse form, which has rteddithe Sparse Infor-
mation Filter. This has been motivated more formallyHrgse(2005, who proved that information
decays exponentially, and yustice(2005, who showed that significant computational benefits
can be achieved with exactly sparse delayed information filters. This capeailbaps be justified
by the results oBoyen and Kollei(1998, who also proposed trimming weak information links.

Itis possible that these advantages will transfer to the Information PL@&Ihsathough quantifying
them is left for future research.
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8.1 The Information Parameterization of the Gaussian

As discussed previously, while the Kalman filter maintains state using the meametarization,
the Information Kalman Filter represents state with the natural parametergféhmation param-
eterization can be obtained by expanding the quadratic in the exponemtigdgmouping terms:

p(x) = N(uX)
= %exp {—0.5(x - M)Tz_l(x - ﬂ)}

= exp {—0.5(3@TE_1$ —ou' s e 4 ,u,TE_l,u) — log Z}

= exp Z Ei_jlxixj + Z(MTzil)ifL‘i —log 7’ (8.1)
ij i
= N7\, An).

whereZ’ = exp{—0.51" X1 uZ. The two forms are related by
Ay = PO
1_
Aw = 5% L

To relate this more directly to the standard exponential family form discussgibpsly, we observe
that EQ.8.1can be written using vector notation:

p(z) = exp Z Ei_jlﬂfiﬂ?j + Z(uTzfl)ixi —log 7'
ij i

— exp {)\Tgb(x) —log Z’} (8.2)

where¢(z) = {x;} U {x;z;} — that is, the feature vectar(x) contains all singleton features as
well as all pairwise features. E&.2is exactly the form that the EFPSR distribution takes, except
that instead of representing the distribution over hidden sfétasrepresents the distribution over
future observations™.

Computationally, the covariance form and the information form have complanyestrengths and
weaknesses, which are summarized in Figi2& The operation of marginalization in the covari-
ance form, for example, simply involves selecting a subset of the mean \extdhe covariance
matrix, but the operation of conditioning is more involved, involving a matrix isgeConversely,
in the information form, conditioning is easy, but marginalization is hard.

8.2 Deriving the Information PLG

We now show how every PLG can be written in information form, and derieestate update
eguations necessary. We begin by reviewing the basics of the PLG.
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=[5 Bh-v(z] [ )

1 Yga 2ipp 15 Ags
Marginalization Conditioning
p(a) = [ p(e, B)dp p(alB) = p(e, B)/p(B)
Covariance Form L= fa W= pa+ Sap¥ps(0 — up)
Y = You Y = Yaa— zaﬁzggzga
Information Form| 7 = 7a — AaﬁAgénﬁ = na— Aapf
A = Aoa—Aaphyshsa N = Asa

Figure 8.2: Information and covariance forms of marginalization and condigo A multivariate
Gaussian distribution can be parameterized with either mean or natural parsm8hown are
marginalization and conditioning operations on a multivariate Gaussian ravatable, expressed
in both covariance form (mean parameters) and information form (nataralmeters). Adapted
from Eustice(2005.

The PLG represents state as the parameters of a Gaussian distributipQovgr, ):
Fn|ht ~ N(Mt, Et)

Theorem 8.2.1. At every time, the distributionF™|h; ~ N (ut, ¥;) has an equivalent information
form ™ |hy ~ N71(A\,,, As,).

Proof. The proof follows directly from Eg8.1 O

This implies that at every there exists natural parameters which imply an equivalent distribution
over F"|h;. The rest of our derivation will be devoted to finding those parameters.

We therefore assume that the Information PLG also represents state atuted parameters of the
distributionp(F"|hy):
F™he ~ N7 (s Asy)-

We now turn our attention to the extended joint distributiorj6f; O;4,,+1]. Since the extended
joint distribution is also a Gaussian, it also has a mean and natural paraet@erkzy Eq.8.1 We
wish to additionally show that the extended joint distribution can be recursieghputed without
reference to the PLG state, and using only the PLG parameters.
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The PLG extends the distribution using a linear tréhdnd noise termy,,,11:
Otans1 = GF" + eyt (8.3)

Using Eq.8.3we can easily compute the terms needed to compute the joint extended distribution
in covariance form:
" ¥ C
~ N Ht 7 i t
Otgnt1 E; Cy Vi

Ey = E[GF" +Niini1] = G
Ci = E[0L1F"] — B0 ]E[F"] =%,GT + C;
Vi = E[O;n+1ot+n+1] - E[Ot+n+1]TE[Ot+n+1] = GTZtG + GCUT + C’nGT + 0,27.

which are

Recall thatG is the linear trend(;, = Cov|nipn+1F"], andag = Var[niyn+1], Which are the
parameters of the PLG.

We now compute the information form of the extended distribution:
Fm - N Mt Zt Ct _ N_l AZt )\;t Ac’t
Otgni1 Ey ol v AE, A, A

Note that, in generahy; # As, andAf, # X,
Our goal is to find a recursively updateable expression for the informédron on the right-side of

t

this equation, which can be expressed using nothing but the standardy?iaGical parameters.
We begin by noting that the following relationships hold between the mean paand the
natural parameters:

Ay = Z;lﬂt = =2yt
pe = By, = _%/\53)‘%
and
1
)\Et — —§Etl
Ly
X = _5/\&
2;1 = —2\y,

We will use these identities below as we translate between parameterizations.
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8.2.1 Computing the Information Matrix Terms

We will begin by computing the terms in the information matrix. We start with a staridardity
on block matrix inversion, which allows us to compute the blocks of a invertazkimtrix Golub

and Loan1996:

where

D = (A-BC7'B")™!
E = —-DBC™!

F = (C-BTA'B)™!

A B
BT C

D E
ET F

A"+ AT'B(C-BTA™'B)"'BTA™!
AT'B(BTAT'B+C)7!
Cl'+0'B"(A-BC7'B")'BC!

—FBTA!

Here, we have shown the several equivalent formdfoE, and F'. However, as we will show, one
of these forms will be particularly convenient.

Recall that\y, = X;'. The same is true for the extended distribution: the information matrix is
the inverse of the covariance matrix. We now solve for the components eitbaded informa-
tion matrix. Using this inversion lemma, we can express the joint information matrixrnmstef
elements of the joint covariance as:

AL, s e tlonv, - ol sten e ut
Ao, = -XC(Vi-c)u o)t
A, = (Vi-¢lete)!

As they stand, these expressions are not useful. While this allows usresexpe joint extended
information matrix in terms of pieces of the joint extended covariance matrixgaalris to express
the extended information matrix only in terms of information parameters.

Fortunately, these expressions can be greatly simplified. We notice thathroEthe three expres-
sions, the ternfV;, — CtTEfCt)—l appears. We therefore begin with this expression:

V,—C/' 5ot
—1
GTS4G+ GOl +C)GT +02 — (S + O (TG + CJ))

|
—~

Ay,

I
/N N

2 cnzglcg)_l
(o2 +202m,0) )_1

Here, we see that we have achieved our goal: the fgrncan be computed using nothing but the
PLG model parameteis,,, a% and the currendy,. Notice that, like the PLG, computing this term

will require inverting a matrix.
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A similar derivation is possible fokc,:
Ao, = =Sy
= —(=2\g)(ZGT +C,))Ay,
1. _
= —(=2s)(-525, G+ ),

= —(GT =2\5,C) )Av;.

Again, note thaf\c, can be computed using ondy, C;, and the current statgs;,, plus Ay;, which
is a term we have already computed.

Finally, we can derive an expression tb‘ft:
AL = Ity e
1 1 T
= -2y, + <—2)\Et(—§)\zj + C,j)) v, <—2Azt(—§Azj + c,j))
= —2\g, — (GT = 2\5,C,) A (G — 2CyAs,)

which is similarly expressible in terms of PLG parameters and the current Stafether\y;, Ac,
and)\y;, yield the final extended distribution in information form.

8.2.2 Computing the Information Vector Terms

We now turn out attention to the computation of the extended information vedtmhvwe composed
of )\j;t and\g,. Like the terms in the extended information matrix, we can find simple, closed form
expressions for these vectors.

Recall that the vector:

Nu | _
g,

This yields our first equation:

-1
Xy Gy

¢l v

et
E;

Mt
E;

— 9 A5, Ao
Ao A

N = 2005, + A, Gpue)
1 1.
= —2(Ag, — A, (G — 20%20)(—5&%/“) - ZACtG(—gszkut)
= A — A, GAS A, + 200, Cod, + Aa, GASI A,

= )\.LLt + 2>\Ct 077)\,“15

which, like the terms we have previously computed for the information matrixsretiey on PLG
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model parameters and previously computed values. Similarly:

Mg, = —2(AG,m + A G)
= (AEAMG) O Aw)
= (=G +2C5,) + Wi G) (A5 M)
= (2)\%017)‘&))()‘53/\%)
= 2\, Cy\,,-

This completes the equations needed to compute the information parametersxietiaed distri-
butionp(F”, Ot+n+1 |ht)

8.2.3 Conditioning the Distribution

Having completed the derivation of the extension part of the dynamics, wéunn our attention to
the problem of conditioning the distribution on an observatipn; = o;41. As noted previously,
conditioning in the information form is an easy operation. To simplify notationwillenow repar-

tition the state vector and information matrix. Like a similar step in the PLG algorithrasied in
Chapted, this is not a mathematical operation; rather, we are just re-labeling our raattixector
to simplify the explanation of the algorithm:

Fn LA /\;‘t )‘JE: Aoy
Ottn+1 AE, A A
_ N—l [( )\0t+1 ) ( )\0t+10t+1 )‘0t+1f” )]
Agn Aoprfn Afngn
Recall that conditioning a Gaussian distribution in information form is easgl{as/n in Figure

8.2). To condition o041 = 0,41, We simply set:

)\Nt+1 = Afn -+ 2)\;rt+1f"0t+1

A2t+1 - Aanfn
This completes the derivation of the Information PLG. The algorithm is sumnahinzeigure8.3.

8.3 Final Theorem

We are finally ready to state our central theorem.

Theorem 8.3.1.The Information PLG is equivalent to the PLG in two senses: first, it computes
equivalent distribution over observations, and second, it uses exaetbatine parameters.

Proof. The proof follows by the two equivalences established. First, The8t2rhestablished that
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Algorithm INFORMATION-PLG-UPDATE
Input: Current state, represented by, and)y;, and an observatios.
Given: dynamical parametels, C,), ando—%.

Compute: (construct extended distribution)
o Ay, = —0.5(02 +2C, A5, C) )
o Ao, = —(GT —2)5,C) )\,
o AL =Xz, — A, (G —2Cy)s,)
o AL = +200,Cp\,,

o \g, = 22,0\,

Repartition:

AL AL Ae A A Xopsr fr
()G A1 (O )- O )
A, Ao A A Moorfr Afngn

Compute: (condition on observatioo, ;)
° )\Mt+1 = )\fn + 2)\(—)E+1f”0t+1

° )\Et+1 = )\Efnfn

Return: A, ., As,,, -

Figure 8.3: The state update equations for the Information PLG.
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for everyt there are equivalent natural and mean parameterizations for the distiipUtig|h;).
Second, the derivations in Secti@® prove that given a natural parameterization at timéhe
parameters can be updated to find the parameters at time which are exactly the natural pa-
rameters of the corresponding mean-parameterized Gaussian. By indticg@quivalence holds
for all ¢ (assuming an appropriate initial base case). Furthermore, the equa@nhsowpdate the
parameters at every timestep used only the standard PLG parameters. O

8.4 Steady State Filtering

We will now briefly discuss an interesting relationship between the Informdlod and steady
state filters. The goal of this section is modest: we simply wish to demonstratetrasfeady-
state filter, the state update is a completely linear function of the previous sthwbaarvation.
This observation is part of the justification of the Linear-Linear EFPSR ip@h9.

The general Information PLG state update shown in Fig@udds nonlinear, primarily because of
the matrix inverse needed to compute. The same thing is true of the Kalman Filter and the PLG:
each involves a matrix inverse performed on the covariance matrices at.titdewever, a key
observation about the (Information) Kalman Filter and the (Information) RlLiBat the sequence
of covariance / information matricetoes not depend on the observed data sequeltat means
that the covariance matrix can reach a “steady-state,” which we defiow, l@ad that it will remain

in steady state, because no sequence of observations can affect it.

A filter that is insteady-statés defined as$ayed 2003:
Elpw] = Elp—1] =pe  as  t—o0

and
EX) =EX_]=% as t— 0.

That is, the mean vector and covariance matrix have approached antoraitee that does not
depend on time.

For the purposes of this chapter, we will assume that the covariance@pamehed a steady state,
but not necessarily that the mean vector ha&;Ifs constant, this implies that, is constant, and
therefore that\y, is constant. Similarly, the fact thag, is constant implies that botk, and)\gt
are constant.

Together, these facts simplify the state update of the Information PLG, adédréne entire oper-
ation linear in the state vector,, and the observation, as follows. We start by showing that the
extended state vector is a linear function of the current state:

Ao = A+ 206,C
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= (1_2/\&077))%
= Al)‘ut

whereA; = (I —2X¢,Cy). Similarly,

Mg, = 2,0\,
- Az)\ﬂt

whereA, = 2\y,C,,. Together, these imply that

Mo | [N L
)\fn AEt

where we have rolled the extension and the relabeling into one step. Njaus, P[A;; As]),,, for
an appropriate projection matrik (this matrix simply selects the elements correspondingto
out of the vectofA,, ; Asn]).

Ay
Ao

At

Finally, since),, ., s~ is constant:

-
)\Ht+1 = )\fn +2)\Ot+1f”0t+1

= Apn + Azoq1

= P[A1; Ao]Ay, + A0t

which is a linear operation.

The point of the foregoing analysis is simply to demonstrate that in the cassteddy-state filter,
both the extension and conditioning operations are linear. This partly jugtiBeimtroduction of
the “Linear-Linear EFPSR” in Chapté& The reason that this is important is because the linearity
of the state update will facilitate a dynamical analysis for future learning idthgas. For example,

in certain settings, the stationary distribution of states can be computed adutiensto a linear
system of equations. This will also make a variety of approximations possitlieh we will
discuss in ChaptetO.

8.5 Experiments

To validate the equations governing the Information PLG, we here prasemiple experiment. We
will define a linear dynamical system, and then convert the parametersidi@the equivalent
parameters of the PLG, using the technique explaindRiudary et al(2005. We will then track
the state of both the PLG and the Information PLG, and demonstrate that thégtwibthens both
perform the same updates and make the same predictions.
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Let zo = [0; 0] be our initial state. Lef = 0.1, and let

A:

cos() sin(f) | 1.0 0.01
—sin(d) cos(d) | | —0.01 1.0

be a simple rotation matrix which rotates a given vectoflmegrees around the origin. Lét =
[11] be our observation matrix, which simply adds both coordinates together) et0.003 « I
be the covariance matrix of our transition noise, andHet= 1 be the covariance matrix of our
observation noise.

The PLG parameters are given by

G = [-1.0 1.9999]
C, = [1.0 2.0059]
op = 6.0116
The initial state of the PLG is
po = [7.0000 6.9297]"

Yo =
0.0002 1.0062

1.0002  0.0002 ]

and the initial state of the Information PLG is

Ay = [6.9972 6.8856]"

[ —4.9999  0.0001 ]

A —
o 0.0001  —4.999

To compare the PLG and Information PLG, we ran the above linear dynasyistdm for 1,000
timesteps. We used the PLG and Information PLG state update equationskaddoath models
to generate one-step predictions at every timestep. Figdrshows the results, which basically
demonstrate equivalence. On the left side of the figure, we see thaidimerdiscernible difference
in the predictions made (the green line, representing the PLG predictiomstdze seen because it
is exactly obscured by the blue line, representing the Information PLGqticets). On the right,
we show the difference between the two predictions. In terms of the atates swe can convert
Au, 10 i and vice-versa, and we can convast, to 3;. We did this after the 1,000 updates, and
compared the results||\,,,,, — r1000ll = le — 11, and||As,,, — Z1000]| = le — 12. These
differences, as well as the differences in predictions ( 1e-11) rfeveeind machine precision.
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Figure 8.4: Comparing the predictions made by the PLG and the Information ®hGhe top:
the predictions made versus the actual observations. On the bottom: threrdiffein PLG and
Information PLG predictions.
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8.6 Conclusions and Future Work

We have presented the Information PLG, and demonstrated that it is fornopliyatent to the
PLG: they use the same parameters; they compute equivalent distributienthevfuture, and
computationally, they have approximately equal complexity.

There are several natural directions for future research. As motbd introduction to this chapter,
the Information Kalman Filter and the Extended Information Kalman Filter haveyedjconsider-
able success in real-world applications because of sparsity in the infomfatin. This has made a
variety of approximations possible, and it is likely that similar results could halthe Information
PLG. It is also possible to extend the Information PLG in all of the same wayshe&#LG was
extended: a kernel Information PLG is conceivable, as are Mixturés@fmation PLGs, or even
an Extended Information PLG.

