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Abstract

We characterize the sum capacity of the vector Gaussian broadcast channel by
showing that the existing inner bound of Marton and the existing upper bound of
Sato are tight for this channel. We exploit an intimate four-way connection between
the vector broadcast channel, the corresponding point-to-point channel (where the
receivers can cooperate), the multiple access channel (where the role of transmitters
and receivers are reversed), and the corresponding point-to-point channel (where the
transmitters can cooperate).

1 Introduction

We consider a memoryless vector Gaussian broadcast channel to model the downlink of a
wireless system with N antennas at the base station and K users with a single antenna
at each receiver. Focusing on one particular time instant, denote the received symbol at

receiver j by yj and ydl
def
= (y1, . . . , yK)t. They are related by:

ydl = H†xdl + z . (1)
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Here H is a fixed N ×K matrix with H∗
ij entry denoting the (flat fading) channel gain from

the ith antenna to the jth user, assumed to be known at both the transmitter and receivers.
xdl is the vector input to the antenna array with an average total power constraint of P . The
additive noise zj is zero mean, unit variance, complex circular symmetric Gaussian. Each user
j has access only to the received symbol yj. For N > 1, this is a vector Gaussian broadcast
channel, and unlike the scalar Gaussian broadcast channel (N = 1), it is in general not
degraded and the capacity region is unknown. The main result of the paper is the following
characterization of the sum capacity of this channel.

Theorem 1 The sum capacity of the vector Gaussian broadcast channel is:

Csum = sup
D∈A1

log det
(
I + HDH†)

where A1 is the set of K by K non-negative diagonal matrices D with Tr[D] ≤ P .

Recent work by Caire and Shamai [2] obtains the sum capacity for the special case of
K = 2 users. They propose a transmission scheme which uses Costa’s “Writing on Dirty
Paper” precoding technique [3]. This scheme can also be interpreted as Marton’s broadcast
coding technique [9] applied to the vector Gaussian channel. For the case of 2 users, Caire and
Shamai showed that this scheme is optimal in achieving the sum capacity, by demonstrating
that the achievable rate meets the Sato’s upper bound [12], which is the capacity of a point-
to-point channel where the receivers in the downlink can cooperate. The proof involves a
direct calculation and seems difficult to be generalized to K > 2.

In this paper, we generalize Caire and Shamai’s result to arbitrary number of users
through a deeper investigation of the structure of the relevant optimization problems. We
first analyze the maximum sum rate achievable by the Costa precoding technique, by ex-
ploiting a duality between the downlink (broadcast) and the uplink (multiple access). We
develop this duality in Section 2. In Section 3 we show that this sum rate meets Sato’s upper
bound. The key step is to show that the optimization problems for the Sato bound and for
the sum capacity of the multiple access channels are convex duals of each other.

To keep the notations simple, we will confine ourselves in most of the paper to the case
when each user has a single antenna element. Our techniques can be naturally generalized
to the case when the users have multiple antennas; this is discussed in Section 4.

Independent proofs of the same result were reported in [20] and [22].

Notations: we use lower case letters to denote scalars, upper case letters to denote ma-
trices, and boldface to denote vectors. CN(µ,K) denotes a complex circular symmetric
Gaussian distribution with mean µ and covariance matrix K.
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2 Uplink-Downlink Duality and Costa Precoding

In this section, we analyze the performance of the Costa precoding based broadcast strategy.
The key step is to observe an equivalence between the performance of a class of receive
and transmit strategies when the role of transmitters and receivers are reversed for vector
Gaussian channels. This equivalence has been observed in seemingly different contexts in
the literature.

1. In the context of the capacity of a point-to-point multiple transmit, multiple receive
antenna channel, [15] shows that the capacity is unchanged when the role of the trans-
mitters and receivers is interchanged. The author calls this a reciprocity result.

2. In the context of a downlink of a multiple antenna system employing simple linear
beamforming strategies followed by single user receivers by the users, [19] and [10]
show that the optimal choice of transmit and receive beamforming vectors is closely
related to a virtual uplink problem.

3. In the context of the degraded Gaussian broadcast channel, [8] shows that the capacity
region is the same as the capacity region of the corresponding multiple access channel
with the transmit power constraint of the broadcast channel translated to the sum
of powers in the multiple access channel. The authors name their result a duality
connection.

