
Development of a Veri�ed Erlang Program forResour
e Lo
kingThomas Arts and Clara Bena
 EarleEri
sson, Computer S
ien
e LaboratoryBox 1505, 125 25 �Alvsj�o, SwedenE-mail: fthomas,
larag�
slab.eri
sson.seAbstra
t. We have designed a tool to simplify model
he
king of Erlangprograms by translating Erlang into a pro
ess algebra with data,
alled�CRL. As a
ase-study for this tool we fo
used on a simpli�ed lo
kerimplementation after the lo
ker that is present in the
ontrol software ofthe AXD 301 swit
h. The translation algorithm has been developed tohandle this produ
tion-like
ode. We use the tools a

ompanying �CRLto generate the transition systems from the spe
i�
ation generated by ourtool. With the C�sar/Ald�ebaran tool set, we veri�ed properties for our
ase-study.1 Introdu
tionWithin Eri
sson the fun
tional programming language Erlang [1℄ is used for thedevelopment of
on
urrent/distributed safety
riti
al software. Fa
ed with the taskof
reating support for the development of formally veri�ed Erlang programs, as asubtask we have built a tool to enable the use of model
he
king for su
h programs.The tool is aimed to be a

essible for Erlang programmers without for
ing themto learn an extra language (spe
i�
 for the model
he
king tool that is used).Using model
he
king for the formal veri�
ation of software is by now a wellknown �eld of resear
h. Basi
ally there are two bran
hes, either one uses a spe
-i�
ation language in
ombination with a model
he
ker to obtain a
orre
t spe
-i�
ation that is used to write an implementation in a programming language, orone takes the program
ode as a starting point and abstra
ts from that into amodel, whi
h
an be
he
ked by a model
he
ker. Either way, the implementationis not proved
orre
t by these approa
hes, but when an error is en
ountered, thismay indi
ate an error in the implementation. As su
h, the use of model
he
king
an be seen as a very a

urate debugging method.For the �rst approa
h, one of the most su

essful of the many examples is the
ombination of the spe
i�
ation language Promela and model
he
ker SPIN [14℄.The attra
tive merit of Promela is that this language is so
lose to the implemen-tation language C, that it be
omes rather easy to derive the implementation fromthe spe
i�
ation in a dire
t, fault free way. In
ase one uses UML as spe
i�
ationlanguage and Java or C as implementation language, one might need more e�ort(apart from the fa
t that model
he
king UML spe
i�
ations is still an unsettledtopi
).

Also with respe
t to the se
ond approa
h there are many examples, amongwhi
h PathFinder [13℄ and Bandera [6℄ starting from Java
ode. There exists evenan earlier attempt to use model
he
king on Erlang
ode by Hu
h [15℄. Our ap-proa
h
ould be added to this list, probably with the di�eren
e that we use theknowledge of the o

urring design patterns used in the Erlang
ode to obtainsmaller state spa
es (
f. [2℄). We follow a similar approa
h to the translation ofJava into Promela,
he
ked by SPIN [13℄; however, we translate Erlang into �CRL[12℄ and model
he
k by using C�sar/Ald�ebaran [9℄. Compared to Hu
h's ap-proa
h we fo
us mu
h more on the data part and do not abstra
t
ase statementsby non-deterministi

hoi
es, but really
he
k the data involved. For that rea-son we
an
he
k mutual ex
lusion and absen
e of deadlo
k for a small lo
kerprogram that will be the leading example of this paper. If one abstra
ts fromthe data in this program in su
h a way that
ase statements are translated intonon-deterministi

hoi
es, then mutual ex
lusion is no longer guaranteed and
anhen
e not be shown.One of the main goals of our approa
h is to be able to deal with Erlang
odethat is written a

ording to the design prin
iples as advo
ated within Eri
sson.Our starting point was a distributed lo
ker algorithm as is running in Eri
sson'sAXD 301 ATM swit
h [4℄. We started re-designing this lo
ker in su
h a way thatformal veri�
ation guides the development. In this paper we illustrate our ideaswith one of the �rst lo
ker prototypes in this development pro
ess.In Se
tion 2 we des
ribe the lo
ker algorithm that we
onsider in this paper.We show in Se
tion 3 how this lo
ker is implemented in Erlang, using the generi
server and supervision tree design prin
iples.The Erlang modules
an automati
ally be translated into a �CRL spe
i�
ationand in Se
tion 4 we des
ribe our
ontribution in the form of this translation tool.Veri�
ation of the �CRL spe
i�
ation for the
lassi
al properties: no deadlo
k,mutual ex
lusion and no starvation, is des
ribed in Se
tion 5. In the
on
lusionin Se
tion 6 we dis
uss the merits and short
omings of our approa
h and put itin
ontext with respe
t to other approa
hes.2 Designing the algorithmThe
ase-study we have at hand in this paper is a
lassi
al lo
ker algorithm.Several pro
esses want a

ess to one or more resour
es from a given, �nite set. Alo
ker pro
ess is playing arbiter, responding the requests for a

ess to resour
esin su
h a way that all
lients eventually get their demanded a

ess, but no two
lients get a

ess to the same resour
e at the same time. The
lient sends onemessage
ontaining all resour
es that are requested, waits until a

ess is granted,a

esses the resour
e, gives the resour
e free and starts asking for other resour
esagain.Several fault situations are easy to imagine and these should guide us towardssolutions for the most rudimentary problems. We des
ribe the analysis of these sit-uations as a pre-study for the a
tual implementation. However, with the tools wedis
uss later, one
ould �nd these results in an experimenting fashion: implementan idea in Erlang and obtain all possible runs of the program automati
ally.

