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� 1 �
Chapter 1IntroductionWithin the �eld of information technology one of the fastest growing areas isthe telecommunications industry. As we become more and more dependenton the connectivity o�ered by telecommunications networks, the correctnessand dependability of these systems becomes an even more important issue.However, as the complexity of these systems increases it also becomes moreand more di�cult to ensure their correct functioning. Telecommunicationsystems are instances of parallel and distributed systems. The theory ofparallel and distributed systems aims at providing tools for the analysis andmodeling of such systems. One of the older approaches in this area is thetheory of Petri nets (Petri 1962). Fundamental to Petri nets is the notion ofcausality, in that a Petri net describes the causal relations of events or actionsin a system. Concurrency is then viewed as orthogonal to causality, meaningthat if two events are not causally related then they can occur concurrently.Petri nets were soon recognized as an e�cient notation for the descriptionof parallel and distributed systems. It was however also soon recognizedthat Petri nets as such, formed an inadequate notation for the description oflarge systems. The problem is sometimes referred to as the �football �eld�problem, because the resulting Petri nets were huge. To overcome this growthin the size of the description, several so called high-level net formalisms havebeen proposed. They are all based on the recognition that often in a Petrinet model, one has several subnets that are instances of the same processin the system, and that these subnets only di�er in the parameters of theprocesses. High-level nets formalize this observation into the notion of anindividual token. While in a Petri net each token is a �black dot� whichcontains no information whatsoever in itself, a token in a high-level net cancontain information. The process for obtaining a high-level net from a low-level net is called folding. The basic idea is to fold the identical subnets, andto add so called annotations to components of the net, thus obtaining a morecompact representation of the system.



� 2 �In this thesis we will study a class of high-level nets called Algebraic nets.Algebraic nets use the theory of abstract datatypes as their annotation for-malism, and aim at a discussion of the algebraic and logical foundations ofthese nets. On a more general level we try to give an answer to the gen-eral question of, to paraphrase Martin Heidegger, "What is it � a high-levelnet?". We will thus want to understand the basic mechanisms underlying thede�nition of high-level net classes. Using category theory we will try to giveconstructions that given certain basic concepts like a categorical formulationof Petri nets and the theory of substitutions, yield high-level nets. It shouldalso be made clear, that we do not aim at explaining every possible featureexhibited in some form of high-level net, nor do we aim at giving the de�nitehigh-level net class that incorporates these features. As stated previously,our interest is in understanding the basic nature of high-level nets. To thisend we will be working within a very simple high-level net class that actuallyincorporates very few features.1.1 Modeling systems with high-level netsIn this section we will brie�y look at the intuition behind high-level nets.Suppose we were given the task of modeling the following railway system.A circular railway consists of seven sections. Two trains operate the railway.The trains move freely in the same direction subject to the constraint, imposedfor security reasons, that no two adjacent railway sections may be occupiedat the same time. This is a classical example proposed by Genrich (1986).His C/E model is given in �gure 1.1. The annotations of this net should beinterpreted as follows. We have seven sections, i = 0 : : :6, and two trainsx = a; b. Uix means that section i is occupied by train x, while V i meansthat section i is vacant. In the initial marking train a is in section 0 and trainb is in section 4, while sections 1; 2; 5 are marked as vacant. Thus train a canmove into section 1 and train b can move into section 5.In this model there is a lot of conceptual duplication. If we think of trainsand sections as individuals, we see that all the places Uix are instances of asingle place U which is marked by a pair hi; xi that represents the fact thattrain x is in section i. Using the same idea we have a single place V whichis marked with tokens i = 1; 2; 5 representing the vacant sections. If we takethese two places as the starting point for the construction of our high-level netit turns out that we only need one transition as shown in �gure 1.2. However,now the synchronization constraint that no two adjacent sections may beoccupied at the same time, has to be expressed in the annotation formalism.This is taken care by the functions f(i) and g(i). Although it might seemthat we have obtained the net in �gure 1.2 from the one in �gure 1.1 in



� 3 �an ad-hoc manner, there exists a strict mathematical relationship betweenthe two nets: the net in �gure 1.1 is the unfolding of the net in �gure 1.2.Using this exact relationship we can also de�ne the dynamics of the high-levelnet in terms of the low-level net. Fundamental to this semantics is the ideaof substitution. For each variable of a transition we can substitute a valuefrom its domain, ie. in �gure 1.2 a valid substitution for t would be fi 7!2; x 7! ag. If we instantiate the transition and evaluate its arc-expressions,we obtain the transition (given in a suggestive notation) U(h2; ai) + V (3) !U(h3; ai) + V (1). It is now easy to see, that this instance of t corresponds tothe transition in �gure 1.1 that is connected to the places U2a; V 3; U3a; V 1.Allowing substitutions on places gives us a notion of high-level marking: asubstitution fU 7! h2; aig is interpreted as U is marked with token h2; ai.The �ring rule of Petri nets can now also be lifted to the level of high-levelnets, by the use of transition instances as expressed above. If there exists asubstitution such that the terms in the input-places of a transition unify withthe corresponding arc-annotations the transition may �re. It is importantto note that the substitution only applies to one transition and thus theuni�cation process is local to a transition. We thus have three fundamentalconstructions that concern high-level nets:1. the semantics through unfolding,2. the high-level semantics, and3. the folding construction.These will be the basic problems that we will study in this thesis.1.2 Contents of the thesisThe contents of this thesis can be divided into two parts. Chapters 2, 3,and 4 discuss Algebraic nets from an algebraic perspective using the tools ofcategory theory, while Chapter 5 tries to relate Algebraic nets to linear logic.In chapter 2 we are mainly interested in giving the basic de�nitions of Alge-braic nets. We take an axiomatic view of Algebraic nets; their semantics isde�ned through the unfolding to Petri nets. The basic aim of this chapter is toshow that Algebraic nets are a good choice of high-level net formalism for ourtheoretical study. Algebraic nets are expressive enough in the sense that wecan give semantics preserving translations into Algebraic nets for some moreelaborate formalisms; but Algebraic nets are still simple enough, so that theirde�nition is very short, and the syntax and semantics are very well separated.Chapter 3 is concerned with giving the semantics of nets as universal construc-tions. We present two approaches. The �rst one is based on the structured



� 4 �

Figure 1.1: A Railway System as a CE-System (from (Genrich 1986)).sorts : emtpytrack,occupiedtrack,trainopns : 0; 1; 2; 3; 4; 5; 6 :! emptytrackh ; i : emptytrack � train! occupiedtracka; b :! trainf; g : emptytrack ! emptytrackeqns : f(i) = i+ 1 for i = 0; 1; 2; 3; 4; 5f(6) = 0g(i) = i� 1 for i = 1; 2; 3; 4; 5; 6g(0) = 6U Vthi; xihf(i); xi f(i)g(i)Figure 1.2: The Railway System as a high-level net.



� 5 �transition system semantics of Corradini and Montanari (1992), while thesecond is based on the �Sheaves are objects� paradigm proposed by Goguen(1992). By de�ning the structured transition system semantics we are able togive a construction in which the free semantics of the low-level net togetherwith the free semantics of the speci�cation formalism de�ne automatically thefree semantics of the high-level net. Given this semantics, high-level nets areconstructed by taking a tensor product of a low-level net class (in our casePetri nets) and a speci�cation formalism (in our case many-sorted algebra).In the sheaf semantics a transition in a net is viewed as a sheaf and the netthen gives a diagram of sheaves. The behavior of the net is given as the limitof this diagram. The interesting point about this semantics is that it is verymuch like a distributed implementation of Petri nets, where each transition isimplemented on a single processor. The implementation of choice forces oneto choose between an interleaving semantics, where only a single transitionis allowed to �re, or a more concurrent semantics, where the resolution ofcon�ict is done locally. The main contributions in this chapter are:� The identi�cation of high-level nets as graphs on monoids in a substi-tution system.� The identi�cation of interleaving and non-interleaving semantics as aris-ing as the limit of a diagram of sheaves.If in the previous chapter we have looked at high-level nets as formal systemsof their own, in chapter 4 we return to the unfolding semantics. Since ouroriginal example motivated high-level nets as the folding of a low-level net, wewant to look more thoroughly at this question. Is there some way in which thisvery intuitive notion of folding can be formalized? The main contributions ofthis chapter are:� The formalization of the folding construction of Algebraic nets fromPetri nets.� A generalization of the folding construction to Algebraic nets.In the �nal chapter we look at high-level nets from a logical point of view. Itis well known, that the so called tensor-implication fragment of linear logic(Girard 1987a) can be seen as a logical axiomatization of Petri nets, andthat the behavior of a Petri nets forms a quantale which is a model of linearlogic (Engberg and Winskel 1994). In this chapter we extend this equiva-lence to high-level nets and a form of Predicate linear logic, by showing thatthere exists a functor from the category of Algebraic nets to the category ofquantales.



� 6 �We shall assume that the reader has a basic knowledge of algebraic speci-�cation, Net theory and category theory. The appendices contain a shortintroduction to category theory that �xes the notation, a review of the Petrinets are Monoids approach, and the relevant de�nitions from many-sortedalgebra.



� 7 �
Chapter 2Algebraic high-level netsSo called low-level net-classes are often criticized because of their unsuitabil-ity for modeling real applications. The main problem with these net-classesis that the resulting nets are huge. This problem has been aptly named thefootball �eld problem. One solution is to raise the level of abstraction andmodel only parts of the system. Another solution is to enrich the labelingof the nets to get a more concise and expressive formalism. Several such ex-pressive formalisms have been proposed: Pr/T-nets (Genrich 1986), Colourednets (Jensen 1986) and di�erent �avors of Algebraic high-level nets (Reisig andVautherin 1987, Dimitrovici, Hummert and Pétrucci 1990, Reisig 1991). Al-gebraic high-level nets are a combination of the algebraic speci�cation methodand net theory. The central idea is that the algebraic speci�cation describesthe data in the system, while net theory is used to specify the distributionand the movement of this data within the system.In this work we will use the term Algebraic high-level net to mean the generalclass of high-level net formalisms based on algebraic speci�cation. We willretain the term Algebraic net for the net-class de�ned here. We want to usethe term Algebraic net, because the semantics in chapter 3 gives an algebraicstructure on the nets.As mentioned above, several di�erent �avors of Algebraic high-level nets exist.The notion of Algebraic net presented by Dimitrovici and Hummert (1989)is slightly more complicated than ours. Our nets di�er from the nets pro-posed by Reisig in (Reisig 1991) by allowing interpretations other than theinitial. What this means is that we view multi-sets of terms essentially asan abbreviation for multiple arcs between transitions and places, while Reisigincorporates the notion of a multi-set into the speci�cation of the abstractdata type. The Algebraic nets we de�ne are essentially the Algebraic nets ofReisig and Vautherin proposed in (Reisig and Vautherin 1987) in a categoricalframework.



� 8 �Although Dimitrovici et al. (1990) discuss Algebraic nets at length we feelthat their treatment does not highlight the possible generalizations of Alge-braic nets to other kinds of annotation formalism. Indeed In this chapter wewill actually discuss two di�erent Algebraic high-level formalisms, Algebraicnets and Order-sorted Algebraic nets. Their di�erence lies in the kind of alge-braic speci�cation formalism used. The theoretical strength of Algebraic netscomes from the fact that the two component formalisms are well separated,and that they are combined through a free functor that preserves most of thewanted properties. Indeed the proof of the main theorem about Order-sortedAlgebraic nets can be borrowed directly from the proof for Algebraic nets. Wealso argue, that Algebraic nets form an expressive enough high-level formal-ism, by showing that Order-sorted Algebraic nets are equivalent to Algebraicnets.The chapter is structured as follows. We start by de�ning Algebraic netsand their semantics. The main result of the �rst section is the fact that thesemantics is a functor from the category of Algebraic nets to the categoryPetriG. In this section we also de�ne some concepts that will be neededin the next chapters. Then we discuss the co-completeness of the categoryof Algebraic nets. Next we consider adding some features to the formalism.Finally we de�ne Order-sorted Algebraic nets and prove that the category ofOrder-sorted Algebraic nets is equivalent to the category of Algebraic nets.2.1 Algebraic netsThe aim of this section is to de�ne a category of Algebraic nets and de�netheir semantics in terms of Petri nets. The basic idea behind Algebraic netsis to label the arcs of the net with terms from an algebraic speci�cation ofa data type (Ehrig and Mahr 1985). Because algebraic speci�cations have anotion of implementation given in terms of so called �-algebras we are able togive a semantics for our high-level nets in terms of Petri nets. This semanticsis the unfolding of the high-level net into a low-level net.An Algebraic net (AN) consists of three parts, an abstract data-type speci�-cation �, a net that has arcs labeled with terms from this speci�cation and a�-algebra that is the semantics of the speci�cation. The basic de�nitions ofuniversal algebra as it applies to the theory of abstract data-types is reviewedin appendix A.3.Analogously to the de�nition of an ADT, we �rst de�ne a �scheme� of nets.Then by �xing an interpretation we get an Algebraic net.



� 9 �De�nition 2.1.1An Algebraic net speci�cation with equational signature � (ANS) is a tuplehS;�; EQ;X; T;P; �; o; sortiwhere:� hS;�; EQi is a �-presentation,� X is a S-sorted set of variables,� T is the set of transitions,� P is the set of places,� �; o : T ! (P � T�(X))
 are the input- and output-weight functions,and� sort : P ! S is the sort assignment. �(P �T�(X))
 is the free monoid with the set P�T�(X) as generators. In thesequel we will notate variables denoting transitions by t; t1; : : : and variablesdenoting terms by �t; �t1; : : :. Let V ar(�t) denote the set of variables of a term inT�(X). Then the set of variables of a term m = hp; �ti
 hp; �t1i
 : : :
hp; �tni 2(P � T�)
 is de�ned by V ar(m) = Sni=1 V ar(�ti). The set of variables of atransition is then given by V ar(t) = V ar(�(t))SV ar(o(t)).In �gure 2.1 we have a speci�cation for the dining philosophers problem. Thespeci�cation is divided into two parts, the �rst consisting of the algebraicspeci�cation of the net-inscriptions and the second consisting of the inscribednet. This particular speci�cation contains 3 philosophers. The algebraic spec-i�cation consists of three parts. The �rst part de�nes the sorts, or the typesof individuals in the net, in this case philosophers and forks. The secondpart consists of the de�nition of the names and sorts of the operators in thespeci�cation. An operator with an empty argument list is called a constantand is used to represent individuals. In our case we have six individuals orconstants, three philosophers and three forks. The speci�cation also containstwo functions l, and r, left and right respectively. They are used to map aphilosopher to his left and right forks. This relationship is set up in the thirdsection of the speci�cation, through a set of equations. In this case the equa-tions completely specify the behavior of the functions l and r. The arcs ofthe net are now annotated with terms formed from a set of variables and theoperations declared in the opns-section of the speci�cation1. The interpreta-1To ease the pictorial presentation we have taken the liberty of using an isomorphismhp; l(x)i 
 hp; r(x)i ' hp; l(x) + r(x)i



� 10 �sorts : phil,forkopns : ph1; ph2; ph3 :! philf1; f2; f3 :! forkl : phil ! forkr : phil ! forkeqns : l(phi) = fir(phi) = fi+1 for i = 1; 2r(ph3) = f1pf t1t2 xl(x) + r(x)e xxl(x) + r(x)x
Figure 2.1: The speci�cation NS of the dining philosophers problem.tion of the input-arcs of transition t1 read as follows. Given a philosopher xin place p, and a pair of forks l(x) and r(x) in place f , we can �re transitiont1 and move the philosopher to the place e. Suppose now that the place p ismarked with philosopher ph1. We then need forks l(ph1) and r(ph1) in placef for transition t1 to be enabled. Using the set of equations eqns, the termsl(ph1) and r(ph1) can be evaluated and we see, that the forks we need are f1,and f2. If these tokens are available we say that transition t1 �res in modeph1. This argument will be formalized below.Since an ANS consists of two clearly separated parts, the net part and thealgebraic speci�cation part, it is advantageous to de�ne a notion of morphismfor ANS, by �rst de�ning a morphism that keeps the speci�cation constantand only changes the net part.De�nition 2.1.2A �-ANS-morphism h : ANS ! ANS0 is a pair hhT ; hP i where hT : T ! T 0and hP : P ! P 0 are functions s.t.:hxP (�(t)) = �0(hT (t));hxP (o(t)) = o0(hT (t)); andsort0(hP (p)) = sort(p);



� 11 �where hxP : (P � T�(X))
 ! (P 0 � T�(X))
 is de�ned by hxP (Nni=1hp; �ti) =Nni=1hhP (p); �ti, with p 2 P , p0 2 P 0. �A �-ANS-morphism is a direct extension of a PetriG-morphism, that is thenet morphisms are graph morphisms such that the place-morphisms respectsthe arc-weights (cf. �gure 2.2). The reason for restricting ourselves to arc-weight preserving morphisms are two-fold: �rst we get a co-complete categoryof nets (cf. appendix A.2.2), and secondly we can de�ne a notion of foldingfor P/T-nets (cf. chapter 4). It is easy to see the following result.Proposition 2.1.3�-ANS's and �-ANS-morphisms form a category �-ANS. �A presentation morphism h� : � ! �0 can be combined with a �-ANS-morphism to give an ANS-morphism. The signature morphism must preservethe arc-weights, and moreover it is required to preserve the sorts of the places.However we also need to specify how the set of variables in the speci�cationare mapped. This amounts to the following de�nition.De�nition 2.1.4An ANS-morphism h : ANS ! ANS0 is tuple h = hh�; hX ; hT ; hP i whereh� : �! �0, hX : X ! X 0, hT : T ! T 0, and hP : P ! P 0 s.t.:hxP (�(t)) = �0(hT (t));hxP (o(t)) = o0(hT (t)); andsort0(hP (p)) = hS(sort(p));where hxP : (P � T�(X))
 ! (P 0 � T�0(X 0))
 is de�ned byhx( nOi=1hp; �ti) = ( nOi=1 hhP (p); h#X(�t)i);where h#X : T�(X) ! T�0(X 0) is the free extension of hX along h�. Moreoverwe require that hX is an injective function. �The condition that the morphism on variables is injective is required to getfunctoriality of the unfolding construction (cf. theorem 2.1.12).Again we can form a category.Proposition 2.1.5ANS's and ANS-morphisms form the category ANS. �Because there may be several interpretations (or implementations) of the ab-stract data-type speci�cation, an ANS de�nes a scheme of nets. To give an



� 12 �
ab t1f(x)g(x) cx h = hhT ; hP i p1 tf(x) + g(x) p2xhT : t1 7! thP : a 7! p1b 7! p1c 7! p2Figure 2.2: A �-ANS-morphism.
ab t1f(x)g(x) cx h = hhT ; hP i p1 tk(y) + l(y) p2yhT : t1 7! thP : a 7! p1b 7! p1c 7! p2h� : f 7! kg 7! lhX : x 7! yFigure 2.3: A ANS-morphism.



� 13 �interpretation of the speci�cation we need to add a speci�c interpretationof the abstract data-type to our de�nition. This gives us the notion of anAlgebraic net.De�nition 2.1.6An Algebraic net AN is a pair hANS;Ai where ANS is an Algebraic netspeci�cation with signature � and A is a �-algebra. �If the algebra is not given, it is assumed to be T�=�. The default interpretationT�=� is the quotient term algebra of the speci�cation, which one usually hasin mind when writing the speci�cation. We can now de�ne an AN-morphismas follows and then get a category of AN's.De�nition 2.1.7Given Algebraic nets AN = hANS;Ai and AN 0 = hANS0; A0i, an AN-morphism h : AN ! AN 0 is a pair hhANS; hAi, where hANS : ANS ! ANS0is an ANS-morphism, and hA : A! A0jh� is a �-algebra homomorphism. �The map hA : A! A0jh� is called a generalized morphism (cf. de�nition A.3.11).Proposition 2.1.8AN's and AN-morphisms form a category AN. �The informal treatment of the dynamics of the AN given above can now beformalized by �rst de�ning a notion of marking.De�nition 2.1.9A markingM in an Algebraic net is an element of (P�A)
. If A = T�(X) andV ar(M) 6= ? we say that the marking is non-ground or abstract. If there existsa substitution � : V ar(t) ! A, such that (�(t);�) � M with the pointwiseordering on monoids, we say that the transition t is enabled atM , and the newmarking obtained by �ring t is calculated by M 0 = (M 	 (�(t);�))
 (o(t);�),where a	 b is de�ned as the solution c to b
 c = a if it exists, and the unit ofthe monoid otherwise. The traditional token game is obtained by requiringthat the markings are ground. �In the philosophers example a reasonable initial marking would be M0 =hp; ph1i
hp; ph2i
hp; ph3i
hf; f1i
hf; f2i
hf; f3i. Now by substitution ph1for x in the input- and output-weights of t1, we see that (�(t1); fx 7! ph1g) =(hp; xi 
 hf; l(x)i 
 hf; r(x)i); fx 7! ph1g = hp; ph1i 
 hf; f1i 
 hf; f2i � M0,and thus we can apply the �ring rule and obtain the new marking M 0 =hp; ph2i 
 hp; ph3i 
 hf; f3i 
 he; ph1i representing the fact that philosopherph1 is now eating.



� 14 �The token game above can also be interpreted as a token game on a low-levelnet, where expressions like hp; ph1i are seen as names of places, and theiroccurrence in a tensor-expression as a transcription of the fact that the placeis marked. Thus since the interpretation allows us to assign elements of thealgebra A to the variables on the arcs, we can calculate the set of all possibleassignments for the variables such that the transition would be enabled. Anassignment ass#A : V ar(t) ! A, on the free variables of the arcs connectedto t, is called a �ring mode of transition t. Each transition t in an AN isthought of as a shorthand for a set of transitions in a low-level net. This isthe intuition that underlies the following �unfolding� construction.To de�ne the unfolding an Algebraic net we need the following auxiliary def-inition:De�nition 2.1.10Let �t = �t1; : : : ; �tn 2 T�(X).Given ass#A : T�(X) ! A, de�ne ass�A : (P �T�(X))
 ! (P �A)
 byass�A( nOi=1hp; �ti) = nOi=1hp; ass#A(�t)i : �De�nition 2.1.11Given an Algebraic AN = hANS;Ai we can de�ne a Petri netUnf(hANS;Ai) = hTUnf ; PUnf; �Unf ; oUnfias follows:� PUnf = Sp2P ffpg �Asort(p)g,� TUnf = fht; ass#Aij assA 2 [V ar(t)! A]; t 2 Tg,� �Unf(ht; ass#Ai) = ass�A(�(t)),� oUnf (ht; ass#Ai) = ass�A(o(t)). �For a place p in the high-level net we create a number of places p0; p00; p000; : : :in the low-level net such that to every possible token x that may reside inplace p there exists a place p0 (ie. the pair hp; xi) in the low-level net thatrepresents the fact that x is in place p. Analogously for the transitions, for atransition t in the high-level net we have to create transitions in the low-levelnet that represent the fact that the transition �res with a speci�c assignmenton the variables. It is an interesting question whether this unfolding has aninverse, and we shall return to this question in chapter 4.



� 15 �An example will clarify the construction. Figure 2.4 gives an interpretationin the algebra: A = (A;�);with A = fff1; f2; f3gphil; fg1; g2; g3gforkg , and� = fr; l; f1; f2; f3; g1; g2; g3g :We have omitted the obvious type declarations from the set of functions. Thefunctions r; l have the following de�nition:x r(x) l(x)f1 g1 g2f2 g2 g3f3 g3 g1while the functions f1; f2; f3; g1; g2; g3 are the constant functions. The inter-pretation of NS in A is given in �gure 2.4. The algebra A is the algebra T�=�.If one plays the standard token game for P/T-systems on this net it is easyto see, that it corresponds to the token game of the net in �gure 2.1.As mentioned previously, one usually thinks of the di�erent interpretationsof the abstract data-type speci�cation as di�erent implementations of theADT. However there exist interpretations that cannot intuitively be seen asimplementations of the ADT. One such interpretation is the terminal algebraA� = (fphil; forkg; f! fork;! phil; fork ! philg), where the sorts forkand phil have only one element, and the maps are the trivial maps. Inter-estingly it turns out, that this interpretation can be used to detect deadlockse�ciently in some cases. Figure 2.5 gives the unfolding of the philosophersnet, with the interpretation A�. The net shows just the amount of tokens con-sumed and produced by each transition, ie. transition t1 takes one token fromplace p, 2 tokens from place f , and produces one token to place e. The result-ing net is called the �skeleton�. We shall discuss the skeleton of the net morethoroughly in section 4.3. An equivalent way of obtaining this interpretationis given by de�nition 2.1.15.Since we are transforming an AN into a Petri net, the interesting question froma categorical point of view now is, whether this transformation is functorial.Indeed this is the case.Theorem 2.1.12Given an AN-morphism h : AN ! AN 0 there exists a morphism Unf(f) :Unf(AN) ! Unf(AN 0), such that identities and composition are preserved,ie. Unf : AN! PetriG is a functor.



� 16 �

he; ph1ihe; ph2ihe; ph3ihp; ph3ihf; g3ihp; ph2ihf; g2ihp; ph1ihf; g1i
t1[x  ph2 ]t1[x  ph2 ]t1[x  ph2 ]

t2[x ph1 ]t2[x ph2 ]t2[x ph3 ]Figure 2.4: The interpretation of NS in A.pf t1t2 ��+ �e ���+ ��Figure 2.5: The interpretation of NS in A�.