We focus on a certain class of transmission and receive strategies which have equivalence of
performance when the role of transmitters and receivers are reversed with a natural conser-
vation of total power transmitted. This allowed us to succinctly generalize the underlying
common phenomenon of the observations above and gives a simple characterization of the
maximum achievable sum rate of the Costa precoding strategy. An independent and similar
derivation of the duality in the context of linear beamforming strategies is presented in [13].

2.1 Point-to-point Reciprocity Revisited

Let us start with a point-to-point vector Gaussian channel:

y = Hx + w, (2)

with H being a fixed matrix of dimension N by K. The additive noise w is CN(0, I). We
consider a linear transmission and reception strategy as shown in Figure 1. The transmitted
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Figure 1: Linear transmit-receive strategy.

signal is:

x =
K∑

k=1

x̃kuk,

where x̃k and uk can be interpreted as the information symbol and the transmit vector for
the kth data stream respectively. The kth information stream is demodulated by the receive
vector vk:

x̂k = v†ky,

The vectors uk’s and vk’s are normalized so that their l2 norm is unity.

The output of the receive filter contains in part the signal of interest and in part the
interference from the other streams plus the background noise. A key performance measure
is the signal to interference ratio (SIR):

SIRk
def
=

pk | v†kHuk |2
1 +

∑
j 6=k pj | v†kHuj |2

. (3)

where pk
def
= E[x̃2

k] is the power allocated to stream k.

Denoting a
def
= (a1, . . . , aK)t where

ak
def
=

SIRk

(1 + SIRk) | v†kHuk |2
,

we can rewrite (3) in matrix notation as:

(I − diag {a1, . . . , aK}A)p = a . (4)
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where the K ×K matrix A has (k, j)th component equal to | v†kHuj |2. As in Section 2.5
of [7], a positive solution to p that satisfies (4) exists if and only if the Perron-Frobenius
eigenvalue of diag {a1, . . . , aK}A is less than 1. This characterizes the performance region of
the bank of linear transmit and receive filters, i.e. the set of vectors a’s or equivalently the set
of SIR requirements that can be met. For a given set of SIR requirements, the corresponding
component-wise minimum transmit power required is

pmin
def
= (I − diag {a1, . . . , aK}A)−1 a = (Da − A)−11 . (5)

where Da
def
= diag(1/a1, . . . , 1/aK) and 1 is the vector of all 1’s (Theorem 2.1 in [14]).

Now we turn to the reciprocal channel of (2):

y = H†x + z (6)

with input of dimension N and output of dimension K (i.e. the transmitter and receiver
reversed). Let us consider a linear transmission strategy in which the transmit and receive
filters are the reverse of those used for the original channel:

x =
K∑

k=1

x̃kvk, and x̂k = u†ky,

(see Figure 2). The SIR of user k with this transmission-reception strategy is:

SIRk
def
=

qk | u†kH†vk |2
1 +

∑
j 6=k qj | u†kH†vj |2

. (7)

where qk is the power allocated to stream k.
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Denoting b
def
= (b1, . . . , bK)t where

bk
def
=

SIRk

(1 + SIRk) | u†kH†vk |2
,

we can rewrite (3) in matrix notation as:

(I − diag {b1, . . . , bK}B)q = b . (8)

where the K×K matrix B has (k, j)th component equal to | u†kH†vj |2. A positive solution to
q that satisfies (8) exists if and only if the Perron-Frobenius eigenvalue of diag {b1, . . . , bK}B
is less than 1. This characterizes the performance region of the transmission strategy, and
for given SIR requirements, the corresponding component-wise minimum transmit power
required as

qmin
def
= (I − diag {b1, . . . , bK}B)−1 b = (Db −B)−11 . (9)

where Db
def
= diag(1/b1, . . . , 1/bK).

We now state the equivalence between the two reciprocal systems. The performance of
the two systems are fully characterized by the pairs (a, A) and (b, B) respectively. Note that
A = Bt and for the same SIR requirements, a = b. From this we can make two observations.
First, the achievable SIR performance region in both the cases is the same, i.e. given SIR
requirements can be met in one system if and only if they can be met in the other system.
This is seen by noting that the Perron Frobenius eigenvalues of diag {a1, . . . , aK}A and
diag {a1, . . . , aK}At are the same. Second, we observe that for any given achievable perfor-
mance a = b, the sum of the minimal transmit powers required to achieve this performance
is also identical in the two systems:

∑

k

pmin,k = 1t(Da − A)−11 = 1t
[
(Da − A)−1

]t
1 = 1t(Da − At)−11 =

∑

k

qmin,k.