Here we dis
uss the fault situations, using a spe
ial notation for s
enarios. As
enario is a sequen
e of states of the lo
ker pro
ess. A state of the lo
ker
ontainsa �xed set of resour
es and for every resour
e we have three `�elds': the name ofthe resour
e, the
lient that has a

ess to the resour
e, and the list of
lientsthat want to a

ess the resour
e. As an example of this notation, we sket
h apossible starvation situation. There are two resour
es, A and B, and three
lients,1, 2 and 3. The algorithm is su
h that if a demanded set of resour
es is availablefor a
ertain
lient, then this
lient gets a

ess to those resour
es. Here,
lient 1requests resour
e A,
lient 2 requests resour
e B, and thereafter
lient 3 requestsboth resour
es. Client 1 releases and requests resour
e A again,
lient 2 releasesand requests B again. A
ontinuous operation in this way
auses
lient 3 to bewaiting for ever to get a

ess, i.e.
lient 3 is starving.A Ba

ess 1pendinga

ess 1 2pendinga

ess 1 2pending 3 3a

ess 2pending 3 3a

ess 1 2pending 3 3a

ess 1pending 3 3a

ess 1 2pending 3 3This s
enario indi
ates that in general one has to pay a pri
e for optimal resour
eusage: viz. a possibility for starvation. Clearly one does not want starvation in theprogram, but one still may a

ept it in the algorithm. If one has good eviden
e tobelieve that resour
es are not a

essed very frequently, then the above situationmight be very unlikely and one might
hoose to loose performan
e for
lient 3 infavor of a better over-all performan
e.We, however, assume that the frequen
y of a

ess to the resour
es
an be ratherhigh and that the di�erent
lients may have overlapping demands for resour
es1.Therefore, we need to de
ide upon a solution to this problem. We
hoose to usea `�rst
ome, �rst serve' strategy. A resour
e is only available if there is no
lient1 If
lient 1, 2 and 3 would all ask for the same resour
es, this starvation problem wouldnot o

ur.

waiting for it, i.e., both a

ess �eld and list of pending pro
esses for the demandedresour
e is empty. A B A Ba

ess 1 2pending 3; 1 3a

ess 1 2 3 3pending 1a

ess 1 2 3 3pending 3 3 1 2a

ess 2pending 3 3Thus, in this solution, a
lient
ould have to wait for its resour
es, even if alldemanded resour
es are unused at the moment. Some optimizations are possible,for example to time-stamp the pending pro
esses and give a

ess to the resour
eif the �rst of the pending pro
esses has not yet waited a
ertain amount of time.This is more involved and we do not
onsider this or other optimizations in thisversion.The a
tion upon a
lient requesting for a list of resour
es will be:{ Look whether all demanded resour
es are available. A resour
e is available ifno other pro
ess is a

essing it, and there are no pro
esses pending for thisresour
e.{ If all demanded resour
es are available, then the
lient is noti�ed and is givena

ess to all resour
es.{ If any of the demanded resour
es is unavailable, then for every demandedresour
e, the
lient is pla
ed at then end of the list of pending pro
esses.The
lient is assumed to release all the previously demanded resour
es by onlyone release message; upon a release, the
lient is removed from all resour
es anda
al
ulation is performed to see whether one of the other
lients
an get a

essto its demanded resour
es. Similar to the reasoning above, we
annot give a

essto just any
lient for whi
h all demanded resour
es are available. Even for the oneresour
e
ase it is
lear that we need to take a `�rst
ome, �rst serve' poli
y. Thus,with only one resour
e and several
lients, we would give the
lient at the head ofthe pending list a

ess to the resour
e. However, one
ould wonder what happensif there are two resour
es and both have one or more
lients in their pending list.A Ba

ess 1 1pending 2 3; 2Here we need an algorithm to de
ide whether
lient 2 or 3 gets a

ess to theresour
e after that
lient 1 releases. The possibilities we
ould think of boil downto the
onstru
tion of one list of the pending pro
esses where the �rst
lient in this

list for whi
h all demanded resour
e are available gets a

ess to these resour
es(i.e., is noti�ed and removed from the pending lists and put into the a

ess `�eld').Several ways of
onstru
ting this
ombined list are:1. Merge all list and sort them on the
lient identi�er. This means that the
lientwith lowest identi�er has highest priority. Hen
e, starvation is an obviousproblem. When, in the above example,
lient 2 is given a