� 17 �Proof:1. Unf(f) is given by:Unf(f)P : PUnf(AN) ! PUnf(AN 0) : hp; ai 7! hhP (p); hA(a)iUnf(f)T : TUnf(AN) ! TUnf(AN 0) : ht; ass#Ai 7! hhT (t); hA(ass#A)i :2. That it is a PetriG-morphism is shown by the following tedious butstraight-forward calculation:Unf(f)
P (�Unf(AN)(ht; ass#Ai))= Unf(f)
P (ass�A(�(t))) (2.1.11)= Unf(f)
P (Nni=1h�1(�(t)i); ass#A(�2(�(t)i))i) (2.1.10)= Nni=1hhP (�1(�(t)i)); hA(ass#A(�2(�(t)i)))i (def. of Unf(f)P )= ass�A0(Nni=1hhP (�1(�(t)i)); h#X(�2(�(t)i)i)) (2.1.10) andh#X ; ass#A0 = ass#A;hA= ass�A0(hx(Nni=1h�1(�(t)i); �2(�(t)i)i) (def. of hx)= ass�A0(hx(�(t)))= ass�A0(�0(hT (t))) (2.1.4)= �Unf(AN 0)(hhT (t); hA(ass#A)i) (2.1.11)= �Unf(AN 0)(Unf(f)T (ht; ass#Ai)) (def. of Unf(f)T)The above depends on the fact that h#X ; ass#A0 = ass#A;hA. However thisis only true if the diagramX assA - AX 0hX? assA0- A0?hAcommutes. A su�cient condition for this is that hX : X ! X 0 isinjective (Padberg n.d.). To give a simple counterexample: let X =fx; yg, X 0 = fzg, and A = A0 = fa; bg. If we now have hX : x 7! z; y 7!z, assA : x 7! a; y 7! b and ass0A : z 7! a. Now hA(assA(y)) = b whileass0A(hX (y)) = a. The part for o is analogous.3. The fact that the identities and composition are preserved is obvious.�It is worth commenting on the proof a bit. The interesting thing about theproof is that it never refers to the exact structure of the assignment notion inuse. Actually, if we look at the de�nition of the unfolding, we see that the onlyreference to the structure of the assignments is given in the de�nition of TUnf



� 18 �as the set fht; ass#Aij assA 2 [V ar(t)! A]; t 2 Tg, where actually we see thatthe assignment is an element of a set of functions. So it would seem plausibleto suggest that any notion of speci�cation formalism that de�nes a notion ofassignment might be usable as a basis for de�ning a high-level net class. Weshall indeed investigate this question more thoroughly in this chapter, and weshall see, that we can really �reuse� the proof of theorem 2.1.12.The idea of �taking the skeleton� of an Algebraic net was originally conceivedby Vautherin (1987). Intuitively this amounts to forgetting the speci�c anno-tations on the arcs and just keeping the weights. The Algebraic net is thustransformed into a Petri net with the same structure as the Algebraic net.Formally this amounts to taking the terminal algebra ? as the interpretationof the speci�cation �.De�nition 2.1.13The underlying net functor UN : AN! PetriG maps and Algebraic net to isunderlying Petri net. It is given by the assignment UN(AN) = hTU ; PU ; �U ; oUiwith� TU = T ,� PU = P ,� �U(t) = �(t); ass�?� oU (t) = o(t); ass�?The morphisms part of the de�nition is given through theorem 2.1.12. �Proposition 2.1.14The morphism f : Unf(AN)! UN(AN) is unique.Proof:Follows from the fact that UN(hANS;Ai) ' Unf(hANS;?i) and that ? is theterminal algebra. �Each Petri net can be viewed as an Algebraic net if we think of each arc inthe Petri net as being annotated with a constant c. This can be formalizedin the following construction that de�nes a functor G : PetriG ! AN, thatmaps each PetriG-net N to the corresponding AN-net G(N).De�nition 2.1.15The functor G : PetriG ! AN, that transforms each PetriG-net N into anAN-net G(N) is given byG(N) = hhf�g; fc :! �g; �; �; TG; PG; �G; oG; sortGi; f�g; fc :! �gi



� 19 �where TG = TN , PG = PN , and the weighting functions �G; oG : TG ! (PG �fcg) are given by the equations�G(t) = i(�N(t))oG(t) = i(oN (t));where i is the injection i : P
 ! (P � fcg)
. �The functor is characterized by the following lemma.Lemma 2.1.16Unf(G(N)) ' N .Proof:We �rst show that the sets of places and transitions are isomorphic.Unf(G(N))P = [p2Pffpg �AsortGg= [p2Pffpg � f�gg= P � f�g' PUnf(G(N))T = fht; ass#Aijt 2 T; ass#A 2 [V ar(t)! A]g= fht; �ijt 2 Tg' TThe input and output weight functions are then shown to be isomorphicthrough the following equations:�Unf(ht; �i) = �N (t)oUnf(ht; �i) = oN (t) �2.2 Co-completeness of ANThe aim of this section is to prove that AN is co-complete. The notionof co-limit is a categorical notion used to describe the �pasting together� ofmathematical structures. The use of co-limits to combine smaller speci�cationto larger ones is a technique �rst applied in the speci�cation language CLEAR(Burstall and Goguen 1977, Burstall and Goguen 1990). It is now a standard



� 20 �technique in the theory of algebraic speci�cations. On the other hand, in cate-gorical approaches to net-theory co-limits have played little role until recently.This is maybe in part due to the negative result of Winskel in (Winskel 1985)on the non-existence of coproducts in the category of Place/Transition-netswith initial marking. In the paper by Meseguer and Montanari (Meseguer andMontanari 1990) limits and co-limits are mentioned, but no interesting exam-ples except the standard product and coproduct constructs are discussed. Therecent paper by Dimitrovici et al. (1990) contains a thorough discussion ofco-limits in their category of Algebraic high-level nets. Also the dissertationof Hummert (Hummert 1989) contains interesting applications of co-limits tonets. He de�nes a notion of net module and studies the compatibility of thenotion with invariants and parameterized data structures. In this chapterwhen we give a proof of co-completeness of the category AN we want to see,what are the features that are actually needed for the proof.Theorem 2.2.1The category AN is co-complete.Proof:Essentially the proof depends on the fact that the categories Set and Alg areco-complete.� AN has as initial object the AN h?;?;?;?;?;?;?i.� co-products: Co-products are just disjoint union. LetANi = hSi;�i; EQi; Xi; Ti; Pi; �i; oi; sorti; Aiifor i = 1; 2. De�neAN1 +AN2 = hS1 ] S2;�1 ]�2; EQ1 ]EQ2; X1 ]X2;T1 ] T2; P1 ] P2; �1 + �2; o1 + o2; sort1 + sort2;A1 +A2iThe morphisms �1+�2 : T1]T2 ! (P1�T�1(X1))
](P2�T�2(X2))
 ando1 + o2 : T1 ] T2 ! (P1 � T�1(X1))
 ] (P2 � T�2(X2))
 are calculatedcomponentwise. Clearly the injections ini : ANi ! AN1 + AN2 areAN-morphisms.AN1 in1- AN1 + AN2 in2 - AN2ZZZZZZZf1 ~ =�������f2AN'?



� 21 �The universal arrow ' = h'�; 'X ; 'T ; 'P ; 'Ai is de�ned by '� = f�1 +f�2 ; 'X = fX1 + fX2 ; 'T = fT1 + fT2; 'P = fP1 + fP2 ; 'A = fA1 + fA2.The fact that it is universal follows from the fact that its componentsare universal since both Alg and Set are co-complete.� co-equalizers: Co-equalizers are also calculated component-wise. Letf : AN1 ! AN2 and g : AN1 ! AN2 be AN-morphisms. Their co-equalizer q : AN2 ! AN in the diagramAN1 f-g- AN2 q- ANis given by q� = coeq(f�; g�) in Sig, qX = coeq(fX ; gX), qP = coeq(fP ; gP )and qT = coeq(fT ; gT ) in Set, and qA = coeq(fA; gA) in Alg. Again,because the components are universal arrows it follows that AN hasco-equalizers.� Because AN has initial object, co-products and co-equalizers it is co-complete. �So the co-completeness of the category AN depends on two factors:1. The category Set is co-complete, and2. the categories of algebras and signatures are co-complete.Thus we can claim that replacing many-sorted algebra with any speci�cationformalism that is co-complete, we get a co-complete category of high-levelnets.2.3 Conditions on transitionsUsually it is useful to have more features in the formalism, where these fea-tures are meant to increase the expressive power the formalism. One suchfeature is the addition of conditions on transitions (cf. (Reisig 1991) sec.10.3). The idea is to constrain the set of possible assignments by settingup a predicate on the variables of the transition. Here a predicate is seen asan operation with sort bool. However as we shall see, adding conditions ontransitions mainly consists of adding �syntactic sugar�.De�nition 2.3.1An Algebraic net with conditions (ANSC) is a tuplehS;�; EQ;X; T; P; �; o; sc; sort; Ai



� 22 �where:� hS;�; EQi is a �-presentation, with a sort bool and a constant true :!bool� X is a S-sorted set of variables,� T is the set of transitions,� P is the set of places,� �; o : T ! (P � T�(X))
 are the input- and output-weight functions,� c : T ! T�;bool(X),� sort : P ! S is the sort assignment, and� A is a �-algebra. �Clearly every AN is and ANSC with no conditions, and the notion of markingis the same. The �ring rule is modi�ed, so that the transition is enabled i�(i(t); ass#A) �M ^ A j= ass#A(c(t)) = true;ie. if the assignment satis�es the predicate. This gives rise to the notion of aconsistent transition assignment (Ehrig, Padberg and Ribero 1992).De�nition 2.3.2The set of consistent transition assignments is given by:CT = fht; ass#Ai k t 2 T : A j= ass#A(c(t)) = trueg �A morphism of Algebraic nets with conditions is essentially an AN-morphismthat is required to respect the set of conditions.De�nition 2.3.3Given Algebraic nets with conditions ANSC = hANS;Ai and ANSC 0 =hANS0; A0i, an ANSC-morphism h : ANSC ! ANSC 0 is a pair hhANS ; hAi,where hANS : ANS ! ANS0 is an ANS-morphism, and hA : A ! A0jh� is a�-algebra morphism, such that fT ; c0 = c; f�. The presentation morphism h�is also required to preserve the boolean part of the presentation. �Proposition 2.3.4Algebraic nets with conditions and ANSC-morphism for a category ANSC. �



� 23 �The unfolding of the Algebraic nets with conditions is now de�ned analogouslyto de�nition 2.1.11 using the set CT.De�nition 2.3.5For each Algebraic net with side-conditions ANSC we have a P/T-netUnf(ANSC) = hPF ; TF ; �F ; oF i given by� PF = Sp2Pffpg �Asort(p)g,� TF = CT ,� �F (ht; ass#Ai) = ass�A(�(t),� oF (ht; ass#Ai) = ass�A(o(t)). �Proposition 2.3.6The construction de�nes a functor Unf : ANSC ! PetriG.Proof:The proof is exactly the same as the proof of theorem 2.1.12. �Adding conditions does not add to the expressive power of the Algebraic netformalism. As we shall see in chapter 4, each Petri net can be represented bya unique Algebraic net. However we can also give a syntactic transformationthat transforms each Algebraic net with conditions to an Algebraic net with-out conditions, albeit we now must restrict the possible initial markings. Theintuition of the transformation is presented in �gure 2.6.
p1p2 t; p(x; y; z)f(x)g(y) p3k(z) p1p2 ptp(x; y; z) truetf(x)g(y) p3k(z)Figure 2.6: Transforming conditions on transitions.The idea is simply to add a place pt with sort bool to each transition t in theoriginal net. The arc from pt to t is labeled with the predicate and the arcfrom t to pt with true. If pt is now initially labeled with true, the transitiont is enabled in the transformed net i� it is in the original net.The construction can be formalized as follows:



� 24 �Proposition 2.3.7Given an Algebraic net with conditionsANc = hS;�; EQ;X; T;P; �; o; sc; sortiwe can construct an algebraic net AN = hS;�; EQ;X; T;P 0; �0; o0; sort0i suchthat M t- M 0 in AN i� Mc t- M 0c in ANc;where M =McNt2T hpt; truei.Proof:The net is given by P 0 = P Sfptgt2T , �0(t) = �(t)
 hpt � c(t)i, o0(t) = o(t) 
hpt � truei. The fact that the set of reachable states are isomorphic is easilyseen through the observation that both ANc and AN have the same sets ofconsistent transition assignments. �2.4 Order-sorted Algebraic netsOrder-sorted algebra has been proposed by Goguen and Meseguer (1992) asa generalization of many-sorted algebra to support abstract data-types withmultiple inheritance, polymorphism and overloading, exception handling, andpartial operations.One of the motivations of Order-sorted algebra is that it allows for theelegant treatment of error conditions in the theory of abstract datatypes.The standard example concerns the treatment of preventing the taking oftop(emptystack) in the stack. Several solutions to prevent this from happen-ing have been presented. Using order-sorted algebra the problem is solvedby de�ning a type NeStack of non-empty stacks that is a sub-sort of the sortof stacks and then de�ning the operation top to be of sort NeStack ! Elt.Thus the term top(emptystack) will never be an element of T�=�. An analo-gous situation may arise in an Algebraic net. Consider the net in �gure 2.7.The place p1 contains a queue. The queue is read through transition t2 andwritten through transition t1. However we want to prevent t2 from �ring whenthe queue is empty. Using Algebraic nets with conditions we can add the con-dition nonempty(x) to the transition t2 to prevent this. Using Order-sortedalgebra we require the sort of the variable x to be NeQueue. Thus we see, thatin the case of Algebraic nets the use of Order-sorted algebra and conditionson transitions are in some sense equivalent. The claim we would like to makeis, that the speci�cation with conditions on transitions is clearer. It is easierto see directly from the net that there is the possibility of an empty queuein p1. As we shall see below, we are also able to show that any Order-sortednet can be transformed into an equivalent Algebraic net. There is howevera theoretical interest in going through the de�nitions because it again showsclearly what the structure of a high-level net is.



� 25 �sorts : Elt;Queueopns : enqueue : Queue�Elt! Queuehead : Queue ! Elttail : Queue ! Queueemptyqueue :! Queuenon� empty : Queue! booleqns : nonempty(emptyqueue) = falsenonempty(enqueue(Q;E)) = true...x t1 enqueue(x; y)y p1 t2; nonempty(x)xtail xFigure 2.7: An Algebraic net modeling a queue.De�nition 2.4.1An Order-sorted Algebraic net speci�cation with equational signature � (OS-ANS) is a tuple hS;�;�; EQ;X; T;P; �; o; sortiwhere:� hS;�;�; EQi is an order-sorted �-presentation,� X is a S-sorted set of variables,� T is the set of transitions,� P is the set of places,� �; o : T ! (P � T�(X))
 are the input- and output-weight functions,and� sort : P ! S is the sort assignment. �De�nition 2.4.2An OSANS-morphism h : OSANS ! OSANS0 is tuple h = hh�; hT ; hP iwhere h� : � ! �0 is an order-sorted signature morphism, hX : X ! X 0,hT : T ! T 0, and hP : P ! P 0 s.t.:h#P (�(t)) = �0(hT (t));



� 26 �h#P (o(t)) = o0(hT (t)); andsort0(hP (p)) = hS(sort(p))where h#P : (P � T�(X))
 ! (P 0 � T�(X)0)
 is de�ned byh#( nOi=1hp; �ti) = ( nOi=1 hhP (p); h#� (�t)i);and hX is an injective function. �Proposition 2.4.3OSANS's and OSANS-morphisms form the category OSANS. �De�nition 2.4.4An Order-sorted Algebraic net OSAN is a pair hOSAN;Ai where OSAN isan order-sorted Algebraic net speci�cation with signature � and A is a �-algebra. �If the algebra is not given, it is assumed to be T�=�.De�nition 2.4.5Given order-sorted Algebraic nets OSAN = hOSAN;Ai and OSAN 0 =hOSAN 0; A0i, an OSAN-morphismh : OSAN ! OSAN 0 is a pair hhOSAN ; hAi,where hOSAN : OSAN ! OSAN 0 is an OSAN-morphism, and hA : A! A0jh�is a �-algebra morphism. �Proposition 2.4.6OSAN's and OSAN-morphisms form a category OSAN. �Like for Algebraic nets with and without side-conditions, we can de�ne anunfolding of an Order-sorted Algebraic net OSAN .De�nition 2.4.7Given an Order-sorted Algebraic net OSAN = hOSANS;Ai we can de�ne aPetri net Unf(hOSANS;Ai) = hTUnf ; PUnf ; �Unf; oUnfias follows:� PUnf = Sp2P p�Asort(p),� TUnf = fht; ass#Aij assA 2 [V ar(t)! A]; t 2 Tg,� �Unf(ht; ass#Ai) = ass�A(�(t)),� oUnf (ht; ass#Ai) = ass�A(o(t)).



� 27 � �Again this de�nes a functor.Proposition 2.4.8The construction de�nes a functor Unf : OSAN! PetriG.Proof:The proof is exactly the same as the proof of theorem 2.1.12. �Because there exists an equivalence of categories between the category oforder-sorted algebras with signature � OSAlg� and the category of algebrasAlg�#;J of a speci�cation �# together with a set of conditional equations J(Goguen and Meseguer 1992, Theorem 4.2), it is interesting to see whetherthis equivalence would lift to the level of Algebraic nets and Order-sortedAlgebraic nets.Theorem 2.4.9Given an Order-sorted Algebraic net OSAN with coherent signature �, thereexists an Algebraic net AN with signature �# that satis�es the conditionalequations J , with the same set of places and transitions, and such thatUnf(OSAN) ' Unf(AN), and conversely.Proof:The latter direction is trivial, since every many-sorted algebra is an order-sorted algebra with an empty ordering. For the former direction the ideais to transform each order-sorted signature � into a many-sorted signature�# as shown in theorem A.3.16. Since an order-sorted �-algebra is up toisomorphism a �#-algebra that satis�es the conditional equations J , it iseasy to see, that the corresponding Petri nets will be isomorphic. �What the construction does is, it transforms an order-sorted Algebraic netwith signature �, and interpretation A, into an Algebraic net with signature�# and interpretation A#, where A# is the order-sorted algebra A seen as amany-sorted algebra. So the Algebraic net obtained through the transforma-tion does not have T�#=� as its interpretation. The interesting thing aboutthis result is the way in which a result on the annotation formalisms lifts toa result on the corresponding high-level net formalisms.2.5 Final remarksThe main points in this chapter could be summed up as follows:Algebraic nets are powerful enough: This was shown by two examples.In the �rst example we added a new feature to the net-part of the speci�cation



� 28 �formalism (conditions on transitions), while in the second example we addedan extension to the algebraic speci�cation formalism (sub-sorts). In bothcases we were able to give a behaviorally equivalent algebraic net withoutthese extensions.Algebraic nets are a clean formalism: By this we mean that the di�erentconceptual components of the formalism, net-theory, multisets and algebraicspeci�cation, are connected through very clean interfaces, basically just a freefunctor. This leads to a very simple co-completeness proof. Also the fact thatthe semantics is based on the idea of substitution allows us to transfer theproof of the functoriality of the unfolding semantics to the two extended netformalisms presented in this chapter.As far as answering the question of what a high-level net is, we have not yetcome very far. However, in this chapter we have identi�ed several componentsof a high-level net formalism, and we have identi�ed the notion of substitutionas the main component in the de�nition of the semantics. In the next chapterwe will look at the notion of substitution more thoroughly and show how tobase the de�nition of a high-level net formalism on the notion of substitution.



� 29 �
Chapter 3SemanticsIn this chapter we shall look at two very di�erent semantics for nets. The �rstone, structured transition system semantics, is a highly algebraic semantics,that relies heavily on the notion of free construction. The idea here is thatin many cases there is an a algebraic structure on the states of the transi-tion system that can be lifted to the level of the transitions through a freeconstruction. The computations can then be obtained by freely completingthe given structured transition system to a category. The second semantics,sheaf semantics, is a more concrete semantics. Instead of relying on a freeconstruction, where the semantics is determined by the free functor, sheaftheory allows us to implement the semantics that we want. Thus we are ableto give both an interleaving semantics and a non-interleaving semantics. Theadvantage of the structured transitions system semantics is that since it relieson the free construction, once we have set up some basic requirements, we getthe semantics �for free�: it is generated by a set of rules. On the other handsheaf semantics gives us an alternative view of a transition. It is seen as anobject that establishes a relational constraint on the behavior of the tokens�owing through it. A net is a network of such objects and the behavior ofthe net is again an object that satis�es all the constraints of the componentobjects at the same time. Common to both semantics is that the behavior isobtained through a universal construction, the free construction in the caseof structured transition system semantics and the limit in the case of sheafsemantics.The main contributions in this chapter are:� The identi�cation of high-level nets as graphs on monoids in a substi-tution system.� The identi�cation of the tensor product of sketches as the fundamentalbuilding block of high-level nets.



� 30 �� The identi�cation of interleaving and non-interleaving semantics as aris-ing as the limit of a diagram of sheaves.3.1 Structured transition system semanticsThe aim of this section is to give a general description of high-level nets asstructured transition systems (STS). Structured transition systems togetherwith a method for obtaining algebraic semantics for formalisms were proposedby Corradini and Montanari (1992) in the context of semantics of logic pro-grams. The method is a generalization of the algebraic treatment of Petrinets proposed by Meseguer and Montanari (1990). In the method one distin-guished between three description levels in the formalism:1. the level of heterogeneous graphs, whose nodes have more structure thantheir arcs,2. the level of structure transition systems, where the structure on thenodes has been lifted to the arcs, and3. the level of models of structured transition systems, where the structureis extended to the computations of the transition system.These levels are connected by free functors. The power of the method lies inthe fact that these free functors are essentially extensions of the left adjoint ofthe forgetful functor that relates the structure of the nodes to the structure onthe arcs, so that once these structures have been identi�ed the rest is obtained�for free�.In this section we will �rst review the basic steps for obtaining a structuredtransition system from a Petri net. This construction is then used to obtain astructured transition system of the unfolded Algebraic net. Subsequently wediscuss the general method and �nally apply it to Algebraic nets. We haveomitted those proofs that can be found in (Corradini and Montanari 1992).3.1.1 Structured transition systems through unfoldingIn this subsection we show, by reviewing the approach of Meseguer and Mon-tanari (1990) how a structured transition system can be obtained throughunfolding.A transition system is often de�ned as a relation R � S�S on a set of statesS. The transition system contains only the information that a state s0 isreachable from state s. However, quite often it is useful to attach some more



� 31 �information to the state transitions, like what action was executed in the statetransition. This leads to the following de�nition of a transition system.De�nition 3.1.1A transition system is a graph TS = hT; S; �0; �1i, where T is the set oftransitions and S is the set of states, and �0; �1 : T ! S are de�ned by�0(t) = s, �1(t) = s0 i� transition t leads from state s to state s0. �Computations in a transition system TS are sequences of transition steps.This corresponds to composition of arrows in the graph. Since there existsa standard free functor F : Graph! Cat, that takes each graph to the freecategory generated by it, it would suggest, that the natural structure on thecomputations in a TS is the free category generated by its graph.However, as observed by Meseguer and Montanari (1990) and reviewed inappendix A.2, in the case of Petri nets, the states do not form a set. In-stead they are elements of a free commutative monoid, making our transitionsystem a heterogeneous graph, with transitions and states living in di�erentcategories. In this case it is not directly obvious what the composition of atransition should be. For example if we have transitions t1 : a 
 b ! c; t2 :d! e; t3 : c
e! f neither t1 nor t2 compose directly with t3. The monoidalstructure on the states can however be lifted to the transitions, so that wecan form a transition t1 
 t2 : a 
 b 
 d ! c 
 e (t1 and t2 in parallel) andthen compose this transition with t3 to obtain (t1 
 t2); t3 : a
 b
 d! e. Itturns out that we also need to add �idle� transitions for each place tp : p! pto represent the fact that �nothing happens�. Then we are able to composet4 : a ! b with t5 : a 
 b ! c as (ta 
 t4); t5 : a 
 a ta
t4- a 
 b t5- c.Consequently we actually lift the monoidal structure to a re�exive monoidalstructure.In categorical terms, this amounts to the existence of free functors FPGCM :Petri ! CMonRPetri and FCMCP : CMonRPetri ! CatPetri. The �rstfunctor lifts the monoidal structure on the places to the transitions, andadds re�exivity (the idle transitions), while the second functor completes there�exive structured graph to the category of computations of the Petri net.The category CMonRPetri is the structured transition system induced by aPetri net, while CatPetri is the category of models.It is now possible to obtain a structured transition system of an Algebraicnet by �rst unfolding it, and then by applying the free functor F : Petri !CatPetri. The construction of the transition system is done using the rules in�gure 3.1. The rules describe how a Petri net is completed to a free category.Rule 3.4 lifts the monoidal structure on the states to the transitions, whilethe rest of the rules complete the Petri net into a category. Rule 3.1 addsidentities, rule 3.2 adds the transitions as arrows, and rule 3.3 de�nes the



� 32 �u in P
tu : u! u in T[N ] (3.1)�(t) = u; o(t) = v and tin Nt : u! v in T[N ] (3.2)t1 : u! v; t2 : v ! w in T[N ]t1; t2 : u! w in T[N ] (3.3)t : u! v; t0 : u0 ! v0 in T[N ]t
 t0 : u
 u0 ! v 
 v0 in T[N ] (3.4)Figure 3.1: The rules that de�ne a functor T [ ] : Petri! CatPetri.composition of two arrows. Using these rules we essentially describe the com-putations of an Algebraic net through the computations of its unfolded net.However it is possible to generalize the construction to an arbitrary categoryof places and transitions by using the techniques of internal category theory.This allows for a direct description of the computations of the Algebraic net.3.1.2 Structured transition systems directlyTo generalize the Petri nets are monoids approach of Meseguer and Montanari(1990) we �rst need to introduce some tools. These tools are internal categorytheory and the theory of sketches. The use of internal category theory ismotivated by its suggestive nature, while the theory of sketches provides somepowerful tools for proving the existence of left adjoints. Once these tools havebeen introduced we will present the 4 steps that make up the methodologyof Corradini and Montanari (1992), and apply these steps to the de�nition ofAlgebraic nets.Internal categories and sketchesThe basic idea in the method proposed by Corradini and Montanari (1992) isthe notion of internalization. Internalization means that for example insteadof looking at the category of graphs, we look at the objects in Set that aregraphs. Once this abstraction has been done we can transfer the concept ofgraph to other categories.Consider the de�nition of a graph G = hA;N; �0; �1i. A graph consists oftwo sets, the arcs and nodes, and two functions �0; �1 : A ! N , that live in



� 33 �Set, so that a graph can be considered as a diagram A �0-�1- N in Set, alsoknown as the �graph of graphs�. Similarly a graph morphism correspond tothe commutativity of the diagram:A �0 -�1 - NA0fA? �0 -�1 - N 0?fNin Set.By abstracting away from Set we can de�ne graph and graph morphisms inany category.De�nition 3.1.2Given a category C, a tuple g = hc0; c1; �0; �1i is an internal graph of C, i�:� c0; c1 2 jCj, and� �0; �1 : c0 ! c1 2MorC.Let g = hc0; c1; �0; �1i and g0 = hc00; c01; �00; �01i be internal graphs. An internalgraph morphism f : g ! g0 is a pair of morphisms f0 : co ! c00 and f1 : c1 ! c01in C such that the diagram c0 �0 -�1 - c1c00f0? �0 -�1 - c01?f1commutes. Graph(C) is the category of internal graphs of C.A re�exive graph is a graph where for every node n there exists an arc idn :n ! n. This can be internalized as follows. An internal re�exive graph in Cis a tuple r = hc0; c1; �0; �1; idi, where r = hc0; c1; �0; �1i is an internal graph,



� 34 �and id : c1 ! c0 is a morphism of C, such that the diagramc1	�����idc1 @@@@@idc1Rc1 � �0 c0id? �1 - c1commutes. An internal re�exive graph morphism is an internal graph mor-phisms such that the diagram c0 f0 - c00c1id? f1 - c01id0?commutes. RGraph(C) is the category of internal re�exive graphs of C. �Proposition 3.1.3If C is a category with binary co-products, then the forgetful functor U :RGraph(C) ! Graph(C) has a free adjoint F : Graph(C) ! RGraph(C)de�ned as F(hc0; c1; �0; �1i) = hc0 + c1; c1; �0 + idc1 ; �1 + idc1 ; in2i. �Let us try to make this same kind of analysis for the de�nition of a category.If a category C is small, then the collection of morphismsMorC is a set, andthe collection of objects form a set jCj. This means that we have a pair offunctions �0; �1 :MorC! jCj that specify the domain and codomain of eachmorphism. Two morphisms can be composed i� �1(f) = �0(g). We can thende�ne a function comp that has as domain the set f(f; g) j �1(f) = �0(g)g, andas codomain MorC. This is exactly the pullback of �0 and �1, which existsin Set since it is complete. An object c together with the above functions iscalled an internal category. In the category of small categories, the categorySet can be though of as the universe of discourse. So the general notion isgiven by the following de�nition.De�nition 3.1.4Given a category C a tuple c = hc0; c1; �0; �1; comp; idi is an internal categoryobject of the category C i� hc0; c1; �0; �1; idi is an internal re�exive graph inC, and comp : c0�0 c0 ! c0, where c0�0 c0 is the pullback of �0; �1, such thatthe following diagrams commute.