It is interesting that the Information PLG uses exactly the same parameters BE@ This im-
plies that every learning algorithm for a PLG is also a learning algorithmrfdnormation PLG,
and vice-versa. One of the advantages of the PLG is the fact that is\gi@s can be learned
directly from data through simple regressions and sample statistics. Haejglzeclose connec-
tion between the expectations arising from statistics of the data and the meamepetization of
the Gaussian used as state. It would be interesting to know if similar statemeetsruesabout
the EFPSR in general: is it possible to find the dynamical parameters bysegre (which ex-
ploit expectations and are related to the mean parameters), but then dpematedel in the natural
parameter space? If so, this could simplify the learning algorithms for the EFPS
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Chapter 9

Exact Linear-Linear EFPSRs

In Chapter7 we have introduced the general EFPSR model, and have pointed out tiesdithéwo
design decisions which must be made to specialize the EFPSR to any particdiel: rfeatures
must be selected, and an extension function must be selected. In C8apteused singleton and
pairwise features and a special extension function, which resulted infitrenation PLG.

In this chapter, we specialize the EFPSR in a different way, in preparatioandle domains with
large numbers of features and large data sets. We select a linear extemsitton, and we care-
fully choose features so that conditioning is always a linear operatiom.cdmbination of a linear
extension and linear conditioning results in a state update that is a linear funghach will help
facilitate a dynamical analysis and make a variety of approximations possibleaifie the result-
ing algorithm the “Linear-Linear EFPSR.” The word “Exact” in the title of thapter refers to the
fact that we will present an exact maximum likelihood learning algorithm femtiodel. Portions
of this chapter were published Mingate and Singk20073.

The choice of a linear extension function is partly motivated by the steatly{gtaring results of
Section8.4, and partly motivated by the proof that EFPSRs are capable of captudisNfound
in Section7.2.3. In both of these cases, the state update is a linear function of the tcstasmnand
the observation, and suggests that a purely linear state update can reefiélthings. To obtain
linear conditioning, we stipulate that all features be conjunctions of atomiengditson variables.
This is also partly motivated by broader graphical model research,ewtigh order conjunctions
are a common type of featurBiétra et al.1997).

We present the specialized model in Sec®oh where we discuss in detail our choice of features
and extension function. We then address the question of model learniregiioi®.2 We will
present an exact maximum likelihood learning algorithm in Sed@i@r?, including notes on struc-
ture learning in Sectiof.2.1 We then present some experimental results in Seéti@dn

9.1 The Linear-Linear EFPSR

We now discuss the specific choices that we make to create the Linear-BER€SR. For the
purposes of simplifying the exposition, we will assume that we are working wtary random
variables, as follows.
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In general, each multidimensional observatigrthat the agent receives (and therefore, the resulting
histories and the domain of the futuf& |h;) may be discrete or continuous. In this chapter, we will
assume that a number of binary features have been extracted fronstreations. We call these the
atomic featuresto distinguish them from the features created by the functioHereafter, we will
treat these binary features as if they were the observations, and ifpeanaederlying observations
from which they are generated. This will simplify some of the math, and will simghié/problem

of inference in the model. Although we use binary features, we emphasizalthost all of the
concepts we develop apply equally well to real-valued and discreted/edinelom variables.

9.1.1 Conjunctions of Features and Graphical Structure

Section7.1.2discussed the fact that there is a restriction on extension functions: thiéutisn
p(F"|hy) is defined using a set of featuresg). After extending, the distributiop(F"*!|h,) is
defined using a set of featurgs (). After conditioning top(F"|h.+1), the distributionp(F™|h¢.1)
must be expressible with the same set of featgi@shat were used ip(£"™|h;). In this section,
we discuss how we choose features so that this constraint on the ert&msition is satisfied. We
additionally choose features such that conditioning is a linear operatidnyginsimultaneously
show how to impose graphical structure on the model.

The featureg)() and¢™ () do not depend on time. This is equivalent to saying that the form of the
distribution does not vary over time. If the features impose graphicaltateion the distribution,

it is also equivalent to saying that the form of the graph does not charegdime. Because of this
fact, we will now discuss how we can use a graph whose form is indepeétime to help define
structure on our distributions.

First, we describe our observation variables more precisely. Let@aeh{0, 1}¢; therefore, each
F™hs € {0,1}"?, Let(F™)" be thei'th random variable irF™| ;. We construct the feature vectors
¢() andg™ () as follows. We assume that we have an undirected geawhich we will use to create
the features in the vectar(), and that we have another gragh which we will use to define the
features in the vectas™ (). DefineG = (V, E) whereV = {1, ...,nd} are the nodes in the graph
(one for eachF™|h;"), and(i, j) € F are the edges. Similarly, we defigét = (V+, E+) where
V+ ={1,...,(n + 1)d} are the nodes in the graph (one for eaﬁﬁ‘“mt)i), and(i,j) € E+ are
the edges. As noted, neither graph depends on time.

Consider the following graptr defined over the variables ii"|h,. Here,n = 3 andd = 3, for a
total of nine atomic variables:
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What is the structure that we want this graph to impose upon the distribptibh|h,)? Like

any graphical model, we want this graph to mean t#t|h,)" and (F"'|h,)’ are conditionally
independent of each other given all other variables in the graph, ¥ ikemo edg€(i, j) € E.

AppendixD.3 describes more examples of imposing graphical structure upon expdriantiby

distributions and how they can be interpreted.

To accomplish this, we will let features be conjunctions of atomic observatiaables, like the
standard Ising model features discussed in Se@i@1 We create one feature i for each node

i € V. Specifically, fori € V/, there will be some featurein the vector such that(f;)* = f{. We
also create one feature for each edge. Specifically, jff € E, then there will be some featuken

the vector such that(f;)* = ftiftj. For ease of exposition, we will allow only pairwise interactions
between random variables, but the extension to higher order featstesigihtforward. We will use
the graphG to define the vectop™ () in the same way.

We have discussed how we can dser G to define the features() and¢™ (), but we must also
ensure that after conditionin@™, we recover the original graphi. NeitherG nor G* can therefore
be arbitrary. We will impose special structure on both so that their forra doechange over time.
One way to do this is to ensure that temporally shifted copies of each feaisterethe graph,
and that conditioned versions of each feature exist in the graph. kon@g, if there is an edge
connecting;, ; ando}, 4, then there must also be edges conneating to o, 5, o}, 5 t0 0}, 4, 01, 5

to o;, 4, ando;, ; to o} ,. This ensures that the structure of the graph does not change bettaten
updates (we informally show this pictorially in Figugel).

9.1.2 Conditioning

Because we have stipulated that all features are either atomic variabtegumnations of variables,
finding the parameters of the conditioned distribution is easy (we emphasizbitha true even if
the random variables are discrete or real-valued). When we conditian observation, we freeze
the observed variables to their observed values, and then collect parame

To see this, consider the following example (to simplify notation, we will drop timiets}. Suppose
that we have a particular distribution over two binary random variables|o, OQ]T. We will define
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Figure 9.1: Extending and conditioning the EFPSR distribution with graphtoattsre. The
structure of the graph must not change between state updates.

the features of these variables to be two singleton features and one @@mun

¢>(O) = 02

0102

We will define a density over these random variables using an exponkmtigy distribution:

p(O=0;8) = exp {—ST¢(O) — log Z(S)}
= exp{—(s101 + 5202 + s30102) — log Z(s)}

so that our state vectere R,

Suppose we now extend this distribution to include a new variabléVe now have three binary
random variablesD* = [01 03 03] ". Suppose we define the feature veetdO*) to contain all
singletons, pairwise conjunctions, and third-order conjunctions (thidieatibie temporal invari-
ance property we discussed earlier: for every feature in the vectopally shifted copies are
also in the vector, as well as conditioned versions of each feature):

o1
02
03
¢+(O+) = 0102
0103

0203

L 010203

Our extended density will be

plotisT) = exp{—sTT¢"(o") —logZ(s)}
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= exp{—(5101 + $202 + $303 + 540102 + $50103 + S60203 + $7010203)

—log Z(s)}
so that now our state vect@‘r* & R7.

Suppose now that we wish to condition on a particular observation variadag e, . To condition,
we freezeo; to its observed value, and we notice that we can then collect terms into a rtew sta
vector:

p(otsst, o) = exp{_s+T¢+<o+>_1ogz<s+>}
= exp{ (8} + 8202 + 8303 + 8402 + 5503 + 860203 + 570203) — log Z(s+)}

= exp {—(s] + (52 + 54)02 + (53 + 55)03 + (56 + s7)0203) —log Z(s™) }
= exp{—((s2 + sy)o2 + (s3 + s5)o3 + (s6 + s5)o203) —log Z(sT)}
(
(

= eXp{ s'"[02; 03 0203] — 108;2(3)}

= exp { s'T ¢([0g, 03]) — log Z(S/)}

Some terms in the state vector didn't change because they did not dependbut others have
changed, which we have denoteddjy We have grouped terms together that interact with the same
unobserved variables. Also, notice tikatdoes not interact with the observations at all, and so it
has been absorbed into the normalizing constant. We call the entire podeaswditioning on an
observation and grouping like terms a “freeze-and-collect” operatiecause we have frozen the
observed variable to a fixed value, and collected the multipliers togetheefoetaining variables.

Notice that after conditioning, we are now back to 3 parameters—the samenwmlstarted with.
However, they describe different variables: the state vectoe started with was defined as mul-
tipliers for features ofo; 09], but the state vector we ended up wit) (s defined for features of
the variablegos 03]. In a temporal model, we see that is now playing the role 0b;, and that

o3 IS now playing the role ob,. We have also satisfied the constraint that the final features of the
extended-and-conditioned distribution be expressible in the same forra asgmal distribution.

This freeze-and-collect operation is linear in the state vect@ecause it is linear, we can define
the matrixG (o) to perform the operation, as follows:

01 0 oo 0 0 O
G(01> = 0 01 O 01 0 0
001 0 0 1 o

Note thats’ = G(o1)s™. G(o) hasl rows, wherel is the number of features in the conditioned
distribution, andk columns, where: is the number of features in the extended distribution. This
example also helps illustrate the importance of not allowing the structure of dpd go change
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between state updates.

We will apply the same logic of this example to conditionp{d™, O+, +1|ht) Onos1 by defining
the linear conditioning operat6#(o.+ ) as a matrix which adds the appropriate parameters together.
This matrix will be used throughout the rest of the chapter.

9.1.3 Extending

We now address the extension function. The extension funeticsnd can take any form. In the
PLG family of work, for example, a linear extension allows the model to capitvear dynamics
(Rudary et al.2005, while a non-linear extension allows the model to capture non-linear dysamic
(Wingate and SingH2006Hh). Here, we focus on linear extensions:

8?_ = ASt + B
whereA € R**! and B € R**! are our model parameters.

The combination of a linear extension and a linear conditioning operatorecenilbd together into
a single operation. Without loss of generality, we can permute the indices state vector such
that

St+1 = G(Ot+1) (ASt + B) .

Given model parameter$, B, an initial statesy, and a sequence of observations, the sequence of
s¢'s is completely determined. This is analogous to the belief state update in, BM&P: the
belief state update is a deterministic function of a prior belief state and arnvabiset

9.2 Model Learning

We have defined the broad class of our features, as well as our iextéasction. However, we
have still not defined exactly which conjunctions of atomic features the nuseésl In addition, the
extension function is parameterized by the vectérand B, which we must determine as part of
the model. In this section, we address the question of learning the exaxttigtrof the graph, as
well as the parameter$ and B from data. We briefly address each in the next two subsections.

We assume that the data we are given is a single long sequeficebsiervationsios, - - -, or]. We

will take this sequence of observations and staagtonsecutive observations together to create a
sequence of samples from tf&|h;'s. So, we will letf; = [o1,---,0,] be a sample fronk™|0,

fa =02, -+, 0n41] be asample fronk™ |0y, etc. (this is somewhat like the suffix history algorithm
described in SectioB.4). Figure5.3 graphically illustrates the process.
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9.2.1 Structure Learning

There are two aspects to structure learning: first, selecting the lengfthe window into the fu-

ture, and second, determining the graphical structure of the model — tllgicisling which edges

to include in our graph (and therefore, which feature conjunctions todediu the feature vector
¢(+)). For this part of learning, we make the approximation of ignoring the dyremanponent of

the model. That is, we treat eaghas an observation, and try to estimate the density of the resulting
unordered set, ignoring thesubscripts (we appeal to density estimation because many good al-
gorithms have been developed for structure induction). We therefooedgemporal relationships
acrosssamples, but we preserve temporal relationshiiisin samples. For example, if observation

a is always followed by observatidn this fact will be captured within thé;’s.

The problem therefore becomes one of inducing graphical structueerion-sequential data set,
which is a problem that has already received considerable attentioli.ofincair experiments, we
used the method of Della Pietra et. Ridtra et al.1997). Their method iteratively evaluates a set
of candidate features and adds the one with highest expected gain indtigddd. To enforce the
temporal invariance property, whenever we add a feature, we alsallaofdhe temporally shifted
copies of that feature, as well as the conditioned versions of that éea@ther feature selection
methods are possible; for examphandrasekaran et 42007) suggest a feature selection method
based on a maximum-entropy relaxation which naturally favors sparsedessis.

9.2.2 Maximum Likelihood Parameter Estimation

With the structure of the graph in place, we are left to learn the paramétargl B of the state
extension. Itis now useful that our state is defined in terms of obsergahltities, for two reasons:
first, because everything in our model is observed, EM-style proesdar estimating the parame-
ters of our model are not needed, simply because there are no weabsariables over which to
take expectations. Second, when trying to learn a sequence of staggigen a long trajectory

of futures (f;’'s), eachf; is a sample of information directly from the distribution we're trying to
model. Given a parameter estimate, an initial stgi@nd a sequence of observations, the sequence
of s;'s is completely determined. This will be a key element to our proposed maximuiindikel
learning algorithm.

The likelihood of the training data i8(o1, 02...07) = Hthlp(otUzt). We will find it more con-
venient to measure the likelihood of the correspondirs p(o1, 0s...07) ~ n]‘[lep(mht) (the
likelihoods are not the same because the likelihood offflsecounts a single observatiantimes;
the approximate equality is because the firsind last, are counted fewer thamtimes).

The expected log-likelihood of the trainin@'s under the model defined in E@.1is

T
LL= % (Z —s{ ¢(f1) — log Z(st>) 9.1)

t=1
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Our goal is to maximize this quantity. Any optimization method can be used to maximizegthe lo
likelihood. Two popular choices are gradient ascent and quasi-Newgtimods, such as (L-)BFGS.
We use both, for different problems (as discussed later). Howevtrnbethods require the gradient
of the likelihood with respect to the parameters, which we will now compute.

Using the chain rule of derivatives, we can compute the derivative wsipera to the parametess

T T
oLL OLL " sy
0A ; ds;  OA ®2)
First, we compute the derivative of the log-likelihood with respect to eatb:sta
oLL 0 T
B = g N O ~los Z(s)
= ESt [(ZS(Fn’ht)] - ¢(ft)
= & (9.3)

whereEy, [¢(F"|hs)] € R is the vector of expected sufficient statistics at timeComputing
these values is a standard inference problem in exponential family mosgelscassed in Section
D.6.

This gradient tells us that we wish to adjust each state to make the expediaggeat the next

n observations closer to the observed features. This is similar to the resaitied in standard
maximum entropy gradients (discussed in Secfigh?), where the gradient attempts to move the
expectation of features under the model such that it is equal to the empijuadtation. There are
two differences: first, we only have one sample for each timestep, an@ sorpirical expectation
is simply the observed sample at timeSecond: we cannot adjust directly; instead, we must
adjust it implicitly by adjusting the transition parameteraind B.

We now compute the gradients of the state with respect to each parameter:

o5 _ 0
0A 0A

where® is the Kronecker product, andis an identity matrix the same size ds

The gradients of the state with respecii@re given by

s 0
O = 2 Glow) (Asir + B)
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The gradients at time are temporally recursive — they implicitly depend on gradients from all
previous timesteps. It might seem prohibitive to compute them: must an algoridmmiree all past

ty - - - t;—1 data points to compute the gradient at titfieT his would scale a@(TQ), but fortunately,
the answer is no: the necessary statistics can be computed in a recassiignfas the algorithm
walks through the data.

Even though the computation can be done recursively, we wish to make ints pbout the effi-
ciency of computing these gradients. For the discussion, assume thatvevefbatures ing(f;),
and that we havé features in the extended distribution. This means that the matexR**!, that
the vectors; € R!, and that there ark! total parameters describing

The termZ:t is a matrix, with! rows andk! columns. Givena“"g—;, part of computing® involves
multiplying % by A. This is an expensive matrix-matrix multiplication, which scales poorly as the
number of features in the model grows. In addition, notice that this matrix-nratiiiplication
must be performed’ times to get the true gradient of the likelihood, which scales poorly as the size

of the training set grows.

