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1 Introdu
tionComputational analysis of biologi
al data obtained in genome sequen
ing and other proje
ts is essentialfor understanding 
ellular fun
tion and the dis
overy of new drugs and therapies. Sequen
e-sequen
e andsequen
e-stru
ture 
omparison play a 
riti
al role in predi
ting a possible fun
tion for new sequen
es.Pairwise sequen
e alignment is a

urate in dete
ting 
lose evolutionary relationship between proteins(Holm & Sander 1999), but it is not eÆ
ient when two proteins are stru
turally similar, but have nosigni�
ant sequen
e similarity. The threading approa
h has demonstrated promising results in dete
tingthe latter type of relationship (Jones 1999).In this paper, we fo
us on the taxonometri
 approa
h in determining stru
ture similarity withoutsequen
e similarity, using ma
hine learning methods (Baldi & Brunak 1999, Durbin, et al, 1998). su
h asNeural Networks and Support Ve
tor Ma
hines. This approa
h has a
hieved some su

ess mostly throughre
ognition of the protein fold, whi
h is a 
ommon 3-dimensional pattern with the same major se
ondarystru
ture elements in the same arrangement and with the same topologi
al 
onne
tions (Craven at al1995). The taxonometri
 approa
h presumes that the number of folds is restri
ted and thus the fo
us ison stru
tural predi
tions in the 
ontext of parti
ular 
lassi�
ation of 3D folds. Detailed, 
omprehensiveprotein 
lassi�
ations su
h as SCOP (LoConte et al. 2000) and CATH (Pearl et al 2000) identi�ed morethan 600 3D protein folding patterns. Protein fold predi
tion in the 
ontext of this large number of 
lassespresents a rather 
hallenging 
lassi�
ation problem. The more 
lasses are involved, the more diÆ
ult itis to a

urately predi
t the fold for a query sequen
e.Most 
urrent studies use the one-vs-others (one-against-others) method, whi
h 
learly does not s
alewell to a large number of 
lasses due to the 
omplexity of the \others" 
lasses (Chou & Zhang 1995,Dub
hak et al. 1995). For these reason, we studied two improved methods: the unique one-vs-others,and the all-vs-all methods. However, these new methods, essentially based on all pairs of individual
lasses, require building very large number of dis
riminative 
lassi�ers, (about 84,000 in our database of27 folds). We over
ome this diÆ
ulty by using the newly developed Support Ve
tor Ma
hine.Support Ve
tor Ma
hine (SVM) is a new dis
riminative method (Vapnik 1995), whi
h has demon-strated high 
lassi�
ation a

ura
y in protein family (evolutionary relationship) predi
tion (Jaakkola etal 1999), gene expression 
lassi�
ation (Brown et al, 2000), and many other areas beyond mole
ularbiology. An advantage of SVM is its fast 
onvergen
e in training, about 10-100 faster than in NeuralNetwork (as des
ribed later). Thanks to fast speed in SVM training, we were able to 
arry out systemati
investigation on the three multi-
lass 
lassi�
ation methods. We also 
arried out fold predi
tion usingNN with the new multi-
lass re
ognition methods. Comparison of NN with SVM provided new insightsinto these learning methods. 1



2 Multi-
lass Predi
tion MethodsMany dis
riminative methods, in
luding SVM and NN, are often most a

urate and eÆ
ient when dealingwith two 
lasses only (they 
an deal with more 
lasses, but usually at redu
ed a

ura
y and eÆ
ien
y).For large number of 
lasses, higher-level multi-
lass methods are developed that utilize these two-
lass
lassi�
ation methods as the basi
 building blo
ks.2.1 One-vs-Others MethodThis is a simple and e�e
tive method (Dub
hak et al. 1999, Brown et al, 2000) for multi-
lass problems.Suppose there are K 
lasses in the problem. We partition the K 
lasses into a two-
lass problem: one
lass 
ontains proteins in one \true" 
lass, and the \others" 
lass 
ombines all other 
lasses. A two-
lass
lassi�er is trained for this two-
lass problem. We then partition the K 
lasses into another two-
lassproblem: one 
lass 
ontains another original 
lass, and the \others" 
lass 
ontains the rest. Anothertwo-way 
lassi�er is trained. This pro
edure is repeated for ea
h of the K 
lasses, leading to K two-waytrained 
lassi�ers.In the re
ognition pro
ess, the system tests the new query protein against ea
h of the K two-way
lassi�ers, to determine if it belongs to the given 
lass or not. This leads to K s
ores from the K
lassi�ers. Ideally, only one of the K 
lassi�ers will show a positive result and all other 
lassi�ers shownegative results, assigning the query protein to a unique fold. In pra
ti
e, however, many proteins showpositive on more than one 
lass, leading to ambiguous predi
tion results, the so-
alled \False Positive"problem. One of the main reasons for the false positive problem is that the de
ision boundary betweenone \true" 
lass and its 
omplementary 
ombined \others" 
lass 
annot be drawn 
leanly, due to the
omplexity of the \others" 
lass and 
lose parameter proximity of some proteins.2.2 Unique One-vs-Others MethodHere we propose a new method to improve upon the one-vs-others method. The idea is to obtain anunambiguous predi
tion for a given query protein sequen
e. This is a
hieved by redu
ing or eliminatingfalse positives. We add a se
ond step to the one-vs-others method by applying two-way dis
riminative
lassi�
ations on the pairs between all the 
lasses with positive predi
tions. Suppose for a query proteinthe one-vs-others system predi
ts 4 positives, i.e., 4 folds. There are 6 possible pairs out of these 4folds. A 2-way 
lassi�er is trained for ea
h of the pairs, is applied to the query protein, and produ
es apositive predi
tion (vote) for a parti
ular fold. All votes from the 6 
lassi�ers are tallied and the 
lasswith the most votes represents the �nal predi
tion. Therefore the false positive problem is eliminated atthis se
ond step (see example in se
tion 6). 2



