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Distortion in Elementary Transistor Circuits
Willy Sansen,Fellow, IEEE

Abstract—In this paper the distortion components are defined
for elementary transistor stages such as a single-transistor ampli-
fier and a differential pair using bipolar transistors or MOST’s.
Moreover, the influence of feedback is examined. Numerical
examples are given for sake of illustration.

Index Terms—Amplifiers, distortion, feedback, intercept point.

I. INTRODUCTION

DISTORTION analysis has gained renewed interest be-
cause it is responsible for the generation of spurious

frequency bands in telecommunication circuits. Therefore, it
is reviewed starting with the most elementary circuit blocks
[2], [4]–[6].

Distortion actually refers to the distortion of a voltage or
current waveform as it is displayed versus time, i.e., as seen on
a oscilloscope. Any difference between the shape of the output
waveform versus time and the input waveform, except for a
scaling factor, is called distortion. For example, the flattening
of a sinusoidal waveform is distortion. The injection of a spike
on a sinusoidal waveform is called distortion as well. Several
kinds of distortion occur. They are defined first.

A. Linear and Nonlinear Distortion

Linear distortion is caused by the application of a linear
circuit, with a nonconstant amplitude or phase characteristic.
As an example, the application of a high-pass filter (of first
order) to a square waveform causes distortion, as shown in
Fig. 1. In a similar way, the application of a low-pass filter
reduces the high-frequency content in the output waveform,
as shown in Fig. 2.

Nonlinear distortion is caused by a nonlinear transfer char-
acteristic. For example, the application of a sinusoidal wave-
form to the exponential characteristic of a bipolar transistor
causes a sharpening of one top and flattening of the other one
(see Fig. 3). This corresponds to the generation of a number of
harmonic frequencies of the input sinusoidal waveform. These
are the nonlinear distortion components.

B. Weak and Hard Distortion

When the nonlinear transfer characteristic has a gradual
change of slope (as shown in Fig. 3), then the quasi-sinusoidal
waveform at the output is still continuous. This is not the case
when the transfer characteristic has a sharp edge, as shown in
Fig. 4 for a class B amplifier. Part of the sinusoidal waveform
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Fig. 1. Application of a high-pass filter causes linear distortion because of
the reduction of the low frequencies.

Fig. 2. Application of a low-pass filter causes linear distortion because of
the reduction of the high frequencies.

Fig. 3. Generation of nonlinear distortion caused by the nonlineariC–vBE
characteristic.

is then simply cut off, leaving two sharp corners. These corners
generate a large number of high-frequency harmonics. They
are sources of hard distortion.

In the case of weak distortion, the harmonics gradually
disappear when the signal amplitude becomes smaller. They
are never zero, however. They can easily be calculated from
a Taylor series expansion around the quiescent or operating
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Fig. 4. Generation of hard nonlinear distortion.

point, as will be carried out in next paragraph.
Hard distortion harmonics, on the other hand, suddenly

disappear when the amplitude of the sinusoidal waveform falls
below the threshold, i.e., the edge of the transfer characteristic.
Also they are much more difficult to calculate. Since they can
be avoided altogether by limiting the output signal amplitudes
to sufficiently low levels, they will not be discussed any
further.

In this paper, the nonlinear distortion will be calculated for
elementary bipolar and MOST amplifier and buffer stages.
Also the influence of negative feedback is derived. First, how-
ever, the several definitions have to be reviewed to describe
the weak nonlinear distortion components.

II. WEAK-DISTORTION COMPONENTS

Let us consider an amplifier with a weak nonlinearity as in
Fig. 3. Both input and output signals vary with time. They are
denoted by and or, in shorthand, and . At low
frequencies, the output of this amplifier can be expressed in
terms of its input by a power series

(1)

Coefficient represents the dc component of output signal
. Coefficient represents the linear gain of the amplifier,

whereas coefficients , represent its distortion.
Coefficients , and can be obtained from the analytic

expression of the function as given by

(2)

Application of a cosine waveform of frequency and
amplitude at the input of that amplifier yields output
components at all multiples of . It is obtained by trigono-
metric manipulation. Under low-distortion conditions, only
second- and third-order distortion components are considered.
By use of the expressions

(3)

Fig. 5. Distortion components versus normalized input voltage.

and

(1) thus becomes

(4)

Odd-order distortion, and especially , thus modifies the
signal component at the fundamental frequency. Term
can be neglected, however, with respect to, provided the
signal amplitude is sufficiently small.

