
Nearly-Linear Time Algorithms for Graph Partitioning,
Graph Sparsification, and Solving Linear Systems

[Extended Abstract]

Daniel A. Spielman
Department of Mathematics

M.I.T.
Cambridge, MA 02139

spielman@math.mit.edu

Shang-Hua Teng
Department of Computer Science

Boston University
Boston, MA 02215

and, Akamai Technologies Inc.

steng@cs.bu.edu

ABSTRACT
We present algorithms for solving symmetric, diagonally-
dominant linear systems to accuracy ε in time linear in their
number of non-zeros and log(κf (A)/ε), where κf (A) is the
condition number of the matrix defining the linear system.
Our algorithm applies the preconditioned Chebyshev itera-
tion with preconditioners designed using nearly-linear time
algorithms for graph sparsification and graph partitioning.

Categories and Subject Descriptors
F.2.1 [Numerical Algorithms and Problems]: Compu-
tations on matrices; G.1.3 [Numerical Linear Algebra]:
Linear systems (direct and iterative methods)

General Terms
Algorithms, Theory

Keywords
Preconditioners, Graph Partitioning, Graph Sparsification

1. INTRODUCTION
We present a linear-system solver that, given an n-by-n

symmetric diagonally-dominant matrix A with m non-zero
entries and an n-vector b, produces a vector x̃ satisfying
‖Ax̃ − b‖ < ε and ‖x̃ − x‖ ≤ ε, where x is the solution to
Ax = b, in time

m logO(1)m+O
“
log(κf (A)/ε)

“
m+ n2O(

√
log n log log n)

””
,

where κf (A) is the ratio of the largest to the smallest non-
zero eigenvalue of A.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’04, June 13–15, 2004, Chicago, Illinois, USA.
Copyright 2004 ACM 1-58113-852-0/04/0006 ...$5.00.

Our algorithm exploits two novel tools. The first is a
nearly-linear time algorithm, Partition, for quickly com-
puting crude graph partitions. For any graph G having a
cut of sparsity φ and balance b, this algorithm outputs a
cut of sparsity at most O(φ1/3 logO(1) n) and balance Ω(b)

in time m((logm)/φ)O(1).
Using this graph partitioning algorithm, we design fast

graph sparsifiers and graph ultra-sparsifiers. We say that a
graph is d-sparse if it has at most dn edges. We say that a
graph is k-ultra-sparse if it has at most n− 1+ k edges, and
note that a spanning tree is 0-ultra-sparse. We say that a
weighted graph Ã γ-approximates a weighted graph A if

L(Ã) � L(A) � γL(Ã),
where L(A) is the Laplacian of A (the diagonal matrix of
the weighted degrees of A minus the adjacency matrix of A)
and X � Y means that for all x ∈ IRn,

xTXx ≤ xTY x .

On input a weighted graph A, Sparsify(A, β) outputs a

graph Ã that is O(n logO(1)(n/β)/β2)-sparse that (1 + β)-
approximates A with high probability. Similarly, Ultra-
Sparsify(A, k) outputs a graph Ã that is kno(1)-ultra sparse
that n/k-approximates A with high probability. Both algo-

rithms run in time m logO(1) m.

For convenience, if E and eE are sets of weighted edges,
we write

E � eE
if L(A) � L(Ã) whereA and Ã are the corresponding graphs.
Due to space limitations, we omit almost all proofs and

refer the reader to the full version of the paper [24].

1.1 Solving Linear Systems
Our linear system solvers exploit the preconditioned in-

exact Chebyshev method [12]1. Given symmetric positive
semi-definite matrices A and B, the preconditioned Cheby-
shev method finds ε-accurate solutions to Ax = b in time

O(m
p
κf (A,B)S(B) log(κf (A)/ε)),

1We could use the preconditioned Conjugate Gradient for
the one-shot algorithms, we cannot use it for our recursive
algorithms as we can not find of a strong enough analysis
of the accuracy of the solutions obtained by CG if the inner
system is solved inaccurately.

81

where m is the number of non-zeros in A, S(B) is the time
it takes to solve systems in B, and

κf (A,B) =

„
max

x :Ax �=0

xTAx

xTBx

«„
max

x :Ax �=0

xTBx

xTAx

«
,

for symmetric A and B with Span (A) = Span (B).
Vaidya [25] had the remarkable idea of using a subgraph

of A as a preconditioner. In particular, Vaidya proved that a
maximum spanning tree of A nm-approximates A and that
by adding t2 edges to such a tree, one can obtain a t2-ultra-
sparse graph that O(nm/t2)-approximates A. In the case
of planar graphs, Vaidya only needed to add O(t) edges.
Vaidya thereby obtained algorithms for solving SDD linear
systems with non-positive off-diagonals of degree d in time
O((dn)1.75 log(κf (A)/ε)), and for solving planar systems in
time O((dn)1.2 log(κf (A)/ε)). Before Vaidya’s contribution,
the only worst-case bounds for solving such systems required
time O(nm) and O(n1.5) respectively [19]. While Vaidya’s
work was unpublished, proofs of his results as well as exten-
sions may be found in [16, 13, 14, 4, 5, 6]. Two ways of ex-
tending Vaidya’s construction to systems with both positive
and negative off-diagonals were found: a direct method [5]
and a transformation from such a system to one with non-
positive off-diagonals [13]. There is also a transformation
from the problem of preconditioning a SDD system to that
of preconditioning a system in which the diagonals are pre-
cisely the sums of the absolute values of the off-diagonals in
their columns. Thus, it generally suffices to consider pre-
conditioning Laplacian matrices.
By recursively applying Vaidya’s preconditioners, Joshi [16]

showed how to solve a system where A is a regular grid in
time O(n log(n/ε)). Reif [22] recursively applied Vaidya’s
preconditioners to improve the running time for constant-
degree planar linear systems to O(n1+β logO(1)(κf (A)/ε)),
for every β > 0. Boman and Hendrickson [6, 7] applied the

trees of [2] to construct 0-ultra-sparsem1+o(1)-approximations
of A, and showed that these could be used to solve arbitrary
SDD systems in time m1.5+o(1) log(κf (A)/ε). Exploiting
techniques that add vertices and edges to the graph, Maggs,
et. al. [21] improved this time to O(mn1/2 log2(nκf (A)/ε)),
after some preprocessing. Spielman and Teng [23] augmented
Boman and Hendrickson’s construction to obtainO(t2 log n)-

ultra-sparse graphs that (m1+o(1)/t)-approximate the origi-

nal, resulting in a m1.31+o(1) log(κf (A)/ε) time algorithm.
In this work, we augment the low-stretch spanning trees

of Alon, Karp, Peleg and West [2] to obtain tno(1)-ultra-

sparse graphs that
“
(n/t) logO(1) n

”
-approximate A for all

t ≥ 1. Our linear system solver is obtained immediately by
plugging this ultra-sparsifier construction into the recursive
algorithm of [23].

