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Chapter 1

Introduction

Within the field of information technology one of the fastest growing areas is
the telecommunications industry. As we become more and more dependent
on the connectivity offered by telecommunications networks, the correctness
and dependability of these systems becomes an even more important issue.
However, as the complexity of these systems increases it also becomes more
and more difficult to ensure their correct functioning. Telecommunication
systems are instances of parallel and distributed systems. The theory of
parallel and distributed systems aims at providing tools for the analysis and
modeling of such systems. One of the older approaches in this area is the
theory of Petri nets (Petri 1962). Fundamental to Petri nets is the notion of
causality, in that a Petri net describes the causal relations of events or actions
in a system. Concurrency is then viewed as orthogonal to causality, meaning
that if two events are not causally related then they can occur concurrently.
Petri nets were soon recognized as an efficient notation for the description
of parallel and distributed systems. It was however also soon recognized
that Petri nets as such, formed an inadequate notation for the description of
large systems. The problem is sometimes referred to as the “football field”
problem, because the resulting Petri nets were huge. To overcome this growth
in the size of the description, several so called high-level net formalisms have
been proposed. They are all based on the recognition that often in a Petri
net model, one has several subnets that are instances of the same process
in the system, and that these subnets only differ in the parameters of the
processes. High-level nets formalize this observation into the notion of an
individual token. While in a Petri net each token is a “black dot” which
contains no information whatsoever in itself, a token in a high-level net can
contain information. The process for obtaining a high-level net from a low-
level net is called folding. The basic idea is to fold the identical subnets, and
to add so called annotations to components of the net, thus obtaining a more
compact representation of the system.
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In this thesis we will study a class of high-level nets called Algebraic nets.
Algebraic nets use the theory of abstract datatypes as their annotation for-
malism, and aim at a discussion of the algebraic and logical foundations of
these nets. On a more general level we try to give an answer to the gen-
eral question of, to paraphrase Martin Heidegger, "What is it — a high-level
net?". We will thus want to understand the basic mechanisms underlying the
definition of high-level net classes. Using category theory we will try to give
constructions that given certain basic concepts like a categorical formulation
of Petri nets and the theory of substitutions, yield high-level nets. It should
also be made clear, that we do not aim at explaining every possible feature
exhibited in some form of high-level net, nor do we aim at giving the definite
high-level net class that incorporates these features. As stated previously,
our interest is in understanding the basic nature of high-level nets. To this
end we will be working within a very simple high-level net class that actually
incorporates very few features.

1.1 Modeling systems with high-level nets

In this section we will briefly look at the intuition behind high-level nets.
Suppose we were given the task of modeling the following railway system.
A circular railway consists of seven sections. Two trains operate the railway.
The trains move freely in the same direction subject to the constraint, imposed
for security reasons, that no two adjacent railway sections may be occupied
at the same time. This is a classical example proposed by Genrich (1986).
His C/E model is given in figure 1.1. The annotations of this net should be
interpreted as follows. We have seven sections, ¢ = 0...6, and two trains
r = a,b. Utxr means that section ¢ is occupied by train z, while Vi means
that section 7 is vacant. In the initial marking train « is in section 0 and train
b is in section 4, while sections 1, 2,5 are marked as vacant. Thus train a can
move into section 1 and train b can move into section 3.

In this model there is a lot of conceptual duplication. If we think of trains
and sections as individuals, we see that all the places Uiz are instances of a
single place U which is marked by a pair (7, x) that represents the fact that
train x is in section ¢. Using the same idea we have a single place V' which
is marked with tokens ¢ = 1, 2,5 representing the vacant sections. If we take
these two places as the starting point for the construction of our high-level net
it turns out that we only need one transition as shown in figure 1.2. However,
now the synchronization constraint that no two adjacent sections may be
occupied at the same time, has to be expressed in the annotation formalism.
This is taken care by the functions f(i) and g(i). Although it might seem
that we have obtained the net in figure 1.2 from the one in figure 1.1 in
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an ad-hoc manner, there exists a strict mathematical relationship between
the two nets: the net in figure 1.1 is the unfolding of the net in figure 1.2.
Using this exact relationship we can also define the dynamics of the high-level
net in terms of the low-level net. Fundamental to this semantics is the idea
of substitution. For each variable of a transition we can substitute a value
from its domain, ie. in figure 1.2 a valid substitution for ¢ would be {i
2,2+ a}. If we instantiate the transition and evaluate its arc-expressions,
we obtain the transition (given in a suggestive notation) U({2,a)) + V(3) —
U((3,a)) + V(1). It is now easy to see, that this instance of ¢ corresponds to
the transition in figure 1.1 that is connected to the places U2a, V3, U3a, V1.
Allowing substitutions on places gives us a notion of high-level marking: a
substitution {U +— (2,a)} is interpreted as U is marked with token (2,a).
The firing rule of Petri nets can now also be lifted to the level of high-level
nets, by the use of transition instances as expressed above. If there exists a
substitution such that the terms in the input-places of a transition unify with
the corresponding arc-annotations the transition may fire. It is important
to note that the substitution only applies to one transition and thus the
unification process is local to a transition. We thus have three fundamental
constructions that concern high-level nets:

1. the semantics through unfolding,
2. the high-level semantics, and

3. the folding construction.

These will be the basic problems that we will study in this thesis.

1.2 Contents of the thesis

The contents of this thesis can be divided into two parts. Chapters 2, 3,
and 4 discuss Algebraic nets from an algebraic perspective using the tools of
category theory, while Chapter 5 tries to relate Algebraic nets to linear logic.

In chapter 2 we are mainly interested in giving the basic definitions of Alge-
braic nets. We take an axiomatic view of Algebraic nets; their semantics is
defined through the unfolding to Petri nets. The basic aim of this chapter is to
show that Algebraic nets are a good choice of high-level net formalism for our
theoretical study. Algebraic nets are expressive enough in the sense that we
can give semantics preserving translations into Algebraic nets for some more
elaborate formalisms; but Algebraic nets are still simple enough, so that their
definition is very short, and the syntax and semantics are very well separated.

Chapter 3 is concerned with giving the semantics of nets as universal construc-
tions. We present two approaches. The first one is based on the structured



Figure 1.1: A Railway System as a CE-System (from (Genrich 1986)).

sorts :  emtpytrack,occupiedtrack. train

opns : 0,1,2,3,4.5,6 :— emptytrack
(L, ) : emptytrack X train — occupiedtrack
a,b:— train
f. g emptytrack — emptytrack

equns :  f(i)=i+1fori=0,1,2,3,4,5
f(6)=0
g(i)=i—1fori=1,2,3,4,5,6
9(0) =6

UGy b f) v
O -0
Fa) o)

Figure 1.2: The Railway System as a high-level net.
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transition system semantics of Corradini and Montanari (1992), while the
second is based on the “Sheaves are objects” paradigm proposed by Goguen
(1992). By defining the structured transition system semantics we are able to
give a construction in which the free semantics of the low-level net together
with the free semantics of the specification formalism define automatically the
free semantics of the high-level net. Given this semantics, high-level nets are
constructed by taking a tensor product of a low-level net class (in our case
Petri nets) and a specification formalism (in our case many-sorted algebra).
In the sheaf semantics a transition in a net is viewed as a sheaf and the net
then gives a diagram of sheaves. The behavior of the net is given as the limit
of this diagram. The interesting point about this semantics is that it is very
much like a distributed implementation of Petri nets, where each transition is
implemented on a single processor. The implementation of choice forces one
to choose between an interleaving semantics, where only a single transition
is allowed to fire, or a more concurrent semantics, where the resolution of
conflict is done locally. The main contributions in this chapter are:

e The identification of high-level nets as graphs on monoids in a substi-
tution system.

e The identification of interleaving and non-interleaving semantics as aris-
ing as the limit of a diagram of sheaves.

If in the previous chapter we have looked at high-level nets as formal systems
of their own, in chapter 4 we return to the unfolding semantics. Since our
original example motivated high-level nets as the folding of a low-level net, we
want to look more thoroughly at this question. Is there some way in which this
very intuitive notion of folding can be formalized? The main contributions of
this chapter are:

e The formalization of the folding construction of Algebraic nets from
Petri nets.

e A generalization of the folding construction to Algebraic nets.

In the final chapter we look at high-level nets from a logical point of view. It
is well known, that the so called tensor-implication fragment of linear logic
(Girard 1987a) can be seen as a logical axiomatization of Petri nets, and
that the behavior of a Petri nets forms a quantale which is a model of linear
logic (Engberg and Winskel 1994). In this chapter we extend this equiva-
lence to high-level nets and a form of Predicate linear logic, by showing that
there exists a functor from the category of Algebraic nets to the category of
quantales.
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We shall assume that the reader has a basic knowledge of algebraic speci-
fication, Net theory and category theory. The appendices contain a short
introduction to category theory that fixes the notation, a review of the Petri

nets are Monoids approach, and the relevant definitions from many-sorted
algebra.



Chapter 2

Algebraic high-level nets

So called low-level net-classes are often criticized because of their unsuitabil-
ity for modeling real applications. The main problem with these net-classes
is that the resulting nets are huge. This problem has been aptly named the
football field problem. One solution is to raise the level of abstraction and
model only parts of the system. Another solution is to enrich the labeling
of the nets to get a more concise and expressive formalism. Several such ex-
pressive formalisms have been proposed: Pr/T-nets (Genrich 1986), Coloured
nets (Jensen 1986) and different flavors of Algebraic high-level nets (Reisig and
Vautherin 1987, Dimitrovici, Hummert and Pétrucci 1990, Reisig 1991). Al-
gebraic high-level nets are a combination of the algebraic specification method
and net theory. The central idea is that the algebraic specification describes
the data in the system, while net theory is used to specify the distribution
and the movement of this data within the system.

In this work we will use the term Algebraic high-level net to mean the general
class of high-level net formalisms based on algebraic specification. We will
retain the term Algebraic net for the net-class defined here. We want to use
the term Algebraic net, because the semantics in chapter 3 gives an algebraic
structure on the nets.

As mentioned above, several different flavors of Algebraic high-level nets exist.
The notion of Algebraic net presented by Dimitrovici and Hummert (1989)
is slightly more complicated than ours. Our nets differ from the nets pro-
posed by Reisig in (Reisig 1991) by allowing interpretations other than the
initial. What this means is that we view multi-sets of terms essentially as
an abbreviation for multiple arcs between transitions and places, while Reisig
incorporates the notion of a multi-set into the specification of the abstract
data type. The Algebraic nets we define are essentially the Algebraic nets of
Reisig and Vautherin proposed in (Reisig and Vautherin 1987) in a categorical
framework.
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Although Dimitrovici et al. (1990) discuss Algebraic nets at length we feel
that their treatment does not highlight the possible generalizations of Alge-
braic nets to other kinds of annotation formalism. Indeed In this chapter we
will actually discuss two different Algebraic high-level formalisms, Algebraic
nets and Order-sorted Algebraic nets. Their difference lies in the kind of alge-
braic specification formalism used. The theoretical strength of Algebraic nets
comes from the fact that the two component formalisms are well separated,
and that they are combined through a free functor that preserves most of the
wanted properties. Indeed the proof of the main theorem about Order-sorted
Algebraic nets can be borrowed directly from the proof for Algebraic nets. We
also argue, that Algebraic nets form an expressive enough high-level formal-
ism, by showing that Order-sorted Algebraic nets are equivalent to Algebraic
nets.

The chapter is structured as follows. We start by defining Algebraic nets
and their semantics. The main result of the first section is the fact that the
semantics is a functor from the category of Algebraic nets to the category
PetriG. In this section we also define some concepts that will be needed
in the next chapters. Then we discuss the co-completeness of the category
of Algebraic nets. Next we consider adding some features to the formalism.
Finally we define Order-sorted Algebraic nets and prove that the category of
Order-sorted Algebraic nets is equivalent to the category of Algebraic nets.

2.1 Algebraic nets

The aim of this section is to define a category of Algebraic nets and define
their semantics in terms of Petri nets. The basic idea behind Algebraic nets
is to label the arcs of the net with terms from an algebraic specification of
a data type (Ehrig and Mahr 1985). Because algebraic specifications have a
notion of implementation given in terms of so called Y-algebras we are able to
give a semantics for our high-level nets in terms of Petri nets. This semantics
is the unfolding of the high-level net into a low-level net.

An Algebraic net (AN) consists of three parts, an abstract data-type specifi-
cation X, a net that has arcs labeled with terms from this specification and a
Y-algebra that is the semantics of the specification. The basic definitions of
universal algebra as it applies to the theory of abstract data-types is reviewed
in appendix A.3.

Analogously to the definition of an ADT, we first define a “scheme” of nets.
Then by fixing an interpretation we get an Algebraic net.



Definition 2.1.1
An Algebraic net specification with equational signature ¥ (ANS) is a tuple

(S, X, EQ, X, T, P,1,0,sort)
where:
e (5,3, EQ) is a Y-presentation,
e X is a S-sorted set of variables,

e T is the set of transitions,

P is the set of places,

e ,0:T — (P xTg(X))® are the input- and output-weight functions,
and

e sort: P — § is the sort assignment.

g

(P xTx(X))® is the free monoid with the set P x Tx(X) as generators. In the
sequel we will notate variables denoting transitions by %, ¢;,... and variables
denoting terms by ¢,%,,.... Let Var(t) denote the set of variables of a term in
T+,(X). Then the set of variables of a term m = (p,t) @ (p,t;) ©...® (p,t,) €
(P x Tx)® is defined by Var(m) — I, Var(;). The set of variables of a
transition is then given by Var(t) = Var(u(t))J Var(o(t)).

In figure 2.1 we have a specification for the dining philosophers problem. The
specification is divided into two parts, the first consisting of the algebraic
specification of the net-inscriptions and the second consisting of the inscribed
net. This particular specification contains 3 philosophers. The algebraic spec-
ification consists of three parts. The first part defines the sorts, or the types
of individuals in the net, in this case philosophers and forks. The second
part consists of the definition of the names and sorts of the operators in the
specification. An operator with an empty argument list is called a constant
and is used to represent individuals. In our case we have six individuals or
constants, three philosophers and three forks. The specification also contains
two functions [, and r, left and right respectively. They are used to map a
philosopher to his left and right forks. This relationship is set up in the third
section of the specification, through a set of equations. In this case the equa-
tions completely specify the behavior of the functions ! and r. The arcs of
the net are now annotated with terms formed from a set of variables and the
operations declared in the opns-section of the specification'. The interpreta-

'To ease the pictorial presentation we have taken the liberty of using an isomorphism

(p, l(x)) @ (pyr(2)) = (p, l(2) + r(2))
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sorts phil,fork
opns phy,phe,phs  :— phil
Ji, fos [ :— fork
[ : phil — fork
r : phil — fork
eqns I(phi) = fi
r(ph;) = fix, fori=1,2
r(phs) = fi
N\«

e NG ™

p

@)+ @ \ile)+ o)

o]

€

Figure 2.1: The specification NS of the dining philosophers problem.

tion of the input-arcs of transition t; read as follows. Given a philosopher z
in place p, and a pair of forks /() and r(x) in place f, we can fire transition
t; and move the philosopher to the place e. Suppose now that the place p is
marked with philosopher ph;. We then need forks {(ph;) and r(ph;) in place
f for transition ?; to be enabled. Using the set of equations eqns, the terms
[(phy) and r(ph,) can be evaluated and we see, that the forks we need are f,
and f5. If these tokens are available we say that transition ¢; fires in mode
phy. This argument will be formalized below.

Since an ANS consists of two clearly separated parts, the net part and the
algebraic specification part, it is advantageous to define a notion of morphism
for ANS, by first defining a morphism that keeps the specification constant
and only changes the net part.

Definition 2.1.2
A Y-ANS-morphism h: ANS — ANS’ is a pair (hr, hp) where hy : T — T"
and hp : P — P’ are functions s.t.:

Ip(u(1))

hip(o(t)) =
sort'(hp(p)) =

/' (hr (1)),
o (hr(t)), and

sort(p),
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where A 1 (P x T5(X))® — (P' x Ty (X))? is defined by h5H(@7_,(p.1) =
Qi1 (hp(p).t), with p € P, p' € P 0

A Y-ANS-morphism is a direct extension of a PetriG-morphism, that is the
net morphisms are graph morphisms such that the place-morphisms respects
the arc-weights (cf. figure 2.2). The reason for restricting ourselves to arc-
weight preserving morphisms are two-fold: first we get a co-complete category
of nets (cf. appendix A.2.2), and secondly we can define a notion of folding
for P/T-nets (cf. chapter 4). It is easy to see the following result.

Proposition 2.1.3
Y-ANS’s and ¥-ANS-morphisms form a category X-ANS. O

A presentation morphism hy : ¥ — ¥’ can be combined with a ¥-ANS-
morphism to give an ANS-morphism. The signature morphism must preserve
the arc-weights, and moreover it is required to preserve the sorts of the places.
However we also need to specify how the set of variables in the specification
are mapped. This amounts to the following definition.

Definition 2.1.4
An ANS-morphism h : ANS — ANS' is tuple h = {hg, hx, hr, hp) where
hy : X —>Y hx: X >X'  hy:T—>T, and hp: P — P’ s.t.:

Rp(u(t) = o(ha(1)),
p(o(t)) = o(hr(t)), and
sort'(hp(p)) = hs(sort(p)),
where b : (P x To(X))® — (P’ x Ty (X")® is defined by

n n

Q. 1) = (Qhp(p), hx (D)),

=1 =1
where h% : To(X) — Te (X') is the free extension of Ly along hy. Moreover

we require that iy is an injective function. O

The condition that the morphism on variables is injective is required to get
functoriality of the unfolding construction (cf. theorem 2.1.12).

Again we can form a category.

Proposition 2.1.5
ANS’s and ANS-morphisms form the category ANS. O

Because there may be several interpretations (or implementations) of the ab-
stract data-type specification, an ANS defines a scheme of nets. To give an



- 12 —

[(x) +g(x)
e
“ (@) c P1

hT: tl — 7
hp: a +— p;
b - p
c Py

Figure 2.2: A ¥-ANS-morphism.

b f(l')tl h = {hr,hp) k( t
x y)+ly)
O - O -
“ c P1
g(x)
hT . tl — 7
hp: a w— p
b —
c = Py
hs: f +— k
g — 1
hx: x +— y

Figure 2.3: A ANS-morphism.
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interpretation of the specification we need to add a specific interpretation
of the abstract data-type to our definition. This gives us the notion of an
Algebraic net.

Definition 2.1.6

An Algebraic net AN is a pair (ANS, A) where ANS is an Algebraic net
specification with signature ¥ and A is a Y-algebra. O

If the algebra is not given, it is assumed to be Ty, ,=. The default interpretation
Ty /= is the quotient term algebra of the specification, which one usually has
in mind when writing the specification. We can now define an AN-morphism
as follows and then get a category of AN’s.

Definition 2.1.7
Given Algebraic nets AN = (ANS,A) and AN' = (ANS’, A'), an AN-
morphism h : AN — AN'is a pair (hans,ha), where hans: ANS — ANS'
is an ANS-morphism, and h, : A — A'|;, is a T-algebra homomorphism.

[l

Themap ha : A — A'|,, is called a generalized morphism (cf. definition A.3.11).

Proposition 2.1.8
AN’s and AN-morphisms form a category AN. O

The informal treatment of the dynamics of the AN given above can now be
formalized by first defining a notion of marking.

Definition 2.1.9

A marking M in an Algebraic net is an element of (Px A4)®. If A = Tx(X) and
Var(M) # @ we say that the marking is non-ground or abstract. If there exists
a substitution o : Var(t) — A, such that (¢«(t);0) < M with the pointwise
ordering on monoids, we say that the transition ¢ is enabled at M, and the new
marking obtained by firing ¢ is calculated by M' = (M © (u(t);0)) @ (o(t); o),
where a © b 1s defined as the solution ¢ to b® ¢ = «a if it exists, and the unit of
the monoid otherwise. The traditional token game is obtained by requiring
that the markings are ground. O

In the philosophers example a reasonable initial marking would be M, =

(D, pha) @ (p, pha) @ (p, phs) @(f, f1) ([, f2) © ([, f3). Now by substitution ph,
for x in the input- and output-weights of ¢;, we see that (i(t,); {z — phi}) =

((p. ) @ (f. 1)) @ (for(@))i{a = phat = (p.pha) @ (f, f1) ©(f, fo) < Mo,

and thus we can apply the firing rule and obtain the new marking M' =
(p, pha) @ (p,ph3) @ (f, f3) @ (e, phy) representing the fact that philosopher
phy is now eating.
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The token game above can also be interpreted as a token game on a low-level
net, where expressions like (p,phy) are seen as names of places, and their
occurrence in a tensor-expression as a transcription of the fact that the place
is marked. Thus since the interpretation allows us to assign elements of the
algebra A to the variables on the arcs, we can calculate the set of all possible
assignments for the variables such that the transition would be enabled. An
assignment ass’, : Var(t) — A, on the free variables of the arcs connected
to t, is called a firing mode of transition t. Each transition ¢ in an AN is
thought of as a shorthand for a set of transitions in a low-level net. This is
the intuition that underlies the following “unfolding” construction.

To define the unfolding an Algebraic net we need the following auxiliary def-
inition:

Definition 2.1.10

Let t = ty,...,t, € Ts(X).Given ass’, : Ts(X) — A, define ass® : (P X
Ts(X))® — (P x A)® by

n n

ass’y (R (p. 1)) = Q) (p, ass’y (1)) -

Definition 2.1.11
Given an Algebraic AN = (AN S, A) we can define a Petri net

Unf((ANS, A)) — <TUnf7 PUnf7 LUnf, OUnf>

as follows:

o Py — Upep{{P} X Asori(p) }+
o Tunr = {(t, assﬁ)| assy € [Var(t) - Al,t € T},
o Lun({(t, assﬁ)) = ass® (¢(1)),

o oun({t,ass}y)) = assti(o(t)).

For a place p in the high-level net we create a number of places p', p", p'", ...
in the low-level net such that to every possible token x that may reside in
place p there exists a place p' (ie. the pair (p,z)) in the low-level net that
represents the fact that o is in place p. Analogously for the transitions, for a
transition ¢ in the high-level net we have to create transitions in the low-level
net that represent the fact that the transition fires with a specific assignment
on the variables. It is an interesting question whether this unfolding has an
inverse, and we shall return to this question in chapter 4.
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An example will clarify the construction. Figure 2.4 gives an interpretation

in the algebra:
A=(4,a),

with
— {{f17f27f3}phi17{91792793}fork} , and
« — {Tvlvflvf%f?nglvgbg?)}-

We have omitted the obvious type declarations from the set of functions. The
functions r, ! have the following definition:

Ji 9 92
fo| 92 g3
3| g3 g1

while the functions fi, fa, f3, 91, g2, g3 are the constant functions. The inter-
pretation of N.S in A is given in figure 2.4. The algebra A is the algebra Ty, /=.
If one plays the standard token game for P/T-systems on this net it is easy
to see, that it corresponds to the token game of the net in figure 2.1.

As mentioned previously, one usually thinks of the different interpretations
of the abstract data-type specification as different implementations of the
ADT. However there exist interpretations that cannot intuitively be seen as
implementations of the ADT. One such interpretation is the terminal algebra
A* = ({phil, fork},{— fork,— phil, fork — phil}), where the sorts fork
and phil have only one element, and the maps are the trivial maps. Inter-
estingly it turns out, that this interpretation can be used to detect deadlocks
efficiently in some cases. Figure 2.5 gives the unfolding of the philosophers
net, with the interpretation A*. The net shows just the amount of tokens con-
sumed and produced by each transition, ie. transition ¢; takes one token from
place p, 2 tokens from place f, and produces one token to place e. The result-
ing net is called the “skeleton”. We shall discuss the skeleton of the net more
thoroughly in section 4.3. An equivalent way of obtaining this interpretation
is given by definition 2.1.15.

Since we are transforming an AN into a Petri net, the interesting question from
a categorical point of view now is, whether this transformation is functorial.
Indeed this is the case.

Theorem 2.1.12

Given an AN-morphism 7 : AN — AN’ there exists a morphism Unf(f) :
Unf(AN) — Unf(AN'), such that identities and composition are preserved,
ie. Unf : AN — PetriG is a functor.
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(f,91)

(p,ph1)

t1[z — pho]

/
(f,92)

(p, ph2)

\y/

t1[z — pho]

N
(f,93)

(p,phs)

\y/

tilz — php

/

O

- (=

Figure 2.4: The interpretation of NS in A.

o]

R4

Figure 2.5: The interpretation of N5 in A*.
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1. Unf(f) is given by:

Unf(f)p: Puniany = Puntanny @ (p,a) = (hp(p), ha(a))
Unf(f)7r: Tumcan) = Tuniann @ (tassh) = (hp(t), ha(assh)) .