Note that in the false positives elimination step, the de
ision boundary is drawn between two \true"
lasses of training proteins, instead of between one \true" 
lass and its 
omplementary \others" 
lass,whi
h is highly 
omplex. Thus false positives are eliminated a

urately. Therefore, the unique one-vs-others method has higher predi
tion a

ura
y.The false positives elimination step is essentially a noise redu
tion te
hnique. We expe
t it to workparti
ularly well for 
lassi�
ation methods su
h as Neural Networks whi
h have large false positive ratesor noise (see Se
tion 5). Indeed, we found in our experiments that it redu
es the error rates of NeuralNetworks by almost a fa
tor of 2.2.3 All-vs-All MethodIn the unique one-vs-others method, after obtaining the results of the one-vs-others method, two-way
lassi�ers between two \true" 
lasses are trained and used to break \ties" between multiple positivesin
luding both true and false positives. We 
an generalize this further and eliminate the one-vs-othersmethod entirely. This method therefore depends entirely on two-way 
lassi�ers between pairs of \true"
lasses, and a
hieves higher a

ura
y in the resulting 
lassi�
ations.In this method, we train two-way 
lassi�ers between all possible pairs of 
lasses; there are K(K-1)/2of them. A new query protein is then tested against these K(K-1)/2 
lassi�ers and obtains K(K-1)/2positive s
ores (votes). In a perfe
t 
ase, the 
orre
t 
lass will get the maximum possible votes, whi
his K-1 for all 
lass-
lass pairs; and votes for other K-1 
lasses would be randomly distributed, leading to[K(K-1)/2 - K-1℄/(K-1) = (K-2)/2 per 
lass on average. Thus we expe
t an average signal-to-noise ratioof r = 2(K � 1)=(K � 2) ' 2;a fairly large margin. Furthermore, the output 
lass is unique: for any query sequen
e, there 
an only beone 
lass that gets the maximum possible vote.In pra
ti
e, however, the number of votes for ea
h protein has large variations. The most popularlyvoted 
lass do not ne
essarily get the maximum possible number of votes; the number of votes for ea
h
lass tends to de
rease gradually from maximum to minimum, i.e., the margin between the 
orre
t 
lassand in
orre
t 
lasses is not as large as K-1 vs (K-1)/2 in the above analysis. For this reason, our votingmethod simply outputs the 
lass with the highest vote, regardless of whether this vote is a maximumpossible vote or not.A problem with both all-vs-all and unique one-vs-others methods is the large number of 2-
lass
lassi�ers required. However, for the 600 folds in SCOP database, this task 
an be easily handled using
urrent 
omputers. The SVMs 
an be trained in reasonable time (1-2 days on a workstation), and theestimated memory requirement is about 1GB. 3



3 Two-
lass Classi�
ationsThe three multi-
lass 
lassi�
ation methods above utilize 2-
lass 
lassi�ers as their building blo
ks, whi
hare des
ribed below.3.1 Support Ve
tor Ma
hineSVM is a new and promising binary 
lassi�
ation method developed by Vapnik and 
olleagues at BellLaboratories (Vapnik 1995, Burges 1998), with algorithm improvements by others (Osuna, 1997, Joa
hims1998). SVM is a margin 
lassi�er. It draws an optimal hyperplane in a high-dimensional feature spa
e(determined by w; b); this de�nes a boundary that maximizes the margin between data samples in two
lasses, therefore giving good generalization properties. The de
ision boundary is de�ned by the fun
tionf(x) = w � �(x) + bDepending upon the sign of the fun
tion, protein x is 
lassi�ed into either of the two 
lasses. For manyproblems where samples of di�erent 
lasses 
annot be separated in the original feature spa
e, one 
ane�e
tively embed the problem in higher dimensional spa
e (indi
ated by �(x) ), making it easier to �ndthe optimal hyperplane, i.e., better de
ision boundary. The a
tual embedding is a
hieved through akernel fun
tion, making it easy to implement and fast to 
ompute.For our datasets, we found that linear kernel does not work well, the polynomial kernel works better,and the Gaussian kernel gives the best results. To a

ount for the imbalan
e of positive examples (proteinsin a \true" 
lass) and the negative examples (those in the \others" 
lass), in the one-vs-others method,we dupli
ate the positive examples to approximately mat
h the number of negative examples. This worksout well. In all the 2-
lass training sessions (about 84,000), not a single protein is mis
lassi�ed.3.2 Neural NetworkWe used three-layer feed-forward neural networks with the weights adjusted by 
onjugate gradient mini-mization. Sin
e in NN training there is always a problem of generalization, the number of NN parameterswas adaptively adjusted to variable training set sizes by 
hanging the number of hidden units. VariousNN ar
hite
tures were tested; the geometry (Nhidden = 1 and Nout = 2) a
hieves a good performan
ewhile having a minimum overall number of nodes (to improve generalization). We found it adequate forthe re
ognition of all folds in the database. The number of inputs is the same as the dimensionality ofthe feature ve
tors. High a
tivity output to one node indi
ated the assignment of the test sequen
e to aparti
ular fold, and high a
tivity to the other node indi
ated the assignment to the other folds.4