1.2 Sparsifiers
While the analysis in this paper may be long, the idea be-

hind the construction of our sparsifiers is quite simple: we
show that if a graph A has no sparse cuts, then a natural
random rounding of A will be a good approximation of A.
Thus, to approximate a general graph A, we would like to
remove a small fraction of the edges of A so that each re-
maining component has no sparse cuts. We then sparsify
each of these components via a random rounding, and then
apply the algorithm recursively to the edges we removed.
Thus, to make the algorithm efficient, we need merely find

a fast algorithm for removing those edges. This turns out to
be tricky. The other part—proving that the random round-
ing of a graph with no sparse cuts is a good approximation of
the original—is cleanly accomplished in Section 5 by adapt-
ing techniques of Füredi and Komlós [11].
The graph sparsifiers most closely related to ours are those

developed by Benczur and Karger [3]. They develop an
O(n log3 n) time algorithm that on input a weighted graph
G with Laplacian L and a parameter ε outputs a weighted
graph G̃ with Laplacian L̃ such that G̃ has O(n log n/ε)
edges and such that for all x ∈ {0, 1}n

xT L̃x ≤ xTLx ≤ (1 + ε)xT L̃x . (1)

The difference between their sparsifiers and ours is that ours
apply for all x ∈ IRn. To see the difference between these
two types of sparsifiers, consider the graph on vertex set
{0, . . . , n− 1} containing edges between each pair of vertices
i and j such that |(i− j)| mod n ≤ k, and one additional

edge, e, from vertex 0 to vertex n/2. If G̃ is the same graph
without edge e, then (1) is satisfied with ε = 1/k for all
x ∈ {0, 1}n. However, for the vector x = (0, 1, 2, . . . n/2 −
1, n/2, n/2−1, . . . , 1, 0) , (1) is not satisfied for any ε < n/4k.
Moreover, the algorithm of Benczur and Karger does not in
general keep the edge e in its sparsifier. That said, some of
the inspiration for our algorithm comes from the observation
that we must treat sparse cuts as they treat minimum cuts.
Other matrix sparsifiers that randomly sample entries have

been devised by Achlioptas and McSherry [1] and Frieze,
Kannan and Vempala [10]. The algorithm of Achlioptas and
McSherry takes as input a matrix A and outputs a sparse
matrix Ã that satisfies inequalities analogous to (1) for all
x in the range of the dominant eigenvectors of A. Similarly,
if one applies the algorithm of Frieze, Kannan and Vempala
to the directed edge-vertex adjacency matrix of a graph G,
then one obtains a graph G̃ satisfying (1) for all x in the
span of the few singular vectors of largest singular value. In
contrast, our sparsifiers must satisfy this equation on the
whole space. Again, one can observe that neither of these
algorithms is likely to keep the edge e in the example above.
That said, we do prove that a rounding similar to that used
by Achlioptas and McSherry works for our purposes if the
graph A has reasonably large isoperimetric number.

1.3 Partitioning
In Section 3, we present an algorithm that quickly finds

crude cuts in graphs of approximately optimal balance. Given
a graph G containing a set of vertices S such that Φ(S) < φ
and Vol (S) ≤ Vol (V) /2, our algorithm Partition finds a
set of vertices T such that Vol (T) ≥ Vol (S) /2 and Φ(T) ≤
O(φ1/3 logO(1) n) in time O(m ((log n)/φ)O(1)). For our pur-

poses, we may apply this algorithm with φ = 1/ logO(1) n.
This algorithm works by approximating the distributions of
many random walks on the graph, and its analysis is based
on techniques used by Lovasz and Simonovits [20] to analyze
their volume estimation algorithm.
We are aware of three theoretically analyzable general-

purpose algorithms for graph partitioning: the spectral
method [8, 9], the linear-programming relaxation of Leighton
and Rao [18], and the random-walk algorithm implicit in the
work of Lovasz and Simonovits [20]. Of these, the linear-
programming based algorithm provides the the best approx-
imation of the sparsest cut, but is by far the slowest. The
spectral method partitions by computing an eigenvector of

82

the Laplacian matrix of a graph, and produces a quadratic
approximation of the sparsest cut. This algorithm can be
sped up by applying the Lanczos algorithm to compute an
approximate eigenvector. Given a graph with a cut of spar-
sity less than φ, this sped-up algorithm can compute a cut
of sparsity at most

√
φ in time O(n

p
1/φ). However, there

seems to be no way to control the balance of the cut it out-
puts. Finally, Lovasz and Simonovits essentially show that
by examining random walks in a graph, one can obtain an
algorithm that produces similar cuts in time O(n/φ). To
quickly obtain cuts of reasonable balance, our graph parti-
tioning algorithm exploits truncated random walks, and our
analysis builds upon the techniques of [20].
We remark that the most successful graph partitioning

algorithms in practice are the multi-level methods incorpo-
rated into Metis [17] and Chaco [15]. However, there are still
no theoretical analyses of the qualities of the cuts produced
by these algorithms on general graphs.
The most natural way to partition a graph into pieces

such that each has large isoperimetric number would be to
apply Partition, and then apply it again to each compo-
nent, etc. However, we have been unable to prove that this
algorithm will terminate after a bounded number of itera-
tions. Instead, we analyze an algorithm MultiwayPartition

that performs these partitions a bounded number of times.
Instead of proving that each resulting component has large
isoperimetric number, we prove that each remaining compo-
nent lies within a subgraph of large isoperimetric number.
The relation between these components and subgraphs is
somewhat technical, and appears in Theorem 4.1. The key
to the analysis of this algorithm is the introduction of a
variant of the isoperimetric number, which we denote �.

2. NOTATION
We recall that a matrix is diagonally dominant if Ai,i ≥Pn
j=1 |Ai,j | for all i. As explained in [23], the reductions in-

troduced in [13, 4] allow us to solve SDD systems by merely
preconditioning Laplacian systems. We recall that a sym-
metric matrix is a Laplacian if all its off-diagonals are non-
positive and the sum of the entries in each row is 0. For a
non-negative matrix A, we let L(A) denote the correspond-
ing Laplacian.
There are three natural ways to formulate the problem of

finding an approximate solution to a system Ax = b. A
vector x̃ has relative residual error ε if ‖Ax̃ − b‖ ≤ ε ‖b‖.
We say that a solution x̃ is an ε-approximate solution if it
is at relative distance at most ε from the actual solution—
that is, if ‖x − x̃‖ ≤ ε ‖x‖. Finally, one sometimes requires
‖x − x̃‖A < ε, where ‖y‖A

def
= yTAy . One can relate these

three notions of approximation by observing that each of
these measures of error are within a factor of κf (A) of each
other.
The l2 norm of a matrix, ‖A‖, is the maximum of ‖Ax‖ / ‖x‖,

and equals the largest eigenvalue of A if A is symmetric. For
non-symmetric matrices, λmax(A) and ‖A‖ are typically dif-
ferent. We let |A| denote the number of non-zero entries in
A.
For Laplacian matrices L and L̃ such that the nullspace of

L̃ is contained in the nullspace of L, we recall the definition
of the support of L̃ in L:

