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1 IntrodutionComputational analysis of biologial data obtained in genome sequening and other projets is essentialfor understanding ellular funtion and the disovery of new drugs and therapies. Sequene-sequene andsequene-struture omparison play a ritial role in prediting a possible funtion for new sequenes.Pairwise sequene alignment is aurate in deteting lose evolutionary relationship between proteins(Holm & Sander 1999), but it is not eÆient when two proteins are struturally similar, but have nosigni�ant sequene similarity. The threading approah has demonstrated promising results in detetingthe latter type of relationship (Jones 1999).In this paper, we fous on the taxonometri approah in determining struture similarity withoutsequene similarity, using mahine learning methods (Baldi & Brunak 1999, Durbin, et al, 1998). suh asNeural Networks and Support Vetor Mahines. This approah has ahieved some suess mostly throughreognition of the protein fold, whih is a ommon 3-dimensional pattern with the same major seondarystruture elements in the same arrangement and with the same topologial onnetions (Craven at al1995). The taxonometri approah presumes that the number of folds is restrited and thus the fous ison strutural preditions in the ontext of partiular lassi�ation of 3D folds. Detailed, omprehensiveprotein lassi�ations suh as SCOP (LoConte et al. 2000) and CATH (Pearl et al 2000) identi�ed morethan 600 3D protein folding patterns. Protein fold predition in the ontext of this large number of lassespresents a rather hallenging lassi�ation problem. The more lasses are involved, the more diÆult itis to aurately predit the fold for a query sequene.Most urrent studies use the one-vs-others (one-against-others) method, whih learly does not salewell to a large number of lasses due to the omplexity of the \others" lasses (Chou & Zhang 1995,Dubhak et al. 1995). For these reason, we studied two improved methods: the unique one-vs-others,and the all-vs-all methods. However, these new methods, essentially based on all pairs of individuallasses, require building very large number of disriminative lassi�ers, (about 84,000 in our database of27 folds). We overome this diÆulty by using the newly developed Support Vetor Mahine.Support Vetor Mahine (SVM) is a new disriminative method (Vapnik 1995), whih has demon-strated high lassi�ation auray in protein family (evolutionary relationship) predition (Jaakkola etal 1999), gene expression lassi�ation (Brown et al, 2000), and many other areas beyond moleularbiology. An advantage of SVM is its fast onvergene in training, about 10-100 faster than in NeuralNetwork (as desribed later). Thanks to fast speed in SVM training, we were able to arry out systematiinvestigation on the three multi-lass lassi�ation methods. We also arried out fold predition usingNN with the new multi-lass reognition methods. Comparison of NN with SVM provided new insightsinto these learning methods. 1



2 Multi-lass Predition MethodsMany disriminative methods, inluding SVM and NN, are often most aurate and eÆient when dealingwith two lasses only (they an deal with more lasses, but usually at redued auray and eÆieny).For large number of lasses, higher-level multi-lass methods are developed that utilize these two-lasslassi�ation methods as the basi building bloks.2.1 One-vs-Others MethodThis is a simple and e�etive method (Dubhak et al. 1999, Brown et al, 2000) for multi-lass problems.Suppose there are K lasses in the problem. We partition the K lasses into a two-lass problem: onelass ontains proteins in one \true" lass, and the \others" lass ombines all other lasses. A two-lasslassi�er is trained for this two-lass problem. We then partition the K lasses into another two-lassproblem: one lass ontains another original lass, and the \others" lass ontains the rest. Anothertwo-way lassi�er is trained. This proedure is repeated for eah of the K lasses, leading to K two-waytrained lassi�ers.In the reognition proess, the system tests the new query protein against eah of the K two-waylassi�ers, to determine if it belongs to the given lass or not. This leads to K sores from the Klassi�ers. Ideally, only one of the K lassi�ers will show a positive result and all other lassi�ers shownegative results, assigning the query protein to a unique fold. In pratie, however, many proteins showpositive on more than one lass, leading to ambiguous predition results, the so-alled \False Positive"problem. One of the main reasons for the false positive problem is that the deision boundary betweenone \true" lass and its omplementary ombined \others" lass annot be drawn leanly, due to theomplexity of the \others" lass and lose parameter proximity of some proteins.2.2 Unique One-vs-Others MethodHere we propose a new method to improve upon the one-vs-others method. The idea is to obtain anunambiguous predition for a given query protein sequene. This is ahieved by reduing or eliminatingfalse positives. We add a seond step to the one-vs-others method by applying two-way disriminativelassi�ations on the pairs between all the lasses with positive preditions. Suppose for a query proteinthe one-vs-others system predits 4 positives, i.e., 4 folds. There are 6 possible pairs out of these 4folds. A 2-way lassi�er is trained for eah of the pairs, is applied to the query protein, and produes apositive predition (vote) for a partiular fold. All votes from the 6 lassi�ers are tallied and the lasswith the most votes represents the �nal predition. Therefore the false positive problem is eliminated atthis seond step (see example in setion 6). 2



