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I. Introduction

Regulators face the important but difficult task of determining appropriate capital re-

quirements for regulated banks. Such capital requirements should protect the banks

against adverse market conditions and prevent them from taking extraordinary risks

(where, in this paper, we focus on market risk). At the same time, regulators should

not prevent banks from practicing one of their core businesses, namely trading risk. The

crucial ingredients in the process of risk based capital requirement determination are

the use of a risk measurement method (to quantify market risk), a backtesting proce-

dure, and multiplication factors, based on the outcomes of the backtesting procedure.

Regulators apply multiplication factors to the risk measurement method they use in

order to determine the capital requirements. The multiplication factors depend on the

backtesting results, where a bad performance of the risk measurement method results

in a higher multiplication factor. Consequently, to guarantee an appropriate process of

capital requirement determination, regulators need an accurate backtesting procedure,

combined with a suitable way of determining multiplication factors. Based on these

requirements the regulators will assign the risk measurement method.

Since its introduction in the 1996 amendment to the Basel Accord (see Basel Com-

mittee on Banking Supervision (1996a) and Basel Committee on Banking Supervision

(1996b)) the value-at-risk has become the standard risk measurement method. However,

although the value-at-risk may be interesting from a practical point of view, it has a seri-

ous drawback: it does not necessarily satisfy the property of subadditivity, which means

that one can find examples where the value-at-risk of a portfolio as a whole is higher

than that of the sum of the value-at-risks of its mutually exclusive sub-portfolios. An

alternative, practically viable risk measurement method that satisfies the subadditivity

property (and other desirable properties 1) is the expected shortfall. Currently, a debate

is going on whether the use of expected shortfall should be recommended in Basel II.

So far, it is not in Basel II due to the expected difficulties concerning backtesting (see
1Namely, translation invariance, monotonicity, and positive homogeneity. These three properties are

also satisfied by value-at-risk.
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Yamai and Yoshiba (2002)). Thus, although the value-at-risk does not necessarily sat-

isfy the subadditivity property, it is still assigned by regulators, because of its perceived

superior performance in case of backtesting.

Both the value-at-risk and the expected shortfall (as well as many other risk mea-

surement methods) are level-based methods, meaning that one first has to choose a

level; given this level, the risk depends on the corresponding left-hand tail of the profit

and loss distribution. For the value-at-risk the Basel Committee chooses a level of 0.01,

meaning that the value-at-risk is based on the 1% quantile of the profit and loss dis-

tribution. For the sake of comparison, one might be tempted to choose the same level

for alternative risk measurement methods, like the expected shortfall, so that they are

calculated based on the same left-hand tail of the profit and loss distribution. When

the level in both cases equals 0.01 it seems obvious to expect that backtesting expected

shortfall will be much harder than backtesting the value-at-risk, even without trying

it out. However, comparing alternative risk measurement methods by equating their

levels does not seem to be appropriate from the viewpoint of capital reserve determi-

nation. From that perspective it seems much better to choose the levels such that the

risk measurement methods result in (more or less) the same quantiles of the profit and

loss distribution. The 0.01-level of value-at-risk will then correspond to a higher level in

case of the expected shortfall. But then it is no longer clear which method will perform

better in backtesting. It is the aim of this paper to make this comparison.

The contribution of the paper is threefold. First, we provide a general backtesting

procedure for a large class of risk measurement methods, which contains all major risk

measurement methods used nowadays. In particular, as a result a test for expected

shortfall is derived which appears to be new in the literature. Using the functional delta

method we provide a framework that requires the regulator only to determine the influ-

ence function of the risk measurement method in order to determine the critical levels

of the capital requirements table. We show that the present backtesting methodology

in the Basel Accord is a special case. Furthermore, a simple method to incorporate

estimation risk is presented. The fact that banks have time-varying portfolio sizes and
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risk exposures complicates the use of standard statistical techniques. We deal with this

issue using a standardization procedure based on the probability integral transform also

used by Diebold et al. (1998) and Berkowitz (2001). The key idea of the standardization

procedure is that banks should not only report whether or not the realized profit/loss is

beyond the value-at-risk, but also which quantile of the predicted profit and loss distri-

bution is realized. Second, we establish, via simulation experiments, that backtests for

expected shortfall have a more promising performance than for value-at-risk, when the

comparison is based on (more or less) equal quantiles instead of equal levels. In this way

we provide evidence for a viable risk based regulatory capital scheme using expected

shortfall with good backtesting properties. Finally, we suggest a general method to

determine multiplication factors for the risk measurement methods using the backtest

procedure developed.

The setup of the paper is as follows. In Section II we review the most popular

risk measurement methods in current quantitative risk management. In Section III

we present the standardization procedure in order to take account of the time-varying

portfolio sizes and risk exposures. Section IV treats the backtesting of the Basel Accord,

its generalization using the functional delta method, and the incorporation of estimation

risk. Simulation experiments are presented in Section V. In Section VI a suggestion for

determination of multiplication factors is given. Finally, Section VII concludes.