An immediate consequence of this equivalence is that the capacities of the original point-
to-point channel (2) and its reciprocal (6) under the same total power constraint are equal.
This follows from the fact that the capacity-achieving transmit-receive strategies are linear,
with independent Gaussian signaling on parallel, non-interfering links (the uk’s and the vk’s
are then the left and right eigenvectors of H respectively.) One can also see this by observing
that H and H† have the same non-zero singular values and the capacity of a point-to-point
vector Gaussian channel depends only on the non-zero singular values of the channel matrices
[15]. However, the equivalence given above is stronger as it applies to every choice of linear
transmit-receive filters. It also reveals the underlying structure that can be generalized to
other settings, as we shall now see.
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2.2 Linear Beamforming in Uplink and Downlink

The point-to-point reciprocity developed above can be directly applied to establish a con-
nection between the uplink and downlink linear beamforming problems. Consider an uplink
(multiple access) channel with K users and N antenna elements at the receiver:

yul = Hxul + w . (10)

The difference with the point-to-point channel is that the transmit antennas cannot coop-
erate, i.e. we are constrained to using transmit vector uk = (0, . . . , 1, . . . , 0)t (with 1 in the
kth position) for the data stream for the kth user. The receive vector vk can now be inter-
preted as a linear receive beamforming vector for demodulating the signal for user k. Direct
application of the equivalence in Section 2.1 yields the performance equivalence between this
uplink and the downlink:

ydl = H†xdl + z . (11)

where vk now acts as the transmit beamforming vector for the kth user. The receive vector
uk = (0, . . . , 1, . . . , 0)t, signifying that the users cannot cooperate in demodulating the signals
(see Figure 3). More precisely:

• the sets of achievable SIR’s are the same in both cases;

• to meet given SIR requirements, the sum of the powers of the users in the uplink is
equal to the total transmit power in the downlink. This holds for all choice of the
filters v1, . . . ,vK .

In the uplink, it is easy to compute the optimal receive vectors and power allocation
that minimizes the total power consumed. Given a set of powers of the users, the MMSE
filter vk should be used, since it maximizes the SIR for user k. The optimal allocation of
powers can be obtained by a simple iterative algorithm that exploits the monotonicity of the
problem [17]. A direct solution to the downlink is not as obvious. However, the equivalence
derived above shows that the downlink can be solved by converting it to an uplink problem.
The optimal transmit filters in the downlink are exactly the MMSE receive filters used in
the uplink. This fact was first discovered in [10] and [19], but by showing the equivalence
between the two optimal solutions rather than the equivalence between the performance for
all choice of transmit/receive vectors as is done here.
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2.3 Costa Precoding and Successive Cancellation

There is an important difference between the point-to-point and multiuser scenarios: whereas
linear transmit-receive strategies are capacity-achieving for the point-to-point scenario, they
are not for the multiuser uplink and downlink scenarios. Nevertheless, it turns out that a
very similar equivalence holds even for non-linear strategies that are capacity-achieving for
the multiuser scenarios.

We first focus on the uplink and order the users as 1, . . . , K. We retain the bank of linear
receive filters v1, . . . ,vK but demodulate user symbols using successive cancellation (this is
a multiuser receiver in contrast to the earlier single user receiver structure), canceling in the
order 1, . . . , K. The SIR of user k with this receiver structure is

SIRk =
pk | h†kvk |2

1 +
∑

j>k pj | h†jvk |2
.

with the signals from users 1, . . . , j − 1 are decoded and perfectly canceled. In the matrix
notation of (4), we have

(I − diag {a1, . . . , aK}U(A))p = a . (12)

Here we have introduced the notation U(A) to indicate the upper triangular part of A, i.e.,
the (k, j)th entry of U(A) is Akj if j ≥ k and 0 otherwise. For the specific choice of vk as
the MMSE receiver of user k treating signals from users 1, . . . k − 1 to be nonexistent and
treating signals from users k + 1, . . . , K as noise, for every k, i.e. the unnormalized vector
vk has the expression

vk =


I +

K∑

j=k+1

pjhjh
†
j



−1

hk , (13)

we know that the sum capacity of the multiple access channel is achieved [18] and