Note that in the false positives elimination step, the deision boundary is drawn between two \true"lasses of training proteins, instead of between one \true" lass and its omplementary \others" lass,whih is highly omplex. Thus false positives are eliminated aurately. Therefore, the unique one-vs-others method has higher predition auray.The false positives elimination step is essentially a noise redution tehnique. We expet it to workpartiularly well for lassi�ation methods suh as Neural Networks whih have large false positive ratesor noise (see Setion 5). Indeed, we found in our experiments that it redues the error rates of NeuralNetworks by almost a fator of 2.2.3 All-vs-All MethodIn the unique one-vs-others method, after obtaining the results of the one-vs-others method, two-waylassi�ers between two \true" lasses are trained and used to break \ties" between multiple positivesinluding both true and false positives. We an generalize this further and eliminate the one-vs-othersmethod entirely. This method therefore depends entirely on two-way lassi�ers between pairs of \true"lasses, and ahieves higher auray in the resulting lassi�ations.In this method, we train two-way lassi�ers between all possible pairs of lasses; there are K(K-1)/2of them. A new query protein is then tested against these K(K-1)/2 lassi�ers and obtains K(K-1)/2positive sores (votes). In a perfet ase, the orret lass will get the maximum possible votes, whihis K-1 for all lass-lass pairs; and votes for other K-1 lasses would be randomly distributed, leading to[K(K-1)/2 - K-1℄/(K-1) = (K-2)/2 per lass on average. Thus we expet an average signal-to-noise ratioof r = 2(K � 1)=(K � 2) ' 2;a fairly large margin. Furthermore, the output lass is unique: for any query sequene, there an only beone lass that gets the maximum possible vote.In pratie, however, the number of votes for eah protein has large variations. The most popularlyvoted lass do not neessarily get the maximum possible number of votes; the number of votes for eahlass tends to derease gradually from maximum to minimum, i.e., the margin between the orret lassand inorret lasses is not as large as K-1 vs (K-1)/2 in the above analysis. For this reason, our votingmethod simply outputs the lass with the highest vote, regardless of whether this vote is a maximumpossible vote or not.A problem with both all-vs-all and unique one-vs-others methods is the large number of 2-lasslassi�ers required. However, for the 600 folds in SCOP database, this task an be easily handled usingurrent omputers. The SVMs an be trained in reasonable time (1-2 days on a workstation), and theestimated memory requirement is about 1GB. 3



3 Two-lass Classi�ationsThe three multi-lass lassi�ation methods above utilize 2-lass lassi�ers as their building bloks, whihare desribed below.3.1 Support Vetor MahineSVM is a new and promising binary lassi�ation method developed by Vapnik and olleagues at BellLaboratories (Vapnik 1995, Burges 1998), with algorithm improvements by others (Osuna, 1997, Joahims1998). SVM is a margin lassi�er. It draws an optimal hyperplane in a high-dimensional feature spae(determined by w; b); this de�nes a boundary that maximizes the margin between data samples in twolasses, therefore giving good generalization properties. The deision boundary is de�ned by the funtionf(x) = w � �(x) + bDepending upon the sign of the funtion, protein x is lassi�ed into either of the two lasses. For manyproblems where samples of di�erent lasses annot be separated in the original feature spae, one ane�etively embed the problem in higher dimensional spae (indiated by �(x) ), making it easier to �ndthe optimal hyperplane, i.e., better deision boundary. The atual embedding is ahieved through akernel funtion, making it easy to implement and fast to ompute.For our datasets, we found that linear kernel does not work well, the polynomial kernel works better,and the Gaussian kernel gives the best results. To aount for the imbalane of positive examples (proteinsin a \true" lass) and the negative examples (those in the \others" lass), in the one-vs-others method,we dupliate the positive examples to approximately math the number of negative examples. This worksout well. In all the 2-lass training sessions (about 84,000), not a single protein is mislassi�ed.3.2 Neural NetworkWe used three-layer feed-forward neural networks with the weights adjusted by onjugate gradient mini-mization. Sine in NN training there is always a problem of generalization, the number of NN parameterswas adaptively adjusted to variable training set sizes by hanging the number of hidden units. VariousNN arhitetures were tested; the geometry (Nhidden = 1 and Nout = 2) ahieves a good performanewhile having a minimum overall number of nodes (to improve generalization). We found it adequate forthe reognition of all folds in the database. The number of inputs is the same as the dimensionality ofthe feature vetors. High ativity output to one node indiated the assignment of the test sequene to apartiular fold, and high ativity to the other node indiated the assignment to the other folds.4



Fold Index Ntrain Ntest� :Globin-like 1 13 6Cytohrome  3 7 9DNA-binding 3-helial bundle 4 12 204-helial up-and-down bundle 7 7 84-helial ytokines 9 9 9Alpha; EF-hand 11 7 9� :Immunoglobulin-like �-sandwih 20 30 44Cupredoxins 23 9 12Viral oat and apsid proteins 26 16 13ConA-like letins/gluanases 30 7 6SH3-like barrel 31 8 8OB-fold 32 13 19Trefoil 33 8 4Trypsin-like serine proteases 35 9 4Lipoalins 39 9 7�=� :(TIM)-barrel 46 29 48FAD (also NAD)-binding motif 47 11 12Flavodoxin-like 48 11 13NAD(P)-binding Rossmann-fold 51 13 27P-loop ontaining nuleotide 54 10 12Thioredoxin-like 57 9 8Ribonulease H-like motif 59 10 14Hydrolases 62 11 7Periplasmi binding protein-like 69 11 4�+ � :�-grasp 72 7 8Ferredoxin-like 87 13 27Small Inhibitors, toxins, letins 110 12 27Table 1: Non-redundant subset of 27 SCOP folds used in urrent study4 Dataset4.1 Training DatasetThe dataset we used for training was seleted from the database built for the predition of 128 folds inour earlier study (Dubhak, et al., 1999). This database was based on the PDB selet sets (Hobohm, etal, 1992, Hobohm and Sander, 1994) where two proteins have no more than 35% of the sequene identityfor the aligned subsequenes longer than 80 residues. Sine the auray of any mahine learning methoddepends diretly on the number of representatives for training, we utilized 27 most populated folds inthe database whih have seven or more proteins and represent all major strutural lasses: �, �, �=�,and �+ �. The folds in our database and the orresponding number of proteins in training (Ntrain ) areshown in Table 1. 5



