
Development of a Veri�ed Erlang Program forResoure LokingThomas Arts and Clara Bena EarleErisson, Computer Siene LaboratoryBox 1505, 125 25 �Alvsj�o, SwedenE-mail: fthomas,larag�slab.erisson.seAbstrat. We have designed a tool to simplify model heking of Erlangprograms by translating Erlang into a proess algebra with data, alled�CRL. As a ase-study for this tool we foused on a simpli�ed lokerimplementation after the loker that is present in the ontrol software ofthe AXD 301 swith. The translation algorithm has been developed tohandle this prodution-like ode. We use the tools aompanying �CRLto generate the transition systems from the spei�ation generated by ourtool. With the C�sar/Ald�ebaran tool set, we veri�ed properties for ourase-study.1 IntrodutionWithin Erisson the funtional programming language Erlang [1℄ is used for thedevelopment of onurrent/distributed safety ritial software. Faed with the taskof reating support for the development of formally veri�ed Erlang programs, as asubtask we have built a tool to enable the use of model heking for suh programs.The tool is aimed to be aessible for Erlang programmers without foring themto learn an extra language (spei� for the model heking tool that is used).Using model heking for the formal veri�ation of software is by now a wellknown �eld of researh. Basially there are two branhes, either one uses a spe-i�ation language in ombination with a model heker to obtain a orret spe-i�ation that is used to write an implementation in a programming language, orone takes the program ode as a starting point and abstrats from that into amodel, whih an be heked by a model heker. Either way, the implementationis not proved orret by these approahes, but when an error is enountered, thismay indiate an error in the implementation. As suh, the use of model hekingan be seen as a very aurate debugging method.For the �rst approah, one of the most suessful of the many examples is theombination of the spei�ation language Promela and model heker SPIN [14℄.The attrative merit of Promela is that this language is so lose to the implemen-tation language C, that it beomes rather easy to derive the implementation fromthe spei�ation in a diret, fault free way. In ase one uses UML as spei�ationlanguage and Java or C as implementation language, one might need more e�ort(apart from the fat that model heking UML spei�ations is still an unsettledtopi).

Also with respet to the seond approah there are many examples, amongwhih PathFinder [13℄ and Bandera [6℄ starting from Java ode. There exists evenan earlier attempt to use model heking on Erlang ode by Huh [15℄. Our ap-proah ould be added to this list, probably with the di�erene that we use theknowledge of the ourring design patterns used in the Erlang ode to obtainsmaller state spaes (f. [2℄). We follow a similar approah to the translation ofJava into Promela, heked by SPIN [13℄; however, we translate Erlang into �CRL[12℄ and model hek by using C�sar/Ald�ebaran [9℄. Compared to Huh's ap-proah we fous muh more on the data part and do not abstrat ase statementsby non-deterministi hoies, but really hek the data involved. For that rea-son we an hek mutual exlusion and absene of deadlok for a small lokerprogram that will be the leading example of this paper. If one abstrats fromthe data in this program in suh a way that ase statements are translated intonon-deterministi hoies, then mutual exlusion is no longer guaranteed and anhene not be shown.One of the main goals of our approah is to be able to deal with Erlang odethat is written aording to the design priniples as advoated within Erisson.Our starting point was a distributed loker algorithm as is running in Erisson'sAXD 301 ATM swith [4℄. We started re-designing this loker in suh a way thatformal veri�ation guides the development. In this paper we illustrate our ideaswith one of the �rst loker prototypes in this development proess.In Setion 2 we desribe the loker algorithm that we onsider in this paper.We show in Setion 3 how this loker is implemented in Erlang, using the generiserver and supervision tree design priniples.The Erlang modules an automatially be translated into a �CRL spei�ationand in Setion 4 we desribe our ontribution in the form of this translation tool.Veri�ation of the �CRL spei�ation for the lassial properties: no deadlok,mutual exlusion and no starvation, is desribed in Setion 5. In the onlusionin Setion 6 we disuss the merits and shortomings of our approah and put itin ontext with respet to other approahes.2 Designing the algorithmThe ase-study we have at hand in this paper is a lassial loker algorithm.Several proesses want aess to one or more resoures from a given, �nite set. Aloker proess is playing arbiter, responding the requests for aess to resouresin suh a way that all lients eventually get their demanded aess, but no twolients get aess to the same resoure at the same time. The lient sends onemessage ontaining all resoures that are requested, waits until aess is granted,aesses the resoure, gives the resoure free and starts asking for other resouresagain.Several fault situations are easy to imagine and these should guide us towardssolutions for the most rudimentary problems. We desribe the analysis of these sit-uations as a pre-study for the atual implementation. However, with the tools wedisuss later, one ould �nd these results in an experimenting fashion: implementan idea in Erlang and obtain all possible runs of the program automatially.