K∑

k=1

log (1 + SIRk) = log det
(
I + Hdiag {p1, . . . , pK}H†) . (14)

In the broadcast channel, we retain the bank of linear filters but use a transmission
strategy that codes for the users based on known interference at the transmitter. This
strategy was proposed for the vector Gaussian broadcast channel in [2] and is built on a
result of Costa [3]. Consider the scalar point-to-point channel:

y = x + s + z
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where s, z are independent Gaussian noise with s known to the transmitter but not to the
receiver and z known to no one. Costa showed that the capacity of this channel is the
same as that of the AWGN channel y = x + z, i.e. having the side information on s at
the transmitter is as powerful as knowing s both at the transmitter and the receiver. This
idea can be applied to the broadcast channel to improve the performance of linear transmit
beamforming strategies. As before, we transmit xdl =

∑K
k=1 x̃kvk. The received signal at

user k is:
yk = x̃kh

†
kvk +

∑

j>k

x̃jh
†
kvj +

∑

j<k

x̃jh
†
kvj + h†kz

We use Gaussian independent inputs for x̃1, . . . x̃K with variances q1, . . . , qK and perform
Costa precoding for each user k, encoding the information in x̃k treating the interference∑

j>k x̃jh
†
kvj from users k +1, . . . , K as side information s known at the transmitter and the

interference from the other users as Gaussian noise. Hence, we obtain the rates

Rk = log (1 + SIRk) , (15)

where

SIRk =
qk | h†kvk |2

1 +
∑k−1

j=1 qj | h†kvj |2
,

for each k = 1, . . . , K. Note that user k now only sees interference from users 1, . . . , k−1, in
contrast to the linear beamforming strategy where it sees interference from all other users.

In the matrix notation of (8), we can write this as

(
I − diag {b1, . . . , bK}L(At)

)
q = b . (16)

Here we defined L(A) as a matrix whose (k, j)th component is equal to Akj if k ≥ j and
0 otherwise. Observing that L(At) = (U(A))t, we see that the performance of the uplink
and downlink channels are equivalent (in terms of the SIRs achievable and the minimum
transmit power required to achieve it) even with this extended set of transmission-reception
strategies. Thus for every transmit power vector p in the uplink and the choice of v as in
(13), we have that there exists a downlink transmit power vector q with

∑
k pk =

∑
k qk such

that the sum of achievable rates can be written as, (from (15) and (14)),

K∑

k=1

Ri = log det
(
I + Hdiag {p1, . . . , pK}H†) .

Since the nonnegative power vector p is only constrained by
∑

k pk =
∑

k qk = tr
[
xx†

]
≤ P ,

we have shown that the Costa achievable sum rate of the broadcast channel is equal to that
of the multiple access channel in (10) with a constraint on the sum of the transmit powers
of the users. This yields a lower bound to Csum. Summarizing:
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Lemma 2 The maximum achievable sum rate Rcosta is equal to the sum capacity Cmac of the
uplink multiple access channel under a total power constraint P on the users. More explicitly,

Rcosta = Cmac = sup
D∈A1

log det
(
I + HDH†) (17)

where A1 is the set of K by K non-negative diagonal matrices D with Tr[D] ≤ P .

Here the elements of D are the powers allocated to the users in the uplink multiple access
channel. We stated the correspondence between the uplink and the downlink in terms of the
sum rate, but it is not too difficult to see that the entire Costa achievable rate region (i.e.
all the rate vectors achievable by arbitrary choice of beamforming vectors, power allocation
across users and precoding orders) is in fact the same as the MAC capacity region. This
is because of the one-to-one correspondence between the Costa precoding strategies in the
downlink and the successive decoding strategies in the uplink, and the latter being sufficient
to achieve any rate point in the MAC capacity region. (This result is independently arrived
at in [20].)

Although we introduced the broadcast transmission scheme in terms of Costa precoding,
it should be noted that the achievable rates are in fact a subset of the achievable region
for general broadcast region first proposed by Marton [9] (this strategy provides the largest
known achievable region for a general broadcast channel).