Symbol Parameter DimC amino aids omposition 20S predited seondary struture 21H hydrophobiity 21V normalized van der Waals volume 21P polarity 21Z polarizability 21Table 2: Six parameter datasets extrated from protein sequene. The dimension of the feature vetorare also shown.4.2 Independent Test DatasetAs an independent dataset for testing we used the PDB-40D set developed by the authors of the SCOPdatabase (Lo Conte 2000). This set ontains the SCOP sequenes having less than 40% identity witheah other. From this set we seleted 386 representatives of the same 27 largest folds (Ntest ) shown inTable 1. All PDB-40D proteins that had higher than 35% identity with the proteins of the training setwere exluded from the testing set.4.3 Feature Vetor ExtrationTo use mahine learning methods, feature vetors are extrated from protein sequenes. Perentageomposition of the 20 amino aids forms a parameter set. For eah strutural or physio-hemial prop-erty listed in Table 2, feature vetors are extrated from the primary sequene based on three desrip-tors: \omposition," perent omposition of 3 onstituents (e.g, polar, neutral and hydrophobi residuesin hydrophobiity); \transition," the transition frequenies (polar to neutral, neutral to hydrophobi,et.); and \distribution," the distribution pattern of onstituents (where the �rst residue of a givenonstituent is loated, and where 25%, 50%, 75% and 100% of that onstituent are ontained). Foronrete details, see (Dubhak et al., 1995, 1999). The entire feature datasets are available on line(http://www.ners.gov/�ding/protein). With the feature extration method, feature vetors (we allthem parameter vetors) an be easily alulated from new protein sequenes, and fold predition bydi�erent mahine-learning tehniques an be performed rapidly and automatially.Note that the six feature vetor datasets (parameter sets) are extrated independently. Thus, onemay apply mahine-learning tehniques based on a single parameter set for protein fold predition. Wefound that using multiple parameter sets and applying majority voting on the results lead to muh betterpredition auray. This is the approah we take in this study. Alternatively, one may ombine di�erentparameter sets into one dataset so that eah protein is represented by a 125-dimensional feature vetor.We experimented with this approah and found that the predition auray is not enhaned.6



5 Auray MeasureAssessing the auray of various disriminative methods so far mostly involves alulating true positiverates (TPR) and false positives rates (FPR). These harateristis are originally designed for two-lassproblems, losely related to sensitivity and seletivity used in sequene omparison methods (Brenner etal. 1998); they are now extended to problems involving more than two lasses, through the one-vs-othersmethod (e.g., Dubhak et al,1999, Jaakkola et al, 1999). However, multi-way lassi�ation methods arenot restrited to the one-vs-others method. The all-vs-all method disussed above is another example.In these methods, there are no suh onepts as true positives and false positives. Therefore we need anauray measure whih an deal with all situations.In this paper, we use the standard Q perentage auray (Rost & Sander, 1993, Baldi et al, 2000),generalized to handle true positives and false positives. Suppose we have N = n1 + n2 + � � �+ nK testproteins (n1 are observed to belong to lass F1, et.). Suppose that out of n1 proteins, 1 are orretlyand uniquely reognized as belonging to F1, et., so that total C = 1+2+ � � �+K proteins are orretlyreognized (i's orrespond to diagonal entries in the K �K ontingeny table). The auray for lassi is Qi = i=ni: The overall or total auray is Q = C=N (Q = Qtotal).Individual Qi relates to the overall Q in a very simple way. An individual lass ontributes to theoverall auray in proportion to the number proteins in its lass, and thus has a weight wi = ni=N .Therefore the overall auray equals the weighted average over individual lasses:Q = KXi=1 wiqi = C=N:Here \unique" means that a single fold is predited for an unknown protein. False positives are takeninto aount by onsidering them as \ties." If a protein is tested positive for 4 lasses, and one of themis orret, then  = 1=4 for this protein. So in general, i are not neessarily integers. Allowing frationsin the ontingeny table, the one-against-others method an be properly aommodated. (Conventionalontingeny tables are de�ned to have integer entries only.) We sometimes all this generalized aurayde�nition unique auray, when it's applied to the one-vs-others method.We an similarly de�ne TPRi = TPi=ni, and FPRi = FPi=ni, for eah lass i, and overall TPRand FPR as the weighted average. The di�erenes between unique auray and TPR and FPR areillustrated in Table 3. Here we used three di�erent 2-way lassi�ers: the SVM1 (less optimized), SVM2(better optimized) and NN. In general, for a given method, the higher TPR it ahieves, the higher theFPR it brings, as we move from SVM1 to SVM2 to NN. However, the unique auray learly indiatesSVM2 is the best among the three methods: SVM2 ahieves most orret unique reognitions, eventhough SVM2 has a higher FPR than SVM1, and SVM2 has a lower TPR than NN.7