Here we disuss the fault situations, using a speial notation for senarios. Asenario is a sequene of states of the loker proess. A state of the loker ontainsa �xed set of resoures and for every resoure we have three `�elds': the name ofthe resoure, the lient that has aess to the resoure, and the list of lientsthat want to aess the resoure. As an example of this notation, we sketh apossible starvation situation. There are two resoures, A and B, and three lients,1, 2 and 3. The algorithm is suh that if a demanded set of resoures is availablefor a ertain lient, then this lient gets aess to those resoures. Here, lient 1requests resoure A, lient 2 requests resoure B, and thereafter lient 3 requestsboth resoures. Client 1 releases and requests resoure A again, lient 2 releasesand requests B again. A ontinuous operation in this way auses lient 3 to bewaiting for ever to get aess, i.e. lient 3 is starving.A Baess 1pendingaess 1 2pendingaess 1 2pending 3 3aess 2pending 3 3aess 1 2pending 3 3aess 1pending 3 3aess 1 2pending 3 3This senario indiates that in general one has to pay a prie for optimal resoureusage: viz. a possibility for starvation. Clearly one does not want starvation in theprogram, but one still may aept it in the algorithm. If one has good evidene tobelieve that resoures are not aessed very frequently, then the above situationmight be very unlikely and one might hoose to loose performane for lient 3 infavor of a better over-all performane.We, however, assume that the frequeny of aess to the resoures an be ratherhigh and that the di�erent lients may have overlapping demands for resoures1.Therefore, we need to deide upon a solution to this problem. We hoose to usea `�rst ome, �rst serve' strategy. A resoure is only available if there is no lient1 If lient 1, 2 and 3 would all ask for the same resoures, this starvation problem wouldnot our.

waiting for it, i.e., both aess �eld and list of pending proesses for the demandedresoure is empty. A B A Baess 1 2pending 3; 1 3aess 1 2 3 3pending 1aess 1 2 3 3pending 3 3 1 2aess 2pending 3 3Thus, in this solution, a lient ould have to wait for its resoures, even if alldemanded resoures are unused at the moment. Some optimizations are possible,for example to time-stamp the pending proesses and give aess to the resoureif the �rst of the pending proesses has not yet waited a ertain amount of time.This is more involved and we do not onsider this or other optimizations in thisversion.The ation upon a lient requesting for a list of resoures will be:{ Look whether all demanded resoures are available. A resoure is available ifno other proess is aessing it, and there are no proesses pending for thisresoure.{ If all demanded resoures are available, then the lient is noti�ed and is givenaess to all resoures.{ If any of the demanded resoures is unavailable, then for every demandedresoure, the lient is plaed at then end of the list of pending proesses.The lient is assumed to release all the previously demanded resoures by onlyone release message; upon a release, the lient is removed from all resoures anda alulation is performed to see whether one of the other lients an get aessto its demanded resoures. Similar to the reasoning above, we annot give aessto just any lient for whih all demanded resoures are available. Even for the oneresoure ase it is lear that we need to take a `�rst ome, �rst serve' poliy. Thus,with only one resoure and several lients, we would give the lient at the head ofthe pending list aess to the resoure. However, one ould wonder what happensif there are two resoures and both have one or more lients in their pending list.A Baess 1 1pending 2 3; 2Here we need an algorithm to deide whether lient 2 or 3 gets aess to theresoure after that lient 1 releases. The possibilities we ould think of boil downto the onstrution of one list of the pending proesses where the �rst lient in this