II. Risk measurement methods

A. Definitions and notation

Though risk profiles contain much relevant information for risk managers, they become

unmanageable for large firms with many divisions and portfolios. Therefore, for risk

management purposes, risk managers prefer low dimensional characteristics of the risk

profiles. In order to compute these low dimensional characteristics they use a financial

model m = (Ω,P), where Ω denotes the states of the world, and P the postulated
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probability distribution.2 A risk is defined as follows.3

Definition 1 Let a financial model m be given. A risk defined on m belongs to R(m),

the set of random variables defined on Ω.

This definition, in which a “risk” is a random variable, follows the terminology of

Artzner et al. (1999) and Delbaen (2000). Artzner et al. (1999) defined a risk measure

for a particular financial model.

Definition 2 Let a financial model m be given. A risk measure, ρ, defined on m is a

map from R(m) to IR ∪ {∞}.4

In order to allow for several financial models, we use a class of financial models

denoted by M. Each of these models defines a set of risks R (m). Following Kerkhof

et al. (2002) we denote a mapping defined on M that assigns a risk measure defined

on m for each m ∈ M by a risk measurement method defined on M, RMM. The most

well-known risk measurement method nowadays is the value-at-risk method which was

supported by the Basel Committee in the 1996 amendment to the Basel Accord (see

Basel Committee on Banking Supervision (1996a)).

Before coming to the formal definitions of the popular risk measurement methods

we present the quantile definitions.

Definition 3 (Quantiles) Let X ∈ R(m) be a risk for model m = (Ω,P).

1. Qp (X) = inf {x ∈ IR : P (X ≤ x) ≥ p} is the lower p-quantile of X.

2. Qp (X) = inf {x ∈ IR : P (X ≤ x) > p} is the upper p-quantile of X.

The definition of the value-at-risk method can then be given by
2Formally, a model is defined by m = (Ω,F ,P), where F is the information available.
3Formally, R(m) is defined as the space of all equivalence classes of real-valued measurable functions

on (Ω,F).
4Including ∞ allows risks to be defined on more general probability spaces, see Delbaen (2000).
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Definition 4 The value-at-risk method with reference asset N and level p ∈ (0, 1)

assigns to a model m = (Ω,P) the risk measure VaRp
m given by

VaRp
m : R(m) � X �→ −Qp (X/Nm) = Q1−p (−X/Nm) ∈ IR ∪ {∞}, (1)

where Nm denotes the reference asset in model m.

We use a reference asset N (for example, the money market account) to measure the

losses in terms of money lost relative to the reference asset. This allows comparison of

risk measures for different time horizons.

Since the introduction of value-at-risk by RiskMetrics (1996), the literature on value-

at-risk has surged (see, for example, Risk Magazine (1996), Duffie and Pan (1997), and

Jorion (2000) for overviews). Though value-at-risk is an intuitive risk measure, the

reasoning behind it was more practical than theoretically grounded. Recently, Artzner

et al. (1997) introduced the notion of coherent risk measures having the properties of

translation invariance, monotonicity, positive homogeneity, and subadditivity. Their

ideas were formalized in Artzner et al. (1999) and Delbaen (2000), amongst others. The

value-at-risk method does not necessarily satisfy the relevant subadditivity property.

This means that we can find examples where the value-at-risk of a portfolio is higher

than that of the sum of the value-at-risks of a set of mutually exclusive sub-portfolios

(see, for example, Artzner et al. (1999), Acerbi and Tasche (2002), and Tasche (2002)).

A practically usable coherent risk measure is the expected shortfall as given in Acerbi

and Tasche (2002).

Definition 5 The expected shortfall method with reference asset N and level p ∈ (0, 1)

assigns to a model m = (Ω,P) the risk measure ESm given by

ESm : R(m) � X �→ −1
p

(
IEXII(−∞,Qp(X/Nm)]

+Qp (X/Nm) (p− P (X/Nm ≤ Qp (X/Nm)))) ∈ IR ∪ {∞}. (2)
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In case that p = P (X/Nm ≤ Qp (X/Nm)), the expected shortfall equals5

ESm(X) = −1
p
IE
[
XII(−∞,Qp(X/Nm)]

]
= IE [X | X ≤ Qp (X/Nm)] . (3)

Thus, informally, value-at-risk gives “the minimum potential loss for the worst 100p %

cases”6 while expected shortfall gives the “expected potential loss for the worst 100p

% cases”. Therefore, the expected shortfall takes the magnitude of the exceeding of

the value-at-risk into account, while for value-at-risk the magnitude of exceeding is

irrelevant.

B. Which levels?

Both the value-at-risk and expected shortfall risk measurement method are defined for

arbitrary levels p ∈ (0, 1). This leaves the issue of the choice of p open. Since we are

interested in protecting against adverse market conditions it is clear that p should be

chosen small. But how small? For value-at-risk the most common choices are p = 0.05

or p = 0.01 (the level chosen by the Basel Committee). In combination with the current

multiplication factors used by the Basel Committee, the 1% value-at-risk results in more

or less satisfactory capital reserves. In order to get a risk based capital reserve scheme

based on expected shortfall, we need to determine a level p for the expected shortfall.