Fold Index Ntrain Ntest� :Globin-like 1 13 6Cyto
hrome 
 3 7 9DNA-binding 3-heli
al bundle 4 12 204-heli
al up-and-down bundle 7 7 84-heli
al 
ytokines 9 9 9Alpha; EF-hand 11 7 9� :Immunoglobulin-like �-sandwi
h 20 30 44Cupredoxins 23 9 12Viral 
oat and 
apsid proteins 26 16 13ConA-like le
tins/glu
anases 30 7 6SH3-like barrel 31 8 8OB-fold 32 13 19Trefoil 33 8 4Trypsin-like serine proteases 35 9 4Lipo
alins 39 9 7�=� :(TIM)-barrel 46 29 48FAD (also NAD)-binding motif 47 11 12Flavodoxin-like 48 11 13NAD(P)-binding Rossmann-fold 51 13 27P-loop 
ontaining nu
leotide 54 10 12Thioredoxin-like 57 9 8Ribonu
lease H-like motif 59 10 14Hydrolases 62 11 7Periplasmi
 binding protein-like 69 11 4�+ � :�-grasp 72 7 8Ferredoxin-like 87 13 27Small Inhibitors, toxins, le
tins 110 12 27Table 1: Non-redundant subset of 27 SCOP folds used in 
urrent study4 Dataset4.1 Training DatasetThe dataset we used for training was sele
ted from the database built for the predi
tion of 128 folds inour earlier study (Dub
hak, et al., 1999). This database was based on the PDB sele
t sets (Hobohm, etal, 1992, Hobohm and Sander, 1994) where two proteins have no more than 35% of the sequen
e identityfor the aligned subsequen
es longer than 80 residues. Sin
e the a

ura
y of any ma
hine learning methoddepends dire
tly on the number of representatives for training, we utilized 27 most populated folds inthe database whi
h have seven or more proteins and represent all major stru
tural 
lasses: �, �, �=�,and �+ �. The folds in our database and the 
orresponding number of proteins in training (Ntrain ) areshown in Table 1. 5



Symbol Parameter DimC amino a
ids 
omposition 20S predi
ted se
ondary stru
ture 21H hydrophobi
ity 21V normalized van der Waals volume 21P polarity 21Z polarizability 21Table 2: Six parameter datasets extra
ted from protein sequen
e. The dimension of the feature ve
torare also shown.4.2 Independent Test DatasetAs an independent dataset for testing we used the PDB-40D set developed by the authors of the SCOPdatabase (Lo Conte 2000). This set 
ontains the SCOP sequen
es having less than 40% identity withea
h other. From this set we sele
ted 386 representatives of the same 27 largest folds (Ntest ) shown inTable 1. All PDB-40D proteins that had higher than 35% identity with the proteins of the training setwere ex
luded from the testing set.4.3 Feature Ve
tor Extra
tionTo use ma
hine learning methods, feature ve
tors are extra
ted from protein sequen
es. Per
entage
omposition of the 20 amino a
ids forms a parameter set. For ea
h stru
tural or physi
o-
hemi
al prop-erty listed in Table 2, feature ve
tors are extra
ted from the primary sequen
e based on three des
rip-tors: \
omposition," per
ent 
omposition of 3 
onstituents (e.g, polar, neutral and hydrophobi
 residuesin hydrophobi
ity); \transition," the transition frequen
ies (polar to neutral, neutral to hydrophobi
,et
.); and \distribution," the distribution pattern of 
onstituents (where the �rst residue of a given
onstituent is lo
ated, and where 25%, 50%, 75% and 100% of that 
onstituent are 
ontained). For
on
rete details, see (Dub
hak et al., 1995, 1999). The entire feature datasets are available on line(http://www.ners
.gov/�
ding/protein). With the feature extra
tion method, feature ve
tors (we 
allthem parameter ve
tors) 
an be easily 
al
ulated from new protein sequen
es, and fold predi
tion bydi�erent ma
hine-learning te
hniques 
an be performed rapidly and automati
ally.Note that the six feature ve
tor datasets (parameter sets) are extra
ted independently. Thus, onemay apply ma
hine-learning te
hniques based on a single parameter set for protein fold predi
tion. Wefound that using multiple parameter sets and applying majority voting on the results lead to mu
h betterpredi
tion a

ura
y. This is the approa
h we take in this study. Alternatively, one may 
ombine di�erentparameter sets into one dataset so that ea
h protein is represented by a 125-dimensional feature ve
tor.We experimented with this approa
h and found that the predi
tion a

ura
y is not enhan
ed.6



5 A

ura
y MeasureAssessing the a

ura
y of various dis
riminative methods so far mostly involves 
al
ulating true positiverates (TPR) and false positives rates (FPR). These 
hara
teristi
s are originally designed for two-
lassproblems, 
losely related to sensitivity and sele
tivity used in sequen
e 
omparison methods (Brenner etal. 1998); they are now extended to problems involving more than two 
lasses, through the one-vs-othersmethod (e.g., Dub
hak et al,1999, Jaakkola et al, 1999). However, multi-way 
lassi�
ation methods arenot restri
ted to the one-vs-others method. The all-vs-all method dis
ussed above is another example.In these methods, there are no su
h 
on
epts as true positives and false positives. Therefore we need ana

ura
y measure whi
h 
an deal with all situations.In this paper, we use the standard Q per
entage a