list for whih all demanded resoure are available gets aess to these resoures(i.e., is noti�ed and removed from the pending lists and put into the aess `�eld').Several ways of onstruting this ombined list are:1. Merge all list and sort them on the lient identi�er. This means that the lientwith lowest identi�er has highest priority. Hene, starvation is an obviousproblem. When, in the above example, lient 2 is given aess and lient 1requests both resoures again, then by the time lient 2 releases, lient 1 willbe granted aess. Repeatedly having 1 and 2 requesting aess will ause 3to starve.2. Append all lists (and use a small optimization by a unique append, i.e. onlyappending the lients that are not yet present in the list). Clearly the samestarvation problem as above ours for this solution.3. Construt a list that ontains only those heads of the pending lists that donot our in one of the tails of a pending list.The reason why this an work is that we have the lients always request all theresoures at one. Hene, the lients are put in the pending list in a `sorted'manner. A situation like A Baesspending 2; 3 3; 2annot our in this setting, sine either lient 2 follows lient 3 in all pendinglists or vie versa. There might be lients in between, but the order annot bereversed.4. Add a time-stamp to any inoming request and save the lient informationwith this time-stamp. The list is now obtained by appending and sorting thetime-stamps.An equivalent approah is to separately store the list of requesting lients anduse the order in whih they requested as the priority order for giving aess.We have experimented with both version 3 and 4 and present version 3 here.3 Loker Implementation in ErlangThe ideas skethed in the previous setion are now to be implemented in Erlang.Clients and loker are implemented as Erlang proesses that ommuniate witheah other by message passing. The loker is implemented as a server, follow-ing one of the generi design patterns given in the Erlang distribution [8℄. Thisgeneri server design pattern presribes an implementation of the loker as a soalled allbak module. The atual loop that saves the state of the server andreeives messages is implemented in a standard module and whenever a messagearrives, the appropriate funtion in the allbak module is exeuted. These all-bak funtions return a new state and a possible reply message, whih is by thestandard module part send to the aller. In this way, the generi server prin-iple implements synhronous ommuniation on top of Erlang's asynhronousommuniation primitives. For a detailed operational semantis we refer to [2℄.The ow of ontrol between lients and loker should be as follows:

{ a lient requests the loker an exlusive lok on several resoures,{ if all requested resoures are available, the loker gives an ok to the lient,{ when the lient has performed the neessary operations on the resoures, itnoti�es the loker by a release of the loks.The loker shedules the lients on a �rst-ome �rst-served basis as explained inthe previous setion. Note, however, that this sheduling is relative to the resoure.A lient that requests a resoure that is taken, may be served later than the lientrequesting another, free resoure, after it.The lient is programmed as a very simple proess, just using the generiserver all priniple to ommuniate with the loker. The gen server:all fun-tion hides synhronized ommuniation with the server. The seond argumentof this funtion ontains the message that is sent to the server, whih allsthe handle all funtion in the allbak module. The lient is suspended untilhandle all returns a reply value, whih is passed by the server to be the returnvalue of the gen server:all. For this partiular lient we are not interested inthe atual returned value and just use it for synhronization. The spawn linkfuntion is used to reate a new proess, in this ase running the loop funtionwith the arguments Loker and Resoures.-module(lient).start(Loker,Resoures) ->{ok,spawn_link(lient,loop,[Loker,Resoures℄)}.loop(Loker,Resoures) ->gen_server:all(Loker,{request,Resoures}),ritial_setion,gen_server:all(Loker,release),loop(Loker,Resoures).The atom ritial setion between the two synhronous alls for request andrelease implements the so alled ritial setion. In a real implementation someritial ode should be plaed in this ritial setion, but we abstrat from that.To implement the loks we use a reord with the following �elds:{ resoure: the name of the resoure,{ exlusive: the lient whih is using the resoure,{ pending: a list of lients that want to aess the resoure.The Erlang program for the loker proess is given by a generi server allbakmodule that aepts the messages frequest,Resouresg and release.-module(loker).-behaviour(gen_server).-reord(lok,{resoure, exlusive = none, pending = [℄}).init(Resoures) ->