2. That it is a PetriG-morphism is shown by the following tedious but
straight-forward calculation:

Unf(f) (LUnf(AN)(<t assy)))

i,
) (2.1.11

Unf(f)7 (aSSA( () )
Unf(£)B(Qi (w1 (1)), assTy (a2 (1(1):)))) (2.1.10)
Qi {hp (w1 (1(1):), halassh (ma(e(1):)))) (def. of Unf(f)p)
ass’ (@ (hp(m(1(8):)), B (m2(1(£):)))) (2.1.10) and

h}i(; assﬁ, = assﬁ; ha
ass’y, (R (@ (w1 (()i), m2(e(1):)) (def. of hf)
ass’y, (h*(1(1)))

LUnf(AN/ ( hA(assA))) (2111)

)

ass?y, (' (hr(t))) (2.1.4)
(hr (1),

tunf(an (Unf(f)r({t assA))) (def. of Unf(f)r)

#*

The above depends on the fact that h%;ass’, — ass’; hs. However this
is only true if the diagram

b ass 4 A
hx ha
X’ ass ar Al

commutes. A sufficient condition for this is that Ay : X — X' is
injective (Padberg n.d.). To give a simple counterexample: let X =
{z,y}, X' ={z}, and A = A" = {a,b}. If we now have hx :z+ z,y —
z, assq : ¢ +— a,y — band ass’y : z — a. Now ha(assa(y)) = b while
ass'y(hx(y)) = a. The part for o is analogous.

3. The fact that the identities and composition are preserved is obvious.

g

It is worth commenting on the proof a bit. The interesting thing about the
proof is that it never refers to the exact structure of the assignment notion in
use. Actually, if we look at the definition of the unfolding, we see that the only
reference to the structure of the assignments is given in the definition of 7Ty
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as the set {(t,ass’)|asss € [Var(t) — A],t € T}, where actually we see that
the assignment is an element of a set of functions. So it would seem plausible
to suggest that any notion of specification formalism that defines a notion of
assignment might be usable as a basis for defining a high-level net class. We
shall indeed investigate this question more thoroughly in this chapter, and we
shall see, that we can really “reuse” the proof of theorem 2.1.12.

The idea of “taking the skeleton” of an Algebraic net was originally conceived
by Vautherin (1987). Intuitively this amounts to forgetting the specific anno-
tations on the arcs and just keeping the weights. The Algebraic net is thus
transformed into a Petri net with the same structure as the Algebraic net.
Formally this amounts to taking the terminal algebra — as the interpretation
of the specification X.

Definition 2.1.13

The underlying net functor Uy : AN — PetriG maps and Algebraic net to is
underlying Petri net. It is given by the assignment Uy(AN) = (Ty, Py, tu, ou)
with

Ld TU — T7
b PU — P7
o (1) = u(t);ass?

o op(t) = o(t); ass?

The morphisms part of the definition is given through theorem 2.1.12. O

Proposition 2.1.14
The morphism f : Unf(AN) — Uy(AN) is unique.

Proof:
Follows from the fact that Uy({(ANS, A)) ~ Unf({ANS, —)) and that — is the
terminal algebra. O

Each Petri net can be viewed as an Algebraic net if we think of each arc in
the Petri net as being annotated with a constant c. This can be formalized
in the following construction that defines a functor G : PetriG — AN, that
maps each PetriG-net N to the corresponding AN-net G(N).

Definition 2.1.15
The functor G : PetriG — AN, that transforms each PetriG-net N into an
AN-net G(N) is given by

G(N) — <<{*}7 {C :_> *}7 ¢7 ¢7 TG» PG» Terner 507"256’)7 {*}7 {C :_> *}>
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where T = T, Pg = Py, and the weighting functions ¢, 0 : Te¢ — (Pg X
{c}) are given by the equations

wa(t) = ilun(t))
oa(t) = i(on(1)),

where i is the injection i : P® — (P x {c})®. O

The functor is characterized by the following lemma.

Lemma 2.1.16
Unf(G(N)) ~ N.

Proof:
We first show that the sets of places and transitions are isomorphic.

Unf(G(V)r = U 1Hp} X Auorss}

peEP

= Ut x {3}

pEP
= Px {x}
~ P

Unf(G(N))r = {{t,ass})|t € T.ass’, € [Var(t) — A}

= {{t.o)teT}
~ T

The input and output weight functions are then shown to be isomorphic
through the following equations:

ne({t. @) — un(t)
ount({t, @) — on(t)

2.2 Co-completeness of AN

The aim of this section is to prove that AN is co-complete. The notion
of co-limit is a categorical notion used to describe the “pasting together” of
mathematical structures. The use of co-limits to combine smaller specification
to larger ones is a technique first applied in the specification language CLEAR
(Burstall and Goguen 1977, Burstall and Goguen 1990). It is now a standard
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technique in the theory of algebraic specifications. On the other hand, in cate-
gorical approaches to net-theory co-limits have played little role until recently.
This is maybe in part due to the negative result of Winskel in (Winskel 1985)
on the non-existence of coproducts in the category of Place/Transition-nets
with initial marking. In the paper by Meseguer and Montanari (Meseguer and
Montanari 1990) limits and co-limits are mentioned, but no interesting exam-
ples except the standard product and coproduct constructs are discussed. The
recent paper by Dimitrovici et al. (1990) contains a thorough discussion of
co-limits in their category of Algebraic high-level nets. Also the dissertation
of Hummert (Hummert 1989) contains interesting applications of co-limits to
nets. He defines a notion of net module and studies the compatibility of the
notion with invariants and parameterized data structures. In this chapter
when we give a proof of co-completeness of the category AN we want to see,
what are the features that are actually needed for the proof.

Theorem 2.2.1
The category AN is co-complete.

Proof:
Essentially the proof depends on the fact that the categories Set and Alg are
co-complete.

e AN has as initial object the AN (o, 2, 9,2, 9,9, @).
e co-products: Co-products are just disjoint union. Let
AN; = (5;, %, EQ;, X;, T;, Py, 1;, 0;, sort;, A;)
for ¢ = 1, 2. Define

ANl +AN2 — <Sl&JSQ,ElLﬂEQ,EQleQQ,XleQ,
TYWIy, PLW Py, 1y + 1o, 01 + 02, 501t + s01ts,
A+ Ay)

The morphisms ¢; + 19 : TYWTy, — (P x Ty (X))?W (P, x Ty, (X5))? and
0 +0y : TV WTy, — (Py X Tx (X1)® W (P, x Ty, (X,))® are calculated
componentwise. Clearly the injections in; : AN; — AN, + AN, are
AN-morphisms.

inl in2

ANy + AN,

ANl AN2

£
fi v

AN
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The universal arrow ¢ = {(¢s, ©x, 01, PP, ) is defined by ¢y = fx, +
Ioooox = fxy T fxosor = fro + frsop = fro + fr0a = fay + fa,.
The fact that it is universal follows from the fact that its components
are universal since both Alg and Set are co-complete.

o co-equalizers: Co-equalizers are also calculated component-wise. Let
f i+ ANy - AN, and g : AN; — AN, be AN-morphisms. Their co-
equalizer ¢ : AN, — AN in the diagram

f
AN, —= AN, -2+ AN

g

is given by ¢= = coeq(fs, gx) in Sig, gx = coeq(fx, gx), gp = coeq(fp, gp)
and qr = coeq(fr,gr) in Set, and g4 — coeq(fa,ga) in Alg. Again,
because the components are universal arrows it follows that AN has
co-equalizers.

e Because AN has initial object, co-products and co-equalizers it is co-
complete.

g

So the co-completeness of the category AN depends on two factors:

1. The category Set is co-complete, and

2. the categories of algebras and signatures are co-complete.

Thus we can claim that replacing many-sorted algebra with any specification
formalism that is co-complete, we get a co-complete category of high-level
nets.

2.3 Conditions on transitions

Usually it is useful to have more features in the formalism, where these fea-
tures are meant to increase the expressive power the formalism. One such
feature is the addition of conditions on transitions (cf. (Reisig 1991) sec.
10.3). The idea is to constrain the set of possible assignments by setting
up a predicate on the variables of the transition. Here a predicate is seen as
an operation with sort bool. However as we shall see, adding conditions on
transitions mainly consists of adding “syntactic sugar”.

Definition 2.3.1
An Algebraic net with conditions (ANSC) is a tuple

(S, %, EQ, X, T, P, 1,0, sc,sort, A)
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where:

e (5,3, EQ) is a Y-presentation, with a sort bool and a constant true :—
bool

X is a S-sorted set of variables,

T 1s the set of transitions,

P is the set of places,

t,0: T — (P x Tg(X))?® are the input- and output-weight functions,
o c:T — TE,bool(X)7

sort : P — § is the sort assignment, and

A is a Y-algebra.
(|

Clearly every AN is and ANSC with no conditions, and the notion of marking
is the same. The firing rule is modified, so that the transition is enabled iff

(i(t);ass’y) < M A A |= ass’y (c(t)) = true,

ie. if the assignment satisfies the predicate. This gives rise to the notion of a
consistent transition assignment (Ehrig, Padberg and Ribero 1992).

Definition 2.3.2
The set of consistent transition assignments is given by:

CT = {(t.ass?) ||t €T : A |- ass’(c(t)) = true}
(|

A morphism of Algebraic nets with conditions is essentially an AN-morphism
that is required to respect the set of conditions.

Definition 2.3.3

Given Algebraic nets with conditions ANSC = (ANS, A) and ANSC' =
(ANS', A"y, an ANSC-morphism h: ANSC — ANSC" is a pair (hays, ha),
where hqns : ANS — ANS' is an ANS-morphism, and hy : A — A'|,, is a
Y-algebra morphism, such that fr;¢ = ¢; fs. The presentation morphism Ay,
is also required to preserve the boolean part of the presentation. O

Proposition 2.3.4
Algebraic nets with conditions and ANSC-morphism for a category ANSC.
(|
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The unfolding of the Algebraic nets with conditions is now defined analogously
to definition 2.1.11 using the set CT.

Definition 2.3.5
For each Algebraic net with side-conditions AN SC we have a P/T-net
Unf(ANSC) = (Pp,TF,ip,0r) given by

o Pr=U,cpl{pr} X Asorun }
® TF — CT,
o 1p((t,ass™)) = ass® (u(1),

e op({t,ass)) = ass*(o(t)).

[l
Proposition 2.3.6
The construction defines a functor Unf : ANSC — PetriG.
Proof:
The proof is exactly the same as the proof of theorem 2.1.12. O

Adding conditions does not add to the expressive power of the Algebraic net
formalism. As we shall see in chapter 4, each Petri net can be represented by
a unique Algebraic net. However we can also give a syntactic transformation
that transforms each Algebraic net with conditions to an Algebraic net with-
out conditions, albeit we now must restrict the possible initial markings. The
intuition of the transformation is presented in figure 2.6.

Figure 2.6: Transforming conditions on transitions.

The idea is simply to add a place p, with sort bool to each transition ¢ in the
original net. The arc from p; to t is labeled with the predicate and the arc
from ¢ to p, with true. If p, is now initially labeled with true, the transition
t is enabled in the transformed net iff it is in the original net.

The construction can be formalized as follows:
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Proposition 2.3.7
Given an Algebraic net with conditions AN, = (S, X, EQ, X, T, P, ., 0, sc, sort)
we can construct an algebraic net AN = (S, %, EQ, X, T, P/, o, sort') such
that

M —+ M' in AN iff M, —> M' in AN,

where M = M, Q,cr(ps, true).

Proof:

The net is given by P' = P U{ps }ier, t'(t) = 1(t) @ (p; X ¢(t)), o'(t) = o(t) @
(p; X true). The fact that the set of reachable states are isomorphic is easily
seen through the observation that both AN, and AN have the same sets of
consistent transition assignments. O

2.4 Order-sorted Algebraic nets

Order-sorted algebra has been proposed by Goguen and Meseguer (1992) as
a generalization of many-sorted algebra to support abstract data-types with
multiple inheritance, polymorphism and overloading, exception handling, and
partial operations.

One of the motivations of Order-sorted algebra is that it allows for the
elegant treatment of error conditions in the theory of abstract datatypes.
The standard example concerns the treatment of preventing the taking of
top(emptystack) in the stack. Several solutions to prevent this from happen-
ing have been presented. Using order-sorted algebra the problem is solved
by defining a type NeStack of non-empty stacks that is a sub-sort of the sort
of stacks and then defining the operation top to be of sort NeStack — ELt.
Thus the term top(emptystack) will never be an element of Ty ,=. An analo-
gous situation may arise in an Algebraic net. Consider the net in figure 2.7.
The place p; contains a queue. The queue is read through transition ¢, and
written through transition ¢;. However we want to prevent ¢, from firing when
the queue is empty. Using Algebraic nets with conditions we can add the con-
dition nonempty(x) to the transition ¢, to prevent this. Using Order-sorted
algebra we require the sort of the variable = to be NeQueue. Thus we see, that
in the case of Algebraic nets the use of Order-sorted algebra and conditions
on transitions are in some sense equivalent. The claim we would like to make
is, that the specification with conditions on transitions is clearer. It is easier
to see directly from the net that there is the possibility of an empty queue
in p;. As we shall see below, we are also able to show that any Order-sorted
net can be transformed into an equivalent Algebraic net. There is however
a theoretical interest in going through the definitions because it again shows
clearly what the structure of a high-level net is.
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sorts : FElt, Queue

opns :  enqueue : Queue X Elt — Queue
head : Queue — Elt
tail : Queuve — Queue
emptyqueue :— Queue
non — empty : Queue — bool

eqns :
nonempty(emptyqueve) = false
nonempty(enqueue(Q, F)) = true
ty 5 ty, nonempty(x)

enqueve(x,y)

P

Y tail

Figure 2.7: An Algebraic net modeling a queue.

Definition 2.4.1
An Order-sorted Algebraic net specification with equational signature ¥ (OS-

ANS) is a tuple
<S7 S’ 27 EQ7 X7 T7 P7 L7 07 807)1:)

where:
e (5,<,%, EQ) is an order-sorted Y-presentation,
e X is a S-sorted set of variables,
e T is the set of transitions,

P is the set of places,

e ,0:T — (P xTx(X))® are the input- and output-weight functions,
and

e sort: P — § is the sort assignment.

Definition 2.4.2

An OSANS-morphism h : OSANS — OSANYS' is tuple h = {(hx, hr, hp)
where hy : ¥ — X' is an order-sorted signature morphism, hy : X — X',
hy:T — T, and hp : P — P’ s.t.:

Wp(u(t)) = J(hr(1)),
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hi(o(t)) = o (hr(t)), and
sort'(hp(p)) = hs(sort(p))

where b} : (P x Ts(X))® — (P' x T5(X)")® is defined by

n n

(). 1)) = (Q(hp(p). hE (D),

and hx 1s an injective function. O

Proposition 2.4.3
OSANS’s and OSANS-morphisms form the category OSANS. O

Definition 2.4.4

An Order-sorted Algebraic net OSAN is a pair (OSAN, A) where OSAN is
an order-sorted Algebraic net specification with signature ¥ and A is a X-
algebra. O

If the algebra is not given, it is assumed to be Ty /=.

Definition 2.4.5

Given order-sorted Algebraic nets OSAN = (OSAN,A) and OSAN' =

(OSAN', A"), an OSAN-morphism h : OSAN — OSAN'isapair (hosan,ha),
where hosan : OSAN — OSAN'is an OSAN-morphism, and hy : A — A'|,,

is a X-algebra morphism. O

Proposition 2.4.6
OSAN’s and OSAN-morphisms form a category OSAN. O

Like for Algebraic nets with and without side-conditions, we can define an
unfolding of an Order-sorted Algebraic net OSAN.

Definition 2.4.7
Given an Order-sorted Algebraic net OSAN = (OSAN S, A) we can define a
Petri net

Unf((OSANS, A)) - <TUnf7 Pyt tungs 0Unf>

as follows:

Ld PUnf — UpePp X Asort(p)7
o Tun — {(t.ass?)|ass, € [Var(t) — Al,t € T},
o wune({t, ass?y)) = ass®(u(t)),

o oun({t,ass})) = ass’y(o(t)).
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[l
Again this defines a functor.
Proposition 2.4.8
The construction defines a functor Unf : OSAN — PetriG.
Proof:
The proof is exactly the same as the proof of theorem 2.1.12. O

Because there exists an equivalence of categories between the category of
order-sorted algebras with signature ¥ OSAlgy and the category of algebras
Algs« ; of a specification ¥# together with a set of conditional equations .J
(G—oguen and Meseguer 1992, Theorem 4.2), it is interesting to see whether
this equivalence would lift to the level of Algebraic nets and Order-sorted
Algebraic nets.

Theorem 2.4.9

Given an Order-sorted Algebraic net OS AN with coherent signature X, there
exists an Algebraic net AN with signature ¥% that satisfies the conditional
equations .J, with the same set of places and transitions, and such that

Unf(OSAN) ~ Unf(AN), and conversely.

Proof:

The latter direction is trivial, since every many-sorted algebra is an order-
sorted algebra with an empty ordering. For the former direction the idea
is to transform each order-sorted signature X into a many-sorted signature
Y% as shown in theorem A.3.16. Since an order-sorted Y-algebra is up to
isomorphism a X7-algebra that satisfies the conditional equations .J, it is
easy to see, that the corresponding Petri nets will be isomorphic. O

What the construction does is, it transforms an order-sorted Algebraic net
with signature ¥, and interpretation A, into an Algebraic net with signature
Y7 and interpretation A%, where A7 is the order-sorted algebra A seen as a
many-sorted algebra. So the Algebraic net obtained through the transforma-
tion does not have Ty%,= as its interpretation. The interesting thing about
this result is the way in which a result on the annotation formalisms lifts to
a result on the corresponding high-level net formalisms.

2.5 Final remarks

The main points in this chapter could be summed up as follows:

Algebraic nets are powerful enough: This was shown by two examples.
In the first example we added a new feature to the net-part of the specification
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formalism (conditions on transitions), while in the second example we added
an extension to the algebraic specification formalism (sub-sorts). In both
cases we were able to give a behaviorally equivalent algebraic net without
these extensions.

Algebraic nets are a clean formalism: By this we mean that the different
conceptual components of the formalism, net-theory, multisets and algebraic
specification, are connected through very clean interfaces, basically just a free
functor. This leads to a very simple co-completeness proof. Also the fact that
the semantics is based on the idea of substitution allows us to transfer the
proof of the functoriality of the unfolding semantics to the two extended net
formalisms presented in this chapter.

As far as answering the question of what a high-level net is, we have not yet
come very far. However, in this chapter we have identified several components
of a high-level net formalism, and we have identified the notion of substitution
as the main component in the definition of the semantics. In the next chapter
we will look at the notion of substitution more thoroughly and show how to
base the definition of a high-level net formalism on the notion of substitution.
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Chapter 3

Semantics

In this chapter we shall look at two very different semantics for nets. The first
one, structured transition system semantics, is a highly algebraic semantics,
that relies heavily on the notion of free construction. The idea here is that
in many cases there is an a algebraic structure on the states of the transi-
tion system that can be lifted to the level of the transitions through a free
construction. The computations can then be obtained by freely completing
the given structured transition system to a category. The second semantics,
sheaf semantics, is a more concrete semantics. Instead of relying on a free
construction, where the semantics is determined by the free functor, sheaf
theory allows us to implement the semantics that we want. Thus we are able
to give both an interleaving semantics and a non-interleaving semantics. The
advantage of the structured transitions system semantics is that since it relies
on the free construction, once we have set up some basic requirements, we get
the semantics “for free”: it is generated by a set of rules. On the other hand
sheaf semantics gives us an alternative view of a transition. It is seen as an
object that establishes a relational constraint on the behavior of the tokens
flowing through it. A net is a network of such objects and the behavior of
the net is again an object that satisfies all the constraints of the component
objects at the same time. Common to both semantics is that the behavior is
obtained through a universal construction, the free construction in the case
of structured transition system semantics and the limit in the case of sheaf
semantics.

The main contributions in this chapter are:

e The identification of high-level nets as graphs on monoids in a substi-
tution system.

e The identification of the tensor product of sketches as the fundamental
building block of high-level nets.
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e The identification of interleaving and non-interleaving semantics as aris-
ing as the limit of a diagram of sheaves.

3.1 Structured transition system semantics

The aim of this section is to give a general description of high-level nets as
structured transition systems (STS). Structured transition systems together
with a method for obtaining algebraic semantics for formalisms were proposed
by Corradini and Montanari (1992) in the context of semantics of logic pro-
grams. The method is a generalization of the algebraic treatment of Petri
nets proposed by Meseguer and Montanari (1990). In the method one distin-
guished between three description levels in the formalism:

1. the level of heterogeneous graphs, whose nodes have more structure than
their arcs,

2. the level of structure transition systems, where the structure on the
nodes has been lifted to the arcs, and

3. the level of models of structured transition systems, where the structure
is extended to the computations of the transition system.

These levels are connected by free functors. The power of the method lies in
the fact that these free functors are essentially extensions of the left adjoint of
the forgetful functor that relates the structure of the nodes to the structure on
the arcs, so that once these structures have been identified the rest is obtained
“for free”.

In this section we will first review the basic steps for obtaining a structured
transition system from a Petri net. This construction is then used to obtain a
structured transition system of the unfolded Algebraic net. Subsequently we
discuss the general method and finally apply it to Algebraic nets. We have
omitted those proofs that can be found in (Corradini and Montanari 1992).

3.1.1 Structured transition systems through unfolding

In this subsection we show, by reviewing the approach of Meseguer and Mon-
tanari (1990) how a structured transition system can be obtained through
unfolding.

A transition system is often defined as a relation R C 5 X .5 on a set of states
S. The transition system contains only the information that a state s' is
reachable from state s. However, quite often it is useful to attach some more
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information to the state transitions, like what action was executed in the state
transition. This leads to the following definition of a transition system.

Definition 3.1.1

A transition system is a graph TS = (T, 85,6y, 61), where T is the set of
transitions and S is the set of states, and ép,6; : T — S are defined by
bo(t) = s, 61(t) = ' iff transition t leads from state s to state s'. O

Computations in a transition system 7T'S are sequences of transition steps.
This corresponds to composition of arrows in the graph. Since there exists
a standard free functor F : Graph — Cat, that takes each graph to the free
category generated by it, it would suggest, that the natural structure on the
computations in a T'S is the free category generated by its graph.

However, as observed by Meseguer and Montanari (1990) and reviewed in
appendix A.2, in the case of Petri nets, the states do not form a set. In-
stead they are elements of a free commutative monoid, making our transition
system a heterogeneous graph, with transitions and states living in different
categories. In this case it is not directly obvious what the composition of a
transition should be. For example if we have transitions ¢t; : ¢« @ b — c,ty :
d— e, t3 : c®@e — f neither ¢; nor t, compose directly with ¢;3. The monoidal
structure on the states can however be lifted to the transitions, so that we
can form a transition t; @ty : a @b @ d - c¢® e (t; and t, in parallel) and
then compose this transition with 3 to obtain (t; @ t);t3 :a @ b® d — e. It
turns out that we also need to add “idle” transitions for each place t, : p — p
to represent the fact that “nothing happens”. Then we are able to compose
ty ta = bwithts : a®@b — cas (t, @ ty);ts : a®a22% g0b 2
Consequently we actually lift the monoidal structure to a reflexive monoidal
structure.

In categorical terms, this amounts to the existence of free functors Fpgons -
Petri — CMonRPetri and Fopyep 0 CMonRPetri — CatPetri. The first
functor lifts the monoidal structure on the places to the transitions, and

adds reflexivity (the idle transitions), while the second functor completes the
reflexive structured graph to the category of computations of the Petri net.
The category CMonRPetri is the structured transition system induced by a
Petri net, while CatPetri is the category of models.

It is now possible to obtain a structured transition system of an Algebraic
net by first unfolding it, and then by applying the free functor F : Petri —
CatPetri. The construction of the transition system is done using the rules in
figure 3.1. The rules describe how a Petri net is completed to a free category.
Rule 3.4 lifts the monoidal structure on the states to the transitions, while
the rest of the rules complete the Petri net into a category. Rule 3.1 adds
identities, rule 3.2 adds the transitions as arrows, and rule 3.3 defines the
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u in P®
(3.1)
ty:u—u in T[N]
(t) =u,0(t) =v and tin N
(1) (1) (3.2)
t:u— v in T[N]
tytu— vty v —w in T[N]
ti;ty i u — w in T[N]
tiu—v,t':u -0 in T[N]
(3.4)

t@ot tu@u - v in T[N]

Figure 3.1: The rules that define a functor 7[__| : Petri — CatPetri.

composition of two arrows. Using these rules we essentially describe the com-
putations of an Algebraic net through the computations of its unfolded net.
However it is possible to generalize the construction to an arbitrary category
of places and transitions by using the techniques of internal category theory.
This allows for a direct description of the computations of the Algebraic net.

3.1.2 Structured transition systems directly

To generalize the Petri nets are monoids approach of Meseguer and Montanari
(1990) we first need to introduce some tools. These tools are internal category
theory and the theory of sketches. The use of internal category theory is
motivated by its suggestive nature, while the theory of sketches provides some
powerful tools for proving the existence of left adjoints. Once these tools have
been introduced we will present the 4 steps that make up the methodology
of Corradini and Montanari (1992), and apply these steps to the definition of
Algebraic nets.