In most comparisons between value-at-risk and expected shortfall their levels are taken

to be equal. This seems to lead to the general opinion that, although expected shortfall

has nice theoretical properties, it is much harder to backtest than value-at-risk (see

Yamai and Yoshiba (2002)), the main reason why expected shortfall is still absent in

Basel II.7 However, for capital reserve determination it seems to make sense to look at

comparable quantiles instead of levels. For example, take the median shortfall, that is,

take the median in the tail instead of the expectation. The median shortfall with level 2p

corresponds to value-at-risk with level p. If we would compare the backtest results of the
5The additional term Qp (X/Nm) (p− P (X/Nm ≤ Qp (X/Nm))) is needed in order to make the ex-

pected shortfall coherent, see Acerbi and Tasche (2002).
6Most value-at-risk devotees prefer the alternative formulation of “the maximum loss in the 100(1-p)%

best cases.”
7We thank Jon Danielsson for pointing this out to us.
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median shortfall and the value-at-risk with the same level, we probably find that value-

at-risk has a better performance than median shortfall. But for a valid comparison, we

should use the median shortfall with twice the level of value-at-risk, in which case we

find equal performance. A similar reasoning applies to expected shortfall. In order to

have a valid comparison of the backtest results we should look at the quantiles and not

the levels. Doing this for the Gaussian distribution (as a reference distribution), we find

p = 0.025 for the expected shortfall when p = 0.01 for value-at-risk.8 In case of excess

kurtosis we need to take a higher level for the expected shortfall for it to equal the 1%

value-at-risk. Since, in practice, we usually encounter distributions with heavier tails

than the Gaussian distribution, the level of 2.5% can be seen as a lower bound on the

level for equal capital requirement.

III. Standardization procedure

Let (ht)t∈TT
with TT = {1, ..., T} (the test period) be a time-series of (in our case daily)

returns on a profit and loss account (P&L) of a bank. Usually, the sequence (ht)t∈TT

cannot be modelled appropriately as a sample from one single distribution, say F , due

to the fact that banks change the composition of their portfolio frequently. In general,

the risk profile (the distribution of the P&L) of the bank changes over time. Therefore,

we allow (ht)t∈TT
to be drawn from a different (marginal) distribution each period, that

is,

ht ∼ Ft t ∈ TT . (4)

A bank is required to report the riskiness of its portfolio every day by means of a risk

measure ρ (ht), where ρ (ht) denotes the risk measure for period t using the information

up to time t− 1.9 In order to compute these risk measures the bank uses a sequence of

forecast distributions (Pt)t∈TT
, with corresponding densities (pt)t∈TT

.
8Notice that for the value-at-risk at level p = 0.01 we have −Φ−1(0.01) = 2.33, while for the expected

shortfall at level p = 0.025 we have Φ−1(0.025) = −1.96 and −IE[X|X < −1.96] = φ(−1.96)/Φ(−1.96) =
2.34 (see (3)), when X follows a standard normal distribution (where φ and Φ denote the density and
distribution function of the standard normal distribution, respectively).

9It would be more appropriate to write ρt−1 (ht), but we suppress the subscripts for notational
convenience.
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Often Ft is assumed to belong to a location-scale family; that is, it is assumed that

the sequence {(ht − µt) /σt}t∈TT
is identically distributed (see, for example, McNeil and

Frey (2000) and Christoffersen et al. (2001)). However, this restricts the way in which

the procedure takes portfolio changes of banks into account. In this set-up moments

higher than two are only allowed to vary over time through the first two moments.

More generally, we can use the probability integral transform (see, for example, Van der

Vaart (1998)) to go from a non-identically distributed sequence (ht)t∈TT
to an identically

distributed sequence (yt)t∈TT
. This transform is defined as

yt = G−1

(∫ ht

−∞
pt (u) du

)
= G−1 (Pt (ht)) , t ∈ TT , (5)

In case Pt = Ft for each t ∈ TT , the distribution of yt equalsG, otherwise, the distribution

of yt is equal to, say, Qt, unequal to G (for at least one time period t). The following

lemma (see special cases in Diebold et al. (1998) and Berkowitz (2001)) gives the density

qt of yt.

Lemma 1 Let ft (·) denote the density of ht, pt (·) the density corresponding to Pt (·),

g the density associated with G, and yt = G−1 (Pt (ht)). If
dP−1

t (G(yt))
dyt

is continuous and

nonzero over the support of ht, yt has the following density:

qt (yt) =
∣∣∣∣dG−1 (Pt (ht))

dht

∣∣∣∣−1

ft (ht)

= g (yt)
pt (ht)
ft (ht)

. (6)

Proof. Just apply the change of variables transformation to yt = G−1 (Pt (ht)) and

the result follows.