{ok,map(fun(Resoure) ->#lok{resoure = Resoure}end, Resoures))}.The init funtion returns for every resoure in a given list Resoures a reordof type lok where the �rst �eld ontains the name of the resoure and the othertwo �elds are instantiated with the (default value) empty list.handle_all({request,Resoures}, Client, Loks) ->ase hek_availables(Resoures,Loks) oftrue ->{reply, ok,map(fun(Lok) ->update_exlusive(Lok,Resoures,Client)end, Loks)};false ->{noreply,map(fun(Lok) ->add_pending(Lok,Resoures,Client)end, Loks)}end;handle_all(release, Client, Loks) ->NewLoks =map(fun(Lok) ->release_lok(Lok,Client)end, Loks),Loks_updated =send_reply(NewLoks,all_pendings(NewLoks)),{reply, ok, Loks_updated}.The generi server automatially supports every message in a gen server:allwith the proess identi�er of the sender and a tag (a kind of time stamp todistinguish di�erent messages from the same lient). When obtaining a request,the loker stores the ombination of identi�er and tag as a pair in the pending list(or exlusive �eld). When releasing, a new tag is used for the pair (sine it is anew message) and removing the pair from the list should be done by only lookingat the proess identi�er. Note that the loker annot remove the tag already atthe moment of reeiving the request of a lient, sine the tag is neessary fora reply, as implemented by send reply. This funtion heks for every pendinglient whether its resoures are available. If so, the lient is noti�ed and the loksare updated.send_reply(Loks,[℄) ->Loks;send_reply(Loks,[Pending|Pendings℄) ->ase obtainables(Loks,Pending) oftrue ->

gen_server:reply(Pending,ok),send_reply(map(fun(Lok) ->promote_pending(Lok,Pending)end, Loks),Pendings);false ->send_reply(Loks,Pendings)end.These are the only funtions that ontain side e�ets, viz. the sending and reeiv-ing of messages. All other funtions are side-e�et free and easy to implement.In addition to lient and loker ode we also have implemented a so alledsupervision tree, a ommonly used design priniple to monitor the individual pro-esses [8℄. Basially the ode for the supervision tree desribes a proess that isstarted, whih monitors two proesses, one is the loker, the other a new supervisorproess, whih monitors the lients. The ode desribes what should happen if oneof the proesses rashes and is instruted to restart lients and loker proesses.All proesses together an now be started with only one funtion all, viz.supervisor:start, with in the arguments the number of lients one wants tostart it with and the list of resoures one onsiders.4 A �CRL spei�ationThe Erlang modules desribed in the previous setion are automatially trans-lated into one �CRL spei�ation. The data is diretly translated from Erlang to�CRL without any abstration. The spei�ation is used to generate the transitionsystem, whih is used for model heking.The translation is performed in two steps. First we apply a soure-to-souretransformation on the level of Erlang, resulting in Erlang ode that should beexeutable in the same way as the original, but is optimized for veri�ation. Seondwe translate the olletion of Erlang modules into one �CRL spei�ation. Theadvantage of having an intermediate Erlang format is that programmers an easilyunderstand the more severe manipulations of the ode and therefore are betterable to understand the smaller step to �CRL notation. Moreover, the intermediateode an be input for other veri�ation tools.4.1 Erlang to Erlang transformationThe soure-to-soure transformation of the Erlang modules ontains many stepsand we mention only the more relevant ones, skipping trivial steps like removingthe debug statements in the ode.We use the supervision tree struture to obtain a �nite set of initial proesses.We start the translator with the same arguments as that we would need to buildand start the supervision tree. This allows us to bind the number of lients andresoures to a ertain value. For every di�erent number we need to run a di�erenttransformation. The supervisor proesses are taken away and the new initialization

funtion only reates the proesses of loker and lients. The handling of a proessthat rashes is left to be deteted in the transition system.We replae (a prede�ned set of) higher order funtions like map by a �rst-orderalternative, sine the target spei�ation language does not support higher orderfuntions. Thus, a all map(fun(X) -> f(X,Y1,...,Yn) end, Xs) is replaed bya all to a new funtion map f(Xs,Y1,...,Yn) whih is de�ned and added to theode asmap_f([℄,Y1,...,Yn) ->[℄;map_f([X|Xs℄,Y1,...,Yn) ->[f(X,Y1,...,Yn)| map_f(Xs,Y1,...,Yn)℄.In the next phase we determine all funtions with side-e�ets, i.e., those fun-tions that do send or reeive a message or all a funtion doing so. This is aall-graph problem where we keep a list of side-e�et free funtions in the librarymodules. The gen server:all funtion and handle all funtion are typiallyadded to the funtions that ontain side-e�ets.The most involved operation is now to get rid of the use of