Harmonic distortion is then defined as follows. Theth
harmonic distortion (HD) is defined as the ratio of the
component of frequency to the one at the fundamental

. Application to (4) yields

HD (5a)

and

HD (5b)

It is important to note that HD is proportional to and
HD to . Increasing the input signal level by 1 dB thus
increases the HD by 1 dB and the HD by 2 dB. These
relationships hold true for all values of, which are not too
large. This is the region where the so-called low-distortion
conditions are valid. For even larger values of, the values
of HD and HD flatten off with increasing as shown in
Fig. 5.

In this paper, the analyzes are limited to the region of low
distortion, i.e., where is sufficiently small, i.e., where HD
is proportional to and HD to .

Also the total harmonic distortion THD is given by

THD HD HD (5c)

It is not very useful as it does not give a clear dependence
on the input signal level.
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Application of the sum of two cosine waveforms of frequen-
cies and and both of amplitude at the input gives rise
to output signal components at all combinations of, and
their multiples. Under low-distortion conditions, the number of
terms can be reduced to the ones caused by coefficientsand

only. They are mapped versus frequency in Fig. 6(a) for
(10 MHz) and (11 MHz). A real frequency

spectrum for frequencies 10.695 and 10.705 MHz is shown
in Fig. 6(b).

Second-orderintermodulation distortion(IM ) is then de-
fined by the ratio of the component at frequency to
the one at or . Under low-distortion conditions

IM (6a)

Third-order intermodulation distortion (IM) can be de-
tected at the frequencies and [see Fig. 6(a)].

It is given by the ratio of the component at frequency
(or one of the other three frequencies), which is

, to the fundamental, which is , as given by

IM (6b)

Comparison of the four equations above shows that

IM HD (7a)

IM HD (7b)

Under low-distortion conditions, there is thus a one-to-
one correspondence between harmonic and intermodulation
distortion. It is thus sufficient to specify only one of them.

Note that two of the four equal IMcomponents, i.e., the
ones at the frequencies and , occur closely
to the two fundamentals. This is one reason why they are
more important than the HDcomponents. In music signals for
instance, it is quite conceivable that two peaks which are close
together in frequency, generate intermodulation products in the
same frequency range. At high frequencies, these products may
already be reduced by the amplitude-frequency characteristic.
In Fig. 6(b), the IM peaks are clearly visible at frequencies
10.685 and 10.715 MHz. The IMis thus about 40 dB. The
other two IM components around 30 MHz are already heavily
attenuated (not in the picture).

A second reason why the measurement of IMis preferred
above the one of HDis that the value of IM is three times
larger than the one of HDand hence easier to measure.

For these reasons, the value of IMis always preferred.
Another important characteristic and often used point is the

IM intercept, orIP . It is the value of the input signal where
the extrapolated curves of the components of IMand the
fundamental coincide. This is shown in Fig. 7.

The output components at the fundamental frequencies and
at the IM frequencies are plotted versus the input voltage.
They are given by, respectively, and (note that

is again dimensionless but that has as dimension).
IM is the ratio of both components. The point where both
components coincide is IP. It is thus also the point where

(a)

(b)

Fig. 6. (a) Second- and third-order harmonic and intermodulation compo-
nents. (b) Intermodulation distortion of a 10.7 MHz filter [3].