9.3 Experiments and Results

Two sets of experiments were conducted to evaluate the quality of the Lliivezar EFPSR and the
exact learning algorithm. The first set tested whether the model couldreaptact state, given a
complete set of features and exact inference. We evaluated the leaodetlusing exact inference
to compute the likelihood of the data under the model, and compared to the trueolddelih

The second set tested larger models, for which exact inference i®ssibfe. For the second set,
bounds can be provided for the likelihoods, but may be so loose as toiferumative. How can
we assess the quality of the final model? One objective gauge is contimirpance: if the domain
has a reward signal, reinforcement learning can be used to determipérmalgolicy. Evaluating
the reward achieved becomes an objective measure of model qualitytrexegh approximate
likelihood is the learning signal.

9.3.1 First set: likelihood evaluations

For these experiments, we tested on three two-state problems, as well esrak, standard
POMDPs. For the two-state problems, training and test sets were geng@rsiegl a uniformly
random policy for controlled systems). We used 10,000 samples, seB and used all possible
features (a total of seven, plus an additional four features descitenextended distribution). We
used exact inference to compute i (F"|h;)] term needed for the gradients. We optimized the
likelihood using steepest descent with a line search.

Figure 9.2 (a)-(c) shows the results for three small two-state POMDPs with binargradisons.
Sub-figure (a) shows results for a two-state MDP (that is, the obsemvatababilities were set
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Figure 9.2: Empirical results for the EFPSR on two-state systems. Sule-{djushows the generic
model used. By varying the transition and observation probabilities, thiffeeetit POMDPs were
generated. Sub-figures (a)-(c) show learning performance on ttbe thodels. Likelihoods for
naive predictions are shown as a dash-dot line near the bottom; likelihoodptimal predictions
are shown as a dotted line near the top.

#of | #of | #of Naive| True Training set Test set
Problem || states obs. actions LL LL LL] % | LL| %
Easy 2 2 0 -2.08| -1.3§ -1.3999.9 | -1.39]| 99.1
Medium || 2 2 0 -2.08| -1.74] -1.74100.3| -1.76 | 93.5
Hard 2 2 0 -2.08| -2.07 -2.0Y98.6 | -2.07| 98.6
Paint 16 2 4 -6.24| -4.66 -4.6799.7 | -4.66| 99.9
Network || 7 2 4 -6.24| -4.49) -45099.5 | -4.52| 98.0
Tiger 2 2 3 -6.24 | -5.23] -5.24924 | -5.25]| 86.0

Figure 9.3: Empirical results for the EFPSR on benchmark POMDPs.

135

Sdetexplanation.



such that observation indicates state). The likelihood of the data underatimedemodel closely
approaches the likelihood under the true model — on both training and test galicating that

the Linear-Linear EFPSR has learned a virtually perfect model. Sulefig) shows results for a
moderately noisy POMDP; again, the learned model is almost perfect, afthibegeneralization
is not as strong. Sub-figure (c) shows results for a very noisy PQMDWhich the naive and
true log-likelihoods are very close. This indicates that prediction is diffiewgn with the true

model. Even so, we learn a virtually perfect model, which closely appesachtimal likelihood

and generalizes well to the test set. Notice that the optimizer starts to ovelti# training set after
about 60 iterations. At this point, performance on the test set begins lioe¢although this is

difficult to see in the figure).

Figure 9.3 collects these results in a tabular form, and shows additional results fer stardard
POMDPs, named Paint, Network and TitjeFor these new problems, we also set 3, but used
structure learning as explained in SectihA.1to learn the features. For each dataset, we computed
the log-likelihood of the data under the true model, as well as the log-likelihbadraive” model,
which simply assigns uniform probability to every possible observation. \&fe lgarned the best
model possible, and compared the final log-likelihood under the learrcett@amodels, for both
training and test sets. To help interpret the results, we also reportenpage (highlighted in bold),
which indicates the amount of the likelihood gap (between the naive and trdelshdhat was
captured by the learned model. Higher is better; again we see that thedenauels are quite
accurate, and generalize well. Finally, we note that the number of laterd ftatdhese POMDPs
varies from two to sixteen. In every case, however, the EFPSRwused, which appears to be
largely sufficient.

9.3.2 Second set: control performance evaluations

We also tested on two standard POMDPs called “Cheesemaze” and “MazeWe again used

n = 3 and 10,000 training points. We used “streamer features” for the highr oafigunctions,
which are shown pictorially in Figur@.4. These features connect observations with their temporal
successors, but there are no connections between differenvatisevariables. For Cheesemaze,
this resulted in a total of 66 features describjig™ |h;), plus an additional 33 features to describe
p(F™"*1|h;). For Maze 4x3, this resulted in 60 and 30 features, respectively. dfoparison, the
Cheesemaze model had 6,534 parameters, while the true model has 5&11(aBas many).

For both problems, exact inference is intractable, and so we usedkappte methods. To compute
the E[¢(F"|h;)] term needed for the gradients, we experimented with loopy belief propagatio
(LBP) (Yedida et al.200J), naive mean field (or variational mean field, VMF), and log-determinant
relaxations (LDR) \Wainwright and Jordar2006. Since the VMF and LDR bounds on the log-
likelihood were so loose (and LBP provides no bound), it was impossiblesesa our model by an
appeal to likelihood. Instead, we opted to evaluate the models based ool penformance.

'From Tony Cassandra’s POMDP repository at http://www.cs.browrfresearch/ai/pomdp/index.html
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Figure 9.4: “Streamer features” used in the EFPSR feature extractownSk the graph repre-
senting the features extracted, which are all possible conjunctions of teliymuccessive atomic
features. Notice that no features cross different atomic variables.

Using LSPI. Our initial experiments used the LSRIggoudakis and Par2003 planning algo-

rithm, which is a value function based algorithm. We generated a fixed seguéractions and
observations using a random policy. After each step of optimization, we theeparameter es-
timate to generate a corresponding set of states. We fed the states,sieavaidactions to LSPI
to generate an approximate Q-function. We then ran the agent in the modglugiaedy policy

based on the learned Q-function, and report the average reward@de steps.

We found that this did not work well: the algorithm resulted in policy chattelictviyave very
poor performance. Roughly speaking, this happens because théndtre function approximation
is greater than the gradient in the values. Too often, the agent wouldug&trepeatedly taking
alternating actions whose effects canceled (for example, alternatingdsetweving forward and
backward), which resulted in low reward. This was true of similar experisnenother domains,
reported in Sectiod0.3.2

Using NAC. We also experimented with the Natural Actor Critic (NAC) algorithnPeters et al.

(2009, which gave better overall performance. NAC is a policy gradient metRaticy gradient

methods define a stochastic policy which is parameterized, and compute direngjcd the average
long-term reward with respect to the policy parameters. Thus, taking andte@gradient direction
should always increase the average reward. While NAC is a policy gradigorithm at heart,

it combines policy gradients with several additional ideas: it uses corawr@tes to reduce the
variance in the gradients, and adds ideas from linear value functionxapmation, eligibility traces

and information geometry.

The NAC algorithm requires two things: a stochastic, parameterized policshvdperates as a
function of state, and the gradients of the log probability of that policy. A comrepresentation
of the policy is to use a softmax function of a linear projection of the state, eminer projection
operator becomes the parameter to be determined. This is the approacbpievae compute the
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Figure 9.5: EFPSR control performance on Cheesemaze. On the lefagaveeward results on
Cheesemaze for different approximate inference methods. On the rigigireps of the optimizer
for different approximate inference methods (see text for explanations

probability of taking actior; from states; given the policy parametefsas:

e THi
p(ai;stae) = |A>|<p {St j .
Zj:l ©Xp {St 93'}

Hered; is a vector of the same dimensionsas

(9.4)

The NAC algorithm requires the gradient of the log of this probability, whideisily computed:

dlogp(ai;se,0) | (1—plai;se,0))se  ifi=j
00, —p(ai; st,0)st ifi#j

The NAC algorithm also requires a few additional parameters. We usedratédf\ = 0.85, a
stepsizex = 10.0, gradient termination test= 0.001 and remembering factgt = 0.0.

For comparison, we also ran the NAC planner with the POMDP belief statet ighave used
the same form for the stochastic policy and the same gradients, but i8.Ege used the belief
state of the true POMDP in place of using therom the Approximate Linear-Linear EFPSR. We
also tested against using nothing but the observation to plan with — we uselstievation vector
instead of using; in Eq. 9.4. We also compared to a totally random policy.

Results. Figure9.5shows the results for Cheesemaze. The left panel shows the besi panir
formance obtained (measured as average reward per timestep) asa@nfohsteps of optimization.
The “POMDP?” line shows the best reward obtained using the true beliefsgai@mputed under the
true model as the input to the NAC algorithm. The “Random” line shows the ceal@ained with
a random policy, and the “Reactive” line shows the best reward obtéyneding the observation
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Figure 9.6: EFPSR control performance on Maze 4x3. On the left: ggerawvard results on
Maze 4x3 for different approximate inference methods. On the righgrpes of the optimizer for
different approximate inference methods.

as input to the NAC algorithm. The lines “VMF,” “LBP,” and “LDR” correspd to the different
inference methods discussed previously.

The EFPSR models all start out with performance equivalent to the rapdbey (reward of 0.01),
and quickly hop to an average reward of 0.176. This is close to the refaging the true POMDP
state, which achieves an average 0.187. The EFPSR policy closes9dB86wf the gap between a
random policy and the policy obtained with the true model. Surprisingly, ongnaiterations of
optimization were necessary to generate a state representation that \Wasizeno good control
performance: best performance was obtained after two or three itevation

The right panel in Figur®.5shows the progress of each inference method over time. We report the
lower bound provided by LDR, the upper bound from VMF, and a quadétived from LBP (which

is not a bound). In all three cases, the curves largely match the perfoencarves, although LDR

has a sudden hop in the middle. This implies that better models (higher likelihpiettsetter
control performance, although the correspondence is not exact.

Figure9.6shows the results for Maze 4x3. Again, the left panel shows contrfdipeance, and the
right panel shows optimizer progression. In some ways, these restdtieptnose on Cheesemaze:
there was no significant difference between the different inferentieadg, and only a few steps of
optimization were needed to reach the best performing levels. As the optintreaged likelihood,
control performance also improved to a point (with the LDR algorithm shovliegsame bump
at the end of learning). However, the best performance obtainedwssraot as good as in the
Cheesemaze domain: the EFPSR policies do better than simple random ofereafitiies, but
they are only a little bit better than reactive. In this domain, the EFPSR policgsksout 77.8%
of the gap between a random policy and the policy obtained with the true model.
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This domain was very challenging: experiments with different sets of feat@sulted in substan-
tially similar results. The EFPSR was always able to win out over a reactieypbut not by
as large of a margin as in the Cheesemaze domain. Determining why this difeggists is im-
portant. Is is the features? The extension function? A fundamentalatbessic of the domain?
Determining exactly when the EFPSR is expected to work well is still an opestignebut it is
evident that there are at least some domains for which the learning algovithrksvell.

We can draw two conclusions from these results. For both domains, vetuderthat the EFPSR
has learned a model which successfully incorporates information framrjisito the state repre-
sentation, and that it is this information which the NAC algorithm uses to obtairrikeée-reactive
control performance. This implies that the model and learning algorithmsafelueven with ap-
proximate inference methods, and even in cases where we cannot ecmtlae exact likelihood.
We can also conclude that the combination of features and learning algavitnknvell for some

domains, and not as well for others. Characterizing this precisely is antampdirection for future
research.

9.4 Conclusions and Future Work

In this chapter, we have presented a specialization of the EFPSR namddehe Linear EFPSR.
In this model, both the extension and conditioning functions are linear opgratbich resulted
in attractive practical properties. Tracking state in the model is simple, ¢ogsed matrix-vector
multiply at each timestep, and computing the gradients needed for maximum likeléamihg
was straightforward because the derivative operator is also lineaiiriEatly, the exact maximum
likelihood learning is able to learn almost perfect models of the small systerssnbeel here, when
we had a gold standard to compare against. Even when we could nottevalodel quality by
comparing to exact likelihoods, we were able to use the NAC algorithm in cotiqunwith our
model to control the system successfully.

It is interesting that we were able to learn fairly accurate models of the systenssdered here
even with the simple linear state update we have proposed. There was ioo guymrantee that a
POMDP would be representable by the model class we have chosendaid,jit intuitively would

have seemed necessary to have some sort of nonlinearity in the state, gpuatemany popular
models do: PSRs and POMDPs both require a nonlinear normalization opecationdition on the
observation, and PLGs and Kalman Filters require a matrix inverse to acchrtiisame thing.
These results suggest that strictly linear state updates can work well.

However, the exact learning algorithm for the model is not expected te sal, due to the re-
peated inference calls needed to comtiie( ;| ;)] and the expensive matrix-matrix multiplica-
tions needed to propagate the gradients (this was discussed in S22t@nChapterl0 addresses
these issues with an approximate learning algorithm for domains with manydeaitod large train-
ing sets.
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Chapter 10

Approximate Linear-Linear EFPSRs

In the previous chapter, we presented the Linear-Linear EFPSR aexbahmaximum likelihood
learning algorithm. The model and learning algorithm were able to captuesademall POMDP
style domains with high fidelity, which suggests that both are sound. Howeyereflected in the
results is the fact that the exact learning algorithm is fundamentally unse#talarge numbers of
features and large training set sizes. Ideally, we would like to be able touterafew sufficient
statistics of our training set — in the best case, from a single pass throaiglati— and then run a
gradient optimizer which requires only the sufficient statistics. We wouldldgdsdo minimize the
number of inference calls per gradient step, since it is an expensératam.

We will now present an approximate learning algorithm which achieves dllesfe desiderata: it
requires only a few sufficient statistics of a training set, which are comjguitaltinear time, and

it only requires one inference call per gradient step. We accomplish tthidwo approximations:
the first, presented in Sectid®.1, allows the model to cope with large sets of training data. The
second, presented in Secti@f.2 allows the model to cope with large numbers of features and
parameters.

Together, the combination of the Linear-Linear EFPSR and the approximaienoma likelihood
learning algorithm allow the algorithm to work on domains with tens of thousdifdatres, which
is larger than any other model with a predictive representation of statBo$&0.3presents results
for the algorithms on our standard POMDPs, a discretized bouncing balemsvell as on a visual
navigation task, where a robot must navigate a maze using nothing butefeafucamera images
as observations.

10.1 Approximation #1: Eliminate Dependence on Time

In order to achieve an efficient learning algorithm, we will first addressigpendence of the exact
learning algorithm or¥’, the size of the training set. We will revisit the basic likelihood equation,
and examine what happens in the limitiAs— co. We will present an approximate expression for
likelihood, and show that its gradient can be efficiently computed.

Recall that the exact expected log-likelihood of the trainfig under the model defined in E@.1
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LL= % <Z —s¢ ¢(fr) — log Z(&))

t=1

and that the gradient of the likelihood with respect to a state

S = Bulo(F )] - (/)

This implies that some sort of inference method must be applied at each timestdpiito compute
E[¢(F™|h:)] — inference is repeatetl times (the length of the training trajectory) in order to get
one gradient, which is then used in an outer optimization loop. Most infer@meteods are slow
enough that this is simply not feasibl€Tifis large. Sectio®.2.2also discussed the computational
burdens of the matrix-matrix multiplications needed to compute exact gradients.

We will now make one central assumption:

Assumption 10.1.1.We assume thatov[s;, ¢(f;)] = 0 and thatCov(s;, o;] = 0, V¢.

This assumption states that the state does not covary with observable gsalmtigiarticular, it im-
plies thatE[s, ¢(f;)] = E[s¢] "E[¢(f:)], which will be repeatedly used in the following derivation.
This is not as severe of an assumption as it may appear to be — in particalahjstdoes not imply
thats; and¢( f;) are independent.

We begin by introducing an approximate Iog-IikeIihoBEI, which is be a lower bound on the exact
likelihood. It is derived using our assumption and a lower bound:

LL Ly
= 7 Z_St o(fir) —log Z(s1)

t=1
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where we have defined the operator

=l

Er[X] = - ix.