Theorem 3 (Marton) Fix the joint distribution p(u1, . . . , uK ,x) for some auxiliary ran-
dom variables u1, . . . , uK (with no constraints on the cardinality of their alphabets) and x is
a random variable on the input alphabets. The following is an achievable rate region:

C
def
=

{
R :

{
Ri ≤ I(ui; yi)∑

s∈S Rs ≤ ∑
s∈S(I(us; ys)−H(us)) + H(us, s ∈ S)

}
(18)

Let x̃k ∼ CN(0, qk) and independent across k. If we let x =
∑K

k=1 x̃kvk and

uk
def
= x̃kh

†
kvk +

qk|h†kvk|2
1 +

∑K
j=k qj|h†kvj|2

k−1∑

j=1

x̃jh
†
kvj .

then it can be seen by a direct calculation that the resulting rate point in the Marton’s
region is exactly the same as that achieved by Costa’s precoding strategy defined above.
The conceptual connection between Marton’s and Costa’s result is that they are both based
on a random binning encoding technique. In fact, the connection between the broadcast
channel problem and the problem of channel coding with side information at the transmitter
has been known for some time [6].
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3 Converse

3.1 Sato Upper Bound

To show that the sum rate Rcosta is the best that can be achieved by any strategy, we begin
with an upper bound on the sum capacity of an arbitrary broadcast channel by Sato [12]. A
cooperative upper bound to the sum capacity of the broadcast channel is the capacity of the
point to point channel with all the receivers cooperating. Observe that while the capacity
region of the broadcast channel depends only on the marginal distribution of the zj’s and not
on the joint distribution, this is not the case for the capacity of the point-to-point channel.
Hence the capacity Cpp−dl(Σz) of the point-to-point channel generated from the downlink by
cooperating receivers,

ydl = H†xdl + z, z ∼ CN(0, Σz) (19)

is an upper bound to the sum capacity Csum of the broadcast channel (11) for any choice of
Σz with the diagonal elements less than or equal to 1. Here,

Cpp−dl(Σz) = sup
E[x†x]≤P

I(x; H†x + z)

We can now minimize over all such possible noise covariance matrices to obtain (and as
derived explicitly in [2] for the case of K = 2),

Csum ≤ inf
Σz∈A2

Cpp−dl(Σz) (20)

where A2 is the set of positive semidefinite matrices with diagonal values less than or equal
to 1.

In the next two subsections, we show the existence of Σz such that Rcosta equals the upper
bound in (20).

3.2 Point-to-Point Reciprocity

So far we have considered three channels: 1) the original downlink broadcast channel; 2) the
point-to-point channel in Sato bound, by having the receivers in the downlink cooperate; 3)
the uplink MAC which is dual to the broadcast channel under Costa strategies. A natural
way to connect the Costa lower bound with the Sato upper bound is to introduce a fourth
channel, the reciprocal of the point-to-point channel in Sato bound, with the roles of the
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transmitters and receivers again reversed. This is a point-to-point channel with K transmit-
ting antennas and N receiving antennas (generated from the uplink by a cooperation among
the transmitters):

yul = Hxul + w, w ∼ CN(0, IN). (21)

There is a quadratic cost function on the input: ρ(xul) := x†ulQxul where Q is Hermitian
nonnegative definite, and a constraint that the average cost per unit time must be no greater
than P . The capacity of this channel is:

Cpp−ul(Q) = sup
E[x†ul

Qxul]≤P

I(xul; Hxul + z) (22)

The following result relates the capacities of the downlink point-to-point channel (in Sato
bound) and this uplink point-to-point channel.

Lemma 4
Cpp−dl(Q) = Cpp−ul(Q)

for all nonnegative definite Hermitian matrix Q.

Proof This result is a slight generalization of the point-to-point reciprocity described in
Section 2.1. If Q is invertible, then we can factorize Q = Q1/2(Q1/2)† and whiten the noise
in the channel (19) and obtain the equivalent channel:

ỹdl := Q−1/2ydl = Q−1/2H†xdl + w

where w ∼ CN(0, IK). Since the capacity of this channel depends only on the nonzero
singular values of Q−1/2H† and Q−1/2H†, H(Q−1/2)† have the same non-zero singular values,
the capacity Cpp−dl(Q) of the channel (19) is the same as that of the channel:

y = H(Q−1/2)†x̃ + w

with the constraint that E[‖x̃‖2] ≤ P . With a change of variable x := (Q−1/2)†x̃, we get the
equivalent channel:

y = Hx + w

with the constraint that E[x†Qx] ≤ P . This is precisely the reciprocal channel (21). Hence
Cpp−dl(Q) = Cpp−ul(Q).