Method TPR FPR QSVM1 33.8 % 7.5 % 33.5 %SVM2 48.8 48.6 43.5NN 59.5 296 20.5Table 3: Overall TPR, FPR and unique auray (Q) of three lassi�ation methods using one-vs-others lassi�ation method, on the independent test set using the omposition dataset only. Results areweighted averages over the 27 folds.For NN, although its TPR of 59.5% is quite high, the large FPR of 296% brings the unique auraydown to only 20.5%. For SVM1, although its FPR of 7.5% is low, the low TPR of 33.8 % annot moveup the unique auray.6 Tests on Independent DatasetsOne the reognition system is built and trained, we an test it in two ways. In the �rst test, we test thesystem against a dataset whih is independent of the training dataset. Note that test proteins have lessthan 35% sequene identity with those used in training.6.1 One-vs-Others MethodIn this method, on the datasets with 27 fold lasses, we build 27 two-way one-vs-others lassi�ers, witheither SVM or NN. Eah protein in the test set is tested against all 27 two-way lassi�ers. If the resultis positive, this is a positive vote for the lass. However, if the result is negative, i.e., the protein belongsto one of the 26 other lasses, or equivalently, the protein belongs to eah of the other 26 lasses with aprobability of 1/26. But these small frational votes will not hange the results disussed below, and isnegligible for large number of lasses. An example of protein 1hbg (using NN with omposition datasetonly) is : 1hbg (F1) 1:1 46:1 47:1 51:1Here (F1) indiates that 1hbg belongs to lass F1; 1:1 indiates 1 positive vote for lass F1; 46:1 indiates1 positive for lass F46, et. Protein 1hbg has 4 positives.We an ombine votes obtained from di�erent parameter sets to improve predition auray. Forexample, when votes of all 6 parameter datasets are ombined, we have,1hbg (F1) 1:6 20:2 46:2 47:2 51:2 4:1 7:1 9:1 11:1 30:1 32:1Protein 1hbg now has 6 votes for lass F1, 2 votes for lasses F20, F46, F47, et. Thus 6 parameter setsimprove the auray of 1hbg from 4 positives to 1, a unique orret positive. Although the majority8



of proteins bene�t from ombining multiple votes, there are some exeptions, reeting the statistialnature of these methods. Fold C CS CSH CSHP CSHPV ALL61 19.6% 68.2% 70.8% 63.9% 66.7% 55.6%3 9.6 37.0 44.8 48.1 43.3 27.84 11.3 27.8 23.2 24.9 25.7 25.67 12.3 21.8 39.6 46.3 37.5 37.59 25.4 83.3 88.9 75.0 80.6 77.811 13.3 28.9 47.5 44.4 38.9 27.820 16.0 32.3 37.4 44.1 45.5 53.923 23.2 17.5 11.0 12.5 14.2 12.526 20.6 25.5 30.5 37.4 43.8 44.230 13.9 29.2 35.4 33.3 33.3 33.331 14.8 26.8 33.8 40.6 45.8 52.132 9.4 20.6 22.8 18.4 25.4 26.333 18.8 25.0 37.5 29.2 33.3 25.035 12.5 11.9 14.6 18.8 18.8 0.039 24.3 27.9 31.4 42.9 35.7 40.546 38.7 58.1 72.4 69.1 65.8 65.847 21.9 54.2 40.5 34.2 33.3 38.948 12.1 25.5 25.6 15.4 17.9 21.851 24.8 38.6 40.2 41.4 41.0 42.654 14.5 24.8 20.8 22.2 27.8 29.257 18.1 31.2 32.5 38.5 37.9 50.059 21.4 37.0 41.1 38.1 39.3 38.162 47.6 42.5 41.8 47.6 42.9 57.169 0.0 0.0 0.0 0.0 0.0 0.072 8.0 9.4 12.5 16.7 16.7 25.087 9.0 28.3 35.6 33.6 28.7 21.4110 32.7 58.9 54.1 58.9 61.2 60.3avg 20.5 36.8 40.6 41.1 41.2 41.8Table 4: Unique Auray Qi for eah fold lass and overallQ (bottom line), for the one-vs-others methodusing neural networks. Votes are ombined gradually, with the order \C", \S", \H", \P", \V", \Z" (seeTable 2).Table 4 shows results of this ombination of votes using NN for eah individual fold. As the numberof parameter sets inreases, the predition auray for most lasses inreases steadily, although notuniformly, reeting the statistial nature of the predition system. The overall predition aurayinreases very substantially, from 20.5% for the omposition set alone (denoted as C) to 36.8% foromposition+seondary datasets (denoted as CS), to 40.6% for omposition+seondary + hydrophobiity(denoted as CSH).The reason for this is noise redution. NN has rather high true positive rates of 59.5% (Table 3),but also has high false positive rate 296.0%, so eah proteins has about 3 false positives. The high FPRbrings the unique auray down to 20.5%. When sores of di�erent parameter sets are ombined, themajority voting helps to redue the false positives, and thus improves the �nal unique auray.9