σf (L, L̃) = max
x :L̃x �=0

xTLx

xT L̃x
,

and note that for matrices L and L̃ with the same nullspace,
we may express

κf (L, L̃) = σf (L, L̃)σf (L̃, L),

We also note that

σf (L, L̃) ≤ λ if and only if λL � L̃,

and that there exists a scaling factor µ such that µL̃ is an
κf (L, L̃)-approximation of L. For more information on these
quantities, we refer the reader to [6].
Let G = (V,E) be an undirected unweighted graph with

n vertices and m edges. For each S ⊆ V , we let G(S)
be the induced graph on the vertices in S. We also define
VolV (S) =

P
v∈S d(v) where d(v) is the degree of vertex v

in G. We note that VolV (V) = 2m.
Each subset S ⊆ V defines a cut and hence a partition

(S, S̄) of G, where S̄ = V − S. Let ∂V (S) = E(S, S̄) be the
set of edges with exactly one endpoint in S and one endpoint
in S̄. The sparsity of the set is defined to be

ΦV (S)
def
=

|∂V (S)|
min(VolV (S) ,VolV

`
S̄
´
)
,

and the isoperimetric number of the graph is

ΦV = min
S⊂V

ΦV (S).

The balance of a cut S or a partition (S, S̄) where VolV (S) ≤
VolV

`
S̄
´
is

bal (S) =
VolV (S)

VolV (V)
.

We also define these terms in the subgraph of G induced
by a subset of the vertices W ⊆ V : For S ⊆ W ,

VolW (S)
def
=
X
v∈S

|w ∈ W : (v, w) ∈ E| ,

∂W (S)
def
=
X
v∈S

|w ∈ W − S : (v, w) ∈ E| ,

ΦW (S)
def
=

|∂W (S)|
min(VolW (S) ,VolW

`
S̄
´
)
.

3. PARTITIONING
The algorithm Nibble works by approximately computing

the distribution of a few steps of the random walk starting
at the seed vertex v. It is implicit in the analysis of the
volume estimation algorithm of Lovasz and Simonovits [20]
that one can find a small cut from the distributions of the
steps of the random walk starting at any vertex from which
the walk does not mix rapidly. We first note that a ran-
dom vertex in S is probably such a vertex. We then extend
the analysis of Lovasz and Simonovits to show one can find
a small cut from approximations of these distributions, and
that these approximations can be computed quickly. In par-
ticular, we will truncate all small probabilities that appear
in the distributions to 0. In this way, we minimize the work
required to compute our approximations.

83

We will use the definitions of the following two vectors:

χS(x) =

(
1 for x ∈ S,

0 otherwise,

ψS(x) =

(
d(x)/VolV (S) for x ∈ S,

0 otherwise.

We note that ψV is the steady-state distribution of the
random walk, and that ψS is the restriction of that walk to
the set S.
Given an unweighted graph A, we will consider the walk

that at each time step stays put with probability 1/2, and
otherwise moves to a random neighbor of the current ver-
tex. The matrix realizing this walk can be expressed P =
(AD−1 + I)/2, where d(i) is the degree of node i, and D is
the diagonal matrix with (d(1), . . . , d(n)) on the diagonal.
We will let pvt denote the distribution obtained after t steps
of the random walk starting at vertex v. In this notation,
we have pvt = P tχv. We will omit v when it is understood.
For convenience, we introduce the notation

ρvt (x) = pvt (x)/d(x).

To describe the rounded random walks, we introduce the
truncation operation

[p]ε (v) =

(
p(v) if p(v) ≥ 2εd(i),

0 otherwise.

We then have the truncated probability vectors

p̃0 = p0

p̃t = [P p̃t−1]ε . (2)

That is, at each time step, we will evolve the random walk
one step from the current density, and then round every pt(i)
that is less than 2d(i)ε to 0. We remark that this will result
in an odd situation in which the sum of the probabilities
that we are carrying around will be less than 1.

C = Nibble(G, v, θ0, b)
G a graph, v a vertex, θ0 ∈ (0, 1), b a positive integer.
(1) Set p̃0(x) = χv.

(2) Set t0 = 49 ln(me4)/θ2
0 , γ = 5θ0

7·7·8 ln(me4)
, and εb =

θ0
7·8 ln(me4)t02b .

(3) For t = 1 to t0

(a) Set p̃t = [P p̃t−1]εb
.

(b) Compute a permutation π̃t such that ρ̃t(π̃t(i)) ≥
ρ̃t(π̃t(i+ 1)) for all i.

(c) If there exists a j̃ such that

i Φ(π̃t
`˘
1, . . . , j̃

¯´
) ≤ θ0,

ii ρ̃t(π̃t(j̃)) ≥ γ/VolV
`
π̃t
`˘
1, . . . , j̃

¯´´
, and

iii 5VolV (V) /6 ≥ Vol
`
π̃t
`˘
1, . . . , j̃

¯´´ ≥ (5/7)2b−1.

then output C = π̃t
`˘
1, . . . , j̃

¯´
and quit.

(4) Return ∅.

We will use the following notation.

θ+
def
= θ3

0/14
4 ln2(me4). (3)

Lemma 3.1 (Nibble). Nibble can be implemented so
that it runs in time O

`
2b ln4(m)/θ5

0

´
. If the set C output by

Nibble is non-empty, it satisfies

i. ΦV (C) ≤ θ0,

ii. VolV (C) ≤ (5/6)VolV (V) .

Moreover, for each θ0 ≤ 1/2 and for each set S satisfying

VolV (S) ≤ (2/3)VolV (V) and ΦV (S) ≤ 2θ+,

there is a subset Sg ⊆ S such that VolV (S
g) ≥ VolV (S) /2

that can be decomposed into sets Sg
b for b = 1, . . . , lgm such

that if Nibble is started from a vertex v ∈ Sg
b and run with

parameters θ0 and b, then it will output a set of vertices C
such that

iii. (4/7)2b−1 ≤ VolV (C ∩ S).

The following are some definitions and lemmas used in the
analysis of Nibble.

Definition 3.2 (Sg
). For each set S ⊆ V , we define

Sg to be the set of nodes x in S such that˙
χS̄|P t0χx

¸ ≤ 2
˙
χS̄ |P t0ψS

¸
.

Proposition 3.3 (Mass of Sg
).

VolV (S
g) ≥ VolV (S) /2.

Lemma 3.4 (Cut from Random Walk). For any φ >
0, let t0 = ln(me4)/φ2, α = 1/4t0. Then, for every set S
such that Vol (S) ≤ Vol (V) /2 and

Φ(S)t0 < 1/32,

for all v ∈ Sg, if we start the random walk at χv, then there
exists a t < t0 and a j ≤ m such that

(a) Φ (πt({1, . . . , j}) ≤ φ, and

(b) for the j0 and j1 defined by ktj − 2φk̄tj ∈ (ktj0−1, k
t
j0]

and ktj + 2φk̄
t
j ∈ (ktj1−1,≤ ktj1],

ρt(πt(j0))−ρt(πt(j1)) > φ

4 ln(me4)Vol (πt ({1, . . . , j})) ,
(4)

where for all integers j ∈ [0, n], we define ktj =
Pj

i=1 d(πt(i)),
and we define k̄tj = min(k

t
j , 2m− ktj).