return values offuntions with side-e�ets. In �CRL a proess may have side-e�ets, but has noreturn value; on the other hand, a funtion in �CRL has a return value, butmay not ontain a side-e�et. In ase an Erlang funtion (in)diretly auses aside-e�et, its omputation part and side-e�et part have to be split. For thesoure-to-soure transformation, it suÆes to make sure that all return values aremathed in a variable and to provide deomposition of the data struture of thisreturn value by means of side-e�et free funtions. Currently we an deal withbasi data types and the ompound data types lists, tuples, reords and mixturesof these.4.2 Erlang to �CRL transformationGiven the Erlang modules that are transformed as desribed above, we generateone �CRL spei�ation from these modules. Erlang is dynamially typed whereas�CRL is strongly typed. Therefore, we onstrut in �CRL a data type ErlangTermin whih all Erlang data types are embedded. All side-e�et free funtions areadded as a term rewriting system with this ErlangTerm data type. A standardtransformation is used to translate Erlang statements into the term rewritingformalism. In addition we have to de�ne an equivalene relation on data types,whih is rather involved. In this partiular ase with only 14 di�erent atoms and7 data onstrutors, 440 equations are reserved for omparing data types, roughlytwo third of the whole spei�ation.With respet to the part with side-e�ets, we bene�t from the fat that theErlang to Erlang transformation was generated for a spei� on�guration andontains all information on whih proesses are started. This allows us to de�nethe initial on�guration in the �CRL spei�ation. The Erlang proesses oinidewith the �CRL proesses, where a non-terminating Erlang funtion desribes themain loop of the proess in the Erlang ase. However, when translating this loop,we annot translate reursive alls to Erlang funtions with side-e�ets in a diret

way to �CRL. In �CRL omputation and side-e�ets annot be intermingled.The solution is found in the de�nition of a separate �CRL proess implementinga all stak. Communiation with this all stak is used to return the values ofthe omputation.Certain restritions with respet to the �CRL funtions have to be taken intoaount; there is only one funtion lause possible, with only sequential om-position, non-deterministi hoie, and an if-then-else statement for ontrol. Wetranslate ase statements and pattern mathing by using the if-then-else on-strut and alls to newly introdued proess funtions. The handle all andgen server:all are translated into ommuniating ations in �CRL. The dif-ferent lauses of the handle all funtion are ombined in one �CRL loop, usingthe state mentioned in the arguments of handle all as state of the loop. Theunique proess identi�ers used in Erlang are integrated as an argument (Self) ofall proess alls and instantiated by the �rst all in the initial part.omm gen_server_all | handle_all = allgen_server_reply | returned = returnpro loker(Self: Term,Loks: Term) =sum(Client: Term,sum(Resoures: Term,handle_all(Self,tuple(request,Resoures),Client).(gen_server_reply(Client,ok,Self).loker(Self,map_update_exlusive(Loks,Resoures,Client))<| eq(hek_availables(Resoures,Loks),true) |>loker(Self,map_add_pending(Loks,Resoures,Client))))) +sum(Client: Term,handle_all(Self,release,Client).send_reply(Self,map_release_lok(Loks,Client),all_pendings(map_release_lok(Loks,Client))).sum(Loks2: Term,rallresult(Self,Loks2).gen_server_reply(Client,ok,Self).loker(Self,Loks2)))send_reply(Self:Term,Loks:Term,MCRLArg1:Term) =(wallresult(Self,Loks)<| eq(equal(MCRLArg1,nil),true) |>(gen_server_reply(hd(MCRLArg1),ok,Self).send_reply(Self,map_promote_pending(Loks,hd(MCRLArg1)),tl(MCRLArg1))<| eq(obtainables(Loks,hd(MCRLArg1)),true) |>send_reply(Self,Loks,tl(MCRLArg1))))

After this automati transformation, we an verify a spei� on�guration,in whih the lients repeatedly request all available resoures. In order to per-form several veri�ations at one, in partiular to verify all situations in whihthe lients repeatedly request an arbitrary (varying) subset of the resoures, wemodi�ed the �CRL spei�ation by hand. We used �CRL's possibility to expressnon-determinism for this. The �CRL spei�ation is used to generate a transitionsystem. The number of states for the generated systems depends on the on�gu-ration. We tried several on�gurations, up to three lients and four resoures, thelargest resulting in about a million states. Creating suh large state spaes takes afew hours on a single proessor workstation. Even though this is time onsuming,improving