ura
y (Rost & Sander, 1993, Baldi et al, 2000),generalized to handle true positives and false positives. Suppose we have N = n1 + n2 + � � �+ nK testproteins (n1 are observed to belong to 
lass F1, et
.). Suppose that out of n1 proteins, 
1 are 
orre
tlyand uniquely re
ognized as belonging to F1, et
., so that total C = 
1+
2+ � � �+
K proteins are 
orre
tlyre
ognized (
i's 
orrespond to diagonal entries in the K �K 
ontingen
y table). The a

ura
y for 
lassi is Qi = 
i=ni: The overall or total a

ura
y is Q = C=N (Q = Qtotal).Individual Qi relates to the overall Q in a very simple way. An individual 
lass 
ontributes to theoverall a

ura
y in proportion to the number proteins in its 
lass, and thus has a weight wi = ni=N .Therefore the overall a

ura
y equals the weighted average over individual 
lasses:Q = KXi=1 wiqi = C=N:Here \unique" means that a single fold is predi
ted for an unknown protein. False positives are takeninto a

ount by 
onsidering them as \ties." If a protein is tested positive for 4 
lasses, and one of themis 
orre
t, then 
 = 1=4 for this protein. So in general, 
i are not ne
essarily integers. Allowing fra
tionsin the 
ontingen
y table, the one-against-others method 
an be properly a

ommodated. (Conventional
ontingen
y tables are de�ned to have integer entries only.) We sometimes 
all this generalized a

ura
yde�nition unique a

ura
y, when it's applied to the one-vs-others method.We 
an similarly de�ne TPRi = TPi=ni, and FPRi = FPi=ni, for ea
h 
lass i, and overall TPRand FPR as the weighted average. The di�eren
es between unique a

ura
y and TPR and FPR areillustrated in Table 3. Here we used three di�erent 2-way 
lassi�ers: the SVM1 (less optimized), SVM2(better optimized) and NN. In general, for a given method, the higher TPR it a
hieves, the higher theFPR it brings, as we move from SVM1 to SVM2 to NN. However, the unique a

ura
y 
learly indi
atesSVM2 is the best among the three methods: SVM2 a
hieves most 
orre
t unique re
ognitions, eventhough SVM2 has a higher FPR than SVM1, and SVM2 has a lower TPR than NN.7



Method TPR FPR QSVM1 33.8 % 7.5 % 33.5 %SVM2 48.8 48.6 43.5NN 59.5 296 20.5Table 3: Overall TPR, FPR and unique a

ura
y (Q) of three 
lassi�
ation methods using one-vs-others 
lassi�
ation method, on the independent test set using the 
omposition dataset only. Results areweighted averages over the 27 folds.For NN, although its TPR of 59.5% is quite high, the large FPR of 296% brings the unique a

ura
ydown to only 20.5%. For SVM1, although its FPR of 7.5% is low, the low TPR of 33.8 % 
annot moveup the unique a

ura
y.6 Tests on Independent DatasetsOn
e the re
ognition system is built and trained, we 
an test it in two ways. In the �rst test, we test thesystem against a dataset whi
h is independent of the training dataset. Note that test proteins have lessthan 35% sequen
e identity with those used in training.6.1 One-vs-Others MethodIn this method, on the datasets with 27 fold 
lasses, we build 27 two-way one-vs-others 
lassi�ers, witheither SVM or NN. Ea
h protein in the test set is tested against all 27 two-way 
lassi�ers. If the resultis positive, this is a positive vote for the 
lass. However, if the result is negative, i.e., the protein belongsto one of the 26 other 
lasses, or equivalently, the protein belongs to ea
h of the other 26 
lasses with aprobability of 1/26. But these small fra
tional votes will not 
hange the results dis
ussed below, and isnegligible for large number of 
lasses. An example of protein 1hbg (using NN with 
omposition datasetonly) is : 1hbg (F1) 1:1 46:1 47:1 51:1Here (F1) indi
ates that 1hbg belongs to 
lass F1; 1:1 indi
ates 1 positive vote for 
lass F1; 46:1 indi
ates1 positive for 
lass F46, et
. Protein 1hbg has 4 positives.We 
an 
ombine votes obtained from di�erent parameter sets to improve predi
tion a

ura
y. Forexample, when votes of all 6 parameter datasets are 
ombined, we have,1hbg (F1) 1:6 20:2 46:2 47:2 51:2 4:1 7:1 9:1 11:1 30:1 32:1Protein 1hbg now has 6 votes for 
lass F1, 2 votes for 
lasses F20, F46, F47, et
. Thus 6 parameter setsimprove the a

ura
y of 1hbg from 4 positives to 1, a unique 
orre
t positive. Although the majority8