Internal categories and sketches

The basic idea in the method proposed by Corradini and Montanari (1992) is
the notion of internalization. Internalization means that for example instead
of looking at the category of graphs, we look at the objects in Set that are
graphs. Once this abstraction has been done we can transfer the concept of
graph to other categories.

Consider the definition of a graph G = (A, N, &, 6;). A graph consists of
two sets, the arcs and nodes, and two functions éq,6; : A — N, that live in
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b0

Set, so that a graph can be considered as a diagram A —} N in Set, also
51

known as the “graph of graphs”. Similarly a graph morphism correspond to

the commutativity of the diagram:

o
A N
01
fa fn
Al 50 Nl
01

in Set.

By abstracting away from Set we can define graph and graph morphisms in
any category.

Definition 3.1.2
Given a category C, a tuple g = (co, ¢1, 60, 61) is an internal graph of C, iff:

® Cp,C € |Q|7 and

® 0p,01: ¢ — ¢; € Morc.

Let g = (co, 1,00, 61) and ¢’ = {cg, ¢}, 6y, 67) be internal graphs. An internal
graph morphism f : g — ¢'is a pair of morphisms fy : ¢, — ¢ and f; : ¢ — ¢}
in C such that the diagram

Ch — 1

o fi
bo

Do
N —— ]

o1

commutes. Graph(C) is the category of internal graphs of C.

A reflexive graph is a graph where for every node n there exists an arc id, :
n — n. This can be internalized as follows. An internal reflexive graph in C
is a tuple r» = {cg, 1, 69, 61, 1d), where r = (¢, ¢1, 60, 61) is an internal graph,
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and id : ¢; — c¢ is a morphism of C, such that the diagram

C1
A\
. v . .
qu id id,,
A\
»
o 01
C1 = Co > Cq

commutes. An internal reflexive graph morphism is an internal graph mor-
phisms such that the diagram

!
g ——

commutes. RGraph(C) is the category of internal reflexive graphs of C.

Proposition 3.1.3

If C is a category with binary co-products, then the forgetful functor U :
RGraph(C) — Graph(C) has a free adjoint F : Graph(C) — RGraph(C)
defined as F({co, ¢1, 60, 61)) = {co + c1,¢1, 60 + id,,, 61 + id., ,ins). O

Let us try to make this same kind of analysis for the definition of a category.
If a category C is small, then the collection of morphisms Morc is a set, and
the collection of objects form a set |C|. This means that we have a pair of
functions ¢y, 61 : Morc — |C| that specify the domain and codomain of each
morphism. Two morphisms can be composed iff 6;(f) = 6y(g). We can then
define a function comp that has as domain the set {(f,g) | 61(f) = éo(¢)}, and
as codomain Morc. This is exactly the pullback of 6, and ¢;, which exists
in Set since it is complete. An object ¢ together with the above functions is
called an internal category. In the category of small categories, the category
Set can be though of as the universe of discourse. So the general notion is
given by the following definition.

Definition 3.1.4

Given a category C a tuple ¢ = {cg, ¢1, &g, 61, comp, id) is an internal category
object of the category C iff (cq, ¢1, 60, 61,7d) is an internal reflexive graph in
C. and comp : ¢g Xg cg — co, Where ¢y X ¢q is the pullback of &g, 61, such that
the following diagrams commute.
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comp comp
Cop Xg Cg —> (g Cog Xg Cg —> (g
™ o T2 01
o 01
Co — > Co — >
compl comp?2

comp Xgq td
Co X Cg XgCp ———— Cy Xg &g

td Xqo comp comp
comp
Co Xg Cy > Cp
assoc
id., X id id X id,,
Co Xg €1 » Cg Xg Co €1 X Co » Cg Xg Co
comp comp
™ T2
Co Co
neutrl neutr?

The definition of an internal functor is given as an internal reflexive graph
morphism that also preserves composition. Cat(C) is the category of internal
categories of C. O

As can be seen from the definition, a prerequisite for the existence of internal
category object is the existence of suitable pullbacks. In this subsection all
our categories will be equipped with pullbacks. The concept of internalization
can be extended to other categorical notions like natural transformations and
adjunctions. These notions have recently become an important tool in the
study of models of the second order lambda-calculus (Asperti and Longo
1991).

If we examine the treatment of Petri nets in the previous subsection, we notice
that Petri nets are not internal graphs, since the nodes and transitions live
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in different categories, but that their completion to objects CMonPetri are
graphs in CMon, the category of commutative monoids. Now since there
exists a forgetful functor Ugjyg. : CMon — Set, the notion of internal graph
can be generalized as follows.

Definition 3.1.5

Let C and B be two categories such that the forgetful functor U : C — B
exists. Then g = (b, ¢, 60, 61) is a heterogeneous graph with arcs in B and
nodes in C iff b € |B| and ¢ € |C| and 6y, 6; : b — U(c¢), are morphisms in B.

A heterogeneous graph morphism f : (b,c,b9,61) — (U, ¢, 8),6]) is a pair
fo, f1, where fy : b — b’ is an arrow in B and f, : ¢ — ¢ is an arrow in C,
such that the following diagrams commute:

oy oy
50 56 51 (Si
U(c) M U(c") U(c) M U(c")

The category of heterogeneous graphs with arcs in B and nodes in C is denoted

by Graph(B, C). O

Essentially a heterogeneous graph (b, ¢, 6y, 61) is an internal graph (b, U(c), &g, 61)
in B, but the morphisms must preserve the richer structure on nodes. The
category of Petri nets Petri is the category Graph(Set, FCMon)

Recall that the commutative monoidal structure on the places could be lifted
to the transitions along the free functor Fg.cp : Set — CMon. The general
structure of this process is described in the following proposition.

Proposition 3.1.6
Let Graph(B,C) be the category of heterogeneous graphs, such that the
forgetful functor U : C — B has a free adjoint F : B — C, and let U’ :
Graph(C) — Graph(B, C) be the forgetful functor induced by U, which for-
gets about the structure of arcs. Then U’ has a free adjoint F' : Graph(B, C) —
Graph(C) given by

Fl(<b7 ¢, bo, 51)) — <F(b)7 c, F((SO); ey F((Sl); 80)7

on objects, and by
F'({fo, f1)) = (F(fo), f1)

on morphisms, where ¢ : F; U — 1 is the co-unit of the adjunction (F, U, ¢).
[l



,37,

We will also need the notion of internal commutative monoid.

Definition 3.1.7

Given a category C with product X and terminal object —, a tuple ¢ =
(¢, p1,m,y) is called a commutative monoid in C iff ¢ € |C| and p: ¢ X ¢ — ¢,
n:— —c,and v:c X c— ¢ X care morphisms in C such that the following
diagrams commute:

X id n X id 1d X 7
CXCeXCc—cXe — X C cX¢c— X —
A\
. A\
id X p I v
snd v fst
»
1
€ X ¢ m—— ¢ ¢
2 2
—Xc X — cX¢c——>cXc
A\
v id
v Y
snd v fst
»
¢ cXc

The map p is called the operation of the monoid, the map 5 the unit, and the
map 7 is the symmetry. A morphism f : (¢, u,n) — (', 1',n') of monoids is
an arrow f : ¢ — ¢ such that

i f=(fxfhp exe—d,

!

mf=ne—d,

and
(U x )= xfy.

The commutative monoids of a category C form a category CMon(C), with
a forgetful functor U : Mon(C) — C defined by the assignment (¢, i, n) —
c. U

For example in Set the monoid objects are the ordinary monoids.

The above definitions all rely on the existence of left (“free”) adjoints. Also
below we shall need the existence of a left adjoint C¢ : Rgraph(C) — Cat(C).
Usually it is quite cumbersome to prove the existence of adjoints. However,
fortunately all the internal categories presented above can be seen as models
of so called LE-sketches, and the theory of sketches contains the necessary
tools to prove the existence of the left adjoints.

From a Computer Science point of view, sketches can be considered as an
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alternative approach to the specification of abstract datatypes. The reason
for the development of the theory of sketches is that there are many impor-
tant mathematical entities that are not equationally specifiable. The prime
example is the theory of fields. It is not possible to specify equationally that
division is defined only on a subset of the domain. In this case it turns out
however that one can express this very elegantly with a co-limit. Thus al-
lowing limits and co-limits in our specification we are able to expand the
expressive power of our specification formalism. As an other example there
exists a sketch of Horn theories, which are known not to be equational in
the sense of Lawvere (1963). The classical algebraic approach, as initiated
by Lawvere (1963), is however a special case of the sketch approach. The
standard reference on the basic theory of sketches is chapter 4 of (Barr and

Wells 1985).

Since we can view the operators in a signature as arrows in a graph, and
limits are also effectively expressed as graphs the definition of a sketch is the
following.

Definition 3.1.8

A LE-sketch S is a 4-tuple S = (G, U, D, C), where G is a graph, U : N — A
is a function which takes each node n € N to an arrow n — n of A, D is a
class of diagrams in G, and C' is a class of cones in GG. A sketch morphism
S — S'"is a graph morphism & : G — G' such that U;h = h;U’, and every
diagram in D is taken to a diagram in D', and every cone in C' is taken to a
cone in C". a

Because in our case we do not need to specify structures with co-limits, we
work with so called LE-sketches which is short for Left Exact which means
that it has all finite limits. In the definition the graph is the set of all ar-
rows of the specification together with the arrows from all the diagrams and
cones. The diagrams correspond to the equations, while the limits are used
to describe subsets.

Translating the definition of an internal category (definition 3.1.4) into a
sketch gives us as the graph the “graph of graphs” together with all the
arrows in the diagrams. The class of diagrams is the set of 5 diagrams, and
the class of cones contains only the pullback ¢y X ¢y, describing the set of
composable arrows, a subset of the set of arrows.

Conversely we can given a category C construct a sketch SK¢, that we can
use to define the model of a sketch.

Definition 3.1.9
Given a category C, the underlying sketch SKc = (G, U, D,C) of C has as
graph the underlying graph of C, as U the map that picks out the identity
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arrows of C, as D the class of commutative diagrams of C, and as C the class
of limit cones of C.

A model for a sketch S in a category C is a sketch morphism from S into
SK¢. A model forces all the diagrams of the sketch to commute and all the
cones of the sketch to be limit cones.

The models in C form a category Modc(S) with natural transformations as
morphisms. Mod(5) is the category of models in Set. O

The fact that allows us to switch back and forth between the view as internal
concepts and the view as models of sketches is that for example in the case
of graphs Graph(Set) = Mod(SK grapn) = Graph. That is the category of
graphs in Set is the same as the category of models of the sketch of graphs,
which is the same as the category of graphs. Indeed we shall often write C(D)
for Modp(SK¢).

The existence of left adjoints is ensured by the following theorem.

Theorem 3.1.10

Let A and B be LE-sketches. If h : A — B is a sketch morphism, then the
induced morphism A* : Mod(B) — Mod(A) has a left adjoint hy : Mod(A) —
Mod(DB). a

However this theorem is not enough to prove the existence of the left ad-
joint Cc : Rgraph(C) — Cat(C). The reason is that it is not clear whether
Rgraph(C) and Cat(C) are models of LE-sketches. However, it turns out
that both Rgraph(C) and Cat(C) are models of Mod(SKrgraph®@ SK¢) and
Mod(SK cqt @ SK¢) respectively, where @ is a tensor product on sketches
defined by Gray (1987).

Definition 3.1.11

Let S =(G,U,D,C) and S' = (G',U', D', C") be sketches, with

G = (Go, G1,60,01) and G' = (G[, G}, 6, 61). Then the tensor product S @
S'={(G",U", D", C") of the sketches is defined by:

1. Gg — GO X G67
9. GIII:GI X{U'(S')|8'€G6}UGI1 x{U(S)|S€GO}7
3. U"((s.5")) = (U(s), U'(s"),

4. The set of diagrams D" consists of, for every node s in Gy a copy of all
the diagrams in D', indexed by s, and for every node s’ in G a copy
of all the diagrams in D, indexed by s', together with for each arrow
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h:sy— sy;in Gy and h' 1 s] — s5 in G} a diagram:
Byt

<517 5l1> - <527 5l1>

! !
b, .,

g

<517 5l2> - <527 5l1>

5. The set of cones C" consists of, for every node s in G a copy of all the
cones in C', indexed by s, and for every node s’ in G, a copy of all the
cones in C, indexed by s’

g

The underlying idea of the tensor product is very simple. One just takes the
product of the graphs of the sketches and the union of the diagrams and cones
and adjoins a set of diagrams that mainly state, that the operations from G
commute with those from G'.

The importance of this construction is shown by the following theorem

Theorem 3.1.12
MOCI(A X B) >~ MOdMod(B)(A)-

Proof:
See (Gray 1987, Proposition 3.6(ii)). O

The theorem states that the category of models of a tensor product of sketches
is equivalent to the category of models of A in the category of models of B,
ie. the structure of A is added “on top” of the structure of B.

As can also be seen from the definition the tensor product is commutative
which implies the following theorem.

Theorem 3.1.13
C(D) = D(C). O

What this means is that it does not matter in which order the structure is
added “on the top”.

We can now finally state the main theorem.

Theorem 3.1.14 (Theorem 1.2.1 (Corradini and Montanari 1992))
1. If C is the category of models in Set of a left-exact sketch, then the for-
getful functor Cat(C) — Rgraph(C) has a left adjoint C¢ : Rgraph(C) —
Cat(C).
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2. Let C be a category with all finite limits and co-limits, with all w-co-
limits, such that finite limits commute with w-co-limits, then the forget-
ful functor Cat(C) — Rgraph(C) has a left adjoint Cc : Rgraph(C) —
Cat(C).

Proof:

We shall only prove the first part of the theorem, since this is the part that we
will use. We have an obvious sketch morphism A : SKrgraph— SKcar, Which
induces a morphism SKrgraph®@ SK¢ = SKcar @ SK¢. By theorem 3.1.10
this again induces a functor Mod(SKcat @ SK¢) = Mod(SKrGraph® SK¢),
that has a left adjoint Mod(SKrgraph® SK¢) = Mod(SKcar @ SK¢). The
statement follows because Mod(SKrgrapn® SK¢) =~ Modmod(skge,am(SKc) =

Rgraph(g) and MOCI(SIC%@ SICQ) >~ MOdI\/Iod(SICC_at)(SICQ) >~ @(Q) O

We now have all the relevant tools to apply the methodology of Corradini and
Montanari (1992). Let us first briefly recall the main ideas of the methodology.
It consists of the following steps (Corradini and Montanari 1992, (p.70)):

1. First determine the "natural" structure of the states and the transitions
in the high-level net and the corresponding morphisms. The category
is of the form Graph(B, C), ie. a heterogeneous graph with states in C
and transitions in B. In general there is a forgetful functor U : C — B,
together with a free functor F: B — C.

2. Next define the category of transition systems that models the dynamics
of the high-level net. This category is the category Rgraph(C) of reflex-
ive internal graphs in C. Under suitable conditions we have a forgetful
functor U : Rgraph(C) — Graph(B, C) together with a free functor
F: Graph(B,C) — Rgraph(C).

3. Then define the category of models for transitions systems. This is done
using the free functor C¢c : Rgraph(C) — Cat(C) from the reflexive
internal graphs to the internal categories of C.

4. Finally we need to distinguish the intended models of the high-level net
N as a subcategory Mod(N) of Cat(C).

The advantage of this method is that once one has determined the structure
of the category C then one obtains "for free" the other structures by going
along the free functors. Thus in our case it is sufficient to determine the
heterogeneous graph of high-level nets. However for step 3 to succeed, we
must ensure the existence of the free functor C¢ : Rgraph(C) — Cat(C), for
which we need theorem 3.1.14.
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Algebraic nets as graphs on monoidal substitution systems

To apply the method we must first discover the structure on the places and
transitions. Corradini and Montanari (1992) develop as their application a
structured transition system semantics of logic programs. The idea is that
predicates correspond to states, and clauses to transitions. Interestingly this
same idea has been used by Murata and Zhang (1988) to give a high-level
net description of logic programs. Thus it would seem plausible to take these
ideas as a starting point. Indeed we shall do so, and show that high-level nets
arise as graphs in the category of monoids on a substitution system.

The first step is to represent an Algebraic net as a heterogeneous graph.
Let us start by trying to identify the structure on the states. Recall from
definition 2.1.9 that a marking is a subset of (P x A)®. Let us for the moment
take A = Tx(X). The first transformation that we make is that we add the
set of places P to the signature ¥ by adjoining a new sort P together with
operators p : sort(p) — P for each p € P: The new signature is denoted by
Y., P and a marking is then an element of TSP(X). The input an output
functions can also be redefined as ¢t,0: T — TSP(X), so that for example in
figure 2.1 the value of 1(t1) is py () @po(I(x))@py (r(x)). The firing rule defines
the dynamics of the net through the use of substitutions, so that when for
example ¢, fires with mode {z « ph;} we use the same substitution for all the
terms in «(t;). Consequently we need to model the interaction between the
monoidal structure and substitution. We want a categorical model in which
for a substitution o, o(t' @ ...@t") = o(t') @ ... a(t™).

The categorical structure suggested by Corradini and Montanari (1992) for
the treatment of substitutions is that of a strict cartesian category.

Definition 3.1.15
A strict cartesian category is a category C with a terminal object — € |C]|,
and all binary products, such that

(axb)xc=ax(bxc) for all a,b,c € |C|

—Xa=a=aXx — for all « € |C]| .

The category of strict cartesian categories and strict cartesian functors is
denoted by SCart. O

The idea of using cartesian categories to model algebraic structures was orig-
inally proposed by (Lawvere 1963) for the case of single-sorted algebraic the-
ories and by (Benabou 1968) for the many-sorted case, while Goguen (1988)
uses the name substitution system for essentially the same structure. Given a
signature ¥, we can construct a category SCC[X| that has as objects the sorts
and tuples of sorts of the signature, and as arrows the projections and the
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operations of the signature. Substitution is modeled by composition while the
projections model variables. For example the term f(g(x),x) corresponds to
the composition of arrows

51 momy 51 X 81 i) S9 X 8§ — 8,
where the pair (7, m1) represents the fact that we will use the same value z
as argument to both g, and f. The idea of using projections for variables has

also been proposed by Asperti and Martini (1989) and Corradini and Asperti
(1993).

Corradini and Montanari (1992) give an alternative formulation of this con-
struction. It can be formalized by viewing a signature as an element of
MGraph = Cat(Set,Mon) of graphs with a monoidal structure on the
nodes, so that each signature defines a monoidal graph, where each opera-
tor 0 :sy1...8, — s1is an arrow. The point is that there exists an adjunction
between the categories SCart and MGraph. The forgetful functor just for-
gets about the projections in SCart, and the free functor freely adds them
and completes the graph into a category. Thus given a signature (X, P) we
can generate a strict cartesian category SCC|X, P|.

Example 3.1.16
Place p, in figure 2.1 is of sort fork. In SCC|X, P| it is represented as an

arrow fork —= P. The term I(z) corresponds to an arrow phil =), fork.

The arrows can now be composed to obtain phil Palil=)) P, that represents

(P2, 1()). 0

So the set of places and the specification in an Algebraic net generate a strict
cartesian category. However we have for now completely forgotten about
the monoidal structure of the places. It turns out that we can describe this
structure through the notion of a monoid in the category of strict cartesian
categories SCart. Thus, as is already hinted at by the expression TSP(X), the
monoidal structure is added “on top” of the substitutions. So our places live
in Mod(SKscart® SKcmon = CMon(SCart). Since we obviously have a left
adjoint F': SCart — CMon(SCart), we will denote the monoidal substitution
system generated by the signature SCC[X, P] by SCC[X, P]®.Thus from the
example in figure 2.1 the term

L(t) — <p17 ZE) ® <p27 Z(‘/B)> ® <p27 T(‘/E)>
would translate into the arrow

phil® P1(x)@p2(I(2))@pa(r(w)) po




— 44 —

Suppose now that we wanted to substitute phy; for x. This implies that we
need to compose — _pha, phil with the arrow above. The problem is that the
codomain and the domain do not match: the arrow — 2 phil is an arrow in
SCC[Z, P]. Tt can however be lifted to and arrow —© P, phil®. The point
here is, that the arrow — P, phil is the arrow that maps the only element

of the terminal set — to the element ph; of phil. The arrow —© LN phil®

is the free extension of this arrow. Thus when composing with the arrow
phil® pi(2)@pa(i(2)@p2(r(2)) pe

we obtain the wanted composition

_® Pl(Ph1)®P2(l(Ph1))@PQ(T(Phl)Z P®

We have now established the structure of the states. What remains to do
is to establish the structure of the transitions and the adjunction between
states and transitions. We can think of a transition in an Algebraic net
as an operator of sort 7T, that has as arity the sort string of its variables
Var(t). Each net then defines a graph C4x in MGraph with the transitions
as operators and the strings of sorts as nodes. For example the philosophers
net defines the signature t; : phil — T,t, : phil — T. The adjunction
between the states and transitions is then obtained as the composition of the

F F
adjunctions MGraph — SCart —— CMon(SCart).
— "7 U

The graph of an Algebraic net is now a graph, where both the places and the
transitions have a natural graph structure associated with them. The transi-
tions are arrows in MGraph, while the places are arrows in CMon(SCart).

Definition 3.1.17
Given an Algebraic net specification AN = (S, 3, EQ, X, T, P, 1, 0) its repre-
sentation as a heterogeneous graph is:

Gan = (SCC[Z, P]®, Can, 60, 61),

where SCC[E, P]® € |CMon(SCart)|, and Cyny € |MGraph|. The graph
morphisms &y, 6; from C4y to the underlying graph of SCC[X, P]® are monoid
morphisms on the nodes. Thus é; maps a transition ¢ : s;...s, — T to an

arrow s7...s2 — P9, Analogously for 6. O

Before giving an example let us briefly reflect on where we stand in terms of
the steps explicated on page 41. We have now established the structure on
the states and transitions. The category of states is the category of commu-
tative monoids in a small strict cartesian category, while the category of the
transitions is the category of monoidal graphs. The free functor that connects
these two is the functor that first completes the monoidal graph with projec-
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tions making the monoidal operation a product, and then adds a free monoid
structure on top of this.

The graph on graph structure is best described by an example.

Example 3.1.18
The graph of the philosopher net is given by the diagram:

: 131
phil - T

» P®

onize 1) © (1) © pa(r())

The diagram expresses the fact that

So(t1 i phil = T) = pi(2) @ pa(l(2)) @ py(r(2)) : phil® — P©
61(ty :phil = T) = ps(x):phil® — P®
So(ty : phil = T) = ps(x):phil® — P®
Si(tz :phil > T) = pi(2) @ p2(l(x)) @ p2(r(2)) = phil” — P,
that is we have simply just added type information to the terms. O

From the example it is easy to see how the reflexive monoidal structure on the
transitions added in step 2 looks like. In T'S(G4n) € RGraph(CMon(SCart)),
we would for example have an arrow:

bo(ts @ty 1 phil® — T?) =

pi(z) @ pa(l(2)) @ pa(r(x)) @ pi(z) @ po(l(2)) @ pa(r(2)) : phil® — P©
&1 (t @ty 1 phil® - T¥) =

p3(2) @ ps(x) : phil® — P?
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and all other multiples of it. This step also adds idle transitions like

Solty, : fork® > T®) = f1:=%> fork®
61(ty, 2 fork® - T®) = f1: =% > fork®

for each arrow in SCC[X, P|®.

The third step involves the dynamics of the net. That is we want to compute
the free composition of the arcs in TS(G 4n) to obtain [AN]|r the free model
of the transition system.

Suppose that we are at the initial marking of the net in figure 2.1,

® P1(ph1)@p1(ph2)@p1(phs)@p2(f1)@p2(f2)@p2(f3

l P®,

which actually is represented by the corresponding idle transition,

60 (tp,(phs) @01 (ph2)Ops (pha)Epa(F1)@pa( f2) Epa(fa) - — = T¥) =

p1(phy) © pi(pha) © pr(phs) © pa(f1) © pa(f2) © pa(fs) : =7 — P©
51(tpl(phl)®p1(ph2)®p1(ph3)®p2(fl)®p2(f2)®p2(f3) - _® T®)

p1(ph1) @ pr(phz) @ pi(phs) @ pa(f1) @ pa(f2) @ pa(fs) + =% — P

and recall from previously, that we can compose —© _pha, phil® with
phll® p1($)®p2(l(96))®p2(7’(96))‘ P® to obtain phll® Pl(Phl)®p2(l(ph1))®102(7’(10h1))‘ P®,

and analogously for ps;(x). We can fire transition ¢; by substituting ph, for z,

ie. composing phy : 1 — phil with ¢, : phil — T', giving the transition instance

1 Pty T. The instance is then

e phisty . T®
o Pi(ph) @ pa(l(pha)) @ pa(r(ph1)) pe
Z)‘?C?J/é])

pe

Then we match the lhs to the initial marking and substitute the lhs with the
rhs in the initial marking obtaining the transition:
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_® (phl ; tl) & tpl(ph2)®P1(Ph3)®P2(f3) N T®
_® p1(ph1) @ pi(phs) @ pi(phs) @ pa(f1) @ p2(fo) @ p2(f3) po
21(phy) o
— 21 (ph, )&,
Po®

Naturally if we had enough forks we could fire #; in parallel with two different
forks obtaining
phiity @ phasty .