In case the forecast distributions of the bank are correct, i.e., Pt = Ft, t ∈ TT ,

we have that qt (yt) = g (yt). Thus, under the hypothesis that Pt = Ft, t ∈ TT we

can go from a non-identically distributed sequence (ht)t∈TT
to an identically distributed

sequence (yt)t∈TT
with distribution G. We denote this procedure as standardization to
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G. For example, Berkowitz (2001), uses G = Φ, the standard normal distribution, in

order to use the Gaussian likelihood for his Likelihood Ratio tests.10

IV. Backtest procedure

After assigning a risk measurement method the regulator faces the important task of

determining the quality of the models that the regulated banks use in order to compute

the risk measure. One of the reasons that the value-at-risk approach is often preferred

to the coherent risk measures is the fact that the quality of value-at-risk models seems

more easily verifiable. Therefore, the choice of risk measurement method by the regu-

lator is based on the tools available to the regulator to verify model quality. In order

to motivate the regulated to improve their models, regulators often impose model re-

serves or multiplication factors (see, for example, the multiplication factors by the Basel

Committee). In Section IV.A we review the backtest procedure of the Basel Committee.

Then we provide an alternative and more general procedure, in Section IV.B ignoring

estimation risk, and in Section IV.C taking estimation risk into account.

A. Backtest procedure of Basel Committee

In this section we briefly describe the backtest procedure used by the BIS for determining

the multiplication factors for capital requirements. A full exposition can be found in the

Basel Committee on Banking Supervision (1996b).

Banks need to produce T (T = 250 in the current BIS implementation) value-at-risk

forecasts (1% value-at-risk in the current BIS implementation) (VaRt)t∈TT
, where VaRt

denotes the value-at-risk forecast for day t using the information up to time t − 1. It

is assumed that these value-at-risk forecasts (VaRt)t∈TT
are such that the exceedances

sequence (et)t∈TT
consists of independent elements with a Bernoulli distribution with

probability p, that is, Bern(p), where p denotes the quantile relevant to the value-at-risk

method employed. The exceedances (et)t∈TT
are defined by

10Notice, however, that when Pt �= Ft, for at least one t ∈ TT , the standardization procedure will
result in distributions Qt, not necessarily equal for different t ∈ TT .
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Table I
BIS multiplication factors

The table shows the plus factors (multiplication factor = 3 + plus factor) used by the
BIS for capital requirements based on a sample of 250. Tables for other sample sizes
can be constructed by letting the yellow zone start when the cumulative probability
exceeds 95% and the red zone when it exceeds 99.99%.

zone
Number of
exceedances

Plus
factor

Cumulative
probability

0 0,00 8,11
1 0,00 28,58

green zone 2 0,00 54,32
3 0,00 75,81
4 0,00 89,22
5 0,40 95,88
6 0,50 98,63

yellow zone 7 0,65 99,60
8 0,75 99,89
9 0,85 99,97

red zone ≥ 10 1,00 99,99

et = II(−∞,−VaRt) (ht) , t ∈ TT . (7)

By definition we have that

P (et = 1) = P (ht < −VaRt) , t ∈ TT . (8)

If −VaRt = F−1
t (p), with F the cumulative distribution function of ht, we have that

P (et = 1) = p and, consequently, the distribution of et indeed follows a Bernouilli-

distribution. Using the cumulative distribution of the binomial distribution one may

then compute multiplication factors based on the number of exceedances. For com-

pleteness, we present Table 2 from Basel Committee on Banking Supervision (1996b) in

Table I.

The capital requirement can then be computed as the product of the value-at-risk

at time t, VaR0.01
t , multiplied by a multiplication factor, mft, that is determined by the
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results of a backtest of model m on the previous T (T = 250 in Basel Accord) days,11

CRt = mft ·VaR0.01
t . (9)

The backtest procedure given by the Basel Committee described above has some

serious shortcomings. It assumes that under the null hypothesis the exceedances (et)
T
t=1

are i.i.d. while empirical evidence shows a clustering phenomenon in the exceedances

(see, for example, Berkowitz and O’Brien (2002)). However, in case of dependence, one

could adapt the test procedure by applying, for instance, the Newey-West (1987) ap-

proach which allows for quite general forms of dependence over time. Another drawback

is that the above procedure does not take estimation risk into account which manifests

itself in the fact that VaRt = F̂−1
t (p) which is not necessarily equal to F−1

t (p). Due

to the limited amount of data there is likely some inaccuracy in the estimate for the

value-at-risk which in effect causes an estimation error in the exceedances (compare West

(1996)). This issue is treated in Section IV.C. A final drawback is that by transforming

the information of the distribution into one characteristic (exceeding of value-at-risk or

not) we lose relevant information of the return distribution (see also Berkowitz (2001)).

In Section V we see that the power of the test is affected by removing this information.

B. General backtest procedure

We assume given a sample of transformed data (yt)t∈TT
to which the standardization

procedure, described in Section V has been applied; this yields observations drawn from

actual distributions Qt, some or all possibly unequal to the postulated standardized

distribution G. In this subsection we refrain from possible estimation risk in estimating

the distribution function. This will be discussed in the next subsection.