Proposition 3.5 (Monotonicity of Mult by P). For
all non-negative vectors p,‚‚D−1(Pp)

‚‚
∞ ≤ ‚‚D−1p

‚‚
∞ .

Proposition 3.6 (Escaping Mass).˙
χS |P t0ψS

¸ ≥ 1− t0ΦV (S).

Lemma 3.7 (Overlap with S). For a set S for which

Φ(S) ≤ θ3
0

74 · 8 ln2(me4)
, (5)

84

if the truncated random walk (2) is started from any ver-
tex v ∈ Sg, then for every t < t0 = 72 ln(me4)/θ2

0 and j̃
satisfying

ρ̃t(j̃) ≥ 5θ0

72 · 8 ln(me4)Vol
`
π̃t(
˘
1, . . . , j̃

¯
)
´ ,

we have

Vol
`
π̃t(
˘
1, . . . , j̃

¯
) ∩ S

´ ≥ (4/5)Vol
`
π̃t(
˘
1, . . . , j̃

¯
)
´
.

Lemma 3.8 (Low-impact Truncation). Let the val-
ues ρt(v) be derived from the ordinary random walk and the
values ρ̃t(v) be derived from the truncated random walk with
truncation factor εb. Then, for all t and v,

ρt(v) ≥ ρ̃t(v) ≥ ρt(v)− 2tεb.

Definition 3.9 (Sg
b). For every set S ⊆ V , we define

Sg
b to be the set of vertices in Sg such that when the random

walk is started at that vertex, the first t for which there is
a j satisfying conditions (a) and (b) of Lemma 3.4 has the
property that for the least such j

2b−1 ≤ Vol (πt({1, . . . , j})) < 2b.

Lemma 3.10 (Analysis of Truncated Walk). For
each θ0 ≤ 1, if S is a set satisfying Vol (S) ≤ (2/3)Vol (V)
and

Φ(S) ≤ θ3
0

74 · 8 ln2(me4)

and Nibble is started at a vertex v ∈ Sg
b with parameter b,

then there exists a t < t0 and a j̃ such that conditions i, ii
and iii of line (3.c) of Nibble are satisfied.

3.1 Random Nibble and Partition
To define Partition, we first define an intermediate algo-

rithm Random Nibbles which calls Nibble on carefully cho-
sen random inputs.

C = RandomNibble(G, θ0)

(1) Choose a vertex v according to ψV .

(2) Choose a b in 1, . . . , �logm� according to
Pr [b = i] = 2−i/(1− 2−�logm).

(3) C = Nibble(G, v, θ0, b).

Lemma 3.11 (Random Nibble). The expected running
time of Random Nibble is O

`
ln4(m)/θ5

0

´
. If the set C output

by Random Nibble is non-empty, it satisfies

i. ΦV (C) ≤ θ0,

ii. VolV (C) ≤ (5/6)VolV (V) .

Moreover, for each θ0 ≤ 1/2 and for each set S satisfying

VolV (S) ≤ (2/3)VolV (V) and ΦV (S) ≤ 2θ+,

iii. E [Vol (C ∩ S)] ≥ Vol (S) /14m,

where θ+ is as defined in (3).

D = Partition(G, θ0, p)
where G is a graph, θ0, p ∈ (0, 1).
(0) Set W1 = V .

(1) For j = 1 to 56m�lg(1/p)�.
(a) Set Dj = RandomNibble(G(Wj), θ0)

(b) Set Wj+1 =Wj −Dj .

(c) If VolWj+1 (Wj+1) ≤ (5/6)VolV (V), then go
to step (2).

(2) Set D = V −Wj+1.

θ0
def
= (5/36)θ. (6)

Theorem 3.12 (Partition). The expected running time
of Partition is at most O

`
m lg(1/p) ln4(m)/θ5

0

´
. Let D be

the output of Partition(G, θ0, p), where G is a graph and
θ0, p ∈ (0, 1). Then

i. VolD (D) ≤ (31/36)VolV (V),

ii. ΦV (D) ≤ θ, as defined in (6).

Moreover, for each set S satisfying

VolV (S) ≤ (2/3)VolV (V) and ΦV (S) ≤ 2θ+,

with probability at least 1− p, either

iii.a. VolV−D (V −D) ≤ (5/6)VolV (V), or

iii.b. VolV−D (S ∩ (V −D)) ≤ (1/2)VolV (S),

where θ+ is as defined in (3).

4. MULTIWAY PARTITION
Our multiway partitioning algorithm is:

C = MultiwayPartition(G, θ, p)

(0) Set C1 = V and S = ∅.
(1) For t = 1 to �log17/16 m� · �lgm� · �lg(2/ε)�

(a) For each component C ∈ Ct,
D = Partition(G(C), θ0, p/m).

Add D and C −D to Ct+1.

(2) Return C = Ct+1.

Let m be an upper bound on the number of edges of the
input graph. We let

ε
def
= min

„
1

16
,

1

4�lgm�
«
, and (7)

θ∗
def
= εθ+/32, (8)

where θ+ is defined as in Equation (3).

Theorem 4.1 (MultiwayPartition). Let G = (V,E)
be an undirected graph of n vertices and at most m edges.
For any 0 < θ < 1, let C be the set of components returned
by MultiwayPartition. Then, with probability at least 1−p,

1 cut-size (C) ≤
“
θ log17/16 m · lgm · lg(2/ε)

”
(m/2), and

85

2. there exists a set W of subsets of V , an assignment

level : W →
n
1, . . . , �log17/16 m�

o
, and a mapping

π : C → W such that

a. For all W ∈ W, ΦW ≥ θ∗,

b. For all C ∈ C, C ⊆ π(C)

c. For all l ∈
n
1, . . . , �log17/16 m�

o
,

{W ∈ W : level (W) = l} are pair-wise disjoint.

d. For each pair Wi ∈ W and Wj ∈ W such that
level (Wi) > level (Wj),

Wi ∩
`∪C∈C:π(C)=Wj

C
´
= ∅.

In addition, the expected running time of MultiwayPartition

is m
“
lg(1/p) lgO(1)(m)

”
/θ5.

Our analysis of MultiwayPartition employs the following
variant of the isoperimetric number: for a graph G = (V,E)
and a subset S of V , we define

�V (S) =
∂V (S)

min (Vol (S) ,Vol (V − S))1+4ε .

We also define � of a subset S by

�S = min
T⊆S

�S (T) = min
T⊆S

∂S (T)

min (Vol (T) ,Vol (S − T))1+4ε
.

Note that the induced graph of S is connected if and only if
�S > 0.
The purpose of this definition of � is to satisfy the follow-

ing lemma.

Lemma 4.2 (Union of sets with small intersection).

Let 0 < ε < 1/4. Let S and T be sets of vertices such that
Vol (S ∩ T) ≤ εmin (Vol (S) ,Vol (T)). Then

Vol (S ∪ T)1+4ε > Vol (S)1+4ε +Vol (T)1+4ε .