ess and
lient 1requests both resour
es again, then by the time
lient 2 releases,
lient 1 willbe granted a

ess. Repeatedly having 1 and 2 requesting a

ess will
ause 3to starve.2. Append all lists (and use a small optimization by a unique append, i.e. onlyappending the
lients that are not yet present in the list). Clearly the samestarvation problem as above o

urs for this solution.3. Constru
t a list that
ontains only those heads of the pending lists that donot o

ur in one of the tails of a pending list.The reason why this
an work is that we have the
lients always request all theresour
es at on
e. Hen
e, the
lients are put in the pending list in a `sorted'manner. A situation like A Ba

esspending 2; 3 3; 2
annot o

ur in this setting, sin
e either
lient 2 follows
lient 3 in all pendinglists or vi
e versa. There might be
lients in between, but the order
annot bereversed.4. Add a time-stamp to any in
oming request and save the
lient informationwith this time-stamp. The list is now obtained by appending and sorting thetime-stamps.An equivalent approa
h is to separately store the list of requesting
lients anduse the order in whi
h they requested as the priority order for giving a

ess.We have experimented with both version 3 and 4 and present version 3 here.3 Lo
ker Implementation in ErlangThe ideas sket
hed in the previous se
tion are now to be implemented in Erlang.Clients and lo
ker are implemented as Erlang pro
esses that
ommuni
ate withea
h other by message passing. The lo
ker is implemented as a server, follow-ing one of the generi
 design patterns given in the Erlang distribution [8℄. Thisgeneri
 server design pattern pres
ribes an implementation of the lo
ker as a so
alled
allba
k module. The a
tual loop that saves the state of the server andre
eives messages is implemented in a standard module and whenever a messagearrives, the appropriate fun
tion in the
allba
k module is exe
uted. These
all-ba
k fun
tions return a new state and a possible reply message, whi
h is by thestandard module part send to the
aller. In this way, the generi
 server prin-
iple implements syn
hronous
ommuni
ation on top of Erlang's asyn
hronous
ommuni
ation primitives. For a detailed operational semanti
s we refer to [2℄.The
ow of
ontrol between
lients and lo
ker should be as follows:

{ a
lient requests the lo
ker an ex
lusive lo
k on several resour
es,{ if all requested resour
es are available, the lo
ker gives an ok to the
lient,{ when the
lient has performed the ne
essary operations on the resour
es, itnoti�es the lo
ker by a release of the lo
ks.The lo
ker s
hedules the
lients on a �rst-
ome �rst-served basis as explained inthe previous se
tion. Note, however, that this s
heduling is relative to the resour
e.A
lient that requests a resour
e that is taken, may be served later than the
lientrequesting another, free resour
e, after it.The
lient is programmed as a very simple pro
ess, just using the generi
server
all prin
iple to
ommuni
ate with the lo
ker. The gen server:
all fun
-tion hides syn
hronized
ommuni
ation with the server. The se
ond argumentof this fun
tion
ontains the message that is sent to the server, whi
h
allsthe handle
all fun
tion in the
allba
k module. The
lient is suspended untilhandle
all returns a reply value, whi
h is passed by the server to be the returnvalue of the gen server:
all. For this parti
ular
lient we are not interested inthe a
tual returned value and just use it for syn
hronization. The spawn linkfun
tion is used to
reate a new pro
ess, in this
ase running the loop fun
tionwith the arguments Lo
ker and Resour
es.-module(
lient).start(Lo
ker,Resour
es) ->{ok,spawn_link(
lient,loop,[Lo
ker,Resour
es℄)}.loop(Lo
ker,Resour
es) ->gen_server:
all(Lo
ker,{request,Resour
es}),
riti
al_se
tion,gen_server:
all(Lo
ker,release),loop(Lo
ker,Resour
es).The atom
riti
al se
tion between the two syn
hronous
alls for request andrelease implements the so
alled
riti
al se
tion. In a real implementation some
riti
al
ode should be pla
ed in this
riti
al se
tion, but we abstra
t from that.To implement the lo
ks we use a re
ord with the following �elds:{ resour
e: the name of the resour
e,{ ex
lusive: the
lient whi
h is using the resour
e,{ pending: a list of
lients that want to a

ess the resour
e.The Erlang program for the lo
ker pro
ess is given by a generi
 server
allba
kmodule that a

epts the messages frequest,Resour
esg and release.-module(lo
ker).-behaviour(gen_server).-re
ord(lo
k,{resour
e, ex
lusive = none, pending = [℄}).init(Resour
es) ->