� 35 �c0 �0 c0 comp- c0 c0 �0 c0 comp- c0c0�1? �0 - c1?�0 c0�2? �1 - c1?�1comp1 comp2c0 �0 c0 �0 c0 comp�0 id- c0 �0 c0c0 �0 c0id�0 comp? comp - c0?compassocc0 �0 c1 idc0 � id- c0 �0 c0 c1 �0 c0 id� idc0 - c0 �0 c0HHHHHHHHHHH�1 j HHHHHHHHHHH�2 jc0?comp c0?compneutr1 neutr2The de�nition of an internal functor is given as an internal re�exive graphmorphism that also preserves composition. Cat(C) is the category of internalcategories of C. �As can be seen from the de�nition, a prerequisite for the existence of internalcategory object is the existence of suitable pullbacks. In this subsection allour categories will be equipped with pullbacks. The concept of internalizationcan be extended to other categorical notions like natural transformations andadjunctions. These notions have recently become an important tool in thestudy of models of the second order lambda-calculus (Asperti and Longo1991).If we examine the treatment of Petri nets in the previous subsection, we noticethat Petri nets are not internal graphs, since the nodes and transitions live



� 36 �in di�erent categories, but that their completion to objects CMonPetri aregraphs in CMon, the category of commutative monoids. Now since thereexists a forgetful functor UCMSe : CMon! Set, the notion of internal graphcan be generalized as follows.De�nition 3.1.5Let C and B be two categories such that the forgetful functor U : C ! Bexists. Then g = hb; c; �0; �1i is a heterogeneous graph with arcs in B andnodes in C i� b 2 jBj and c 2 jCj and �0; �1 : b! U(c), are morphisms in B.A heterogeneous graph morphism f : hb; c; �0; �1i ! hb0; c0; �00; �01i is a pairf0; f1, where f0 : b ! b0 is an arrow in B and f1 : c ! c0 is an arrow in C,such that the following diagrams commute:b f0 - b0 b f0 - b0U(c)�0? U(f1)- U(c0)�00? U(c)�1? U(f1)- U(c0)�01?The category of heterogeneous graphs with arcs in B and nodes in C is denotedby Graph(B;C). �Essentially a heterogeneous graph hb; c; �0; �1i is an internal graph hb;U(c); �0; �1iin B, but the morphisms must preserve the richer structure on nodes. Thecategory of Petri nets Petri is the category Graph(Set; FCMon)Recall that the commutative monoidal structure on the places could be liftedto the transitions along the free functor FSeCM : Set ! CMon. The generalstructure of this process is described in the following proposition.Proposition 3.1.6Let Graph(B;C) be the category of heterogeneous graphs, such that theforgetful functor U : C ! B has a free adjoint F : B ! C, and let U0 :Graph(C) ! Graph(B;C) be the forgetful functor induced by U, which for-gets about the structure of arcs. Then U0 has a free adjoint F0 : Graph(B;C)!Graph(C) given byF0(hb; c; �0; �1i) = hF(b); c;F(�0); "c;F(�1); "ci;on objects, and by F0(hf0; f1i) = hF(f0); f1ion morphisms, where " : F;U! 1C is the co-unit of the adjunction hF;U; 'i. �



� 37 �We will also need the notion of internal commutative monoid.De�nition 3.1.7Given a category C with product � and terminal object ?, a tuple c =hc; �; �; i is called a commutative monoid in C i� c 2 jCj and � : c� c! c,� : ? ! c, and  : c� c! c� c are morphisms in C such that the followingdiagrams commute:c� c� c �� id-c� c ?� c �� � id c� c id� �- c�?@@@@@snd R 	�����fstc� cid� �? � - c?� c?� c  - c�? c� c  - c� c@@@@@snd R 	�����fst @@@@@idRc c� c?The map � is called the operation of the monoid, the map � the unit, and themap  is the symmetry. A morphism f : hc; �; �i ! hc0; �0; �0i of monoids isan arrow f : c! c0 such that�; f = (f � f);�0 : c� c! c0;�; f = �0 : e! c0;and ; (f � f) = (f � f); 0 :The commutative monoids of a category C form a category CMon(C), witha forgetful functor U : Mon(C) ! C de�ned by the assignment hc; �; �i 7!c. �For example in Set the monoid objects are the ordinary monoids.The above de�nitions all rely on the existence of left (�free�) adjoints. Alsobelow we shall need the existence of a left adjoint CC : Rgraph(C)! Cat(C).Usually it is quite cumbersome to prove the existence of adjoints. However,fortunately all the internal categories presented above can be seen as modelsof so called LE-sketches, and the theory of sketches contains the necessarytools to prove the existence of the left adjoints.From a Computer Science point of view, sketches can be considered as an



� 38 �alternative approach to the speci�cation of abstract datatypes. The reasonfor the development of the theory of sketches is that there are many impor-tant mathematical entities that are not equationally speci�able. The primeexample is the theory of �elds. It is not possible to specify equationally thatdivision is de�ned only on a subset of the domain. In this case it turns outhowever that one can express this very elegantly with a co-limit. Thus al-lowing limits and co-limits in our speci�cation we are able to expand theexpressive power of our speci�cation formalism. As an other example thereexists a sketch of Horn theories, which are known not to be equational inthe sense of Lawvere (1963). The classical algebraic approach, as initiatedby Lawvere (1963), is however a special case of the sketch approach. Thestandard reference on the basic theory of sketches is chapter 4 of (Barr andWells 1985).Since we can view the operators in a signature as arrows in a graph, andlimits are also e�ectively expressed as graphs the de�nition of a sketch is thefollowing.De�nition 3.1.8A LE-sketch S is a 4-tuple S = hG;U;D;Ci, where G is a graph, U : N ! Ais a function which takes each node n 2 N to an arrow n ! n of A, D is aclass of diagrams in G, and C is a class of cones in G. A sketch morphismS ! S0 is a graph morphism h : G ! G0 such that U ;h = h;U 0, and everydiagram in D is taken to a diagram in D0, and every cone in C is taken to acone in C 0. �Because in our case we do not need to specify structures with co-limits, wework with so called LE-sketches which is short for Left Exact which meansthat it has all �nite limits. In the de�nition the graph is the set of all ar-rows of the speci�cation together with the arrows from all the diagrams andcones. The diagrams correspond to the equations, while the limits are usedto describe subsets.Translating the de�nition of an internal category (de�nition 3.1.4) into asketch gives us as the graph the �graph of graphs� together with all thearrows in the diagrams. The class of diagrams is the set of 5 diagrams, andthe class of cones contains only the pullback c0 �0 c0, describing the set ofcomposable arrows, a subset of the set of arrows.Conversely we can given a category C construct a sketch SKC, that we canuse to de�ne the model of a sketch.De�nition 3.1.9Given a category C, the underlying sketch SKC = hG;U;D;Ci of C has asgraph the underlying graph of C, as U the map that picks out the identity



� 39 �arrows of C, as D the class of commutative diagrams of C, and as C the classof limit cones of C.A model for a sketch S in a category C is a sketch morphism from S intoSKC. A model forces all the diagrams of the sketch to commute and all thecones of the sketch to be limit cones.The models in C form a category ModC(S) with natural transformations asmorphisms. Mod(S) is the category of models in Set. �The fact that allows us to switch back and forth between the view as internalconcepts and the view as models of sketches is that for example in the caseof graphs Graph(Set) = Mod(SKGraph) = Graph. That is the category ofgraphs in Set is the same as the category of models of the sketch of graphs,which is the same as the category of graphs. Indeed we shall often write C(D)for ModD(SKC).The existence of left adjoints is ensured by the following theorem.Theorem 3.1.10Let A and B be LE-sketches. If h : A ! B is a sketch morphism, then theinduced morphism h� : Mod(B)! Mod(A) has a left adjoint h# : Mod(A) !Mod(B). �However this theorem is not enough to prove the existence of the left ad-joint CC : Rgraph(C) ! Cat(C). The reason is that it is not clear whetherRgraph(C) and Cat(C) are models of LE-sketches. However, it turns outthat both Rgraph(C) and Cat(C) are models of Mod(SKRGraph
 SKC) andMod(SKCat
 SKC) respectively, where 
 is a tensor product on sketchesde�ned by Gray (1987).De�nition 3.1.11Let S = hG;U;D;Ci and S0 = hG0; U 0; D0; C 0i be sketches, withG = hG0; G1; �0; �1i and G0 = hG00; G01; �00; �01i. Then the tensor product S 
S0 = hG00; U 00; D00; C 00i of the sketches is de�ned by:1. G000 = G0 �G00,2. G001 = G1 � fU 0(s0)js0 2 G00gSG01 � fU(s)js 2 G0g,3. U 00(hs; s0i) = hU(s); U 0(s0)i,4. The set of diagrams D00 consists of, for every node s in G0 a copy of allthe diagrams in D0, indexed by s, and for every node s0 in G00 a copyof all the diagrams in D, indexed by s0, together with for each arrow



� 40 �h : s1 ! s2 in G1 and h0 : s01 ! s02 in G01 a diagram:hs1; s01i hs01- hs2; s01ihs1; s02i?h0s1 hs02- hs2; s01i?h0s25. The set of cones C 00 consists of, for every node s in G0 a copy of all thecones in C 0, indexed by s, and for every node s0 in G00 a copy of all thecones in C, indexed by s0 �The underlying idea of the tensor product is very simple. One just takes theproduct of the graphs of the sketches and the union of the diagrams and conesand adjoins a set of diagrams that mainly state, that the operations from Gcommute with those from G0.The importance of this construction is shown by the following theoremTheorem 3.1.12Mod(A 
B) ' ModMod(B)(A).Proof:See (Gray 1987, Proposition 3.6(ii)). �The theorem states that the category of models of a tensor product of sketchesis equivalent to the category of models of A in the category of models of B,ie. the structure of A is added �on top� of the structure of B.As can also be seen from the de�nition the tensor product is commutativewhich implies the following theorem.Theorem 3.1.13C(D) ' D(C). �What this means is that it does not matter in which order the structure isadded �on the top�.We can now �nally state the main theorem.Theorem 3.1.14 (Theorem I.2.1 (Corradini and Montanari 1992))1. If C is the category of models in Set of a left-exact sketch, then the for-getful functor Cat(C)! Rgraph(C) has a left adjoint CC : Rgraph(C)!Cat(C).



� 41 �2. Let C be a category with all �nite limits and co-limits, with all !-co-limits, such that �nite limits commute with !-co-limits, then the forget-ful functor Cat(C)! Rgraph(C) has a left adjoint CC : Rgraph(C)!Cat(C).Proof:We shall only prove the �rst part of the theorem, since this is the part that wewill use. We have an obvious sketch morphism h : SKRGraph! SKCat, whichinduces a morphism SKRGraph
 SKC ! SKCat
 SKC. By theorem 3.1.10this again induces a functor Mod(SKCat
 SKC) ! Mod(SKRGraph
 SKC),that has a left adjoint Mod(SKRGraph
 SKC) ! Mod(SKCat
 SKC). Thestatement follows because Mod(SKRGraph
SKC) ' ModMod(SKRGraph)(SKC) 'Rgraph(C) and Mod(SKCat
SKC) ' ModMod(SKCat)(SKC) ' Cat(C). �We now have all the relevant tools to apply the methodology of Corradini andMontanari (1992). Let us �rst brie�y recall the main ideas of the methodology.It consists of the following steps (Corradini and Montanari 1992, (p.70)):1. First determine the "natural" structure of the states and the transitionsin the high-level net and the corresponding morphisms. The categoryis of the form Graph(B;C), ie. a heterogeneous graph with states in Cand transitions in B. In general there is a forgetful functor U : C ! B,together with a free functor F : B! C.2. Next de�ne the category of transition systems that models the dynamicsof the high-level net. This category is the category Rgraph(C) of re�ex-ive internal graphs in C. Under suitable conditions we have a forgetfulfunctor U : Rgraph(C) ! Graph(B;C) together with a free functorF : Graph(B;C)! Rgraph(C).3. Then de�ne the category of models for transitions systems. This is doneusing the free functor CC : Rgraph(C) ! Cat(C) from the re�exiveinternal graphs to the internal categories of C.4. Finally we need to distinguish the intended models of the high-level netN as a subcategory Mod(N) of Cat(C).The advantage of this method is that once one has determined the structureof the category C then one obtains "for free" the other structures by goingalong the free functors. Thus in our case it is su�cient to determine theheterogeneous graph of high-level nets. However for step 3 to succeed, wemust ensure the existence of the free functor CC : Rgraph(C) ! Cat(C), forwhich we need theorem 3.1.14.



� 42 �Algebraic nets as graphs on monoidal substitution systemsTo apply the method we must �rst discover the structure on the places andtransitions. Corradini and Montanari (1992) develop as their application astructured transition system semantics of logic programs. The idea is thatpredicates correspond to states, and clauses to transitions. Interestingly thissame idea has been used by Murata and Zhang (1988) to give a high-levelnet description of logic programs. Thus it would seem plausible to take theseideas as a starting point. Indeed we shall do so, and show that high-level netsarise as graphs in the category of monoids on a substitution system.The �rst step is to represent an Algebraic net as a heterogeneous graph.Let us start by trying to identify the structure on the states. Recall fromde�nition 2.1.9 that a marking is a subset of (P �A)
. Let us for the momenttake A = T�(X). The �rst transformation that we make is that we add theset of places P to the signature � by adjoining a new sort P together withoperators p : sort(p) ! P for each p 2 P : The new signature is denoted by�; P and a marking is then an element of T
�;P (X). The input an outputfunctions can also be rede�ned as �; o : T ! T
�;P (X), so that for example in�gure 2.1 the value of �(t1) is p1(x)
p2(l(x))
p2(r(x)). The �ring rule de�nesthe dynamics of the net through the use of substitutions, so that when forexample t1 �res with mode fx ph1g we use the same substitution for all theterms in �(t1). Consequently we need to model the interaction between themonoidal structure and substitution. We want a categorical model in whichfor a substitution �, �(t0 
 : : :
 tn) = �(t0)
 : : :
 �(tn).The categorical structure suggested by Corradini and Montanari (1992) forthe treatment of substitutions is that of a strict cartesian category.De�nition 3.1.15A strict cartesian category is a category C with a terminal object ? 2 jCj,and all binary products, such that(a� b)� c = a� (b� c) for all a; b; c 2 jCj? � a = a = a�? for all a 2 jCj :The category of strict cartesian categories and strict cartesian functors isdenoted by SCart. �The idea of using cartesian categories to model algebraic structures was orig-inally proposed by (Lawvere 1963) for the case of single-sorted algebraic the-ories and by (Benabou 1968) for the many-sorted case, while Goguen (1988)uses the name substitution system for essentially the same structure. Given asignature �, we can construct a category SCC[�] that has as objects the sortsand tuples of sorts of the signature, and as arrows the projections and the



� 43 �operations of the signature. Substitution is modeled by composition while theprojections model variables. For example the term f(g(x); x) corresponds tothe composition of arrowss1 h�1 ;�1i- s1 � s1 hg;idi- s2 � s1 f- s;where the pair h�1; �1i represents the fact that we will use the same value xas argument to both g, and f . The idea of using projections for variables hasalso been proposed by Asperti and Martini (1989) and Corradini and Asperti(1993).Corradini and Montanari (1992) give an alternative formulation of this con-struction. It can be formalized by viewing a signature as an element ofMGraph = Cat(Set;Mon) of graphs with a monoidal structure on thenodes, so that each signature de�nes a monoidal graph, where each opera-tor � : s1 : : : sn ! s is an arrow. The point is that there exists an adjunctionbetween the categories SCart and MGraph. The forgetful functor just for-gets about the projections in SCart, and the free functor freely adds themand completes the graph into a category. Thus given a signature h�; P i wecan generate a strict cartesian category SCC[�; P ].Example 3.1.16Place p2 in �gure 2.1 is of sort fork. In SCC[�; P ] it is represented as anarrow fork p2- P . The term l(x) corresponds to an arrow phil l(x)- fork.The arrows can now be composed to obtain phil p2(l(x))- P , that representshp2; l(x)i. �So the set of places and the speci�cation in an Algebraic net generate a strictcartesian category. However we have for now completely forgotten aboutthe monoidal structure of the places. It turns out that we can describe thisstructure through the notion of a monoid in the category of strict cartesiancategories SCart. Thus, as is already hinted at by the expression T
�;P (X), themonoidal structure is added �on top� of the substitutions. So our places livein Mod(SKSCart
SKCMon) ' CMon(SCart). Since we obviously have a leftadjoint F : SCart! CMon(SCart), we will denote the monoidal substitutionsystem generated by the signature SCC[�; P ] by SCC[�; P ]
.Thus from theexample in �gure 2.1 the term�(t) = hp1; xi 
 hp2; l(x)i 
 hp2; r(x)iwould translate into the arrowphil
 p1(x)
p2(l(x))
p2(r(x))- P
 :



� 44 �Suppose now that we wanted to substitute ph1 for x. This implies that weneed to compose ? ph1- phil with the arrow above. The problem is that thecodomain and the domain do not match: the arrow ? ph1- phil is an arrow inSCC[�; P ]. It can however be lifted to and arrow ?
 ph1- phil
. The pointhere is, that the arrow ? ph1- phil is the arrow that maps the only elementof the terminal set ? to the element ph1 of phil. The arrow ?
 ph1- phil
is the free extension of this arrow. Thus when composing with the arrowphil
 p1(x)
p2(l(x))
p2(r(x))- P
 we obtain the wanted composition?
 p1(ph1)
p2(l(ph1))
p2(r(ph1))- P
 :We have now established the structure of the states. What remains to dois to establish the structure of the transitions and the adjunction betweenstates and transitions. We can think of a transition in an Algebraic netas an operator of sort T , that has as arity the sort string of its variablesV ar(t). Each net then de�nes a graph CAN in MGraph with the transitionsas operators and the strings of sorts as nodes. For example the philosophersnet de�nes the signature t1 : phil ! T; t2 : phil ! T . The adjunctionbetween the states and transitions is then obtained as the composition of theadjunctions MGraph F-�U SCart F-�U CMon(SCart).The graph of an Algebraic net is now a graph, where both the places and thetransitions have a natural graph structure associated with them. The transi-tions are arrows in MGraph, while the places are arrows in CMon(SCart).De�nition 3.1.17Given an Algebraic net speci�cation AN = hS;�; EQ;X; T;P; �; oi its repre-sentation as a heterogeneous graph is:GAN = hSCC[�; P ]
; CAN ; �0; �1i;where SCC[�; P ]
 2 jCMon(SCart)j, and CAN 2 jMGraphj. The graphmorphisms �0; �1 from CAN to the underlying graph of SCC[�; P ]
 are monoidmorphisms on the nodes. Thus �0 maps a transition t : s1 : : :sn ! T to anarrow s
1 : : :s
n ! P
. Analogously for �1. �Before giving an example let us brie�y re�ect on where we stand in terms ofthe steps explicated on page 41. We have now established the structure onthe states and transitions. The category of states is the category of commu-tative monoids in a small strict cartesian category, while the category of thetransitions is the category of monoidal graphs. The free functor that connectsthese two is the functor that �rst completes the monoidal graph with projec-



� 45 �tions making the monoidal operation a product, and then adds a free monoidstructure on top of this.The graph on graph structure is best described by an example.Example 3.1.18The graph of the philosopher net is given by the diagram:phil t1 - Tphil
 p1(x)
 p2(l(x))
 p2(r(x))- P
p3(x) - P
phil t2 - Tphil
 p3(x) - P
p1(x)
 p2(l(x)) 
 p2(r(x)) -P
 :The diagram expresses the fact that�0(t1 : phil! T ) = p1(x)
 p2(l(x)) 
 p2(r(x)) : phil
 ! P
�1(t1 : phil! T ) = p3(x) : phil
 ! P
�0(t2 : phil! T ) = p3(x) : phil
 ! P
�1(t2 : phil! T ) = p1(x)
 p2(l(x)) 
 p2(r(x)) : phil
 ! P
;that is we have simply just added type information to the terms. �From the example it is easy to see how the re�exive monoidal structure on thetransitions added in step 2 looks like. In TS(GAN) 2 RGraph(CMon(SCart)),we would for example have an arrow:�0(t1 
 t1 : phil
 ! T
) =p1(x)
 p2(l(x))
 p2(r(x)) 
 p1(x)
 p2(l(x)) 
 p2(r(x)) : phil
 ! P
�1(t1 
 t1 : phil
 ! T
) =p3(x)
 p3(x) : phil
 ! P




� 46 �and all other multiples of it. This step also adds idle transitions like�0(tf1 : fork
 ! T
) = f1 : ?
! fork
�1(tf1 : fork
 ! T
) = f1 : ?
! fork
for each arrow in SCC[�; P ]
.The third step involves the dynamics of the net. That is we want to computethe free composition of the arcs in TS(GAN) to obtain [[AN ]]F the free modelof the transition system.Suppose that we are at the initial marking of the net in �gure 2.1,?
 p1(ph1)
p1(ph2)
p1(ph3)
p2(f1)
p2(f2)
p2(f3)- P
;which actually is represented by the corresponding idle transition,�0(tp1(ph1)
p1(ph2)
p1(ph3)
p2(f1)
p2(f2)
p2(f3) : ?
! T
) =p1(ph1)
 p1(ph2)
 p1(ph3)
 p2(f1)
 p2(f2)
 p2(f3) : ?
 ! P
�1(tp1(ph1)
p1(ph2)
p1(ph3)
p2(f1)
p2(f2)
p2(f3) : ?
! T
) =p1(ph1)
 p1(ph2)
 p1(ph3)
 p2(f1)
 p2(f2)
 p2(f3) : ?
 ! P
and recall from previously, that we can compose ?
 ph1- phil
 withphil
 p1(x)
p2(l(x))
p2(r(x))- P
 to obtain phil
 p1(ph1)
p2(l(ph1))
p2(r(ph1))- P
,and analogously for p3(x). We can �re transition t1 by substituting ph1 for x,ie. composing ph1 : 1! phil with t1 : phil! T , giving the transition instance1 ph1;t1- T . The instance is then?
 ph1; t1 - T
?
 p1(ph1)
 p2(l(ph1))
 p2(r(ph1))- P
p3(ph1 ) - P
Then we match the lhs to the initial marking and substitute the lhs with therhs in the initial marking obtaining the transition:



� 47 �?
 (ph1; t1)
 tp1(ph2)
p1(ph3)
p2(f3) - T
?
 p1(ph1)
 p1(ph2)
 p1(ph3)
 p2(f1)
 p2(f2)
 p2(f3)- P
p1(ph2)
 p1(ph3)
 p2(f3) - P
Naturally if we had enough forks we could �re t1 in parallel with two di�erentforks obtaining ph1; t1 
 ph2; t1 :In this way we obtain all the required compositions. The free model is thus[[AN ]]F = CCMon(SCart)[TS[GAN ]].Naturally the model [[AN ]]F contains many more arrows than the transitionsystem obtained in section 3.1.1. For example in the philosopher example wehave an arrowt1; t2 : p1(x)
 p2(l(x)) 
 p2(r(x))! p1(x)
 p2(l(x))
 p2(r(x)) :This arrow gives us a kind of abstract behavior.We can however recover the semantics of section 3.1.1.Proposition 3.1.19Let AN be an Algebraic net and [[AN ]]F its free model. Then the set of allarrows of SCC[�; P ]
 of the form ?
 ! P
 reachable in [[AN ]]F from thearrow !
 : ?
 ! ?
 is isomorphic to the set of reachable states of AN .Proof:Follows from the fact that the set of arrows from 1 in SCC[�; P ] is isomorphicto P � T�=�. �The semantics for Petri nets CatPetri is recovered in the case when theAlgebraic Net is essentially a Petri net.Proposition 3.1.20Let ANT be an Algebraic net with an empty speci�cation. Then ?
 #[[ANT ]]F , the set of arrows from ?
 in [[ANT ]]F is isomorphic toCatPetri(U(ANT )).Proof:The empty algebraic speci�cation generates an empty a substitution system.