IM . This point is easy to calculate from (6b) and is
given by

IP (8)

or

IP
IM

or

IP IM

Obviously, the smaller , the larger the value of IP.
Another related measure for the distortion is theIntermod-

ulation free dynamic range(IMFDR ). The dynamic range is
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Fig. 7. Fundamental and IM3 components versus input voltage.

the ratio of the maximum output signal to the output
noise , as shown in Fig. 7. It is thus given by

DR (9)

or

DR

in which is the input noise (in ).
The IMFDR is the largest possible DR without IMdistor-

tion. It is thus obtained at the input voltage where the output
noise equals the IMcomponent (see Fig. 7), or where

which yields

(10a)

Substitution of this value in (9) finally gives

IMFDR

or

IMFDR
IP

(10b)

and

IMFDR IP

An alternative, albeit less accurate, way to characterize
distortion is the 1 dB compression point(see Fig. 7). It is the
value of where the fundamental component is compressed
by 1 dB, and is denoted by . This value can be
approximately calculated from (4). Indeed, the compression
is caused by the second term (in) of the coefficient of

. A reduction of 1 dB is a reduction to 0.122. The
resultant value of is thus about given by

(11)

or

IP

and

IP dB

The difference between both is thus almost 10 dB. The
measurement of the 1 dB compression point is thus an easy
way to obtain the value of IP.

There are several other ways to describe the distortion
caused by coefficients such as cross-modulation distortion,
triple beat, etc. There is nevertheless always a constant re-
lationship of the type (7) between them. Therefore, only one
more distortion is shortly discussed. It is the cross-modulation
distortion.

For the determination ofcross-modulation distortion, again,
two carrier frequencies and are required. The first one,
however, is modulated by a modulating signal at low frequency

. The modulation index, which is ratio of the amplitude of
the modulating signal to the one of the carrier, is denoted by

. A nonlinear transfer characteristic causes the modulation
to be transferred from the first carrier to the other one. As a
result, the second carrier is modulated as well. This causes
mixing of the channels in cable TV, etc., and is thus to be
avoided.

The modulation index of the other channel is a measure of
the distortion, and is called the cross-modulation distortion. It
is given by

CM (12a)

or

CM IM (12b)

Note that CM is only generated by the third-order terms
of the power series, which describe the nonlinearity. Since it
is closely related to IM, it will not be discussed any further.

III. D ISTORTION IN A BIPOLAR TRANSISTOR AMPLIFIER

In a bipolar transistor, the collector current is controlled
by the base–emitter voltage as given by

(13)

in which is the collector saturation current (see [1, Ch.
1]) and mV at 29 C (or 302 K).

The transistor is biased at a specific dc value of , i.e.,
in quiescent point of the characteristic (see Fig. 3). A

small variation of this voltage causes a variation in collector
current. These variations or ac components of the collector
current and the base–emitter voltage can be expressed as given
by

(14)

and
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Expression (13) thus results in

(15)

After division of both terms by the value of the quiescent
current , we obtain

(16)

with , which is called the relative current swing.
It is the current variation in the transistor, normalized to the
quiescent or dc current. It is a measure of the fraction of the
dc current in the transistor, which is used to generate ac output
signal. It will be used throughout this section to compare
distortion performance.

For small peak base–emitter voltages , the expo-
nential of (16) can be expanded in a Taylor series. Indeed, for

, we know that

(17)

and application of this expansion to (16) yields

(18)

in which is the peak value of the relative current swing, and
is the peak value of the ac base–emitter input signal.

For small input signals, only the first term in (18) has to be
retained, which leads to

(19)

which is well expected. Moreover, in first order, the peak value
of the relative current swing is derived from the peak input
voltage as given by

(20)

Finally, identification of (18) with (1) shows that for
and , the coefficients are , , ,
and . Use of the (5)–(10) and substitution of
by as given by (20) yields

IM HD (21a)

and

IM HD (21b)

For example, a peak ac current of 100A in a bipolar
transistor, carrying 1 mA, causes a peak relative current swing
of , and IM % (or HD %), and also
IM % (or HD %). For this ac current, a peak
input voltage is required of only 2.6 mV or to 1.84 mV .
A larger peak current swing of 0.5 leads to IM %, for
which an input signal amplitude of 9.2 mV is sufficient.
For k , the voltage gain then equals200.