{ok,map(fun(Resour
e) ->#lo
k{resour
e = Resour
e}end, Resour
es))}.The init fun
tion returns for every resour
e in a given list Resour
es a re
ordof type lo
k where the �rst �eld
ontains the name of the resour
e and the othertwo �elds are instantiated with the (default value) empty list.handle_
all({request,Resour
es}, Client, Lo
ks) ->
ase
he
k_availables(Resour
es,Lo
ks) oftrue ->{reply, ok,map(fun(Lo
k) ->update_ex
lusive(Lo
k,Resour
es,Client)end, Lo
ks)};false ->{noreply,map(fun(Lo
k) ->add_pending(Lo
k,Resour
es,Client)end, Lo
ks)}end;handle_
all(release, Client, Lo
ks) ->NewLo
ks =map(fun(Lo
k) ->release_lo
k(Lo
k,Client)end, Lo
ks),Lo
ks_updated =send_reply(NewLo
ks,all_pendings(NewLo
ks)),{reply, ok, Lo
ks_updated}.The generi
 server automati
ally supports every message in a gen server:
allwith the pro
ess identi�er of the sender and a tag (a kind of time stamp todistinguish di�erent messages from the same
lient). When obtaining a request,the lo
ker stores the
ombination of identi�er and tag as a pair in the pending list(or ex
lusive �eld). When releasing, a new tag is used for the pair (sin
e it is anew message) and removing the pair from the list should be done by only lookingat the pro
ess identi�er. Note that the lo
ker
annot remove the tag already atthe moment of re
eiving the request of a
lient, sin
e the tag is ne
essary fora reply, as implemented by send reply. This fun
tion
he
ks for every pending
lient whether its resour
es are available. If so, the
lient is noti�ed and the lo
ksare updated.send_reply(Lo
ks,[℄) ->Lo
ks;send_reply(Lo
ks,[Pending|Pendings℄) ->
ase obtainables(Lo
ks,Pending) oftrue ->

gen_server:reply(Pending,ok),send_reply(map(fun(Lo
k) ->promote_pending(Lo
k,Pending)end, Lo
ks),Pendings);false ->send_reply(Lo
ks,Pendings)end.These are the only fun
tions that
ontain side e�e
ts, viz. the sending and re
eiv-ing of messages. All other fun
tions are side-e�e
t free and easy to implement.In addition to
lient and lo
ker
ode we also have implemented a so
alledsupervision tree, a
ommonly used design prin
iple to monitor the individual pro-
esses [8℄. Basi
ally the
ode for the supervision tree des
ribes a pro
ess that isstarted, whi
h monitors two pro
esses, one is the lo
ker, the other a new supervisorpro
ess, whi
h monitors the
lients. The
ode des
ribes what should happen if oneof the pro
esses
rashes and is instru
ted to restart
lients and lo
ker pro
esses.All pro
esses together
an now be started with only one fun
tion
all, viz.supervisor:start, with in the arguments the number of
lients one wants tostart it with and the list of resour
es one
onsiders.4 A �CRL spe
i�
ationThe Erlang modules des
ribed in the previous se
tion are automati
ally trans-lated into one �CRL spe
i�
ation. The data is dire
tly translated from Erlang to�CRL without any abstra
tion. The spe
i�
ation is used to generate the transitionsystem, whi
h is used for model
he
king.The translation is performed in two steps. First we apply a sour
e-to-sour
etransformation on the level of Erlang, resulting in Erlang
ode that should beexe
utable in the same way as the original, but is optimized for veri�
ation. Se
ondwe translate the
olle
tion of Erlang modules into one �CRL spe
i�
ation. Theadvantage of having an intermediate Erlang format is that programmers
an easilyunderstand the more severe manipulations of the
ode and therefore are betterable to understand the smaller step to �CRL notation. Moreover, the intermediate
ode
an be input for other veri�
ation tools.4.1 Erlang to Erlang transformationThe sour
e-to-sour
e transformation of the Erlang modules
ontains many stepsand we mention only the more relevant ones, skipping trivial steps like removingthe debug statements in the
ode.We use the supervision tree stru
ture to obtain a �nite set of initial pro
esses.We start the translator with the same arguments as that we would need to buildand start the supervision tree. This allows us to bind the number of
lients andresour
es to a
ertain value. For every di�erent number we need to run a di�erenttransformation. The supervisor pro
esses are taken away and the new initialization