In this way we obtain all the required compositions. The free model is thus
[AN]F = Cemonscary TSIGan]]-

Naturally the model [AN]r contains many more arrows than the transition
system obtained in section 3.1.1. For example in the philosopher example we
have an arrow

tiity 2 pr(x) © pa(l(2)) © pa(r(2)) = pa(x) © pa(U(2)) © pa(r(2)) -

This arrow gives us a kind of abstract behavior.
We can however recover the semantics of section 3.1.1.

Proposition 3.1.19
Let AN be an Algebraic net and [AN]r its free model. Then the set of all

arrows of SCC[X, P]® of the form —% — P% reachable in [AN]r from the
arrow !9 : —® — —® ig isomorphic to the set of reachable states of AN.

Proof:

Follows from the fact that the set of arrows from 1 in SCC[X, P] is isomorphic
to P X TE/E- [l

The semantics for Petri nets CatPetri is recovered in the case when the
Algebraic Net is essentially a Petri net.

Proposition 3.1.20

Let ANy be an Algebraic net with an empty specification. Then —© |
[ANT]F, the set of arrows from —® in [AN7|r is isomorphic to
CatPetri(U(ANT)).

Proof:

The empty algebraic specification generates an empty a substitution system.
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Thus the substitution system SCC[X, P| only contains the constants p : — —
P for all p € P and all the tuples. Then the set of arrows —® — P® in
SCC[X, P]® is the same as P®. In the same way, the monoidal graph generated
by the set of transitions consists of the arrows ¢t : 1 — 1" for each t € T', which
means that the graphs is essentially the set 7. If one now goes through the
construction it is easy to see that the proposition follows. O

We can now complete the method of Corradini and Montanari by selecting
the intended models of the transition system. These are those objects C of
Cat(CMon(SCart)) such that there exists an internal functor F : [AN|r —
C that is an isomorphism on objects and an epimorphism on arrows. The ob-
jects of C differ from those in [AN]r only by having certain arrows identified.
These objects correspond to the different interpretations of an Algebraic net
specification.

In this section we have identified high-level nets as graphs on a monoidal
substitution system, and as a byproduct we have identified the notion of sub-
stitution and commutative free monoid as the notions setting up the dynamics
of the net. It is interesting to note, that Husberg (1992) arrives to a similar
definition by directly generalizing the notion of an operator in an algebraic
theory, where an algebraic theory is essentially a substitution system.

Our model of Algebraic nets is general in the sense that by changing different
components of the construction we obtain new high-level formalisms. Indeed
if one analyses the techniques used in this section, a specification formalism
construction toolkit suggests itself. The components are sketches, the tensor
product of sketches, and adjoints between the corresponding models. In this
section the sketches were the sketch of commutative monoids, the sketch of
small strict cartesian categories, the sketch of graphs and the sketch of cat-
egories, ie. the transition system is model of SKcmon®@ SKscart@ SKGraph
while the behavior is a model in SKcmon®@ SKscart®@ SKcar The “driving
force” behind this construction is the adjunction between graphs and cate-
gories. This adjunction lifts through the tensor product to give us the free
model of the transition system. Then by changing any of these components

we would obtain some other “high-level” formalism. For example we could
select a different substitution system: Goguen (1988) list a number of inter-
esting substitution systems, among them order-sorted algebra. This gives us
formalisms that are still net like. A more radical idea is to change the sketch
of the monoids to something else. One possibility would be to axiomatize
some process algebra as a sketch. This would give us the possibility to extend
the treatment of process algebras of (Ferrari 1990) to process algebras with
value passing.
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3.2 A sheaf semantics

Sheaf theory is a mathematical tool that has been successfully applied to the
solution of difficult mathematical problems. Gray (1979) surveys applications
to complex analysis, algebraic geometry, differential equations, and category
theory. Sheaf theory has also been used in a general formulation of systems
theory by Goguen in (Goguen 1973, Goguen 1975, Goguen and Ginali 1978).
The basic building blocks of this categorical formulation of General Systems
Theory besides sheaves are the categorical notions of diagram, limit and co-
limit.

In the paradigm the behavior of a component, or subsystem, is represented
by a sheaf. The sheaf describes those observations that can be made about
the behavior of the component. The interconnection of components to a
system is described by a diagram of sheaves. The behavior of the system
is then calculated by taking the limit of its diagram. The limit consists of
a product of those observations of component behavior that are mutually
consistent. Finally co-limits are used to connect different systems together
to form larger modules. This paradigm was later extended to models of
concurrency (Goguen 1992) and used to give a semantics for the FOOPS
language (Wolfram and Goguen 1991).

In this section we apply the "Objects are sheaves'" paradigm as formulated
by Goguen (1992) to one specific model of concurrency, namely Petri nets.
The main result of this section is that both interleaving, as well as a non-
interleaving semantics for Petri nets arise through the categorical process of
taking the limit.

We will start with a very simple view of a transition in a Place/Transition
net. This view will then be refined giving us an interleaving semantics with a
global firing rule. Then we will focus our attention on Elementary net systems.
We will further refine our semantics so that we will obtain a non-interleaving
semantics for Elementary net systems. The results presented in this section
have been reported in (Lilius 1993).

3.2.1 Sheaves and transitions

The basic idea in the "Objects are sheaves" paradigm is that an object has
an internal state that can change, and that this state can only be observed
through slots that are called attributes. From an external point of view, an
object thus consists of a set of attributes, and the only thing we know about
the object is that what we can observe about its attributes. It is actually these
observations that will be modeled as sheaves. Observations may be partial in
the sense that at the current moment we have only observed certain parts of
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the object, but the observations should be consistent in the sense that partial
or local observations can be "pasted" together to global observations.

The observations will be formalized in terms of functions f: U — A where U
is some space-time domain and A is the domain of the attributes of the object,
so that f(u) tells us what can be observed about the object from point u. The
elements of the domain U are partially ordered by inclusion, and closed under
finite intersection and arbitrary union, ie. form a topological space, but in
this section the following definition is sufficient:

Definition 3.2.1
A base T for observations is a family of sets partially ordered by inclusion.

Typically we will use discrete linear time as our base:
Iy(w) ={2,{0},{0,1},{0,1,2},...} U{w} .

An object O then consists of observations over a base T. The consistency
requirement can now be formulated as follows. Given an inclusion U C V
and an observation f : V — A we can form the restriction of f to U and
we will denote it by f [ U. Let O(U) denote the observations over U. Given
the inclusion ¢ : U — V, we can form the map O(i) : O(V) — O(U) that
maps an observation f over V to its restriction f | U. O now satisfies the
following two equations O(i;j) = O(j); O(i), O(1y) = 101ry» that make it
into a contravariant functor.

Definition 3.2.2

A presheaf is a functor O : T°” — C where T is the base category and C is the
structure category. If i : U — V isin T, then O(i) : O(V) — O(U) is called
the restrictton morphism induced by q. O

The idea that observations are closed under restriction can be seen as a cat-
egorical formulation of the prefiz closure property of traces.

The structure category is the domain of the attributes. By chosing a suitable
category many different examples can be modeled, as described in (Goguen
1992). In this section the attributes will have a very simple form, which allows
us to give the definition of a preobject in a simple form.

Definition 3.2.3
A preobject O over a base T with attribute object A = Ay X -+- X A, is a
presheaf of the form

OW) = {h:U — Ay x - x A, | K(h)}
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where the morphisms O(7) are restriction maps, and the relation K expresses
some property of the functions, embodying the "laws" that O satisfies; the
elements of A may be called states. O

Example 3.2.4 ((Goguen 1992))

The behavior of a capacitor is governed by a linear differential equation. Let
To(RT) ={[0,7)|r > 0} U{R "} be the base consisting of semi-open intervals
of real numbers starting at time (0. Then the behavior of the capacitor is
described, for I € Zo(R™"), by the sheaf

d
OI ={f:I-R° | C:F%(u,’—uo), fis C* on I},
where F'is the capacitance, c is the current through the capacitor and u; and
u, are the voltages at the input and output of the capacitor. In this case
the structure category could be specified more exactly eg. as the category of
Banach spaces.

The observations are thus sequences of triples (¢, u;, u,) that form a (partial)
solution to the differential equation. O

The definition of an object is the following (Goguen 1992).

Definition 3.2.5

A preobject O is called an object if its base T is a topological space, and
if given U; € T and f; € O(U;) for all i € I such that U = J;;U; and
fL1UNU; = f; 1 U NU, for all i, j € I, then there exists a unique f € O(U)
such that f | U; = f, for all ¢ € I. This condition is called the sheaf condition.
If the index set [ is restricted to be finite, then the corresponding condition
is called finite sheaf condition. O

Informally, this means that if observations are consistent over a subinterval,
then these observations can be pasted together into an observation that con-
tains them all as sub-observations. Depending on whether one compares a
pair or a possibly infinite set of observations, one speaks of a finite and an
infinite sheaf condition respectively.

The basic idea in the categorical formulation of General Systems Theory
(Goguen 1973, Goguen 1975, Goguen and Ginali 1978) is that the behavior of
a component is represented by a sheaf. The whole system is then represented
by a diagram of these sheaves where the diagram tells how the different com-
ponents are interconnected. Now because a transition is a component of a
net, a transition will be modeled by a sheaf. In the next section we will show
how a net corresponds to a diagram of sheaves and the behavior of the net to
the limit of the diagram.
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Before we go into details, we need some definitions from net theory and some
notation. Contrary to the previous sections and the forthcoming sections, we
will not use the categorical definition of a Petri net. The reason is that we
don’t need the free construction. Instead we use a slightly massaged definition
of a Place/Transition net without capacities (Reisig 1986).

Definition 3.2.6

A Place/Transition net N is a quadruple (T, P,:,0) where T is the set of
transitions, P is the set of places, and t,0: T — [P — N| are the input and
output weight functions and N is the set of natural numbers. O

It is customary to assume that the functions ¢ and o are injective so as to
rule out transitions with identical sets of input and output places. Such nets
are called “simple” or in the terminology of (Corradini 1990) ‘extensional
transition systems’.

The following notations will be useful, where ¢t € T and p € P. The preset
or set of input places of a transition ¢ is defined as *t = {p | «(t)(p) >
1}. The postset or the set of output places of a transition ¢ is defined as
t* = {p | o(t)(p) > 1}. Finally the restrictions of the input and output
weight functions ¢, 0 to the pre- and postsets are defined as ¢, = «(t) | *t and
oy = o(t) | t* respectively.

The intuition behind P /T nets is that a place can be occupied by tokens. The
distribution of tokens in the net represents the state of the system and it is
called a marking. If the number of tokens in the input places of a transition
exceeds the input weight of that transition, then the system can change state
by firing that transition. This process is formally defined through the firing
rule:

Definition 3.2.7

Given a Petri net N = (T, P,1,0), a marking is a function M : P - N
mapping places to integers. In a net N we say that a transition t € T is
enabled at M iff «(t) < M. If a transition is enabled it can fire, producing a
new marking through the firing rule:

M'= M — u(t) + o(t),

where the addition and subtraction of integers is extended to addition and
subtraction of integer valued functions by defining (f + g)(x) = f(x) + g(x)

and (f —g)(x) = f(x) = g(2). 0

Armed with these definitions we can give the following definition of the sheaf
corresponding to a transition:
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Figure 3.2: A transition t.

Definition 3.2.8
Given a transition ¢ in a P/T net we define a sheaf as follows:

HI) = {f: T — NFOFCOD | £G4 1) = f(i) =t 0, i1 < F(0) ]
with 7,7 + 1 € I. O

The definition describes those observations that arise from the firing of a
transition. The idea is that we only look at the input and output places
of the transition. What we observe are integers that represent the number
of tokens in the places. Thus the attributes of the transition are integers.
The specific values of the attributes are not specified as the environment may
add or remove tokens. However, whenever the firing condition is met, the
transition must fire. In that case the observation f(i 1) is related to the the
observation f(i) by the firing equation.

Example 3.2.9
Take the transition in figure 3.2. The corresponding sheaf is:

t={f:IT>NxNxN |
fli+1) = f(i) = (2,3,0) +(0,0,1) if (2,3,0) < f(i)}

One possible sequence of observations is

i 0 1 2 3 4
f1/(0,0,0) | (1,0,1) | (2,3,0) | (0,0,1) | (0,0,1)

where the transition fires at ¢ = 2. In the sequence of observations the steps
from¢ =0toi=1and ¢ = 1 to ¢ = 2 are caused by the places becoming
marked through the environment. Thus the sheaf is a local constraint on the
observations.

A more interesting example is given by nets with time. There are several
different ways for incorporating time into nets. We have chosen to attach a
firing time to each transition that expresses the number of clock ticks it takes
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for the transition to fire. This is a very simple model of nets with time. A
more elaborate model would attach a time interval to the transition that says
within which time span the transition will fire after it has become enabled.

To model the duration of the firing we add a stream that stores the firing
time of the transitions:

Definition 3.2.10
Given a transition ¢t in a P/T net with firing duration 7, we can define a sheaf
t(I)as f:I — N™x N given by

(friny(@) = o(t), 74) if 1(t) < fraey(0) and frpa(i) =0
Fi+1) = (Ffam@), fana (i) = 1) if foa() > 1
<f{1,n}(i) + 04, 0) if fn+1(i) =1,

where fyy ,1(7) are the n first components of f(i) and f,;(¢) is the n + 1:st
(we abbreviate n = |*(t)| + [(*t)])- O

The idea behind this construction is that the n + 1-st component stores the
remaining time before the firing ends as a natural number. The first clause of
the case expression corresponds to the beginning of the firing of the transition.
The tokens are removed from the input places and the timer is set. The second
clause takes care of the countdown by decreasing the counter. After the firing
time has expired the third clause outputs the required tokens to the output
places and resets the timer to 0. Transitions for other kinds of nets can be
treated in an analogous manner.

3.2.2 Nets, systems and their behavior

The intuition underlying this section is that the interconnection of objects
should be achieved through morphisms. The system is represented as a dia-
gram and the composite behavior of the system will arise as the limit of the
diagram. The process of taking the limit selects mutually consistent behaviors
of the subsystems as the behavior of the whole system. In this section we will
show how the behavior of a Petri net arises as the limit of its corresponding
sheaf diagram.

We start by defining a notion of morphism for pre-objects and objects:

Definition 3.2.11
Given preobjects O and O' over the same base T, a morphism ¢ : O — O' is
a family ¢ : O(U) — O'(U) of maps, one for each U € T, such that for each



,55,

t:U — Vin T the diagram

commutes in C. When O and O' are objects, we may also call ¢ an object
morphism or sheaf morphism. This gives rise to categories PreObj(T, C), and
Obj(T,C) of preobjects and objects respectively, over a given base T and
structure category C g

A system consists of a diagram of pre-objects or objects.

Definition 3.2.12
A system S consists of a graph with nodes n € N labeled by (pre-) objects
S, and with edges ¢ : n — n' labeled by morphisms ¢, : S, — S . O

Morphisms can be used to represent sharing and inheritance of attributes
between objects. In the sequel we shall mostly be interested in interconnecting
objects through special morphisms called projection morphisms.

Definition 3.2.13
Given preobjects O and O’ with attribute objects A = II;c;A4; and A’ =
II;cnA; respectively with J' C J, if a : A — A’ sending (a;|j € J) to
(a;]j € J') induces a morphism, then it is called a projection morphism.

[l

A projection morphism "picks" the necessary information from the attribute
object. A typical use for projection morphisms is in connection with so called
event streams E = {f — A|M(f)}. An event stream contains the observa-
tions pertaining to an attribute. Examples of event streams include wires,
communication channels, and places in Petri nets.

To construct a net from a set of transitions, some way of expressing that two
transitions are connected to the same place is needed. This is where event
streams and projection morphisms come in handy. A place is represented by
an event stream P = {f : I — N}. If there is a capacity k attached to the
place, then the event stream is of the form {f : I — N|f(i) <k i € I}. Each
transition is connected to its input and output event streams by projection
morphisms. The righthand side of figure 3.3 depicts the diagram obtained
from the net on the lefthand side.
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Figure 3.3: The net of the example and its corresponding diagram.

Given a system as a diagram, we can construct its behavior as the limit of the
diagram. This limit will contain all the mutually consistent behaviors of the
system. The limit can be understood as a completion of the diagram with an
object that makes the whole diagram commute.

Definition 3.2.14
Given a diagram whose nodes are labeled by sheaves S5, for n € N, the
behavior object L of the diagram has for each U € L:

LU) ={{fuln e N}fr € Su N : S = S, = ¢c(f0) = [0}

The limit object of the diagram in figure 3.3 is of the form
L—{I— N°}.

There will be projections p; : L — P; for ¢ € {1,2,3,4} and projection tuples
5,06, P7) © L — t7 and (ps,py) : L — t5. The limit object is isomorphic to

(ps» D> D7) Dss D ] p

the object L' : I — N* which is the state space of the system.

Actually, the approach presented above is too simplistic, because it does not
take into account the global nature of the notion of state. To see this consider
the net in figure 3.3. For simplicity all the arcs have a weight of 1, so that
the net is essentially an EN-system. Given the marking M = {a — 1,b —
1,¢+— 0,d — 0}, there is a choice or conflict between the firing of ¢, giving
the marking M' = {a —» 0,0 — 0,¢ — 1,d — 0}, and the firing of t,,
resulting in the marking {a — 0,0 — 0,c¢+— 0,d — 1}. So from the marking
{a — 1,b— 1,¢ — 0,d — 0} it is impossible to get to the marking {a +—
0,b— 0,c+— 1,d+— 1}. But if we take the limit of the corresponding sheaf
diagram, the limit object will contain this marking, because we have no way
of specifying the fact that firing ¢, and ¢, at the same time is an inconsistent
behavior. Consequently the integrity of the tokens is destroyed.

To see how to approach a solution to this problem, let us first briefly look
at the solution adopted in net theory. The general assumption there is that
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a system can resolve a conflict by itself. A consequence of this is that a
semantics for Petri nets must define an execution policy is some way, explicitly
or implicitly. The firing rule for P/T nets establishes such a policy. It says
that one should look at one transition at a time to see if it is enabled. During
this process of examination each enabled transition is fired. The resulting
reachability graph gives an interleaving semantics for the system, where at
each instant only one transition is allowed to fire. What the firing rule does
not say is in what order the transitions are to be examined.

The net effect of this is that we have a global state and we are able to observe
the effect of a transition on the global state. As defined by definition 3.2.8,
the firing rule is "distributed" into each sheaf, and thus gains a local character
resulting in the unfaithful rendering of the semantics of choice.

To rectify this problem we need to introduce a global scheduler. This sheaf will
be connected to each transition of the system and allows only one transition
to fire at each instant.

We use the shorthand 7', for TU {—}.

Definition 3.2.15
Given a set of transitions 7" define a scheduler sheaf by:

) ={I->T,}.
The possible observations are constrained by the rules:

t —» — with t&€T
— = t with t €T

where the lhs is the observation f(7) and the rhs is the observation f(i-+1).
(|

The sheaf T' is used to store the name of the transition that is currently firing,
and the token — is used to denote the fact that no transition is in the process
of firing. The last rule is applicable when a transition starts to fire. Note that
if we would add a rule — — — that expresses the fact that it is not necessary
for any transition to fire, the system could idle. In such a case the system
would not necessarily satisfy a progress assumption.

The definition of a transition sheaf as given in definition 3.2.8 has to be
modified to accommodate the scheduler.
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to
Figure 3.4: The diagram corresponding to the net in figure 3.3.

Definition 3.2.16
Given a transition ¢t in a P/T net we define a sheaf ¢(I) as

f:I— NITOHICOI o T,
given by

<f{l,n}(l)7t> if by S f{l,n}(l) and fn+1(l) - =

it = {(f{l,n}(i) o= fna(i) —t

where fyy ,; are the n first components of the n + 1-tuple f(7). O

The definition sets things up so that firing is only possible if the attribute
T has the value —. The first clause insures that transition will only fire if
no other transition is firing, while the second clause does the actual firing.
Notice that this definition does not rule out the possibility that the firing
process takes an infinite amount of time. This possibility is ruled out by the
definition of the sheaf T" which has a rule that says that the firing takes only
one time tick. Given a net N denote its translation to a diagram of sheaves
with scheduler by [N]prsh.

Now the net in figure 3.3 is translated to the diagram in figure 3.4. The
limit-object of this diagram will have of the form

{f:I->NXNXNXNXxT X(NXNxNxT )x(NxNxT,)},

where the first four N:s correspond to the £:s in figure 3.3 the last two ex-
pressions in parenthesis to the transitions and the 7', to T. This limit-object
is isomorphic to the following simpler object

{f:I->NxNxNxNxT,},

because the arrows in the diagrams represent projections. From the structure
of the object it is easy to see that only one transition is able to fire at each
instant. The limit object corresponds to what is more commonly called the
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) 0 1 2
f (07070707_) (17170707t1) (07071707_)
g (07070707_) (17170707t2) (07070717_)

Figure 3.5: Some observations of the net in figure 3.3.

state space of the net. From this object one can see the state of the system
by projecting on all but the last component.

Some possible observations are given in figure 3.5.

In general we have the following theorem.

Theorem 3.2.17

Let N be a Petri net with initial marking M,. Let [N]prsn be its corre-
sponding diagram of sheaves. Then the set of paths from the initial marking
My o, M, b, s isomorphic to the observations of the limit object of
[N | prsy with initial observation M.

Proof:

(=) To each path corresponds an observation: for M, L M, the observa-
tion is 0 — — X My, 1 — t X My, 2 — — x M;. Assume we have a path
M, b, M...M; . M, for ¢ then for ¢ +1 we have M, SN M; iy and
the observation is 20 — — X M;, 2i + 1+ t; x M;, 2(i +1) —» — x M; ;.

(<) To each observation corresponds a path: Follows from the definition of
the sheaf 3.2.16. a

A more interesting semantics can be obtained by coding the arbitration of
choice locally. To simplify the presentation we will restrict our nets so that
all places have a capacity of one and all arcs have a weight of one, making
the nets essentially Elementary net (EN) systems (cf. (Thiagarajan 1986)).
When talking about EN-systems, it is customary to call places conditions, and
transitions events. This construction will give the non-interleaving semantics
mentioned in the introduction.

The following two definitions set up the basic framework where we assume
that we are given an elementary net with set of conditions C' and set of events

E:

Definition 3.2.18
A condition is represented by the sheaf:

C(I)=A{f:1I—- EU {true, false}},
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which is governed by the rules:

e — m with e € E and m € {true, false}

m +— e with e € E and m € {true, false}

g

The constants true and false are used to tell whether the condition holds or
not. Now because we do not have a global scheduler the name of the event is
used to schedule the execution locally.

Definition 3.2.19
An event is modeled by the sheaf:

E(I) = {f : I — (e U {true, false})! eI+l
which is governed by the transition rules:

(1, my) {2, 2y with [(zq,...o2,)] = (&), ..., 20 )| =n
and with e # ¢ for all ¢/ € {xy,..., 2}
(true®, false’) — (e*,¢')

(eF.e"y — (false”,true')
where & = |%¢|,l = |e*| and n = k + L. O

An event is represented by the product of its pre- and post-conditions. An
event can only occur when all of its preconditions hold and all of its post-
conditions don’t (rule 2, lhs). When an event occurs it replaces all pre-
and postconditions with its name (rule 2, rhs). This prevents other events
that are in conflict from occurring, and implements conflict resolution on a
local level. The actual firing is done by rule 3, while rule 1 takes care of
the case when some other event is chosen. Again if we would add a rule
(m*. n!'y » (mF,n') with m,n € {true, false} that expresses the fact that
it is not necessary for any event to happen, the system could idle. In such
a case the system would not necessarily satisfy a progress assumption. By
using event sheaves of the form {f : I — {true, false}} we can now construct
a diagram of a given elementary net and then form the limit of this diagram
to obtain the semantics of the system.

Let us finally briefly look at how our semantics reflects conflict and concur-
rency, to see in which sense we have a non-interleaving semantics. The res-
olution of choice is distributed into the conditions by rule 2, so that instead
of one global scheduler, each place acts as an arbiter for the events connected
to it. Thus the resolution of choice is done locally. It is interesting to note
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that a similar solution was adopted by Biitler, Esser and Mattman (1991)
in an implementation of Petri nets on a transputer network. The lack of a
global scheduler also means that causally independent transitions may fire in
parallel, thus giving a non-interleaving semantics. That is, the limit object
will contain observations where causally independent transitions will fire in
parallel. Thus the semantics is a non-interleaving semantics.
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Chapter 4
Foldings

General Net theory as initiated by C.A. Petri (1973) is the study of nets and
their morphisms. A folding is a special kind of morphism between nets, that
has been used to relate a net to its causal behaviors, its processes, and to
describe and motivate high-level nets (Genrich, Lautenbach and Thiagara-
jan 1980). Recently the construction of strict high-level nets from Condi-
tion/Event systems has been formalized and studied (Smith and Reisig 1987).
In this chapter we study the construction of non-strict high-level nets from
Petri nets through foldings.