Finally, the value of the

IP (22)

on the scale of the current swing

IP

or on the input voltage scale.
This corresponds with an input voltage of 73 mV.
This is quite small. A bipolar transistor with 1 mA has a

mS. With a base resistor of , its
equivalent input noise is the noise of
(see [1]). This corresponds with 1.56 nV Hz. For a
bandwidth of 200 kHz, the noise level V .
As a result IMFDR or 67 dB.

It is important to note that distortion components can
always be described by means of the input voltage drive
and by the current swing. The latter way has a number of
advantages. The current swing already includes the effects
of the transconductance and of the feedback such that the
expressions become simpler and very much comparable. They
will be used throughout this paper.

From these numbers, it is clear that only small input
signal amplitudes can be applied to a bipolar transistor. Also,
a current swing of 0.5 already corresponds with a high
distortion region, as shown in Fig. 5. For small values of

and , relations (21) and (22) hold. On a double
logarithmic scale, straight lines result with slopes of 1 and 2,
respectively. Doubling and thus quadruples the third-
order distortion. At higher values of and , however,
the values of the distortion are quite high but do not increase
(see Fig. 5) any further. These values have been calculated
by means of transient analyzes in SPICE, followed by Fourier
analyses.

IV. DISTORTION IN A MOSFET AMPLIFIER

For a MOST, the analysis is very similar as for a bipo-
lar transistor. Only the transfer characteristic – is
quadratic and not exponential. Less distortion is thus expected.

The drain current and gate–source voltage of a
MOST are in first-order related by

(23)

in which is the transconductance factor, which includes the
size , and is the threshold voltage.

The transistor is biased at a specific dc value of , i.e.,
in a quiescent or operating point. A small variation

of this voltage causes a small variation in drain current. They
are related by

(24)

and

Expression (23) thus becomes

(25)
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Subtraction of from both sides, and division by the
value of the quiescent current , yields

(26)

or

(27)

in which and are the peak values of the relative current
swing and the gate–source input voltage, respectively.

For small signals, only the first term in (27) has to be
retained, which yields

(28)

or

as expected.
Also, the peak relative current swing is related to the input

drive by

(29)

Finally, identification of (27) with (1) shows that for
and , the coefficients are ,

, , and .
Use of definitions (5)–(7) thus yields

IM HD (30)

and

IM (31)

Note that no third-order distortion occurs. Indeed, the trans-
fer characteristic [expression (23)] is only quadratic, and hence
no third-order terms can be generated. Hence, IMis zero and
IP infinite.

Comparison of (30) with (21) shows that a MOST only
generates half as much (second-order) distortion as a bipolar
transistor. The main advantage of a MOST, however, is that
the input voltage is scaled to ( ), which can be made
quite large, whereas for a bipolar transistor, the input voltage
is fixed and scaled to mV.

For example, if again a peak relative current swing is taken
of 0.1 (for mA and 100 A peak ac current), then
IM %. Even more important, however, is that a peak
input voltage is allowed of mV (35 mV )
for V, or of 10 mV (7 mV ) only, for

V.
The smaller the aspect ratio is made, the larger the

value and the larger the peak input voltage can be
allowed for the same distortion. The input voltage is indeed
related to the distortion (or the relative current swing) as
given by

(32)

Fig. 8. Generation of nonlinear distortion (compression), caused by a sym-
metrical differential stage.

For a given amount of distortion () and dc current ( ),
the maximum value of is inversely proportional to the
square root of and hence, .

Finally note that no third-order distortion is generated as
long as the first-order model of a MOST is guaranteed. As
soon as the complete expression is taken of MOST, including
the terms with 3/2 exponents, then third-order distortion does
occur, but nevertheless in very limited amounts.

V. DISTORTION IN A BIPOLAR TRANSISTOR

DIFFERENTIAL AMPLIFIER

Phase inversion of the input signal changes the sign of the
fundamental and third-order components but not of the second-
order component. This is exploited in a balanced or differential
circuit, to which two input signals of equal amplitude but
opposite phase are applied. The difference of the output signals
does not contain even-order distortion at least if no unbalance
is caused by mismatch. This is the case for a differential
amplifier as discussed next.