C S CSHFold OvO uOvO OvO uOvO OvO uOvO1 75.0 83.3 41.7 50.0 87.5 83.33 44.4 55.6 16.7 33.3 50.9 66.74 34.2 35.0 36.7 40.0 43.7 46.77 43.8 50.0 35.4 29.2 53.5 62.59 94.4 100.0 44.4 55.6 69.8 100.011 33.3 44.4 27.8 22.2 50.0 55.620 41.3 52.3 36.0 36.4 48.6 60.223 16.7 33.3 8.3 11.1 15.3 16.726 46.2 38.5 10.3 30.8 46.8 53.830 33.3 33.3 16.7 16.7 25.0 33.331 54.2 62.5 37.5 37.5 41.7 50.032 21.1 21.1 22.4 22.8 27.4 31.633 50.0 50.0 37.5 50.0 50.0 50.035 50.0 50.0 25.0 25.0 25.0 25.039 42.9 42.9 28.6 28.6 39.3 50.046 58.0 66.7 42.2 46.4 60.5 64.647 50.0 50.0 66.7 75.0 56.9 54.248 33.3 30.8 23.1 30.8 29.5 34.651 46.3 55.6 22.2 24.1 31.2 46.954 50.0 41.7 33.3 37.5 47.2 36.157 18.8 37.5 25.0 25.0 25.0 25.059 35.7 35.7 35.7 50.0 39.3 28.662 71.4 71.4 50.0 57.1 78.6 71.469 25.0 25.0 25.0 25.0 25.0 25.072 25.0 25.0 0.0 0.0 25.0 25.087 14.8 14.8 16.7 22.2 24.5 29.6110 67.9 88.9 46.3 55.6 69.3 83.3avg 43.5 49.4 31.5 36.2 45.2 51.1Table 5: Unique Perentage Auray Qi; Q for One-vs-Others (OvO) and Unique One-vs-Others (uOvO)methods using Support Vetor Mahine.The auray for SVM is generally higher than that for NN, beause SVM has far less false positives.Table 5 ontains the predition results. The auray for SVM is 43.5% on the omposition parameterset alone, in ontrast to 20.5% for NN. It inreases to 45.2% for CSH, in ontrast to 41.1% for NN. Whenmore votes for di�erent parameter sets are ombined (results shown in Table 6), auray improves from43.5% to 45.2%. This is not as signi�ant as for NN, beause false positive rates for SVM are alreadyquite low (see Table 3).6.2 Unique One-vs-Others MethodHere we eliminate false positives by using two-way disriminative lassi�ations on the pairs between allthe lasses with positive (both true and false) preditions in the one-vs-others step. For example, protein1hbg is voted positive for 4 lasses as the result of one-vs-others predition. We further applied 6 2-way10



lassi�ers between the 4 positive lasses to 1hbg, and obtained the following result1hbg (F1) 1:3 46:1 47:1 51:1The most popularly voted lass is now uniquely determined to be F1, and 3 false positives are eliminated.Results of the uOvO method are shown in Tables 5 and 6. For SVM, the unique one-vs-others (uOvO)method shows good improvements, about 13.6 % for omposition data, and 14.9% for seondary struturedata. The best �nal results of the uOvO method are ahieved on the ombined C+S+H dataset, 51.1%,improved upon the original OvO results of 45.2%. On the NN results (not shown), the average aurayis improved from 20.5% to 43.1%, a 110% improvement, due to the elimination of the large amount offalse positives. These signi�ant improvements indiate the usefulness of the uOvO method in reduingFPR or noise.6.3 All-vs-all methodFor the 27 fold lasses, the predition system onsists of 27 � (27� 1)=2 = 351 two-way SVM lassi�ers,eah between one pair of folds. A test protein is tested against all trained SVMs, and results are talliedas before. For example, for the protein 1hbg we get1hbg (F1) 1:26 46:24 47:24 51:23 3:22 69:21 48:20 35:18 59:18 23:16Folds are sorted aording to their votes (more folds with less votes are not shown here). This wasrepeated for all 6 parameter sets, resulting in a total of 2106 two-way lassi�ers. The fast onvergene ofSVM makes this study possible. Due to slow onvergene in NN training, training suh a large numberof NNs would be prohibitive, thus no NN test is done using the all-vs-all method.Predition results for the test dataset for eah of the folding lasses using SVM are shown in Tables6 and 7. For the omposition dataset alone, the unique auray is 44.9%. As sores of more parameterdatasets are ombined together, the auray inreases to 52.1% for CS, and to 56.0% for CSH due toC CS CSH CSHP CSHPV ALL6OvO 20.5% 36.8% 40.6% 41.1% 41.2% 41.8%NNOvO 43.5 43.2 45.2 43.2 44.8 44.9SVMuOvO 49.4 48.6 51.1 49.4 50.9 49.6SVMAvA 44.9 52.1 56.0 56.5 55.5 53.9SVMTable 6: Unique Auray Q for the independent test as more votes on di�erent parameter datasets areombined, for one-vs-others (OvO), unique one-vs-others (uOvO), and all-vs-all (AvA) methods.11