of proteins bene�t from 
ombining multiple votes, there are some ex
eptions, re
e
ting the statisti
alnature of these methods. Fold C CS CSH CSHP CSHPV ALL61 19.6% 68.2% 70.8% 63.9% 66.7% 55.6%3 9.6 37.0 44.8 48.1 43.3 27.84 11.3 27.8 23.2 24.9 25.7 25.67 12.3 21.8 39.6 46.3 37.5 37.59 25.4 83.3 88.9 75.0 80.6 77.811 13.3 28.9 47.5 44.4 38.9 27.820 16.0 32.3 37.4 44.1 45.5 53.923 23.2 17.5 11.0 12.5 14.2 12.526 20.6 25.5 30.5 37.4 43.8 44.230 13.9 29.2 35.4 33.3 33.3 33.331 14.8 26.8 33.8 40.6 45.8 52.132 9.4 20.6 22.8 18.4 25.4 26.333 18.8 25.0 37.5 29.2 33.3 25.035 12.5 11.9 14.6 18.8 18.8 0.039 24.3 27.9 31.4 42.9 35.7 40.546 38.7 58.1 72.4 69.1 65.8 65.847 21.9 54.2 40.5 34.2 33.3 38.948 12.1 25.5 25.6 15.4 17.9 21.851 24.8 38.6 40.2 41.4 41.0 42.654 14.5 24.8 20.8 22.2 27.8 29.257 18.1 31.2 32.5 38.5 37.9 50.059 21.4 37.0 41.1 38.1 39.3 38.162 47.6 42.5 41.8 47.6 42.9 57.169 0.0 0.0 0.0 0.0 0.0 0.072 8.0 9.4 12.5 16.7 16.7 25.087 9.0 28.3 35.6 33.6 28.7 21.4110 32.7 58.9 54.1 58.9 61.2 60.3avg 20.5 36.8 40.6 41.1 41.2 41.8Table 4: Unique A

ura
y Qi for ea
h fold 
lass and overallQ (bottom line), for the one-vs-others methodusing neural networks. Votes are 
ombined gradually, with the order \C", \S", \H", \P", \V", \Z" (seeTable 2).Table 4 shows results of this 
ombination of votes using NN for ea
h individual fold. As the numberof parameter sets in
reases, the predi
tion a

ura
y for most 
lasses in
reases steadily, although notuniformly, re
e
ting the statisti
al nature of the predi
tion system. The overall predi
tion a

ura
yin
reases very substantially, from 20.5% for the 
omposition set alone (denoted as C) to 36.8% for
omposition+se
ondary datasets (denoted as CS), to 40.6% for 
omposition+se
ondary + hydrophobi
ity(denoted as CSH).The reason for this is noise redu
tion. NN has rather high true positive rates of 59.5% (Table 3),but also has high false positive rate 296.0%, so ea
h proteins has about 3 false positives. The high FPRbrings the unique a

ura
y down to 20.5%. When s
ores of di�erent parameter sets are 
ombined, themajority voting helps to redu
e the false positives, and thus improves the �nal unique a

ura
y.9



C S CSHFold OvO uOvO OvO uOvO OvO uOvO1 75.0 83.3 41.7 50.0 87.5 83.33 44.4 55.6 16.7 33.3 50.9 66.74 34.2 35.0 36.7 40.0 43.7 46.77 43.8 50.0 35.4 29.2 53.5 62.59 94.4 100.0 44.4 55.6 69.8 100.011 33.3 44.4 27.8 22.2 50.0 55.620 41.3 52.3 36.0 36.4 48.6 60.223 16.7 33.3 8.3 11.1 15.3 16.726 46.2 38.5 10.3 30.8 46.8 53.830 33.3 33.3 16.7 16.7 25.0 33.331 54.2 62.5 37.5 37.5 41.7 50.032 21.1 21.1 22.4 22.8 27.4 31.633 50.0 50.0 37.5 50.0 50.0 50.035 50.0 50.0 25.0 25.0 25.0 25.039 42.9 42.9 28.6 28.6 39.3 50.046 58.0 66.7 42.2 46.4 60.5 64.647 50.0 50.0 66.7 75.0 56.9 54.248 33.3 30.8 23.1 30.8 29.5 34.651 46.3 55.6 22.2 24.1 31.2 46.954 50.0 41.7 33.3 37.5 47.2 36.157 18.8 37.5 25.0 25.0 25.0 25.059 35.7 35.7 35.7 50.0 39.3 28.662 71.4 71.4 50.0 57.1 78.6 71.469 25.0 25.0 25.0 25.0 25.0 25.072 25.0 25.0 0.0 0.0 25.0 25.087 14.8 14.8 16.7 22.2 24.5 29.6110 67.9 88.9 46.3 55.6 69.3 83.3avg 43.5 49.4 31.5 36.2 45.2 51.1Table 5: Unique Per
entage A

ura
y Qi; Q for One-vs-Others (OvO) and Unique One-vs-Others (uOvO)methods using Support Ve
tor Ma
hine.The a

ura
y for SVM is generally higher than that for NN, be
ause SVM has far less false positives.Table 5 
ontains the predi
tion results. The a

ura
y for SVM is 43.5% on the 
omposition parameterset alone, in 
ontrast to 20.5% for NN. It in
reases to 45.2% for CSH, in 
ontrast to 41.1% for NN. Whenmore votes for di�erent parameter sets are 
ombined (results shown in Table 6), a

ura
y improves from43.5% to 45.2%. This is not as signi�
ant as for NN, be
ause false positive rates for SVM are alreadyquite low (see Table 3).6.2 Unique One-vs-Others MethodHere we eliminate false positives by using two-way dis
riminative 
lassi�
ations on the pairs between allthe 
lasses with positive (both true and false) predi
tions in the one-vs-others step. For example, protein1hbg is voted positive for 4 
lasses as the result of one-vs-others predi
tion. We further applied 6 2-way10




lassi�ers between the 4 positive 
lasses to 1hbg, and obtained the following result1hbg (F1) 1:3 46:1 47:1 51:1The most popularly voted 
lass is now uniquely determined to be F1, and 3 false positives are eliminated.Results of the uOvO method are shown in Tables 5 and 6. For SVM, the unique one-vs-others (uOvO)method shows good improvements, about 13.6 % for 
omposition data, and 14.9% for se
ondary stru
turedata. The best �nal results of the uOvO method are a
hieved on the 
ombined C+S+H dataset, 51.1%,improved upon the original OvO results of 45.2%. On the NN results (not shown), the average a