The fourth line in the derivation follows because of Assumptionl.1 The fifth line is obtained
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by a double application of Jensen’s inequality:

Bl-log 2(s)] = E |~1ou( [ exp(—s] 6(F))ar)

Y

~to(® | [ exp(-sl o(r)ar )

Y

~togl [ exp(E [~ ()] )aF)

Q

~log( [ exp(E [~ E[6(F)])dF)
= —log Z(E[s])

The second and third lines follow because of the convexity of the functidng andexp, and the
fourth line follows by Assumptiori0.1.1

The approximate log-likelihood involves several new terms, which we ngvagx Consider
Er[s¢]. Because this is an unconditional expectation, this can be interpreted statibeary dis-
tribution of states induced by the parametdrand B, and will play a central role in the learning
algorithm to follow. At first glance, this term would appear to defeat thetpafiour approxima-
tions: it appears to depend @hand onA and B, which means that we would have to recompute it,
at costT’, every timeA or B change (as they would inside any sort of optimization loop). However,
we will show that this can be efficiently computed as the solution to a linear sydtequations in

a way that does not depend @n

The other terms have simple interpretatiorisr[¢( f;)] is the mean of the empirically observed
features ofu-step trajectories, and can be considered a suffix-history estimate @fatheds of the
n-step system dynamics vector. It can be computed in a single pass threught#h and does not
depend on the parametedsor B; it can therefore be computed once at the beginning of learning.
The quantitylog Z(Er][s;]) also has a simple interpretation: it is the partition funct®nomputed

using the vectok[s;|, and can be computed in the same way as the partition function associated
with any ordinary state;.

10.1.1 Algorithm Summary

Let us now pause to summarize what we have accomplished. The exditeldmppod L£L defined
in Eq. 9.1is intractable due to expensive matrix-matrix multiplications and the repeateéniter
calls necessary to compute the expected sufficient statistics at each timestep.

To remedy this, we have defined an approximate Iog-IikeIihﬁAﬁ‘d AppendixE shows that both

LL and the derivative of £ with respect to the model parameters can be computed efficiently: at
each iteration of the parameter optimizer, we must only solve two sparse lystams of equations
and perform inference on the graphical model once.
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Algorithm APPROX-LEARN-EFPSRS
Input: Er[o], Ex[o(f)]

Initialize: LetA =0, B =0.

Repeat:

e Compute the gradients and approximate log-likelihood:
(LL,VALL, NV BLL) =APPROX-LL-GRADSEr[o:], Er[6(ft)], A, B)

e Use the gradients to improve the parameters, using any optimization method. |In the
case of steepest descent,det A + aVLL andB = B+ aVgLL, wherea is a
suitably chosen stepsize.

Until ( ££ is maximized )

Return: A, B

Figure 10.1: Approximate Linear-Linear EFPSR learning algorithm. The ity of this algo-
rithm does not depend d¢h (the number of training samples).

During the development of this approximate quantity, we have introducedseew terms. Putting
them all together, we see that this learning algorithm is attempting:

e to find a setting of the parametedsand B
¢ which generate a stationary distribution of stdies]s;],
e based on a transition operator defined using the stationary distributionefabienstr o],

e which imply a stationary distribution of features of lengttrajectoriesEy,. (5, [¢(F"|h)] as
close as possible to the empirically observed stationary distribution of feaifitesgthn
trajectoriesEr[o( f1)].

With gradients in hand, any optimization method may be used to find the optimal séttingsnd
B. The final gradient algorithm is shown in Figugel (in AppendixE), and a simple companion
steepest descent optimizer is shown in Figl@eL

10.2 Approximation #2: A Low-Rank Parameterization

We now turn our attention to the parameter matridesnd B. So far, we have implicitly assumed
that the matrixA is reasonably sized, but this assumption is false in the case of a large noimber
features. For the rest of this section we describe this problem in detaiih the interests of clarity,
we defer a detailed description of our solution to SecEoB
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While the approximate maximum likelihood learning algorithm shown in Fiduxrd has several
appealing properties, it is not yet suitable for very large problems,usecthenaive parameteri-
zationof A yields too many parameters. To clarify this, recall that our state a vectore R ¥,
wherel is the number of features of the future. When we extend and condition, wecittyp
computes;”, which is a vector of parameters describing- 1 observations:

s, = As;+ B
If we assume that there akeextended features, thé matrix is e RF*!,

One of the goals of EFPSRs is to be able to use many features in order teecstpta. If the number
of featured is very large (say, tens of thousands, or even millions), the number ofdeddeatures

k will be even larger, and the matrix will be too large to work with. For example, suppose that
there are 10,000 features, and that the extended distribution has 18a00@8&. Naively, the matrix
A € R15,000x10,000 "\whijch is simply too large to deal with.

There are two possible solutions to this problem: one is to enforce somefsparmsity on the
matrix A, resulting in a manageable number of parameters. While appealing, it bepsetsitons:
of all the possible parameters, which should be constrained to be zerafteAmative solution is to
force A to be low-rank — that is;ank(A) = d < min(l, k).

We adopt the low-rank approach. We will replace the matriwith its low-rank decomposition
A = USVT, which we will learn from data. We select this strategy for three complementar
reasons:

1. Recall that the algorithm in Figud®.linvolves the solution of two sparse linear systems of
equations. Iterative solvers for such systems require only a functiéchvadan compute a
matrix-vector product, which can be done efficiently for a low-rank matrix.

2. The gradientyA/:‘Z used for parameter updates have a natural rank-one form, andbtteeref
mesh well with singular value decomposition (SVD) update algorithms: giveS8Wi of a
matrix and a rank-one update, the parameters of the updated SVD cdicieaty computed.

3. An efficient optimization procedure based on line searches is pos$idewill be using a
gradient based algorithm to optimize our parameters. The performanaetobptimizers is
impacted by their stepsize parameters: if they are too large, the optimizervesotutions,
but if they are too small, convergence is unacceptably slow. A line seaecbdsmmon way
to adaptively select a stepsize. We develop an optimizer which is ranleawhat is, which
explicitly deals with low-rank updates to the parameter matrix.

SectionE.3in the appendix discusses these points in more detail, and presents a mettwdgat-
ing the gradients of £ with a candidate rank-one update. In addition, it presents Brand'sitdgor
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Algorithm LEARN-LOW-RANK-EFPSRS

Input: Er[o], Ex[o(fi)], d

Initialize: LetU =0,5=0,V=0,B=0,2 =0,y =0,b=0.
Repeat:

e Compute the gradients and approximate Iog-IikeIihQ@’;, Ta,Er(si),Ag) =
LOWRANK-APPROX-LL-GRADS Er (o], Er[o(f:)], U, S, V, B,0,0,0)

Remark:VA[,AE =TcEr [st}T, but is never explicitly formed.

Remark:VBZZ = Ag.

C/o\nduct a line search: Find > 0 which maximizes
(LL) =LOWRANK-APPROX-LL-GRADS Er[os], Er[o(f,)], U, S, V, B,
al'q,Er[si],Ag)

Update the parameterization df
(U, S,V) =UPDATE-SVD(d, U, S,V,al'q¢, Er [s{])

UpdateB:
B =B+ alAg.

Until (EAE is maximized )

Return: U, S,V, B

Figure 10.2: Rank-aware EFPSR learning algorithm. The algorithm eythatd remains ranki.

for updating the SVD. Figur&0.2shows a steepest descent optimizer which performs a rank-aware
line search, and then updates the parameter matrix while maintaining a low@aakgosition.

The parameted can be selected with cross-validation or more sophisticated methods; we foun
that in all of our experiments, small values on the order of five or six wbvkell.

10.3 Experiments and Results

In this section, we present experimental results assessing the qualityapidieximations proposed
in Sections10.1and10.2 In Section10.3.1we present results on the small POMDP benchmark
domains used in Sectich3, and measure the performance of the algorithm with exact likelihoods.

For larger problems, exact likelihoods are not an option. Instead, weaisforcement learning
to help measure the quality of the model. In Sectldh3.2we discuss how we use the state of
the Approximate Linear-Linear EFPSR in the natural actor-critic planningrighgo, and present
results showing that in both of our test domains, the final performanceyisisse to that obtained
with the exact model learning algorithm.
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In Section10.3.3 we present results for a hand-crafted domain called the “Bouncing Bhlk is a
domain where the observations are known to factor in a certain way ant stnicild be amenable
to solution with our algorithm. Empirically, we demonstrate that in this domain the Appede
Linear-Linear EFPSR indeed performs better than either a randomativeepolicy.

Finally, in Sectionl0.3.4we present results for the largest domain of all, which is the Robot Vision
domain. This domain is somewhat similar to the autonomous robot domain desicriBedtion

3.6, but there are significant differences. Both versions use the saneglyind engine: the latent
state space, the actions, and the rendered camera images are all the sanearHn this version

of the domain, the agent observes about 800 binary features whielxtaaeted from each image.

In Section3.6, the agent only received a vector of three real values, represé¢hérmtpminant color

in the image.

10.3.1 Testing on Small POMDPs

We first examine the effects of Approximation #1 from Sectidhl, where we eliminated the
dependence off’, which is the number of samples in the training set. We refer to the gradients
computed by the algorithrimeless gradientsWe present the results of two sets of experiments
which are designed analogously to those reported for the Exact Liiesar EFPSR in Section

9.3

The first set of experiments tested on the same benchmark POMDPs Paimrklend Tiger, as
well as the Easy, Medium and Hard two-state problems. Fifjrgéshows the results by reporting
“Model Quality.” Two bars are reported for each problem; for nowfeeus on the bar labeled “Full
parameter matrix.” Like Figur@.3, the “Model Quality” number reports the amount by which the
gap between true and naive likelihoods was closed. For example, treeliaon the Easy problem
is -2.08, and the true LL is -1.38. The timeless algorithm generated a model Wwitlo&-1.52,
which closes about 80% of the gap. The figure shows results that amgacable to those for the
exact learning algorithm: on the Paint and Medium problems, the models insostgerfect, with

a score of 99%. On the Network problem, the score was lower, at 92%g thle Easy and Hard
models scored about 80%.

There are a few points worth noting here. First, the algorithm is capablenafrgting models with
the same quality as the exact algorithm, as demonstrated by the Paint, Medidigemngroblems,

but it does not always work perfectly. It is interesting that among thedtate problems, the
algorithm performed best on the Medium problem, while exact algorithnropegd equally well

on all three. The reason for this is unknown, but could be due to regdiffierent local minima.

The second set of experiments is reported in the same figure. The flgaws sesults testing the
quality of Approximation #2 presented in Sectib@®.2 The figure reports a bar for “USV parameter
matrix,” which is the model quality using the USV approximation plus the rank-ali@e search.

In every case, the dimensiahwas limited to be no more than 5. The results suggest that this
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Figure 10.3: Learning with timeless gradients. Shown are results for thesftdmeterization aft
and the low-rank parameterization 4f

approximation and the corresponding line search have virtually no impawcioole! quality when
compared to their exact counterparts, while reducing the number of panteee Figl0.3. This

is a positive result: it suggests that the idea of using a low-rank decommofsitial is sound, that

the SVD update algorithm works well, and that the rank-aware line seasdkswvell. Of course,

it is likely that reducingd too far would have an adverse effect on model quality. Determining the
optimald is an interesting direction for future experiments.

10.3.2 Planning in the Approximate Linear-Linear EFPSR

To test the Approximate Linear-Linear EFPSR in larger domains, we cappatal to likelihood.
Instead, we measure model quality by using the states in a reinforcemeniggalgorithm, as we
did in Sectior9.3.2

We tested on the same two domains used in the Exact Linear-Linear EFP&&sdbiaze and Maze
4x3. The observations, actions, and features are all describedtiors@@3.2 The only difference
is that in the Maze 4x3 domain we experimented with different settings.falWe learned models
for both domains with the Approximate Linear-Linear EFPSR, using both the ssmeladients
and the lowrank parameterization of tHematrix, with d constrained to be less than 20.

Figurel10.4shows the results of running the NAC planner in the Cheesemaze domairefdiffer-
ent algorithms. The best performing is the true POMDP model, which achéevagerage reward
of 0.187 per timestep. The worst performing is the reactive model, whicteveshan average
reward of 0.1 per timestep. Three different inference methods werktadearn models for the
EFPSR, with the VMF and LBP models performing just under the performaiite true model at
an average reward of 0.177. Here, we see that the Approximate Liiesar EFPSR has learned a
good model of the system, with relatively few features and a rather smallrgrabtraining data.
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Figure 10.4: Planning results in the cheesemaze domain. Shown are NA@deawrves for five

different algorithms. There is one caveat to the results: the learning ¢orthe LDR inference
method has been compressed by a factor of 20 (that is, it ran for 108fadtes instead of 20). For
some reason, the performance improved much more slowly under the moeehtpel with LDR

than with other inference methods.

These results basically match exactly the results reported in SexBadwhen using the Exact
Linear-Linear EFPSR learning algorithm, and imply that both learning algorithewe learned
models that almost identical. We conclude that in this domain, the approximatigasmusked

very well.

Figure10.5shows the results of the NAC planner on the Maze 4x3 domain. The partleédeft
shows the NAC learning curves for different window sizes, and indsciizt for best performance,

a window of at least: = 5 is necessary. The panel on the right compares the best EFPSR model
with using reactive and POMDP states. The performance of the bestERB8el (average reward

of 0.1266) is slightly better than a reactive model (average reward 090)1and is worse than the
results obtained using the POMDP state (average reward of 0.1615).

These results also basically match exactly the results reported in S8@i@when using the Exact
Linear-Linear EFPSR learning algorithm, with two caveats: first, the realst@ned here is slightly
lower (the Exact algorithm obtained 0.1295, while the Approximate algorithtairdd 0.1266), and
second, we had to use= 6 to obtain this result. Even though the performance in this domain is
not as good as the performance obtained with the true POMDP model, tleenpanice is only
slightly worse than that obtained with the exact model. We therefore conttiatie this domain,

the approximations have worked very well.
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Figure 10.5: Planning results in the Maze 4x3 domain. The left figure sheamsing curves for
the EFPSR with different window sizes into the future. The best modelaigésdow ofn = 6.
The right figure compares planning results using the best EFPSR modedatiie’e model the true
POMDP model.

10.3.3 Bouncing Ball

The next domain we tested on is called the Bouncing Ball domain. In this domaiab#ervations
are factored in a way that is closely related to the dynamics of the system. drha&mwas hand-
crafted to be a larger domain in which the EFPSR would perform well: the domaaiisignificant
structure in the observation space, and basically requires the use othwinch is able to capture
that structure.

Figure10.6describes the domain pictorially. The upper-left figure shows the dynarhite ball
bouncing. At each timestep, the agent observes an 11x10 array ¢ pikech may be black or
white. One of these pixels represents the “ball,” which bounces diagaailynd the box (shown

as a gray trail in the figure). The agent has a single action: an action ofa@srido nothing,”

and an action of “1” means “reverse the direction of the ball.” The rewadal is shown in the
upper-right corner of Figur£0.6 The highest reward is obtained by keeping the ball near the center
of the box. This domain is episodic: every 50 timesteps, the ball is reset talamainitial starting
configuration.

We define three different versions of the domain. In the noiseless wethi® agent sees the exact
position of the ball. This domain is second-order Markov, because tlittomosnd direction of the
ball can be determined from two successive observations. Note thatateeonlyl1l x 10 = 110
possible observations in this domain. The second version of the domairobsdels/ation noise:
each white pixel has a 1% chance of becoming a black pixel. This hasakéweresting effects:
the new domain is no longer second-order Markov, and the observa@oe $s now exponentially
large (there ar@''® possible observations, although most of them are highly unlikely). The third
version is like the second, except that each pixel has a 10% chanaaiofgtirom white to black.
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Figure 10.6 also shows the features we used for the EFPSR. For this domain, wecbded-the
features to correspond with the known dynamics. Wexset2. To modelp(F2|h;), we added sin-
gleton features for each observation. Pairwise features were agideddh variable to its diagonal
neighbors in the next timestep (these features were designed to captdiagbeal motion of the
ball). The extended distributiop( F3|h;) was modeled with quartets consisting of an action and
observation at time, a diagonal observation at time- 1, and a diagonal observation at tihe 2.
There were 584 features describin@?|h;) and 1,292 features describipgF>|h;).

Given the features, we learned a model using the Approximate Lineaat BFIEPSR, with both
timeless gradients and the USV approximatiordpfand 100,000 training samples. We then used
the resulting states as the input to the NAC planning algorithm. FigOi&shows a representative
learning curve for the planner in the 10% noise version of the domain. difieointal axis represents
steps of NAC learning, while the vertical axis represents average devtdained. Shown is the
performance of a uniformly random policy, the best performance olttaisieg the observation as
state in the NAC planner, and the performance of using the EFPSR state il\@el&hner. We
see that the EFPSR has a clear performance benefit over both a unifarmdlym policy and the
best reactive policy.

These results hold for both the noiseless and 1% domains as well. Hig@eollects the results
for these domains. Again, the EFPSR is able to consistently improve oversheshetive policy,

generating a policy with 30% higher reward in the noiseless version, a peitby25% higher

reward in the 1% noisy domain, and a policy with 13% higher reward in the 1%y domain. It

is an open question as to whether different feature sets would improweréessts further.