Independent Test Cross ValidationFold NN SVM SVM SVM NN SVMIndex OvO OvO uOvO AvA OvO AvA1 55.6 87.5 83.3 83.3 36.5 73.13 27.8 50.9 66.7 77.8 7.1 71.44 25.6 43.7 46.7 35.0 33.3 66.77 37.5 53.5 62.5 50.0 14.3 42.99 77.8 69.8 100.0 100.0 38.9 50.011 27.8 50.0 55.6 66.7 21.4 28.620 53.9 48.6 60.2 71.6 51.2 46.723 12.5 15.3 16.7 16.7 22.2 33.326 44.2 46.8 53.8 50.0 28.1 62.530 33.3 25.0 33.3 33.3 7.1 21.431 52.1 41.7 50.0 50.0 0.0 62.532 26.3 27.4 31.6 26.3 7.7 15.433 25.0 50.0 50.0 50.0 0.0 12.535 0.0 25.0 25.0 25.0 13.3 22.239 40.5 39.3 50.0 57.1 11.1 22.246 65.8 60.5 64.6 77.1 64.9 82.847 38.9 56.9 54.2 58.3 18.2 36.448 21.8 29.5 34.6 48.7 13.6 9.151 42.6 31.2 46.9 61.1 29.5 53.854 29.2 47.2 36.1 36.1 8.3 60.057 50.0 25.0 25.0 50.0 25.9 33.359 38.1 39.3 28.6 35.7 13.3 5.062 57.1 78.6 71.4 71.4 6.8 36.469 0.0 25.0 25.0 25.0 34.8 63.672 25.0 25.0 25.0 12.5 0.0 0.087 21.4 24.5 29.6 37.0 9.0 19.2110 60.3 69.3 83.3 83.3 55.8 75.0avg 41.8 45.2 51.1 56.0 27.2 45.4Table 7: Predition auray Qi (in perentage) for eah individual fold and overall auray Q (bottomline). Majority voting is used on ombination of votes from di�erent parameter datasets.noise redution. In general, the all-vs-all method improves the predition auray by about 24% overthe one-vs-others method, and by about 10% over the unique one-vs-others method.7 Cross-ValidationAnother standard test on the reognition system we used was a ross-validation (CV) test. CV measuresthe performane of the predition system in a self-onsistent way by systematially leaving out a fewproteins (about 10%) during the training proess and testing the trained predition system against thoseleft-out proteins. This is repeated suh that every protein in the dataset is one among those left-out. Compared to the test on independent set, ross-validation has less bias and better preditive andgeneralization power.One suh 10-fold ross-validation is run on a random partitioning of a parameter dataset. To gain highstatistis, we did four independent partitionings and orresponding CVs. (The total number of 2-way12



SVM lassi�ers trained in this study is 4*S*K*P = 6480 in the one-vs-others method, and 4*S*[K(K-1)/2℄*P = 84240 in the all-vs-all method.)The results of the 10-fold ross-validation are listed in Table 7 for SVM/AvA and NN/OvO. For theomposition dataset alone, the CV average unique auray is 33%. As sores of more parameter datasetsare ombined together, the auray improves, to 45.4% for C+S+H. By using NN for all 6 parametersets ombined, we ahieved an auray rate of 27.2%.8 Summary and Disussions8.1 Comparison of multi-way lassi�ation methodsOur extensive results learly demonstrate that the two advaned methods, the unique one-vs-othersmethod and the all-vs-all method, outperform the popular one-vs-others method: they improve preditionauray by about 14-25 % for SVM, and by about 110% for NN. Of ourse, the substantial advantagesof the advaned methods ome at the ost of training muh more 2-way lassi�ers.Between the unique one-vs-others and all-vs-all methods, our tests indiate that the former appearsto be more e�etive if only a single parameter dataset is available, and the latter is better for ombiningsores from multiple datasets. Overall, both methods appear to perform equally well.Theoretially, the all-vs-all method has leaner deision boundaries between all pairs of lasses, buthas larger noise due to the involvement of all possible pairs. Combining multiple votes on di�erentparameter datasets redues the noise, thus leading to more aurate preditions.The unique one-vs-others method involves substantially fewer pairs of lasses, thus less noise, at thefalse positive elimination step. This explains the high auray for a single parameter dataset; ombiningvotes from more parameter dataset do redue noise, but not as signi�antly as in the all-vs-all method.However, the deision boundaries used in the �rst step, the one-vs-others step, annot be drawn as leanbetween one true lass and the omplementary \others" lass. This is the fundamental limitation of thismethod.The all-vs-all method was briey mentioned in (Weston, 1998) and no improvement was found overthe one-vs-others method.8.2 Comparison between SVM and NNOur results, as shown in Tables 6 and 7, demonstrate substantially higher auray ahieved by SVM asompared to NN. As mentioned earlier, one of the pronouned features of NN is rather high false positiverates, due to higher noise levels in NN. This negatively impats the predition auray. The interesting13



point emerging from our study is that when sores of multiple parameter datasets are ombined, aurayfor NN improves muh more than for SVM, due to the signi�ant redution of noise in the ase of NN.This indiates that the voting approah for NN is ruial to ahieve high auray.Another pronouned di�erene is omputational eÆieny. NN training typially onverges slowly,whereas SVM training onverges repidly, typially about 1-2 orders of magnitude faster than using NN.For this reason, some of the multi-way lassi�ation methods are only tested using SVM. The 10-foldross-validation, dominated by the training of the 351*6*10=21060 two-way SVM lassi�ers shown inTable 7 took about 12 CPU hours on a Sun Ultra 5.8.3 E�etiveness of Parameter SetsThe e�etiveness of mahine learning methods depends ruially on the feature vetors extrated fromthe protein sequene. Extensive testing of di�erent lassi�ation methods on independent protein sets orby ross-validation showed that amino aid omposition is the most e�etive parameter set, followed bythe predited seondary struture, and then hydrophobiity parameter sets. The numerial assessmentis listed in Table 8. However, the best auray is obtained when sores of di�erent parameter setsare ombined together. This further on�rms our earlier intuition in developing the feature extrationmethods. Parameter SVM SVM NN AvgCV Ind-Test Ind-Testomposition 32.7% 44.9% 20.5% 32.7%seondary stru. 34.6 35.6 18.3 29.5hydrophobiity 19.8 36.5 14.2 23.5polarity 18.7 32.9 11.1 20.9volume 17.2 35.0 13.4 21.8polarizability 14.6 32.9 13.2 20.2Table 8: Predition auray Q for di�erent parameter datasets. Both independent test (Ind-Test) andross-validation (CV) are shown.8.4 How many representatives does eah fold need?In Table 9, we show how the predition auray of both ross-validation and independent test dependson the number of representative proteins in a fold. To gain suÆient statistis, we averaged those foldswith representative proteins in ranges 7 - 9 (there are 12 folds in this range), 10-12, 13-16, and 29-30(there are no folds with the number of proteins in the range 17-28). It is lear that as Nrep in eahlass inreases, the auraies inrease steadily, to about 58-67% level for 29-30 representatives per lass.This is quite onsistent in ross-validations on training dataset; although there are a few exeptions in14