ura
yis improved from 20.5% to 43.1%, a 110% improvement, due to the elimination of the large amount offalse positives. These signi�
ant improvements indi
ate the usefulness of the uOvO method in redu
ingFPR or noise.6.3 All-vs-all methodFor the 27 fold 
lasses, the predi
tion system 
onsists of 27 � (27� 1)=2 = 351 two-way SVM 
lassi�ers,ea
h between one pair of folds. A test protein is tested against all trained SVMs, and results are talliedas before. For example, for the protein 1hbg we get1hbg (F1) 1:26 46:24 47:24 51:23 3:22 69:21 48:20 35:18 59:18 23:16Folds are sorted a

ording to their votes (more folds with less votes are not shown here). This wasrepeated for all 6 parameter sets, resulting in a total of 2106 two-way 
lassi�ers. The fast 
onvergen
e ofSVM makes this study possible. Due to slow 
onvergen
e in NN training, training su
h a large numberof NNs would be prohibitive, thus no NN test is done using the all-vs-all method.Predi
tion results for the test dataset for ea
h of the folding 
lasses using SVM are shown in Tables6 and 7. For the 
omposition dataset alone, the unique a

ura
y is 44.9%. As s
ores of more parameterdatasets are 
ombined together, the a

ura
y in
reases to 52.1% for CS, and to 56.0% for CSH due toC CS CSH CSHP CSHPV ALL6OvO 20.5% 36.8% 40.6% 41.1% 41.2% 41.8%NNOvO 43.5 43.2 45.2 43.2 44.8 44.9SVMuOvO 49.4 48.6 51.1 49.4 50.9 49.6SVMAvA 44.9 52.1 56.0 56.5 55.5 53.9SVMTable 6: Unique A

ura
y Q for the independent test as more votes on di�erent parameter datasets are
ombined, for one-vs-others (OvO), unique one-vs-others (uOvO), and all-vs-all (AvA) methods.11



Independent Test Cross ValidationFold NN SVM SVM SVM NN SVMIndex OvO OvO uOvO AvA OvO AvA1 55.6 87.5 83.3 83.3 36.5 73.13 27.8 50.9 66.7 77.8 7.1 71.44 25.6 43.7 46.7 35.0 33.3 66.77 37.5 53.5 62.5 50.0 14.3 42.99 77.8 69.8 100.0 100.0 38.9 50.011 27.8 50.0 55.6 66.7 21.4 28.620 53.9 48.6 60.2 71.6 51.2 46.723 12.5 15.3 16.7 16.7 22.2 33.326 44.2 46.8 53.8 50.0 28.1 62.530 33.3 25.0 33.3 33.3 7.1 21.431 52.1 41.7 50.0 50.0 0.0 62.532 26.3 27.4 31.6 26.3 7.7 15.433 25.0 50.0 50.0 50.0 0.0 12.535 0.0 25.0 25.0 25.0 13.3 22.239 40.5 39.3 50.0 57.1 11.1 22.246 65.8 60.5 64.6 77.1 64.9 82.847 38.9 56.9 54.2 58.3 18.2 36.448 21.8 29.5 34.6 48.7 13.6 9.151 42.6 31.2 46.9 61.1 29.5 53.854 29.2 47.2 36.1 36.1 8.3 60.057 50.0 25.0 25.0 50.0 25.9 33.359 38.1 39.3 28.6 35.7 13.3 5.062 57.1 78.6 71.4 71.4 6.8 36.469 0.0 25.0 25.0 25.0 34.8 63.672 25.0 25.0 25.0 12.5 0.0 0.087 21.4 24.5 29.6 37.0 9.0 19.2110 60.3 69.3 83.3 83.3 55.8 75.0avg 41.8 45.2 51.1 56.0 27.2 45.4Table 7: Predi
tion a

ura
y Qi (in per
entage) for ea
h individual fold and overall a

ura
y Q (bottomline). Majority voting is used on 
ombination of votes from di�erent parameter datasets.noise redu
tion. In general, the all-vs-all method improves the predi
tion a

ura
y by about 24% overthe one-vs-others method, and by about 10% over the unique one-vs-others method.7 Cross-ValidationAnother standard test on the re
ognition system we used was a 
ross-validation (CV) test. CV measuresthe performan
e of the predi
tion system in a self-
onsistent way by systemati
ally leaving out a fewproteins (about 10%) during the training pro
ess and testing the trained predi
tion system against thoseleft-out proteins. This is repeated su
h that every protein in the dataset is on
e among those left-out. Compared to the test on independent set, 
ross-validation has less bias and better predi
tive andgeneralization power.One su
h 10-fold 
ross-validation is run on a random partitioning of a parameter dataset. To gain highstatisti
s, we did four independent partitionings and 
orresponding CVs. (The total number of 2-way12