� 48 �Thus the substitution system SCC[�; P ] only contains the constants p : ?!P for all p 2 P and all the tuples. Then the set of arrows ?
 ! P
 inSCC[�; P ]
 is the same as P
. In the same way, the monoidal graph generatedby the set of transitions consists of the arrows t : 1! T for each t 2 T , whichmeans that the graphs is essentially the set T . If one now goes through theconstruction it is easy to see that the proposition follows. �We can now complete the method of Corradini and Montanari by selectingthe intended models of the transition system. These are those objects C ofCat(CMon(SCart)) such that there exists an internal functor F : [[AN ]]F !C that is an isomorphism on objects and an epimorphism on arrows. The ob-jects of C di�er from those in [[AN ]]F only by having certain arrows identi�ed.These objects correspond to the di�erent interpretations of an Algebraic netspeci�cation.In this section we have identi�ed high-level nets as graphs on a monoidalsubstitution system, and as a byproduct we have identi�ed the notion of sub-stitution and commutative free monoid as the notions setting up the dynamicsof the net. It is interesting to note, that Husberg (1992) arrives to a similarde�nition by directly generalizing the notion of an operator in an algebraictheory, where an algebraic theory is essentially a substitution system.Our model of Algebraic nets is general in the sense that by changing di�erentcomponents of the construction we obtain new high-level formalisms. Indeedif one analyses the techniques used in this section, a speci�cation formalismconstruction toolkit suggests itself. The components are sketches, the tensorproduct of sketches, and adjoints between the corresponding models. In thissection the sketches were the sketch of commutative monoids, the sketch ofsmall strict cartesian categories, the sketch of graphs and the sketch of cat-egories, ie. the transition system is model of SKCMon
 SKSCart
 SKGraphwhile the behavior is a model in SKCMon
 SKSCart
 SKCat. The �drivingforce� behind this construction is the adjunction between graphs and cate-gories. This adjunction lifts through the tensor product to give us the freemodel of the transition system. Then by changing any of these componentswe would obtain some other �high-level� formalism. For example we couldselect a di�erent substitution system: Goguen (1988) list a number of inter-esting substitution systems, among them order-sorted algebra. This gives usformalisms that are still net like. A more radical idea is to change the sketchof the monoids to something else. One possibility would be to axiomatizesome process algebra as a sketch. This would give us the possibility to extendthe treatment of process algebras of (Ferrari 1990) to process algebras withvalue passing.



� 49 �3.2 A sheaf semanticsSheaf theory is a mathematical tool that has been successfully applied to thesolution of di�cult mathematical problems. Gray (1979) surveys applicationsto complex analysis, algebraic geometry, di�erential equations, and categorytheory. Sheaf theory has also been used in a general formulation of systemstheory by Goguen in (Goguen 1973, Goguen 1975, Goguen and Ginali 1978).The basic building blocks of this categorical formulation of General SystemsTheory besides sheaves are the categorical notions of diagram, limit and co-limit.In the paradigm the behavior of a component, or subsystem, is representedby a sheaf. The sheaf describes those observations that can be made aboutthe behavior of the component. The interconnection of components to asystem is described by a diagram of sheaves. The behavior of the systemis then calculated by taking the limit of its diagram. The limit consists ofa product of those observations of component behavior that are mutuallyconsistent. Finally co-limits are used to connect di�erent systems togetherto form larger modules. This paradigm was later extended to models ofconcurrency (Goguen 1992) and used to give a semantics for the FOOPSlanguage (Wolfram and Goguen 1991).In this section we apply the "Objects are sheaves" paradigm as formulatedby Goguen (1992) to one speci�c model of concurrency, namely Petri nets.The main result of this section is that both interleaving, as well as a non-interleaving semantics for Petri nets arise through the categorical process oftaking the limit.We will start with a very simple view of a transition in a Place/Transitionnet. This view will then be re�ned giving us an interleaving semantics with aglobal �ring rule. Then we will focus our attention on Elementary net systems.We will further re�ne our semantics so that we will obtain a non-interleavingsemantics for Elementary net systems. The results presented in this sectionhave been reported in (Lilius 1993).3.2.1 Sheaves and transitionsThe basic idea in the "Objects are sheaves" paradigm is that an object hasan internal state that can change, and that this state can only be observedthrough slots that are called attributes. From an external point of view, anobject thus consists of a set of attributes, and the only thing we know aboutthe object is that what we can observe about its attributes. It is actually theseobservations that will be modeled as sheaves. Observations may be partial inthe sense that at the current moment we have only observed certain parts of



� 50 �the object, but the observations should be consistent in the sense that partialor local observations can be "pasted" together to global observations.The observations will be formalized in terms of functions f : U ! A where Uis some space-time domain and A is the domain of the attributes of the object,so that f(u) tells us what can be observed about the object from point u. Theelements of the domain U are partially ordered by inclusion, and closed under�nite intersection and arbitrary union, ie. form a topological space, but inthis section the following de�nition is su�cient:De�nition 3.2.1A base T for observations is a family of sets partially ordered by inclusion. �Typically we will use discrete linear time as our base:I0(!) = f?; f0g; f0; 1g; f0; 1; 2g; : : :g [ f!g :An object O then consists of observations over a base T. The consistencyrequirement can now be formulated as follows. Given an inclusion U � Vand an observation f : V ! A we can form the restriction of f to U andwe will denote it by f � U . Let O(U) denote the observations over U . Giventhe inclusion i : U � V , we can form the map O(i) : O(V ) ! O(U) thatmaps an observation f over V to its restriction f � U . O now satis�es thefollowing two equations O(i; j) = O(j);O(i), O(1U ) = 1O(U), that make itinto a contravariant functor.De�nition 3.2.2A presheaf is a functor O : Top ! C where T is the base category and C is thestructure category. If i : U � V is in T, then O(i) : O(V ) ! O(U) is calledthe restriction morphism induced by i. �The idea that observations are closed under restriction can be seen as a cat-egorical formulation of the pre�x closure property of traces.The structure category is the domain of the attributes. By chosing a suitablecategory many di�erent examples can be modeled, as described in (Goguen1992). In this section the attributes will have a very simple form, which allowsus to give the de�nition of a preobject in a simple form.De�nition 3.2.3A preobject O over a base T with attribute object A = A1 � � � � � An is apresheaf of the formO(U) = fh : U ! A1 � � � � �An j K(h)g



� 51 �where the morphismsO(i) are restriction maps, and the relation K expressessome property of the functions, embodying the "laws" that O satis�es; theelements of A may be called states. �Example 3.2.4 ((Goguen 1992))The behavior of a capacitor is governed by a linear di�erential equation. LetI0(R+) = f[0; r)jr � 0gSfR+g be the base consisting of semi-open intervalsof real numbers starting at time 0. Then the behavior of the capacitor isdescribed, for I 2 I0(R+), by the sheafOI = ff : I !R3 j c = F ddt(ui � uo); f is C1 on Ig;where F is the capacitance, c is the current through the capacitor and ui anduo are the voltages at the input and output of the capacitor. In this casethe structure category could be speci�ed more exactly eg. as the category ofBanach spaces.The observations are thus sequences of triples (c; ui; uo) that form a (partial)solution to the di�erential equation. �The de�nition of an object is the following (Goguen 1992).De�nition 3.2.5A preobject O is called an object if its base T is a topological space, andif given Ui 2 T and fi 2 O(Ui) for all i 2 I such that U = Si2I Ui andfi � Ui \ Uj = fj � Ui \ Uj for all i; j 2 I, then there exists a unique f 2 O(U)such that f � Ui = fi for all i 2 I. This condition is called the sheaf condition.If the index set I is restricted to be �nite, then the corresponding conditionis called �nite sheaf condition. �Informally, this means that if observations are consistent over a subinterval,then these observations can be pasted together into an observation that con-tains them all as sub-observations. Depending on whether one compares apair or a possibly in�nite set of observations, one speaks of a �nite and anin�nite sheaf condition respectively.The basic idea in the categorical formulation of General Systems Theory(Goguen 1973, Goguen 1975, Goguen and Ginali 1978) is that the behavior ofa component is represented by a sheaf. The whole system is then representedby a diagram of these sheaves where the diagram tells how the di�erent com-ponents are interconnected. Now because a transition is a component of anet, a transition will be modeled by a sheaf. In the next section we will showhow a net corresponds to a diagram of sheaves and the behavior of the net tothe limit of the diagram.



� 52 �Before we go into details, we need some de�nitions from net theory and somenotation. Contrary to the previous sections and the forthcoming sections, wewill not use the categorical de�nition of a Petri net. The reason is that wedon't need the free construction. Instead we use a slightly massaged de�nitionof a Place/Transition net without capacities (Reisig 1986).De�nition 3.2.6A Place/Transition net N is a quadruple hT; P; �; oi where T is the set oftransitions, P is the set of places, and �; o : T ! [P ! N ] are the input andoutput weight functions and N is the set of natural numbers. �It is customary to assume that the functions � and o are injective so as torule out transitions with identical sets of input and output places. Such netsare called �simple� or in the terminology of (Corradini 1990) `extensionaltransition systems'.The following notations will be useful, where t 2 T and p 2 P . The presetor set of input places of a transition t is de�ned as �t = fp j �(t)(p) �1g. The postset or the set of output places of a transition t is de�ned ast� = fp j o(t)(p) � 1g. Finally the restrictions of the input and outputweight functions �; o to the pre- and postsets are de�ned as �t = �(t) � �t andot = o(t) � t� respectively.The intuition behind P/T nets is that a place can be occupied by tokens. Thedistribution of tokens in the net represents the state of the system and it iscalled a marking. If the number of tokens in the input places of a transitionexceeds the input weight of that transition, then the system can change stateby �ring that transition. This process is formally de�ned through the �ringrule:De�nition 3.2.7Given a Petri net N = hT; P; �; oi, a marking is a function M : P ! Nmapping places to integers. In a net N we say that a transition t 2 T isenabled at M i� �(t) � M . If a transition is enabled it can �re, producing anew marking through the �ring rule:M 0 =M � �(t) + o(t);where the addition and subtraction of integers is extended to addition andsubtraction of integer valued functions by de�ning (f + g)(x) = f(x) + g(x)and (f � g)(x) = f(x)� g(x). �Armed with these de�nitions we can give the following de�nition of the sheafcorresponding to a transition:



� 53 �ba ct32Figure 3.2: A transition t.De�nition 3.2.8Given a transition t in a P/T net we de�ne a sheaf as follows:t(I) = nf : I ! N j�(t)j+j(�t)j j f(i+ 1) = f(i)� �t + ot if �t � f(i)o ;with i; i+ 1 2 I. �The de�nition describes those observations that arise from the �ring of atransition. The idea is that we only look at the input and output placesof the transition. What we observe are integers that represent the numberof tokens in the places. Thus the attributes of the transition are integers.The speci�c values of the attributes are not speci�ed as the environment mayadd or remove tokens. However, whenever the �ring condition is met, thetransition must �re. In that case the observation f(i+1) is related to the theobservation f(i) by the �ring equation.Example 3.2.9Take the transition in �gure 3.2. The corresponding sheaf is:t = ff : I ! N �N �N jf(i+ 1) = f(i)� (2; 3; 0) + (0; 0; 1) if (2; 3; 0) � f(i)g �One possible sequence of observations isi 0 1 2 3 4f (0; 0; 0) (1; 0; 1) (2; 3; 0) (0; 0; 1) (0; 0; 1)where the transition �res at i = 2. In the sequence of observations the stepsfrom i = 0 to i = 1 and i = 1 to i = 2 are caused by the places becomingmarked through the environment. Thus the sheaf is a local constraint on theobservations.A more interesting example is given by nets with time. There are severaldi�erent ways for incorporating time into nets. We have chosen to attach a�ring time to each transition that expresses the number of clock ticks it takes



� 54 �for the transition to �re. This is a very simple model of nets with time. Amore elaborate model would attach a time interval to the transition that sayswithin which time span the transition will �re after it has become enabled.To model the duration of the �ring we add a stream that stores the �ringtime of the transitions:De�nition 3.2.10Given a transition t in a P/T net with �ring duration �t we can de�ne a sheaft(I) as f : I ! Nn �N given byf(i+ 1) = 8>><>>:hff1;ng(i) � �(t); �ti if �(t) � ff1;ng(i) and fn+1(i) = 0hff1;ng(i); fn+1(i)� 1i if fn+1(i) > 1hff1;ng(i) + ot; 0i if fn+1(i) = 1;where ff1;ng(i) are the n �rst components of f(i) and fn+1(i) is the n + 1:st(we abbreviate n = j�(t)j+ j(�t)j). �The idea behind this construction is that the n + 1-st component stores theremaining time before the �ring ends as a natural number. The �rst clause ofthe case expression corresponds to the beginning of the �ring of the transition.The tokens are removed from the input places and the timer is set. The secondclause takes care of the countdown by decreasing the counter. After the �ringtime has expired the third clause outputs the required tokens to the outputplaces and resets the timer to 0. Transitions for other kinds of nets can betreated in an analogous manner.3.2.2 Nets, systems and their behaviorThe intuition underlying this section is that the interconnection of objectsshould be achieved through morphisms. The system is represented as a dia-gram and the composite behavior of the system will arise as the limit of thediagram. The process of taking the limit selects mutually consistent behaviorsof the subsystems as the behavior of the whole system. In this section we willshow how the behavior of a Petri net arises as the limit of its correspondingsheaf diagram.We start by de�ning a notion of morphism for pre-objects and objects:De�nition 3.2.11Given preobjects O and O0 over the same base T, a morphism � : O ! O0 isa family �U : O(U)! O0(U) of maps, one for each U 2 T, such that for each



� 55 �i : U ! V in T the diagram O(V ) �V- O0(V )O(U)O(i)? �U- O0(U)?O0(i)commutes in C. When O and O0 are objects, we may also call � an objectmorphism or sheaf morphism. This gives rise to categories PreObj(T;C), andObj(T;C) of preobjects and objects respectively, over a given base T andstructure category C �A system consists of a diagram of pre-objects or objects.De�nition 3.2.12A system S consists of a graph with nodes n 2 N labeled by (pre-) objectsSn and with edges e : n! n0 labeled by morphisms �e : Sn ! S0n. �Morphisms can be used to represent sharing and inheritance of attributesbetween objects. In the sequel we shall mostly be interested in interconnectingobjects through special morphisms called projection morphisms.De�nition 3.2.13Given preobjects O and O0 with attribute objects A = �j2JAj and A0 =�j2J0Aj respectively with J 0 � J , if a : A ! A0 sending hajjj 2 Ji tohajjj 2 J 0i induces a morphism, then it is called a projection morphism. �A projection morphism "picks" the necessary information from the attributeobject. A typical use for projection morphisms is in connection with so calledevent streams E = ff ! AjM(f)g. An event stream contains the observa-tions pertaining to an attribute. Examples of event streams include wires,communication channels, and places in Petri nets.To construct a net from a set of transitions, some way of expressing that twotransitions are connected to the same place is needed. This is where eventstreams and projection morphisms come in handy. A place is represented byan event stream P = ff : I ! Ng. If there is a capacity k attached to theplace, then the event stream is of the form ff : I ! N jf(i) � k i 2 Ig. Eachtransition is connected to its input and output event streams by projectionmorphisms. The righthand side of �gure 3.3 depicts the diagram obtainedfrom the net on the lefthand side.



� 56 �ba cdt1t223 P1P2 P3P4t1t2pt12pt11 pt13pt21 pt22Figure 3.3: The net of the example and its corresponding diagram.Given a system as a diagram, we can construct its behavior as the limit of thediagram. This limit will contain all the mutually consistent behaviors of thesystem. The limit can be understood as a completion of the diagram with anobject that makes the whole diagram commute.De�nition 3.2.14Given a diagram whose nodes are labeled by sheaves Sn for n 2 N, thebehavior object L of the diagram has for each U 2 L:L(U) = fffnjn 2Ngjfn 2 Sn ^ �e : Sn ! S0n ) �e(fn) = f 0ng �The limit object of the diagram in �gure 3.3 is of the formL = fI ! N 9g :There will be projections pi : L! P i for i 2 f1; 2; 3; 4g and projection tupleshp5; p6; p7i : L ! t1 and hp8; p9i : L ! t2. The limit object is isomorphic tothe object L0 : I ! N 4 which is the state space of the system.Actually, the approach presented above is too simplistic, because it does nottake into account the global nature of the notion of state. To see this considerthe net in �gure 3.3. For simplicity all the arcs have a weight of 1, so thatthe net is essentially an EN-system. Given the marking M = fa 7! 1; b 7!1; c 7! 0; d 7! 0g, there is a choice or con�ict between the �ring of t1, givingthe marking M 0 = fa 7! 0; b 7! 0; c 7! 1; d 7! 0g, and the �ring of t2,resulting in the marking fa 7! 0; b 7! 0; c 7! 0; d 7! 1g. So from the markingfa 7! 1; b 7! 1; c 7! 0; d 7! 0g it is impossible to get to the marking fa 7!0; b 7! 0; c 7! 1; d 7! 1g. But if we take the limit of the corresponding sheafdiagram, the limit object will contain this marking, because we have no wayof specifying the fact that �ring t1 and t2 at the same time is an inconsistentbehavior. Consequently the integrity of the tokens is destroyed.To see how to approach a solution to this problem, let us �rst brie�y lookat the solution adopted in net theory. The general assumption there is that



� 57 �a system can resolve a con�ict by itself. A consequence of this is that asemantics for Petri nets must de�ne an execution policy is some way, explicitlyor implicitly. The �ring rule for P/T nets establishes such a policy. It saysthat one should look at one transition at a time to see if it is enabled. Duringthis process of examination each enabled transition is �red. The resultingreachability graph gives an interleaving semantics for the system, where ateach instant only one transition is allowed to �re. What the �ring rule doesnot say is in what order the transitions are to be examined.The net e�ect of this is that we have a global state and we are able to observethe e�ect of a transition on the global state. As de�ned by de�nition 3.2.8,the �ring rule is "distributed" into each sheaf, and thus gains a local characterresulting in the unfaithful rendering of the semantics of choice.To rectify this problemwe need to introduce a global scheduler. This sheaf willbe connected to each transition of the system and allows only one transitionto �re at each instant.We use the shorthand T? for T [ f?g.De�nition 3.2.15Given a set of transitions T de�ne a scheduler sheaf by:T (I) = fI ! T?g :The possible observations are constrained by the rules:t 7! ? with t 2 T? 7! t with t 2 Twhere the lhs is the observation f(i) and the rhs is the observation f(i+1). �The sheaf T is used to store the name of the transition that is currently �ring,and the token ? is used to denote the fact that no transition is in the processof �ring. The last rule is applicable when a transition starts to �re. Note thatif we would add a rule ? 7! ? that expresses the fact that it is not necessaryfor any transition to �re, the system could idle. In such a case the systemwould not necessarily satisfy a progress assumption.The de�nition of a transition sheaf as given in de�nition 3.2.8 has to bemodi�ed to accommodate the scheduler.



� 58 �EE EEt1t2 T
Figure 3.4: The diagram corresponding to the net in �gure 3.3.De�nition 3.2.16Given a transition t in a P/T net we de�ne a sheaf t(I) asf : I ! N j�(t)j+j(�t)j � T?given byf(i+ 1) = (hff1;ng(i); ti if �t � ff1;ng(i) and fn+1(i) = ?hff1;ng(i)� �t + ot;?i if fn+1(i) = twhere ff1;ng are the n �rst components of the n+ 1-tuple f(i). �The de�nition sets things up so that �ring is only possible if the attributeT has the value ?. The �rst clause insures that transition will only �re ifno other transition is �ring, while the second clause does the actual �ring.Notice that this de�nition does not rule out the possibility that the �ringprocess takes an in�nite amount of time. This possibility is ruled out by thede�nition of the sheaf T which has a rule that says that the �ring takes onlyone time tick. Given a net N denote its translation to a diagram of sheaveswith scheduler by [[N ]]PTSh.Now the net in �gure 3.3 is translated to the diagram in �gure 3.4. Thelimit-object of this diagram will have of the formff : I ! N �N �N �N � T? � (N �N �N � T?)� (N �N � T?)g;where the �rst four N :s correspond to the E :s in �gure 3.3 the last two ex-pressions in parenthesis to the transitions and the T? to T. This limit-objectis isomorphic to the following simpler objectff : I ! N �N �N �N � T?g;because the arrows in the diagrams represent projections. From the structureof the object it is easy to see that only one transition is able to �re at eachinstant. The limit object corresponds to what is more commonly called the



� 59 �i 0 1 2f (0; 0; 0; 0;?) (1; 1; 0; 0; t1) (0; 0; 1; 0;?)g (0; 0; 0; 0;?) (1; 1; 0; 0; t2) (0; 0; 0; 1;?)Figure 3.5: Some observations of the net in �gure 3.3.state space of the net. From this object one can see the state of the systemby projecting on all but the last component.Some possible observations are given in �gure 3.5.In general we have the following theorem.Theorem 3.2.17Let N be a Petri net with initial marking M0. Let [[N ]]PTSh be its corre-sponding diagram of sheaves. Then the set of paths from the initial markingM0 t0- M1 t1- : : : is isomorphic to the observations of the limit object of[[N ]]PTSh with initial observation M0.Proof:()) To each path corresponds an observation: for M0 t0- M1 the observa-tion is 0 7! ? �M0, 1 7! t �M0, 2 7! ? �M1. Assume we have a pathM0 t0- M1 : : :Mi�1 ti- Mi for i then for i+ 1 we have Mi ti- Mi+1 andthe observation is 2i 7! ?�Mi, 2i+ 1 7! ti �Mi, 2(i+ 1) 7! ?�Mi+1.(() To each observation corresponds a path: Follows from the de�nition ofthe sheaf 3.2.16. �A more interesting semantics can be obtained by coding the arbitration ofchoice locally. To simplify the presentation we will restrict our nets so thatall places have a capacity of one and all arcs have a weight of one, makingthe nets essentially Elementary net (EN) systems (cf. (Thiagarajan 1986)).When talking about EN-systems, it is customary to call places conditions, andtransitions events. This construction will give the non-interleaving semanticsmentioned in the introduction.The following two de�nitions set up the basic framework where we assumethat we are given an elementary net with set of conditions C and set of eventsE:De�nition 3.2.18A condition is represented by the sheaf:C(I) = ff : I ! E [ ftrue; falsegg;



� 60 �which is governed by the rules:e 7! m with e 2 E and m 2 ftrue; falsegm 7! e with e 2 E and m 2 ftrue; falseg �The constants true and false are used to tell whether the condition holds ornot. Now because we do not have a global scheduler the name of the event isused to schedule the execution locally.De�nition 3.2.19An event is modeled by the sheaf:E(I) = ff : I ! (e [ ftrue; falseg)j�ej+je�j;which is governed by the transition rules:hx1; : : : ; xni 7! hx01; : : : ; x0ni with jhx1; : : : ; xnij = jhx01; : : : ; x0nij = nand with e 6= e0 for all e0 2 fx1; : : : ; x0nghtruek; falseli 7! hek; elihek; eli 7! hfalsek; trueliwhere k = j�ej; l = je�j and n = k + l. �An event is represented by the product of its pre- and post-conditions. Anevent can only occur when all of its preconditions hold and all of its post-conditions don't (rule 2, lhs). When an event occurs it replaces all pre-and postconditions with its name (rule 2, rhs). This prevents other eventsthat are in con�ict from occurring, and implements con�ict resolution on alocal level. The actual �ring is done by rule 3, while rule 1 takes care ofthe case when some other event is chosen. Again if we would add a rulehmk; nli 7! hmk; nli with m;n 2 ftrue; falseg that expresses the fact thatit is not necessary for any event to happen, the system could idle. In sucha case the system would not necessarily satisfy a progress assumption. Byusing event sheaves of the form ff : I ! ftrue; falsegg we can now constructa diagram of a given elementary net and then form the limit of this diagramto obtain the semantics of the system.Let us �nally brie�y look at how our semantics re�ects con�ict and concur-rency, to see in which sense we have a non-interleaving semantics. The res-olution of choice is distributed into the conditions by rule 2, so that insteadof one global scheduler, each place acts as an arbiter for the events connectedto it. Thus the resolution of choice is done locally. It is interesting to note



� 61 �that a similar solution was adopted by Bütler, Esser and Mattman (1991)in an implementation of Petri nets on a transputer network. The lack of aglobal scheduler also means that causally independent transitions may �re inparallel, thus giving a non-interleaving semantics. That is, the limit objectwill contain observations where causally independent transitions will �re inparallel. Thus the semantics is a non-interleaving semantics.
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Chapter 4FoldingsGeneral Net theory as initiated by C.A. Petri (1973) is the study of nets andtheir morphisms. A folding is a special kind of morphism between nets, thathas been used to relate a net to its causal behaviors, its processes, and todescribe and motivate high-level nets (Genrich, Lautenbach and Thiagara-jan 1980). Recently the construction of strict high-level nets from Condi-tion/Event systems has been formalized and studied (Smith and Reisig 1987).In this chapter we study the construction of non-strict high-level nets fromPetri nets through foldings.The setting for our study of foldings is the categorical theory of Petri netsproposed by Meseguer and Montanari (1990). In their approach Petri nets(Place/Transition nets) are presented as graphs with a monoidal structure onnodes. Contrary to General Net theory, where a morphism is de�ned as afunction on the union of transitions and places, a morphism here is taken tobe a pair of functions between the set of transitions and the monoid of placesrespectively, such that the underlying morphism is a graph morphism1. Sucha morphism is called a homomorphism in the context of General Net the-ory. Also, in the category of Petri nets, a process of a net is not related tothe net itself in the same way as in General Net theory. Thus processes de-�ned through foldings cannot be taken as the fundamental de�nition of causalbehavior of a net. In Meseguer and Montanari's approach this problem is ad-dressed by a categorical notion known as a free construction. To a given netwe can associate a new net, that has as new transitions all possible (parallel)transition sequences of the original net. Di�erent notions of causal behaviorare then obtained as suitable equivalence classes of arrows (Degano, Meseguerand Montanari 1989). However the inverse of folding, unfolding remains animportant notion in the categorical theory of high-level nets (Dimitrovici,1For a short review of this approach see appendix A.2