fun
tion only
reates the pro
esses of lo
ker and
lients. The handling of a pro
essthat
rashes is left to be dete
ted in the transition system.We repla
e (a prede�ned set of) higher order fun
tions like map by a �rst-orderalternative, sin
e the target spe
i�
ation language does not support higher orderfun
tions. Thus, a
all map(fun(X) -> f(X,Y1,...,Yn) end, Xs) is repla
ed bya
all to a new fun
tion map f(Xs,Y1,...,Yn) whi
h is de�ned and added to the
ode asmap_f([℄,Y1,...,Yn) ->[℄;map_f([X|Xs℄,Y1,...,Yn) ->[f(X,Y1,...,Yn)| map_f(Xs,Y1,...,Yn)℄.In the next phase we determine all fun
tions with side-e�e
ts, i.e., those fun
-tions that do send or re
eive a message or
all a fun
tion doing so. This is a
all-graph problem where we keep a list of side-e�e
t free fun
tions in the librarymodules. The gen server:
all fun
tion and handle
all fun
tion are typi
allyadded to the fun
tions that
ontain side-e�e
ts.The most involved operation is now to get rid of the use of return values offun
tions with side-e�e
ts. In �CRL a pro
ess may have side-e�e
ts, but has noreturn value; on the other hand, a fun
tion in �CRL has a return value, butmay not
ontain a side-e�e
t. In
ase an Erlang fun
tion (in)dire
tly
auses aside-e�e
t, its
omputation part and side-e�e
t part have to be split. For thesour
e-to-sour
e transformation, it suÆ
es to make sure that all return values aremat
hed in a variable and to provide de
omposition of the data stru
ture of thisreturn value by means of side-e�e
t free fun
tions. Currently we
an deal withbasi
 data types and the
ompound data types lists, tuples, re
ords and mixturesof these.4.2 Erlang to �CRL transformationGiven the Erlang modules that are transformed as des
ribed above, we generateone �CRL spe
i�
ation from these modules. Erlang is dynami
ally typed whereas�CRL is strongly typed. Therefore, we
onstru
t in �CRL a data type ErlangTermin whi
h all Erlang data types are embedded. All side-e�e
t free fun
tions areadded as a term rewriting system with this ErlangTerm data type. A standardtransformation is used to translate Erlang statements into the term rewritingformalism. In addition we have to de�ne an equivalen
e relation on data types,whi
h is rather involved. In this parti
ular
ase with only 14 di�erent atoms and7 data
onstru
tors, 440 equations are reserved for
omparing data types, roughlytwo third of the whole spe
i�
ation.With respe
t to the part with side-e�e
ts, we bene�t from the fa
t that theErlang to Erlang transformation was generated for a spe
i�

on�guration and
ontains all information on whi
h pro
esses are started. This allows us to de�nethe initial
on�guration in the �CRL spe
i�
ation. The Erlang pro
esses
oin
idewith the �CRL pro
esses, where a non-terminating Erlang fun
tion des
ribes themain loop of the pro
ess in the Erlang
ase. However, when translating this loop,we
annot translate re
ursive
alls to Erlang fun
tions with side-e�e
ts in a dire
t

way to �CRL. In �CRL
omputation and side-e�e
ts
annot be intermingled.The solution is found in the de�nition of a separate �CRL pro
ess implementinga
all sta
k. Communi
ation with this
all sta
k is used to return the values ofthe
omputation.Certain restri
tions with respe
t to the �CRL fun
tions have to be taken intoa

ount; there is only one fun
tion
lause possible, with only sequential
om-position, non-deterministi

hoi
e, and an if-then-else statement for
ontrol. Wetranslate
ase statements and pattern mat
hing by using the if-then-else
on-stru
t and
alls to newly introdu
ed pro
ess fun
tions. The handle
all andgen server:
all are translated into
ommuni
ating a
tions in �CRL. The dif-ferent
lauses of the handle
all fun
tion are
ombined in one �CRL loop, usingthe state mentioned in the arguments of handle
all as state of the loop. Theunique pro
ess identi�ers used in Erlang are integrated as an argument (Self) ofall pro
ess
alls and instantiated by the �rst
all in the initial part.
omm gen_server_
all | handle_
all =
allgen_server_reply | returned = returnpro
 lo
ker(Self: Term,Lo
ks: Term) =sum(Client: Term,sum(Resour
es: Term,handle_
all(Self,tuple(request,Resour
es),Client).(gen_server_reply(Client,ok,Self).lo
ker(Self,map_update_ex
lusive(Lo
ks,Resour
es,Client))<| eq(
he
k_availables(Resour
es,Lo
ks),true) |>lo
ker(Self,map_add_pending(Lo
ks,Resour
es,Client))))) +sum(Client: Term,handle_
all(Self,release,Client).send_reply(Self,map_release_lo
k(Lo
ks,Client),all_pendings(map_release_lo
k(Lo
ks,Client))).sum(Lo
ks2: Term,r
allresult(Self,Lo
ks2).gen_server_reply(Client,ok,Self).lo
ker(Self,Lo
ks2)))send_reply(Self:Term,Lo
ks:Term,MCRLArg1:Term) =(w
allresult(Self,Lo
ks)<| eq(equal(MCRLArg1,nil),true) |>(gen_server_reply(hd(MCRLArg1),ok,Self).send_reply(Self,map_promote_pending(Lo
ks,hd(MCRLArg1)),tl(MCRLArg1))<| eq(obtainables(Lo
ks,hd(MCRLArg1)),true) |>send_reply(Self,Lo
ks,tl(MCRLArg1))))