The null hypothesis H0 : Qt = G can be tested against numerous alternatives. We

shall formulate these alternatives under the additional assumption of stationarity, i.e.,
11Actually, the used value-at-risk is max{VaR0.01

t , 1
60

∑60
i=1VaR

0.01
t−i } instead of VaR0.01

t (see Basel
Committee on Banking Supervision (1996b)). Furthermore, the multiplication factors are set every 3
months.
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Qt = Q.12 For example, Berkowitz (2001) tests this hypothesis using a likelihood ratio

(LR) test using the Gaussian likelihood (H1 : Q �= G = Φ) and a censored Gaussian

likelihood (H1 : Q(−∞,Q−1(p)] �= G(−∞,G−1(p)] ).13 Using the censored Gaussian likelihood

has the advantage that it ignores model failures in the interior of the distribution: only

the tail behavior matters.

Following this line of reasoning, we use risk measurement methods which focus by

construction on the tail behavior to evaluate the null hypothesis. We do not directly care

about conservative models, that is, the true risk  (Q) is smaller than or equal to  (G),

the risk expected by our model. Since we do not want that the model underestimates

the risk, the alternative is taken to be H1 :  (Q) >  (G).

In Section II, we defined risk measurement methods as functions of random variables

(defined on a financial model m = (Ω,P)) following the quantitative risk measurement

literature. For the purpose of testing it is more convenient to define the risk measurement

method as a functional,  : DF → IR, of a distribution function to IR ∪ ∞.14 Thus,

RMMm (X) =  (F ) for risk X if F is the distribution function of X associated with

model m.

If  : DF → IR is Hadamard differentiable on DF , we can apply the functional delta

method (see, for example, Van der Vaart (1998) Thm. 20.8)

√
T ( (QT )−  (Q)) =

√
T
1
T

T∑
t=1

ψt (Q) + op (1) , IEψt (Q) = 0, IEψ2
t (Q) < ∞,

(10)

where QT denotes the empirical distribution of the random sample (yt)t∈TT
and ψt (Q)

denotes the influence function of the risk measurement method  at observation t. As can

easily be shown, the common risk measures such as value-at-risk and expected shortfall
12When presenting the test statistics, we maintain this assumption and implicitly assume that this

stationarity is transferred in the risk measures �(Qt). Notice, however, the testing procedure is more
generally applicable than just for the case of stationarity.

13For distribution function F , F(−∞,F−1(p)] denotes the left tail of the distribution up to the pth

quantile.
14DF denotes the space of all distribution functions, that is, all non-decreasing cadlag functions F on

[−∞,∞] with F (−∞) ≡ limx→−∞ F (x) = 0 and F (∞) ≡ limx→∞ F (x) = 1. DF is equipped with the
metric induced by the supremum norm.
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are Hadamard differentiable.15 We can then use the following test statistic:

ST =
√
T
( (QT )−  (Q))√

V

d→
H0

N (0, 1), (11)

with V = IEψ2
t (Q) and  (Q) evaluated under the null hypothesis, Q = G.16 Some

important examples are:

Example 1 (Value-at-risk) In the case of value-at-risk written as a function of the

distribution function

 (Q) = −Q−1(p), (12)

the influence function ψ (Q) is given by

ψVaR (Q) = −
p− II(−∞,Q−1(p)] (x)

q (Q−1 (p))
, (13)

and

IEψ2
VaR (Q) =

p (1− p)
q2 (Q−1 (p))

. (14)

This leads to the following test statistic

SVaR =
√
Tq
(
Q−1 (p)

) ( (QT )−  (Q))√
p (1− p)

(15)

The critical value-at-risk levels for the yellow and red zones are given by

VaRyellow =

√
z0.95

T

p (1− p)
q2 (Q−1 (p))

+ VaR (Q)

VaRred =

√
z0.9999

T

p (1− p)
q2 (Q−1 (p))

+ VaR (Q) , (16)

15For the value-at-risk, see, for example, Van der Vaart and Wellner (1996) Lemma 3.9.20. In case of
the expected shortfall, the influence function is easily obtained by applying the chain rule for Hadamard
differentiable functions to the quantile function and the mean, see, for example, Van der Vaart and
Wellner (1996) Lemma 3.9.3.

16Under the assumption of stationarity, i.e., Qt = Q, we could also evaluate V under the alternative

as V = 1
T

∑T
t=1

(
ψt (QT )− 1

T

∑T
t=1 ψt (QT )

)2

. However, our simulation study indicates a much worse

performance of the test statistics using this estimate than when evaluating V under the null.
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where zp denotes the pth quantile of the standard Gaussian distribution.

Example 2 (Exceedances) In the case of the number of exceedances written as a func-

tion of the distribution function

 (Q) = II(−∞,Q−1(p)], (17)

the influence function ψ (Q) is given by

ψexc (Q) = p− II(−∞,Q−1(p)] (x) , (18)

and

IEψ2
exc (Q) = p (1− p) . (19)

This gives the following test

Sexc =
√
T
( (QT )−  (Q))√

p (1− p)
(20)

The critical numbers of exceedances for the yellow and red zones are given by

Excyellow =
√
z0.95Tp (1− p) + pT

Excred =
√
z0.9999Tp (1− p) + pT (21)

For the regular backtest size of 250, these critical values are equal to the exact setting

of the binomial distribution used by the BIS.