� 63 �Hummert and Pétrucci 1991), because it relates a high-level net to a low-levelnet with in some sense identical behavior.In this chapter we de�ne a notion of folding for Petri nets as a special kind ofmorphism in the category of Petri nets. We then show how to a given foldingwe can associate an Algebraic Net whose underlying net is isomorphic to thecodomain of the folding and whose unfolding is isomorphic to the domain ofthe folding. It is at �rst not clear if this construction is functorial, but byanalyzing the structure of the category of Petri nets we are able to identify apreorder on nets that allows us to prove the functoriality.The main contributions of this chapter are:� The formalization of the folding construction of non-strict high-levelnets from Petri nets.� The identi�cation of a preorder on nets in the category of Petri nets.� A generalization of the folding construction to Algebraic nets.� The extension of Findlow's �refolding� construction to Algebraic nets.The chapter is structured as follows. We �rst de�ne the categories of Petrinets and Algebraic nets. We also de�ne several functors between these. Thenwe de�ne the notion of folding in the category of Petri nets and show how itgives rise to an Algebraic net. This construction is proved to be functorial.We then show how we can de�ne a notion of folding directly on the Algebraicnet. Finally we discuss how the construction can be used to transform a netso that is has a deadlock preserving skeleton. The results presented in thischapter have been presented in (Lilius 1994a) and (Lilius 1994b).4.1 FoldingsAs stated earlier the aim of General Net theory as introduced by C.A. Petri(1973) is to study morphisms of nets. Foldings play a central role in thistheory, because they are used to relate di�erent nets and net-classes. In thischapter we are interested in the use of foldings to relate di�erent net-classes.A study of foldings using the classical notion of net-morphism has been doneby Smith and Reisig (1987). In this section we will de�ne the notion of foldingwithin the categories PetriG and AN.The material in this section di�ers from the material presented by Smithand Reisig (1987) in two respects. First, the notion of morphism is di�erent.The classical net-morphism (Petri 1973) allows a map to take transitions toplaces, while morphisms in PetriG are essentially graph-morphism, and thus



� 64 �respects places and transitions. Although Smith and Reisig (1987) use placeand transition respecting morphisms, our morphisms are required to preservearc-weights in addition. Second, Smith and Reisig (1987) discuss foldings ofCE-systems into strict high-level nets. In this chapter we take a more concreteview of the process and give a construction to a speci�c class of high-level nets.Also the construction is given for non-strict nets, thus answering a questionleft open by Smith and Reisig (1987).The �rst thing we need to do is to de�ne the notion of folding. Since theintuition in the formation of a high-level net is that we are describing severalidentical processes with the same underlying net through one net it seemsplausible to take the following as the de�nition.De�nition 4.1.1A morphism f : N1 ! N2 in PetriG is a folding i� both fT and fP aresurjective. �Lemma 4.1.2If f : N1 ! N2 is a folding then N1=ker f ' N2. �One of the advantages of working within the category PetriG is that thenotion of surjection can readily be transfered from the category Set.Proposition 4.1.3Given an algebraic net AN the assignmentfP (hp; ai) = hp;?ifT (ht; ass#Ai) = ht; ass#?ide�nes a folding f : Unf(AN )! U(AN ).Proof:The fact that fP and fT are surjective follows directly from the de�nition.That f is a PetriG morphism is also clear. �Proposition 4.1.4Foldings de�ne a natural transformation � : Unf ! U.Proof:Evident from the fact that the diagramUnf(AN ) �(AN )- U(AN )Unf(AN 0)Unf(h)? �(AN 0)- U(AN 0)?U(h)
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ab t1 ecd t2 fh = hhT ; hP i p1p2 t p3 hT : t1 7! tt2 7! thP : a 7! p1b 7! p2c 7! p1d 7! p2e 7! p3f 7! p3Figure 4.1: A folding h : N1 ! N2 in PetriG.commutes. �Thus each Algebraic net de�nes a unique folding. It is now natural to ask theconverse question: Given a folding f : N1 ! N2 in PetriG does there existsan Algebraic net AN s.t. Unf(AN ) ' N1 and U(AN ) ' N2? The answer tothis question is positive; the construction however is rather non-trivial.Let us approach the question with an example. Consider the nets in �gures 4.1and 4.2. The map in �gure 4.1 folds two independent transitions onto the sametransition. The folded net can simulate the behavior of the original net, byhaving multiple markings on the places p1 and p2, but the information ofwhich speci�c transition (t1 or t2) is �red is lost.This information can be recovered by coding it into the annotation func-tions. Figure 4.2 gives one possible annotation for N2. Its main virtue is thatUnf(AN) ' N1. The idea is that for each equivalence class in [p] 2 P= kerhand [t] 2 T= kerh we construct an operation f[t];[p] : [t]! [p] whose de�nitionis such that the transition corresponding to t1 : a
 b! e in Unf(AN) is �redwith mode fx t1g. The original behavior is thus recoverable. This suggeststhat there is a simple and straightforward way of coding the annotation di-rectly from a given folding f : N1 ! N2. This is essentially the constructionproposed by Smith and Reisig (1987).However, the problem is more complicated. The construction as outlinedabove does not work if we fold several input-places of a transition into one.Consider the folding in �gure 4.3. If we want to construct the annotationof the corresponding AN-net, we cannot simply take f[t];[p1] : [t] ! [p1] withf[t];[p1](t) = a 
 b, as then the underlying net would not be isomorphic toN2, because it would have an arc-weight of 1 on the arc p1 ! t. But if weconstruct two operations f[t];a and f[t];b with f[t];a(t) = a and f[t];b(t) = b thenthe input-weight function � has the de�nition �(t)(p1) = f[t];a(x) 
 f[t];b(x).This construction is formalized in the following theorem.
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S : fp1; p2; p3; tg� : EQ :a :! p1 ft;p1(t1) = ab :! p2 ft;p1(t2) = cc :! p1 ft;p2(t1) = bd :! p2 ft;p2(t2) = de :! p3 ft;p3(t1) = ef :! p3 ft;p3(t2) = ft1 :! tt2 :! tft;p1 : t! p1ft;p2 : t! p2ft;p3 : t! p3 p1p2 tfp1;t(x)fp2;t(x) p3fp3;t(x)Figure 4.2: The AN-net corresponding to the folding in �gure 4.1.
ab t1 c h = hhT ; hP i p1 t2 p2 hT : t1 7! thP : a 7! p1b 7! p1c 7! p2Figure 4.3: A folding h0 : N1 ! N2 in PetriG.



� 67 �Theorem 4.1.5Given nets N1 = hP1; T1; �1; o1i, N2 = hP2; T2; �2; o2i and a folding f : N1 !N2 in PetriG there exists an Algebraic net AN s.t. Unf(AN ) ' N1 andU(AN ) ' N2.Proof:The proof is done in three stages. First we construct AN , then the isomor-phism Unf(AN ) ' N1, and �nally the isomorphism U(AN ) ' N2.1. Let AN = hANS;Ai where ANS = hS;�;EQ ; X; T; P; �; o; sorti with S,P , T , X, �, EQ , �, o and sort constructed as follows.(a) P = P2, T = T2, S = P2ST2, where each sort [t]; [p] is inhabitedby the elements of the equivalence relation, and X = fx[t]g[t]2T2.(b) sort is idS � P2.(c) To de�ne the set of operator symbols, we �rst need to establish thedomains and codomains of the operators. To this end we de�nefunctions �� : P2 � T1 ! P1 and �o : P2 � T1 ! P1 given by��([p]; t) = (�(t)) \ (f�1P ([p]))and �o([p]; t) = (o(t)) \ (f�1P ([p])) :The functions give the set of input(output)-places of t in N1 thatare mapped to [p] in N2. For example in �gure 4.1 ��(p1; t1) = fag,while in example 4.3 ��(p1; t1) = fa; bg.Then let ni[t];[p] = maxfj�i([p]; t)j j t 2 [t]g for i 2 f�; og. ni[t];[p] > 1if we fold several places of a transition onto one.The set of function symbols is given by2�f = ff i[t];[p];x : [t]! [p] j[t] 2 T; [p] 2 P; 1 � x � ni[t];[p]g�p = fp :! [p] j 8p 2 P1g�t = ft :! [t] j 8t 2 T1g� = �f [�p [�tIf ni[t];[p] = 1 we omit the x. So in �gure 4.1� = ff �t;p1 ; f �t;p2 ; f ot;p3; a; b; c; d; t1; t2g;2In the sequel i ranges over f�; og



� 68 �while in �gure 4.3 we have� = ff �t;p1;1; f �t;p1;2; f ot;p2; a; b; c; t1g :(d) The construction of the equations is best explained by cases. Ifni[t];[p] = 0 there is nothing to do. If ni[t];[p] � 1 the equations arede�ned byEQ i = ff �[t];x(t) = y j 8t; y : t 2 [t] ^ y 2 �i([p]; t))g :In �gure 4.3 we have that f �t;p1;1(t) = a 2 EQ.(e) Then we have �([t]) = O1�x�n�[t];[p]h[p]; f �[t];[p];x(x[t])i;and o([t] = O1�x�no[t];[p]h[p]; f o[t];[p];x(x[t])i :(f) Finally let A = T�=�.2. The sets of places and transitions in Unf(AN ) are given byP 0 = [p2Pffpg � [p]g :T 0 = fh[t]; ass#Ai j [t] 2 T; ass#A 2 [V ar([t])! A]g :Because all function symbols are of the form f : [t] ! [p] and by con-struction V ar([t]) = fx[t]g, the only valid assignments in this contextare of the form fx[t]  tg with t 2 [t]. The set of transitions is thusisomorphic to TN1 . Analogously for places.The isomorphism Unf(AN ) ' N1 is now obtained as follows. BecauseP 0 ' P and T 0 ' T we have the two morphismsmP : P 0 ! P : hp; qi 7!q and mT : T 0 ! T : h[t]; fx[t]  tgi 7! t which form the morphismhmT ;mP i : Unf(AN ) ! N1. It remains to show, that �Unf(AN);m
P =mT ; �N1. As a �rst step we have:m
P (�Unf(AN)(h[t]; ass#T�(X)i))= m
P (ass�T�=�(�([t])))= m
P ( O1�x�n�[t];[p]h[p]; ass#T�=�(f �[t];[p];x)i)Now, because each ass#T�=� is of the form fx[t]  tg, and by de�nition



� 69 �each f[t];[p];x is a function, we have that ass#T�=�(f[t];[p];x) = y with y 2��([p]; t)), where t is the t in fx[t]  tg. So we get:m
P ( O1�x�n�[t];[p]h[p]; ass#T�=�(f �[t];[p];x)i)= O1�x�n�[t];[p] ass#T�=�(f �[t];[p];x)= O1�x�n�[t];[p] yx= �N1(t)= �N1(t)(mT (h[t]; ass#T�=�i))The proof for o is analogous3. To obtain the isomorphism U(AN ) ' N2 observe that by constructionwe have for U(AN ) = hTU ; PU; �U ; oUi that TU = T2, and PU = P2.It remains to check that � = �2 and o = o2. By de�nition �(t)U =�; ass�? =N1�x�n�[t];[p]h[p]i = �2(t). �The construction codes the folding f into the annotation functions. Althoughwe allow the sets T and P to be in�nite, we have assumed that the functionsfT ; fP must be recursive. Thus according to a result by Bergstra and Tucker(1987) there exists a speci�cation of the functions fT ; fP .To make the folding construction into a functor Fold : PetriG ! AN, weneed to de�ne maps Foldobj : jPetriGj ! jANj and Foldmor : MorPetriG!MorAN. However the construction is de�ned by a morphism, so it is notquite clear how to de�ne the map on objects. Indeed what we have here is acomma-category construction, but we shall not delve into this question anydeeper. An obvious solution would be to de�ne Foldobj(N) as the folding off : N ! ?, where ? is the terminal object. But unfortunately PetriG hasno terminal object. The terminal object of Petri is not usable, because theterminal maps are not maps in PetriG. The reason why PetriG fails to have aterminal object is that since the arrows are free extensions of Set-morphisms,the total weight of the arc-annotation is always preserved.However in PetriG for each net N we can �nd an object NM , such thatthe morphism f : N ! NM is unique. It has just one place, but for eachpossible combination of input and output weights a unique transition. Givena transition t : a1
 : : :
 an ! b1
 : : :
 bm let the type(t) = hn;mi. Thus toeach transition we can attach a pair of integers that denote its type.



� 70 �Proposition 4.1.6Given a net N = hT; P; �; oi there exists a net NM = hPM ; TM ; �M ; oM i withone place, PM = f�g, and for each t 2 T there exist a unique t0 2 TM suchthat type(t0) = type(t), and the morphism mN : N ! NM is unique.Proof:Clearly the function type partitions the set of transitions of N into equivalenceclasses. Thus fT is uniquely de�ned. The map fP is just the terminal map inSet. �Lemma 4.1.7In PetriG, the nets NM with one place form a partial order without bottom.Proof:Follows directly from the fact that the collection of nets NM is isomorphic toP(N1 � N1) ordered by inclusion, where N1 = fn j n � 1; n 2 Ng. �Proposition 4.1.8Given a PetriG-net N denote the Algebraic net obtained through propo-sition 4.1.6 by Fold(N). Given a PetriG-morphism f : N ! N 0, thereexists an AN-morphism Fold(f) : Fold(N) ! Fold(N 0) de�ning a functorFold : PetriG! AN.Proof:The net-part of the map hhT ; hP ; h�; hAi : Fold(N) ! Fold(N 0) is obtainedfrom the inclusion i : NM ! N 0M .The map h� is constructed by "simulating" the map f by a signature mor-phism. This is possible, because in the process of folding, all the informationof the net is retained in the equational signature.On sorts it is given by hS = iT [ iP , and on variables by hX(x[t]) = xhT ([t]) (itis injective because hT is an injection). For the operators the situation is morecomplicated. Essentially the map is given by h� : f[t];[p];x 7! fit([t]);ip([p]);y, butis unclear what the x should map to. The problem arises because we mustsomehow recover the choice we made in step 1.(d) in theorem 4.1.5. However,we can recover the choice, because the set of equations of Fold(N) and Fold(N 0)have this mapping encoded. That is given the set of equations de�ning thebehavior of an operator f[t];[p];x we can construct a map �f[t];[p] : [p]! N givenby �f[t];[p](p) = x i� f[t];[p];x = p 2 EQ. Now given fP : P ! P 0 we can



� 71 �a t1t2 bcFigure 4.4: The net N .
p tf(x)g(x) S : fp; tg� : a :! p EQ f(t1) = ab :! p f(t2) = ac :! p g(t1) = bt1 :! t g(t2) = ct2 :! tf : t! pg : t! pFigure 4.5: The folding of N .construct a map � : N! N such that the diagram commutes:[p] fP - fP ([p])N�f[t];[p]? � - N?�ffT ([t]);fP ([p])The map h� is then de�ned by:h� : f[t];[p];x 7! fit([t]);ip([p]);�(x) : �Corollary 4.1.9Unf(Fold(N)) ' NProof:Follows directly from theorem 4.1.5. �Example 4.1.10The net in �gure 4.5 is the net corresponding to the folding f : N ! NT in�gure 4.4. �



� 72 �sorts : phil,forkopns : ph1; ph2; ph3 :! philf1; f2; f3 :! forkl : phil ! forkr : phil ! forkeqns : l(phi) = fir(phi) = fi for i = 1; 2r(ph3) = f1pf t1t2 xl(x) + r(x)e xxl(x) + r(x)x
Figure 4.6: The speci�cation AN of the dining philosophers problem.Observe that choice is mapped into surjective annotation functions.It is naturally interesting to ask whether Fold(Unf(AN)) ' AN? However itis rather easy to see, that this is not the case. We do not even have a mapFold(Unf(AN)) ! AN as can be seen from �gure 4.8 which is the result offolding the net in �gure 4.7, which is the unfolding of the net in �gure 4.6.It is clear that since all information of the speci�cation in the net AN is lostduring unfolding, there is no way to automatically recover this.Here a folding has been de�ned as a surjective mapping between nets. Sincea surjective map de�nes an equivalence on its domain, it would be interestingto look at the reverse question: When does an equivalence on places de�ne afolding? Clearly the equivalence must be such that it respects the �ow of thenet.De�nition 4.1.11Given a net N = hT; P; �; oi an equivalence relation �2 P � P is said to becompatible i� 8 [p];8 t; t0 2 i�1([p]) : j�i([p]; t)j = j�i([p]; t0)j;where i�1([p]) = ft j 9 p 2 [p] : p 2 (�i(t))g and i 2 f�; og. �The intuition of this de�nition is that the equivalence relation should be
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he; ph1ihe; ph2ihe; ph3ihp; ph3ihf; g3ihp; ph2ihf; g2ihp; ph1ihf; g1i
t1[x  ph3 ]t1[x  ph2 ]t1[x  ph1 ]

t2[x ph1 ]t2[x ph2 ]t2[x ph3 ]Figure 4.7: The net Unf(AN).sorts : p,t1,t2opns : hf; g1i; hf; g2i; : : : :! pht1; [x ph1]i; : : : :! t1ht2; [x ph1]i; : : : :! t2f �t1;p;1f �t1;p;2; f �t1;p;3 : t1 ! pf ot1;p : t1 ! pf �t2;p : t2 ! pf ot2;p;1; f ot2;p;2; f ot2;p;3 : t2 ! peqns : f �t1;p;1(ht1; [x ph1]i) = hf; g1if �t1;p;2(ht1; [x ph1]i) = hf; ph1if �t1;p;3(ht1; [x ph1]i) = hf; g2i... p t1�(t1)f ot1;p(x)t2 o(t2)f �t1;p(x)�(t1) = f�t1;p;1(x)
 f�t1;p;2(x)
 f�t1;p;3(x)o(t2) = fot2;p;1(x)
 fot2;p;2(x)
 fot2;p;3(x)Figure 4.8: The result of Fold(Unf(AN).



� 74 �p1 t1t2f(x)g(y; z) xh(y; z) p2p3Figure 4.9: The net AN .compatible with the arc-weights of the original net. We can now state thefollowing proposition.Proposition 4.1.12Given a net N = hT; P; �; oi and a compatible equivalence relation �, we canconstruct a folding hfT ; fP i, such that �= P= ker fP . �4.2 Foldings in ANIt is interesting also to look also at foldings in the category AN. That isgiven an Algebraic net AN a folding f : U(AN) ! N , can we construct anAlgebraic net AN 0 s.th Unf(AN) ' Unf(AN 0) and U(AN 0) ' N?This time it is not always possible to fold or to obtain a net with isomorphicsemantics. Consider the Algebraic net AN in �gure 4.9. Suppose we wantto fold the transitions t1 and t2 into one. First of all we must make surethat the sort of places p2 and p3 are the same, otherwise it is not possible toconstruct an output-arc annotation for t. Let us suppose, that this is the casein this example. To construct the annotation functions of AN 0 we can usethe idea of adding the set of transitions of AN as a new sort to the signatureof AN 0. One can then construct a new function kt for each transition t ofAN 0 that is de�ned by an equation kit(x; t0) = �2(i(t0)). So in our examplewe get the net in �gure 4.10 (we have only written down the equations forthe kit, the rest of the speci�cation is the same as for AN). However, nowUnf(AN) 6' Unf(AN 0). To see why, notice that we have into kt collected allthe variables in f(x) and k(z; y). Thus we will for the case of t1 have Z � Yassignments, where Z and Y are the sizes of the domains of the correspondingvariables, which then implies that for each t1[x c] in the net Unf(AN) wehave Z � Y transitions in Unf(AN 0). To get rid of this problem, we need torequire that V ar(t) = V ar(t0) 8t; t0 2 [t].De�nition 4.2.1Given an Algebraic net AN , a folding f : U(AN)! N is an AN-folding i�:1. V ar(t) = V ar(t0) 8t; t0 2 [t], and



� 75 �p t p0k�t(x; y; z; t1) = f(x)k�t(x; y; z; t2) = g(y; z)kot (x; y; z; t1) = xkot (x; y; z; t2) = h(y; z)Figure 4.10: The net AN 0.2. sort(p) = sort(p0) 8p; p0 2 [p]. �However there still remains a second problem. Suppose sort(p2) = sort(p3)contains the elements fa; bg. Then U(AN) has the places fhp2; ai; hp2; bi;hp3; ai; hp3; big, while U(AN 0) only has fh[p]; ai; h[p]; big. The places in ANmust thus be encoded in the annotations. This can be done by de�ning thesort of p0 to be [p0] � sortAN([p0]). Then because [p0] will be inhabitated byfp2; p3g we will obtain the correct number of places.Then we can give the following theorem. Again, care must be taken in thecase where two places are folded onto the same place.Theorem 4.2.2Given an Algebraic net AN and an AN-folding f : U(AN) ! N , we canconstruct and Algebraic net AN 0 s.th. Unf(AN) ' Unf(AN 0) and U(AN 0) 'N .Proof:Let AN 0 = hS;�;EQ ; X; T; P; �; o; sorti be given by:1. P = PN ,2. T = TN ,3. X = XAN Sfx[t]g[t]2TN ,4. S = SAN STN Sfh[p]; si j [p] 2 PN ^ s = sortAN([p])g, and5. sort([p]) = h[p]; sortAN([p]).6. The set of operator symbols consists of the operator symbols of AN ,together with a new constant operator for each transition in AN andthe new operators that express the folding.



� 76 �The set of transition symbols is�T = ft :! [t] j 8t 2 TNg :To de�ne the operators k we need the following auxiliary functions:�� : P2 � T1 ! P1 and �o : P2 � T1 ! P1 given by��([p]; t) = (�(t)) \ (U(f�1P ([p])))and �o([p]; t) = (o(t)) \ (U(f�1P ([p]))) :The functions give the set of input(output)-places of t in AN that aremapped to [p] in N .Then let ni[t];[p] = maxfj�i([p]; t)j j t 2 [t]g for i 2 f�; og. ni[t];[p] > 1 if wefold several places of a transition onto one.The set �k is given by3�k = fki[t];[p];n : sort(V ar(f�1([t])))� [t]! sort([p]) j[t] 2 T; [p] 2 P; 1 � n � ni[t];[p]g;So we have �AN 0 = �AN[�T[�k :7. The set of new equations is given byEQi = fki[t];[p];n(x; t) = �n(iAN(t)) j 8t 2 [t]; [p] 2 P; [t] 2 Tgwhere x is the set of all variables V ar(f�1([t])) seen as a vector, and �npicks the nth pair hp; �ti from the expression Nni=1hpi; �ti. ThusEQAN 0 = EQAN[EQi :8. Then we have �([t]) = O1�x�n�[t];[p]h[p]; f �[t];[p];x(x[t])i;and o([t] = O1�x�no[t];[p]h[p]; f o[t];[p];x(x[t]i :9. Finally A0 = T�AN0=�.The fact that N ' U(AN 0) is evident. It remains to prove, that Unf(AN) '3In the sequel i ranges over f�; og



� 77 �Unf(AN 0). We have: PUnf(AN 0) = [p2Pffpg �A0sort(p)g;TUnf(AN 0) = fh[t]; ass#AAN0igNow PUnf(AN 0) ' PUnf(AN) by construction. The map mP : PUnf(AN) !PUnf(AN 0) is given bymP (h[p]; hp; �tii) = hp; �ti because of the de�nition of k[t];[p];nby the equations in EQi.We also have that TUnf(AN 0) ' TUnf(AN), because V ar(t) = V ar(t0) 8t; t0 2f�1([t]) and through the de�nition of EQi it is the case thatass#AAN0 = ass#AAN[fx[t]  tg;where ass#AAN 2 [V ar(t) ! AAN ]. The map mT : TUnf(AN) ' TUnf(AN 0) is nowgiven by mT (ht; ass#AAN i) = h[t]; ass#AAN[fx[t]  tgi :It remains to show that �Unf(AN);h
P = hT ; �Unf(AN 0), where hP = m�1P andhT = m�1T : h
P (�Unf(AN)(h[t]; ass#T�AN0 i))= h
P (ass�T�AN0 (�([t])))= h
P ( O1�x�n�[t];[p]h[p]; ass#T�AN0 (k�[t];[p];x)i)Now, because each ass#T�AN0 (X) is of the form ass#AAN Sfx[t]  tg, and by de�-nition each k[t];[p];x is a function, we have that ass#T�AN (k[t];[p];x) = �n(�AN(t)),where t is the t in fx[t]  tg. So we get:h
P ( O1�x�n�[t];[p]h[p]; ass#T�AN (k�[t];[p];x)i)= h
P ( O1�x�n�[t];[p]h[p]; �n(�AN(t))i;= O1�x�n�[t];[p]�n(�AN(t))= �AN(t)= �Unf(AN)(hT (ht; ass#T�AN i)) �



� 78 �It turns out, that since every Petri net is an Algebraic net through the functorG, the construction of theorem 2.1.12 is a special case of the constructionpresented above.4.3 Deadlock preserving skeletonsThe idea of forgetting the annotations on the Algebraic net and investigatingthe resulting skeleton for deadlocks was �rst proposed by Vautherin (1987).As pointed out by Findlow (1991), the result is of limited usefulness, as evenif the dead skeletal marking is reachable its pre-image may not be. Vautherin(1987) gave a su�cient condition on the Algebraic net to have the propertythat a marking is dead i� the image of the marking in the skeleton is dead, butthis condition is very restrictive. This observation later led to a set of neces-sary and su�cient conditions for a net to have a deadlock preserving skeleton(Findlow 1992), together with a transformation algorithm that unfolds andthen partially refolds the net until it satis�es the conditions. In this sectionwe will transfer Findlows' result to Algebraic nets to give an application forthe construction in section 4.1.The problem with the original idea of analyzing skeletons, as pointed outby Findlow (1991), is that since it is de�ned without reference to an initialmarking it does not distinguish between reachable dead markings and non-reachable dead markings. Thus if we look at the skeleton UN(AN) and �nd adeadlock, it may well be, that a corresponding marking in the net AN is notreachable. To overcome this problem Vautherin (1987) proposed the followingcondition.Proposition 4.3.1Given an Algebraic net hANS; T�=�i if for each transition t and each place pin �t, with �(t) = hp; f1i 
 : : :
 hp; fni we have:1. (p; i) 6= (p0; j)) V ar(fi)TV ar(fj) = ?, and2. �(fi) is surjective in T�=�,then each marking m is a deadlock in Unf(hANS; T�=�i) i� m is a deadlockin Unf(hANS;?i) (the skeleton). �Condition 1 states that each arc must have a distinct set of variables, andcondition 2 that for every input place, the corresponding arc annotation hasthe whole sort of this places as its domain. Together these conditions aresu�cient to ensure that a marking is enabled irrespective of the identity ofthe tokens. However these conditions are very restrictive and there are many



� 79 �examples where the net has a deadlock-preserving skeleton although it doesnot satisfy the conditions. For example the net N in �gure 4.11 has a skeletonwhose every deadlock is also a deadlock in N although it does not satisfy Vau-therins conditions. The fact that transition t3 does not satisfy the conditionis circumvented by transition t2 which �res in any mode.p1 t1x p2x xp3 t3t2f(x)x xx p4p5sort : sops : a : ! sb : ! sf : s! seqns : f(a) = af(b) = aFigure 4.11: A net with DPS that does not satisfy Vautherins conditionThe basic idea in Findlows method is to test whether a place is live at amarking regardless of its color. In our case this amounts to the followingde�nitions.De�nition 4.3.2For any markingM of Unf(AN), with a token in place p, letM(hp; �ti  hp; �t0i)be the marking obtained by replacing the token �t in p with �t0. Now de�nehp; �ti  hp; �t0i i� for any marking M of Unf(AN) M is live and �t 2 M(p) )M(hp; �ti  hp; �t0i) is live. We will say that hp; �ti is interchangeable with hp; �t0iand write hp; �ti $ hp; �t0i i� hp; �ti  hp; �t0i and hp; �t0i  hp; �ti. �Proposition 4.3.3The relation hp; �ti $ hp; �t0i de�nes an equivalence relation on the places ofUnf(AN), denoted by PUnf(AN)=$. �The following lemma is now easy to see, because only places that are instancesof the same high-level place are in the relation $.