After this automati
 transformation, we
an verify a spe
i�

on�guration,in whi
h the
lients repeatedly request all available resour
es. In order to per-form several veri�
ations at on
e, in parti
ular to verify all situations in whi
hthe
lients repeatedly request an arbitrary (varying) subset of the resour
es, wemodi�ed the �CRL spe
i�
ation by hand. We used �CRL's possibility to expressnon-determinism for this. The �CRL spe
i�
ation is used to generate a transitionsystem. The number of states for the generated systems depends on the
on�gu-ration. We tried several
on�gurations, up to three
lients and four resour
es, thelargest resulting in about a million states. Creating su
h large state spa
es takes afew hours on a single pro
essor workstation. Even though this is time
onsuming,improving this has not highest priority; we plan to fo
us on small examples in thedevelopment phase of the software. Larger examples take more time, but so doestesting. The development of on-the-
y model
he
king and parallelization of themodel
he
ker might in
rease performan
e dramati
ally in a later stage.5 Verifying the modelThe three properties we want to verify for this lo
ker are: absen
e of deadlo
k,mutual ex
lusion and no starvation. All are
lassi
al properties that are well stud-ied in literature. The �rst is trivially shown, the se
ond and third need the rightformulation and the support of a model
he
ker. Mutual ex
lusion is a safetyproperty, whereas no starvation is a liveness property. The safety properties areeasier to
he
k than the liveness properties, as is explained later and depends onthe fa
t that some in�nite tra
es in the spe
i�
ation are ex
luded in a real Erlangexe
ution be
ause of the underlying Erlang s
heduler.5.1 Mutual Ex
lusionThe property for mutual ex
lusion should express that a resour
e
an only bea

essed by one
lient at the same time. In order to show this, we added twoa
tions to the �CRL spe
i�
ation use and free with a resour
e as an argument.As soon as we enter the
riti
al se
tion, the use a
tion is applied for all resour
esthat the
lient requested. Before leaving the
riti
al se
tion, the resour
es aregiven free again. We use the ma
roUntil(a1; a2) = [-�:a1:(:a2)�:a1℄falsestating that `on all possible paths, after an a1 a
tion, any other a1 a
tion must bepre
eded by an a2 a
tion'. The mutual ex
lusion property depends on the numberof resour
es. In fa
t we need a di�erent formula for any number of resour
es. For asystem with two resour
es, r1 and r2, the mutual ex
lusion property is formalizedby MUTEX(r1; r2) = Until(use(r1); free(r1)) ^Until(use(r2); free(r2))

A new version of the model
he
king tool within the C�sar/Ald�ebaran toolset[9℄ is under
onstru
tion and with this new release, we should be able to formulateone property for an arbitrary number of resour
es.The mutual ex
lusion property has been shown for
on�gurations with 2 re-sour
es and 2 and 3
lients where the
lients repeatedly request an arbitrary (noneempty) subset of the resour
es as well as for the situation with 4 resour
es and3
lients. The latter
onsisted of a model with a million states and it took a fewhours to verify the mutual ex
lusion property. A re
ently developed parallel model
he
ker has been used to
he
k our largest transition system. The few hours havebeen redu
ed to nine minutes on about �fty pro
essors [5℄; a promissing develop-ment for s
aling this approa
h.5.2 StarvationProving that there is no starvation for the pro
esses turned out to be a problem.This is
aused by the fa
t that there are tra
es in the transition system thatdo not
orrespond to a fair run of the Erlang program. The Erlang pro
esses ares
heduled by the use of a
ertain s
heduler and in the model we have (on purpose)abstra
ted from s
heduling and
onsider all possible sequen
es of a
tions, eventhose in whi
h one single pro
esses gets all exe
ution time.We want to base our no starvation property on the notion of an a
tion iseventually followed by another a
tion. In parti
ular, the request of a resour
e iseventually followed by using that resour
e. One way of formulating this propertyis: EvtFollow(a1; a2) = [-�:a1℄:�X:(h-itrue ^ [:a2℄X)We used this in a
ontext where we instantiated the a
tions a1 and a2 by therequest for a resour
e and the entering of the
riti
al se
tion, respe
tively. Forthe latter, we use the
on�rmation by the lo
ker, i.e., the returned ok message.The a
tual property, like in the mutual ex
lusion
ase, depends on the number of
lients and resour
es. For three
lients and two resour
es we have:NO STARVATION(
1;
2;
3; i1; i2; i3) = (1)EvtFollow(
1; i1) ^EvtFollow(
2; i2) ^ EvtFollow(
3; i3)Unfortunately, this property does not hold, even for simple s
enario's wherede�nitely no starvation o

urs. As an example
onsider the following simple s
e-nario with three
lients and two resour
es. The
lients repeatedly request only oneresour
e, where
lient 1 and 2 request A, and
lient 3 requests B. In su
h a s
enariothere is no starvation, sin
e both
lients may a

ess their resour
e, release it andrequest it again. In the �CRL spe
i�
ation we have the possibility of a loop inwhi
h
lient 3
ontinuously requests and releases resour
e B. The
lients request-ing resour
e A simply do not get any s
heduling time in this sequen
e. However,in the Erlang program this loop is not present, be
ause of the s
heduler. Thus,the problem is to disregard unrealisti
 loops in the transition system. Removingsu
h loops from the transition system, if we at all
ould �nd a way to do so, is