10.3.4 Robot Vision Domain

Together, the combination of the Linear-Linear EFPSR, the approximate maxiikelihood ob-
jective function, and the low-rank decomposition of the parameter matrix akkperamentation on
domains with hundreds of observation variables and tens of thousaffestafes, which is larger
than any other model with a predictive representation of state. Here, phe e entire suite of
techniques to the task of visual navigation, where a robot must navigateeaussng nothing but
features of camera images as observations. The raw atomic featurest obb@ary random vari-
ables, such as edges, corners, and quantized colors, which aresttwhy the EFPSR to construct
higher-order conjunctions. We also define a reward signal whichrdsathe agent for navigating
to a goal location, and attempt to find a good policy using the NAC planningitdgor

Vision Domain Setup

Figure10.9explains many parts of the setup of the vision domain. The latent state speistsof

a positionz, y and orientatior#. The agent inhabits a maze with brightly colored walls. The initial
observations are 64x64 full color images, which are post-processedraxt binary features. The
agent has four actions: move forward, move backward, turn left anditht.
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Figure 10.6: The setup of the bouncing ball problem. In the upper left: yhardics of the ball
bouncing. The black square represents the current observatiergr@i squares are not observed,;
they represent the trajectory that the ball has taken. In the upper-tghteward function. On the
bottom: the features used to describe the distribution of the future.
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Figure 10.9: Setup of the vision domain. The upper left shows examplee odithcamera images
and the extracted 16x16 array of edge features. Color feature®arat éeatures are also extracted.
The upper-right shows the higher-order features used (which Wést@amer features”). These
features connect the same observation variable with temporal sucdssbdo not connect dif-
ferent variables at all. The bottom row shows reward as a function af,thg? coordinates of the
robot for Map #1 (left) and Map #2 (right). Higher is better.
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The experiments used two different maps. A stylized version of Maze #uisdfin Figure3.5,
and the outline of each map can be seen in the diagrams representing treftewéion in Figure
10.9(bottom row). Maze #1 had brightly colored walls, which is helpful for deiaing a location
in the maze. Maze #2 also had brightly colored walls, but was designed ¢oslighitly stronger
perceptual aliasing than Maze #1.

The experiments used two different sets of binary features. The drsifdeatures consisted of
edges, corners and colors. The edge features were extractedbas@atray of binary variables,
representing presence or absence of an edge (shown in Big@eipper-left corner). Corner fea-
tures were extracted as an 8x8 array of binary variables. Color ésattere extracted by convolving
different regions of the image with a localized Gaussian to extract the dohwiokan in that region,
and then quantizing the color to the nearest of 54 base colors. Each adoedtar was encoded as
a vector of 54 binary variables, only one of which was active. This featat resulted in 884 total
features.

The second feature set was a post-processed version of the ffir§theeidea of the second set of
features was to create higher-order features which represented tikiagvalls and hallways. To
accomplish this, images from the Maze #1 were clustered according to thedtts from which
the images were captured, and then the binary features were avergg#tetdo create a sort of
filter. New images were tested against each filter, and if the responsedextan empirically
determined threshold, that particular feature was triggered. The imagesciustered into 373
groups, meaning that there were 373 atomic features in this feature set. tiiéhileages were all
taken from Maze #1, they were also used in Maze #2, where the coldrgdometry, etc. were all
different.

We setn = 3. For the feature vectas(), we used “streamer features.” Streamer features connect
each observation variables to each of its temporal successors, but doake any connections
across different observation variables. This essentially means thatagdable is fully factored,
and without any dynamics, this would mean that we would be modeling the evolftieach
observation variable through time independently. This is not as severenag geem, because the
state update changes allows variables to depend on each other: thedadi&iribution of each
variable is updated based on the distributions of all of the other variablesieMus experiments
not reported here were conducted with different feature sets, asd thatures seemed to work
as well as any other choice, while creating a relatively compact featur&\éth the raw atomic
features and the streamer features, there were between 12,000 &bl to@adfeatures in the final
feature set.

Training was done on 200,000 data samples generated with a random pblitifferent reward
function was defined for each maze, which are shown in Fi@0r@ Both reward functions en-
courage the agent to navigate to a specific point in the maze, so the resuitihgnp can be viewed
as a shortest path problem.
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The experiments also used two different kinds of dynamics. In the “ebdsgiamics, the agent’s
actions had large effects: turns were 90 degrees, and steps famaldhckward moved a full maze
unit. This meant that, for example, the agent could navigate from any pdimé tgoal in about 15

steps. In the “fine” dynamics, the agent turned 15 degrees, and mdvetb@e units. This results
in much smoother looking movements. For both sets of dynamiess still set to 3.

After learning a model with the Approximate Linear-Linear EFPSR, we useI&C algorithm to
find a good control policy (experiments with LSPI generally resulted in paliatter, as discussed
previously). For the NAC parameters, we used a TD rate ef0.85, a stepsizex = 10.0, gradient
termination test = 0.001 and remembering factgt = 0.0. For comparison, we also used NAC to
learn a policy using the binary features as state (either feature set&atord set #2, depending on
which set was used to train the EFPSR). We call this the “reactive” poliolll, we also tested
against a random policy.

Vision Domain Results

Learning the model was relatively easy, taking only about 30 secondsnpute the expected
feature vectors and optimize the approximate log-likelihood. It took longerltectohe raw data
(about five minutes) due to the intensive rendering and image procelsmak quite a long time to
learn a good control policy. In order to compute a gradient for the polcgipeters, the agent needs
to estimate the gradient of the average reward, which is implicitly defined agantation over the
entire state space. Thus, the agent typically had to wander around théaneegey long periods of
time before the gradients converged to a reasonable tolerance. Retakkthsed 200,000 training
points to learn the model; each NAC step required about 1.5 million steps in tha aod for each
step, images must be rendered, features extracted, etc. For the reddteefmorted, the policies
were obtained after about a day of computation.

Figure10.10shows the results. There are several points worth noticing in the grAplasbaseline
observation, the random policy obtained approximately the same rewarthiddimains, regardless
of map or dynamics. Higher rewards were obtained in general with cdgireemics, regardless of
map, feature set, or learning algorithm. Presumably, this is because thetagenbigger steps,
and so it does not need to spend as much time traveling to regions of higtirewa

It is the difference between the two feature sets that is most interestingg\veral reasons. First,
note that using feature set #1, the EFPSR consistently performs justthedserformance of the
reactive policy, regardless of map or dynamics. This could perhapggairmed if the EFPSR
was generally unable to capture any meaningful dynamics, and insteaddearpredict the iden-
tity function, with some noise. This would mean that, for example, the predictmmihé next
observation would be the same as the current observation, which wéeddiefly result in a pol-
icy equivalent to the reactive policy. The story is different with featwie#?. Here, the EFPSR
consistently outperforms the reactive policy.
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Figure 10.10: Results on the vision domain. The bar charts show the evatajned for different

algorithms on different versions of the robot vision domain. Higher is bettee top chart is for

feature set #1, and the bottom set is for feature set #2. The perfoenodithe random policy does
not depend on the features used, so the same bars are replicated gnaheé bmttom charts.
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Combined with knowledge of our experimental setup, these observationsangplyerent story. It
is clear that the performance of the EFPSR is at the mercy of the high eateré conjunctions.
In the reported experiments, we used the same set of streamer featgmslless of what the
underlying feature set was. The highest order of conjunctions wasba four or five.

One plausible explanation for the difference in performance is that lo@r@onjunctions of more
abstract features gives more modeling benefit than low-order conjoeatiogranular, low-level
features. To see this, consider the following cases:

1. Itis easy to imagine that low-order conjunctions of granular featuliesusficient to capture
useful abstract structure in the domain. For example, to representdbenge or absence
of an entire vertical edge, the agent might need a conjunction of 10 ésatdio represent
something hallway-like, the agent might need a conjunction on the ordér af $o features.
Without high order conjunctions of low-level features, it is likely that theragimply cannot
distinguish between a blue wall and a pink wall, because it cannot distingai$ from a
bag of edges. To create higher-order features, we experimentedregimer features, hand-
coded features, randomly sampled features, and all possible painaiseele However, in
all of these cases, the highest-order conjunction obtained was foweoitfimay be that this
is simply not high enough to be useful.

2. This was part of the motivation for feature set #2. Consider the wagltis¢ers were gen-
erated, and how they might be capturing more abstract features. Bab@usamera images
were clustered according to latent states, they were typically images ofrtteetbang, from
slightly different positions and angles. Imagine two clusters, one set ofeisnabich are all
looking at the corner of a pink hallway from different angles, andfagowhich are all look-
ing out across an open courtyard. The features in feature set #Ralagous to asking if the
current image is more like cluster (1) or cluster (2). Using this feature sethitfnest-order
conjunction was still four or five. However, these conjunctions may sggremuch more ab-
stract kinds of knowledge: if one feature represents “pink wall” aratteer represents “pink
corner,” perhaps a low-order conjunction could express “I'm logkah a pink wall, but if |
turn left, I'll see a pink corner.”

The idea that low-order conjunctions of more abstract features gives modeling benefit than
low-order conjunctions of granular, low-level features suggestsrabdirections for future im-
provement of these results. It is possible that creating very high-oahgunctions of the low-level
features would lead to the best model. To do this, better structure learniogttags would be
needed, because the technique discussed in Sextohis difficult to scale well. However, it
seems more likely that clustering images as a preprocessing step and extnaatenmeaningful
features will yield better performance, which would encourage relseate filters and clusters.
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10.4 Conclusions and Future Work

In this chapter, we have presented an approximate maximum likelihood leadgimgthm for the
Linear-Linear EFPSR model. In many ways, the algorithm has taken a gejpdosvards the goal
of modeling large domains. One goal was to eliminate the dependeriEetbe size of the training
set. Not reflected in these results is the computational savings over thalg@aithm: for all of the
models here (including the Robot Vision domain), learning the actual dynamaztel only took a
few seconds. In contrast, preliminary experiments indicated that compugingrje exact gradient
for the robot vision domain would have taken days.

The models resulting from this learning algorithm are not perfect. In eva&sg, the approximate
learning algorithm performed worse than its exact counterpart. Sometineedifférence was no-
ticeable, but other times, the two models were virtually indistinguishable. Thisrigpe to be

expected: it is an approximate algorithm, and is not expected to work ggréecevery domain.

While it has been pleasantly surprising how far the approximation has Ietogdake us, charac-
terizing the circumstances under which the algorithm is expected to work vesllimportant open

problem.

Even though the approximate models perform worse than the exact modglsniy by virtue of
these approximations that we were able to attempt at all domains like the Bo®ading the Robot
Vision domain. In that sense, the most encouraging results came from bo# Rision domain.
While not always better than a reactive policy, there are some combinafitestares and dynam-
ics in which the EFPSR model and the approximate learning algorithms yield tettereactive
control policies, suggesting that information from history has succis$feen incorporated into
the state representation. This is a positive result considering the sizedsdttneet and the number
of features involved.

Future work needs to address the problem of learning good atomic featuehe graphical struc-
ture, since this seems to be one of the key factors affecting performakuditional classes of
extension functions should also be considered, possibly with appropoatmearities. Theoret-
ical work needs to be done to determine what types of extension functienseaded for best
performance, and algorithmic advances are still possible: for exampleuitvbe nice to find an
algorithm with a finer-grained tradeoff between performihgnference calls and performing one
inference call per gradient step. It may be possible to use the approximatiesented here to learn
a coarse model quickly and then refine it. Or models could be minimized by ex#émeimesulting
parameter matrix and pruning unused features.
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Chapter 11

Concluding Remarks

Models with predictively defined representations of state are still relatpaing. To date, there has
been little systematic research devoted to pushing these models towards dattiaicentinuous
observations, large data sets and/or structured observations. Thsstdikes steps in all of those
directions. We now look back and summarize where we have been, asghpsome thoughts on
what the future might hold and some conclusions we can draw.

11.1 Review of Contributions

This thesis describes a trajectory of work that explores increasinglylesrdpmains. Our goal at
the outset was to explore models with predictively defined representafistae with the intent of
pushing such models towards practical applications. We take a moment to tbei@omains we
have examined, the models we have proposed for them, and their compamiundealgorithms.

11.1.1 Continuous PSRs

The Continuous PSR algorithm of Chapt&extended PSRs directly to the case of continuous
observations by generalizing many aspects of PSRs. One of the most impmtdributions of
this chapter was the introduction of tegstem dynamics distributionshich are a generalization
of the system dynamics matrix to the case of continuous observations. Estirtresggdistribu-
tions played a key role in the development of subsequent algorithms. Téygechalso presents
an information-theoretic framework for addressing the question of findingpproximate repre-
sentation of state and how to determine the sufficiency of such a reprgsen@omputationally,
we showed that the combination of kernel density estimation, quadratic Ratrgipy and Nys-
trom approximations yields efficient, differentiable expressions for inégion, which results in a
gradient optimizer capable of optimizing state representations. Empiricallyemenkstrated that
information and modelling error are correlated, and that the representgtiomzer is capable of
improving randomly chosen state representations.

The Continuous PSR algorithm uses a vector of densities as a state negtiose However, there
is a stage in the Continuous PSR algorithm where some of the system dynamitsiiities (a
complete distribution over a window of future observations) must be modeléis highlights
the fact that directly estimating these distributions appears to be the certdbdérmrof learning
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dynamical systems using predictive representations of state, which led tetb®pment of the
Predictive Linear-Gaussian family of algorithms and their generalizatiorE:xpenential Family
PSR.

11.1.2 The Predictive Linear-Gaussian Model

Chapted presented the Predictive Linear-Gaussian model (or PLG). This mddededy the work
of Matthew Rudary (with some help from the present author), but hagders the jumping-off
point for much of the research presented here. The PLG uses atjwedépresentation of state,
defined as the statistics of a Gaussian distribution over a finite window okfohservations — in
essence, the PLG assumes the system dynamics distributions are Gdogsiatantly, the PLG is
formally equivalent to the Kalman Filter, in the sense that it has an equal mohparameters and
predicts the same distribution over future observations given any histae/learning algorithms
are simple, consisting largely of linear regressions and sample statistics) aomhe cases have
attractive theoretical guarantees. Rudary’s empirical results demimustheat when learning PLG
models from data, the PLG typically outperforms LDS models learned with thelgdditom.

11.1.3 The Kernel PLG

The PLG is capable of modeling only linear domains. Chapttended the PLG to model nonlin-
ear dynamical systems by using the kernel trick. The resulting Kernel®a@| can be interpreted
as performing linear dynamics in a high-dimensional, nonlinear feature sijée also contributed
a learning algorithm which, like the PLG, consists mainly of regressionsamglg statistics. The
state update requires some inference on the model, which can be perfexawtly (although not
efficiently) in the case of a Gaussian kernel. Computationally, we introdugethspoint approx-
imations to perform the inference needed by the dynamics, which allowed ttiel noobe easily
extended to any kernel, and which has the side effect of relating the K&tte Unscented Kalman
Filter. Empirically, this model outperformed the PLG and a kernel autorsigeemodel on several
nonlinear test problems, and is competitive on other problems.

11.1.4 Mixtures of PLGs

An alternative way to leverage the PLG framework to model nonlinear dyrssystems is to con-
sider dynamics that are piecewise linear. Chaptpresented the MPLG (or “Mixture of PLGS")
model, which uses a probabilistic generative model to mix different PLGshegt form a com-
posite dynamical system. Because the mixing method has probabilistic semardidsartting
algorithm for the MPLG has a simple form which can be interpreted as a wedightsion of the
PLG learning algorithm. Again, inference is needed during the state ugmdtap exact expres-
sions are available. Computationally, we contributed an extension of the gigimzapproximation
used by the KPLG to create a hybrid particle-analytical inference methogtewtonlinear terms
of the state update are approximated using sigma-points, but linear pon@&asraputed exactly.
Empirically, we demonstrated that the MPLG outperforms the KPLG on the testids, and that
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it demonstrates more robustness to parameter perturbations.

11.1.5 The Exponential Family PSR

Chaptersr - 10 presented the Exponential Family PSR (EFPSR) model, which combines and ge
eralizes many of the ideas from previous models. Instead of defining stdte gparameters of

a Gaussian over a window of the future, it uses a general exponeatidly fdistribution. The
flexibility of the exponential family distribution and the genericity of the state tepd@echanism
permits the unification of the PSR, the PLG, the KPLG and the MPLG as speti@iigaf the
EFPSR, which lead to theorems about the representational capacity dF&RENn Chapter. It
additionally connects PSRs to graphical models.

Chapter8 presented the Information PLG, which unifies the PLG, the Information Kalriléer
and the EFPSR. By choosing the features and extension equationsllgaveé showed that the
EFPSRIs the information form of the PLG. We also showed that state updates carrfoenped
efficiently using nothing but the ordinary PLG parameters.

Chapter9 presented the Exact Linear-Linear EFPSR, which is a special case BRRSR model
designed to be tractable. We presented an exact maximum likelihood lealgamighen, which is
intractable for all but the smallest domains. Even so, we demonstrated erhpitieda the model
can capture several benchmark POMDP domains, and that the statergpt®n generated by the
EFPSR is useful for planning in a traditional reinforcement learningesenghat it can be used to
learn almost optimal control policies for some domains.