SVM 
lassi�ers trained in this study is 4*S*K*P = 6480 in the one-vs-others method, and 4*S*[K(K-1)/2℄*P = 84240 in the all-vs-all method.)The results of the 10-fold 
ross-validation are listed in Table 7 for SVM/AvA and NN/OvO. For the
omposition dataset alone, the CV average unique a

ura
y is 33%. As s
ores of more parameter datasetsare 
ombined together, the a

ura
y improves, to 45.4% for C+S+H. By using NN for all 6 parametersets 
ombined, we a
hieved an a

ura
y rate of 27.2%.8 Summary and Dis
ussions8.1 Comparison of multi-way 
lassi�
ation methodsOur extensive results 
learly demonstrate that the two advan
ed methods, the unique one-vs-othersmethod and the all-vs-all method, outperform the popular one-vs-others method: they improve predi
tiona

ura
y by about 14-25 % for SVM, and by about 110% for NN. Of 
ourse, the substantial advantagesof the advan
ed methods 
ome at the 
ost of training mu
h more 2-way 
lassi�ers.Between the unique one-vs-others and all-vs-all methods, our tests indi
ate that the former appearsto be more e�e
tive if only a single parameter dataset is available, and the latter is better for 
ombinings
ores from multiple datasets. Overall, both methods appear to perform equally well.Theoreti
ally, the all-vs-all method has 
leaner de
ision boundaries between all pairs of 
lasses, buthas larger noise due to the involvement of all possible pairs. Combining multiple votes on di�erentparameter datasets redu
es the noise, thus leading to more a

urate predi
tions.The unique one-vs-others method involves substantially fewer pairs of 
lasses, thus less noise, at thefalse positive elimination step. This explains the high a

ura
y for a single parameter dataset; 
ombiningvotes from more parameter dataset do redu
e noise, but not as signi�
antly as in the all-vs-all method.However, the de
ision boundaries used in the �rst step, the one-vs-others step, 
annot be drawn as 
leanbetween one true 
lass and the 
omplementary \others" 
lass. This is the fundamental limitation of thismethod.The all-vs-all method was brie
y mentioned in (Weston, 1998) and no improvement was found overthe one-vs-others method.8.2 Comparison between SVM and NNOur results, as shown in Tables 6 and 7, demonstrate substantially higher a

ura
y a
hieved by SVM as
ompared to NN. As mentioned earlier, one of the pronoun
ed features of NN is rather high false positiverates, due to higher noise levels in NN. This negatively impa
ts the predi
tion a

ura
y. The interesting13



point emerging from our study is that when s
ores of multiple parameter datasets are 
ombined, a

ura
yfor NN improves mu
h more than for SVM, due to the signi�
ant redu
tion of noise in the 
ase of NN.This indi
ates that the voting approa
h for NN is 
ru
ial to a
hieve high a

ura
y.Another pronoun
ed di�eren
e is 
omputational eÆ
ien
y. NN training typi
ally 
onverges slowly,whereas SVM training 
onverges repidly, typi
ally about 1-2 orders of magnitude faster than using NN.For this reason, some of the multi-way 
lassi�
ation methods are only tested using SVM. The 10-fold
ross-validation, dominated by the training of the 351*6*10=21060 two-way SVM 
lassi�ers shown inTable 7 took about 12 CPU hours on a Sun Ultra 5.8.3 E�e
tiveness of Parameter SetsThe e�e
tiveness of ma
hine learning methods depends 
ru
ially on the feature ve
tors extra
ted fromthe protein sequen
e. Extensive testing of di�erent 
lassi�
ation methods on independent protein sets orby 
ross-validation showed that amino a
id 
omposition is the most e�e
tive parameter set, followed bythe predi
ted se
ondary stru
ture, and then hydrophobi
ity parameter sets. The numeri
al assessmentis listed in Table 8. However, the best a

ura
y is obtained when s
ores of di�erent parameter setsare 
ombined together. This further 
on�rms our earlier intuition in developing the feature extra
tionmethods. Parameter SVM SVM NN AvgCV Ind-Test Ind-Test
omposition 32.7% 44.9% 20.5% 32.7%se
ondary stru
. 34.6 35.6 18.3 29.5hydrophobi
ity 19.8 36.5 14.2 23.5polarity 18.7 32.9 11.1 20.9volume 17.2 35.0 13.4 21.8polarizability 14.6 32.9 13.2 20.2Table 8: Predi
tion a

ura
y Q for di�erent parameter datasets. Both independent test (Ind-Test) and
ross-validation (CV) are shown.8.4 How many representatives does ea
h fold need?In Table 9, we show how the predi
tion a

ura
y of both 
ross-validation and independent test dependson the number of representative proteins in a fold. To gain suÆ
ient statisti
s, we averaged those foldswith representative proteins in ranges 7 - 9 (there are 12 folds in this range), 10-12, 13-16, and 29-30(there are no folds with the number of proteins in the range 17-28). It is 
lear that as Nrep in ea
h
lass in
reases, the a

ura
ies in
rease steadily, to about 58-67% level for 29-30 representatives per 
lass.This is quite 
onsistent in 
ross-validations on training dataset; although there are a few ex
eptions in14



independent tests on 
lasses with rather small number of proteins (7-9), where large 
u
tuations areexpe
ted. Cross Validation Independent TestNrep AvA OvO AvA uOvO OvO OvOSVM NN SVM SVM SVM NN7- 9 31.1 13.4 51.4 46.6 37.6 34.110-12 38.9 18.3 42.1 42.4 41.5 30.113-16 50.3 27.8 57.2 54.8 46.5 41.729-30 67.0 58.1 74.5 62.4 53.9 59.9Table 9: E�e
ts on per
entage a

ura
y Q due to number of representatives (Nrep ) in ea
h fold.8.5 E�e
ts of large number of foldsPredi
tion a

ura
y depends on the number of folds in the predi
tion system. To investigate this further,we studied 2-
lass and 8-
lass problems in addition to the 27-
lass problem and results are shown in Table10. In 2-
lass problem, ea
h fold is 
lassi�ed with ea
h of other 26 folds in 2-way 
lassi�
ation, and thepredi
tion a