As shown by the transfer characteristic (see Fig. 8), the
operating point occurs now at zero output and input voltage.
The transfer characteristic is indeed perfectly symmetrical with
respect to the crosspoint of the axis. Application of a sinusoidal
waveform in causes a flattening of both tops of the quasi
sinusoidal waveform in . Compression thus occurs.

The transfer characteristic has been derived in [1, Ch. 4].
The differential output current is twice the ac current in
each transistor. The relative current swingis thus given by

(33)

in which is the ac current circulating through both tran-
sistors and and is the differential input voltage. If
two load resistors were added, then the output voltage would
be .

For small input voltages ( ), the tanh function can
be expanded in a power series. Indeed, for , we know
that

(34)
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Application to (33) yields

(35)

in which and represent peak values of the relative
current swing and the input voltage, respectively.

Truncation of this power series after its first term is sufficient
an approximation for small signals. It leads to the well-known
result that

(36)

in which is the transconductance of both transistorsand
, both carrying current . In a first-order approximation,

a simple relation is also obtained between the input voltage
and the relative current swing, as given by

(37)

Finally, identification of (35) with (1) shows that for
and , the coefficients are , , ,
and .

Use of (5)–(10) and of relation (37) yields

IM HD (38a)

as expected and

IM HD (38b)

Also,

IP (39)

Coefficient is negative, hence, the distortion causes
compression of the waveform.

For example, a total dc current mA is used again.
Now, however, each bipolar transistor only carries a dc current
of 0.5 mA. The peak ac current in each transistor is also
reduced to 50 A. For k , the voltage gain also
equals 200.

The peak relative current swing is again . As
a result, IM %. For this, a peak input voltage is
obtained of 5.2 mV or 3.7 mV . The distortion is thus 2
times lower than in the case of a single transistor carrying a
dc current and providing the same gain. This factor of 2
is also found by comparison of (38) with (21).

This conclusion is especially true because no second-order
distortion is present. In practice, mismatch will generate some
second-order distortion as well. It is usually much smaller than
the third-order distortion.

For a peak relative current swing of 0.5, IM % for
which a signal amplitude of 8.4 mV is required. Again,
a factor of 2 difference is found. It can be concluded that a
differential stage can take or 1.4 times more input voltage
to generate the same third-order distortion as a single transistor
amplifier with the same total dc current.

VI. DISTORTION IN A MOST DIFFERENTIAL AMPLIFIER

The transfer characteristic of a differential pair with MOST
is very similar to the one with bipolar transistors; it is
symmetrical around the origin. No second-order distortion
can thus occur. Since a single MOST amplifier does not
generate third-order distortion, it will be interesting to examine
what distortion performance can be obtained with a MOST
differential amplifier.

The transfer characteristic has been derived in [1, Ch. 4].
The differential output current is again twice the ac current
in each transistor. The relative current swingis thus given by

(40)

in which is the differential input voltage. Note that
can always be substituted by .

For small values of , the square root can be
expanded as a power series. Indeed, for , we know that

(41)

which allows us to work out (40) into

(42)

Again, , , and all represent peak values.
For a pure small signal analysis, the power series has to be

limited to the first term only, which leads to

(43)

or

or

(44)

in which is the gate–source voltage, and is the
transconductance of either T1 or T2, which both carry currents
of .

Expression (42) also provides a first-order relation between
the input voltage and the relative current swing

(45)

In order to obtain the distortion components, (42) has
to be identified with (1). It shows that for and

, the coefficients are , ,
, and . No second-order distortion thus

occurs, as expected indeed, since no quadratic component
occurs in (42). Also, coefficient is negative, which shows
that compression distortion occurs, as expected as well, from
a differential stage.

Use of the definitions (5)–(10) and of relation (45) yields
zero for IM and

IM HD (46a)
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Fig. 9. Application of negative feedbackf converts power series coefficients
ai into bi.

and

IP (46b)

For example, both transistors carry a dc current of 0.5 mA
and a peak ac component of 50A or A, which
yields . As a result IM %. This value is 1.6
times larger than the one for a bipolar differential stage with
the same current swing. However, the input voltage allowed,
again depends on the value ofas given by (45), which can
be rewritten as

(47)

in which applies to either transistor T1 or T2. The smaller
(or ), the larger the input voltage allowed. For example,

if V, then mV or 14 mV .
Finally, IP V.