If in addition Vol (S ∪ T) ≤ (1/2)Vol (V), then

�V (S ∪ T) ≤ max (�V (S) ,�V (T))

Proposition 4.3 (� and Φ). For every set S, ΦV (S)/2 ≤
�V (S) ≤ ΦV (S).

Lemma 4.4 (Divided or Covered: Each Epoch). For
each t ≥ 1 and C ∈ Ct, let t′ = t+ �lgm� · �lg(2/ε)�. If ev-
ery call made by MultiwayPartition to Partition succeeds,
then either

• for all components C′ ∈ Ct′(C),
VolC′ (C′) ≤ (16/17)VolC (C), or

• Let Ct′ be the unique component in Ct′(C) such that
VolCt′ (Ct′) > (16/17)VolC (C). There exists a set
W ∈ Ct with ΦW ≥ θ∗ and Ct′ ⊆ W .

Proof Sketch. Assume

VolCt′ (Ct′) > (16/17)VolC (C) . (9)

Let Ct = C for notational simplicity. For t ≤ j ≤ t′, let Cj

be the unique component in Cj(C) such that VolCj (Cj) >
(16/17)VolC (C). Then Ct′ ⊆ Ct′−1 ⊆ · · · ⊆ Ct+1 ⊆ Ct.
Let V0 = Ct. For i ∈ [0 : �lgm�] we iteratively define

Ui+1, Vi+1, and Wi+1 and Si+1 by:

• Si ⊂ Vi is the largest subset such that VolVi (Si) ≤
VolVi (Vi) /2 and �Vi (Si) ≤ 2θ∗,

• Wi+1 = Ct+i lg(2/ε) and Ui+1 = Vi −Wi+1, and

• Vi+1 = Vi − (Si ∩ Ui+1).

As W1 ⊆ V0, inductively it follows from Vi+1 = Vi− (Si ∩
Ui+1) = Vi − (Si ∩ (Vi −Wi+1)) and Wi+1 ⊆ Wi ⊆ Vi, that
Wi+1 ⊆ Vi+1. In particular, Ct′ = W�lgm	 ⊆ V�lgm	. Using
Lemma 4.5, we show that S�lgm	 = ∅. So, ΦV�lg m� ≥ θ∗, and
W = V�lgm	 is the set claimed to exist by the lemma.

Lemma 4.5 (Reduction). For Vi, Ui, Wi and Si as
defined in the proof of Lemma 4.4, if

a. VolVi (Si ∩Wi+1) < (ε/2)VolVi (Si),

b. VolVi (Si ∪ Si+1) < VolVi (Vi) /2, and

c. VolVi (Si) ≤ VolVi (Vi) /16,

then,

i. VolVi+1 (Si+1) ≤ VolVi+1 (Vi+1) /16, and

ii. VolVi+1 (Si+1) ≤ VolVi (Si) /2.

5. RANDOM SAMPLING
If we let L̃ be the result of randomly sampling the edges

of L, we can not in general assume that κf (L, L̃) will be

bounded. However, we can bound κf (L, L̃) if the smallest
eigenvalue of D−1L is bounded from below.

Lemma 5.1 (Small norm good preconditioner). Let

L and L̃ be Laplacian matrices and let D be a diagonal ma-
trix with positive diagonals. If L has co-rank 1 and λmax(D

−1(L−
L̃)) < (1/2)λmin(D

−1L), then

σf (L, L̃) ≤ 1 + 2
λmax(D

−1(L− L̃))

λmin(D−1L)
, and

σf (L̃, L) ≤ 1 +
λmax(D

−1(L− L̃))

λmin(D−1L)
.

Our graph sampler is much like that used in [3] and [1].

Ã = Sample(A, c)
A is an unweighted adjacency matrix, c ≥ 1.

(1) Set d(i) =
P

j ai,j .

(2) For all i, j for which ai,j �= 0, set
pi,j =

 cai,j

min(d(i),d(j))
if c < min(d(i), d(j))/ai,j ,

1 otherwise.

(3) For all i, j for which ai,j �= 0, set ãi,j = ãj,i = ai,j

pi,j
with probability pi,j ,

0 with probability 1− pi,j .

(4) Return the matrix Ã of the ãi,js.

By adapting techniques used by Füredi and Komlós [11]
to study random matrices, we prove:

86

Theorem 5.2 (Sampling). Let A be a non-negative sym-
metric matrix and let c ≥ 1. Let d(i) =

P
j ai,j, and let

D = diag(d(1), . . . , d(n)). Let Ã be the output of Sample

(A,c). Then, for all α ≥ 1, and even integers k,

Pr

»
λmax

“
D−1(Ã−A)

”
≥ 2αkn1/k

√
c

–
< α−k.

Lemma 5.3 (Close weighted degrees). Let A be the

adjacency matrix of an unweighted graph, and let Ã be the
output of Sample(A, c). Let d(1), . . . , d(n) be the degrees of

the vertices of A and let d̃(1), . . . , d̃(n) be the corresponding

terms for Ã. Then, for δ < 1,

(a) for all i, Pr
h˛̨̨
1− d(i)−1d̃(i)

˛̨̨
> δ
i
< 2e−cδ2/3, and

(b) the probability that Ã has more than 2nc edges is at

most (4/e)−cn/2.

Theorem 5.4 (Preconditioning by Sampling). Let
A be the adjacency matrix of an unweighted graph, L be
its Laplacian, D the diagonal matrix of its degrees, and let
λmin(D

−1A) ≥ λ. Let B be the adjacency matrix of a sub-
graph of A. Let 0 < p < 1 and

k
def
= max (�lg(2/p)�, �lg n�) .

For any β < 1, let eB = Sample(B, c), where

c = (30k/βλ)2.

If we then let Ã = eB + (A−B), and let L̃ be its Laplacian,
then

Pr
h
σf (L, L̃) > 1 + β/3 and σf (L̃, L) > 1 + 2β/3

i
< p.

6. UNWEIGHTED SPARSIFIERS
Our construction of sparsifiers depends upon sparsifiers

for unweighted graphs. For a multiway partition C, and a
set of edges F , we let bridge (C, F) denote the set of edges
of F going between components of the partition.

eE = UnweightedSparsifier(E, β),
E is a set of unweighted edges and β < 1.

(0) Set θ =
“
log17/16 m · lgm · lg(8 lgm)

”−1

and λ =

θ2
∗/2, where θ∗ is given by (6), (3) and (8).

(1) C = MultiwayPartition(E, θ, 1/n2)

(2) For each C ∈ C set eC = Sample(C, c), where c =

(30(lg n+ 2)/βλ)2. Set Ã = Ã ∪ eC.
(3) S = bridge (C, E)
(4) eS = UnweightedSparsifier(S, β). Set Ã = Ã ∪ eS.
Lemma 6.1 (Unweighted Sparsifier). Let E be a set

of unweighted edges E, let β < 1, and let eE be the output of

UnweightedSparsifier(E, β). Then, | eE| < n logO(1) n/β2

with exponentially high probability. Moreover,

Pr

"
E � (1 + β/3)O(lg2 m) eE andeE � (1 + 2β/3)O(lg2 m) E

#
≥ 1− lgm

m2
.