Now suppose Q is not invertible, Consider first the case when Ker Q is not perpendicular
to Im H†. Let v ∈ ImH† which has a non-zero projection in Ker Q. Then by signaling
along the direction u, where v = H†u, then one can get infinite rate in the point-to-point
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Figure 4: The four channels, multiple access, broadcast and their corresponding point to
point channels, depicted along with the relationship between their capacities.

channel (19), since one can just project the received signal onto Ker Q where there would
be no noise and non-zero signal power. Hence Cpp−dl(Q) = ∞. Next pick a v′ in Ker Q
which has a non-zero projection in Im H†. Since Im H† is perpendicular to Ker H, v′ is not
in Ker H. Hence by signaling along the direction v′, we can use arbitrary high power and
get arbitrarily high rate without incurring any cost in the reciprocal channel (21). Hence
Cpp−u(Q) = ∞ as well. Cpp−dl(Q) = Cpp−ul(Q).

Now let us consider the case when Ker Q is perpendicular to Im H†. Let Q =
∑r

i=1 σ2
i viv

†
i ,

where r is the rank of Q and the vi’s are the orthonormal eigenvectors corresponding to the
nonzero eigenvalues σ2

i of Q. Let V := [v1, ....vr] · diag(1/σ1, ....1/σr) . Since Im H† ⊂
span(v1, ....vr),

ỹ = V †H†x + w
′

is a sufficient statistic for the channel (19), where w′ ∼ CN(0, Ir). By reciprocity, this
channel has the same capacity as

y = HV x̃ + w

where E[‖x̃‖2] ≤ P . Now if we define x = V x̃, then x†Qx = x̃†V †QV x̃ = ‖x̃‖2. Hence in
this case Cpp−dl(Q) = Cpp−ul(Q) as well. ◦

14



3.3 Finding the Right Cost Matrix

The relationship between the four channels are shown in Figure 4. The uplink-downlink
duality allows a correspondence between Costa strategies (a subset of all possible broadcast
strategies) and the reciprocal uplink MAC. We need to show that the optimal Costa pre-
coding strategy achieves the Sato upper bound. Using the uplink-downlink duality and the
point-to-point reciprocity developed above, this is equivalent to showing that there exists a
cost matrix Q such that the capacity of the reciprocal point-to-point channel equals the sum
capacity of the MAC . There is actually a close connection between the two channels. We
can rewrite the capacity (22) of the uplink point-to-point channel as:

Cpp−ul(Q) = sup
Σ∈A3

log det
(
I + HΣH†) (23)

whereA3 is the set of K by K positive semi-definite matrices Σ with Tr[QΣ] ≤ P . Comparing
this to the expression (17) for the sum capacity of the MAC , we see that in the reciprocal
point-to-point channel, the users are allowed to cooperate (i.e. D can be non-diagonal) but
a price has to be paid (as dictated by the cost matrix Q). If Qii ≤ 1 for all i, we can
see that any feasible (non-cooperating) input D for the MAC is also a valid input for the
point-to-point channel. Hence, Cmac ≤ Cpp−ul(Q). We now find a Q∗ with diagonal elements
≤ 1 such that Cmac = Cpp−ul(Q

∗), i.e. a Q∗ such that the input D∗ that is optimal for the
MAC is also optimal for the uplink point-to-point channel.

To this end, define the Lagrangian for the constrained optimization problem (23):

L (Σ, λ)
def
= log det

(
I + HΣH†)− λ (Tr [QΣ]− P ) ,

where λ is the Lagrange multiplier for the cost constraint Tr [QΣ] ≤ P . A sufficient Kuhn-
Tucker condition for Σ = D∗ to be optimal for problem ((23)) is that

Tr [QD∗] = P, (24)

∇ΣL(Σ, λ)|Σ=D∗ = 0 for some λ > 0. (25)

By directly computing the gradient, the second condition (25) can be rewritten as:

H†(I + HD∗H†)−1H − λQ = 0 for some λ > 0 (26)