in
orre
t. In a realisti
 setting, su
h a loop
ould be exe
uted a few times beforethe s
heduler enables the other pro
esses. What in a realisti
 setting is ex
luded,is the in�nite traversal of only this loop.We would like to weaken the EvtFollow property, su
h that non-fair paths,whi
h exist in the model, but not in the implementation due to the s
hedulingby the Erlang run-time system, are ignored. Be
ause of limitations in the model
he
king tool (evaluator 3:0) we need to express this property in alternation free �-
al
ulus. External advi
e was required to
ome up with the following reformulationof EvtFollow, des
ribing that even if a loop exists before rea
hing a2, it is stillpossible (from every state of the loop) to rea
h a2 after a �nite number of steps(modality h��:a2itrue).EvtFollow(a1; a2) = [��:a1:(:a2)�℄h��:a2itrueThis property is weaker and in
ombination with Property (1) it holds for theabove mentioned s
enario's. Unfortunately, it is too weak, i.e., ignores loops thatshould be
onsidered. Property (1) with this weaker EvtFollow holds for the�rst s
enario mentioned in Se
tion 2 in whi
h we have starvation in the Erlang
ontext. Re
all that for that s
enario,
lient 1 and 2 on their turn take priorityover
lient 3. Thus, there is an ignored loop with only a
tions of
lient 1 and 2,although it
auses
lient 3 to starve.We need to be more pre
ise in the kind of a
tions that we ignore in a loop andwhi
h not. Thinking a little longer about this, it turns out that all a
tions mayappear in the loop. Neither a request nor a release of any other
lient should beignored. No matter with a
tion one would like to ignore, there is always a plausibles
enario possible from whi
h it is
lear that one
annot ignore that a
tion. Evena whole loop should in prin
iple be allowed, as long as it does not o

ur in�nitelyoften if other a
tions along the path are also enabled. In our opinion this goesbeyond the expressiveness of the logi
 we use.Currently we investigate several possibilities to work around this problem, viz.adding expli
it s
heduling to the �CRL spe
i�
ation, having the model
he
ker
hanged, or using a di�erent logi
 (and model
he
ker) that enables reasoningwith fairness.One might wonder whether starvation is an important property at all, sin
eeven if a theoreti
al starvation problem o

urs, it might happen that in reality thepro
ess always gets served. In regular implementations a timer is set after sendinga message and the starvation as su
h shows as a time out on the
lient site. Thistime out is normally followed by a retry and as su
h the pro
ess might get servedafter a few attempts. We experimented with that by adding su
h time outs andremoving the
he
k for the pending list in the fun
tion
he
k available (whi
hleads to starvation for the s
enario whi
h was dis
ussed in Se
tion 2). Runningthis program does not show a starvation at �rst sight. The
lient does get a

essto the resour
e, o

asionally. If we implement the
lients with an a

ess time ofsay, 500 ms, in the
riti
al se
tion, then starvation will show up in the form of atime out of some of the
lients. The total number of served requests gets lower,in parti
ular for the
lients for whi
h we know that they theoreti
ally starve.Interesting in this
ontext is that we only dete
ted the performan
e problemafter suÆ
iently in
reasing the time spent in the
riti
al se
tion. Here one
an

argue that testing would not have been suÆ
ient and that the error
ould showunexpe
tedly after having the software in use for a long time. Hen
e, we �ndstarvation an important property to verify.6 Con
lusionsThe main
ontribution of this work lays in the development of an automati
translation of a
lass of Erlang programs into �CRL. This enables a developmentof Erlang programs that goes hand in hand with formal veri�
ation; leading toformally veri�ed programs. We do not expe
t smart abstra
tions or
lever tri
ksperformed by the users of this tool, assuming from them a limited knowledge onveri�
ation issues. We provide `push-button veri�
ation' that �ts in the existingdevelopment
y
le. As a leading example for developing our tool we used animplementation of a lo
ker algorithm. Veri�
ation of this lo
ker algorithm hasonly partly been su

essful. Absen
e of deadlo
k and mutual ex
lusion
ould beproved, but it
ould not be shown e�e
tively that the algorithm is starvation free.It is subje
t to further resear
h to �nd a way around this problem.The number of states in our models was not mu
h more than a million, su
hthat real performan
e problems were not en
ountered. It takes a while for a
om-plete veri�
ation, but a few hours is still
onsidered a

eptable in this stage. Themajority of the work is put in getting the spe
i�
ation right and formulating theright properties. In this
ase, in parti
ular for `no starvation', we have spent mu
htime in the formulation of the, still not satisfa
tory, property.We use an approa
h similar to PathFinder or the Bandera proje
t [13, 6℄. Itwould be interesting to see if a Java version of the same
ase study
ould easilybe handled by using those tools, but we have not found the opportunity to do so.Running the model
he
king approa
h of Hu
h [15℄ dire
tly on this example isimpossible, sin
e that version does not support the generi
 server design prin
iple.We
ould
hange the program by removing this generi
 server implementation anduse a dire
t implementation in Erlang instead. However, the approa
h of Hu
hwould translate the
hoi
e whether to return an okmessage to the
lient or to storethe
lient in the pending list, to be a non-deterministi