The expected running time of Unweighted Sparsifier is
O(m logO(1)(m/β)).

7. SPARSIFYING WEIGHTED GRAPHS
This section will require the following definitions:
For a set E of weighted edges, we let edges (E) denote the

set of edges in E. If needed, elements of edges (E) are as-
sumed to have weight 1. The degree of vertex i in E is given
by degE (i) = |{(i, j) ∈ edges (E)}|. The weighted degree of
vertex i in E is given by wdegE (i) =

P
({i,j},w)∈E w.

The capacity of a path containing edges of weights ω1, . . . , ωk
is given by

1/ (1/ω1 + · · ·+ 1/ωk) .
If T is a weighted tree and e is an edge whose endpoints are
connected by a path in T , then the weighted dilation of e in
T , wdT (e) is the weight of e divided by the capacity of the
path.
If F is another set of weighted edges, we let bridge (E,F)

be the set of edges in F that span connected components of
the graph defined by E.
So that we can state Rewire in UltraSparsify, we need

the following variation of a definition from [23]:

Definition 7.1. For a set of edges F , an F -decomposition
is a pair (W, π) where W is a collection of sets of vertices
and π is a map from F into sets or pairs of sets in W sat-
isfying

1. |Wi ∩Wj | ≤ 1 for all i �= j, and

2. for each edge in e ∈ F , if |π(e)| = 1, then both end-
points of e lie in π(e); otherwise, one endpoint of e lies
in one set in π(e), and the other endpoint lies in the
other.

The pair is an F -decomposition of E if in addition

3. for each set Wi ∈ W, the graph induced by E on Wi is
connected, and

4. each edge of E lies in exactly one set in W,

For now, it is probably best to first consider the case in
which E = F and all the sets in W are disjoint, in which
case π merely maps each edge to the names of subsets in
which its endpoints lie. This is how the definition is used in
Sparsify. We note that, in general, this definition allows
there to be sets W ∈ W containing just one vertex of V .
For a set of edges F and a pair ((W1, . . . ,Ws), π), we

define

metaGraph ({W1, . . . ,Ws} , π, F)
to be the weighted graph on vertices {1, . . . , s} with edge
{i, j} having weight

|{({a, b} , w) ∈ F : π({a, b}) = {Wi,Wj}}| .

Finally, we say that {W1, . . . ,Ws} has a γ-center under E
if for all i ∈ {1, . . . , s}, there exists wi ∈ Wi such that for
all u ∈ Wi, there exists a path in the graph induced by E
on Wi from u to wi of capacity at least γ.

87

eF = Rewire(F, ({W1, . . . ,Wl} , π), eH), F is set of unit-
weight edges, ({W1, . . . ,Wl} , π) is an F -decomposition,

and eH is a weighted graph on vertex set {1, . . . , l}
(1) Construct a map τ from eH to F as follows:

(a) For each (i, j) ∈ eH, choose an arbitrary edge
(u, v) ∈ F with u ∈ Wi, v ∈ Wj and π(u, v) =
{Wi,Wj}. Set τ (i, j) = (u, v).

(2) For each edge (u, v) in the range of τ , set

f̃u,v =
P

({i,j},v):τ(i,j)=(u,v) v.

(3) Let eF be the set of all the weighted edges f̃u,v.

We will make use of the following inequality, which may
be derived from the Rank-One Support Lemma of [6]

Lemma 7.2. Let u0, u1, . . . , ul be a path in a graph in
which the edge from ui to ui+1 has weight ωi. Let ω be
the capacity of the path. Then, for all x ∈ IRn,

ω(xu0 − xul)
2 ≤

l−1X
i=0

ωi(xui − xui+1)
2.

Lemma 7.3 (Rewire). Let E be a set of weighted edges
and let F be a set of weight-1 edges on the same vertex set.
Let ({W1, . . . ,Ws} , π) be an F -decomposition of E such that

for each f ∈ F , |π(f)| = 2. Let eH be a weighted graph on

{1, . . . , s}. Let eF be the output of Rewire on these inputs.
Let H = metaGraph((W1, . . . ,Ws), π, F). If d is at least the
maximum weighted degree of H and (W1, . . . ,Ws) has a γ
center under E, then

F �E · d
“
1 + σf (H, eH)2(1 + 2/(γ − 2))

”
+ eF “σf (H, eH)(1 + 2/(γ − 2))2

”
, (10)

and eF �E · d
“
1 + σf (H, eH)2(1 + 2/(γ − 2))

”
+ F

“
σf (H, eH)(1 + 2/(γ − 2))2

”
. (11)

eF = metaSparsify((W1, . . . ,Ws), π, F, ε, p),
F is set of unit-weight edges, ((W1, . . . ,Wl), π) is an F -
decomposition, and ε, p ∈ (0, 1),
(1) H = metaGraph((W1, . . . ,Ws), π, F).

(2) For q = 0, . . . , �log1+εm�,

(a) Hq =

{i, j} : ({i, j} , v) ∈ H,

v ∈ ˆ(1 + ε)q−1, (1 + ε)q
´ ff.

(b) eHq = UnweightedSparsify(Hq, ε, p/ log1+εm).

(c) eFq = Rewire(F, (W1, . . . ,Ws), π, eHq).

(3) eF =
P

q(1 + ε)q eFq .
Lemma 7.4 (metaSparsify). metaSparsify can be im-

plemented to run in expected time O(m logO(1)m). If ε <
1/2 and p < 1, (W1, . . . ,Ws) has a γ-center under E and d is
at least the maximum degree of metaGraph((W1, . . . ,Ws), π, F)

and eF is the output of metaSparsify, then with probability
at least 1− p,

| eF | ≤ O(s logO(1)(m/εp)/ε2),

eF �E · d `1 + (1 + ε)2(1 + 2/(γ − 2))´
+ F · `(1 + ε)(1 + 2/(γ − 2))2´ , (12)

and

F �E · d `1 + (1 + ε)2(1 + 2/(γ − 2))´
+ eF · `(1 + ε)(1 + 2/(γ − 2))2´ . (13)

eE = Sparsify(E, ε)
E a set of weighted edges with max weight 1, ε > 0.

(0) Set γ = 2 + 4/ε.

(1) Let Ct =

({i, j} , 1) : ({i, j} , v) ∈ E and

v ∈ ((1 + ε)−t−1, (1 + ε)−t]

ff
(2) For t = 0, . . . ,

(a) Let {W1, . . . ,Wl} be the partition of V obtained
by contracting all edges in classes with index less
that t− log1+ε(γnm lg(n)/ε3).

(b) eCt = metaSparsify((W1, . . . ,Ws), π, C
t, ε, p/m).

(2) Set eE =
P

t(1 + ε)−t eCt

Theorem 7.5 (Sparsify). Let ε < 1/2. Sparsify can

be implemented to have expected running time O(m logO(1)m).