The setting for our study of foldings is the categorical theory of Petri nets
proposed by Meseguer and Montanari (1990). In their approach Petri nets
(Place/Transition nets) are presented as graphs with a monoidal structure on
nodes. Contrary to General Net theory, where a morphism is defined as a
function on the union of transitions and places, a morphism here is taken to
be a pair of functions between the set of transitions and the monoid of places
respectively, such that the underlying morphism is a graph morphism!. Such
a morphism is called a homomorphism in the context of General Net the-
ory. Also, in the category of Petri nets, a process of a net is not related to
the net itself in the same way as in General Net theory. Thus processes de-
fined through foldings cannot be taken as the fundamental definition of causal
behavior of a net. In Meseguer and Montanari’s approach this problem is ad-
dressed by a categorical notion known as a free construction. To a given net
we can associate a new net, that has as new transitions all possible (parallel)
transition sequences of the original net. Different notions of causal behavior
are then obtained as suitable equivalence classes of arrows (Degano, Meseguer
and Montanari 1989). However the inverse of folding, unfolding remains an
important notion in the categorical theory of high-level nets (Dimitrovici,

!For a short review of this approach see appendix A.2
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Hummert and Pétrucci 1991), because it relates a high-level net to a low-level
net with in some sense identical behavior.

In this chapter we define a notion of folding for Petri nets as a special kind of
morphism in the category of Petri nets. We then show how to a given folding
we can associate an Algebraic Net whose underlying net is isomorphic to the
codomain of the folding and whose unfolding is isomorphic to the domain of
the folding. It is at first not clear if this construction is functorial, but by
analyzing the structure of the category of Petri nets we are able to identify a
preorder on nets that allows us to prove the functoriality.

The main contributions of this chapter are:

e The formalization of the folding construction of non-strict high-level
nets from Petri nets.

e The identification of a preorder on nets in the category of Petri nets.
e A generalization of the folding construction to Algebraic nets.

e The extension of Findlow’s “refolding” construction to Algebraic nets.

The chapter is structured as follows. We first define the categories of Petri
nets and Algebraic nets. We also define several functors between these. Then
we define the notion of folding in the category of Petri nets and show how it
gives rise to an Algebraic net. This construction is proved to be functorial.
We then show how we can define a notion of folding directly on the Algebraic
net. Finally we discuss how the construction can be used to transform a net
so that is has a deadlock preserving skeleton. The results presented in this
chapter have been presented in (Lilius 1994a) and (Lilius 1994b).

4.1 Foldings

As stated earlier the aim of General Net theory as introduced by C.A. Petri
(1973) is to study morphisms of nets. Foldings play a central role in this
theory, because they are used to relate different nets and net-classes. In this
chapter we are interested in the use of foldings to relate different net-classes.
A study of foldings using the classical notion of net-morphism has been done
by Smith and Reisig (1987). In this section we will define the notion of folding
within the categories PetriG and AN.

The material in this section differs from the material presented by Smith
and Reisig (1987) in two respects. First, the notion of morphism is different.
The classical net-morphism (Petri 1973) allows a map to take transitions to
places, while morphisms in PetriG are essentially graph-morphism, and thus
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respects places and transitions. Although Smith and Reisig (1987) use place
and transition respecting morphisms, our morphisms are required to preserve
arc-weights in addition. Second, Smith and Reisig (1987) discuss foldings of
CE-systems into strict high-level nets. In this chapter we take a more concrete
view of the process and give a construction to a specific class of high-level nets.
Also the construction is given for non-strict nets, thus answering a question
left open by Smith and Reisig (1987).

The first thing we need to do is to define the notion of folding. Since the
intuition in the formation of a high-level net is that we are describing several
identical processes with the same underlying net through one net it seems
plausible to take the following as the definition.

Definition 4.1.1
A morphism f : Ny — N, in PetriG is a folding iff both fr and fp are

surjective. O
Lemma 4.1.2
If f:N; — N, is a folding then Ny, p = Na. O

One of the advantages of working within the category PetriG is that the
notion of surjection can readily be transfered from the category Set.

Proposition 4.1.3
Given an algebraic net AN the assignment

fP((pv CL)) — <p7 _>

fT(<t7 assﬁ)) — <t7 assf)
defines a folding f : Unf(AN) — U(AN).
Proof:
The fact that fp and fr are surjective follows directly from the definition.
That f is a PetriG morphism is also clear. O

Proposition 4.1.4
Foldings define a natural transformation ¢ : Unf — U.

Proof:
Evident from the fact that the diagram

¢(AN)

Unf(AN) U(AN)

Unf(h) U(h)

¢(AN')

Unf(AN') U(AN'")
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d t2 hT tl =

f t2 —
¢ h=(hp,hp) P2 t hpioa = b
""" - P3 bomop
b t 1 c = P
d - p
a € e > P
= b

Figure 4.1: A folding h : Ny — N, in PetriG.
commutes. O

Thus each Algebraic net defines a unique folding. It is now natural to ask the
converse question: Given a folding f : Ny — N, in PetriG does there exists
an Algebraic net AN s.t. Unf(AN) ~ N; and U(AN) ~ N,? The answer to
this question is positive; the construction however is rather non-trivial.

Let us approach the question with an example. Consider the nets in figures 4.1
and 4.2. The map in figure 4.1 folds two independent transitions onto the same
transition. The folded net can simulate the behavior of the original net, by
having multiple markings on the places p; and p,, but the information of
which specific transition (¢, or t,) is fired is lost.

This information can be recovered by coding it into the annotation func-
tions. Figure 4.2 gives one possible annotation for V,. Its main virtue is that
Unf(AN) ~ N;. The idea is that for each equivalence class in [p] € P/kerh
and [t] € T/ ker h we construct an operation fp ) : [t] = [p] whose definition
is such that the transition corresponding to ¢; : a ©b — e in Unf(AN) is fired
with mode {x « t;}. The original behavior is thus recoverable. This suggests
that there is a simple and straightforward way of coding the annotation di-
rectly from a given folding f : Ny — N,. This is essentially the construction
proposed by Smith and Reisig (1987).

However, the problem is more complicated. The construction as outlined
above does not work if we fold several input-places of a transition into one.
Consider the folding in figure 4.3. If we want to construct the annotation
of the corresponding AN-net, we cannot simply take fp . ¢ [t] — [p1] with
Sl (t) = @ @ b, as then the underlying net would not be isomorphic to
N, because it would have an arc-weight of 1 on the arc p; — t. But if we
construct two operations fy, and fiy, with fi; .(t) = @ and fp,(t) = b then
the input-weight function ¢ has the definition «(t)(p1) = fyj..(2) @ fgs(z).
This construction is formalized in the following theorem.
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{plap%p?nt}
EQ:
a:— p1 fipm(t1) =a
bi— p2 fip(t2) = c
ci— fip.(t1) =0
d :— p fip.(t2) =d
€ 1— Py fips(t1) =€
Ji—=ps Jips(t2) = f
t1 i — 1
ty i— 1
f«t’pl o py [ 2 fpl,t(ﬂ?)
Jips 10— P2
Jips 10— P3 P

fpzﬂf (‘/E)

Figure 4.2: The AN-net corresponding to the folding in figure 4.1.

hT . tl — 7
tl h = <hT,hp> 9 4 hP - - P
= D
c P1 P2 c = Do

Figure 4.3: A folding h' : Ny — N, in PetriG.
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Theorem 4.1.5

Given nets Ny = (P, T1,t1,01), Ny = (Py, Ty, 19,09) and a folding f : Ny —
N, in PetriG there exists an Algebraic net AN s.t. Unf(AN) ~ N; and
U(AN) ~ N,.

Proof:
The proof is done in three stages. First we construct AN, then the isomor-
phism Unf(AN) ~ Ny, and finally the isomorphism U(AN) ~ Ns.

1. Let AN = (ANS, A) where ANS = (S5,%,EQ, X, T, P,.,0,sort) with S,
P, T, X, X, EQ, ¢, 0o and sort constructed as follows.

(a) P=PF,, T="1T,, S= P,|JT,, where each sort [t],[p] is inhabited
by the elements of the equivalence relation, and X = {x4 }yern-
(b) sort is ids | P,.

(c) To define the set of operator symbols, we first need to establish the
domains and codomains of the operators. To this end we define
functions 6, : P, x T} — P; and 6, : P, X T} — P; given by

8.(lpl 1) = () N (5 ([p])

and
&,([pls 1) = (o) Ny (f5'(Ip])) -

The functions give the set of input(output)-places of ¢ in N; that
are mapped to [p] in N,. For example in figure 4.1 6,(p;.t;) = {a},
while in example 4.3 6,(py, 1) = {a, b}.

Then let nj, ,; = max{|&([p],t)| | t € [t]} for i € {1, 0}. njy ) > 1
if we fold several places of a transition onto one.

The set of function symbols is given by?
Yy = {f[it],[p],x [t = [p] |
[t] € T7 [p] € P7 1 S T S nft],[p]}

Y, = = pllVpe P}
Y, = {t:—=|t]|VteT}
Y = I,U3,Us,

It nft]’[p] — 1 we omit the z. So in figure 4.1

Y= {ftt,pﬁ ftt,py f‘tcjpg,’ a, b7 C, d7 tlv t2}7

’In the sequel i ranges over {¢, 0}



,68,

while in figure 4.3 we have

DES {ftL,Pl,l’ftL,Pl,Q’fto,Pz’a’ b’ ¢ tl} :

(d) The construction of the equations is best explained by cases. If
nft]’[p] = 0 there is nothing to do. If nft]’[p] > 1 the equations are
defined by

EQ' = {f{y.(t) =y |Vt,y: t €[t Ay € &(lpl, 1))} -

In figure 4.3 we have that f; () = a € EQ.
(e) Then we have

u([t]) = ® {[nl, f[t‘t],[p],x(x[t])>7

Isesniy )

and

o([t] = ® <[p]7f[(7)f],[p],x(x[t])> .

Isesniy )

(f) Finally let A =T =.

2. The sets of places and transitions in Unf(AN) are given by

P = |J{pr xpl}-

peEP

T = {{|t].ass%) | [t] € T,ass% € [Var(t]) — A]} .

Because all function symbols are of the form f : [t] — [p] and by con-
struction Var([t]) = {xpy}, the only valid assignments in this context
are of the form {xy « t} with ¢ € [t]. The set of transitions is thus
isomorphic to T,. Analogously for places.

The isomorphism Unf(AN) ~ N, is now obtained as follows. Because
P'~ P and T' ~ T we have the two morphisms mp : P' = P: (p,q) —
g and mg : T" — T : ([t], {z < t}) — t which form the morphism
(mp,mp) : Unf(AN) — N;. It remains to show, that LUnf(AN);m% =
mr; Ly,. As a first step we have:

mB(unecan) ([t] assTy )
= mp(assy,,_(«([t]))

= mp( @ Al asshy,_(fig )

Isesng)

Now, because each assi/E is of the form {z; < t}, and by definition
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each fpp),» 18 a function, we have that assi/g(f[t],[p],x) =y with y €
6.([p]. 1)), where t is the ¢ in {xy < t}. So we get:

m'p( ® ([P]aassi/z(f[;],[p],x»)

Isesniy )

- @ ass,_(flame)

Isesniy )

= X

Isesniy )
= (1)

= (D) (ma(([t], asshy, )

The proof for o is analogous

3. To obtain the isomorphism U(AN) ~ N, observe that by construction
we have for U(AN) = (Ty, Py, Ly, oy) that Ty =Ty, and Py = P.

It remains to check that ¢ = 1, and 0o = 0,. By definition «(t)y =

a5 = @ ucn (I0]) = 12(0)

g

The construction codes the folding f into the annotation functions. Although
we allow the sets 1" and P to be infinite, we have assumed that the functions
fr, fp must be recursive. Thus according to a result by Bergstra and Tucker
(1987) there exists a specification of the functions fr, fp.

To make the folding construction into a functor Fold : PetriG — AN, we
need to define maps Foldy; : |PetriG| — |AN]| and Foldmor : Morpetric —
Moran. However the construction is defined by a morphism, so it is not
quite clear how to define the map on objects. Indeed what we have here is a
comma-category construction, but we shall not delve into this question any
deeper. An obvious solution would be to define Foldobj(N) as the folding of
f+ N — —, where — is the terminal object. But unfortunately PetriG has
no terminal object. The terminal object of Petri is not usable, because the
terminal maps are not maps in PetriG. The reason why PetriG fails to have a
terminal object is that since the arrows are free extensions of Set-morphisms,
the total weight of the arc-annotation is always preserved.

However in PetriG for each net N we can find an object N,;, such that
the morphism f : N — N, is unique. It has just one place, but for each
possible combination of input and output weights a unique transition. Given
a transition t: a; @...® a, — by @...@ b, let the type(t) = (n,m). Thus to
each transition we can attach a pair of integers that denote its type.
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Proposition 4.1.6

Given a net N = (T, P, 1, 0) there exists a net Ny = (Pur, Thry Lar, 0ar) With
one place, Py, = {x}, and for each t € T there exist a unique t' € T, such
that type(t') = type(t), and the morphism my : N — N, is unique.

Proof:
Clearly the function type partitions the set of transitions of N into equivalence
classes. Thus fr is uniquely defined. The map fp is just the terminal map in

Set. O
Lemma 4.1.7

In PetriG, the nets N, with one place form a partial order without bottom.
Proof:

Follows directly from the fact that the collection of nets N, is isomorphic to
P(N; x Ny) ordered by inclusion, where Ny = {n | n > 1,n € N}. O

Proposition 4.1.8
Given a PetriG-net N denote the Algebraic net obtained through propo-
sition 4.1.6 by Fold(N). Given a PetriG-morphism f : N — N', there
exists an AN-morphism Fold(f) : Fold(N) — Fold(N') defining a functor
Fold : PetriG — AN.

Proof:
The net-part of the map (hr, hp,hy,ha) : Fold(N) — Fold(N') is obtained
from the inclusion i : Ny, — Njy,.

The map hy, is constructed by "simulating" the map f by a signature mor-
phism. This is possible, because in the process of folding, all the information
of the net is retained in the equational signature.

On sorts it is given by hg = iy Uip, and on variables by hx(xy) = Zu, ) (it
is injective because hr is an injection). For the operators the situation is more
complicated. Essentially the map is given by Ay : flg (pl.e ™ fir([).i,(1p]),y» DUt
is unclear what the z should map to. The problem arises because we must
somehow recover the choice we made in step 1.(d) in theorem 4.1.5. However,
we can recover the choice, because the set of equations of Fold(N) and Fold(N')
have this mapping encoded. That is given the set of equations defining the
behavior of an operator fi [p. We can construct a map ¢y, . : [p] — N given
by ¢s0m(P) = 2 M flgp. = p € EQ. Now given fp : P — P' we can
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Figure 4.4: The net N.

St Ap.t}

YS: a:—>p EQ f(t))=a
bi—p f(tz) =a
ci>p g(ty) =0
t1:—>t g(tz) = ¢

f(z) | Z}Zt_)—ip
p:‘— g:t—0p

Figure 4.5: The folding of N.
construct a map ® : N — N such that the diagram commutes:
fr
[p] ——=—— fr(lpD)

qu[t],[p] qufT([t]),fp([p])

N N

The map hy is then defined by:

hs s funiole = Fir(t)in(lo)) 0 (2) -

[l
Corollary 4.1.9
Unf(Fold(N)) ~ N
Proof:
Follows directly from theorem 4.1.5. O

Example 4.1.10
The net in figure 4.5 is the net corresponding to the folding f : N — Nr in

figure 4.4. O
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sorts : phil,fork
opns i phy,pho,phs  :— phil
Ji, fos [ :— fork
[ : phil — fork
r : phil — fork
equs : Il(ph;) = f;

r(ph;) = fi fori—1,2

i(z) +r()

€

Figure 4.6: The specification AN of the dining philosophers problem.

Observe that choice is mapped into surjective annotation functions.

It is naturally interesting to ask whether Fold(Unf(AN)) ~ AN? However it
is rather easy to see, that this is not the case. We do not even have a map
Fold(Unf(AN)) — AN as can be seen from figure 4.8 which is the result of
folding the net in figure 4.7, which is the unfolding of the net in figure 4.6.
It is clear that since all information of the specification in the net AN is lost
during unfolding, there is no way to automatically recover this.

Here a folding has been defined as a surjective mapping between nets. Since
a surjective map defines an equivalence on its domain, it would be interesting
to look at the reverse question: When does an equivalence on places define a
folding? Clearly the equivalence must be such that it respects the flow of the
net.

Definition 4.1.11
Given a net N = (T, P, 1, 0) an equivalence relation =€ P x P is said to be
compatible iff

Vpl. V.t € i ([p]) < [6:([p). )] = [8:([p]. )],
where i ([p]) = {t [T p € |p] : p € 7(6:(t))} and i € {1, 0}. O

The intuition of this definition is that the equivalence relation should be
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(f,91)

(p,ph1)

t1[z — phi]

(f,92)

(p, ph2)

\y/

t1[z — pho]

(f,93)

(p,phs)

\y/

t1lz — ph

/

O

- (-

Figure 4.7: The net Unf(AN).

pvtl 7t2

(f.01),{f,92)s .o p

(ti, |z — phy])y...:>
(to, |z — phy])y...:> ty
Jiopaltpos i paiti =D
fopiti—p

Jiopita =D
ftc;,p,lvftc;,p,zvftc;,p,:a ity =D

fi ot [2 = phil)) = (f, 91)
fi o2t [z = phal)) = (f, pla)
fipa({tis[2 = phil)) = (f, 92)

W) = fy) p 1@ @ Fy pa(@) @ f o s(@)

o(ta) = £9, 1 ()@ £, 4 2(2) @ £5, , 4(o)
t ¢
2 O(tz)p L(tl) 1

O
fi (@) f2 (@

Figure 4.8: The result of Fold(Unf(AN).
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tq
FOY ey
P

Ps3
9(y, 2) tzh( )
Y,z

Figure 4.9: The net AN.

compatible with the arc-weights of the original net. We can now state the
following proposition.

Proposition 4.1.12
Given a net N = (T, P, 1,0) and a compatible equivalence relation =, we can
construct a folding (fr, fp), such that == P/ ker fp. O

4.2 Foldings in AN

It is interesting also to look also at foldings in the category AN. That is
given an Algebraic net AN a folding f : U(AN) — N, can we construct an
Algebraic net AN' s.th Unf(AN) ~ Unf(AN') and U(AN') ~ N?

This time it is not always possible to fold or to obtain a net with isomorphic
semantics. Consider the Algebraic net AN in figure 4.9. Suppose we want
to fold the transitions ¢; and t; into one. First of all we must make sure
that the sort of places p, and p; are the same, otherwise it is not possible to
construct an output-arc annotation for ¢. Let us suppose, that this is the case
in this example. To construct the annotation functions of AN’ we can use
the idea of adding the set of transitions of AN as a new sort to the signature
of AN'. One can then construct a new function k; for each transition t of
AN’ that is defined by an equation ki(Z,t') = m,(i(¢')). So in our example
we get the net in figure 4.10 (we have only written down the equations for
the k!, the rest of the specification is the same as for AN). However, now
Unf(AN) % Unf(AN'). To see why, notice that we have into k; collected all
the variables in f(x) and k(z,y). Thus we will for the case of t; have Z x Y
assignments, where Z and Y are the sizes of the domains of the corresponding
variables, which then implies that for each t;[# < ¢] in the net Unf(AN) we
have Z x Y transitions in Unf(AN'). To get rid of this problem, we need to
require that Var(t) = Var(t') Vt,t' € [t].

Definition 4.2.1
Given an Algebraic net AN, a folding f : U(AN) — N is an AN-folding iff:

1. Var(t) = Var(t') Vt,t' € [t], and



p P
k;(xvyvzvtl) f(:l?)
k;(xvyvzth) g(yvz)
kf(ﬂf,y,Z,tl) - 7
k;(xvyvzth) - h(y,Z)

Figure 4.10: The net AN'.

2. sort(p) = sort(p') Vp,p' € [p].
O

However there still remains a second problem. Suppose sort(p,) = sort(ps)
contains the elements {a,b}. Then U(AN) has the places {(p2, a), (p2, ),
(p3,a), (ps,b)}, while U(AN') only has {{([p], a),{|p],b)}. The places in AN
must thus be encoded in the annotations. This can be done by defining the
sort of p' to be [p'] x sort ,n([p']). Then because [p'| will be inhabitated by
{p2, p3} we will obtain the correct number of places.

Then we can give the following theorem. Again, care must be taken in the
case where two places are folded onto the same place.

Theorem 4.2.2

Given an Algebraic net AN and an AN-folding f : U(AN) — N, we can
construct and Algebraic net AN’ s.th. Unf(AN) ~ Unf(AN') and U(AN') ~
N.

Proof:

Let AN' = (5,3, FQ,X,T, P,.,o0,sort) be given by:

1. P = Py,

2. T =Tk,

3. X = Xanv Uiz ety s

4.5 = SanUTy UL(Ipl, ) | [p] € P A s = sortan([p])}, and

5. sort([p]) = {[p], sort an([p])-

6. The set of operator symbols consists of the operator symbols of AN,
together with a new constant operator for each transition in AN and
the new operators that express the folding.
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The set of transition symbols is
Sr={t:—>|t] |Vt € Ty} .

To define the operators k& we need the following auxiliary functions:
6,: P, xTy — Py and 6, : P, x T} — P; given by

8wl 1) = (u(t)) Ny (U(F5([p]))

and

8([p], 1) = v(o(t)) N Y (U(f&'([p])) -
The functions give the set of input(output)-places of ¢t in AN that are
mapped to [p] in N.

Then let ni, ., — max{|§;([p], )| | t € [t]} for i € {1,0}. njy, > 1if we
fold several places of a transition onto one.

The set X}, is given by?

Sk = Ak sort(Var(FH([H))) x [t — sort([p]) |
[t] € T7 [p] € P7 1 S n S nft],[p]}?

So we have

Yan = Yan U ETU DIPRS

7. The set of new equations is given by

EQ' = {kiy (1) = mulian(t)) | Vt € [t],[p] € P,[t] € T}

where 7 is the set of all variables Var(f*!([t])) seen as a vector, and 7,
picks the nth pair (p,?) from the expression @ ,(p;.t). Thus

EQan — EQan|JEQ'.

8. Then we have

(= @ el Fpre(w))
Isw<ny

and

o([t] = ® <[p]7f[3],[p],x(x[t]> .

Isesniy )

9. Finally A" =Ty, _,/=.

The fact that N ~ U(AN') is evident. It remains to prove, that Unf(AN) ~

*In the sequel i ranges over {1, 0}
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Unf(AN'). We have:

Pyncany = U Hp} x Alsort(p)}v
peP
TUnf(AN’) = {{[t], assﬁAN,)}

Now Pynanty = Punian)y by construction. The map mp : Pynan) —
Pynicany is given by mp({[p], (p, 1)) = (p, t) because of the definition of kjy ).
by the equations in EQ".

We also have that Tynan) =~ Tunr(an), because Var(t) = Var(t') Vt,t' €
FH([t]) and through the definition of FQ' it is the case that

assﬁAN/ — assﬁAN U{xm — t},

where assﬁAN € [Var(t) = Aan]. The map my : Tunsany = Tunt(ansy is now
given by

mr({t, assAAN)) (|1, assAAN U{xm —t}).

It remains to show that LUnf(AN);h% = hritunf(anty, Where hp — mlﬁl and
hy = mE

R B (tuntcan) ({[t], aSS#EAN, )
— h%(ass*TEAN/(L([t])))
= 30 Q@ Alplassyy  (Kfyp.0))

l<x<n“”]

Now, because each ass’;,
’ TEAN/(X)

nition each k). is a function, we have that ass#EAN(k[t],[p],x) = T (tan(t)),
where t is the ¢ in {2 « t}. So we get:

R Q@ Al assiy, | (Kgp.0))

1<e<nt

is of the form ass’, {zy < t}, and by defi-

- h®( ® ([pl, o (ran(t))),
= (X) 7rn(LAN(t))
LAN(”

= unfan)(hr((t, aSS#EAN»)
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It turns out, that since every Petri net is an Algebraic net through the functor
G, the construction of theorem 2.1.12 is a special case of the construction
presented above.

4.3 Deadlock preserving skeletons

The idea of forgetting the annotations on the Algebraic net and investigating
the resulting skeleton for deadlocks was first proposed by Vautherin (1987).
As pointed out by Findlow (1991), the result is of limited usefulness, as even
if the dead skeletal marking is reachable its pre-image may not be. Vautherin
(1987) gave a sufficient condition on the Algebraic net to have the property
that a marking is dead iff the image of the marking in the skeleton is dead, but
this condition is very restrictive. This observation later led to a set of neces-
sary and sufficient conditions for a net to have a deadlock preserving skeleton
(Findlow 1992), together with a transformation algorithm that unfolds and
then partially refolds the net until it satisfies the conditions. In this section
we will transfer Findlows’ result to Algebraic nets to give an application for
the construction in section 4.1.