independent tests on lasses with rather small number of proteins (7-9), where large utuations areexpeted. Cross Validation Independent TestNrep AvA OvO AvA uOvO OvO OvOSVM NN SVM SVM SVM NN7- 9 31.1 13.4 51.4 46.6 37.6 34.110-12 38.9 18.3 42.1 42.4 41.5 30.113-16 50.3 27.8 57.2 54.8 46.5 41.729-30 67.0 58.1 74.5 62.4 53.9 59.9Table 9: E�ets on perentage auray Q due to number of representatives (Nrep ) in eah fold.8.5 E�ets of large number of foldsPredition auray depends on the number of folds in the predition system. To investigate this further,we studied 2-lass and 8-lass problems in addition to the 27-lass problem and results are shown in Table10. In 2-lass problem, eah fold is lassi�ed with eah of other 26 folds in 2-way lassi�ation, and thepredition auray is averaged (2-way results). This is repeated for eah fold. The 8-way lassi�ationinvolves folds 1, 20, 26, 32, 46, 51, 87, 110, whih are hosen beause eah of the folds has 13 or moreproteins.For independent tests, the auray drops from 84.3% for 2-way lassi�ations to 52.8% for the 8-waylassi�ation to 45.6% for the 27-way lassi�ation. The same trend is also apparent for ross-validationson either 8-way lassi�ation (63.7%) to 27-way lassi�ation (45.2%).The reason for the steady drop in predition auray is two-fold. First, as a general trend, the morelasses are involved in a lassi�ation system, the more diÆult it is to aurately assign a new queryprotein. Seond, in our datasets, the number of representatives in eah fold redues very substantially,as explained in the previous setion. From the signi�ant drop in predition auray shown in Table 9,we believe this fator is more important. Fortunately, this lak of representatives will be improved bythe steady growth of the number of known proteins in databases.Overall, for the 27-lass dataset with relatively small number of representatives in eah fold (manyhave 7 proteins), the predition auray is around 50% (45% for CV, 56% for test). Although thisauray level is not high, we note that for 27-lass problem, a random predition will have an aurayof 1/27=3.7%. 15



Fold 2-way 8-way 27-way 8-way 27-wayTest Test Test CV CV1 91.7% 83.3% 83.3% 62.5% 71.1%3 92.7 { 66.7 { 65.24 64.6 { 30.0 { 64.67 74.5 { 43.8 { 26.89 98.3 { 77.8 { 45.811 75.6 { 55.6 { 41.120 87.8 54.5 45.5 64.8 52.523 80.1 { 33.3 { 30.626 90.8 34.6 34.6 76.5 70.330 83.3 { 33.3 { 20.831 70.2 { 41.7 { 46.932 75.9 26.3 18.4 20.8 7.733 86.5 { 50.0 { 7.835 69.2 { 50.0 { 25.039 87.9 { 52.4 { 27.846 93.4 61.5 51.0 80.2 81.547 89.7 { 41.7 { 43.248 81.7 { 38.5 { 9.151 90.0 55.6 51.9 60.1 53.554 88.5 { 36.1 { 58.857 78.8 { 25.0 { 36.159 82.4 { 35.7 { 3.862 89.0 { 71.4 { 28.469 69.2 { 25.0 { 64.772 68.3 { 18.8 { 0.087 70.4 12.3 13.0 26.5 20.8110 97.4 92.6 90.7 91.1 78.6avg 84.3 52.8 45.6 63.7 45.2Table 10: Dependeny of SVM predition auray Qi; Q on the number of folds. Only ompositionparameter dataset is used.8.6 Feedbak to SCOPOur study also shows that some folds are onsistently reognized with high predition auray: foldF9 (�: 4-helial ytokines), fold F26 (�: viral oat), fold F46 (�=�: TIM-barrel), fold F110 (� + �:small inhibitors); while some other folds are onsistently reognized with low auray: fold F23 (�:uperedoxins), fold F59 (�=�: ribonulear H-like motif), fold F72 (� + �: �-grasp). These features arefairly persistent on di�erent parameter datasets and ombined datasets. They are also onsistent withdi�erent disriminant methods (see Tables 4,5,7).The biologial harateristis of these folds are worth further examination, whih ould probably leadto better feature extration methods for more aurate preditions, and ould also provide feedbak toimprove the original SCOP lassi�ation database (e.g., split one diÆult fold into several folds). Muhremains to be explored here. 16