hoi
e. By abstra
ting awaythe data in that way, mutual ex
lusion does not hold for the obtained transitionsystem.Another approa
h to veri�
ation of Erlang programs whi
h di�ers from model
he
king is the use of a theorem prover for
he
king properties. The SwedishInstitute of Computer S
ien
e have in
ooperation with Eri
sson developed akind of theorem prover spe
ially fo
ussed on Erlang programs [3℄. Advantage ofusing this tool
ompared to the model
he
king approa
h are the possibility ofusing the full �-
al
ulus (instead of alternation free), the possibility to reasonover an unbounded number of
lients and resour
es, and the
ompleteness of theapproa
h, i.e., if a proof is given, it holds for the program and not only for thespe
i�
ation. Sin
e model
he
king allows an easier automation, we aim on usingthis te
hnique for prototyping and use the theorem prover approa
h for the versionwe are satis�ed with.With this veri�
ation of the lo
ker
ase-study we posted several questions forfurther resear
h and we solved several pra
ti
al issues on the way. We
ontinue

with adding features to the lo
ker, su
h as shared lo
ks and fault-toleran
e, there-with in
reasing the need for an even better translation tools.A
knowledgementsWe would like to thank Radu Matees
u and Hubert Garavel from INRIA Rhone-Alpes, Izak van Langevelde, Ja
o van de Pol and Wan Fokkink from CWI, andLars-�Ake Fredlund and Dilian Gurov from SICS for taking part in the dis
ussionson this
ase study and supporting us with their advises.Referen
es[1℄ J.L. Armstrong, S.R. Virding, M.C. Williams, and C. Wikstr�om. Con
urrent Pro-gramming in Erlang. Prenti
e Hall International, 2nd edition, 1996.[2℄ T. Arts and T. Noll, Verifying Generi
 Erlang Client-Server Implementations. InPro
eedings IFL2000, LNCS 2011, p. 37{53, Springer Verlag, Berlin, 2000.[3℄ T. Arts, G. Chugunov, M. Dam, L-�A. Fredlund, D. Gurov, and T. Noll A Toolfor Verifying Software Written in Erlang To appear in: Int. J. Software Tools forTe
hnology Transfer, 2001.[4℄ S. Blau and J. Rooth, AXD 301 { A new Generation ATM Swit
hing System. Eri
-sson Review, no 1, 1998.[5℄ B. Bollig, M. Leu
ker, and M. Weber, Lo
al Parallel Model Che
king for the Alter-nation Free �{Cal
ulus. te
h. rep. AIB-04-2001, RWTH Aa
hen, Mar
h 2001.[6℄ J. Corbett, M. Dwyer, L. Hat
li�, Bandera: A Sour
e-level Interfa
e for ModelChe
king Java Programs. In Tea
hing and Resear
h Demos at ICSE'00, Limeri
k,Ireland, 4-11 June, 2000.[7℄ CWI, http://www.
wi.nl/�m
rl. A Language and Tool Set to Study Communi
at-ing Pro
esses with Data, February 1999.[8℄ Open Sour
e Erlang, http://www.erlang.org, 1999.[9℄ J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Matees
u, L. Mounier, and M. Sighireau.Cadp (C�sar/Ald�ebaran development pa
kage): A proto
ol validation and ver-i�
ation toolbox. In Pro
. of the 8th Conf. on Computer-Aided Veri�
ation, LNCS1102, p. 437{440, Springer Verlag, Berlin, 1996.[10℄ W. Fokkink, Introdu
tion to Pro
ess Algebra, Texts in Theoreti
al Computer S
i-en
e, Springer Verlag, Heidelberg, 2000.[11℄ J. F. Groote, W. Fokkink, M. Reiniers, Modelling Con
urrent Systems: Proto
olVeri�
ation in �CRL.
ourse le
ture notes, April 2000.[12℄ J. F. Groote, The syntax and semanti
s of timed �CRL. te
h. rep. SEN-R9709,CWI, June 1997. Available from http://www.
wi.nl.[13℄ K. Havelund and T. Pressburger, Model
he
king Java programs using JavaPathFinder. Int. J. on Software Tools for Te
hnology Transfer, Vol 2, Nr 4, pp.366{381, Mar
h 2000.[14℄ G. Holzmann, The Design and Validation of Computer Proto
ols. Edgewood Cli�s,MA: Preten
e Hall, 1991.[15℄ F. Hu
h, Veri�
ation of Erlang Programs using Abstra
t Interpretation and ModelChe
king. In Pro
. of ICFP'99, Sept. 1999.