Hence, if we set

Q∗ =
1

λ
H†(I + HD∗H†)−1H, (27)

condition (26) is satisfied. To show that there is a λ such that condition (24) is satisfied as
well, we observe that since D∗ = diag(d∗1, . . . , d

∗
K) solves the optimization problem (17) for
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the MAC channel, it satisfies the Kuhn-Tucker conditions, which can be easily derived: for
all i = 1, . . . , K,

h†i (I + HD∗H†)−1hi = λ∗ if d∗i > 0

h†i (I + HD∗H†)−1hi ≤ λ∗ if d∗i = 0

for some λ∗ > 0. Thus, if we now set λ = λ∗ in (27), then the diagonal entries of Q∗ are
equal to or less than 1 and

Tr [Q∗D∗] =
K∑

i=1

Q∗
iid

∗
i =

∑

i:d∗i >0

Q∗
iid

∗
i =

∑

i:d∗i >0

d∗i = P,

i.e. condition (24) is satisfied as well. Hence Cpp−ul(Q
∗) = Cmac and Qii ≤ 1, ∀i = 1 . . . K.

The choice of the cost matrix Q = Q∗ gives no incentive for the users to cooperate in the
uplink, even if they could.

Returning back to Figure 4, this establishes the existence of a cost matrix Q such that
the sum capacity of the MAC equals the capacity of the reciprocal point-to-point channel.
Through the uplink-downlink duality and the point-to-point reciprocity, this in turn implies
that the optimal Costa precoding strategy achieves the Sato bound. The proof of Theorem
1 is now complete.

Essentially, what we constructed is a cost function such that the optimal input for the
point-to-point channel is the desired one (the optimal non-cooperating input for the MAC.)
Interestingly, a similar line of thinking is useful in the seemingly unrelated problem of opti-
mality of uncoded transmission [5].

3.4 Convex Duality Interpretation

Should one be surprised by the existence of such a Q∗ which leads to the desirable state of
affairs? To get more insight, let us prove the result in a slightly different and more abstract
way. Define:

f(Σ) := log det(I + HΣH†).

The MAC sum capacity optimization problem can be written as :

Cmac = max
Σ

f(Σ) subject to Tr [Σ] ≤ P, Σii ≥ 0 for all i, Σij = 0 for all i 6= j. (28)

Introducing Lagrange multipliers λ, λij, the convex dual of this problem is

Cmac = min
λ>0,λii>0,λij

max
Σ


f(Σ)− λ(Tr [Σ]− P ) +

∑

i

λiiDii +
∑

i6=j

λijΣij


 .
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If we define a K by K matrix Q with Qii := 1− λii/λ and Qij = λij/λ, then we can rewrite
the above problem as:

Cmac = min
Q:Qii≤1

min
λ>0

max
Σ
{f(Σ)− λ[Tr [QΣ]− P ]} . (29)

We can introduce an additional positive semidefinite matrix Λ º 0 and it is easy to see that
the following is an equivalent form

Cmac = min
Q:Qii≤1

min
λ>0,Λº0

max
Σ
{f(Σ)− λ[Tr [QΣ]− P ] + Tr [ΛΣ]} . (30)

By convex duality theory with positive semidefinite constraints (Section 4.8 of [1] is the
appropriate modern reference while Theorem 28.4 in [11] is the classical reference on the
topic),

min
λ>0,Λº0

max
Σ
{f(Σ)− λ[Tr [QΣ]− P ] + Tr [ΛΣ]} = max

Σº0,Tr[QΣ]≤P
f(Σ).

Substituting into (30),

Cmac = min
Q:Qii≤1

max
Σº0,Tr[QΣ]≤P

f(Σ) = min
Q:Qii≤1

Cpp−ul(Q).

We conclude that the Sato bound (in the form of the reciprocal channel) is essentially the
convex dual of the MAC sum capacity maximization problem, the only difference being that
in the Sato’s bound the minimization is over only positive semi-definite matrices Q while in
the convex dual the minimization is over all Q. However, since in the latter problem the
saddle point (Q∗, Σ∗) must satisfy

∇Σf(Σ)|Σ=Σ∗ = λQ∗

for some λ > 0, where ∇Σf(Σ) = H†(I +HΣH†)−1H it follows that Q∗ must also be positive
semidefinite. Thus constraining the minimization to positive semi-definite matrices in the
convex dual problem does not affect its value.