� 80 �Lemma 4.3.4$ is a compatible equivalence relation. �The necessary and su�cient condition is then given by the following proposi-tion.Proposition 4.3.5Let N be and Algebraic net. The following is a necessary and su�cientcondition for every dead marking of N to have a dead skeletal image:� For any place p of N , and any terms �t; �t0 of sort(p)hp; �ti $ hp; �t0i �Findlow (1992) proposes an algorithm for calculating the equivalence relation$.We can now obtain a version of the net AN that has a deadlock-preservingskeleton through the following.Theorem 4.3.6Let AN = hS;�;EQ ; X; T; P; �; o; sort; T�i be an arbitrary Algebraic net. De-�ne the net AN 0 as the net obtained by folding alonghfP ; fT i : Unf(AN)! Unf(AN)=$:Then AN 0 has a deadlock-preserving skeleton.Proof:Because of lemma 4.3.4 we know that AN 0 is well de�ned and its unfold-ing is isomorphic to Unf(AN). Then the result follows because of proposi-tion 4.3.5. �It should also be noted that since we are only interested in the skeleton, it isactually unnecessary to construct the speci�cation for AN .In this chapter we have presented a construction that given a folding re-turns an Algebraic net whose underlying net is isomorphic to the codomainof the folding and whose unfolding is isomorphic to the domain of the folding.We have also shown that this construction gives rise to a functor from thecategory PetriG to the category AN, and presented and application for theconstruction.In this chapter we solved the problem of describing foldings of non-strict netsleft open by Smith and Reisig (1987), although in a very concrete manner.



� 81 �Due to the non-strictness of our nets and the algebraic nature of the mor-phism in PetriG we are unable to come up with a classi�cation scheme ofmorphisms and the corresponding classi�cation of high-level systems as pro-posed by Smith and Reisig (1987). Our construction gives just one type ofannotation functions (unary-functions). This is also the reason why the fold-ing and unfolding functors are not adjoint. There is no way to relate thespeci�cation obtained by folding to the original speci�cation since all infor-mation about it is lost while unfolding.A construction similar to the one in section 4.2 has recently also been proposedby Battiston, Cindio, Mauri and Rapanotti (1991) in the context of so calledminimal models of OBJSA nets. They present a construction that mapsan OBJSA net into an equivalent net that is minimal in the sense that ithas only one place for each net-component. This mapping allows them tode�ne an equivalence on OBJSA nets that describes the level of abstractionof the net. Our idea of partitioning PetriG according to the types of thetransitions was inspired by the minimal model construction. However ourfolding construction is di�erent because we fold transitions. The minimalmodel construction leaves the transitions alone and only folds the places ofeach transition.It should be noted that there are other ways to de�ne the notion of AN-foldingin section 4.2. The requirement that the sorts should be preserved could becircumvented by introducing new "union" sorts for each place in the foldednet. Then the equations for the operators ki[t];[p];x would have to be modi�edto include suitable "injection" operators.Our construction also has relied heavily on the fact that the morphisms inPetriG are free extensions of functions. It would be interesting to look atthe construction when the morphisms are allowed to be Mon-morphisms.However we restricted ourselves to PetriG, since it is not quite clear what theright notion of folding is in Petri.



� 82 �
Chapter 5Linear logicLinear logic was discovered by J-Y. Girard (1987a) while trying to extendhis coherent semantics, a domain theoretic model of second-order lambda-calculus (Girard 1986), to a sum of types construct. The sum of types is themathematical analogue to the union types of programming languages and itstreatment in denotational semantics is troublesome. Indeed this was also thecase with coherent semantics, but as a side product linear logic was discovered.The name linear stems, according to Girard (1989b), from the linear algebralike nature of some of the connectives of linear logic.This special nature of the connectives gives linear logic a resource consciouscharacter and linear logic has gained considerable interest from the computerscience community. Applications include:� implementation models for functional languages (Girard and Lafont1987, Lafont 1988, Wadler 1990),� the study of process algebras (Abramsky and Vickers 1990, Abramsky1988, Abadi and Plotkin 1991),� logic programming (Andreoli and Pareschi 1990, Cerrito 1990, Harlandand Pym 1990),� planning in AI (Masseron, Tollu and Vauzeilles 1990),� and net theory (Asperti, Gorrieri and Ferrari 1990, Brown 1989a, Brown1989b, Brown and Gurr 1990, Brown 1991, Engberg and Winskel 1994,Gunter and Gehlot 1989, Marti-Oliet and Meseguer 1989).The list is by no means meant to be comprehensive.The applications relevant to our purposes are the applications to net theory.The main approaches can be classi�ed as:



� 83 �� proof theoretic (Brown 1989b, Gunter and Gehlot 1989),� model theoretic (Brown 1989a, Engberg and Winskel 1994),� and category theoretic (Brown and Gurr 1990, Marti-Oliet and Meseguer1989).In the proof theoretic approach the idea is to try to relate computations innets to proofs of linear logic formulae. Brown (1989b) equates a net to aformula of linear logic and proves that reachability corresponds to provabilityin linear logic. On the other hand Gunter and Gehlot (1989) view a net asa theory. They are able to relate the cut-elimination of a proof (c.f. (Gallier1987) sec. 6) to the notion of maximally concurrent process.The model theoretic approaches of (Brown 1989a) and Engberg and Winskel(1994) are essentially the same. The idea is to generate a model of linear logicfrom the behaviors of a net.The category theoretic approaches can really not be compared as their aimsare completely di�erent. The idea in (Marti-Oliet and Meseguer 1989) isto take the categories of nets of Meseguer and Montanari and close themunder the new operators of linear logic. The approach of Brown and Gurr(1990) is based on the Dialectica Categories of Valeria de Paiva (de Paiva1989a, de Paiva 1989b) which are a category theoretic model of Gödels "Di-alectica interpretation" of higher order arithmetic (Gödel 1958). The con-structs available in these categories give rise to very interesting constructionson nets that can be interpreted as linear logic connectives. The approachcould be summed up in the slogan "nets are linear logic propositions". Un-fortunately the approach currently only works with elementary nets.In this chapter we will extend the model theoretic approach of Brown (1989a)to cover Algebraic Nets. We �rst show that the construction presented byBrown extends to a functor, and by taking the composition of this functorwith the Unf-functor we obtain a model of linear logic from an Algebraicnet. The results presented in this chapter have been reported in (Lilius 1991)and (Lilius 1992).5.1 Syntax and proof-theoryModern introductions to linear logic like appendix B in (Girard, Lafont andTaylor 1989) introduce linear logic through the sequent calculus; as this isto date the most accessible way to understanding linear logic. Essentiallythe di�erent �avors of linear logic (intuitionistic, classical and predicate) areobtained by deleting the contraction and weakening rules from the standard



� 84 �Axiom: Structural Rule: Cut Rule:(Id)A ` A �; A;B;� ` C (Exchange)�; B;A;� ` C � ` A A;� ` B�;� ` BLogical Rules:(1 - R)` 1 � ` A (1 - L)�; 1 ` A� ` A � ` B (
 - R)�;� ` A
B �; A;B ` C (
 - L)�; A
B ` C�; A ` B (( - R)� ` A( B � ` A B;� ` C (( - L)�; A( B;� ` C� ` A � ` B (& - R)� ` A&B �; A ` C�; A&B ` C �; B ` C (& - L)�; A&B ` C� ` A� ` A�B � ` B (� - R)� ` A�B �; A ` C �; B ` C (� - L)�; A�B ` C!� ` A (! - R)!� ` !A �; A ` B (Dereliction)�; !A ` B�; !A; !A ` B (Contraction)�; !A ` B � ` B (Weakening)�; !A ` B�; A[a=x] ` B (W - L)�;_ x : A ` B � ` A (W - R)� `_x : A�; A ` B (V - L)�;^ x : A ` B � ` A[a=x] (V - R)� `^x : AFigure 5.1: Sequent calculus for intuitionistic predicate LL.sequent calculus formulations of the corresponding logics. In �gure 5.1 thesequent calculus formalization of linear intuitionistic predicate logic is given.When comparing the formulation in �gure 5.1 to formulations of intuition-istic predicate logic one can immediately see that the e�ect of deleting thetwo structural rules of contraction and weakening is signi�cant. None of thestandard rules for the logical connectives (^;_;)) are present; they have allbeen replaced by new connectives. We will try to give intuitive interpretationsin terms of the behavior of a net to all these connectives in subsection 5.4.Below we shall just give an informal description of the intuitionistic version ofthe calculus. The new connectives are classi�ed as multiplicatives ("tensor" 
and "linear implication"(), additives ("tensor sum" � and "direct sum" &)and exponentials ("of course" !). The distinction between multiplicatives andadditives is best seen in the sequent calculus by noticing that the additives



� 85 �always use the same context, while the multiplicatives are used to combinedi�erent contexts. On an intuitive level the need for the large number of con-nectives can be understood as follows. Take the introduction rule for the and^ connective in the sequent calculus of intuitionistic logic as given in (Girardet al. 1989): �; A ` C (L1^)�; A ^B ` CThe correctness of this rule is based on the interpretation of a sequent � ` Cas the conjunction of all the premises in � entail C. Thus in the presence ofweakening the above rule is actually an abbreviation for the following proof:�; A ` C (Weakening)�; A;B ` C�; A ^B ` C :Indeed there exist sequent calculus formulations of classical and intuitionisticlogic that take this approach and simply have one introduction rule for ^ onthe left (c.f. (Gallier 1987)). Now it is easy to see that without weakeningwe have to postulate a rule that allows the introduction of conjuncts on theleft. But, as we have deleted weakening, we want to give the connective a newname, so that this implicit use of weakening can be distinguished from otheruses. Thus the analogue to our rule above is the rule (&-L) in �gure 5.1. Onthe other hand the rule � ` A � ` B (R^)�;� ` A ^Bthat introduces conjunction of the right does not implicitly use the weakeningrule. This is "represented" in �gure 5.1 by the rule (
-R). Another way ofsaying this is that contraction and weakening allow one to think of the list ofpremises as sets, while in linear logic premises are to be treated as multisets.The removal of the contraction and weakening rules makes the fragment withthe multiplicatives and additives strictly weaker than intuitionistic logic. Toget the strength of intuitionistic logic back the exponential connective "ofcourse" is introduced. The idea is that we can allow weakening and contrac-tion, but that we, as previously, want to mark the use, explicit or implicit,of weakening. The rules of weakening and contraction are put back in thelogic as logical rules for the connective "of course". The sequent calculus in�gure 5.1 lacks rules for negation. Linear negation, that is to be distinguishedfrom intuitionistic negation, is introduced by �rst �xing a logical constant ?denoting linear absurdity and then de�ning A? = A( ?. Using linear nega-tion intuitionistic propositional logic can now be encoded into intuitionistic



� 86 �linear logic. One example of such a coding is the translationA ^B = A&B A _B = !A� !B A) B = !A( B :A = !A( ? :Other translations are given in (Girard 1987a). They all have di�erent prop-erties in the sense that they enlighten di�erent aspects about provability inintuitionistic logic.The remaining connectives are the quanti�ers. Their names are any W andsome V. Girard gives their de�nition in semantic terms as in�nite generaliza-tions of the additives. The quanti�ers have been studied by Girard (1987b),but only their proof-theoretic properties are investigated. We shall see insection 5.4 how they can be used in modeling individual tokens in high-levelnets.To talk about properties of the net we introduce typed intuitionistic predicatelinear logic. The development of the language follows (Goguen and Burstall1990).De�nition 5.1.1A �rst order signature 
 is a triple 
 = hS;�;�i where:1. S is a set of sorts,2. � is an S� � S-indexed family of sets of operator or function symbols,and3. � is an S�-indexed family of sets of predicate or relation symbols. �The de�nition of sentences over a �rst-order signature 
 requires the followingauxiliary de�nitions. Let X be a �xed in�nite set of variable symbols, andlet X : X ! S be a partial function i.e., sort assignment. We will alsothink of X as the union of the sets Xs = fx 2 X jX(x) = sg. De�ne theS-indexed family TERMX(
) of (
; X)-terms to be the carriers of T�(X),the free �-algebra with generators X. De�ne the S-indexed function Free onTERMX(
) inductively by:1. Frees(x) = x for x 2 Xs, and2. Frees(�(t1; : : : ; tn)) = Sni=1 Free(ti).Finally de�ne TERM(
) to be the disjoint union of all TERMX(
). Thismeans that we always know the variables and their type in a term.



� 87 �De�nition 5.1.2A well-formed (
; X)-formula is an element of the carrier of the (one-sorted)free algebra WFFX(
) having atomic (
; X)-formulaef�(t1; : : : ; tn)j� 2 �u with u = s1 : : : sn and ti 2 TERMX(
)sigas generators, and having the following one-sorted signature:1. constants 1; 0; I,2. binary in�x operators 
;�;&;(, and3. unary pre�x operators (W x) and (V x) for each x 2 X.Let WFF (
) be the union of all WFFX (
).The functions V ar and Free that give the set of variables and free variablesthat are used in 
-formulae, are de�ned inductively by1. V ar(c) = Free(c) = ? for c 2 f1; 0; Ig,2. V ar(�(t1; : : : ; tn)) = Free(�(t1; : : : ; tn)) = Sni=1 Freesi(ti),3. V ar(A�B) = V ar(A)[V ar(B), and Free(A�B) = Free(A)[Free(B)with � 2 f
;�;&;(g,4. V ar((W x)P ) = V ar((V x)P ) = V ar(P ) [ fxg,and Free((W x)P ) = Free((V x)P ) = Free(P ) � fxg.An 
-sentence is a closed 
-formula, that is, an 
-formula P for whichFree(P ) = ?.The typed linear intuitionistic predicate language over a �rst order signature
 is the set of all 
-sentences and it is denoted L
. When the context is clearthe 
 shall be omitted. �The sequent calculus formulation of the axiom system of linear intuitionisticpredicate calculus was given in �gure 5.1. To accommodate the typed versionof linear intuitionistic predicate calculus, the rules (W - L), (W - R), (V - L),and (V - R) need to be modi�ed by adding a type to the variable x.�; A[as=xs] ` B (W - L)�;_xs : A ` B � ` A (W - R)� `_xs : A�; A ` B (V - L)�;^xs : A ` B � ` A[as=xs] (V - R)� `^xs : A



� 88 �5.2 Quantale semanticsQuantales are models of linear logic. They can be seen as an algebraic ax-iomatization of the sequent calculus rules of linear logic, in the same vein asboolean algebras are an algebraic axiomatization of classical logic.Quantales were originally introduced by Mulvey (1986) in an attempt to castlight on the connections between C�-algebras and quantum mechanics. Thework by Mulvey, and Girard's attempts to give a semantics of linear logic interms of C�-algebras (Girard 1989a, Girard 1990), inspired several authorsto study quantales and their relation to linear logic (Abramsky 1988, Yetter1990).A quantale is a complete lattice enriched with a monoidal operation.De�nition 5.2.1A commutative quantale Q is a quadruple hQ;�;
; Ii such that:� hQ;�i is a complete join semi-lattice with top (>) and bottom (?),� hQ;
; Ii is a commutative monoid, and� the monoidal operation ('tensor') distributes over joins, i.e. for J anindexing set: a
 _j2J bj = _j2J(a
 bj) : �Every monoid gives rise to a free quantale as shown by the following example.Example 5.2.2Let N = hT; P; �; oi be a Petri net. Take the set of all markings of then netmark (N). The markings of the net are elements of a monoid (the monoidaloperation will be denoted by + to distinguish it from the operation in thequantale). We can easily extend this monoidal operation to sets of markings,i.e. for P;Q � mark (N) de�neP +Q = fp+ qjp 2 P; q 2 Qg :Let P(mark (N)) be the powerset of the markings of N and 0 be the zeromarking i.e. the unit of the monoid P+. ThenhP(mark (N));+; f0giis a commutative monoid. Finally because of the natural subset ordering on



� 89 �the set P(mark (N)) we have that the tupleq(N) = hP(mark (N));�;+; f0giis a commutative quantale. Furthermore the assignmentq : N 7! hP(mark (N));�;+; f0gide�nes a function from jPetriGj to jQuantj. �As we shall be working with maps between quantales we need a notion ofmorphism for quantales.De�nition 5.2.3A morphism of quantales is a function f : Q1 ! Q2 that is monotonic andpreserves W;
, and I. �Using this de�nition of a morphism the following is obvious.Proposition 5.2.4Quantales and their morphism form a category Quant. �5.3 Quantales and netsIn this section we shall show how given a net we can construct a quantalethat describes the behavior of the net.The construction described in this section was independently discovered by-Brown (1991) and Engberg and Winskel (1994). The intuitive idea underlyingthe construction is that linear implication should correspond to reachabilityof markings. General formulas of linear logic will then be statements aboutthe reachability of markings.To construct a model of linear logic from a net we shall proceed as follows.First from the set of markings of the net mark(N) the free quantale q(N)over mark(N) is generated. Then we prove that the reachability relationbetween markings de�nes a special kind of map between quantales, a quanticnucleus, on the quantale q(N). Finally we will use a result by Nie�eld andRosenthal (1988) to obtain our model. In the model the interpretation of anatomic proposition p is the set of all markings that are reachable from thecorresponding place p in the net (Brown 1991) or, the set of all markingsthat are a prerequisite for the fact that place p become marked (Engberg andWinskel 1994). Our contribution is the proof that both constructions yield afunctor from the category PetriG to the category of quantales Quant. The



� 90 �omitted proofs can be found in chapter 7 of (Brown 1991), and (Nie�eld andRosenthal 1988).Recall from example 5.2.2 that net N each de�nes a quantale q(N). Thisquantale is however not the quantale we want, because its elements are arbi-trary sets of markings and thus these sets do not represent the behavior ofthe net. What we need to do, is to narrow down the allowed sets of markingsso that in a set M , with a; b 2 M , either a is reachable from b or b is reach-able from a. Then the subset ordering of these sets of markings representsthe reachability relation. Formally this construction is achieved by de�ning aquantic nucleus on the quantale q(N).De�nition 5.3.1Let Q be a quantale. A function j : Q! Q is a quantic nucleus i�a � b) j(a) � j(b) j is monotonica � j(a) j is increasingj(a) = j(j(a)) j is idempotentand j(a)
 j(b) � j(a
 b) for all a; b 2 Q : �The �rst three conditions state that j is a closure operator. The �nal conditionmakes j a looser notion than a morphism, because it is not required to preservethe monoidal operation.The crucial element of the construction is the fact that the reachability re-lation gives rise to a quantic nucleus. First of all we need to de�ne a newordering relation on markings which then also extends to sets of markings.De�nition 5.3.2Let m1;m2 2 mark (N). De�nem1 � m2 i� m1 is reachable from m2 :Let M1;M2 be sets of markings. Then M1 �M2 i� for every m1 2M1 thereexists m2 2M2 such that m1 � m2. �Given an ordering we can always de�ne a downward closure operator. Weshall call this operator forward evolution.De�nition 5.3.3Let N be a net. For A � mark (N) the forward evolution of A is the endo-function: #(A) = fmj9a 2 A : m � ag :



� 91 � �The meaning of the function # is that it maps a set of markingsM to the setof markings that are reachable from the markings in M .It is obvious that A � B i� A � Bwhen A;B are downward closed.This gives us our quantic nucleus.Proposition 5.3.4# : q(N)! q(N) is a quantic nucleus. �Now proving that closure under reachability de�nes a quantic nucleus is reallynot enough, because a quantic nucleus on a quantale Q is not necessarily aquantale endomorphism. But the following theorem by Nie�eld and Rosenthal(1988) tells us that a quantic nucleus is a quantale morphism, although notan endomorphism.Proposition 5.3.5Let Q be a quantale and j : Q ! Q a quantic nucleus. Then the image ofj is a quantale Qj with a 
j b = j(a 
 b) and j : Q ! Qj is a quantalemorphism. �So our wanted quantale is the image of the operation #(q(N)).Proposition 5.3.6The tuple h#(q(N));�;
; #(0)i where the operation M1 
M2 is de�ned as#(M1 +M2) is a quantale. �The elements of the quantale are sets of markings closed under forward evo-lution and the ordering on the sets is subset inclusion. Engberg and Winskel(1994) take the dual interpretation. They de�ne the ordering �0 on markingsby m �0 m0 i� m! m0 :Then they also take downward closed subsets of markings. It is easy to see,that this corresponds to taking upward closed subsets with the ordering ofthe previous section, that is"(A) = fmj9a 2 A : a � mg :It is routine to verify that " de�nes a quantic nucleus.What is the di�erence between these two interpretations? The main di�er-ence is in the intuitive interpretation of the connectives. A proposition is



� 92 �interpreted by its possible gain in the case of forward reachability and as thesu�cient requirement in the case of backward reachability. In terms of linearlogic formulas the di�erence is best seen with the way we state that b is reach-able from a. In Engberg's and Winskel's approach the statement is expressedby the formula a ( b. As presented here the statement is expressed by theformula b( a.The rest of this section is concerned with the proof of the functoriality of #.The result is intuitively clear since a net morphism preserves the reachabilityand thus should in some way be compatible with the closure operators. Themain question then is that of the de�nition of # for a net morphism. Theobvious extension of f to quantales does not work, because:Lemma 5.3.7Let f : N1 ! N2 be a PetriG morphism. Then generally not f(M) =#N2 (f(M)), where M is a set of markings of N1 and #N2 is the quantic nucleusgenerated by the reachability relation of N2. �This is so, because if for example the net N1 is a subnet of N2 then clearly theset of markings reachable from m in N1 is smaller than the set of markingsreachable from m in N2. But on the other hand it would be reasonable toconjecture that by mapping a closed set of markings in N1 to the closure ofthe corresponding markings in N2 we would get a functor. Indeed this is thecase as the following theorem shows.Theorem 5.3.8Let f : N1 ! N2 be a PetriG morphism, and let # q(N1); # q(N2) be thecorresponding net-quantales. Then the assignment #(f)(M) = #N2(f(M)) forM 2 # q(N1) de�nes a functor PetriG! Quant.Proof:Essentially we have to prove, that #(f) : # q(N1) ! # q(N2) is a quantalemorphism. In the sequel let A;B 2 # q(N1).1. #(f) is monotonic:A � B ) A � B) f(A) � f(B)) N2# (f(A)) � N2# (f(B))) N2# (f(A)) � N2# (f(B))) #(f)(A) � #(f)(B) :



� 93 �2. #(f) preserves joins:#(f)(A _B) = N2# (f(A _B))= N2# (f(A) _ f(B))= N2# (f(A)) _ N2# (f(B))= #(f)(A) _ #(f)(B) :3. #(f) preserves the tensor:#(f)(A
N1 B) = #(f)(N1# (A+B))= N2# (f(N1# (A+B)))� N2# (N2# (f(A+B)))= N2# (f(A+B))= N2# (f(A) + f(B)))= N2# (f(N1# (A)) + f(N1# (B)))� N2# (f(N1# (A+B)))= #(f)(A
N1 B) :Thus #(f)(A
N1 B) = #N2 (f(A) + f(B))).N2# (f(A) + f(B))) = N2# (N2# (f(A)) + N2# (f(B)))= N2# (f(A)) 
N2 N2# (f(B)))= #(f)(A)
N2 #(f)(B) :In other words #(f)(A
N1 B) = #(f)(A)
N2 #(f)(B).4. #(f) preserves the unit:#(f)(IN1) = N2# (f(N1# (0))) � N2# (N2# (f(0))) = N2# (0) = IN2 :But clearly 0 � #N1(0) which implies f(0) � f(#N1 (0)), so thatIN2 � #N2(f(#N1(0))) = #(f)(IN1). Thus#(f)(IN1) = IN2 :



� 94 � �5.4 Algebraic nets and linear logicIn this subsection we will show how linear logic can be used to express proper-ties of algebraic nets. To formulate properties of an algebraic net in a languageL
 we must de�ne how the algebraic net generates a language.De�nition 5.4.1The �rst order signature 
AN generated by an algebraic net AN is given by1. S = SAN ,2. � = �AN , and3. � = P where P is the set of places of the net.The language generated by 
AN will be denoted by LAN . �Notice that all the predicates in our language will be monadic predicates.Recall that the composition #(Unf(A)) de�nes a quantale QAN for the netAN . The language LAN can now be interpreted in the quantale QAN .De�nition 5.4.2The interpretation of the language LAN in the quantale QAN is given by thefollowing rules. For reasons of clarity we have omitted explicit mention of thequantale in the interpretation.1. [[�(t)]] = (#(h�; evalA(t)i) i� t is a ground term#(SassA2[V ar(t)!A](h�; ass#A(t)i))2. [[1]] = fthe set of all reachable markings of the netg,3. [[0]] = ?,4. [[I]] = #(0),5. [[A
B]] = #fa+ bja 2 [[A]] and b 2 [[B]]g,6. [[A&B]] = [[A]]T[[B]],7. [[A�B]] = [[A]]S[[B]],8. [[A( B]] = Sf[[C]]j[[C 
A]] � [[B]]g,9. [[(Wxs)P ]] = Tc2�[[P [x=c]]], where c is of type c :! s, and



� 95 �ba cN1 b da cN2Figure 5.2: Nets showing the di�erence between the two choice operators.10. [[(Vxs)P ]] = Sc2�[[P [x=c]]] with c of type c :! s. �The idea behind this interpretation is the following. A predicate describes aplace. The denotation of the predicate � is the set of all markings obtainablefrom the possible markings of the corresponding place, in other words the setof resources we could obtain if we had �. The other connectives and constantscan now be understood as follows.The constants 1; 0 are the top and bottom of the quantale respectively. Theconstant I is the set of markings reachable from the empty marking. Theinterpretation of [[A 
 B]] expresses the fact that to obtain some markingm 2 [[A 
 B]], we need resources a 2 [[A]] and b 2 [[B]] simultaneously. Theadditives are interpreted as choice operators. If we have a consequence m ofA&B, we know that regardless of our choice of A or B m will always be aconsequence of A and B. On the other hand if m is a consequence of A �Bit is obtained a non-deterministic choice between resources A and B. Thusit must be a consequence of either A or B. The nets in �gure 5.4 show thedi�erence between the two connectives. For net N1 both c 2 [[a � b]] andc 2 [[a&b]] because we can obtain c from either a or b, while for N2 onlyc 2 [[a� b]] because c can only be obtained from a.The interpretation of A ( B expresses the idea, that no consequence ofA ( B can give us more when taken together with some c than we wouldgain by having the appropriate b 2 [[B]]. This gives us the nice lemmaLemma 5.4.3j= m( m0 i� marking m is reachable from m0. �The interpretation of (Wx)P is the set of markings that are reachable re-gardless of the identity of the speci�c markings of P . That is each markingm 2 [[(Wx)P ]] must be a consequence of [[ass#A jfxg(P )]] for any legal assign-ment ass#A jfxg. The interpretation of the V-quanti�er (some) is analogous.