The problem with the original idea of analyzing skeletons, as pointed out
by Findlow (1991), is that since it is defined without reference to an initial
marking it does not distinguish between reachable dead markings and non-
reachable dead markings. Thus if we look at the skeleton Uy(AN) and find a
deadlock, it may well be, that a corresponding marking in the net AN is not
reachable. To overcome this problem Vautherin (1987) proposed the following
condition.

Proposition 4.3.1
Given an Algebraic net (AN S, Ty =) if for each transition ¢ and each place p
in *t, with «(t) = (p, f1) @ ... @ (p, f.) we have:

L. (pv Z) # (plvj) = VCL?”(fl) ﬂVCL?”(fj) = g, and

2. a(f;) is surjective in Ty =,

then each marking m is a deadlock in Unf({ANS, Ty ,=)) iff m is a deadlock
in Unf({ANS, —)) (the skeleton). O

Condition 1 states that each arc must have a distinct set of variables, and
condition 2 that for every input place, the corresponding arc annotation has
the whole sort of this places as its domain. Together these conditions are
sufficient to ensure that a marking is enabled irrespective of the identity of
the tokens. However these conditions are very restrictive and there are many
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examples where the net has a deadlock-preserving skeleton although it does
not satisfy the conditions. For example the net N in figure 4.11 has a skeleton
whose every deadlock is also a deadlock in NV although it does not satisfy Vau-
therins conditions. The fact that transition #; does not satisfy the condition
is circumvented by transition ¢, which fires in any mode.

x i ox
x
D1 D2 ts ”
f(z) 4’@ D4
P3 O< T
’ 4’0 Ps
12
sort : s
ops: a: — S
b: —s
f: s—s
eqns . fla) =a
fb) =a

Figure 4.11: A net with DPS that does not satisfy Vautherins condition

The basic idea in Findlows method is to test whether a place is live at a
marking regardless of its color. In our case this amounts to the following
definitions.

Definition 4.3.2

For any marking M of Unf(AN), with a token in place p, let M ({p,t) — (p,t'))
be the marking obtained by replacing the token t in p with ¢. Now define
(p,t) « (p,t') iff for any marking M of Unf(AN) M is live and t € M(p) =
M({p.,t) « (p.,t')) is live. We will say that (p, ) is interchangeable with (p, t')
and write (p,t) < (p,t') iff (p,t) — (p,t') and {p,t') — (p,1). O

Proposition 4.3.3
The relation (p,f) - (p,f’) defines an equivalence relation on the places of
Unf(AN), denoted by Pynrany/ <. O

The following lemma is now easy to see, because only places that are instances
of the same high-level place are in the relation <.
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Lemma 4.3.4
— 1s a compatible equivalence relation. O

The necessary and sufficient condition is then given by the following proposi-
tion.

Proposition 4.3.5
Let N be and Algebraic net. The following is a necessary and sufficient
condition for every dead marking of N to have a dead skeletal image:

e For any place p of N, and any terms £, of sort(p)

(p.1) & (p, ')
O

Findlow (1992) proposes an algorithm for calculating the equivalence relation

«—.

We can now obtain a version of the net AN that has a deadlock-preserving
skeleton through the following.

Theorem 4.3.6
Let AN = (5,2, EQ, X, T, P,i,0,s0rt, Tx) be an arbitrary Algebraic net. De-
fine the net AN’ as the net obtained by folding along

(fp. fr) : Unf(AN) — Unf(AN)/ .

Then AN' has a deadlock-preserving skeleton.

Proof:

Because of lemma 4.3.4 we know that AN’ is well defined and its unfold-
ing is isomorphic to Unf(AN). Then the result follows because of proposi-
tion 4.3.5. a

It should also be noted that since we are only interested in the skeleton, it is
actually unnecessary to construct the specification for AN.

In this chapter we have presented a construction that given a folding re-
turns an Algebraic net whose underlying net is isomorphic to the codomain
of the folding and whose unfolding is isomorphic to the domain of the folding.
We have also shown that this construction gives rise to a functor from the
category PetriG to the category AN, and presented and application for the
construction.

In this chapter we solved the problem of describing foldings of non-strict nets
left open by Smith and Reisig (1987), although in a very concrete manner.
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Due to the non-strictness of our nets and the algebraic nature of the mor-
phism in PetriG we are unable to come up with a classification scheme of
morphisms and the corresponding classification of high-level systems as pro-
posed by Smith and Reisig (1987). Our construction gives just one type of
annotation functions (unary-functions). This is also the reason why the fold-
ing and unfolding functors are not adjoint. There is no way to relate the
specification obtained by folding to the original specification since all infor-
mation about it is lost while unfolding.

A construction similar to the one in section 4.2 has recently also been proposed
by Battiston, Cindio, Mauri and Rapanotti (1991) in the context of so called
minimal models of OBJSA nets. They present a construction that maps
an OBJSA net into an equivalent net that is minimal in the sense that it
has only one place for each net-component. This mapping allows them to
define an equivalence on OBJSA nets that describes the level of abstraction
of the net. Our idea of partitioning PetriG according to the types of the
transitions was inspired by the minimal model construction. However our
folding construction is different because we fold transitions. The minimal
model construction leaves the transitions alone and only folds the places of
each transition.

It should be noted that there are other ways to define the notion of AN-folding
in section 4.2. The requirement that the sorts should be preserved could be
circumvented by introducing new "union" sorts for each place in the folded
net. Then the equations for the operators kft]’[p]’x would have to be modified
to include suitable "injection" operators.

Our construction also has relied heavily on the fact that the morphisms in
PetriG are free extensions of functions. It would be interesting to look at
the construction when the morphisms are allowed to be Mon-morphisms.
However we restricted ourselves to PetriG, since it is not quite clear what the
right notion of folding is in Petri.
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Chapter 5

Linear logic

Linear logic was discovered by J-Y. Girard (1987a) while trying to extend
his coherent semantics, a domain theoretic model of second-order lambda-
calculus (Girard 1986), to a sum of types construct. The sum of types is the
mathematical analogue to the union types of programming languages and its
treatment in denotational semantics is troublesome. Indeed this was also the
case with coherent semantics, but as a side product linear logic was discovered.
The name linear stems, according to Girard (1989b), from the linear algebra
like nature of some of the connectives of linear logic.

This special nature of the connectives gives linear logic a resource conscious
character and linear logic has gained considerable interest from the computer
science community. Applications include:

e implementation models for functional languages (Girard and Lafont
1987, Lafont 1988, Wadler 1990),

e the study of process algebras (Abramsky and Vickers 1990, Abramsky
1988, Abadi and Plotkin 1991),

e logic programming (Andreoli and Pareschi 1990, Cerrito 1990, Harland
and Pym 1990),

e planning in AT (Masseron, Tollu and Vauzeilles 1990),

e and net theory (Asperti, Gorrieri and Ferrari 1990, Brown 1989a, Brown
1989b, Brown and Gurr 1990, Brown 1991, Engberg and Winskel 1994,
Gunter and Gehlot 1989, Marti-Oliet and Meseguer 1989).

The list is by no means meant to be comprehensive.

The applications relevant to our purposes are the applications to net theory.
The main approaches can be classified as:
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e proof theoretic (Brown 1989b, Gunter and Gehlot 1989),
e model theoretic (Brown 1989a, Engberg and Winskel 1994),

e and category theoretic (Brown and Gurr 1990, Marti-Oliet and Meseguer
1989).

In the proof theoretic approach the idea is to try to relate computations in
nets to proofs of linear logic formulae. Brown (1989b) equates a net to a
formula of linear logic and proves that reachability corresponds to provability
in linear logic. On the other hand Gunter and Gehlot (1989) view a net as
a theory. They are able to relate the cut-elimination of a proof (c.f. (Gallier
1987) sec. 6) to the notion of maximally concurrent process.

The model theoretic approaches of (Brown 1989a) and Engberg and Winskel
(1994) are essentially the same. The idea is to generate a model of linear logic
from the behaviors of a net.

The category theoretic approaches can really not be compared as their aims
are completely different. The idea in (Marti-Oliet and Meseguer 1989) is
to take the categories of nets of Meseguer and Montanari and close them
under the new operators of linear logic. The approach of Brown and Gurr
(1990) is based on the Dialectica Categories of Valeria de Paiva (de Paiva
1989a, de Paiva 1989b) which are a category theoretic model of Godels "Di-
alectica interpretation" of higher order arithmetic (Godel 1958). The con-
structs available in these categories give rise to very interesting constructions
on nets that can be interpreted as linear logic connectives. The approach
could be summed up in the slogan "nets are linear logic propositions". Un-
fortunately the approach currently only works with elementary nets.

In this chapter we will extend the model theoretic approach of Brown (1989a)
to cover Algebraic Nets. We first show that the construction presented by
Brown extends to a functor, and by taking the composition of this functor
with the Unf-functor we obtain a model of linear logic from an Algebraic
net. The results presented in this chapter have been reported in (Lilius 1991)
and (Lilius 1992).

5.1 Syntax and proof-theory

Modern introductions to linear logic like appendix B in (Girard, Lafont and
Taylor 1989) introduce linear logic through the sequent calculus; as this is
to date the most accessible way to understanding linear logic. Essentially
the different flavors of linear logic (intuitionistic, classical and predicate) are
obtained by deleting the contraction and weakening rules from the standard
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Axiom: Structural Rule: Cut Rule:

1) AAJ&AFC@ hange) AFA AAFB
DN xXchange
AR 4 AB.AAFC i ALAFD

Logical Rules:

—(1-R) u(l_L)
F1 A1IFA

AFA AFB AABFC

(@ -R) ®
AMAFA®B AMA@BEC
AAFB AFA B.AFC 0

—————(—~-R) (—o
AFA B AA B, AFC
AFA AFB AAFC ABFC (
&-R
AF A&LB ( ) A A&BFC A A&BFC
AF A AFB AAFC ABFC

(@ -R) (¢ - L)
AFA®B AFRASDB AMAGBERC

TAFA AMAEB
—(1-R) —— (Dereliction)
TAFTA ATAEB

ATATAEB AFB
(Contraction) ——— (Weakening)
AMAFB AMAFB

A Ala/z|F B 1 AFA -

A\ 2. AFB Ab\z. A
AMAFB (A-L A+ Ala/z] ]

ANz .AFB ANz A

R)

R)

Figure 5.1: Sequent calculus for intuitionistic predicate LL.

sequent calculus formulations of the corresponding logics. In figure 5.1 the
sequent calculus formalization of linear intuitionistic predicate logic is given.

When comparing the formulation in figure 5.1 to formulations of intuition-
istic predicate logic one can immediately see that the effect of deleting the
two structural rules of contraction and weakening is significant. None of the
standard rules for the logical connectives (A, V, =) are present; they have all
been replaced by new connectives. We will try to give intuitive interpretations
in terms of the behavior of a net to all these connectives in subsection 5.4.
Below we shall just give an informal description of the intuitionistic version of
the calculus. The new connectives are classified as multiplicatives ("tensor" @
and "linear implication" —o), additives ("tensor sum" & and "direct sum" &)
and ezponentials ("of course" 1). The distinction between multiplicatives and
additives is best seen in the sequent calculus by noticing that the additives
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always use the same context, while the multiplicatives are used to combine
different contexts. On an intuitive level the need for the large number of con-
nectives can be understood as follows. Take the introduction rule for the and
A connective in the sequent calculus of intuitionistic logic as given in (Girard

et al. 1989):
AMARC

AAABFC

The correctness of this rule is based on the interpretation of a sequent A F C
as the conjunction of all the premises in A entail C. Thus in the presence of
weakening the above rule is actually an abbreviation for the following proof:

(L1N)

MAEC
————— (Weakening)
AMABEC :

AAABFC

Indeed there exist sequent calculus formulations of classical and intuitionistic
logic that take this approach and simply have one introduction rule for A on
the left (c.f. (Gallier 1987)). Now it is easy to see that without weakening
we have to postulate a rule that allows the introduction of conjuncts on the
left. But, as we have deleted weakening, we want to give the connective a new
name, so that this implicit use of weakening can be distinguished from other
uses. Thus the analogue to our rule above is the rule (&-L) in figure 5.1. On
the other hand the rule
AFA AFB

mAFAAB(

that introduces conjunction of the right does not implicitly use the weakening
rule. This is "represented"” in figure 5.1 by the rule (©-R). Another way of
saying this is that contraction and weakening allow one to think of the list of
premises as sets, while in linear logic premises are to be treated as multisets.

RA)

The removal of the contraction and weakening rules makes the fragment with
the multiplicatives and additives strictly weaker than intuitionistic logic. To
get the strength of intuitionistic logic back the exponential connective "of
course" is introduced. The idea is that we can allow weakening and contrac-
tion, but that we, as previously, want to mark the use, explicit or implicit,
of weakening. The rules of weakening and contraction are put back in the
logic as logical rules for the connective "of course". The sequent calculus in
figure 5.1 lacks rules for negation. Linear negation, that is to be distinguished
from intuitionistic negation, is introduced by first fixing a logical constant —
denoting linear absurdity and then defining A+ — A — —. Using linear nega-
tion intuitionistic propositional logic can now be encoded into intuitionistic



,86,

linear logic. One example of such a coding is the translation
ANB=A&B AVB=1A¢!'B A=>DB=1A—-B —-A=1A-—0—.

Other translations are given in (Girard 1987a). They all have different prop-
erties in the sense that they enlighten different aspects about provability in
intuitionistic logic.

The remaining connectives are the quantifiers. Their names are any \/ and
some \. Girard gives their definition in semantic terms as infinite generaliza-
tions of the additives. The quantifiers have been studied by Girard (1987b),
but only their proof-theoretic properties are investigated. We shall see in
section 5.4 how they can be used in modeling individual tokens in high-level
nets.

To talk about properties of the net we introduce typed intuitionistic predicate

linear logic. The development of the language follows (Goguen and Burstall
1990).

Definition 5.1.1
A first order signature € is a triple 2 = (S, X, IT) where:

1. S is a set of sorts,

2. Yis an S* x S-indexed family of sets of operator or function symbols,
and

3. Il is an S*-indexed family of sets of predicate or relation symbols.

g

The definition of sentences over a first-order signature €2 requires the following
auxiliary definitions. Let A" be a fixed infinite set of variable symbols, and
let X : X — § be a partial function i.e., sort assignment. We will also
think of X as the union of the sets X, = {# € X|X(z) = s}. Define the
S-indexed family TERM x(2) of (€2, X )-terms to be the carriers of Tx(X),
the free X-algebra with generators X. Define the S-indexed function Free on
TERM () inductively by:

1. Free,(x) = x for x € X,, and

2. Free,(o(ty,....t,)) = Ui, Free(t;).

Finally define TERM (2) to be the disjoint union of all TERM (£2). This
means that we always know the variables and their type in a term.
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Definition 5.1.2
A well-formed (£, X )-formula is an element of the carrier of the (one-sorted)
free algebra W F Fx(Q2) having atomic (2, X )-formulae

{m(ty,...,ty)|m €, with u=3s...5, and t; € TERMx(Q),,.}

as generators, and having the following one-sorted signature:

1. constants 1,0, L,
2. binary infix operators @, &, &, —o, and

3. unary prefix operators (\/ ) and (A z) for each = € X.

Let WFF(€)) be the union of all WF Fx(£2).

The functions Var and Free that give the set of variables and free variables
that are used in ()-formulae, are defined inductively by

1. Var(c) = Free(c) = @ for ¢ € {1,0,1},
2. Var(m(ty,...,t,)) = Free(m(ty,...,t,)) = Ui, Free, (t;),

3. Var(AOB) = Var(A)UVar(B), and Free(AOB) = Free(A)UFree(B)
with 0 € {©, &, &, !,

4. Var((\Vz)P) = Var((ANz)P) = Var(P)U{z},
and Free((\/ z)P) = Free((\ z)P) = Free(P) — {x}.

An Q-sentence is a closed Q-formula, that is, an Q-formula P for which
Free(P) = .

The typed linear intuttionistic predicate language over a first order signature
(1 is the set of all )-sentences and it is denoted Lg. When the context is clear
the € shall be omitted. O

The sequent calculus formulation of the axiom system of linear intuitionistic
predicate calculus was given in figure 5.1. To accommodate the typed version
of linear intuitionistic predicate calculus, the rules (\/ - L), (\V - R), (A - L),
and (A - R) need to be modified by adding a type to the variable z.

A Ala®/z°|+ B AFA
‘L = (V-R)
A\ 2 AFB AR\ a. A
AMAFB AF Ala®/2?]
L R)

A,/\azs.Al—B(/\_ AR A A



,88,

5.2 Quantale semantics

Quantales are models of linear logic. They can be seen as an algebraic ax-
iomatization of the sequent calculus rules of linear logic, in the same vein as
boolean algebras are an algebraic axiomatization of classical logic.

Quantales were originally introduced by Mulvey (1986) in an attempt to cast
light on the connections between C*-algebras and quantum mechanics. The
work by Mulvey, and Girard’s attempts to give a semantics of linear logic in
terms of C*-algebras (Girard 1989a, Girard 1990), inspired several authors
to study quantales and their relation to linear logic (Abramsky 1988, Yetter
1990).

A quantale is a complete lattice enriched with a monoidal operation.

Definition 5.2.1
A commutative quantale ) is a quadruple (@, <, @, I) such that:

e (), <) is a complete join semi-lattice with top (T ) and bottom (—),
e ((),®,I) is a commutative monoid, and

e the monoidal operation (’tensor’) distributes over joins, i.e. for J an
indexing set:
a@\/ ;=\ (a®b)).
jed JjeJ
[l

Every monoid gives rise to a free quantale as shown by the following example.

Example 5.2.2

Let N = (T, P,1,0) be a Petri net. Take the set of all markings of then net
mark(N). The markings of the net are elements of a monoid (the monoidal
operation will be denoted by + to distinguish it from the operation in the
quantale). We can easily extend this monoidal operation to sets of markings,

i.e. for P,Q) C mark(N) define

P+Q—=1{ptqpePqeq}.

Let P(mark(N)) be the powerset of the markings of N and 0 be the zero
marking i.e. the unit of the monoid P". Then

(P(mark(N)), +,{0})

is a commutative monoid. Finally because of the natural subset ordering on
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the set P(mark(N)) we have that the tuple
¢(N) = (P(mark(N)), C, +,{0})
is a commutative quantale. Furthermore the assignment
¢ : N = (P(mark(N)), S, +,{0})

defines a function from |PetriG| to |Quant|. O

As we shall be working with maps between quantales we need a notion of
morphism for quantales.

Definition 5.2.3
A morphism of quantales is a function f : ); — (), that is monotonic and
preserves \/, @, and I. O

Using this definition of a morphism the following is obvious.

Proposition 5.2.4
Quantales and their morphism form a category Quant. O

5.3 Quantales and nets

In this section we shall show how given a net we can construct a quantale
that describes the behavior of the net.

The construction described in this section was independently discovered by-
Brown (1991) and Engberg and Winskel (1994). The intuitive idea underlying
the construction is that linear implication should correspond to reachability
of markings. General formulas of linear logic will then be statements about
the reachability of markings.

To construct a model of linear logic from a net we shall proceed as follows.
First from the set of markings of the net mark(N) the free quantale ¢(N)
over mark(N) is generated. Then we prove that the reachability relation
between markings defines a special kind of map between quantales, a quantic
nucleus, on the quantale ¢(N). Finally we will use a result by Niefield and
Rosenthal (1988) to obtain our model. In the model the interpretation of an
atomic proposition p is the set of all markings that are reachable from the
corresponding place p in the net (Brown 1991) or, the set of all markings
that are a prerequisite for the fact that place p become marked (Engberg and
Winskel 1994). Our contribution is the proof that both constructions yield a
functor from the category PetriG to the category of quantales Quant. The
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omitted proofs can be found in chapter 7 of (Brown 1991), and (Niefield and
Rosenthal 1988).

Recall from example 5.2.2 that net N each defines a quantale ¢(N). This
quantale is however not the quantale we want, because its elements are arbi-
trary sets of markings and thus these sets do not represent the behavior of
the net. What we need to do, is to narrow down the allowed sets of markings
so that in a set M, with a,b € M. either a is reachable from b or b is reach-
able from a. Then the subset ordering of these sets of markings represents
the reachability relation. Formally this construction is achieved by defining a
quantic nucleus on the quantale ¢(N).

Definition 5.3.1
Let @ be a quantale. A function j : () — @ is a quantic nucleus iff

a<b= jla) < jb) j is monotonic
a < j(a) j is increasing
Jla) = j(j(a)) j is idempotent

and
jla) @ j(b) < jla®@b) for all a,b € Q.

g

The first three conditions state that j is a closure operator. The final condition
makes j a looser notion than a morphism, because it is not required to preserve
the monoidal operation.

The crucial element of the construction is the fact that the reachability re-
lation gives rise to a quantic nucleus. First of all we need to define a new
ordering relation on markings which then also extends to sets of markings.

Definition 5.3.2
Let my, my € mark(N). Define

my < my iff my is reachable from m, .

Let My, M, be sets of markings. Then M; < M, iff for every m,; € M, there
exists my € M, such that m; < ms,. O

Given an ordering we can always define a downward closure operator. We
shall call this operator forward evolution.

Definition 5.3.3
Let N be a net. For A C mark(N) the forward evolution of A is the endo-
function:

J(A) ={m|Fae A:m<a}.
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g

The meaning of the function | is that it maps a set of markings M to the set
of markings that are reachable from the markings in M.

It is obvious that

A<B iff ACB
when A, B are downward closed.

This gives us our quantic nucleus.

Proposition 5.3.4
L :g(N) — ¢(N) is a quantic nucleus. O

Now proving that closure under reachability defines a quantic nucleus is really
not enough, because a quantic nucleus on a quantale () is not necessarily a
quantale endomorphism. But the following theorem by Niefield and Rosenthal
(1988) tells us that a quantic nucleus is a quantale morphism, although not
an endomorphism.

Proposition 5.3.5

Let @ be a quantale and j : ) — @ a quantic nucleus. Then the image of
J is a quantale Q; with a ©®; b = j(a @ b) and j : ) — ; is a quantale
morphism. O

So our wanted quantale is the image of the operation |[(¢(N)).

Proposition 5.3.6
The tuple (|(¢(N)),C,®@, [(0)) where the operation M; @ M, is defined as

M, + M,) is a quantale. O
LM, 2) q

The elements of the quantale are sets of markings closed under forward evo-
lution and the ordering on the sets is subset inclusion. Engberg and Winskel
(1994) take the dual interpretation. They define the ordering <’ on markings
by

m<'m"iff m—->m.

Then they also take downward closed subsets of markings. It is easy to see,
that this corresponds to taking upward closed subsets with the ordering of
the previous section, that is

T(A) ={m|Fda€ A:a <m}.

It is routine to verify that T defines a quantic nucleus.

What is the difference between these two interpretations? The main differ-
ence is in the intuitive interpretation of the connectives. A proposition is
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interpreted by its possible gain in the case of forward reachability and as the
sufficient requirement in the case of backward reachability. In terms of linear
logic formulas the difference is best seen with the way we state that b is reach-
able from a. In Engberg’s and Winskel’s approach the statement is expressed
by the formula @ — b. As presented here the statement is expressed by the
formula b — «a.

The rest of this section is concerned with the proof of the functoriality of |.
The result is intuitively clear since a net morphism preserves the reachability
and thus should in some way be compatible with the closure operators. The
main question then is that of the definition of | for a net morphism. The
obvious extension of f to quantales does not work, because:

Lemma 5.3.7

Let f : N — N, be a PetriG morphism. Then generally not f(M) =
IM2(f(M)), where M is a set of markings of Ny and | is the quantic nucleus
generated by the reachability relation of N,. O

This is so, because if for example the net V; is a subnet of N, then clearly the
set of markings reachable from m in N; is smaller than the set of markings
reachable from m in N,. But on the other hand it would be reasonable to
conjecture that by mapping a closed set of markings in N; to the closure of
the corresponding markings in N, we would get a functor. Indeed this is the
case as the following theorem shows.

Theorem 5.3.8

Let f : Ny — N, be a PetriG morphism, and let | ¢(Ny), | ¢(Ny) be the
corresponding net-quantales. Then the assignment | (f)(M) = |2 (f(M)) for
M € | g(Ny) defines a functor PetriG — Quant.

Proof:
Essentially we have to prove, that [(f) : | ¢(N;) — | ¢(N,) is a quantale
morphism. In the sequel let A, B € | ¢(N;).

1.

L(f) is monotonic:

A<B ACB
f(A) C f(B)
No No

¢ Ul
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2.
L(f) preserves joins:
WAAVE) = T(f(AVB))
— TV i)
= Ty Tim)
— LAV LB).
3.

l(f) preserves the tensor:

W)(AeN B) = l(f(l(fHB))
(1(4+B))
(f(A+B))

<—2*h ~—

-~ =
P
un
=

Sl i A i S
-

1N
=
=

Thus [(f)(A @y, B) = |™(f(A) + F(B))).

T 1By =

In other words [(f)(A @y, B) = L(f)(A) @n, L(f)(B).
4. |(f) preserves the unit:

WA = LTy € TCHF) = Lo = Iy, .