Example 3 (Expected shortfall) In the case of ES written as a function of the distri-

bution function

 (Q) = −
∫ Q−1(p)

−∞
xdQ(x) +Q−1(p)

(
p−
∫ Q−1(p)

−∞
dQ(x)

)
, (22)
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the influence function ψ (Q) is given by

ψES (Q) = −1
p

[(
x−Q−1 (p)

)
II(−∞,Q−1(p)] (x)

+ψVaR (Q)

(
p−
∫ Q−1(p)

−∞
dQ (x)

)]
− ES (Q) + VaR (Q) (23)

and

IEψ2
ES (Q) =

1
p
IE
[
X2|X ≤ Q−1 (p)

]
− ES (Q)2

+2
(
1− 1

p

)
ES (Q)VaR (Q)−

(
1− 1

p

)
VaR (Q)2 . (24)

This leads to the following test statistic

SES =
√
T
( (QT )−  (Q))√

IEψ2
ES (Q)

(25)

The critical ES levels for the yellow and red zones are given by

ESyellow =
√

z0.95

T
IEψ2

ES (Q)
2 + ES (Q)

ESred =
√

z0.9999

T
IEψ2

ES (Q)
2 + ES (Q) (26)

We conclude this subsection by illustrating that the test statistics can easily be imple-

mented for the Gaussian case G = Φ, by presenting the outcomes of IEψ2
t (G) in case

of value-at-risk and expected shortfall. For this, let φ (x) denote the density function

of the standard Gaussian N (0, 1) distribution and zp the pth quantile of the standard

normal distribution. The value-at-risk in case of a normal distribution N (0, 1) is given

by

VaRp (X) = zp, (27)

and the expected shortfall is given by

ESp (X) = −φ (zp) /p. (28)

17



IEψ2
t (Φ) for value-at-risk and expected shortfall are then given by,

IEψ2
t (Φ) =

p (1− p)
φ (zp)

,

for value-at-risk and

IEψ2
t (Φ) = 1− zp

φ (zp)
p

−
(
φ (zp)
p

)2

− 2
(
1− 1

p

)
φ (zp)
p

zp −
(
1− 1

p

)
z2
p ,

for expected shortfall.

C. Estimation risk

The backtesting procedures described in this section assume that the forecasted distri-

butions (Pt)t∈TT
of the profit/loss are given. It seems natural to penalize banks with a

plus factor for using inappropriate model families, but not for just having to estimate a

correctly specified model (assuming that they use their data efficiently). In order to do

so, we derive in this section backtest procedures that take estimation risk into account.

Again, we use the standardization procedure described in Section III. We assume

given a random estimation sample (yt)t∈Te
, Te = {−N + 1, ..., 0}, and a random testing

sample (yt)t∈TT
TT = {1, ..., T} with yt ∼ Q (Q = G under the null). We then have

√
n ( (Qn)−  (Q)) d→ N

(
0, IEψ2 (Q)

)
, n = T,N

where ψ (·) is the influence function of  (·). This yields (still under the null)

√
T ( (QT )−  (QN )) =

√
T ( (QT )−  (Q))−

√
T

N

√
N ( (QN )−  (Q))

d→ N
(
0, (1 + c) IEψ2 (G)

)
, (29)

when T
N → c as N → ∞ and T → ∞.

If the estimation period would grow with time, c would tend to zero. In practice, one

usually specifies a finite fixed estimation period (for example, 2 years) and computes

18



the risk measure based on this estimation period. This is a so-called rolling window

estimation procedure, which can be approximated in our setting by taking c = T
N in

(29).

For the examples in IV.B we can derive the critical values for the yellow and red

zones in the same way by replacing V by (1 + c)V . With the incorporation of estimation

risk in the backtesting procedure we introduce an additional degree of freedom for the

regulator, namely the choice of c (orN , since T could already be chosen by the regulator).

V. Simulation results

In this section we compare the finite sample behavior of the backtest procedures. First,

we determine the actual size of the tests for the exceedances ratio, value-at-risk, and

expected shortfall. For simplicity, we take Ft = N (0, 1), the standard normal distribu-

tion, for t ∈ TT . To check the performance of the tests for size, we take Pt = Ft, t ∈ TT ,

and set the significance level α = 0.05. We verify the performance of the tests given in

the examples in Section IV.B using G = Φ, the standard normal distribution function.17

The tests are compared to the censored LR test of Berkowitz (2001), which we denote as

the Berkowitz tail test. Table II shows the results of the performance of the size of the

tests. We see that the size for the three tests (Exceedances, value-at-risk, and expected

shortfall) seem reasonable for the common sample size of 250. The Berkowitz tail test

seems to converge a bit faster.

Next, we investigate the power of the different tests. In practice, financial time

series often exhibit excess kurtosis with respect to the normal distribution and have

longer left tails. We consider three alternatives that replicate (parts of) this behavior.