� 96 �Semantic entailment in the quantale is de�ned asA1 
 : : :
An j= A i� [[A1]]
 : : :
 [[An]] � [[A]] :The truth of an 
-sentence with respect to a quantale QAN is de�ned in termsof the ordering relation and the interpretation of the logical constant I.De�nition 5.4.4An 
-sentence P is true in a quantale QAN (i.e. QAN j= P )i� [[I]] � [[P ]] : �We shall also say that the property P holds in a net AN i� [[I]] �QAN [[P ]].Proposition 5.4.5The interpretation as given above is sound with respect to the sequent calcu-lus, A1; : : : ; An ` A) A1 
 : : :
An j= A : �Some examples will illustrate the de�nitions. Let AN be the dining philoso-phers net of �gure 2.1 on page 10 with the interpretation of �gure 2.4. Weomit some of the more tedious calculations.Example 5.4.6Philosopher 1 can eat if he can get both forks:QAN j= e(ph1)( p(ph1)
 f(g1)
 f(g2);because[[p(ph1)
 f(g1)
 f(g2)]] = fhp; ph1i+ hf; g1i+ hf; g2i; he; ph1ig;and [[e(ph1)]] = fhp; ph1i+ hf; g1i+ hf; g2i; he; ph1igclearly imply that0 2 f[[C]]j[[C 
 e(ph1)]] � [[p(ph1)
 f(g1)
 f(g2)]]g : �



� 97 �Example 5.4.7If philosophers ph1 and ph2 are hungry and there are enough forks it is possiblefor exactly one philosopher to start eating:QAN j= e(ph1)� e(ph2)( p(ph1)
 p(ph2)
 f(g1)
 f(g2)
 f(g3);because A = [[e(ph1)� e(ph2)]] = [[e(ph1)]] [ [[e(ph2)]] =fhe; ph1i;he; ph2i;hp; ph1i+ hf; g1i+ hf; g2i;hp; ph2i+ hf; g2i+ hf; g3ig;whileB = [[p(ph1)
 p(ph2)
 f(g1)
 f(g2)
 f(g3)]] =fhp; ph1i+ hp; ph2i+ hf; g1i+ hf; g2i+ hf; g3i; he; ph1i; he; ph2ig;so that f[[C]]j[[C 
 A]] � Bg = f0; hf; g2i; hf; g1igand thus0 2 [[e(ph1)� e(ph2)( p(ph1)
 p(ph2)
 f(g1)
 f(g2)
 f(g3)]] : �Example 5.4.8But QAN 6j= e(ph1)&e(ph2)( p(ph1)
 p(ph2)
 f(g1)
 f(g2)
 f(g3);because [[e(ph1)&e(ph2)]] = [[e(ph1)]] \ [[e(ph2)]] = ?and thus0 62 [[e(ph1)&e(ph2)( p(ph1)
 p(ph2)
 f(g1)
 f(g2)
 f(g3)]] :What this means is that it is not possible for two philosophers to be eatingat the same time in our model if we only have 3 forks. �



� 98 �Example 5.4.9For any philosopher there is some fork that is not needed for the philosopherto start eating:QAN j=_xphil :^ yfork : e(x)
 f(y)( p(x)
 f(g1)
 f(g2)
 f(g3) :The interpretation of this formula is complicated and we shall only sketch thedetails.[[_xphil :^ yfork : e(x) 
 f(y)( p(x) 
 f(g1)
 f(g2)
 f(g3)]] =[phi2phil( \fi2fork[[e(phi)
 f(fi)( p(phi)
 f(g1)
 f(g2)
 f(g3)]])Now, [[p(phi)
 f(g1)
 f(g2)
 f(g3)]] =fhp; phii+ hf; g1i+ hf; g2i+ hf; g3i; he; phii+ hf; gi+2mod3ig;and [[e(phi)
 f(gj)]] =fhp; phii+ hf; gii+ hf; gi+1mod3i+ hf; gji; he; phii+ hf; gjig :One can now see, that0 2 [[e(phi)
 f(gj)( p(phi)
 f(g1)
 f(g2)
 f(g3)]]for the pairs (ph1; f3); (ph2; f1); (ph3; f2) and this then leads to the result that0 2 [[_xphil :^ yfork : e(x)
 f(y)( p(x) 
 f(g1)
 f(g2)
 f(g3)]] : �Example 5.4.10The following two formulas describe transitions t1 and t2 respectively:QAN j= _ xphil : e(x)( p(x)
 f(l(x))
 f(r(x));QAN j= _ xphil : p(x)
 f(l(x))
 f(r(x))( e(x) :because [[p(x)
 f(l(x))
 f(r(x))]] =[i2f1;2;3gfhp; phii+ hf; gii+ hf; gi+1mod3i; he; phiig;



� 99 �and thus 0 2 [[_xphil : e(x)( p(x) 
 f(l(x))
 f(r(x))]] :Analogously for t2. �Notice also the form of the lhs of the implication in example 5.4.9. We had toexplicitly mention the left over fork, although what we would have wanted tobe able to say something like "from the initial marking any philosopher canstart eating". For this end we need a "wildcard" marking.Lemma 5.4.11[[m
 1]] = #fm0jm0 � mg.Proof: [[m
 1]] = #fm+ bjb 2 [[1]]g= #fm0jm0 � mg : �Example 5.4.9 now becomes:QAN j=_xphil : e(x) 
 1( p(x) 
 f(g1)
 f(g2)
 f(g3) :In this chapter we have shown how to extend a correspondence between linearlogic and Petri nets to a correspondence between intuitionistic predicate linearlogic and algebraic high-level nets. The examples presented suggest thatlinear intuitionistic predicate logic could be used as a foundation for a logicto reason about high-level nets. As such the logic is not very expressive,because it is not possible to reason about transitions, nor is it possible toexpress negative facts about the net. However Engberg and Winskel (1994)have recently discovered that in so called atomic nets (a net is atomic i�whenever M ! 0 then 0 ! M) we have that j= A&I ( 0 i� 6j= A, thusmaking it possible to assert the non-reachability of markings. Since mostnets occurring in practice are atomic, it seems useful to further study theexpressiveness of linear logic. On the other hand linear logic also containsfeatures whose importance for reasoning about nets is not yet clear, eg. aspointed out by C. Brown (1991), the interpretation of the choice operators isproblematic, because they can be thought of as internal and external choice(Marti-Oliet and Meseguer 1989). But this distinction is not very sensiblein Net theory because one makes the assumption that no external observercan induce a transition to �re. Also an interesting observation one can makeis that that linear predicates seem to correspond to the dynamic predicatesused in the de�nition of Pr/T-nets (Genrich 1986).



� 100 �
Chapter 6ConclusionsOne of the aims of this thesis was to try to answer the question �What is ahigh-level net?�. We have tried to answer the question from several di�erentangles. However since we actually have worked only with Algebraic nets, wealso have to answer the question to what extent we really have said anythingabout high-level nets in general. What we feel we have done, is tried to choosea high-level net formalism as simple as possible, so that we can concentrateon the basic common aspects of all known high-level classes, namely the un-folding semantics, the idea of �symbolic �ring� through substitution, and themotivation of the nets through folding.In chapter 2 we studied the unfolding construction of Algebraic nets. Howeverat each stage we tried to identify those components of the construction thatwere not dependent on the speci�cation formalism used in the annotations.As we then showed the only component in the unfolding construction thatneeded to be rede�ned was the notion of a consistent transition assignment.For both Algebraic nets and Order-sorted Algebraic nets it is simply the setof all assignments to the variables of the transition, while for Algebraic netswith conditions it is the set of those assignments that satisfy the conditionson the transition. An interesting avenue for further research would be to tryand abstract the notion of consistent transition assignment to see whetherother high-level like net-classes, like timed-nets or stochastic nets could bemade to �t into this framework.In section 3.1.2 we described a high-level net as a graph in the category ofmonoids over a substitution system, thus formalizing the idea of �symbolic�ring�. Although we have again used Algebraic nets as our example formal-ism, we were able to describe the construction of an Algebraic net in terms ofa tensor product of the sketch of a substitution systems, the sketch of graphsand the sketch of commutative monoids. By suitably changing the substi-tution system (in the case of Algebraic nets it is many-sorted algebra) we



� 101 �obtain other high-level net formalisms. This abstraction also suggests thatsome new formalisms, that cannot quite be considered high-level Petri nets,are obtained by changing either the sketch of graphs or the sketch of commu-tative monoids. By replacing the sketch of monoids with some axiomatizationof a process algebra we could obtain a categorical semantics of this processalgebra with value passing. However it is yet not quite clear what a suitablereplacement for the sketch of graphs would be so that the formalism wouldstill retain its net-like character.In chapter 4 we described a high-level net as a morphism between two Place/-Transition nets. Although the construction is only given for Algebraic netswe can divide it into two parts, one generic and the other speci�c to Algebraicnets. The way the splitting of the annotations and the signature of the Alge-braic net are calculated is generic. The same principle can be used with anyother formalism that uses a similar notion of morphism. But on the otherhand the coding of the folding into the equations is naturally very speci�cto many-sorted algebra. However it should be noted that the constructionas given here codes everything into annotation functions and that the result-ing annotation functions are surjective. Thus it is not possible to constructconditions on transitions or annotation functions that are de�ned only on asubset of the domain.Finally in chapter 5 we described high-level nets as set of formulae of linearlogic. Although we only gave an encoding of Algebraic nets as formulae oflinear logic it is clear that both Order-sorted nets and Algebraic nets withconditions can also be translated into formulae of linear logic. This can bedone by either �rst translating the nets into Algebraic nets or by extendingthe encoding to accommodate subsorts or the conditions. Subsorts are addedby simply changing the de�nition of the language, while conditions can beincorporated as extra predicates in the antecedent of the linear implicationthat describes the transition. However the exact details of these constructionsare left for further research.Let us now look at the two other prominent net-classes, Pr/T-nets and Co-loured nets, and our reasons for not choosing them as the starting point ofour investigation. Pr/T-nets combine �rst order logic with C/E-systems intheir basic form. Pr/T-nets have been extended to multi-sets of tokens, thisextension however has been done by adding �tags� to the markings, ie. 2xin our formalism would become hx; 0i+ hx; 1i in a Pr/T-net. The formalismof Pr/T-nets also contains several features like conditions on transitions andconditional sums, that make the modeling of a systems easier. The mainreason for not choosing to work with Pr/T-nets was the treatment of multisets.Since we wanted to extend the Petri Nets are Monoids approach we needed ahigh-level net class that was directly built on P/T-nets. Coloured Nets do usemultisets of tokens in a natural way. However for Coloured Nets �the set of



� 102 �allowable expressions and predicates is not explicitly given�(Jensen 1986, p.250). For example the Coloured Nets in the Design/CPN tool use a versionof Standard ML (Milner, Tofte and Harper 1990) as the annotation language.So we feel that the advantages of Algebraic nets are that it is based on ideas ofthe Petri Nets are Monoids approach and that there exists a well understoodtheory of substitutions in many-sorted algebra, so that we have a very naturalmathematical framework in which to do our investigation. However givensuitable formalizations or translations of the annotation formalisms of bothPr/T-nets and Coloured Nets the results presented in this thesis should beapplicable to these net-classes.Let us �nally brie�y look at the possibilities of exploiting the results presentedin this work for the development of tools. The unfolding semantics describedin chapter 2 is directly applicable to the development of analysis tools. Thisidea has already been implemented in the tool PROD (Grönberg, Tiusanen andVarpaaniemi 1993). Clearly the idea of �symbolic �ring� described in sec-tion 3.1.2 can also be used to build an analyzer for high-level nets. Howeverit is more e�cient to use the unfolding semantics because the test for theenabledness of a transition involves the calculation of uni�ers. As a tran-sition can be enabled many times by the same transition assignment thesecalculations can become very costly. By �rst unfolding the net the uni�ersare calculated only once. On the other hand the �abstract� arrows present inthe structured transition system semantics, that were hinted at at the end ofsection 3.1.2, should be investigated further. They might provide some pos-sibilities for more e�cient reachability analysis. As shown in section 4.3 thefolding construction described in section 4.2 can be used to calculate dead-lock preserving skeletons. However to evaluate the practicality of this methodthe complexity of calculating the relation $ should be examined. Finally inchapter 5 we describe an axiomatization of high-level nets. From the pointof view of tools, this axiomatization is not very promising. However, the useof linear logic as a query language for an reachability analysis tool should beexplored further.



� 103 �
AppendixThe appendix contains short reviews of category theory, the Petri Nets aremonoids approach, and universal algebra. The aim is to give the basic def-initions and �x the notation. A tutorial type of presentation is not aimedat.A.1 Basic category theoryThe basic idea underlying category theory is that the crucial mathematicalproperties of a given subject do not reside within the structures in question,and even less in the particular representation chosen for them, but ratherin the mappings that preserve those structures. Thus category theory em-phasizes mappings before objects. Indeed most of category theory could bewritten without direct reference to objects.Another equivalent way to characterize category theory is as a �diagrammaticlanguage of arrows�. In this language mappings are represented by arrows(a mapping f : a! b is a f! b). Most theorems then are theorems thatstate equality of arrows under certain conditions. These are represented bycommutativity diagrams. Eg. if we require that f ; g = h; j with f : a! b,g : b! c, h : a! b0, j : b0 ! c we state that the diagram belowa f - bb0h? j - c?gcommutes.In this appendix we give a short introduction to the basic concepts in categorytheory. The main emphasis is on the intuition behind the de�nitions. Most



� 104 �examples will be with sets and functions, but some knowledge of algebra isrequired. This appendix only discusses concepts relevant to this work.The appendix is structured as follows. We �rst de�ne the notions of category,functor and natural transformation. The we discuss limits and co-limits,which are ways of expressing combinations of objects. Finally we de�ne thenotion of adjunction. For missing proofs we refer to (MacLane 1971).A.1.1 Basic category theoryThe aim of category theory is to study the mappings between mathematicalobjects. We start this introduction by de�ning a category.De�nition A.1.1A category C is a collection of objects jCj such that� For each pair of objects (a; b) of C a set MorC(a; b) called the set ofmorphisms from a to b, withMorC(a; b) andMorC(a0; b0) disjoint unlessa = a0 and b = b0 in which case they coincide. We shall take thenaive view that all sets are �proper� sets. We will not encounter anyfoundational problems with this.� For any three objects a; b; c of jCj there is a mapping (composition)MorC(a; b)�MorC(b; c)!MorC(a; c)described by (f; g) 7! f ; g, (notice that the order of the composition iswritten in the order of the arrows), with the following properties:� For each object a there is a morphism ida 2 MorC(a; a) whichis right identity under ; for the elements of MorC(a; b) and leftidentity under ; for the elements MorC(b; a).� ; is associative in the sense that when the composites f ; (g;h) and(f ; g);h are de�ned they are equal.We will often use the notation f : a ! b and a f! b for the morphism setsand call them arrows. The use of small letters for both objects and arrowsis to emphasize the fact that due to the identity morphisms objects can bemanipulated as arrows. Thus ordinary function application f(x) can and willsometimes be written x; f . �To make the above abstract de�nition clear and to convince the reader aboutits generality, we give some examples



� 105 �Example A.1.2(The category of sets) The category Set of sets and their mappings. Theobjects are ordinary sets and the morphisms are ordinary mappings betweensets. Composition is the usual composition of mappings. �Example A.1.3(Preorder) Let (E;�) be a preordered set. We can view this preordered setas a category E as follows: take as objects of E the elements of E and fora; b 2 E de�ne MorE(a; b) = ( f(a; b)g if a � b� otherwise.Composition is de�ned by the transitivity of � and the identity morphismsby the re�exivity of �. �Example A.1.4(Monoid) A monoid is a set X equipped with a function 
 : X � X !X (monoid multiplication) and a distinguished element I (monoid identity)subject to the two laws:x
 (y 
 z) = (x
 y)
 z for all x; y; zx
 I = x = I
 x for all x.Now a monoid is a category with one object. To see this call the objectA, then let X = Mor(A;A) where 
 is composition and I is the identitymorphism. �Monoids and preorders viewed as categories are at opposite extremes. Amonoid has one object and many morphisms, while a preorder has at mostone morphism between objects.Category theory tries to express every mathematical statement as a statementabout arrows. This has the advantage, that a proof of the statement also givesa proof of the statement obtained by reversing the arrows. Usually we will�dualise� every statement and de�nition immediately. We do this for thede�nition of a category.De�nition A.1.5The opposite category Cop is formed by turning around all the arrows inC. �As we are interested in studying structure preserving mappings between ob-jects it seems natural to de�ne mappings between categories. These are calledfunctors.



� 106 �De�nition A.1.6(Functor) A (covariant) functor from a category A to a category B is a pairof mappings that assign to every object a 2 jAj an object F (a) 2 jBj and toevery morphism f : a! b 2MorA a morphism F (f) : F (a)! F (b) 2MorBsuch that:� F (ida) = idF (a) for all a 2 jAj� if f ; g is de�ned in A then F (f);F (g) is de�ned in B and F (f);F (g) =F (f ; g).We use the notation F : A! B for a functor F from A to B. A contravariantfunctor F : A! B is a covariant functor F : A! Bop. �Thus a functor is a mapping that respects compositions and identities. Twospecial kinds of functors deserve mentioning. A bifunctor is a functorF : A� B! C. An endofunctor is a functor F : A! A.Example A.1.7(Monoid homomorphisms) Let M and N be monoids viewed as categories.Then a monoid homomorphism f : (M;
M ; IM )! (N;
N ; IN ) is a functorH :M! N. �Example A.1.8(Monotonic functions) Let (A;�A) and (B;�B) be two preorders. Then amonotonic function f : A ! B de�nes a functor as the reader easily cancheck. �Having de�ned mappings between categories (i. e. functors), it is natural toask whether we could also de�ne mappings between functors. This is indeedso and these maps are called natural transformations.De�nition A.1.9(Natural transformation) If F;G : A! B are functors then a natural transfor-mation from F to G is a rule that assigns to each object a 2 jAj a morphism�a : F (a)! G(a) 2MorB in such a way that associated with every morphismf : a! b 2MorA there is a commutative diagram:F (a) �a- G(a)F (b)F (f)? �b- G(b) :?G(f) �



� 107 �Example A.1.10A good example of a natural transformation is the evaluation of a functionat an argument. Let BA denote the set of all functions from set A to set B.Now de�ne eval : BA �A! B as eval(f; a) = f(a).Fix a speci�c A. The map B 7! BA �A extends to a functor F : Set! Set.So for this speci�c A eval : F ! ISet. This is equivalent to the followingdiagram: BA �A evala- BCA � AF (f)? evalb- C :?I(f)So we see that eval is a natural transformation. �This process of de�ning mappings between objects and then taking thesemappings as objects and de�ning new mappings between these could be con-tinued �ad nauseum�. In practice the usefulness of mappings between naturaltransformations (or higher order mappings) is very limited and we shall notencounter them in this work. Instead we turn to another important issue incategory theory.A.1.2 LimitsIn the previous paragraphs we have discussed many di�erent kinds of map-pings as the basic ingredient of category theory. Category theory is also con-cerned with characterizing mathematical constructions in the arrow-theoreticlanguage. As it turns out the categorical notion of universality is disguisedin many mathematical constructions: equivalence relations, complete metricspaces, etc. The concept of a universal construction allows us to describethese constructions in an uniform manner as universal objects or universalarrows. Universal arrows are usually described by statements like �for everyf there exists a unique f 0 such that uf 0 = f �. The arrow u is then an uni-versal arrow. We will here concern ourselves with a special kind of universalconstructions, namely limits and their duals co-limits. Below when we usethe word limit, we usually mean both limits and co-limits. Our �rst exampleof a limit is the categorical product, a generalization of a cartesian productof two sets.De�nition A.1.11(Product) Let a; b be objects in C. A product of a and b in C is an objecta�b with two morphisms �1 : a� b! a; �2 : a� b! b, called the projections



� 108 �(left and right), if for every other object c in C and every pair of morphismshf; gi with f : c! a; g : c! b there exists a unique morphism h : c! a� bsuch that the following diagram commutes:a � �1 a� b �2 - bI@@@@@f �����g �ch6 �Again we dualise:De�nition A.1.12(Coproduct) Let a; b be objects in C. A coproduct of a and b in C is an objecta + b with two morphisms �1 : a! a+ b; �2 : b! a+ b, called the injections(left and right) if for every other object c in C and every pair of morphisms(f; g) with f : a! c; g : b! c there exists a unique morphism h : a+ b! csuch that the following diagram commutes:a �1 - a+ b � �2 b@@@@@f R 	�����gch? �Example A.1.13In Set a product is simply the cartesian product of two sets. A coproduct isthe disjoint union of two sets. In a preorder viewed as a category productsand coproducts correspond to join and meet respectively. �A simpler kind of limit is obtained by constructing an empty coproduct. InSet an empty coproduct consists of an empty set. The two injections areidentical to the identity morphism. So the only interesting thing left is theuniversal arrow. Formally:De�nition A.1.14(Initial object) An object > of C is said to be an initial object if, for everyother object x in C, there is only one arrow from > to x. �



� 109 �Again dually we can ask what an empty product is and end up with thefollowing:De�nition A.1.15(Terminal object) An object ? in C is said to be a terminal object if for everyother object x in C there is only one arrow from x to ?. �Example A.1.16In Set the empty set � is initial and f�g or any other singleton set is terminal.Because of isomorphism it does not matter which singleton we choose. �De�nition A.1.17Given in C a pair of arrows f; g : a! b with the same domain a and codomainb, an equalizer of hf; gi is an arrow u : e! a (or, a pair he; ui) such that� u; f = u; g,� if h : c! a has h; f = h; g then there exists an unique arrow h0 : c! esuch that h0;u = h. This is displayed in the commutativity requirementof the diagram below:e u - a f -g - b�����h �ch06 �De�nition A.1.18Given in C a pair of arrows f; g : a! b with the same domain a and codomainb, a coequalizer of hf; gi is an arrow u : b! e (or, a pair he; ui) such that� f ;u = g;u,� if h : b! c has f ;h = g;h then there exists an unique arrow h0 : e! csuch that h = u;h0. This is displayed in the commutativity requirementof the diagram below:a f -g - b u - e@@@@@h R c?h0