But clearl‘y C |™(0) which implies f(0) C f(1™*(0)), so that
Iy, C 1 (F(17(0)) = L(f)(Iy,). Thus

WHTy,) = Iy, -
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5.4 Algebraic nets and linear logic

In this subsection we will show how linear logic can be used to express proper-
ties of algebraic nets. To formulate properties of an algebraic net in a language
Lq we must define how the algebraic net generates a language.

Definition 5.4.1
The first order signature )4y generated by an algebraic net AN is given by

1. S: SAN,
2. ¥ = EAN, and

3. II = P where P is the set of places of the net.
The language generated by €24y will be denoted by L 4. O

Notice that all the predicates in our language will be monadic predicates.

Recall that the composition |[(Unf(A)) defines a quantale Q) 4y for the net
AN. The language L on can now be interpreted in the quantale ) 4.

Definition 5.4.2

The interpretation of the language L 4y in the quantale () 4y is given by the
following rules. For reasons of clarity we have omitted explicit mention of the
quantale in the interpretation.

o= {ﬁglw(t):?ﬂ«w iy
9. [1] = {the set of all reachable markings of the net},

3. 10] = @,

411 - 1),

5. [A® B] = [{a + bla € [A] and b€ [B]},

6. [A&B] ~ [A]NIBI.

7. 4% B] - [AJUIB].

S. [4 - B] = U{ICIIC © 4] C [B]}.

9. [(V2*)P] = N.exl Plz/c]], where c is of type ¢ :— s, and
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N1 N2
a a C
b b d

Figure 5.2: Nets showing the difference between the two choice operators.

10. [(Az*)P] = U.eslPlz/c]] with ¢ of type ¢ :— s.
U

The idea behind this interpretation is the following. A predicate describes a
place. The denotation of the predicate 7 is the set of all markings obtainable
from the possible markings of the corresponding place, in other words the set
of resources we could obtain if we had 7. The other connectives and constants
can now be understood as follows.

The constants 1,0 are the top and bottom of the quantale respectively. The
constant I is the set of markings reachable from the empty marking. The
interpretation of |A @ B] expresses the fact that to obtain some marking
m € |A @ B], we need resources ¢ € [A] and b € |B] simultaneously. The
additives are interpreted as choice operators. If we have a consequence m of
A& B, we know that regardless of our choice of A or B m will always be a
consequence of A and B. On the other hand if m is a consequence of A & B
it is obtained a non-deterministic choice between resources A and B. Thus
it must be a consequence of either A or B. The nets in figure 5.4 show the
difference between the two connectives. For net N; both ¢ € [a & b] and
¢ € [a&b] because we can obtain ¢ from either a or b, while for N, only
¢ € |a @ b] because ¢ can only be obtained from a.

The interpretation of A — B expresses the idea, that no consequence of
A — B can give us more when taken together with some ¢ than we would
gain by having the appropriate b € [B]. This gives us the nice lemma

Lemma 5.4.3
= m — m' iff marking m is reachable from m'. O

The interpretation of (\/ z)P is the set of markings that are reachable re-
gardless of the identity of the specific markings of P. That is each marking
m € [(V x)P] must be a consequence of [ass’ |{.1(P)] for any legal assign-
ment ass’ | (3. The interpretation of the A-quantifier (some) is analogous.
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Semantic entailment in the quantale is defined as
Alo...0A, FAIff [Ao...o[A4.] C[4].

The truth of an {2-sentence with respect to a quantale () 4y is defined in terms
of the ordering relation and the interpretation of the logical constant I.

Definition 5.4.4
An Q-sentence P is true in a quantale Qay (i.e. Qany | P)

iff [1] C [P].

We shall also say that the property P holds in a net AN iff [I] <o, [P]

Proposition 5.4.5
The interpretation as given above is sound with respect to the sequent calcu-
lus,

Aoy AP A A 0. 04, | A.
O

Some examples will illustrate the definitions. Let AN be the dining philoso-
phers net of figure 2.1 on page 10 with the interpretation of figure 2.4. We
omit some of the more tedious calculations.

Example 5.4.6
Philosopher 1 can eat if he can get both forks:

Qan [ e(ph1) — p(ph1) @ f(g1) @ f(g2),

because

[p(ph1) @ f(g1) @ fg2)] = {(p.ph1) + (f,91) + (f.92)s (es ph1) },

and

le(phi)] = {{p, plr) + (£, 91) + {f, g2). (€. ph1) }
clearly imply that

0 € {[CTIIC @ e(ph)] € [p(ph1) @ f(g1) @ flg2)]} -



,97,

Example 5.4.7
If philosophers phy and ph, are hungry and there are enough forks it is possible
for exactly one philosopher to start eating:

Qan |- e(phy) © e(phy) —o p(phy) @ p(pha) © f(g1) @ f(g2) @ f(gs),

because
A =e(phi) @ e(pha)] = [e(phi)] U [elpha)] =
{<67ph1>7
(€, pha),
(D, ph1) + (fr91) + ([, 92,
(p,ph2) + (fs92) +{f593)},
while

B = ﬂP(Phl) ®P(Ph2) %y f(gl) %y f(gz) %y f(gs)]l —
{{p,ph1) +{p, pha) + (f, 91) + (. 92) + {fs95), (e, ph1), (e, pha)},

so that
{ICC @ Al € B} = {0, {f, 92), {f> 92)}

and thus

0 € [e(phy) @ e(pha) —o p(phy) @ p(pha) @ f(g1) © f(g2) @ fgs)] -

Example 5.4.8
But

Qan £ e(ph1)&e(phy) —o p(phy) @ p(phe) @ f(g1) © f(g2) © f(gs),

because
le(phi)&e(pha)] = [e(ph)] N [e(phe)] = @
and thus

0 & [e(phy)&e(phy) —o p(phy) @ p(phsy) @ f(g1) @ f(g2) @ f(gs)] -

What this means is that it is not possible for two philosophers to be eating
at the same time in our model if we only have 3 forks. O
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Example 5.4.9
For any philosopher there is some fork that is not needed for the philosopher
to start eating:

Qan |-\ 2" Nyort L e() © fly) — pla) @ f(g1) © fg2) © flgs) -

The interpretation of this formula is complicated and we shall only sketch the
details.

[\ 2 Ayt e(a) @ Fy) — p(x) @ Flg1) © Flg2) © Flga)] =
U (N |[6 phi) @ f(fi) — p(phs) @ f(g1) @ f(g2) @ flgs)])

phi€phil fi€fork

Now,

[p(phi) © f(g1) @ f(g2) © flgs)] =
Upsphi) + (fo91) +(f,92) +{f,95), (e;phi) + ([, Giromoas) }

and

le(phi) © f(g)] =
Up,phe) +{f,9:) +{f, Git1moas) + (f,9;). (e, phs) +{f,9;,)} -

One can now see, that

0 € [e(ph) @ flg;) — p(ph:) @ flg1) @ f(g2) © f(gs)]

for the pairs (phy, f3), (ph2, f1), (phs, f2) and this then leads to the result that

0\ e Ay e(@) © fy) —o p(x) @ flg1) © fg2) @ flga)] -

Example 5.4.10
The following two formulas describe transitions ¢; and ?, respectively:

Qan F Va™' . e(z) — p(x) @ f(I(x)) © f(r(x)),
Qav | V™' pla)@ fU(z) @ f(r(x)) — e(z).

because

[p(z) @ f(l(x)) @ f(r(z)] =
U {p.phe) + (£.9:) + (f+ Git1moas)- (€. phi) .

i€{1,2,3}
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and thus ’
0 €[V e(w) — pla) @ fU(x) @ f(r(a))] .
Analogously for t,. a

Notice also the form of the lhs of the implication in example 5.4.9. We had to
explicitly mention the left over fork, although what we would have wanted to
be able to say something like "from the initial marking any philosopher can
start eating'". For this end we need a "wildcard" marking.

Lemma 5.4.11
[m @11 = Lim'|m’ < m}.

Proof:

[m@1l] = [{m+0|be]|l]}
— Ul <m} .

Example 5.4.9 now becomes:
Qav Ve e(a) ©1 — p(a) © f(g1) © flg2) © fgs) -

In this chapter we have shown how to extend a correspondence between linear
logic and Petri nets to a correspondence between intuitionistic predicate linear
logic and algebraic high-level nets. The examples presented suggest that
linear intuitionistic predicate logic could be used as a foundation for a logic
to reason about high-level nets. As such the logic is not very expressive,
because it is not possible to reason about transitions, nor is it possible to
express negative facts about the net. However Engberg and Winskel (1994)
have recently discovered that in so called atomic nets (a net is atomic iff
whenever M — 0 then 0 — M) we have that |= A&I — 0 iff [/~ A, thus
making it possible to assert the non-reachability of markings. Since most
nets occurring in practice are atomic, it seems useful to further study the
expressiveness of linear logic. On the other hand linear logic also contains
features whose importance for reasoning about nets is not yet clear, eg. as
pointed out by C. Brown (1991), the interpretation of the choice operators is
problematic, because they can be thought of as internal and external choice
(Marti-Oliet and Meseguer 1989). But this distinction is not very sensible
in Net theory because one makes the assumption that no external observer
can induce a transition to fire. Also an interesting observation one can make
is that that linear predicates seem to correspond to the dynamic predicates
used in the definition of Pr/T-nets (Genrich 1986).
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Chapter 6

Conclusions

One of the aims of this thesis was to try to answer the question “What is a
high-level net?”. We have tried to answer the question from several different
angles. However since we actually have worked only with Algebraic nets, we
also have to answer the question to what extent we really have said anything
about high-level nets in general. What we feel we have done, is tried to choose
a high-level net formalism as simple as possible, so that we can concentrate
on the basic common aspects of all known high-level classes, namely the un-
folding semantics, the idea of “symbolic firing” through substitution, and the
motivation of the nets through folding.

In chapter 2 we studied the unfolding construction of Algebraic nets. However
at each stage we tried to identify those components of the construction that
were not dependent on the specification formalism used in the annotations.
As we then showed the only component in the unfolding construction that
needed to be redefined was the notion of a consistent transition assignment.
For both Algebraic nets and Order-sorted Algebraic nets it is simply the set
of all assignments to the variables of the transition, while for Algebraic nets
with conditions it is the set of those assignments that satisfy the conditions
on the transition. An interesting avenue for further research would be to try
and abstract the notion of consistent transition assignment to see whether
other high-level like net-classes, like timed-nets or stochastic nets could be
made to fit into this framework.

In section 3.1.2 we described a high-level net as a graph in the category of
monoids over a substitution system, thus formalizing the idea of “symbolic
firing”. Although we have again used Algebraic nets as our example formal-
ism, we were able to describe the construction of an Algebraic net in terms of
a tensor product of the sketch of a substitution systems, the sketch of graphs
and the sketch of commutative monoids. By suitably changing the substi-
tution system (in the case of Algebraic nets it is many-sorted algebra) we
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obtain other high-level net formalisms. This abstraction also suggests that
some new formalisms, that cannot quite be considered high-level Petri nets,
are obtained by changing either the sketch of graphs or the sketch of commu-
tative monoids. By replacing the sketch of monoids with some axiomatization
of a process algebra we could obtain a categorical semantics of this process
algebra with value passing. However it is yet not quite clear what a suitable
replacement for the sketch of graphs would be so that the formalism would
still retain its net-like character.

In chapter 4 we described a high-level net as a morphism between two Place/-
Transition nets. Although the construction is only given for Algebraic nets
we can divide it into two parts, one generic and the other specific to Algebraic
nets. The way the splitting of the annotations and the signature of the Alge-
braic net are calculated is generic. The same principle can be used with any
other formalism that uses a similar notion of morphism. But on the other
hand the coding of the folding into the equations is naturally very specific
to many-sorted algebra. However it should be noted that the construction
as given here codes everything into annotation functions and that the result-
ing annotation functions are surjective. Thus it is not possible to construct
conditions on transitions or annotation functions that are defined only on a
subset of the domain.

Finally in chapter 5 we described high-level nets as set of formulae of linear
logic. Although we only gave an encoding of Algebraic nets as formulae of
linear logic it is clear that both Order-sorted nets and Algebraic nets with
conditions can also be translated into formulae of linear logic. This can be
done by either first translating the nets into Algebraic nets or by extending
the encoding to accommodate subsorts or the conditions. Subsorts are added
by simply changing the definition of the language, while conditions can be
incorporated as extra predicates in the antecedent of the linear implication
that describes the transition. However the exact details of these constructions
are left for further research.

Let us now look at the two other prominent net-classes, Pr/T-nets and Co-
loured nets, and our reasons for not choosing them as the starting point of
our investigation. Pr/T-nets combine first order logic with C/E-systems in
their basic form. Pr/T-nets have been extended to multi-sets of tokens, this
extension however has been done by adding “tags” to the markings, ie. 2
in our formalism would become (x,0) + (x,1) in a Pr/T-net. The formalism
of Pr/T-nets also contains several features like conditions on transitions and
conditional sums, that make the modeling of a systems easier. The main
reason for not choosing to work with Pr/T-nets was the treatment of multisets.
Since we wanted to extend the Petri Nets are Monoids approach we needed a
high-level net class that was directly built on P/T-nets. Coloured Nets do use
multisets of tokens in a natural way. However for Coloured Nets “the set of
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allowable expressions and predicates is not explicitly given”(Jensen 1986, p.
250). For example the Coloured Nets in the Design/CPN tool use a version
of Standard ML (Milner, Tofte and Harper 1990) as the annotation language.
So we feel that the advantages of Algebraic nets are that it is based on ideas of
the Petri Nets are Monoids approach and that there exists a well understood
theory of substitutions in many-sorted algebra, so that we have a very natural
mathematical framework in which to do our investigation. However given
suitable formalizations or translations of the annotation formalisms of both
Pr/T-nets and Coloured Nets the results presented in this thesis should be
applicable to these net-classes.

Let us finally briefly look at the possibilities of exploiting the results presented
in this work for the development of tools. The unfolding semantics described
in chapter 2 is directly applicable to the development of analysis tools. This
idea has already been implemented in the tool PROD (Gronberg, Tiusanen and
Varpaaniemi 1993). Clearly the idea of “symbolic firing” described in sec-
tion 3.1.2 can also be used to build an analyzer for high-level nets. However
it is more efficient to use the unfolding semantics because the test for the
enabledness of a transition involves the calculation of unifiers. As a tran-
sition can be enabled many times by the same transition assignment these
calculations can become very costly. By first unfolding the net the unifiers
are calculated only once. On the other hand the “abstract” arrows present in
the structured transition system semantics, that were hinted at at the end of
section 3.1.2, should be investigated further. They might provide some pos-
sibilities for more efficient reachability analysis. As shown in section 4.3 the
folding construction described in section 4.2 can be used to calculate dead-
lock preserving skeletons. However to evaluate the practicality of this method
the complexity of calculating the relation < should be examined. Finally in
chapter 5 we describe an axiomatization of high-level nets. From the point
of view of tools, this axiomatization is not very promising. However, the use
of linear logic as a query language for an reachability analysis tool should be
explored further.
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Appendix

The appendix contains short reviews of category theory, the Petri Nets are
monoids approach, and universal algebra. The aim is to give the basic def-
initions and fix the notation. A tutorial type of presentation is not aimed
at.

A.1 Basic category theory

The basic idea underlying category theory is that the crucial mathematical
properties of a given subject do not reside within the structures in question,
and even less in the particular representation chosen for them, but rather
in the mappings that preserve those structures. Thus category theory em-
phasizes mappings before objects. Indeed most of category theory could be
written without direct reference to objects.

Another equivalent way to characterize category theory is as a “diagrammatic
language of arrows”. In this language mappings are represented by arrows
(a mapping f:a — b is a EN b). Most theorems then are theorems that
state equality of arrows under certain conditions. These are represented by
commutativity diagrams. Eg. if we require that f;g = h;j with f:a — b,
g:b—c,h:a—10,j:b — cwestate that the diagram below

f

commautes.

In this appendix we give a short introduction to the basic concepts in category
theory. The main emphasis is on the intuition behind the definitions. Most
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examples will be with sets and functions, but some knowledge of algebra is
required. This appendix only discusses concepts relevant to this work.

The appendix is structured as follows. We first define the notions of category,
functor and natural transformation. The we discuss limits and co-limits,
which are ways of expressing combinations of objects. Finally we define the
notion of adjunction. For missing proofs we refer to (MacLane 1971).

A.1.1 Basic category theory

The aim of category theory is to study the mappings between mathematical
objects. We start this introduction by defining a category.

Definition A.1.1
A category C is a collection of objects |C| such that

e For each pair of objects (a,b) of C a set Morc(a,b) called the set of
morphisms from a to b, with Morc(a, b) and Morc(a', V') disjoint unless
a = &' and b = b in which case they coincide. We shall take the
naive view that all sets are “proper” sets. We will not encounter any
foundational problems with this.

e For any three objects a, b, ¢ of |C| there is a mapping (composition)
Mor(a,b) x Morc(b,c) — Morc(a, c)

described by (f,g) — f; g, (notice that the order of the composition is
written in the order of the arrows), with the following properties:

— For each object a there is a morphism id, € Morc(a, ) which
is right identity under ; for the elements of Morc(a,b) and left
identity under ; for the elements Morc(b, a).

— ; is associative in the sense that when the composites f;(g; ) and
(f;9); h are defined they are equal.

We will often use the notation f : @ — b and a L b for the morphism sets
and call them arrows. The use of small letters for both objects and arrows
is to emphasize the fact that due to the identity morphisms objects can be
manipulated as arrows. Thus ordinary function application f(z) can and will
sometimes be written x; f. O

To make the above abstract definition clear and to convince the reader about
its generality, we give some examples
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Example A.1.2

(The category of sets) The category Set of sets and their mappings. The
objects are ordinary sets and the morphisms are ordinary mappings between
sets. Composition is the usual composition of mappings. O

Example A.1.3
(Preorder) Let (E, <) be a preordered set. We can view this preordered set
as a category E as follows: take as objects of E the elements of £ and for

a,b € E define
) {(a, )} ifa=b
Morg(a, b) = { b otherwise.

Composition is defined by the transitivity of < and the identity morphisms
by the reflexivity of <. O

Example A.1.4

(Monoid) A monoid is a set X equipped with a function @ : X x X —
X (monoid multiplication) and a distinguished element I (monoid identity)
subject to the two laws:

r@(y®z) = (r@y)®z forall z,y,z
r@I= o =1®ax forall x.

Now a monoid is a category with one object. To see this call the object
A, then let X = Mor(A, A) where @ is composition and I is the identity
morphism. O

Monoids and preorders viewed as categories are at opposite extremes. A
monoid has one object and many morphisms, while a preorder has at most
one morphism between objects.

Category theory tries to express every mathematical statement as a statement
about arrows. This has the advantage, that a proof of the statement also gives
a proof of the statement obtained by reversing the arrows. Usually we will
“dualise” every statement and definition immediately. We do this for the
definition of a category.

Definition A.1.5

The opposite category C°? is formed by turning around all the arrows in
C. a
As we are interested in studying structure preserving mappings between ob-
jects it seems natural to define mappings between categories. These are called
functors.
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Definition A.1.6

(Functor) A (covariant) functor from a category A to a category B is a pair
of mappings that assign to every object a € |A| an object F(a) € |B| and to
every morphism f: ¢ — b € Mora a morphism F(f): F(a) — F(b) € Morg
such that:

e F(id,) = idp(, for all a € |A|

e if f;gis defined in A then F(f); F(g) is defined in B and F(f); F(g) =
F(f;9).

We use the notation F' : A — B for a functor F from A to B. A contravariant
functor F': A — B is a covariant functor F': A — B, O

Thus a functor is a mapping that respects compositions and identities. Two
special kinds of functors deserve mentioning. A bifunctor is a functor
F:AxB — C. An endofunctor is a functor F': A — A.

Example A.1.7

(Monoid homomorphisms) Let M and N be monoids viewed as categories.
Then a monoid homomorphism f : (M, @y, Iy;) — (N, @y, Iy) is a functor
H: M — N. O

Example A.1.8

(Monotonic functions) Let (A, <4) and (B, <p) be two preorders. Then a
monotonic function f : A — B defines a functor as the reader easily can
check. O

Having defined mappings between categories (i. e. functors), it is natural to
ask whether we could also define mappings between functors. This is indeed
so and these maps are called natural transformations.

Definition A.1.9

(Natural transformation) If F, G : A — B are functors then a natural transfor-
mation from F to G is a rule that assigns to each object a € |A| a morphism
Na : F(a) = G(a) € Morg in such a way that associated with every morphism
f:a— b€ Mora there is a commutative diagram:
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Example A.1.10
A good example of a natural transformation is the evaluation of a function

at an argument. Let B denote the set of all functions from set A to set B.
Now define eval : B4 x A — B as eval(f,a) = f(a).

Fix a specific A. The map B — B4 x A extends to a functor F : Set — Set.
So for this specific A eval : F' — Ige. This is equivalent to the following
diagram:

BAxa e p
F(f) I(f)
CAx A C.
evaly,
So we see that eval is a natural transformation. O

This process of defining mappings between objects and then taking these
mappings as objects and defining new mappings between these could be con-
tinued “ad nauseum”. In practice the usefulness of mappings between natural
transformations (or higher order mappings) is very limited and we shall not
encounter them in this work. Instead we turn to another important issue in
category theory.

A.1.2 Limits

In the previous paragraphs we have discussed many different kinds of map-
pings as the basic ingredient of category theory. Category theory is also con-
cerned with characterizing mathematical constructions in the arrow-theoretic
language. As it turns out the categorical notion of universality is disguised
in many mathematical constructions: equivalence relations, complete metric
spaces, etc. The concept of a universal construction allows us to describe
these constructions in an uniform manner as universal objects or universal
arrows. Universal arrows are usually described by statements like “for every
f there exists a unique f' such that uf' = f 7. The arrow u is then an uni-
versal arrow. We will here concern ourselves with a special kind of universal
constructions, namely li7mits and their duals co-limits. Below when we use
the word limit, we usually mean both limits and co-limits. Our first example
of a limit is the categorical product, a generalization of a cartesian product
of two sets.

Definition A.1.11
(Product) Let a,b be objects in C. A product of ¢ and b in C is an object
a X b with two morphisms 7 : @ X b — a, 72 : a X b — b, called the projections
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(left and right), if for every other object ¢ in C and every pair of morphisms
(f,g) with f:¢— a,g:c— b there exists a unique morphism h:c— a X b
such that the following diagram commutes:

™ T2

o

Again we dualise:

Definition A.1.12

(Coproduct) Let a, b be objects in C. A coproduct of a and b in C is an object
a + b with two morphisms ¢y : @ — a + b, 19 : b — a + b, called the injections
(left and right) if for every other object ¢ in C and every pair of morphisms
(f,g) with f:a — ¢,g:b— ¢ there exists a unique morphism h:a+b— ¢
such that the following diagram commutes:

51 %)

b b

a

Y

\4
»

a -+
f;‘Lg'

l

C

Example A.1.13

In Set a product is simply the cartesian product of two sets. A coproduct is
the disjoint union of two sets. In a preorder viewed as a category products
and coproducts correspond to join and meet respectively. O

A simpler kind of limit is obtained by constructing an empty coproduct. In
Set an empty coproduct consists of an empty set. The two injections are
identical to the identity morphism. So the only interesting thing left is the
universal arrow. Formally:

Definition A.1.14
(Initial object) An object T of C is said to be an initial object if, for every
other object x in C, there is only one arrow from T to z. O
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Again dually we can ask what an empty product is and end up with the
following;:

Definition A.1.15
(Terminal object) An object — in C is said to be a terminal object if for every
other object = in C there is only one arrow from x to —. O

Example A.1.16
In Set the empty set ¢ is initial and {¢} or any other singleton set is terminal.
Because of isomorphism it does not matter which singleton we choose. O

Definition A.1.17
Given in C a pair of arrows f, g : ¢ — b with the same domain ¢ and codomain
b, an equalizer of (f,¢) is an arrow u : ¢ — a (or, a pair (e, u)) such that

o u; f —uy,

e if h: ¢ — a has h; f — h; g then there exists an unique arrow h':¢c — e
such that 2';u — h. This is displayed in the commutativity requirement
of the diagram below:

Definition A.1.18
Given in C a pair of arrows f, g : ¢ — b with the same domain ¢ and codomain
b, a coequalizer of (f,g) is an arrow u : b — e (or, a pair (e, u)) such that

o fiu—g;u,

e if h:b — chas f;h — g;h then there exists an unique arrow h' : e — ¢
such that 2 — u; h'. This is displayed in the commutativity requirement
of the diagram below:
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g

The coequalizer corresponds to an equivalence relation. In set-theoretical
terms the coequalizer identifies those elements of b that are the image of the
same x of a under the functions f and g.

Another important type of limit is the pullback.

Definition A.1.19

Given in C a pair of arrows f : ¢« — cand g : b — ¢ with the same codomain c,
a pullback is given by an object @ X .b and arrows ¢1 : aX.b — a, i3 : aX.b— b
such that:

® 115 f — 1259, and

e given any other object d and maps k : d — 0,1 : d — a there exists a
unique map h : d’ — a X, b such that the following diagram commutes:

g

The general notion of limit and its dual co-limit are based on the definition
of a cone in a category, which is a special kind of a diagram.