First, we use the student t−distribution with 5 degrees of freedom, that is, Ft = t5, .

This distribution has heavier tails than the normal distribution, but is still symmetric.
17Using G = U [0, 1] results in very poor results for smaller sample sizes. The reason is that by

transforming the data to uniform random numbers the symmetry in the test is lost due to the non-linear
shape of F .
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Table II
Simulation results for size of tests

This table presents the Type I errors (in percentages) if Ft = Pt = N (0, 1)
for t ∈ TT for T = 125, 250, 500, and 1000. The argument H0 denotes
that the variance used is IEψ2

t (G) and H1 denotes that the variance used is

V = 1
T

∑T
t=1

(
ψt (Q)− 1

T

∑T
t=1 ψt (Q)

)2
. Tail0.025 denotes Berkowitz tail test. The

number of simulations equals 10,000.

T Exceedances VaR0.01 (H0) VaR0.01 (H1) ES0.025 (H0) ES0.025 (H1) Tail0.025

125 3.75 2.75 1.81 2.64 3.24 3.05
250 4.17 4.81 2.87 5.14 4.64 5.42
500 6.63 2.91 2.27 9.38 8.10 5.16
1000 4.51 3.87 2.98 4.34 2.63 5.33

Second, we use two alternatives from the Normal Inverse Gaussian (NIG) family.18 The

NIG distribution allows one to control both the level of excess kurtosis and the skewness.

We consider two cases: a symmetric case with a moderately high kurtosis, β = 0, α =√
β2 + 1, δ = 1/

(
1 + β2

)
, µ = 0 and a case where the distribution is very skewed to the

left and has a large kurtosis, β = −0.25, α =
√
β2 + 1, δ = 1/

(
1 + β2

)
, µ = 0. Third,

we take a GARCH(1,1)-process,19 with parameter values ω = 0.05, γ1 = 0.25, and

γ2 = 0.7 to allow for a time-dependent distribution under the alternative hypothesis.

For the time-independent cases we present the results for VaR and ES with the test

statistic estimated under the null as well as under the alternative (see footnote 16).

Table III contains the results. We see that in case of a time-independent alternative
18The density of the NIG (α, β, µ, δ) is given by

fNIG (x) =
α exp

(
δ
√

α2 − β2 − βµ
)

π
q
(x− µ

δ

)−1

K1

{
δαq

(x− µ

δ

)}
exp {β (x− µ)} ,

with q (x) =
√
1 + x2 and K1 (x) the modified Bessel function of the third kind. See, for example,

Barndorff-Nielsen (1996).
19The GARCH(1,1) model (see Bollerslev (1986)) is given by the following return and volatility equa-

tions:

rt =
√
htεt

ht = ω + γ1r
2
t−1 + γ2ht−1
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for both the value-at-risk and the expected shortfall the tests with variance evaluated

under the null hypothesis have (far) more power. The difference with the test using the

estimated variance under the alternative narrows when the sample size increases. The

test for expected shortfall performs best in detecting the misspecification, also when

the alternative is GARCH(1, 1) for T ≥ 250; the number of exceedances test has less

power than the value-at-risk test and the expected shortfall test. The Berkowitz tail

test also performs well and, therefore, seems a worthwhile auxiliary test, but, in general,

trails the test for expected shortfall. Especially for the shorter sample sizes the test for

expected shortfall performs better with only GARCH(1, 1) for T = 125 as an exception.

Finally, we take estimation risk into account. In Table IV the results are shown for

an equal estimation and testing period. It gives the expected result that the longer the

samples the better the power of the tests. However, the performance of the test for

value-at-risk with the variance evaluated under the alternative (in the time-independent

cases) is quite bad. In Table V we fixed the testing period to 1 year (250 days) and

varied the estimation period. As expected the results improve for longer estimation

periods. Again, the performance of the test for value-at-risk with the variance evaluated

under the (time-independent) alternative is quite bad.

Concluding, we find that the performances of the tests with the variance evaluated

under (a time-independent) H0 have far more power than the tests with the variance

evaluated under H1 for sample sizes realistic for financial data. Furthermore, we find

that the performance for the size of the tests of the 2.5% expected shortfall is about

equal to the 1% value-at-risk. However, the power of the 2.5% expected shortfall test is

much better than that of the 1% value-at-risk.

VI. Multiplication factors

In this section we propose a method to compute multiplication factors for capital require-

ments determination. Our starting point is the test statistic (11). If the test statistic

results in rejection of the null hypothesis, then we might conclude that  (G) is taken

too low. The question then is by which multiplication factor  (G) at least should be

22
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increased, such that the test statistic does no longer result in rejection of the null. Let

 ∗ (QT ) the realized value of  (Q). Then the minimum multiplication factor, mf, for

which the null hypothesis would not be rejected follows from setting (11) equal to kα,

the critical value of the test at the significance level α

√
T
( (QT )−mf(s∗T ) (G))√

V
= zα, (30)

where s∗T denotes the realized value of the test statistic. More generally, we may want to

use a basis multiplication factor (bmf) and we may want to cap the multiplication factor

at some upper value (limit). Using the fact that ρ(QT ) = ρ(G) +
√

V s∗T
T our proposal

for the multiplication factor becomes

mf (s∗T ) = min


bmf ·max

1, 1 +
√

V s∗T
T −

√
V kα
T

 (G)


 , limit

, (31)

We show the results for our proposed multiplication factor applied to value-at-risk,

and expected shortfall in Figure 1, where we use G = Φ, α = 0.05, bmf = 3, and

limit = 4. As the variance in (29) is larger than without estimation risk, the basis

multiplication factor should be taken higher is one takes estimation risk into account.