this has not highest priority; we plan to fous on small examples in thedevelopment phase of the software. Larger examples take more time, but so doestesting. The development of on-the-y model heking and parallelization of themodel heker might inrease performane dramatially in a later stage.5 Verifying the modelThe three properties we want to verify for this loker are: absene of deadlok,mutual exlusion and no starvation. All are lassial properties that are well stud-ied in literature. The �rst is trivially shown, the seond and third need the rightformulation and the support of a model heker. Mutual exlusion is a safetyproperty, whereas no starvation is a liveness property. The safety properties areeasier to hek than the liveness properties, as is explained later and depends onthe fat that some in�nite traes in the spei�ation are exluded in a real Erlangexeution beause of the underlying Erlang sheduler.5.1 Mutual ExlusionThe property for mutual exlusion should express that a resoure an only beaessed by one lient at the same time. In order to show this, we added twoations to the �CRL spei�ation use and free with a resoure as an argument.As soon as we enter the ritial setion, the use ation is applied for all resouresthat the lient requested. Before leaving the ritial setion, the resoures aregiven free again. We use the maroUntil(a1; a2) = [-�:a1:(:a2)�:a1℄falsestating that `on all possible paths, after an a1 ation, any other a1 ation must bepreeded by an a2 ation'. The mutual exlusion property depends on the numberof resoures. In fat we need a di�erent formula for any number of resoures. For asystem with two resoures, r1 and r2, the mutual exlusion property is formalizedby MUTEX(r1; r2) = Until(use(r1); free(r1)) ^Until(use(r2); free(r2))

A new version of the model heking tool within the C�sar/Ald�ebaran toolset[9℄ is under onstrution and with this new release, we should be able to formulateone property for an arbitrary number of resoures.The mutual exlusion property has been shown for on�gurations with 2 re-soures and 2 and 3 lients where the lients repeatedly request an arbitrary (noneempty) subset of the resoures as well as for the situation with 4 resoures and3 lients. The latter onsisted of a model with a million states and it took a fewhours to verify the mutual exlusion property. A reently developed parallel modelheker has been used to hek our largest transition system. The few hours havebeen redued to nine minutes on about �fty proessors [5℄; a promissing develop-ment for saling this approah.5.2 StarvationProving that there is no starvation for the proesses turned out to be a problem.This is aused by the fat that there are traes in the transition system thatdo not orrespond to a fair run of the Erlang program. The Erlang proesses aresheduled by the use of a ertain sheduler and in the model we have (on purpose)abstrated from sheduling and onsider all possible sequenes of ations, eventhose in whih one single proesses gets all exeution time.We want to base our no starvation property on the notion of an ation iseventually followed by another ation. In partiular, the request of a resoure iseventually followed by using that resoure. One way of formulating this propertyis: EvtFollow(a1; a2) = [-�:a1℄:�X:(h-itrue ^ [:a2℄X)We used this in a ontext where we instantiated the ations a1 and a2 by therequest for a resoure and the entering of the ritial setion, respetively. Forthe latter, we use the on�rmation by the loker, i.e., the returned ok message.The atual property, like in the mutual exlusion ase, depends on the number oflients and resoures. For three lients and two resoures we have:NO STARVATION(1; 2; 3; i1; i2; i3) = (1)EvtFollow(1; i1) ^EvtFollow(2; i2) ^ EvtFollow(3; i3)Unfortunately, this property does not hold, even for simple senario's wherede�nitely no starvation ours. As an example onsider the following simple se-nario with three lients and two resoures. The lients repeatedly request only oneresoure, where lient 1 and 2 request A, and lient 3 requests B. In suh a senariothere is no starvation, sine both lients may aess their resoure, release it andrequest it again. In the �CRL spei�ation we have the possibility of a loop inwhih lient 3 ontinuously requests and releases resoure B. The lients request-ing resoure A simply do not get any sheduling time in this sequene. However,in the Erlang program this loop is not present, beause of the sheduler. Thus,the problem is to disregard unrealisti loops in the transition system. Removingsuh loops from the transition system, if we at all ould �nd a way to do so, is