Chapterl0 presented the Approximate Linear-Linear EFPSR, which invoked desppaoxima-
tions to help the Exact Linear-Linear EFPSR scale to larger domains. @oesans had tens of
thousands of features (which is far larger than any other model withdacgixe representation of
state) and large training data sets. Using this suite of techniques, and imctojuwith the natu-
ral actor-critic planning algorithm, we demonstrated that there are situatiomsevihe EFPSR can
successfully incorporate history into its state representation, which ttes o improved control
performance. The largest such domain is a visual navigation task, \ahef@t must navigate a
maze using nothing but camera images as observations.

11.2 Conclusions and Future Work

What broad conclusions can we draw from the work presented hdrefir$t conclusion is that the
idea of predictively defined representations of state is a flexible onghahchany variations seem
to result in learnable models which capture their domains well. We have coesidevariety of

types within the umbrella of predictions about the future: we have usedbilales of specific tests
(the PSR model), densities of specific tests (the Continuous PSR modebtatiques of features of
the short-term future (the PLG family of models), and the natural paramatardistribution over

a window of short-term future observations (the EFPSR). These appéave worked well, and
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there are likely many other possibilities.

What can we conclude about the idea of predictively defined state itsedf®egan this thesis by
noting that our restriction to models with predictively defined state was selfseth@nd we won-
dered: would this be a limitation? What would we gain? Our conclusion is tha$tisation does
not appear to have limited the capacity of our models. Empirically, we have ottgrerformed
other approaches, and even when we did not, we were competitivee fiee been positive theo-
retical results as well. For example, the fact that PSRs are formally moressige than POMDPs,
the fact that every LDS can be captured by a PLG, and the fact the8IE$-Pan capture a variety of
models all give strong reasons to believe that we may never lose anythiepi®senting state as
statistics about the short-term future (although proving this in complete glépevould be a sig-
nificant contribution). Our conclusion is this: so far, there is no knoynagentational or empirical
limitation that has resulted from adopting a predictively defined represemttistate. The future
for predictively defined state seems bright.

Where to from here? Further theoretical work is clearly needed: are #my unique advantages to
predictively defined state? Will there ever be a limitation? When are our @ppaitions expected
to work well? Algorithmic advances are crucial: further approximations ormdational improve-
ments are possible, and completely different learning strategies couldeafsaitful (perhaps not
based on maximum likelihood, or designed to take advantage of domain-sgétititure). And of
course, applications to ever larger domains are needed: richer, mociustid domains than those
we have considered may influence models and learning algorithms.

Throughout this thesis, we have exercised discipline in never allowingepuesentations to use
latent variables. This is part of the theory of predictively defined stgisesentations, and this
thesis is an attempt to take that theory seriously. However, for practipitapons, where the goal
is to solve a problem rather than to investigate a theory, it makes sense tobutrrgpproaches.
This is a rich source of possibilities: for example, the ability to add structuoeshih knowledge

(possibly in the form of a prior in a Bayesian framework) seems importargrygwnodel we have

presented could be combined with latent variables in one form or anotieitha result would

sit somewhere in between classical state-space models and predictifregddaodels. How this

would change the models’ representational capacity, their learning algstithr their empirical

performance is an open question.
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Appendix A

Computing the Gradients of Information

In this appendix, we discuss how the Continuous PSR algorithm of Chapbtenputes the gradient
of information with respect to the parameters governing its state represantatio

As discussed in Chapt8r we assume that we have been given data. This data comes in the form of
n triples(h;, s;, fi). The samples; andf; are from the joint distributiop(F, H), ands; = f(h;; )

is the state corresponding to each history. Thus, the sampbawd f; are samples from(F, S).

Recall that using these samples, we will infer the distributions using keemsity estimation with

a Gaussian kernel:

1 n
X=2x)=—- E —xi104).
p( ) n < G(x Ljs UJ)

The Continuous PSR algorithm frames the problem of discovering a gaaif sere tests as an
optimization problem. The objective function I$F, S = f(H;#)), which must be maximized
overd. The algorithm searches the space of posgillig selecting an initia# and then performing
gradient ascent:

In this appendix, we derive the two quantities necessary to compute thiergsad//0s; and
0s;/00.

A.1 Information with Respect to State Samples

We begin by taking derivatives of information with respect to individuaiessamples:

oI _ OH(F)  0H(S) 0H(F.S)
852' 8Si 881' aSi
_ 9H(S) OH(F,S)
N 881' B Osi

This will result in a vector describing which way samplevishes to move in order to increase
information. The entropy measure that we will use is quadratic Renyi gntrop

H(X) = —log / p(X)%dx
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2
_ 10g/( ZG g0 ])> X
= —log%ZG( x],d —i—G) (A1)

where the second line follows because we are using kernel density estimitia Gaussian kernel
to estimatep(.X ), and where the third lines follows because we have used the identity

/G —24;04)G(X —xj;05)dX = G(x; — 5504 + 05).

Similarly, the entropy of a joint density can be written as:
H(X,Y) = —log — ZG — 2508 +0)Glyi —yji07 +0)). (A.2)

Our choices of entropy and density estimator have yielded a closed-fgrassion for entropy
which has reduced to computing pairwise interactions between the data m®dttoconstruct the
density. There is no approximation in this integral, apart from the use ofreekdensity estimate
to begin with.

Another useful identity involves the derivative of a Gaussian:

0

3xiG(xi —2;5%) = —G(2; — 25, 2) (7Y (i — xj)

which we use to find the gradients of information:

0H(S) 0
D5, = 831{ log 2ZG — 85505 +0)

1 - s, S
n28s ZG — 85507 +07)

= W ZG(Si — 55300 + 7)o +0F) (s — 5).
J

The result is obtained because the samsplgppears twice in the double summation oker Sim-
ilarly,

aH(‘()j 2 - FSn2 ZG — 5507 +07)G(fi = [0l + 0] )(0f +07) " (si = 55).
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A.2 State Sample with Respect to Parameters

Finally, we need to compute the change in sampleith respect to the parametets Up to this
point, none of the math that we have laid out says anything about predietivesentations of state,
and applies equally well to any parametric mapping from past to state. We willmicoduce the
choices that make this a PSR. Recall that f(h;; ). s; is a vector, thg'th component of which
is the prediction of test;:
i _ plhi, t;)
T P =)
5 o Glhi — s o )Gt — fsof))
oot G(hi = hyyof!)

= 3" NGty ~ friof)
k

where we have summarized the conditioning of the past into a fungfiwhich only depends on
hi, and not ort;).

The parameterg are the actions and observations within the tests themselves. We can compute the
partial derivative of a given state variable with respect to the test vétaegenerated it:

95’ "
ai; == N(h)G(t; — friof) o)t = fr)-
k

This completes the derivation.
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Appendix B

Approximate Information Gradients Using Nystrom Approximations

The Continuous PSR algorithm requires the gradient of information witleot$p the test param-
eters. Naively done, this operation is quadratic in the number of samplds Heee, we present
an approximation to the gradient calculations which uses Nystrom approximdticpeed up the
gradient calculation. This approximation is tunable, meaning that we candfademputation
time for approximation accuracy, and allows us to scale up the procedurgécdatasets.

This appendix is divided into two broad sections. First, in Sedidrwe review the assumptions of
the continuous PSR algorithm: that we are using a kernel density estimate wathssi@n kernel,
and a measure of information based on quadratic Renyi entropy, awdchsiaothis leads to a closed
form expression for entropy.

We then discuss general Nystrom approximations in Se@&ién In SectionB.3 we show how to
use Nystrom approximations to approximate entropy, and give formuldedalerivative of entropy
with respect to one of the samples which composes the density estimate. Fing#gtionB.4 we
combine everything together to show how to compute the full gradients ofnmafitwn which are
needed by the Continuous PSR algorithm.

B.1 Closed Form Entropy

First, we recall a few of the key definitions in the Continuous PSR model, bwtivdo so in a
generic way. We wish to estimap¢X ) given samples, - - - , z,,, with eachz; € R4*!. We choose
to use a kernel density estimate with a spherical Gaussian kernel:

1 n
X = = = ey
p( ) n j§—1 G(x xJaUJ)

where
Gla:07) = —— [~aT/20;}
T,0j) = —F—=€XPy—T T/404
! (2m0;) ’
is the kernel.
Ultimately, we will be interested in computing the information tRatonveys about another random

variable. This will involve computing an entropy term. Computing Shannon gninogdosed-form
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for our density estimate is not tractable, but @& compute a generalized entropy quantity, known
as quadratic Renyi entropy, in closed form.

Quadratic Renyi entropy for a random varialdes defined as:

Hiy(X) = ~og [ p(X)%dX (B.1)

Plugging in our kernel density estimate yields the following:
H(X) = —1og/p(X)2dx

1
= —longG(xi—xj;ai—l—aj). (BZ)
ij

While this expression has a simple closed form, it unfortunately has quasiaatigle complexity —
we must compute the Gaussian of every sample with every other sample) (fifisscaling makes
this approach infeasible for large datasets. However, this term may bexappted, as we discuss
next.

B.2 Nystrom Approximations

One of the keys to scalability is the observation that the Gaussian used iremmal Kensity esti-
mator is not only a kernel in the local modeling senBan(and Gijbels1996), it is also a Mercer
kernel. This means that it is a positive-definite quantity. We will now explaim aco-calledNys-
trom approximatiorcan be used to approximate any positive-definite quantity, and how its wuse lea
to several computational efficiencies for the Continuous PSR model.

Let G € R™ ™ be any symmetric, positive definite matrix. In our caSeresults from the appli-
cation of a Gaussian kernel?;; = G(x; — xj;0). Nystrom approximations work by selecting a
number oflandmarkpoints (sometimes known alictionary points), and instead of computing a
Gaussian of every point with every other poigi;{), we only compute the Gaussians with respect
to a set of landmarks.

Selectm of thex;’s at random as landmarks, and without loss of generality, permute theetheb
first m data points. The Nystrom approximation@fis given by:

A B

G:
BT C

Q

(A1) [AB]

A B
BT BTAlB

169



whereA € R™*™ is the kernel matrix associated with thelandmarks. This is essentially a low-
rank approximation td@-, where it is assumed that every non-landmark point can be expressed a
linear combination of landmarks. This approximation is exact wheés rankm or less; otherwise,
the quality of the approximation is proportional [t6' — BT A~ B|| (Platt 2004. The Gaussian

is an infinite-dimensional feature extractor: assuming that none of the @omtsqual, wherdr

is derived from the Gaussian kernel, it will always have full rank. tikys approximations also
have an interpretation as an eigenvector approximation method, where émvemitprs ofA are
extrapolated to approximate the eigenvector& ¢Platt 2004).

Using a Nystrom approximation, we can simplify expressions of the form
E = ZG(:CZ — Ty; 2)
ij
which have quadratic sample complexity as follows:

E = ZG(L —x5;0)
ij

= 1'G1
= 17 ;T (A1) [AB]1
- (] ]) s

= > (Z ele —lk;0)> ANy [ DG =250 (B.3)

Kl i
wherel € R™*1 is a column vector of ones.

The essential insight is the fact that the operations can be grouped iy thataresults in lower
overall complexity. The complexity of computing using this method i©)(m? + nm), where

n is the total number of samples and < n is the number of landmark points. In contrast, the
complexity of the naive version i9(n?). For many of the robot experiments to be explained later
for example, about. = 100,000 samples were used (which would be totally intractable), but for
which good results were obtained with as fewnas= 100 landmark points.

Landmark points can be selected in a variety of ways. One particularlyalipgevay is the
dictionary-based methods &ngel et al.(2003, which use a tunable “approximate linear depen-
dence threshold.” By changing the threshold, the number of landmankisecauned. The method
automatically ensures that the landmarks are linearly independent, anfdtbéhatA is invertible.
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B.3 Combining Entropy Gradients with Nystrom Approximations

With our Nystrom approximation in hand, we now turn to the calculation of theyiRmriropy of a
random variableX. We wish to compute EgA.1, which has quadratic sample complexity. Using
the Nystrom approximation in Ed.3, we may approximate the Renyi entropy as:

H(X) = —log QZG —zj;0

Q

—log 222(; —ly;0) (A1), Gl — 5;0)
i

) (A7)

= —log 22

ZG lk7

J

ZG(ll - xj;ff)]

1
= —log— Z By My By
Kl

= —log— BTMB

whereB is a vectore R™*1 and

Bk—ZG — ;0

and the matrix
M=A""!

is € R™*™, The vectorB contains the kernel evaluation of every samplavith every landmark,
while M is the inverse ofd, which contains the kernel evaluation of every landmark with every
other landmark.

We can now compute the derivative Bf X') with respect to one of the samples composing it:

OH(X) 0 T
oz, = 8%[ log B MB]

1 10
T H(X)n20x;
1 1[9d
:_mﬁ[a—xi

11,
74 —(B)(2M)B (B.4)

[BTMB]

BTQMB
| e
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where we defings’ to be a vectoe R4*™, representing the derivatives of eaBj with respect to
x;. Thekth column ofB? is defined as

Bl = —G(x; — ly; 0)20 (x5 — 11,).

B.4 Specializing to the Case of Information Gradients

We now specialize the presentation of the previous two sections to the césk ioformation
gradients. Recall that information is defined as a sum of entropies:

I(F;S = f(H;0)) =H(F)+ H(S)— H(F,S).

The termH (F") does not depend ah so we can ignore it. We can specialize B4 to the case of
computingH (S) trivially, and so we focus on computir@H(F S)/0s;. To simplify the notation,

we will not show the variance parametées’ + a ) and (o} F) for the Gaussian kernels:
0H(F,S) 0
%5 = s —log — Z G(si — s;)G(fi — f) (B.5)
~ 2 B'MB (B.6)
~ H(F,S)n? ' '

whereB is a vectorc R™*! with
By, = ZG —)G(f; — 1)
The vectorB! is a matrixe R4*™ with thek’th column defined as
Bk_ZG si — )G (fi — )07 + o) (si — I7).

We arrive at this result by first approximating the Gaussians as

ZG G(fi— 1) Z(;G L~ B)G —zf> (ZG e lf))

which is the usual Nystrom approximation, ahfl= A~', andA is the kernel matrix of landmarks.
We have applied the Nystrom approximation based on the fact that a Gawssitaplied by a
Gaussian is still a Gaussian. Conceptually, the actual Nystrom approxinpatipaf this equation

is exactly the same as treating sample$spf f;) as higher-dimensional joint samples (that is, the
landmarks now exist in the joint space(@f f)). However, because we are only taking derivatives
with respect to the; component of the joint vectors, the result involves moterms thanf terms.
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Appendix C

Derivation of the KPLG State Extension Equations

Here we present detailed derivations for the state extension equatitres KWPLG with the Gaus-
sian kernel. Recall that we assume that the Gaussian kernel is fully noechéliraning we can
use it as a PDF).

Before we begin we will present an important preliminary lemma, which is a atdrrésult about
products of Gaussians:

(a=b)" (A Ha=b)+ - (B (b—c)=(a=) (C) " (b—c)+ (b—d) (D) (b~ d)

where
C=A+B
D=A"1'4+B1'=AA+B)'B=B(A+B)'A
d=AA+B)'b+B(A+B) e

This fact, coupled with standard identities on determinants, yields the followingrten fact:
K(a,b; A)K(b,c; B) = K(a,c; C)K (b, d; D).

We use this identity to express the essence of the conjugacy betweentenstiah is a Gaussian
random variable) and our basis functions (which are also Gaussiansgjl-effectively allow us
to factor out key terms from integrals, thus making their analysis tractabteeréfore forms the
backbone of all the following derivations.

We will now show in detail how to compute two of the key terms in the derivatioruofnoodels;
the rest of the terms are easily computed by analogy to them. The first termheppehe most
important, and gives the flavor of all the others. This result states thakfezted value of the
kernel is the kernel of the expected value, with added variance:

BIK(, F™: )] = / K (&), F™; 6)p(F™)dF"

- / K (&, F™ 6;) K (F", p; S0)dF™
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= K(§jvﬂt§¢j+Zt)/K(anu;j;E;j)an
= K(&, ;05 +Xt) (C.1)

where

So= Ay
= 055+ 05) e+ Su(Se+ ¢5) .

The last line of Eq.C.1follows because the integral is over an entire PDF with unit volume. As a
corollary, it is easy to show that

E[K(&, F"05)F"] = K (&, s 65 + So) (C.2)
because the integral in the penultimate line of EdL will become the expected value 6.