It can thus be concluded that a MOST differential stage does
generate third-order distortion, because of the limiting action
of its transfer characteristic. It even generates a somewhat
more third-order distortion than a bipolar differential stage.
The input voltage allowed is, however, much larger and can
be designed to, in principle, any value, depending on the value
of .

VII. T HE EFFECT OFFEEDBACK ON DISTORTION

Series base and emitter resistances in the bipolar transistor
linearize the exponential relationship and thus reduce
the distortion. This corresponds, however, with a reduction
in gain. Also, series source resistance in the MOST reduces
the distortion and the gain as well. In this section, it is
examined how the application of negative feedback reduces
the distortion.

A. Theory

The application of negative feedback around the nonlinear
amplifier, which is characterized by coefficients(see Fig. 9)
gives rise to a new power series of the same form, but with
coefficients .

The feedback action is described by

(48)

in which represents the transfer function of the unilateral
feedback network. The coefficients of the new power series
can be found by application of (2) on (1) and use of (48),
which yields the following relations

(49)

(50)

(51)

in which the loop gain is given by

(52)

All expressions (5)–(10) are used to obtain the distortion
components are still valid, provided the coefficients are
replaced by .

The amplitude of the output signal itself is given by (49). It
is reduced by a factor of as expected. For this reason,
the input voltage (see Fig. 9) is reduced by as well.

The second-order distortion is given by

IM (53)

Also, after replacement of by

IM

(54)

The first term represents third-order distortion related to,
which is present as well without feedback. It is positive and
thus represents expansion distortion. A sinusoidal waveform
becomes more triangular.

The second term represents second-order interaction around
the feedback loop, generating third-order distortion. It is
negative and thus corresponds with compression.

The third-order distortion can cancel completely for specific
values of and . This causes a null in the IMcharacteristic,
which is quite sharp and difficult to maintain over a wide range
of transistor variables. Therefore, it is never a parameter to
design for. Moreover, it occurs at very small values of loop
gain .

For high values of , the second term usually dominates
and compression distortion results. For small values ofor
of , expansion distortion is dominant. These effects are now
illustrated with several examples.

B. Emitter Resistance in Single Bipolar Transistor Amplifier

Insertion of an emitter resistance in a single transistor
amplifier provides local feedback. The loop gainis given by

(55)

The second-order distortion component is then obtained
from (53) and given by ( for a bipolar transistor)

IM (56)
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Fig. 10. Distortion components with feedback in a bipolar transistor with 1
mA collector current.

in which is the peak input voltage with respect to ground.
Also since

(57)

the result is

IM (58)

The third-order distortion is derived from (54) and given by
( ; )

IM (59)

For example, a bipolar transistor carries a dc current of 1
mA and an ac peak current of 100A. The peak relative
current swing is thus 0.1. Without feedback IM %,
IM %, and mV .

Addition of a resistance of 260 causes a dc voltage across
of mV which results in

. Note that the value of is easily found by taking the dc
voltage across , divided by .

The value of IM IM %. Moreover, the
input voltage allowed increases to 20.2 mV . The value
of IM is then IM , or 0.02%. In order to increase
IM to the same value as without feedback, the value of
has to be increased by or 2.5, yielding and

mV .
The distortion components with feedback are plotted versus
(and ) in Fig. 10 for constant values of the collector

current ( mA) and relative current swing . For low
feedback ( ), the values are the same as on Fig. 5 for

. For large feedback ( ), the values decrease
with a slope of unity. Note that the null in IM indeed occurs
at or , which corresponds with
a very small amount of feedback indeed.

For high values of feedback ( and ),
expression (57) of the relative current swing can be modified
into

(60)

which shows that the input voltage is to be compared with
the voltage drop across the feedback resistance, in order to
obtain . For instance, for a voltage drop across of 1 V
( k with mA), then V or 0.07
V gives .