With probability at least 1 − 1/n the graph Ã output by

Sparsify has at most O(n logO(1)(n/ε)/ε2) edges and

σf (A, Ã) ≤ 1 + ε and σf (Ã, A) ≤ 1 + ε. (14)

Our ultra-sparsifiers will build upon the low-stretch span-
ning trees of Alon, Karp, Peleg and West [2], which we will
refer to as AKPW trees. As observed by Boman and Hen-
drickson [6], if one runs the AKPW algorithm with the re-
ciprocals of the weights in the graph, then one obtains the
following guarantee:

Theorem 7.6 (AKPW). There exists an O(m logm)-
time algorithm, AKPW, that on input a weighted connected
graph G, outputs a spanning tree T ⊆ G such thatX

e∈E
wdT (e) ≤ m2O(

√
log n log log n).

We will use the algorithm decompose from [23] to compute
decompositions of these trees.

Theorem 7.7 (decompose,[23]). There exists a linear-
time algorithm with template,

((W1, . . . ,Ws), π) = decompose(T, E, φ),

that on input a forest T and a set of unit-weight edges E
outputs a T -decomposition of E such that

1. for all Wi such that |Wi| > 1, |{e ∈ E :Wi ∈ π(e)}| ≤
φ, and

2. s ≤ 4 |E| /φ.

88

(T,A) = UltraSparsify(E,k)
E a set of weighted edges with max weight 1, k ≥ 1.

(0) bE = Sparsify(E, 1/2), m̂ = | bE|.
(1) T = AKPW(bA).
(2) For every edge e ∈ bE, compute wdT (e).

(3) Ã = {e : wdT (e) > n}
E0 = {e : wdT (e) < 2}
Ez =

˘
e : wdT (e) ∈ [2z , 2z+1)

¯
(3) For z = 0, . . . , log n, and t = 1, 2, . . . ,

(a) Rt =
˘
({i, j} , v) ∈ T : v > 2−t

¯
Ct = bridge

`
Rt, Ez

´
(b) For q = −1− log2 z, . . . , 0, 1, . . . , 3 log2 n,

i. Ct
q =

˘
({i, j} , v) ∈ Ct : v ∈ (2−t−q, 2−t−q+1]

¯
ii. ({W1, . . . ,Ws} , π) = TreeDecomp(Ct

q, R
t, 4m̂/k2z)

iii. bCt
q = metaSparsify((W1, . . . ,Ws), π, edges

`
Ct
q

´
, 1, p)

iv. eCt
q =

n
({i, j} , v) ∈ Ct

q : {i, j} ∈ edges
“ bCt

q

”o
v. Ã = Ã ∪ eCt

q

Theorem 7.8 (UltraSparsify). UltraSparsify can

be implemented to have expected running time O(m logO(1)m).

With probability at least 1 − 2O(
√

log n log log n)/n, the graph

T ∪ Ã output by UltraSparsify is k2O(
√

log n log log n)-ultra-
sparse and

κf (A, Ã) ≤ (n/k) logO(1) n. (15)

8. SOLVING LINEAR SYSTEMS
In this section, we will show how the output of Ultra-

Sparsify can be used to solve linear systems in A with the
preconditioned Chebyshev method and the preconditioned
conjugate gradient.
We begin by recalling the basic outline of the use of spar-

sifiers established by Vaidya [25]. Given a matrix A and an

ultra-sparsifier B = T ∪ Ã of A, after appropriately reorder-
ing the vertices of A and B, we can perform partial Cholesky
factorization of B to obtain B = L[I, 0; 0, A1]L

T . Here, L
is a lower-triangular matrix with at most O(n) non-zero en-

tries and A1 is a square matrix of size at most 4|Ã| with
at most 10|Ã| non-zero entries (see [23, Proposition 1.1]).
Moreover, if A is SDD then A1 is as well.
We can then solve linear systems in B by solving a cor-

responding linear system in A1 and performing O(n) addi-
tional work: given b, one can solve By = b by solving for s
in [I, 0; 0, A1]s = L−1b, and then computing y = L−T s by
back-substitution.
If we use the output of UltraSparsify with k =

√
m as a

preconditioner and solve systems in A1 using the conjugate
gradient method as an exact solver, we obtain the following
“one-shot” result

Theorem 8.1 (One-Shot Algorithm). One can pro-
duce an approximate solution x̃ to the system Ax = b with
‖x̃ − x‖A ≤ ε in time m logO(1) m+m3/4n1/2+o(1) log(1/ε),
with probability 1− o(1).

Proof. The time taken by UltraSparsify ism logO(1)m,
and the time taken by the Cholesky factorization is O(n).
Having produced B and A1, the algorithm solves Ax = b to
accuracy ε in A-norm by applying at most

p
κf (A,B) log(1/ε)

iterations of the preconditioned conjugate gradient. Us-
ing the conjugate gradient as an exact algorithm, we can
solve the system in A1 in time O(|A1|2). Thus, each itera-
tion of the PCG takes time O(m + n + |Ã|2). Setting k =√
m, and assuming that UltraSparsify succeeds, we obtain

κf (A,B) ≤ n/m1/2 and |Ã| ≤ m1/2+o(1). So, the time taken

by the PCG algorithm will be m3/4n1/2+o(1) log(1/ε).

Alternatively, we may solve the system A1 by a recur-
sive application of our algorithm. In this case, we let A0 =
Sparsify(A, 1/2), and let B1 denote the output of Ultra-
Sparsify on input A0. Generally, we will let Bi+1 denote
the output of UltraSparsify(Ai , ki), and let Li[Di, 0; 0, Ai]L

T
i

be the partial Cholesky factorization of Bi. We will let the
recursion depth be r and will specify ki’s later. We solve
systems in Ar using an exact method and solve systems in
Ai using Bi+1 preconditioner. At the top level, we will then
use A0 as a preconditioner for A.
In our recursion, all the inner applications of the precon-

ditioned Chebyshev method will run for the same, predeter-
mined, number of iterations. To bound the number of it-
erations we require, we use the following extension of Joshi
([16]: Corollary 5.5, page 73) of a theorem of Golub and
Overton ([12], Theorem 2, page 579).

Theorem 8.2 (Preconditioned Chebyshev Method).

Assume B and A are SDD matrices such that σ(B,A) ≥ 1.
Let x be the solution to Ax = b. Let κ > κf (A,B). Let
δ = (κ − 1)/(200κ2). If, in kth iteration of the precondi-
tioned Chebyshev Method when the solution of Bz = rk is
needed, a vector z k is returned satisfying

‖z k − z‖B ≤ δ ‖z‖B ,

then xk generated by the Preconditioned Inexact Chebyshev
Method after k iterations satisfies

‖x k − x‖A ≤ 6
√
κ

1− 1p

κf (A,B)

!k

‖x‖A .

Corollary 8.3. Under the assumptions of Theorem 8.2,
for any κ > max(8, κf (A,B)), after 5

p
κf (A,B) ln κ itera-

tions the Preconditioned Inexact Chebyshev Method outputs
an approximate solution x̃ to Ax = b with ‖x̃ − x‖A ≤
δ ‖x‖A.