� 110 � �The coequalizer corresponds to an equivalence relation. In set-theoreticalterms the coequalizer identi�es those elements of b that are the image of thesame x of a under the functions f and g.Another important type of limit is the pullback.De�nition A.1.19Given in C a pair of arrows f : a! c and g : b! c with the same codomain c,a pullback is given by an object a�cb and arrows �1 : a�cb! a; �2 : a�cb! bsuch that:� �1; f = �2; g, and� given any other object d and maps k : d ! b; l : d ! a there exists aunique map h : d0 ! a�c b such that the following diagram commutes:d @@h@@RHHHHHHHHHHHk jAAAAAAAAAAAAl Ua�c b �2 - ba�1? f - c?g �The general notion of limit and its dual co-limit are based on the de�nitionof a cone in a category, which is a special kind of a diagram.De�nition A.1.20A diagram D in a category C is a graph homomorphismD : I ! C, where Cis the underlying graph of the category. A commutative cone with vertex Wover a diagram D : I ! C is a natural transformation � from the constantfunctor with value W on I, to D, which implies that the following diagram



� 111 �must commute for all e : i! j: D(i)������i �W @@@@@�j RD(j)?D(e) �De�nition A.1.21A commutative cone over a diagram D is called universal if every other com-mutative cone over the same diagram has a unique arrow to it. A universalcone, if it exists, is called the limit of the diagram D. �A co-limit is a universal co-cone.A.1.3 AdjunctionsConcepts that can be viewed as special cases of adjunctions were known longbefore the advent of category theory. One of the more classical examples isthat of a Galois connection between two preordered sets.De�nition A.1.22Let A f! B and B g! A be monotonic functions between two preorders A =hA;�Ai;B = hB;�Bi. The pair hf; gi is an adjunction (Galois connection) i�1. f and g are monotonic and2. the relations f(a) �B b and a �A g(b) are equivalent for all pairs ofelements (a; b) 2 A�B. �By regarding a preorder A as a category A with jMorA(a; b)j = 1 (as inthe example on page 105), when a �A b (transitivity and re�exivity de�necomposition and identities) and taking f and g as functors F : A! B and G :B! A, the above de�nition transfers immediately into a category theoreticalsetting, allowing us to generalize the notion of a Galois connection to anadjunction as follows:



� 112 �De�nition A.1.23An adjunction between categories A and B is a quadruple (F;G; �; ") whereF : A! B and G : B! A are functors, the left and right adjoint respectively,and � : 1A ! FG and " : GF ! 1B are natural transformations (unit andco-unit) such that: (G�); (G") = 1G;(F�); (F") = 1F : �The most important property of an adjunction is expressed by the followingfact.Theorem A.1.24Let F : A ! B and G : B ! A be functors such that F is left adjoint to G.Then F preserves co-limits and G preserves limits. �A.2 Petri Nets are MonoidsIn this appendix we will look at a category theoretic model of Petri nets,where the algebraic structure in which multisets are coded is that of a monoid,which has been proposed by Meseguer and Montanari (1990). It is based onthe observation that the markings of the net obey a commutative monoidallaw, where this monoidal structure is induced on the transitions by the �ringrule.The usefulness of viewing the multiset of places as a monoid will become clearin the following subsection. Mainly the monoidal structure on the places in-duces a monoidal structure on the transitions giving a rich hierarchy of cat-egories with increasingly rich structures on the transitions. The monoidalstructure on the transitions is used to represent the concurrent �ring of tran-sitions. Thus if we think of the monoidal operation on the places (conditions)as meaning the conditions hold simultaneously, the operation on the transi-tions has the reading the events happen simultaneously. Hence the monoidaloperation can be used as a representation of parallelism, or in other wordsthe algebraic structure of parallelism is monoidal.In this model a very liberal view of nets is taken. For example in someconstructions isolated places are useful. In some categories the net with onlyone transition and place connected in a loop plays a very important role bybeing the terminal net. Essentially this means that we wish to treat nets asgraphs. Also the nets will not have initial markings. This means that thebehavior of the net is a much more abstract concept. The behavior of the net



� 113 �includes all the possible behaviors of the net.This appendix consists of two subsections. The �rst subsection discusses thedi�erent categories of nets that are derivable in the models, while the secondsubsection discusses the completeness properties of some speci�c categoriesin this model.A.2.1 General structure of the modelIn this subsection we shall �rst take a look at the di�erent categories of nets.The categories are all derived from the category of graphs by adding structureto the set of transitions. Then we shall see that these categories are relatedby a sequence of adjunctions. Finally we shall try to give some characterizingexamples so that the reader can get a feel for the di�erences between themorphisms in these categories.The �rst thing we need to do is de�ne a category of graphs (Meseguer andMontanari 1990).De�nition A.2.1The category of graphs Graph has as objects graphs ie. tuples hT; P; �; oi,where T is the set of arcs, P is the set of nodes and �; o are functions T ! P ,and morphisms pairs hf; gi of functions such that the diagramT � -o - PT 0f? �0 -o0 - P 0?gcommutes. �By adding a free monoidal structure on the places we get the category Petri.De�nition A.2.2The category of Petri nets Petri has as objects Petri nets hT; P
; �; oi and asmorphisms graph morphisms hf; gi where g is a monoid homomorphism. �If we want partial maps on the transitions we can do it by adding a specialelement 0 to the set of transitions.In this way we get the category of pointed Petri nets.



� 114 �De�nition A.2.3The category of pointed Petri nets Petri0 has as objects pointed netsh(T; 0); P
; �; oi and as morphisms graph morphisms hf; giwhere f is a pointedfunction and g is a monoid homomorphism. �If we add a monoidal structure to the transitions we get the category of Petricommutative monoids.De�nition A.2.4A Petri commutative monoid consists of a Petri net where the set of transitionsis a commutative monoid (T;+; 0) and where�; o : (T;+; 0)! P
are monoid homomorphisms. A Petri commutative monoid homomorphism isa Petri net morphism hf; gi where f is monoid homomorphism. This de�nesa category CMonPetri. �The reader should note that the monoid on the transitions need not be free.The idea here is that the monoidal structure on the transitions re�ects thestructure of the computation. If there are synchronization constraints in thesystem these are expressed as conditions on the transition monoid.The above categories can all be augmented with re�exive structures. Toeach place we adjoin an identity transition that represents the fact thatnothing happens at that speci�c place. The corresponding categories areCMonRPetri, RPetri, RGraph.The last category in the hierarchy is the category of Petri categories.De�nition A.2.5A Petri category is a small category C = (P
; T; ; ; id) whose set of objectsis a free commutative monoid, and whose set of arrows has a commutativemonoid structure (T;
; idI), that is not necessarily free, and is compatiblewith the categorical structure in the sense that the source and target functions�; o : T ! P
 are monoid homomorphisms and that 
 respects identities and(sequential) composition:1. �(�;�) = �(�) and o(�;�) = o(�).2. �; id(�(�)) = � and id(o(�));� = �.3. (�;�);  = �; (�; ).4. Given � : u! v; �0 : u0 ! v0; � : v ! w; �0 : v0 ! w0; we have(�
 �0); (� 
 �0) = (�;�)
 (�0;�0) :



� 115 �Given two Petri Categories C and D a Petri category morphism from C toD is a functor that is a monoid homomorphism when restricted to both theobjects and the morphisms. This data determines a category CatPetri. �The equations are equivalent to saying that the operation 
 is a bifunctor
 : C�C! C. Furthermore this implies that a Petri category is a monoidalcategory.A Petri net N can be completed to a Petri category T(N) by the followingproof rules: u in P
tu : u! u in T[N ] (A.1)�(t) = u; o(t) = v and tin Nt : u! v in T[N ] (A.2)t1 : u! v; t2 : v ! w in T[N ]t1; t2 : u! w in T[N ] (A.3)t : u! v; t0 : u0 ! v0 in T[N ]t
 t0 : u
 u0 ! v 
 v0 in T[N ] (A.4)The rules de�ne a functor T[ ] : Petri ! CatPetri which is left adjoint tothe forgetful functor U : CatPetri! Petri.The category CatPetri has several uses. First of all due to the existence of theleft adjoint T we can think of the CatPetri net T(N) as a kind of generalizedbehavior of the net. The CatPetri net T(N) contains all possible behaviors ofthe net N . This kind of "abstract" behavior is studied in (Degano et al. 1989),where it is related to the di�erent notions of process for Place/Transitionsystems (cf. (Best and Devillers 1987)). Secondly the notion of morphism isa very strong one and we shall have reason to examine it further in the sequel.Actually the left adjoint T is the composition of several left adjoints, becausethere exists a sequence of left adjoints between the categories de�ned above:Petri! Petri0 ! CMonPetri! CatPetri :These left adjoints allow us to relate the di�erent categories and their mor-phisms to each other.A comparison of the di�erent categories allows us to characterize the mor-phism by their possible actions on transitions.



� 116 �
a bt N1a0a00 b0t0 N2 fp(a) = a0 
 a00fp(b) = b0ft(t) = t0Figure A.1: A morphism in Petri.abd cet1t2 N1

a0b0 c0t01 N2 fp(a) = a0fp(b) = b0fp(c) = c0fp(d) = 0fp(e) = 0ft(t1) = t01ft(t2) = 0Figure A.2: A morphism in Petri0.� Petri: A transition is mapped to another transition (see �gure A.1).� Petri0: We can erase parallel transitions (see �gure A.2).� CMonPetri: A transition is mapped onto parallel compositions of tran-sitions (see �gure A.3).� CatPetri: A transition can be mapped onto an entire computation withsequential and parallel compositions of transitions (see �gure A.4).The morphisms are listed in their order of complexity. The sequence of leftadjoints mentioned previously makes this order an inclusion in the sense thatwith a more complex morphism we can achieve all that can be achieved withthe more simpler one.All the morphisms obey the following important fact.



� 117 �
bat N1 b0a0t0 b00a00t00N2 fp(a) = a0 
 a00fp(b) = b0 
 b00ft(t) = t0 
 t00Figure A.3: A morphism in CMonPetri.

a t ba0 b0t1 t2t3 t4Figure A.4: A morphism in CatPetri.



� 118 �
ab cd eft1t2 t3r

t4
Figure A.5: The net N1.Fact A.2.6The morphisms preserve behavior. That is, given markingsM1 and M2 in N1s.th. M2 is obtained from M1 by �ring t1, there exists a transition t01 2 N2s.th. f(M2) is obtained from f(M1) by �ring t01 and t01 = f(t1). �This fact is a consequence of the fact that in CatPetrimorphisms are functorsand thus preserve parallel and sequential compositions of transitions, in otherwords the behavior.Before ending this subsection we shall brie�y discuss the morphisms inCatPetriso that the reader will get a feel for what we mean by behavior in T(N). Weshall illustrate this by discussing re�nement, as some morphisms in CatPetrican be interpreted as re�nement morphisms. In the net N1 in �gure A.5 wewish to re�ne the transition r by the net R in �gure A.6. A simple graphicalsubstitution gives as a result the net N2 in �gure A.7, this is called an atomicre�nement. Now there exists a morphism f : T(N1) ! T(N2) in CatPetrigiven by the following assignments:t1 7! t10t2 7! t20t3 7! t30t4 7! t40r 7! (t60 
 t70); t80 :The net N2 can thus be interpreted as a re�nement of N1. Unfortunately themorphism f does not preserve deadlock freeness, because both R and N1 aredeadlock free, but N2 is not. This is because from the marking c
d both stepst40
 t60 : c0
d0 ! f 0
 g0 and t30
 t70 : c0
d0 ! e0
h0 and are possible. The



� 119 �cd gh eft6t7 t8Figure A.6: The net R.a0b0 c0d0 g0h0 e0f 0t01t02 t06t07 t03
t04 t08

Figure A.7: The net N2.resulting markings are dead. The problem arises, because the net R exhibitsa phenomenon called initial concurrency, where the initial transitions t60 andt70 need not �re concurrently. There are standard solutions to this problem(see e.g. (van Glabbeek 1990) p.191) where one requires that the re�nementnet shall obey conditions ensuring that it will act like a transition with respectto its environment:� it cannot move without being activated by the environment,� it has the same possible behaviors whenever it is activated,� it may not deadlock,� it consumes and produces tokens in a coincident manner.The �rst condition means, that the net shall not be marked initially. Thesecond condition means, that the net is not allowed to store tokens. The �nalcondition prevents initial and �nal concurrency.But there is a way in which to interpret the morphism f , so that it preserversdeadlock-freeness. Because the morphism is in CatPetri it is actually map-ping behaviors to behaviors. Thus it can be interpreted as specifying that for



� 120 �the net N2 to be a deadlock-free re�nement of N1 the transitions t06; t07; t8 haveto be �red in the order (t60 
 t70); t80. Gorrieri and Montanari (1995) discussthe implementation of CCS (Milner 1989) through such morphisms.A.2.2 Completeness properties.The main aim of this subsection is to show which co-limits do exist in Petri.The fact that Petri does not have all co-limits will lead to de�nition of acategory PetriG which is a subcategory of Petri that has all co-limits, and isused in chapters 2, 4 and 5The lack of arbitrary limits and co-limits in the category Petri follows fromthe lack of the corresponding limits and co-limits in the category of free com-mutative monoids. This is illustrated by the lack of equalizers and coequaliz-ers. The following two counter-examples are due to Josè Meseguer (Meseguer1991). First equalizers:Counterexample A.2.7Take the following two maps from N 3 to N :f(x; y; z) = 7x+ 2y + 5zg(x; y; z) = 2x+ 5y + 7z :The equalizer of the pair f; g is the set:E = f(x; y; z)j5x = 3y + 2zg;which is generated by the set of vectors:u1 = (1; 1; 1)u2 = (3; 5; 0)u3 = (3; 1; 6)u4 = (4; 0; 10) :This set of vectors E is not a free monoid, because we have the identity(6; 2; 12) = 2u3 = 3u1 + u4 : �For coequalizers there is an analogous counterexample:



� 121 �Counterexample A.2.8Take the following two maps from N to N :h1(x) = 3xh2(x) = 0 :The coequalizer of these two maps is the following submonoid of N :Q = fnjn not divisible by 3g;which is clearly not free. �This leaves us with the following two propositions.Proposition A.2.9The category Petri has all products.Proof:The net hf�g; �; 0; 0i is the terminal object. The product N1 � N2 (see �g-ure A.8 of two nets N1 and N2 isN1 �N2 = hT1 � T2; P1 ] P2; �; oi;where the projections are pairs �i = h�iT ; �iP i with �iT : T1 � T2 ! Ti and�iP : P1 ] P2 ! Pi for i = 1; 2. The maps � and o are de�ned by� : ht1; t2i 7! �1(t1)
 �2(t2)o : ht1; t2i 7! o1(t1)
 o2(t2) : �Proposition A.2.10The category Petri has all coproducts.Proof:The initial object is the empty net h�; �; 0; 0i. The coproduct N1 +N2 is thedisjoint union of the two nets N1 + N2 = hT1 ] T2; P1 ] P2; �1 ] �2; o1 ] o2i.�The idea that the empty net is the initial object may at �rst seem slightlypuzzling, because an initial object in the category of monoids is any one objectmonoid where the object is the unit element. But in nets the unit element isto be thought of as the empty marking which means the empty set of places.The fact that Petri lacks more useful co-limits makes it at �rst sight not veryuseful in its applications to compositionality. Fortunately there is a solutionto this problem proposed by Hummert in (Hummert 1989). Recall that we



� 122 �t1N1 t2N2ht1; t2iN1 �N2Figure A.8: N1 �N2 is the product of N1 and N2.started with the category of graphs to which we then added structure. Thechoice of morphism that was made is the reason that co-completeness waslost. By changing the morphism co-completeness can be regained.De�nition A.2.11The category PetriG has as objects Petri nets and as morphism pairs offunctions hft; fpi such that T � -o - P
T 0ft? �0 -o0 - P
0?f
pcommutes. (f
p is the free extension of fp to a monoid homomorphism.) �The following is obvious:Proposition A.2.12PetriG is a wide subcategory of Petri. �An example will illustrate the di�erence between the morphisms. Figure A.9



� 123 �
a bt2 N1a0a00 b0t0 N2 fp(a0) = afp(a00) = afp(b0) = bft(t0) = tFigure A.9: A morphism in PetriG.shows a map that is a map in PetriG. Its inverse is a map in Petri but notin PetriG.Morphism in PetriG are essentially graph morphism and the category ofgraphs has all co-limits. Because the category PetriG is the subcategoryof Petri that corresponds to the image of the free functor F(Graph) that isleft adjoint to the forgetful functor U : Petri! Graph the category PetriGis co-complete. More explicitly the constructions are show below.Theorem A.2.13PetriG is co-completeProof:We list the simple co-limits:� the initial object is the net h�; �; 0; 0; i,� the coproduct is the juxtaposition of the two nets, with the obviousinjections, and� the coequalizer of N1!f!gN2 is the net N = hT; P; �; oi withT = coeq(T1!fT!gTT2) in SetP = coeq(P1!fP!gPP2) in Set :The maps �; o are de�ned by the universal property of the coequalizer.�Unfortunately we do not have all products in PetriG. Consider the netsN1; N2; N3 in �gure A.10. If N3 were to be the product of N1 and N2, thiswould imply the existence of projections �i = h�iT ; �iPi for i = 1; 2. Butin PetriG there exist no maps N3 ! Ni, because we need to preserve thearc-weights and this can't map p1 
 p2 onto pi



� 124 �t1p1 N1 t2p2N2ht1; t2ip1 N3p2Figure A.10: The category PetriG does not have all products.A.3 Universal algebraA.3.1 Many-sorted algebraThe theory of abstract data-types is based on many-sorted algebra. A category-theoretic formulation is presented by Goguen and Burstall in (Goguen andBurstall 1984). In the following we shall follow the more concise formulationof (Goguen and Burstall 1990).The fundamental intuition is, that a data-type consists of a set of elements ofdi�erent sorts, and a set of operations making the data-type into an algebra.Each algebra has a signature that names the sorts and the operators of thealgebra.De�nition A.3.1Given a set of sorts S an equational signature is a pair hS;�i, where � is afamily of sets (of operator names) indexed by S� � S, where S� denotes theset of strings with alphabet S. The operator � 2 �w;s has arity w, sort s, andrank or type hw; si. It is customary to just write � instead of hS;�i. �De�nition A.3.2A equational signature morphism � : hS;�i ! hS0�0i is pair hhS ; h�i wherehS : S ! S0 is the sort map and h� is a S� � S-indexed family of mapshu;s : �u;s ! �0f�(u);f(s). �De�nition A.3.3Equational signatures and equational signature morphisms form the categoryof equational signatures Sig. �De�nition A.3.4Given a signature �, a �-algebra A is a S-indexed family of sets jAj = hAsjs 2Si called the carries of A together with an S� � S indexed family � of maps�u;s : �u;s ! [Au ! As] for u in S� and s in S, where As1:::sn = As1�� � ��Asnand [A! B] denotes the set of functions from A to B. �



� 125 �De�nition A.3.5A �-homomorphism is a S-indexed map h : A! A0 that satis�es the equationh(�(x1; : : : ; xn) = h(�)(h(x1); : : : ; h(xn)) : ��-algebras and �-homomorphism form a category Alg�. There exists a for-getful functor U : Alg� ! SetS which sends a �-algebra to its S-indexed setof carriers.Given a S-indexed set of variables X we can form the set of all terms that areconstructed with operator symbols from � and variables from X. This setforms a �-algebra in a natural way. It is called the free algebra over the setof variables X and denoted by T�(X). We �rst de�ne a special case, de�ning(T�)s to be the smallest set of strings of symbols such that:� ��;s � T�;s,� � 2 �s1:::sn;s and ti 2 T�;si imply that the string �(t1; : : : ; tn) is in T�;sIf we now de�ne � by� for � 2 ��;s let �(�) be the string � of length 1 in T�;s,� for � 2 �s1:::sn;s and ti 2 T�;si let �(�(t1; : : : ; tn)) be the string �(t1; : : : ; tn)in T�;s.then � de�nes the �-structure on T�. Let now de�ne �(X) to be the signaturewith (�(X))�;s = (�)�;s [Xs and (�(X))u;s = (�)u;s if u 6= �. Then the freealgebra T�(X) is just T�(X) seen as a �-algebra.The free algebra enjoys the following universal property. For any �-algebra,every map f : X ! U(B) has a unique extension to a �-homomorphismf# : T�(X) ! B. The map f : X ! U(B) is called variable assignment andits extension f# assignment.The construction of a free �-algebra on a set of variables X extends to afunctor F : Set ! Alg� that is left adjoint to the forgetful functor U :Alg� ! Set.An abstract data-type is usually speci�ed using a signature and a set of equa-tions that specify the behavior of the operations.De�nition A.3.6A �-equation e is a triple hX; t1; t2i, where X is a set of S-sorted variables,and t1; t2 2 T�;s(X) are terms of the same sort. Such an equation is usuallywritten t1 = t2. �



� 126 �The idea that an equation �holds� in an algebra is formalized as follows.De�nition A.3.7A �-algebra A satis�es a �-equation t1 = t2, written A j= t1 = t2 i� ass#A(t1) =ass#A(t2) for every assignment ass#A : X ! U(A). �An abstract data-type is now given by a presentation.De�nition A.3.8A tuple hS;�; EQi, where hS;�i is a signature and EQ is a set of equations,is called a �-presentation. A �-algebra is a �-presentation algebra if A j= efor all e 2 EQ. �We will use the term �-algebra for short, both when � is a presentation andwhen it is a signature, if the exact meaning is clear from the context.The equations of the presentation induce an equivalence relation on the termsof T�. The resulting algebra is called a term algebra and denoted by T�=�.De�nition A.3.9A presentation morphism h� : hS;�; EQi ! hS0;�0; EQ0i is a signature mor-phism h�, that is extended on equations by:h#� (hX; t1; t2i) = hh#� (X); h#� (t1); h#�(t2)i : �The category Alg� extends to a functor on the category Sig that maps eachsignature � to the category Alg(�) of all �-algebras.De�nition A.3.10The functor Alg! Catop sends each signature � to the category Alg�, andsends each signature morphism � : hhS : S ! S0; h� : �! �0i to the functorAlg(�) : Alg� ! Alg�0 that:1. sends a �-algebra hA0; �0i to the �-algebra hA;�i with As = A0hS (s) and� = h�;�0, and2. sends each �0-homomorphism h0 : A0 ! B0 to the �-homomorphismAlg(�)(h0) = h : Alg(�)(A0)! Alg(�)(B0) de�ned by hs = h0hS (s). �De�nition A.3.11Since the functor Algmaps a �-algebra A0 to a �-algebra A, given a signaturemorphism h� : � ! � there is a natural �-homomorphism hA : A ! A0jh�where A0jh� = Alg(h�)(A0) that is called a �generalized homomorphism�. �



� 127 �A.3.2 Order-sorted AlgebraThe idea of sub-sorts can be modeled by adding an ordering on the sorts of amany-sorted signature. This generalization leads to the de�nition of Order-sorted Algebra. The basic reference is (Goguen and Meseguer 1992).De�nition A.3.12An order-sorted signature is a triple hS;�;�i, where hS;�i is an equationalsignature, and hS;�i is a poset, and the operations satisfy the following mono-tonicity condition:� 2 �w1;s1 \ �w2;s2 and w1 � w2 imply s1 � s2 : �De�nition A.3.13Let hS;�;�i be an order-sorted signature. Then an hS;�;�i-algebra is anhS;�i-algebra A such that:1. s � s0 2 S implies As � A0s, and2. � 2 �w1;s1 \ �w2;s2 and w1 � w2 imply A� : Aw1 ! As1 equals A� :Aw2 ! As2 on w1. �De�nition A.3.14Let hS;�;�i be an order-sorted signature, and let A;B be order-sorted hS;�;�i-algebras. An hS;�;�i-homomorphism is an hS;�i-homomorphism suchthat s � s0 and a 2 As imply hs(a) = h0s(a) :hS;�;�i-algebras and hS;�;�i-homomorphisms form a category ��OSAlg.�To de�ne the term algebra, the signature needs to satisfy the following regu-larity conditions that ensures the existence of a least rank for each term.De�nition A.3.15An order-sorted signature � is regular i� given � 2 �w1;s1 and given w0 � w1in S�, there is a least rank hw; si 2 S��S, such that w0 � w and � 2 �w;s. �The free algebra can now be de�ned by the following construction� ��;s � T�;s,



� 128 �� T�;s0 � T�;s i� s0 � s,� � 2 �s1:::sn;s and ti 2 T�;si imply that the string �(t1; : : : ; tn) is in T�;sNow since � is regular, by theorem 2.12 of (Goguen and Meseguer 1992), T�is initial.If one requires the sort order S to be locally-�ltered, ie. for each connectedcomponent of the order, for any two elements s; s0 2 S there exists an elements00, such that s; s0 � s00, one transform each order-sorted algebra A withsignature � into a many sorted algebra A# with signature �#, together witha set of conditional equation J . The idea is that we view each operator in �as an operator of �#, and whenever s � s0 we add an operator cs;s0 2 �#s;s0that is called inclusion operator. The conditional equations are the following:1. (identity) cs;s(x) = x for each s 2 S,2. (injectivity) x = y if cs;s0(x) = cs;s0(y), for each s � s0 2 S,3. (transitivity) cs0;s00(cs;s0(x)) = cs;s00(x), for each s � s0 � s00 2 S,4. (homomorphism) whenever � : s1 : : :sn! s and � : s01 : : : s0n! s0 arein �, with si � s0i, and s � s0 in S, thencs;s0(�s1:::sn;s(x1; : : : ; xn)) = �s01:::s0n;s0(cs1;s01(x1); : : : csn;s0n(xn)) :The construction extends to a functor, and the result can now be stated asfollows.Theorem A.3.16 (Theorem 4.2 (Goguen and Meseguer 1992))Given a coherent order-sorted signature �, the functor ( )# : ��OSAlg !(�#; J)�Alg is an equivalence of categories. �A.4 MonoidsGiven a set S the free commutative monoid generated by S is denoted by S
.If f : S ! S0 is a Set-function, then the free extension along the functorF : Set!Mon is denoted by f
.De�nition A.4.1Given a monoid A
 with a set of generators A, de�ne a function A : A
 !P(A) by the assignment A(a1 
 � � � 
 an) = fa1; : : : ; ang.  maps a term ofthe monoid into its set of generators. If the context is clear the subscript willbe omitted. �
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