inorret. In a realisti setting, suh a loop ould be exeuted a few times beforethe sheduler enables the other proesses. What in a realisti setting is exluded,is the in�nite traversal of only this loop.We would like to weaken the EvtFollow property, suh that non-fair paths,whih exist in the model, but not in the implementation due to the shedulingby the Erlang run-time system, are ignored. Beause of limitations in the modelheking tool (evaluator 3:0) we need to express this property in alternation free �-alulus. External advie was required to ome up with the following reformulationof EvtFollow, desribing that even if a loop exists before reahing a2, it is stillpossible (from every state of the loop) to reah a2 after a �nite number of steps(modality h��:a2itrue).EvtFollow(a1; a2) = [��:a1:(:a2)�℄h��:a2itrueThis property is weaker and in ombination with Property (1) it holds for theabove mentioned senario's. Unfortunately, it is too weak, i.e., ignores loops thatshould be onsidered. Property (1) with this weaker EvtFollow holds for the�rst senario mentioned in Setion 2 in whih we have starvation in the Erlangontext. Reall that for that senario, lient 1 and 2 on their turn take priorityover lient 3. Thus, there is an ignored loop with only ations of lient 1 and 2,although it auses lient 3 to starve.We need to be more preise in the kind of ations that we ignore in a loop andwhih not. Thinking a little longer about this, it turns out that all ations mayappear in the loop. Neither a request nor a release of any other lient should beignored. No matter with ation one would like to ignore, there is always a plausiblesenario possible from whih it is lear that one annot ignore that ation. Evena whole loop should in priniple be allowed, as long as it does not our in�nitelyoften if other ations along the path are also enabled. In our opinion this goesbeyond the expressiveness of the logi we use.Currently we investigate several possibilities to work around this problem, viz.adding expliit sheduling to the �CRL spei�ation, having the model hekerhanged, or using a di�erent logi (and model heker) that enables reasoningwith fairness.One might wonder whether starvation is an important property at all, sineeven if a theoretial starvation problem ours, it might happen that in reality theproess always gets served. In regular implementations a timer is set after sendinga message and the starvation as suh shows as a time out on the lient site. Thistime out is normally followed by a retry and as suh the proess might get servedafter a few attempts. We experimented with that by adding suh time outs andremoving the hek for the pending list in the funtion hek available (whihleads to starvation for the senario whih was disussed in Setion 2). Runningthis program does not show a starvation at �rst sight. The lient does get aessto the resoure, oasionally. If we implement the lients with an aess time ofsay, 500 ms, in the ritial setion, then starvation will show up in the form of atime out of some of the lients. The total number of served requests gets lower,in partiular for the lients for whih we know that they theoretially starve.Interesting in this ontext is that we only deteted the performane problemafter suÆiently inreasing the time spent in the ritial setion. Here one an

argue that testing would not have been suÆient and that the error ould showunexpetedly after having the software in use for a long time. Hene, we �ndstarvation an important property to verify.6 ConlusionsThe main ontribution of this work lays in the development of an automatitranslation of a lass of Erlang programs into �CRL. This enables a developmentof Erlang programs that goes hand in hand with formal veri�ation; leading toformally veri�ed programs. We do not expet smart abstrations or lever triksperformed by the users of this tool, assuming from them a limited knowledge onveri�ation issues. We provide `push-button veri�ation' that �ts in the existingdevelopment yle. As a leading example for developing our tool we used animplementation of a loker algorithm. Veri�ation of this loker algorithm hasonly partly been suessful. Absene of deadlok and mutual exlusion ould beproved, but it ould not be shown e�etively that the algorithm is starvation free.It is subjet to further researh to �nd a way around this problem.The number of states in our models was not muh more than a million, suhthat real performane problems were not enountered. It takes a while for a om-plete veri�ation, but a few hours is