This identification gives a Lagrangian interpretation to the matrix Q∗: it forms the
(scaled) Kuhn-Tucker coefficients associated with the constraints of the multiple access chan-
nel (namely independent inputs and an overall power constraint).

4 Generalization to Multiple Receive Antennas

So far we have considered only single receive antenna at each user. Consider now multiple
receive antennas, Mk at user k. The received signal at user k is now a vector:

ydl,k = H†
kxdl + zk, (31)
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with the entries of the N × Mk matrix Hk representing the channel from the N transmit
antennas to the Mk receive antennas. So far we have discussed the situation of Mk = 1 for
all users k. Following this discussion, a natural extension of our main result, Theorem 1, is
the following:

Theorem 5 The sum capacity of the broadcast channel in (31) with an overall transmit
power constraint of P is

Csum = max
Σkº0, k=1,...,K,

∑K

k=1
Tr[Σk]≤P

log det

(
I +

K∑

k=1

HkΣkH
†
k

)
. (32)

In complete analogy with the single receive antenna discussion, the expression in (32) is
the sum capacity of the reciprocal uplink MAC with multiple transmit antennas, Mk at user
k:

yul =
K∑

k=1

Hkxul,k + w. (33)

We first consider the forward part of Theorem 5, i.e., we want to show that the largest
sum rate with Costa strategies is equal to the sum capacity of the (33). We will use the
uplink-downlink duality developed in Section 2.2. First, each user k now transmits its data
on Mk separate streams. Each data stream is communicated using linear transmit and
receive filters (Figure 1). The filters uk,1, . . .uk,Mk

corresponding to the Mk data streams
of user k all have the property that they have non-zero components only in the positions∑k−1

i=1 Mi + 1 to
∑k

i=1 Mi. This is analogous to the only non-zero entry in the kth position
in our discussion before (Section 2.2). These filters serve as transmit filters in the reciprocal
MAC (and the specification of the non-zero entries indicates which of the antennas can be
used jointly to send the stream) and as receive filters in the broadcast channel (and here
the specification of the non-zero entries indicates which of the antennas can be used jointly
to receive the stream). Since these linear strategies combined with successive cancellation
achieve the capacity region of the MAC (in (33)) we can conclude by the uplink-downlink
duality that the maximum sum rate using Costa coding strategies in the broadcast channel
(of (31)) is equal to the sum capacity of the MAC. This shows the forward part of Theorem 5.

The converse is similar to the approach in Section 3. The Sato bound lets all the users
cooperate thus creating a giant point-to-point multiple antenna channel (with

∑K
k=1 Mk num-

ber of receive antennas). We want to correlate the noises across the antennas of the users
so that the benefit of this cooperation is minimized. An explicit construction of such a
correlation structure with which there is no benefit to cooperation, analogous to the Q∗ in
Section 3.4, is done through a convex duality argument: the optimal correlation structure
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forms the Kuhn-Tucker coefficients associated with the constraints in the reciprocal MAC
(in (33)) (namely, independent vector Gaussian inputs and a total power constraint).

Both the forward part and the converse for multiple receive antennas are carefully carried
out in [16], which also derives other results that shed insight into the entire capacity region
of the vector Gaussian broadcast channel.

5 Conclusion

In this paper we computed the sum capacity of the vector Gaussian broadcast channel. The
central problem is to show that the maximum achievable rate by Costa’s strategy is equal
to the capacity of the point-to-point channel where receivers cooperate, for a suitable choice
of the noise covariance Q. We solve this problem in three steps:

1. We showed that the achievable region by Costa’s strategy equals the multiple access
capacity region with transmitters and receivers reversed.

2. We showed that the capacity of the downlink point-to-point channel with noise co-
variance Q and receivers cooperating equals the capacity of the uplink point-to-point
channel with transmitters cooperating and a quadratic cost function x†Qx.

3. We showed that there exists a cost matrix Q such that the uplink point-to-point ca-
pacity equals the sum capacity of the multiple access channel. The cost matrix Q has
the interpretation of a Lagrangian price to force users not to cooperate in the uplink.

The proof is summarized in Figure 5.

An independent and different proof is given in [22]. They directly worked with the
downlink channel and showed the existence of a noise covariance Σz such that cooperating
among the receivers does not provide any additional benefit.
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