9 ConlusionIn this paper, we studied several important issues in protein fold reognition in the ontext of a largenumber of folds using disriminative methods, aided by the fast and highly aurate support vetormahine. We studied the popular one-against-others method, and two new advaned methods: theunique one-vs-others method and the all-vs-all method. These advaned methods improved preditionauray substantially, at a higher but manageable omputational ost.Overall, reognition methods ahieve 56% predition auray on test proteins whih have less than35% sequene identity with proteins used in training (90% of those test proteins have less than 25%sequene identity with the training proteins, see Brenner, et. al. 1998, Fig. 6). Thus the fold reognitionapproah is a useful struture disovery method, omplementary to BLAST type sequene-similaritybased methods.In present work, the reognition system simply predits a fold for an input protein without assoiatingit a numerial value to assess the reliability or on�dene of the predition. Sine eah protein is preditedwith di�erent reliability, suh a reliability sore is neessary for pratial predition systems. For example,a low reliability sore for a new protein may signal that it does not belong to any folds in the system.In this study, we also systematially investigated many important aspets of multi-lass fold predition,whih will help to build a pratial fold predition system inluding about 600 folds in the SCOP database.Aknowledgement. We thank Prof. M. Jordan, Drs. S. Holbrook, S. Mian, E. Xing, and H. Simonfor SVM and fold reognition disussions. We also thank anonymous referees for useful omments andsuggestions. We used SVM-Light software (http://ais.gmd.de/�thorsten/svm light/). This work is sup-ported by the OÆe of Computational and Tehnology Researh, Division of Mathematial, Information,and Computational Sienes, and also by OÆe of Laboratory Poliy and Infrastruture (through a LBNLLDRD grant), both of the U.S. Department of Energy under ontrat number DE-AC03- 76SF00098.ReferenesBaldi,P. and Brunak,S. (1998) Bioinformatis : the mahine learning approah. Cambridge, Mass. MITPress, 1998.Baldi,P., Brunak,S., Chauvin,Y., Andersen,C. and Nielsen,H. (2000) Assessing the auray of preditionalgorithms for lassi�ation: an overview. Bioinformatis, 16, 412-424.Brenner, S.E., Chothia, C. and Hubbard, T.J. (1998) Assessing sequene omparison methods with reli-able struturally identi�ed distant evolutionary relationships. Pro. National Aademy of Sienes,26, 6073-8.Brown, M.P.S., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C., Ares, Jr. M. and Haussler, D. (2000)Knowledge-based Analysis of Miroarray Gene Expression Data. by using Support Vetor Mahines.Pro. Natl Aad Si., 97, 262-267.Burges, C.J.C. (1998) A Tutorial on Support Vetor Mahines for Pattern Reognition. Knowledge17



Disovery and Data Mining, 2, 1-43.Chou, K.-C. and Zhang, C.T. (1995) Predition of protein strutural lasses. Critial Revi. Biohem.Mol. Biol. 30, 275-349.Craven, M.W., Mural, R.J., Hauser, L.J. and Uberbaher, E.C. (1995) Prediting protein folding lasseswithout overly relying on homology. ISMB, 3, 98-106.Dubhak, I., Muhnik, I., Holbrook, S.R. and Kim, S.H. (1995) Predition of protein folding lass usingglobal desription of amino aid sequene. Pro. Natl Aad Si. , 92, 8700-4.Dubhak, I., Muhnik,I., Mayor,C., Dralyuk,I. and Kim,S.H. (1999) Reognition of a protein fold in theontext of the Strutural Classi�ation of Proteins (SCOP) lassi�ation. Proteins, 35, 401-7.Durbin, R., Eddy, S., Krogh, A. and Mithison, G. (1998) Biologial Sequene Analysis. CambridgePress.Hobohm, U., Sharf, M., Shneider, R. and Sander, C. (1992) Seletion of a representative set of struturesfrom the Brookhaven Protein Bank. Protein Si., 1, 409-417.Hobohm, U. and Sander, C. (1994) Enlarged representative set of Proteins. Protein Si., 3, 522-524.Holm, L. and Sander, C. (1999) Protein folds and families: sequene and struture alignments. NuleiAids Researh , 27, 244-7.Jaakkola, T., Diekhans, M. and Haussler, D. (1999) Using the Fisher kernel method to detet remoteprotein homologies. ISMB, 149-158Joahims, T. (1998) Making large sale SVM Learning Pratial. Advanes in Kernel Methods - SupportVetor Learning, ed. Sholkopf, B., Burges, C. and Smola, A. MIT Press.Jones, D.T. (1999) GenTHREADER: an eÆient and reliable protein fold reognition method for genomisequenes. J. Mol. Bio , 287, 797-815.Lo Conte, L., Ailey, B., Hubbard, T.J.P., Brenner, S. E., Murzin, A. G. and Chothia, C. (2000) SCOP:a Strutural Classi�ation of Proteins database Nulei Aids Res., 28, 257-259.Osuna, E., Freund, R. and Girosi, F. (1997) An improved training algorithm for support vetor mahines.Neural Networks for Signal Proessing VII | Proeedings of the 1997 IEEE Workshop, 276-285.Park, J., Karplus, K., Barret, C., Hughey, R., Haussler, D., Hubbard, T. and Chothia, C. (1998) SequeneComparisonUsing Multiple Sequenes Detet Three Times as Many Remote Homologues as PairwiseMethods. J.Mol. Bio., 284, 1201-10.Pearl, F.M., Lee, D., Bray, J.E., Sillitoe, I., Todd, A.E., Harrison, A.P., Thornton, J.M. and Orengo,C.A. (2000) Assigning genomi sequenes to CATH. Nulei Aids Res., 28, 277-82.Rost, B. and Sander, C. (1993) Predition of protein seondary struture at better than 70% auray.J. Mol. Bio., 232, 584-599.Vapnik, V. (1995) The Nature of Statistial Learning Theory. Springer-Verlag, New York.Weston, J. and Watkins, C. (1998) Multi-lass Support Vetor Mahines. Royal Holloway, Univ ofLondon. Teh Report CSD-TR-98-04. 18