At a later point, we will also need to be able to compute the covariance of thelkeith the noise
termn.+n+1. This is more complicated, and relies on a subtle insight. Recall that the naise ter
andF" effectively form a jointly Gaussian random variable:

Mentl | |y 0 | o2 CT
Fm Lt c %

We immediately see tha[n; ., 1|F"] = CT X (F" — u;) due to standard results on multivariate
Gaussian random variables. This allows us to rewrite the following integeakimpler way, and
thus to solve it simply (we drop the time subscripts in the following for clarity):

E[K(gﬁ F; ¢j)77]

//K(§j7F;¢j)UP(F7U) dn dF

— [ [ K Fi5) npF) plolF) dy aF
= /K(éij; ;) p(F) (/np(an)dn> dF
= /K(&,F; ;) p(F) CT S H(F — p) dF
= o'z / K (&, F; ¢;)Fp(F)dF

el / K(&. F: ;) p(F) dF p

= OTS K (&, e ¢y + ) (1 — p)

We can perform an analysis similar to the two preceding ones and genemaadeatities which
are necessary for the derivation of our model. These identities are sirathbelow, lettingi;; =
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K (&5, I 05):

E[Ky] = Kj
E[Ktjﬁt+n+1] = KéjCTEt_l(lu';tj — )
E[Kthti] = Kth]
where
Kéj = K(fj Mta¢]+zt)
ey = G (S b)) A Zu(Se + 05) 7'

KJZJ = (lutzj?lut’zt_'_ztzg) (£Za£]a¢l+¢j)
wli = G+ )7L + di(en+ )7
(i

ZT = ¢z TLQS]) 1¢]

tij

=

We are now ready to compute the three principal terms needed for the Kigte€update:
E[Ottn1] = Z o K (&, F™ ¢5) + Min]
= Z o BIK (&, F": 6;)] + Elpns]
J
becausey; 1 is mean-zero. Similarly,

COV[Ot"F”"Fl’Fn] = [Ot—i-n—‘ran—r] — [Ot+n+1]E[FnT]
ZO‘J gijnvﬁbJ)FnT] + E[nnq F" ]

—z% K (&, F"; ;) B[]
= Z%K{j(uéj—ut)TJrCT-
J

The computation of the variance is only slightly harder. To clarify notationwilledrop time
subscripts. Let = > a; K(;, F'; ¢;). We have

E[(O - E[0))’] = E[(S+n—E[S])?]
— E[S?] — E[S]? + 2E[Sy] + E[y’]
= ZZW; K(&, F; i) K (&), F; ;)] — E[S]?
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+23 " oy BIK (&, F; 65)n) + o
J
= Y3 Kljai0— B2+ 02+ 20 aiK{(p; — ) ST
i g J

This completes the derivation.
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Appendix D

Exponential Family Distributions

This appendix is devoted to discussing the properties of general exjariamily distributions. We
will discuss the motivation behind them (both for our purposes, and inrg@nesuch upon their
representational abilities, and discuss some of important computationa ssweunding them.

To be able to model domains with structured and/or high-dimensional oliseisjathe EFPSR
model generalizes the PLG family of models by replacing the Gaussian distribefioesenting
p(F™|h:) with a more general exponential family distribution. The exponential familyidistr
tion can capture a wide range of distributions (including the Gaussian) aaghéble of capturing
graphical structure. This choice of state representation explicitly coR&Rs and PLGs to state-
of-the-art probabilistic modeling, which allows the model to take advantageiroént efforts in
high-dimensional density estimation, graphical models and maximum entropysnode

This appendix discusses these general exponential family distributibesnaterial is background,
and can be skipped by the reader already familiar with the concepts. Gtienseof this appendix
are devoted to an explanation of maximum entropy models (Sebtiby the exponential family
of distributions (Sectio.2), examples of graphical exponential family models (Secbos) the
relationship between mean and natural parameters (Sdat®)ndensity estimation with natural
exponential family models (SectidD.5), and inference in graphical exponential family models
(SectionD.6)

D.1 Maximum Entropy Models

In the introduction of this appendix, we motivated the choice of an expohéamtidy distribution
from the perspective of generalizing the Gaussian used in the PLG famalgofithms. There is
an alternative justification which is tied more directly to the broader goal afilegudynamical sys-
tems from data: using an exponential family form f@¢" |h;) has close connections to maximum
entropy modeling.

To introduce the concept of maximum entropy modeling, consider the follogiagple. Suppose
that we are given samples, ...z,, from an unknown density(X ), and we are asked to infer a
complete distributiorp(X ). Additionally, we will suppose that we are given sevdeatureswhich

we can extract from each sample Each features(z); is some function of a data sample — if
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samples are simple scalars, a feature might® = 22, for example. If samples are images, it
may extract an edge, or check for certain colors. There is virtually unlinfigebility in defining
these features.

Given the data and the feature set, it is easy to compute the empirical expeofdtie features:

;= % Z bi ().
i=1

It may not be reasonable to suppose that the samples or their featurasffarient to uniquely
determine the distributiop(X'). However, itis reasonable to assume that the expectation of each
feature under the data set is close to the expectation under the unknositydey the central limit
theorem and the Gaussian nature of the sampling distribution of the mean. $\&sgume that:

LS bila) Y orlap(a).
=1 x

It therefore seems reasonable to ensure that the expectations of tinegeander our inferred
distribution match the empirically observed expectations:

> dil@)plx) = a; (D.1)

If, for example, the features are things likg(z) = = and¢y(x) = 22, then we have effectively
placed mean and variance constraints on the distribution. However, thesteaints still may not
be enough information to uniquely determine the distribution.

Theprinciple of maximum entrogstates that among all candidate distributions with feature marginal
that agree with the empirically observed feature marginals, the oneweagimum entropghould

be selected. We refer the readerdayneq1991) for detailed justification of this idea; briefly, he
states that the maximum entropy distribution “agrees with everything that isrkrtmwy carefully
avoids assuming anything that is not known,” which “is the fundamentalgstp which justifies its

use for inference.”

There are several interpretations to the principle of maximum entropy moddligjtively, the
maximum entropy distribution is as “flat” as possible, meaning that it assigbalpitity which is as
close to uniform as possible (indeed, the uniform distribution is the maximuragndistribution
with no constraints). There are also information-theoretic interpretatioesmeximum entropy
distribution minimizes the information which is assumed when constructing the digiribuln
other words, if any other form is selected, then additional externahgstsons have been made
which are not explicitly justified by the data.

The standard exponential family is the form of the maximum entropy distributidenthe marginal
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constraints in EgD.1, as we now sholv We begin with the constraints listed in ED.1 and add
an additional constraint that ) form a valid density:

> b)) =1. (D.2)

Our goal is to maximize the entropy @fz), subject to the constraints in Ed.1 and Eq. D.2.
Recall that the entropy of a distribution is defined as

Zp ) log p( (D.3)

Maximizing Eq.D.3 subject to the constraints in EDQ.1 and Eq.D.2is a constrained optimization
problem. To transform it into an unconstrained optimization problem, we foenhdigrangian:

Zp ) log p(x) + Ao (1 - Zﬁ(l‘)) +2 N (ai -3 ¢i($)ﬁ(ﬂf))

We can maximize this by differentiating with respect to the entries composing theryé¢x) and
setting to zero:

o) logp(x) —1— Ao+ Z Xii(z) =0

Now, we solve forp(z):

= exp {Z —Xidi(z) + Ao — 1} (D.4)

This is known as a Gibbs distribution, and is a member of the standard ex@bfemily of distri-
butions. We have only specified the form of the distribution here; it still resiriind the actual
values of the);’s. Ultimately, these values should be chosen to minimize the amount by which the
constraints are not satisfied, which means that the term 1 will become the log partition func-

tion which ensures a valid distribution (this is discussed more in the next seciitile we have
presented the derivation for the case of a discrete domaiX fahese results extend to continuous
domains as well with virtually no change, although calculus of variations neusséd to arrive at

the final form.

There are rich connections between the maximum entropy distribution and x@una likelihood
distribution. For example, maximum entropy modeling and maximum likelihood estimation a
dual problems which yield the same optimum: if we assume the exponential distnibititan be
shown that the empirical and model marginals must match at the maximum likelihhuidspif

we assume that the empirical and model marginals must match, the maximum likeliswiition
must be an exponential family distributiofofdan Unpublished. Thus, the form of EqD.4is also

L Apparently, this is originally due to a theorem by Boltzmann.
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the form of the distribution which maximizes the likelihood of the data, subject tadhstraints
listed in Egs.D.1 andD.2. Moreover, the\;'s of both the maximum entropy distribution and the
maximum likelihood distribution are the same, and they are unique: the optimizabblepr is
convex, with a single global optima. In addition, maximizing the likelihood of the dappens to
be equivalent to minimizing the KL divergence to the empirical distribution, ayaina the same
distribution resultslordan(Unpublishegl.

D.2 Standard Exponential Family Distributions

We now review the basic properties of exponential family distributions. Fandom variableX, a
member of the standard exponential family of probability distributions has the fo

p(X = ;) = exp{AT ¢(x) —log Z(N)} (D.5)

where) € R* is the canonical vector of parameters ai{d) is a vector of features of variable
The vectorg(x) also forms the sufficient statistics of the distribution. The tésgZ(\) is known
as the log-partition function, and is the log of a normalizing constant whicbresghatp(z; \)
defines a valid distribution:

log Z(\) = log/exp{)\ngb(:z:)}d:c.

Figure D.1 shows a table with a few of the standard basic distributions in standard exjoein
family form (adapted from\Wainwright and Jordgr2003). The normal, gamma, chi-square, beta,
Dirichlet, Bernoulli, binomial, multinomial, Poisson, negative binomial, geometriers® Gaus-
sian, lognormal and Weibull distributions are all exponential family distribstic@ther distribu-
tions, such as the Cauchy, Laplace, and uniform families of distributiana@rmembers of the
exponential family.

EquationD.5is the general form of all exponential family distributions. In order to gpecpartic-

ular member of the exponential family distribution is used, two things must betsgighedomain

of X, andfeaturesof the variableX. For example, selecting the domain tolReand the features

to be¢(z) = z, ¢2(z) = 22, we recover a one-dimensional Gaussian. By carefully selecting the
featuresy(z), graphical structure may be imposed on the resulting distribution. This wilhbe a
important aspect of the way we use the distribution in our dynamical modelsyifitd discussed
further in SectiorD.3.

The examples in Figur®.1 can be deceptive: not every member of the exponential family of
distributions will have such simple closed-form expressions for the latifiparfunction. We will
have more to say about this when discuss parameter estimation and infier&tee sections.
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| Family | Domain | log p(x; \) log Z(\) | Parameter domain
Bernoulli {0,1} A — Z(\) log(1 + exp(\)) R
Gaussian R Mz + Az? — Z(N) 0.5(A1 + log(2me/ — o)) {A e R[N <0}
Exponential| (0+0o0) AM=z) = Z(N) —log A (0, 4+00)
Poisson | {0,1,2..} Az — Z(X) exp(A) R
Beta 0,1) | Mlogz + Aalog(l —x) — Z(\) | 327 logT(\i +1) —log T (X7, (\i + 1)) (—1,+00)?

Figure D.1: A table of distributions in exponential family form.



Figure D.2: Two example graphical models. On the left, the Ising model. Orighg a mixed-
variable model with a bipartite graph structure.

D.3 Graphical Models Using Exponential Family Distributions

We have mentioned that exponential family distributions can capture graghigeture. This is
accomplished by carefully selecting the featupés). To illustrate this, we present a few standard
examples of graphical exponential family distributions. The following exaspie adapted from
Wainwright and Jorda(2003 andTaylor et al.(2007). For each example, we assume we are given
agraphG = (V, E), whereV denotes the set of vertices ahddenotes the set of edges.

Example: Ising Model

The canonical example of an exponential family distribution with graphicatstre is thesing
Model from statistical physics. We associate with each vertex a binary randoabhg and stip-
ulate that variables are only allowed to interact if they are connected bgigen &his model was
originally developed to study the phenomena of spontaneous magnetizatemaméagnetic ma-
terials. Each node represents a molecule, the two states represerndiffexgnetic orientations,
and the links model the fact that molecules tend to affect their neighboesmblel is also used to
model some types of binary images in machine vision.

Given the nodes and edges, the resulting exponential model is of the form

eV (i,j)eE

p(z;\) = exp {Z AT + Z Nijziz; — log Z()\)}

where the domain of the variables{i, 1}!V!. An example of a second-order Ising graph is shown
in the left-hand side of FigurB.2, in which the probability of a node is conditionally independent
of all the other nodes given its Markov blanket. While we have only dematiestithe model for
the case of pairwise interactions, it is trivial to extend to higher-orderdotiems. For example, to
extend to third-order interactions, we add triplets of the fafm;x;, and a corresponding parameter

)‘ijk-
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Example: Gaussian MRF

A Gaussian Markov Random Field is a Gaussian distribution that respedsicture of a graph.
For the Gaussian MRF, the features used{arez? |s € V} U {z;z|(i,j) € E}, with a corre-
sponding parameter for each feature. The density function is exactlpmhe as the Ising model:

p(z; \) = exp Z A\iTi + )\“x? + Z Nijrix; —log Z(\)
1% (i,J)eE

except that the domain of the variables is i !. In this case, there are restrictions on the domain
of the parameter vector: the integral definingZ(#) is only finite if the matrix

of parameters is negative definite (whetg = 0V(7,j) € E).

Example: Mixed Binary / Gaussian

As another example of a mixed distribution, consider the following energgstifum (from Taylor
et al, 200%):

pla, g A) =expQ =Y (i = A2+ Dy N+ ) miy A — Z(N)
j i

()

which is associated with the bipartite graph in the right-hand side of Figi2eHere, they vari-
ables are binary random variables, while theariables are continuous variables. While there are
interactions between’s andy’s, there are no interactiongithin the z’s or y's. The advantage of
this model is that the continuous variables have a simple Gaussian distribugoncanditioned on
the binary variables, and the binary variables have a simple Bernoulli digtribiwhen conditioned
on the continuous variables, with the probability determined by a sigmoidatidanc

plaily;A) = N+ yAii1)
J
plyi =1z 0) = oW+ D aAY).
This means that the model is particularly amenable to Gibbs sampling, because the easily
be sampled given thg's, and vice-versa. The point of this example is to illustrate two things: first,

there is a great deal of flexibility in setting up these distributions, and setiemdorrect graphical
structure can have significant consequences for the tractability of the.mode
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D.4 Natural and Mean Parameters

It may not be common to think about some distributions in the form that is listed iméiyad. For
example, the multinomial distribution is usually written as

p(x;) = pi with 1 >p; >0 such that Zpi =1.
i

This is known as thenean parameterizatioof the distribution, becaudé|[z;] = p;. However, the
multinomial distribution can also be written in exponential form as:

k

p(x; \) = exp {Z Az — log Z()\)} (D.6)
i=1

where

and

k
log Z(\) = Z et
i=1

for suitable choice of measure spa&dwn, 1989. Here, the parameters are known as the
natural parametergor canonical parametejs

The idea that members of the exponential family of distributions can be pardedter multiple
ways holds more generally. For example, the Gibbs distribution can use aitnean parame-
terization or a natural parameterization, as can a Gaussian. For angrstaxgonential family
distribution, the mean parameters of the distribution are given by the expeatéticeir sufficient
statistics:

By [6(X)] = / (2)p(z)de

= /gb(:n) exp {)\qub(:z:) —log Z()\)} dx
— Valog Z(N).

This vector of expected sufficient statistics is of central interest in stdrelonential families,
and has several interesting properties. Like the vektdt) [¢(X)] uniquely defines the distribu-
tion p(X). The vectorE) [¢(X)] also plays an important role when learning the parameters of an
exponential family from data, as discussed in Seciidn

The idea that mean and natural parameters are both sufficient to desdrgdtebution will be a key
part of our proofs of representational capacity for the EFPSR mo&sdétion7.2, and so we discuss
the idea in more detail. Translating between mean and natural parameterdiiziabm a practical
sense (computing the mean parameters from a given set of natural peraisea specific kind of
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inference problem, which we discuss in Secti®®), but from a theoretical perspective, there are
many appealing relationships. For example, each possible set of cdmpama@eters. induces one
set of mean parameters; assuming that the features are linearly indepgtievalently, that the
features form a minimal set), each set of valid mean parameters is uniquetyndeed by one set
of canonical parameter®\ainwright and Jordgr2003. The mean parameters can also be arrived
at by taking derivatives of the tering Z(\), which is why it is sometimes known as themulant
generating function.

There are some technical conditions on which sets of mean and natwaalgdars give rise to valid
distributions. Not every vector iR? forms a valid set of mean parameters because of consistency
constraints between members of the set (valid mean parameter vectorsoane &srealizable
parameters). However, for every realizable mean parameter vecta,gkists some exponential
family distribution which has marginals equal to that vector. This is an imporésodt; since the
exponential family describes a strict subset of all possible densitiegeasi¢he definition of a
realizable mean parameter vector is not restricted to any particular formistréoution.