Definition A.1.20

A diagram D in a category C is a graph homomorphism D : I — C, where C
is the underlying graph of the category. A commutative cone with vertex W
over a diagram D : I — (' is a natural transformation « from the constant
functor with value W on I, to D, which implies that the following diagram
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must commute for all e : ¢ — j:

D(q)
v A4
oz'i v
W D(e)
aj
D(j)

Definition A.1.21

A commutative cone over a diagram D is called universal if every other com-
mutative cone over the same diagram has a unique arrow to it. A universal
cone, if it exists, is called the limit of the diagram D. O

A co-limat 1s a universal co-cone.

A.1.3 Adjunctions

Concepts that can be viewed as special cases of adjunctions were known long
before the advent of category theory. One of the more classical examples is
that of a Galois connection between two preordered sets.

Definition A.1.22
Let AL Band B4 A be monotonic functions between two preorders A —
(A, <4),B=(B,=35). The pair (f, g) is an adjunction (Galois connection) iff

1. f and ¢ are monotonic and

2. the relations f(a) <p b and a <4 g(b) are equivalent for all pairs of
elements (a,b) € A x B.

g

By regarding a preorder A as a category A with [Mora(a,b)] = 1 (as in
the example on page 105), when ¢ <4 b (transitivity and reflexivity define
composition and identities) and taking f and ¢ as functors F': A — B and G :
B — A, the above definition transfers immediately into a category theoretical
setting, allowing us to generalize the notion of a Galois connection to an
adjunction as follows:
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Definition A.1.23

An adjunction between categories A and B is a quadruple (F, G, n,c) where
F:A — Band G:B — A are functors, the left and right adjoint respectively,
and n : 1, — FG and ¢ : GF — 1p are natural transformations (unit and
co-unit) such that:

(Gn);(Ge) = g,
(Fn);(Fe) = 1p.

g

The most important property of an adjunction is expressed by the following
fact.

Theorem A.1.24
Let F': A — B and G : B — A be functors such that F' is left adjoint to G.
Then F preserves co-limits and G preserves limits. O

A.2 Petri Nets are Monoids

In this appendix we will look at a category theoretic model of Petri nets,
where the algebraic structure in which multisets are coded is that of a monoid,
which has been proposed by Meseguer and Montanari (1990). It is based on
the observation that the markings of the net obey a commutative monoidal
law, where this monoidal structure is induced on the transitions by the firing
rule.

The usefulness of viewing the multiset of places as a monoid will become clear
in the following subsection. Mainly the monoidal structure on the places in-
duces a monoidal structure on the transitions giving a rich hierarchy of cat-
egories with increasingly rich structures on the transitions. The monoidal
structure on the transitions is used to represent the concurrent firing of tran-
sitions. Thus if we think of the monoidal operation on the places (conditions)
as meaning the conditions hold simultaneously, the operation on the transi-
tions has the reading the events happen simultaneously. Hence the monoidal
operation can be used as a representation of parallelism, or in other words
the algebraic structure of parallelism is monoidal.

In this model a very liberal view of nets is taken. For example in some
constructions isolated places are useful. In some categories the net with only
one transition and place connected in a loop plays a very important role by
being the terminal net. Essentially this means that we wish to treat nets as
graphs. Also the nets will not have initial markings. This means that the
behavior of the net is a much more abstract concept. The behavior of the net
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includes all the possible behaviors of the net.

This appendix consists of two subsections. The first subsection discusses the
different categories of nets that are derivable in the models, while the second
subsection discusses the completeness properties of some specific categories
in this model.

A.2.1 General structure of the model

In this subsection we shall first take a look at the different categories of nets.
The categories are all derived from the category of graphs by adding structure
to the set of transitions. Then we shall see that these categories are related
by a sequence of adjunctions. Finally we shall try to give some characterizing
examples so that the reader can get a feel for the differences between the
morphisms in these categories.

The first thing we need to do is define a category of graphs (Meseguer and
Montanari 1990).

Definition A.2.1

The category of graphs Graph has as objects graphs ie. tuples (T, P, ¢, 0),
where T' is the set of arcs, P is the set of nodes and ¢, 0 are functions T" — P,
and morphisms pairs (f, g) of functions such that the diagram

T P
0
/ g
Ll
T’ P
Ol
commutes. O

By adding a free monoidal structure on the places we get the category Petri.

Definition A.2.2
The category of Petri nets Petri has as objects Petri nets (T, P®, 1, 0) and as
morphisms graph morphisms (f, g) where ¢ is a monoid homomorphism.

[l

If we want partial maps on the transitions we can do it by adding a special
element 0 to the set of transitions.

In this way we get the category of pointed Petri nets.



- 114 —

Definition A.2.3

The category of pointed Petri nets Petriy has as objects pointed nets

((T,0), P®, 1, 0) and as morphisms graph morphisms (f, g) where f is a pointed
function and ¢ is a monoid homomorphism. O

If we add a monoidal structure to the transitions we get the category of Petri
commutative monoids.

Definition A.2.4
A Peiri commautative monoid consists of a Petri net where the set of transitions
is a commutative monoid (7, +,0) and where

t,0: (T, +,0) —» P®

are monoid homomorphisms. A Petri commutative monoid homomorphism is
a Petri net morphism (f, g) where f is monoid homomorphism. This defines
a category CMonPetri. O

The reader should note that the monoid on the transitions need not be free.
The idea here is that the monoidal structure on the transitions reflects the
structure of the computation. If there are synchronization constraints in the
system these are expressed as conditions on the transition monoid.

The above categories can all be augmented with reflexive structures. To
each place we adjoin an tdentity transition that represents the fact that
nothing happens at that specific place. The corresponding categories are
CMonRPetri, RPetri, RGraph.

The last category in the hierarchy is the category of Petri categories.

Definition A.2.5

A Petri category is a small category C = (P®,T,;,id) whose set of objects
is a free commutative monoid, and whose set of arrows has a commutative
monoid structure (7T, ®,id;), that is not necessarily free, and is compatible
with the categorical structure in the sense that the source and target functions
t,0:T — P® are monoid homomorphisms and that @ respects identities and
(sequential) composition:

1. (e B) = () and o(a; B) = o ).

2. a;id(i(e)) = a and id(o(a)); o = a.

3. (a3 )iy = s (B3 7).

4. Given a:u — v, tu' - v, 50— w, [ v — w, we have

(@@ d ) (B ) = (8)@ (s 0) .
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Given two Petri Categories C and D a Petri category morphism from C to
D is a functor that is a monoid homomorphism when restricted to both the
objects and the morphisms. This data determines a category CatPetri.

]

The equations are equivalent to saying that the operation @ is a bifunctor
@ : C x C — C. Furthermore this implies that a Petri category is a monoidal
category.

A Petri net N can be completed to a Petri category T(N) by the following
proof rules:

u in P®
(A.1)
tytu—u in T[N]
u(t) =u,o(t) =v and tin N
(1) (1) (4.9)
t:u— v in T[N]
tytu— vty v —w in T[N]
(A.3)
ti;ty i u — w in T[N]
tiu—v,t':u -0 in T[N]
(A.4)

t@ot tu@u - v in T[N]

The rules define a functor T|__| : Petri — CatPetri which is left adjoint to
the forgetful functor U : CatPetri — Petri.

The category CatPetrihas several uses. First of all due to the existence of the
left adjoint T we can think of the CatPetrinet T(N) as a kind of generalized
behavior of the net. The CatPetrinet T(N) contains all possible behaviors of
the net V. This kind of "abstract" behavior is studied in (Degano et al. 1989),
where it is related to the different notions of process for Place/Transition
systems (cf. (Best and Devillers 1987)). Secondly the notion of morphism is
a very strong one and we shall have reason to examine it further in the sequel.

Actually the left adjoint T is the composition of several left adjoints, because
there exists a sequence of left adjoints between the categories defined above:

Petri — Petriy — CMonPetri — CatPetri .

These left adjoints allow us to relate the different categories and their mor-
phisms to each other.

A comparison of the different categories allows us to characterize the mor-
phism by their possible actions on transitions.
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fola) = d@d
fp(b) = U
fity =t

Figure A.1: A morphism in Petri.

fola) = d
fp(b) = U
fp(c) =
fp(d) = 0
fp(e) = 0
flt) =1
fltz) = 0

Figure A.2: A morphism in Petri,.

e Petri: A transition is mapped to another transition (see figure A.1).
e Petriy: We can erase parallel transitions (see figure A.2).

e CMonPetri: A transition is mapped onto parallel compositions of tran-
sitions (see figure A.3).

e CatPetri: A transition can be mapped onto an entire computation with
sequential and parallel compositions of transitions (see figure A.4).

The morphisms are listed in their order of complexity. The sequence of left
adjoints mentioned previously makes this order an inclusion in the sense that
with a more complex morphism we can achieve all that can be achieved with
the more simpler one.

All the morphisms obey the following important fact.
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b SSIIITTT T TTTTTTTTTTTTTTTTTTTmTos b”
! i fola) = d@a”
L) = Vo
a a' ft(t) = t'et"
Nl NZ

Figure A.3: A morphism in CMonPetri.

Figure A.4: A morphism in CatPetri.
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t3

Figure A.5: The net Nj.

Fact A.2.6
The morphisms preserve behavior. That is, given markings M; and M, in N;

s.th. M, is obtained from M; by firing ¢, there exists a transition t; € N,
s.th. f(M,) is obtained from f(M,) by firing ¢} and ¢} = f(¢). O

This fact is a consequence of the fact that in CatPetri morphisms are functors
and thus preserve parallel and sequential compositions of transitions, in other
words the behavior.

Before ending this subsection we shall briefly discuss the morphismsin CatPetri
so that the reader will get a feel for what we mean by behavior in T(N). We
shall illustrate this by discussing refinement, as some morphisms in CatPetri
can be interpreted as refinement morphisms. In the net N, in figure A.5 we
wish to refine the transition r by the net R in figure A.6. A simple graphical
substitution gives as a result the net N, in figure A.7, this is called an atomic
refinement. Now there exists a morphism f : T(N;) — T(N,) in CatPetri
given by the following assignments:

t, — t
ty, — t
ty +— ty'
ty — t
ro— (tg @) ts" .

The net N, can thus be interpreted as a refinement of N;. Unfortunately the
morphism f does not preserve deadlock freeness, because both R and N; are
deadlock free, but N, is not. This is because from the marking c®d both steps
ot :dd@d — ff@g and t;' @t:' :  @d — € @1 and are possible. The
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Figure A.7: The net N,.

resulting markings are dead. The problem arises, because the net I exhibits
a phenomenon called initial concurrency, where the initial transitions t5' and
t7' need not fire concurrently. There are standard solutions to this problem
(see e.g. (van Glabbeek 1990) p.191) where one requires that the refinement
net shall obey conditions ensuring that it will act like a transition with respect
to its environment:

e it cannot move without being activated by the environment,
e it has the same possible behaviors whenever it is activated,
e it may not deadlock,

e it consumes and produces tokens in a coincident manner.

The first condition means, that the net shall not be marked initially. The
second condition means, that the net is not allowed to store tokens. The final
condition prevents initial and final concurrency.

But there is a way in which to interpret the morphism f, so that it preservers
deadlock-freeness. Because the morphism is in CatPetri it is actually map-
ping behaviors to behaviors. Thus it can be interpreted as specifying that for
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the net Ny to be a deadlock-free refinement of Ny the transitions tg, t., ts have
to be fired in the order (t5' @ t;');ts'. Gorrieri and Montanari (1995) discuss
the implementation of CCS (Milner 1989) through such morphisms.

A.2.2 Completeness properties.

The main aim of this subsection is to show which co-limits do exist in Petri.
The fact that Petri does not have all co-limits will lead to definition of a
category PetriG which is a subcategory of Petri that has all co-limits, and is
used in chapters 2, 4 and 5

The lack of arbitrary limits and co-limits in the category Petri follows from
the lack of the corresponding limits and co-limits in the category of free com-
mutative monoids. This is illustrated by the lack of equalizers and coequaliz-
ers. The following two counter-examples are due to Jos¢ Meseguer (Meseguer
1991). First equalizers:

Counterexample A.2.7
Take the following two maps from N? to N:

fle,y,2) = To+2y+52
g(z,y,z) = 2x+5y+7z.

The equalizer of the pair f, g is the set:
E = {(a,y,2)[50 = 3y + 22},

which is generated by the set of vectors:

u; = (1,1, 1)
uy = (3,5,0)
us = (3,1,6)
ws = (4,0,10) .

This set of vectors E is not a free monoid, because we have the identity

(6, 2, 12) — 2U3 — 3U1 + Uyg .

For coequalizers there is an analogous counterexample:
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Counterexample A.2.8
Take the following two maps from N to N:

hi(z) = 3z
ho(z) = 0.

The coequalizer of these two maps is the following submonoid of N:
() = {n|n not divisible by 3},
which is clearly not free. O

This leaves us with the following two propositions.

Proposition A.2.9
The category Petri has all products.

Proof:
The net ({x}, ¢,0,0) is the terminal object. The product N; x N, (see fig-
ure A.8 of two nets N; and N, is

N1 XN2:<T1 XTQ,PlLﬂPQ,L,O),

where the projections are pairs 7' = (7h, %) with 74 : T} x Ty, — T; and
T PLW P, — P, for i = 1,2. The maps ¢ and o are defined by

Li{tr,ta) 1 (t) @ a(ty)
0:(t1,t2) +—  o01(t1) @ ox(ty) .

Proposition A.2.10
The category Petri has all coproducts.

Proof:

The initial object is the empty net (¢, ¢,0,0). The coproduct Ny + N is the

disjoint union of the two nets Ny + Ny = (T1 W Ty, Py W Py, 11 W 15,01 W 0y).
O

The idea that the empty net is the initial object may at first seem slightly
puzzling, because an initial object in the category of monoids is any one object
monoid where the object is the unit element. But in nets the unit element is
to be thought of as the empty marking which means the empty set of places.

The fact that Petri lacks more useful co-limits makes it at first sight not very
useful in its applications to compositionality. Fortunately there is a solution
to this problem proposed by Hummert in (Hummert 1989). Recall that we
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ty ta

(t1,12)

N; X Ny

Figure A.8: Ny x N, is the product of Ny and N,.

started with the category of graphs to which we then added structure. The
choice of morphism that was made is the reason that co-completeness was
lost. By changing the morphism co-completeness can be regained.

Definition A.2.11
The category PetriG has as objects Petri nets and as morphism pairs of
functions (f, f,) such that

T po
o]
fi f2
Ll
T pe
0/

commutes. (f];® is the free extension of f, to a monoid homomorphism.)

(|
The following is obvious:
Proposition A.2.12
PetriG is a wide subcategory of Petri. O

An example will illustrate the difference between the morphisms. Figure A.9



—123 -

fp(al) - a
fp(a”) - a
fp(bl) = b
fity =t

Figure A.9: A morphism in PetriG.

shows a map that is a map in PetriG. Its inverse is a map in Petri but not
in PetriG.

Morphism in PetriG are essentially graph morphism and the category of
graphs has all co-limits. Because the category PetriG is the subcategory
of Petri that corresponds to the image of the free functor F(Graph) that is
left adjoint to the forgetful functor U : Petri — Graph the category PetriG
is co-complete. More explicitly the constructions are show below.

Theorem A.2.13
PetriG is co-complete

Proof:
We list the simple co-limits:

e the initial object is the net (¢, ¢,0,0,),

e the coproduct is the juxtaposition of the two nets, with the obvious
injections, and

e the coequalizer of le’,sz is the net N = (T, P, ., 0) with

T = coeq(Ty3; T)) in Set

P = coeq(PljjiPz) in Set .

The maps ¢, 0 are defined by the universal property of the coequalizer.

g

Unfortunately we do not have all products in PetriG. Consider the nets
Ny, Ny, N3 in figure A.10. If N3 were to be the product of Ny and N,, this
would imply the existence of projections 7' = (74, 7%) for i = 1,2. But
in PetriG there exist no maps N3 — N,;, because we need to preserve the
arc-weights and this can’t map p; @ ps onto p;
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P P2
Pli T )
tl 2(/-2
Ny < ) N,

Figure A.10: The category PetriG does not have all products.

t,to

Ny

A.3 Universal algebra

A.3.1 Many-sorted algebra

The theory of abstract data-types is based on many-sorted algebra. A category-
theoretic formulation is presented by Goguen and Burstall in (Goguen and
Burstall 1984). In the following we shall follow the more concise formulation
of (Goguen and Burstall 1990).

The fundamental intuition is, that a data-type consists of a set of elements of
different sorts, and a set of operations making the data-type into an algebra.
Each algebra has a signature that names the sorts and the operators of the
algebra.

Definition A.3.1

Given a set of sorts S an equational signature is a pair (S, X), where ¥ is a
family of sets (of operator names) indexed by S* x S, where S* denotes the
set of strings with alphabet S. The operator o € ¥, ; has arity w, sort s, and
rank or type {(w,s). It is customary to just write ¥ instead of (S, X). a

Definition A.3.2

A equational signature morphism ® : (S, X) — (S'Y') is pair (hg, hy) where
hs : § — S 1is the sort map and hy is a S* x S-indexed family of maps
st Zs = Bl (o) a

Definition A.3.3
Equational signatures and equational signature morphisms form the category
of equational signatures Sig. O

Definition A.3.4

Given a signature ¥, a Y-algebra A is a S-indexed family of sets |A| = (A,|s €
S) called the carries of A together with an S* x S indexed family o of maps
Qus t Sy = [Ay = Ag]for win S* and sin S, where A, . — A, x---x A,
and [A — B] denotes the set of functions from A to B. O
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Definition A.3.5
A ¥-homomorphismis a S-indexed map h : A — A’ that satisfies the equation

ho(xy,...,2,) = h(o)(h(x1), ..., h(x,)) .

g

Y-algebras and X-homomorphism form a category Algy. There exists a for-
getful functor U : Algy — Sety which sends a Y-algebra to its S-indexed set
of carriers.

Given a S-indexed set of variables X we can form the set of all terms that are
constructed with operator symbols from ¥ and variables from X. This set
forms a Y-algebra in a natural way. It is called the free algebra over the set
of variables X and denoted by T%(X). We first define a special case, defining
(Tx), to be the smallest set of strings of symbols such that:

d EA,S C TE,S?

e 0 €Y, 4 ,andt; €Ty, imply that the string o(ty,...,t,) isin Tx
If we now define a by

o for 0 € ¥, let a(o) be the string o of length 1 in T%, 4,

o force X, . ,andt; €Ty, leta(o(ty,...,t,))bethestring o(ty,...,t,)
in TE,s-

then « defines the Y-structure on Tx. Let now define ¥(X') to be the signature
with (E(X ), = (X)) UX, and (E(X))ys = (¥)us if u £ A. Then the free
algebra Ty (X) is just Ty(x) seen as a Y-algebra.

The free algebra enjoys the following universal property. For any Y-algebra,
every map f : X — U(B) has a unique extension to a X-homomorphism
f# :Tx(X) - B. The map f : X — U(B) is called variable assignment and

its extension f¥ assignment.

The construction of a free X-algebra on a set of variables X extends to a
functor F' : Set — Algy that is left adjoint to the forgetful functor U :

An abstract data-type is usually specified using a signature and a set of equa-
tions that specify the behavior of the operations.

Definition A.3.6

A Y-equation e is a triple (X, y,t,), where X is a set of S-sorted variables,
and t1,ty € Tx ,(X) are terms of the same sort. Such an equation is usually
written t; = to. O
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The idea that an equation “holds” in an algebra is formalized as follows.

Definition A.3.7
A Y-algebra A satisfies a Y-equation t; = t,, written A |= t; = t, iff assﬁ (t) =
ass’ (t;) for every assignment ass? : X — U(A). O

An abstract data-type is now given by a presentation.

Definition A.3.8
A tuple (S, 2, EQ), where (S, X) is a signature and EQ) is a set of equations,

is called a Y-presentation. A Y-algebra is a Y-presentation algebra if A |= ¢
for all e € EQ). O

We will use the term X-algebra for short, both when X is a presentation and
when it is a signature, if the exact meaning is clear from the context.

The equations of the presentation induce an equivalence relation on the terms
of Ty. The resulting algebra is called a term algebra and denoted by Ty /=.

Definition A.3.9
A presentation morphism hy, : (S, 2, EQ) — (S, ¥, EQ') is a signature mor-
phism Ay, that is extended on equations by:

B (Xt 0)) = (RE(X), hE (1), B (12)) -
O

The category Algy extends to a functor on the category Sig that maps each
signature ¥ to the category Alg(X) of all ¥-algebras.

Definition A.3.10
The functor Alg — Cat®” sends each signature ¥ to the category Algy, and

sends each signature morphism ¢ : (hg: S — S, hg : ¥ — ¥') to the functor
Alg(¢) : Alg. — Alg,, that:

1. sends a S-algebra (A4, a) to the S-algebra (A4, o) with A, = 4} ) and
o = hy; o, and

2. sends each ¥'-homomorphism A’ : A’ — B' to the ¥-homomorphism

Alg(9)(h') = I : Alg(9)(A") — Alg(¢)(B') defined by hy = by ().
O

Definition A.3.11
Since the functor Alg maps a X-algebra A' to a X-algebra A, given a signature
morphism Ay, : ¥ — ¥ there is a natural ¥-homomorphism h4 : A — A,
where A'|,, = Alg(hy)(A’) that is called a “generalized homomorphism”.

(|
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A.3.2 Order-sorted Algebra

The idea of sub-sorts can be modeled by adding an ordering on the sorts of a
many-sorted signature. This generalization leads to the definition of Order-
sorted Algebra. The basic reference is (Goguen and Meseguer 1992).

Definition A.3.12

An order-sorted signature is a triple (5, <, X), where (S, X) is an equational
signature, and (5, <) is a poset, and the operations satisfy the following mono-
tonicity condition:

0 € X161 NYyase and wl < w2 imply s1 < s2.

Definition A.3.13
Let (S, <,X) be an order-sorted signature. Then an (S, <, ¥)-algebra is an
(S, X)-algebra A such that:

1. s <s' € Simplies A, C A/, and

2. 0 € X151 N Yo and wl < w2 imply A, : A, — A, equals A, :
Ay — Ay on wl.

g

Definition A.3.14
Let (S, <, X) be an order-sorted signature, and let A, B be order-sorted (S5, <
, Y)-algebras. An (5, <, X)-homomorphism is an (S, ¥)-homomorphism such
that
s< s and a € A, imply h,(a)="h!(a).
(S, <, ¥)-algebras and (S, <, ¥)-homomorphisms form a category ¥—0OSAlg.
[l

To define the term algebra, the signature needs to satisfy the following regu-
larity conditions that ensures the existence of a least rank for each term.

Definition A.3.15
An order-sorted signature X is regular iff given o € ¥, 4, and given w0 < wl

in 5™, there is a least rank (w, s) € S*x S, such that w0 < wando € ¥, ..
[l

The free algebra can now be defined by the following construction

d EA,S C TE,S?
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o Ty o CTy iff s’ <s,

e 0 €Y, 4 ,andt; €Ty, imply that the string o(ty,...,t,) isin Tx

Now since ¥ is regular, by theorem 2.12 of (Goguen and Meseguer 1992), Ty,
is initial.

If one requires the sort order S to be locally-filtered, ie. for each connected
component of the order, for any two elements s, s’ € S there exists an element
s", such that s,s’" < s”, one transform each order-sorted algebra A with
signature ¥ into a many sorted algebra A" with signature X7, together with
a set of conditional equation .J. The idea is that we view each operator in X
as an operator of X%, and whenever s < s’ we add an operator ¢, , € Ei,
that is called ¢nclusion operator. The conditional equations are the following:

1. (identity) ¢, (x) = x for each s € S,

2. (injectivity) @ = y if ¢, o(2) = ¢, o (y), for cach s < s' € S,

3. (transitivity) ¢, g (c, o (2)) = cs (), for cach s < ¢’ <s" € S,

4. (homomorphism) whenever ¢ : sl...sn — sand o:s'l...s'n — s are

in ¥, with si < ¢’i, and s < s’ in .S, then
Cs,s’(o-sl...sn,s(xla ey xn)) — Us’l...s’n,s’(Csl,s’l(xl)a .. -Csn,s’n(xn)) .

The construction extends to a functor, and the result can now be stated as
follows.

Theorem A.3.16 (Theorem 4.2 (Goguen and Meseguer 1992))
Given a coherent order-sorted signature ¥, the functor (_)* : ¥ — OSAlg —
(X%, .J) — Alg is an equivalence of categories. O

A.4 Monoids

Given a set S the free commutative monoid generated by S is denoted by S©.
If f:5 — 5 is a Set-function, then the free extension along the functor
F : Set — Mon is denoted by f©.

Definition A.4.1

Given a monoid A® with a set of generators A, define a function v, : A® —
P(A) by the assignment y4(a; @ -+ @ a,) = {ay,...,a,}. v maps a term of
the monoid into its set of generators. If the context is clear the subscript will
be omitted. a
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