This is probably also one of the reasons that the multiplication factor of the BIS is

rather high. For reasons of comparison with the BIS scheme, we use here a bmf of 3

and a limit of 4. See ? for suggestions on setting the bmf for markets depending on the

reliability with which the market can be modeled. On the horizontal axis we plot the

quantiles of the distribution of the test statistic in (11) under the null hypothesis and

on the vertical axis the resulting multiplication factors. As a benchmark we also plot

the multiplication factors when using the current Basel procedure (now as a function of

the quantiles of the corresponding test under the null). We see that the multiplication

factors according to our proposal seem to compare favorably with those according to the

Basel procedure. Moreover, the multiplication factors for expected shortfall are slightly

lower than for value-at-risk. This has to do with the result that expected shortfall is

more accurately estimated under the null than value-at-risk, i.e., the variance V in case
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Figure 1. Multiplication factors
This figure shows the multiplication factors on the vertical axis against the quantiles
of the test statistic on the horizontal axis. We used G = Φ, α = 0.05, and a basic
multiplication factor bmf= 3.
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of expected shortfall is smaller than in case of value-at-risk.

In Figure 2 we report the results of applying the multiplication factors from (31) to

value-at-risk and expected shortfall, using again the outcomes of the Basel procedure

as a benchmark. We consider two cases: first, we look at the case where the model

is correct, Pt = Ft = N
(
µ, σ2

)
; second, the case of a seriously misspecified model,

Pt = N
(
µ, σ2

)
and Ft = NIG(α,−0.25, δ, µ) with α, δ, µ as before, being the case

where the distribution is very skewed to the left and has a large kurtosis.

The results of the correctly specified case reflect the outcomes presented in the

previous figure: expected shortfall, having the lowest multiplication factors, performs

best. Notice that the multiplication factor scheme from the current Basel Accord results

in (too) large multiplication factors. In the second case of a misspecified model we see

that the test using expected shortfall results in higher factors in more cases (due to the

higher power) than the test using value-at-risk. For both expected shortfall and value-

at-risk the punishment depends smoothly on the outcome of the test. The multiplication
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Figure 2. Multiplication factors (size, power)
This figure shows the simulated cdf of the multiplication factors. In the upper panel
the case of Ft = N

(
µ, σ2

)
is shown. In the lower panel we have the case where Ft =

NIG(α,−0.25, δ, µ). In both panels Pt = N
(
µ, σ2

)
. The number of days equals 250

and the number of simulations equals 10, 000.
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factors according to the current Basel Accord more or less correspond to those of value-

at-risk and expected shortfall, but in a heavily non-smooth way.

Concluding, in the case that the bank uses a correctly specified model, we find

that the capital requirement scheme using expected shortfall leads to the least severe

punishments. On the basis of the current Basel Accord banks would be punished more

often and then also severely. Furthermore, in case of a misspecified model, we find that

the capital requirement scheme using expected shortfall rejects the misspecified models

most often, the multiplication factor depends smoothly on the size of the misspecification

found and the variance in the multiplication factors is low.

VII. Conclusions

In this paper we suggested a backtest framework for a large and relevant group of risk

measurement methods using the functional delta method. We showed that, for a large
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group of risk measurement methods containing all currently used risk measurement

methods, the backtest procedure can readily be found after computing the appropriate

influence function of the risk measurement method. The influence functions for value-

at-risk and expected shortfall are provided. Since this general framework is based on

asymptotic results, we investigated whether the procedure is appropriate for realistic

finite samples sizes. The results indicate that this is indeed the case, and that, contrary

to common belief, expected shortfall is not harder to backtest than value-at-risk if we

adjust the level of expected shortfall. Furthermore, the power of the test for expected

shortfall is considerably higher than that of value-at-risk. Since the probability of de-

tecting a misspecified model is higher for a given value of the test statistic, this allows

the regulator to set lower multiplication factors. We suggested a scheme for determin-

ing multiplication factors. This scheme results in less severe penalties for the backtest

based on expected shortfall compared to backtests based on value-at-risk, and the cur-

rent Basel Accord backtesting scheme in case the test incorrectly rejects the model. In

case of a misspecified model the multiplication factors are on average about the same

for all tests. However, the multiplication factors based on the expected shortfall test are

smooth and have low variance.

Thus, the prospects for setting up viable capital determination schemes based on

expected shortfall seem promising.
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