ura
y is averaged (2-way results). This is repeated for ea
h fold. The 8-way 
lassi�
ationinvolves folds 1, 20, 26, 32, 46, 51, 87, 110, whi
h are 
hosen be
ause ea
h of the folds has 13 or moreproteins.For independent tests, the a

ura
y drops from 84.3% for 2-way 
lassi�
ations to 52.8% for the 8-way
lassi�
ation to 45.6% for the 27-way 
lassi�
ation. The same trend is also apparent for 
ross-validationson either 8-way 
lassi�
ation (63.7%) to 27-way 
lassi�
ation (45.2%).The reason for the steady drop in predi
tion a

ura
y is two-fold. First, as a general trend, the more
lasses are involved in a 
lassi�
ation system, the more diÆ
ult it is to a

urately assign a new queryprotein. Se
ond, in our datasets, the number of representatives in ea
h fold redu
es very substantially,as explained in the previous se
tion. From the signi�
ant drop in predi
tion a

ura
y shown in Table 9,we believe this fa
tor is more important. Fortunately, this la
k of representatives will be improved bythe steady growth of the number of known proteins in databases.Overall, for the 27-
lass dataset with relatively small number of representatives in ea
h fold (manyhave 7 proteins), the predi
tion a

ura
y is around 50% (45% for CV, 56% for test). Although thisa

ura
y level is not high, we note that for 27-
lass problem, a random predi
tion will have an a

ura
yof 1/27=3.7%. 15



Fold 2-way 8-way 27-way 8-way 27-wayTest Test Test CV CV1 91.7% 83.3% 83.3% 62.5% 71.1%3 92.7 { 66.7 { 65.24 64.6 { 30.0 { 64.67 74.5 { 43.8 { 26.89 98.3 { 77.8 { 45.811 75.6 { 55.6 { 41.120 87.8 54.5 45.5 64.8 52.523 80.1 { 33.3 { 30.626 90.8 34.6 34.6 76.5 70.330 83.3 { 33.3 { 20.831 70.2 { 41.7 { 46.932 75.9 26.3 18.4 20.8 7.733 86.5 { 50.0 { 7.835 69.2 { 50.0 { 25.039 87.9 { 52.4 { 27.846 93.4 61.5 51.0 80.2 81.547 89.7 { 41.7 { 43.248 81.7 { 38.5 { 9.151 90.0 55.6 51.9 60.1 53.554 88.5 { 36.1 { 58.857 78.8 { 25.0 { 36.159 82.4 { 35.7 { 3.862 89.0 { 71.4 { 28.469 69.2 { 25.0 { 64.772 68.3 { 18.8 { 0.087 70.4 12.3 13.0 26.5 20.8110 97.4 92.6 90.7 91.1 78.6avg 84.3 52.8 45.6 63.7 45.2Table 10: Dependen
y of SVM predi
tion a

ura
y Qi; Q on the number of folds. Only 
ompositionparameter dataset is used.8.6 Feedba
k to SCOPOur study also shows that some folds are 
onsistently re
ognized with high predi
tion a

ura
y: foldF9 (�: 4-heli
al 
ytokines), fold F26 (�: viral 
oat), fold F46 (�=�: TIM-barrel), fold F110 (� + �:small inhibitors); while some other folds are 
onsistently re
ognized with low a

ura
y: fold F23 (�:
uperedoxins), fold F59 (�=�: ribonu
lear H-like motif), fold F72 (� + �: �-grasp). These features arefairly persistent on di�erent parameter datasets and 
ombined datasets. They are also 
onsistent withdi�erent dis
riminant methods (see Tables 4,5,7).The biologi
al 
hara
teristi
s of these folds are worth further examination, whi
h 
ould probably leadto better feature extra
tion methods for more a

urate predi
tions, and 
ould also provide feedba
k toimprove the original SCOP 
lassi�
ation database (e.g., split one diÆ
ult fold into several folds). Mu
hremains to be explored here. 16



9 Con
lusionIn this paper, we studied several important issues in protein fold re
ognition in the 
ontext of a largenumber of folds using dis
riminative methods, aided by the fast and highly a

urate support ve
torma
hine. We studied the popular one-against-others method, and two new advan
ed methods: theunique one-vs-others method and the all-vs-all method. These advan
ed methods improved predi
tiona

ura
y substantially, at a higher but manageable 
omputational 
ost.Overall, re
ognition methods a
hieve 56% predi
tion a

ura
y on test proteins whi
h have less than35% sequen
e identity with proteins used in training (90% of those test proteins have less than 25%sequen
e identity with the training proteins, see Brenner, et. al. 1998, Fig. 6). Thus the fold re
ognitionapproa
h is a useful stru
ture dis
overy method, 
omplementary to BLAST type sequen
e-similaritybased methods.In present work, the re
ognition system simply predi
ts a fold for an input protein without asso
iatingit a numeri
al value to assess the reliability or 
on�den
e of the predi
tion. Sin
e ea
h protein is predi
tedwith di�erent reliability, su
h a reliability s
ore is ne
essary for pra
ti
al predi
tion systems. For example,a low reliability s
ore for a new protein may signal that it does not belong to any folds in the system.In this study, we also systemati
ally investigated many important aspe
ts of multi-
lass fold predi
tion,whi
h will help to build a pra
ti
al fold predi
tion system in
luding about 600 folds in the SCOP database.A
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