By carefully choosing r and ki, we obtain the following
bound on the time of a recursive algorithm.

Theorem 8.4 (Recursive). Let A be an n-by-n SDD
matrix with m non-zero entries (assuming n > 2). Using
the recursive algorithm, one can produce an approximate so-
lution x̃ to Ax = b with ‖x̃ − x‖A ≤ ε in time

m logO(1)m+O (m log(1/ε)) + n2O(
√

log n log log n) log(1/ε)

with probability 1− o(1).

Proof Sketch. Let c be the constant such that the Ã
output by UltraSparsify has at most k2c

√
log n log logn edges

89

(as in Theorem 7.8), and let a be the constant hidden in the
O(1) in (15).
As A0 = Sparsify(A, 1/2), A0 will have n log

c1 n edges
for some constant c1 with high probability.

Let κ0 = 2(2c)
√

log n log log n log2a n and κ = max(8, κ0).
We will set r so that

n1/2r = κ
1/4
0 .

As c ≥ 1, we have that r ≤ p
log n/ log log n. We then let

Bi+1 = UltraSparsify(Ai, ki), where

ki = n1−(i+1)/r/2c
√

log n log log n.

Thus, for 1 ≤ i ≤ r, Ai will have at most n
1−i/r edges. Let

ni = n1−i/r for i = 1 : r and n0 = n
When solving system Ax = b the recursive algorithm de-

fines a sequence of systems in Ai for 0 ≤ i ≤ r. As Ar has a
constant size, we solve systems in Ar (and hence their cor-
responding systems in Br) using a direct method. Systems
in Ai (and their corresponding systems in Bi) with i < r
are solved approximately using Bi+1 as the preconditioner.
By Theorem 7.8, we have

κf (Ai, Bi+1) ≤ (ni/ki) log
a n = n1/r2c

√
log n log log n loga n = κ0.

By Corollary 8.3, in

(5 ln κ)
p
κf (Ai, Bi+1) ≤ (5 ln κ)n1/r

iterations, an approximate solution with error in Ai-norm
that is less than δ = (κ − 1)/(200κ2) can be obtained for
the system in Ai. From Theorem 8.2 and its Corollary 8.3,
we know that this error is small enough that solutions with
this error in Ai can be used to by the preconditioned inexact
Chebyshev method to solve systems in Ai−1.

9. REFERENCES
[1] D. Achlioptas and F. McSherry. Fast computation of

low rank matrix approximations. In 33rd ACM STOC,
pages 611–618, 2001.

[2] N. Alon, R. M. Karp, D. Peleg, and D. West. A
graph-theoretic game and its application to the
k-server problem. SIAM Journal on Computing,
24(1):78–100, Feb. 1995.

[3] A. A. Benczúr and D. R. Karger. Approximating s-t
minimum cuts in O(n2) time. In 28th ACM STOC,
pages 47–55, 1996.

[4] M. Bern, J. Gilbert, B. Hendrickson, N. Nguyen, and
S. Toledo. Support-graph preconditioners. submitted to
SIAM J. Matrix Anal. & Appl.

[5] E. Boman, D. Chen, B. Hendrickson, and S. Toledo.
Maximum-weight-basis preconditioners. to appear in
Numerical Linear Algebra and Applications.

[6] E. Boman and B. Hendrickson. Support theory for
preconditioning. submitted to SIAM J. Matrix Anal. &
Appl (Revised 10/02).

[7] E. Boman and B. Hendrickson. On spanning tree
preconditioners. Manuscript, Sandia National Lab.,
2001.

[8] W. E. Donath and A. J. Hoffman. Algorithms for
partitioning graphs and computer logic based on
eigenvectors of connection matrices. IBM Technical
Disclosure Bulletin, 15(3):938–944, 1972.

[9] W. E. Donath and A. J. Hoffman. Lower bounds for
the partitioning of graphs. IBM Journal of Research
and Development, 17(5):420–425, Sept. 1973.

[10] A. Frieze, R. Kannan, and S. Vempala. Fast
Monte-Carlo algorithms for finding low-rank
approximations. In 39th IEEE FOCS, pages 370–378,
1998.

[11] Z. Füredi and J. Komlós. The eigenvalues of random
symmetric matrices. Combinatorica, 1(3):233–241,
1981.

[12] G. H. Golub and M. Overton. The convergence of
inexact Chebychev and Richardson iterative methods
for solving linear systems. Numerische Mathematik,
53:571–594, 1988.

[13] K. Gremban. Combinatorial Preconditioners for
Sparse, Symmetric, Diagonally Dominant Linear
Systems. PhD thesis, Carnegie Mellon University,
CMU-CS-96-123, 1996.

[14] K. Gremban, G. Miller, and M. Zagha. Performance
evaluation of a new parallel preconditioner. In 9th
IPPS, pages 65–69, 1995.

[15] B. Hendrickson and R. Leland. The Chaco user’s
guide, version 2.0. Tech. Rep. SAND94-2692, Sandia
National Labs, Albuquerque, NM, Oct. 1994.

[16] A. Joshi. Topics in Optimization and Sparse Linear
Systems. PhD thesis, UIUC, 1997.

[17] G. Karypis and V. Kumar. MeTis: Unstructured
Graph Partitioning and Sparse Matrix Ordering
System, Version 4.0, Sept. 1998.

[18] T. Leighton and S. Rao. Multicommodity max-flow
min-cut theorems and their use in designing
approximation algorithms. Journal of the ACM,
46(6):787–832, Nov. 1999.

[19] R. J. Lipton, D. J. Rose, and R. E. Tarjan.
Generalized nested dissection. SIAM Journal on
Numerical Analysis, 16(2):346–358, Apr. 1979.

[20] Lovasz and Simonovits. Random walks in a convex
body and an improved volume algorithm. RSA:
Random Structures & Algorithms, 4:359–412, 1993.

[21] B. M. Maggs, G. L. Miller, O. Parekh, R. Ravi, and
S. L. M. Woo. Solving symmetric diagonally-dominant
systems by preconditioning. 2002.

[22] J. Reif. Efficient approximate solution of sparse linear
systems. Computers and Mathematics with
Applications, 36(9):37–58, 1998.

[23] D. Spielman and S.-H. Teng. Solving sparse,
symmetric, diagonally-dominant linear systems in
time O(m1.31). In 44th Annual IEEE FOCS, pages
416–427, 2003. Most recent version available at
http://arxiv.org/cs.DS/0310036.

[24] D. A. Spielman and S.-H. Teng. Nearly-linear time
algorithms for graph partitioning, graph sparsification,
and solving linear systems. available at
http://arxiv.org/abs/cs.DS/0310051, 2003.

[25] P. M. Vaidya. Solving linear equations with symmetric
diagonally dominant matrices by constructing good
preconditioners. Unpublished manuscript UIUC 1990.
A talk based on the manuscript was presented at the
IMA Workshop on Graph Theory and Sparse Matrix
Computation, October 1991, Minneapolis., 1990.

90