still onsidered aeptable in this stage. Themajority of the work is put in getting the spei�ation right and formulating theright properties. In this ase, in partiular for `no starvation', we have spent muhtime in the formulation of the, still not satisfatory, property.We use an approah similar to PathFinder or the Bandera projet [13, 6℄. Itwould be interesting to see if a Java version of the same ase study ould easilybe handled by using those tools, but we have not found the opportunity to do so.Running the model heking approah of Huh [15℄ diretly on this example isimpossible, sine that version does not support the generi server design priniple.We ould hange the program by removing this generi server implementation anduse a diret implementation in Erlang instead. However, the approah of Huhwould translate the hoie whether to return an okmessage to the lient or to storethe lient in the pending list, to be a non-deterministi hoie. By abstrating awaythe data in that way, mutual exlusion does not hold for the obtained transitionsystem.Another approah to veri�ation of Erlang programs whih di�ers from modelheking is the use of a theorem prover for heking properties. The SwedishInstitute of Computer Siene have in ooperation with Erisson developed akind of theorem prover speially foussed on Erlang programs [3℄. Advantage ofusing this tool ompared to the model heking approah are the possibility ofusing the full �-alulus (instead of alternation free), the possibility to reasonover an unbounded number of lients and resoures, and the ompleteness of theapproah, i.e., if a proof is given, it holds for the program and not only for thespei�ation. Sine model heking allows an easier automation, we aim on usingthis tehnique for prototyping and use the theorem prover approah for the versionwe are satis�ed with.With this veri�ation of the loker ase-study we posted several questions forfurther researh and we solved several pratial issues on the way. We ontinue

with adding features to the loker, suh as shared loks and fault-tolerane, there-with inreasing the need for an even better translation tools.AknowledgementsWe would like to thank Radu Mateesu and Hubert Garavel from INRIA Rhone-Alpes, Izak van Langevelde, Jao van de Pol and Wan Fokkink from CWI, andLars-�Ake Fredlund and Dilian Gurov from SICS for taking part in the disussionson this ase study and supporting us with their advises.Referenes[1℄ J.L. Armstrong, S.R. Virding, M.C. Williams, and C. Wikstr�om. Conurrent Pro-gramming in Erlang. Prentie Hall International, 2nd edition, 1996.[2℄ T. Arts and T. Noll, Verifying Generi Erlang Client-Server Implementations. InProeedings IFL2000, LNCS 2011, p. 37{53, Springer Verlag, Berlin, 2000.[3℄ T. Arts, G. Chugunov, M. Dam, L-�A. Fredlund, D. Gurov, and T. Noll A Toolfor Verifying Software Written in Erlang To appear in: Int. J. Software Tools forTehnology Transfer, 2001.[4℄ S. Blau and J. Rooth, AXD 301 { A new Generation ATM Swithing System. Eri-sson Review, no 1, 1998.[5℄ B. Bollig, M. Leuker, and M. Weber, Loal Parallel Model Cheking for the Alter-nation Free �{Calulus. teh. rep. AIB-04-2001, RWTH Aahen, Marh 2001.[6℄ J. Corbett, M. Dwyer, L. Hatli�, Bandera: A Soure-level Interfae for ModelCheking Java Programs. In Teahing and Researh Demos at ICSE'00, Limerik,Ireland, 4-11 June, 2000.[7℄ CWI, http://www.wi.nl/�mrl. A Language and Tool Set to Study Communiat-ing Proesses with Data, February 1999.[8℄ Open Soure Erlang, http://www.erlang.org, 1999.[9℄ J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateesu, L. Mounier, and M. Sighireau.Cadp (C�sar/Ald�ebaran development pakage): A protool validation and ver-i�ation toolbox. In Pro. of the 8th Conf. on Computer-Aided Veri�ation, LNCS1102, p. 437{440, Springer Verlag, Berlin, 1996.[10℄ W. Fokkink, Introdution to Proess Algebra, Texts in Theoretial Computer Si-ene, Springer Verlag, Heidelberg, 2000.[11℄ J. F. Groote, W. Fokkink, M. Reiniers, Modelling Conurrent Systems: ProtoolVeri�ation in �CRL. ourse leture notes, April 2000.[12℄ J. F. Groote, The syntax and semantis of timed �CRL. teh. rep. SEN-R9709,CWI, June 1997. Available from http://www.wi.nl.[13℄ K. Havelund and T. Pressburger, Model heking Java programs using JavaPathFinder. Int. J. on Software Tools for Tehnology Transfer, Vol 2, Nr 4, pp.366{381, Marh 2000.[14℄ G. Holzmann, The Design and Validation of Computer Protools. Edgewood Cli�s,MA: Pretene Hall, 1991.[15℄ F. Huh, Veri�ation of Erlang Programs using Abstrat Interpretation and ModelCheking. In Pro. of ICFP'99, Sept. 1999.