D.5 Maximum Likelihood Learning

In SectionD.1 we motivated the form of the exponential family distribution through a connectio
to maximum entropy modeling of a dataset. While we showed that both the maximuopyentr
distribution and the maximum likelihood distribution had the same exponential famity, fee did
not present any algorithm to actually find the parameters of the distributiothid section, we
discuss maximum likelihood parameter estimation, with the specific goal of ctompéice vector

of mean parameters to the problem of learning the parameters of the distribution

The modelling problem is as follows: we are given samples.., zx from an unknown density
p(X) and a feature extracta#(x), and we are asked to infer a complete distributigx’). We
assume that the final distribution will have an exponential family form:

PX) = exp {~ATo(x) ~log Z(N) }
so the task becomes finding the parameter vectehich maximizes the likelihood of the data.

The likelihood of the data ig(x1, 2, -, zn). Assuming that the samples are independent, the
likelihood factors a®(z1)p(x2) - - - p(x ). The expected log likelihood of the data is therefore

1 N
LL= (Z; A p(z;) — log Z(A)) (D.8)

This objective function is convex in the parameteand therefore has a unique global maxima. We
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now compute the gradient dfZ with respect to the parametexs

oLL 9
O\ O\

|
@
[¢)
2
g
g
Z
=3
iy
2

We see that the derivative is the difference between two telfixjgi( X )] is the expectation ap(X)
under the distribution defined by the currénndE.ypirical [¢(X )] is the empirical expectation of
the features. Setting this derivative to zero implies that the model expectatohthe empiri-
cal expectations are equal when we have found the maximum likelihoothptees, which is the
constraint we imposed when introducing maximum entropy modeling.

Interestingly, the vectdE ) [¢(X)] is exactly the vector of mean parameters defined in SeEtidn
This term arose when computing the gradi§§|ﬂog Z(\), and implicitly involves integrating over
the entire domain oX. Computing this vector is an inference problem, as we now discuss.

D.6 Inference in Exponential Family Distributions

Inference is a general term which refers to any operation wherebabpilistic query is made against
a graphical model. Typical inference problems include

e Computing the likelihood of observed data.

e Computing the marginal distribution over a particular subset of data.

e Computing a conditional distribution.

e Computing the mode of a distribution.

As discussed in Sectidd.5, computing the vector of mean parameters is an inference problem. This
sort of inference needs to happen when using a gradient method taheamaximum likelihood
parameters of a distribution, or when translating between natural and raeanegters as discussed

in SectionD.4.

Exact inference in an exponential family graphical model is known to MRIKCooper 1990. For

example, the problem of computing the density of a samgkintractable because of the global
normalization constant: computingZ implicitly involves a sum over all possible configurations
of X, which scales exponentially with the domain®f In special cases, such as a fully factored
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distribution, or a distribution where the graph is tree-structured, the tipesacan be factored such
that inference is tractable. Efficient inference has been the subjetenée research, and many ap-
proximate algorithms exist: there are variational methods such as naivefraleltree-reweighted
belief propagation, and log-determinant relaxation&ifwright and Jordan2006; other meth-
ods include Bethe-Kikuchi approximations, expectation propagakinkg, 2007), (loopy) belief
propagationYedida et al.2001), MCMC methodseal 1993, and approximate gradient methods
such as contrastive divergenddiriton, 2002. However, even approximate inference is known to
be NP-Hard Dagum and Luby1993.

Depending on the exact features used and the domain of the model, rifiefierence methods
may be more or less useful. For example, in the Gaussian Markov Randonof@éattionD.3,
inference involves solving a large, sparse system of equations. In tleel titxary/Gaussian model
in SectionD.3, Gibbs sampling is a tractable choice because of the convenient conditiamal of
the distribution. In graphs which are highly connected, naive mean field@®d choice, whereas
in domains with pairwise features, loopy belief propagation is a popular €hditnderstanding
inference algorithms, their properties, and the graphical models with whiéghatte compatible is
an entire area of expertise, of which we have only presented the masobidme.
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Appendix E

Approximate Log-Likelihood Derivations

In Chapterl0, we presented an approximate learning algorithm for the Linear-LineASREThis
learning algorithm was based on a quantity we called the Approximate LodiHokel, which was
derived in Sectiori0.1 For convenience, we repeat the definition here:

LL =Er[—s]" Er[o(f)] —log Z(Er [s:]). (E.1)

This appendix discusses how to compute this quantity and its derivativesesfibat to the model
parameters in a computationally efficient manner. In Sedii@ we also include our method for
computing gradients when the parameter matrix is rank-constrained.

E.1 Computing the Approximate Log-Likelihood

To compute the approximate log-likelihood we must compute three tefmg;| (the stationary
distribution of states)for[¢( f;)] (which is computed once from data), and the log partition function
log Z(Er[s¢]). We begin with the computation &fr[s;]. Recall that our goal is to compute this
term in a way that is independent &%, which is the length of the training trajectory. This will
be possible using Assumptidt0.1.] the linearity of the state update, and an insight related to
stationary distributions:

Erls:] = Er[G(o) (Asi—1 + B)]
~ Er[G(o)AEr [si-1] + Er [G(oy)] B
[G(or)
)

=

= Ep|G(o A] Er [St] + Bg
= G ET[Ot} AET [St] + BG
= (I—-G(Erlo))A) " Bg (E.2)

wherel is an appropriately sized identity matrix, and whéte = G(Er[o;])B. The second line
follows by Assumptiori0.1.1

The third and fourth lines are both interesting for different reasons.fdtirth line follows by the
linearity of the operatot7(-). The matrixG(E[o;]) can be interpreted as the expected transition
operator, and is a simple function of the expected observatign;| — that is, we just compute the
empirical expectation of the observations, and generate a transitiortapasave would with any
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other observation. Just &%[s;] can be interpreted as the stationary distribution of stdiés)
is the empirical average of the observations, and in the limit of ldrgan be interpreted as the
stationary distribution of observations inducedAyandB.

The third line is interesting because it follows by the limiting properties of oueetgtions: we
assume thaEr[s;] = Ep[s;—1] because as — oo, the unconditional distribution of these states
approach the stationary distribution of states.

Taken together, the result is that the stationary distribution of states camipited as the solution
to a linear system of equations. The fact that the solution can be obtaiigdrefy (in a variety
of manners) is key to making a practical learning algorithm. The inverse ifEEtshould not be
computed explicitly. The quantity

I — G(Er[o])A

is a large matrix with favorable computational properties. Gtié'r|o;]) part will typically be very
sparse, and a designer may force theart to be sparse or low-rank (a low-rank parameterization
will be a critical factor in further efficiencies, as explained in Secfifr®). In either case, a matrix-
vector product can be computed efficiently, so instead of computing theseie linear system
of equations defined by

(I — G(Erlo])A) x = Bg (E.3)

should be solved using an iterative solver designed for the solution &, lapgrse linear systems
of equations, such as conjugate gradients, GMRES, BIiCGSTAB, TF@uRGSaad 1996.

Once EqE.3is solved Er[s;] = . With E7[s;] in hand, we can compute the log partition function
log Z(Er[s¢]), using the vectoEr[s;] in place of an ordinary state

E.2 Computing Derivatives of the Approximate Log-Likelihood

We now compute the derivatives of the approximate log-likelihood with reédpean arbitrary
parameteP:
—~ ~ T
OLL  OLL OEp[sy]

00  OEp[s] 00
We begin with the left-hand term:

OLL 9
OEr[s] ~ OEr[s)] [ET [=si] " Er [6(f1)] — log Z(Er [s,])
~ ~Er ()] - 5 o8 Z(Pr [s)
= Ep,s [6(F)] — Er [6(f1)]
= A
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This result has an appealing intuitive interpretatidiy,.(,,[¢(#)] can be interpreted as the ex-
pected sufficient statistics that would be obtained if inference were pegtbusing the stationary
distribution of state&r [s;| as the state — in other words, it represents the stationary distribution of
features ofu-step trajectories, as computed by the model. RecallBqhdb( f;)] represents the em-
pirically observed stationary distribution of featureswes$tep trajectories. We see that the gradient
wishes to move the expected sufficient statistics as computed under the madebsiton to more
closely match the expected sufficient statistics under the empirical distribution.

If we use a variational method to compute the log partition fundisgr? (E1 [s;]), which is needed
to determine the value of the log-likelihood, then the expected sufficient staiigtje,, [¢(F')] are
available as a byproduct of the optimization. This is a pleasing efficiency.

However, we are not done. Because this is a dynamical system, we niltditransition parame-
ters which allow us to move the expected sufficient statistics closer. Thistiredms we compute
the right-hand term. We will start by computing the derivative with respectdaltharameter:

aEgJSt] B 8%1 [G(E[oe])(AET [s¢] + B)]
= G(E[o])A <8%ET [St]) + <8%G(E[0t})A> Er [s4]

= (I -G(E[o])A)" <£4G(E[ot})A> Er [si)

We now find it convenient to remember that the full derivative also incIthEBarmﬁEZ/&ET [st] =
A, which is a column vector:

OET [s¢]
0A

0

0A

— (%G(E[Ot])A) By 5]
0

= MFTG(E[ot])AET (5]
9
= 8_A FgAET [St]

= TGEr[s]’ (E.4)

AT AT (I - G(E[o])A)~! ( G(E[ot])A> E7 [s¢]

where we have definddto be the solution to the linear system of equations:
A=(I-G(E[o))A)'T.

andl'g = T'TG(E[o/]).
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Algorithm APPROX-LL-GRADS
Input: Erfo], Er[o(fi)], A, B

Compute:
e Compute the approximate log-likelihood:

— ComputeEr [s;] = (I — G(Eqlo)4) ™" B

— Use Er [s;] as the weights on the graphical model, and compute, using the
inference method of choice:

* the expected sufficient statistiB;, [, [¢(F)].
« the log partition functioog Z (Er [s]).

— LetLL = —Er [s,]" Ep, (s [6(F)] — log Z(Er [s]).

e Compute the gradient of the approximate log-likelihood with respect to thengara
ters:

LetA = E[p(fi)] — Epp[s)[0(F)].
SolveA = (I — G(E[o]))A)" T for T,
LetT'¢ = G(E[og]) ' T.

Let Ag = G(E[of]) TA.

Let VALL = TgBr s

Let VLl = Ag.

Return: ZZ, VAZZ, VBE/Z

Figure E.1: Approximate maximum likelihood gradients for Linear-Linear BRRS

The derivative with respect to thié parameter is computed similarly:

aET[St] _ ATi
oB 0B
_ O T
= 6—BA G(E[o]))B
0

AT

[G(E[o:])(AET [s¢] + B)]

whereA( is defined analogously .

This completes the derivation of the gradients of the approximate log-likelihdb@ complete
algorithm is summarized in Figud®.1
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E.3 Computing Gradients with a Low-Rank Parameter Matrix

In this section, we propose a method of learning a low-rank decomposititie plarameter matrix
A. We will discuss the four elements of our algorithm: 1) how we represeribtireank parame-
terization; 2) how we compute the gradients; 3) how the parameter matrix ndoreagdated given
a gradient and a stepsize; and 4) how the stepsize can be selectedclMgs digch topic in turn.

1. Begin with a low-rank matrix:  Instead of maintaining the full matrid € R¥*!, our
strategy is to maintain the thin SVD of, which is constrained to have radk A = USV T,
whereU € R**4is an orthonormal matrix$ € R?*¢ is a diagonal matrix of singular values,
andV € R4 is another orthonormal matrix. We will constrairio be< min(k, 1).

2. Rank-one gradients: A key property of the approximate log-likelihood parameter learning
algorithm is that the gradients @i with respect tad are rank-one. Specifically, recall from
Eq. E.4that

VALL =T¢Er (s

Note thatl'¢ € R¥*!, andEr [s;] € R™*!. Thus, whileV 4 LL is € R¥*!, the rank of this
matrix is one. That isg=; = (I'a)i(Er [s:]);. This is not true of the exact likelihood
gradients defined in EQ.2 they can have rank as largemas(k, [, T'). Thus, the algorithm

we are about to develop will be unique to the learning algorithms defineddxdith

3. Updating the low-rank decomposition for a given stepsize: Given a low-rank decom-
position of A = USV ", and the rank-one decomposition of the gradient matrix, how can
we update the decomposition df? To answer this, let us be more specific about how the
gradients are used. We use the gradients in a steepest descent optiRezatl that our
goal is to maximizeL L, so to increas&€ L, we take a small step in the gradient direction:
A=A+ aVAL/Z, wherea is a suitably chosen stepsize parameter.

Given the parameterd = USV T, and a rank-one candidate update , can we compute
the parameters od + ab' = U’S'V’T, using nothing but/, S, V, a andb? Fortunately, the
answer is yesBrand (2006 has an algorithm for doing exactly this. It operate€iikd?)
time, and never requires the matrixto be formed explicitly. The algorithm is summarized
in FigureE.2 In other words, we can begin learning by choosing some initial gueskdor
matrix A — say,A = 0, which has a known low-rank decomposition. We can then compute
the gradients and update this low-rank decomposition without ever haviogioA4.

4. Selecting a stepsize adaptively: We can do better than a naive steepest descent algorithm,
which uses a fixed stepsize. Many modern optimization algorithms operaté baghe
concept ofline searches The idea is simple: suppose we have a functf¢f) we wish to
maximize. We first select a search direction (perhaps a gradient [asjpestedescent], or
perhaps a direction which is a combination of previous gradients [as in tjegade gradient
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approach]). Given a search direction, we loosely maxinfibg finding a stepsize parameter
« which hops to a local maximum, as in the following stylized algorithm:

e Repeat

— Compute search directiovig
— Perform a line search: find which maximizesf (6 + aVy)

— Update parameterg: = 6 + a'Vy

e Until |[Vy|| < e.

The line search can be done exactly, or we may simply ask for a sufficiergase in the
objective function using the Wolfe conditiondgcedal and WrightL999.

Thus, as long as we can compm/l\é for a given parameter settiig S, V, B plus a candidate
rank-one additiomab ', we can perform an efficient line search. Recall that the most com-
putationally intensive part of computirlf;\c algorithm is the solution to two systems of linear
equations. However, we have emphasized that iterative solvers cashauoltl be used to
solve this equation. Most iterative solvers never require the explicit ftomaf a matrix A.
Instead, they require only matrix-vector products, so as long as the matrigr product can

be computed efficiently, the entire procedure will be efficient. In our,dhgematrix-vector
product can be computed efficiently even with a candidate rank-ongejpkalong as the
operation is factored appropriately:

Glo)Az = Go)(USVT +ab")x
= Glo) [U(S(VT2)) +a(b" )]
= G(op)2'.

The entire operation only involves low-rank matrix-vector products (linddowed by a
full-rank (but sparse) matrix-vector product.

We term this entire procedurerank-aware line search.

FigureE.3shows an algorithm for computing the gradients{:/ai with an optional rank-one modi-
fication, and returns the gradient components in factored form (thanisyér explicitly formsA).
Using this algorithm and Brand’s SVD update algorithm in Figtr2 Figure10.2shows a steepest
descent optimizer which performs a rank-aware line search, and tlueregghe parameter matrix
while maintaining a low-rank decomposition.

It is an open question as to whether this method can be extended to higeeprptimization meth-
ods, such as quasi-Newton methods or other iterative solvers with dicazbravergence.
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Algorithm UPDATE-SVD
Input: d,U,S,V,a,b

Remark:d is the maximum acceptable rank of the resulting matrix.

Compute:
m = U'a n = Vb
P = p/lpl Q@ = q/ldl

=[5 01+ [ ]

Compute the SVD of¢, restricting it to be ranki: K = U'S'V'".
Now, X +ab" = ([UP|U)S([VQIV')T
Return: ([UP|U’), S, ([VQ]V").

Figure E.2: An algorithm to update the SVD of a matrix. Gi&En= USV T, update it to be the
SVDof X +ab'.
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Algorithm LOWRANK-APPROX-LL-GRADS
Input: Erlos], Ex[o(f:)], U, S, V, B, x,y,b
Remark:A =USV +zy .

Compute:
e Compute the approximate log-likelihood:

— Computeir [s;] = (I — G(Er[o)(USVT +2y7)) "' [B + 8]

— Use Er [s;] as the weights on the graphical model, and compute, using the
inference method of choice:

* the expected sufficient statistits;, ,,)[¢(F')]-
« the log partition functioog Z (Er [s]).

~ LetLL = ~Er[si] Epy(s)[0(F)] —log Z(Er [s!).

e Compute the gradient of the approximate log-likelihood with respect to thengara
ters:

Let A = E[¢(fi)] — Egypps, [6(F)].

SolveA = (T — G(Er[o))(USVT +ay")) T forT.
LetAg = G(Er[o]) TA.

LetT'¢ = G(Er[o]) 'T.

Remark:V4LL = T¢Er [si] .

Remark:VBE/Z = Ag.

Return: L/Z, Ta,Er (s, Ac

Figure E.3: An algorithm for computing rank-aware approximate ML gradiéar EFPSRs. As-
sumes thatd = USV' T, with an optional rank-one modificationy . The vectorB may have an
optional modificatiorb.
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