For such high values of feedback ( ), the distortion
components can be simplified to

IM (61)

IM (62)

Comparison with (21) shows that for IMit is sufficient to
divide by , whereas IM has to be divided by . It can
thus be concluded that feedback reduces distortion components
indeed. All of them are reduced, however, by about the same
amount.

Finally, note that emitter resistances can never fully be
excluded in a bipolar transistor since the base resistance
linearizes the exponential as well. The equivalent emitter
resistance is then , which is usually of
the order of a few ohms.

C. Source Resistance in Single MOST Amplifier

The insertion of a source resistor provides local feedback.
The value of the loop gain is again given by (55) with an
emitter resistor instead of a source resistor. From (27), we find

and . As a result, (53) and (54) become

IM (63)

IM

(64)

since now

(65)

For the same current swing, the second-order distortion
is reduced by . Now, however, third-order distortion
emerges as well. It is caused by the presence ofin (54),
which represents the increase in order of the second-order
distortion component which is fed back to the input. It is still
smaller than for a bipolar transistor.

For large feedback , the current swing becomes

(66)

and

IM (67)

which leads to the same conclusion as for a bipolar transistor.
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D. Emitter Resistances in a Bipolar Differential Stage

In a differential pair, second-order distortion is absent (
). Addition of equal emitter resistances in both transistors

does not degrade this symmetry. The third-order distortion is
derived from (54) and is given by (for )

IM (68)

The same conclusions can thus be drawn. IMis negative,
which corresponds with compression distortion, as before. For
large feedback ( ), the value of IM decreases linearly
with and is then given by the distortion without feedback,
divided by ( ).

E. Source Resistances in a MOST Differential Stage

Again, symmetry is maintained, and hence no second-order
distortion occurs. From (42) we find that . The
third-order distortion is again derived from (54) and is given
by

IM

(69)

The same conclusion can be drawn as for a differential stage
with bipolar transistors.

F. Emitter Follower

For distortion analysis, the emitter follower can be regarded
as a single transistor amplifier with large feedback ( ).
The output is taken at the emitter instead of at the collector;
but since the relative current swing is taken as a fundamental
parameter, the analysis is the same. For an emitter follower
with an emitter resistance, the distortion components are thus
already given by (61) and (62).

However, if a transistor is used instead of a resistance, then
its output resistance has to be used in the expression instead
of . Since , in which is the early voltage,
the relative current swing can be derived from (60) and
is given by

(70)

In order to obtain , the input voltage thus simply has to
be compared with the early voltage. For instance, for
V ( mA), an input voltage of V (or 0.07
V ) only provides .

The distortion components are then given by (61) and (62)
which give ( ) IM %
and IM %. They are thus negligible, thanks to
both the low values of and the high value of . For an
ideal follower, the current source is ideal, and its current is not
modified by application of an input signal. Hence, the current
swing is zero and so is the distortion (see Fig. 11).

The distortion of a source follower can also be calculated
directly as a solution of a nonlinear equation.

Fig. 11. The current swing in an ideal source follower is zero, and so is
the distortion.

G. Source Follower

Very much the same conclusions apply to the source fol-
lower as to the emitter follower. The relative current swing is
again given by

(71)

and has to be used in (63) and (67).
As an example, a source follower is taken at mA

with a current source with output resistance 16 k(
V). An input voltage of 4 V (or 2.8 V ) now gives

. Now the aspect ratio is such that
V. and V. Thus,
IM % and IM %.

Obviously for an ideal current source, the relative current
swing is zero and so is the distortion (see Fig. 11). In this
consideration, the bulk is assumed to be connected to the
source. If this is not the case, the parasitic JFET or the body
effect has to be considered as well. In this case, the distortion
is mainly caused by this effect.

To find the sources of distortion in any arbitrary circuit, the
values of the relative current swing have to be found together
with the feedback factor . All distortion components are
readily calculated.

In addition, the amplitude of the transfer characteristic
versus frequency has to be calculated of each transistor output
to the output of the total circuit. Higher harmonics are usually
attenuated by the low-pass filter action of the capacitances
present.
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